1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/vmreg.inline.hpp"
  28 #include "compiler/abstractCompiler.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc_interface/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/oopMapCache.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.inline.hpp"
  35 #include "oops/markOop.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/verifyOop.hpp"
  40 #include "prims/methodHandles.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/javaCalls.hpp"
  44 #include "runtime/monitorChunk.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubCodeGenerator.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "utilities/decoder.hpp"
  52 
  53 
  54 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  55 
  56 RegisterMap::RegisterMap(JavaThread *thread, bool update_map) {
  57   _thread         = thread;
  58   _update_map     = update_map;
  59   clear();
  60   debug_only(_update_for_id = NULL;)
  61 #ifndef PRODUCT
  62   for (int i = 0; i < reg_count ; i++ ) _location[i] = NULL;
  63 #endif /* PRODUCT */
  64 }
  65 
  66 RegisterMap::RegisterMap(const RegisterMap* map) {
  67   assert(map != this, "bad initialization parameter");
  68   assert(map != NULL, "RegisterMap must be present");
  69   _thread                = map->thread();
  70   _update_map            = map->update_map();
  71   _include_argument_oops = map->include_argument_oops();
  72   debug_only(_update_for_id = map->_update_for_id;)
  73   pd_initialize_from(map);
  74   if (update_map()) {
  75     for(int i = 0; i < location_valid_size; i++) {
  76       LocationValidType bits = !update_map() ? 0 : map->_location_valid[i];
  77       _location_valid[i] = bits;
  78       // for whichever bits are set, pull in the corresponding map->_location
  79       int j = i*location_valid_type_size;
  80       while (bits != 0) {
  81         if ((bits & 1) != 0) {
  82           assert(0 <= j && j < reg_count, "range check");
  83           _location[j] = map->_location[j];
  84         }
  85         bits >>= 1;
  86         j += 1;
  87       }
  88     }
  89   }
  90 }
  91 
  92 void RegisterMap::clear() {
  93   set_include_argument_oops(true);
  94   if (_update_map) {
  95     for(int i = 0; i < location_valid_size; i++) {
  96       _location_valid[i] = 0;
  97     }
  98     pd_clear();
  99   } else {
 100     pd_initialize();
 101   }
 102 }
 103 
 104 #ifndef PRODUCT
 105 
 106 void RegisterMap::print_on(outputStream* st) const {
 107   st->print_cr("Register map");
 108   for(int i = 0; i < reg_count; i++) {
 109 
 110     VMReg r = VMRegImpl::as_VMReg(i);
 111     intptr_t* src = (intptr_t*) location(r);
 112     if (src != NULL) {
 113 
 114       r->print_on(st);
 115       st->print(" [" INTPTR_FORMAT "] = ", src);
 116       if (((uintptr_t)src & (sizeof(*src)-1)) != 0) {
 117         st->print_cr("<misaligned>");
 118       } else {
 119         st->print_cr(INTPTR_FORMAT, *src);
 120       }
 121     }
 122   }
 123 }
 124 
 125 void RegisterMap::print() const {
 126   print_on(tty);
 127 }
 128 
 129 #endif
 130 // This returns the pc that if you were in the debugger you'd see. Not
 131 // the idealized value in the frame object. This undoes the magic conversion
 132 // that happens for deoptimized frames. In addition it makes the value the
 133 // hardware would want to see in the native frame. The only user (at this point)
 134 // is deoptimization. It likely no one else should ever use it.
 135 
 136 address frame::raw_pc() const {
 137   if (is_deoptimized_frame()) {
 138     nmethod* nm = cb()->as_nmethod_or_null();
 139     if (nm->is_method_handle_return(pc()))
 140       return nm->deopt_mh_handler_begin() - pc_return_offset;
 141     else
 142       return nm->deopt_handler_begin() - pc_return_offset;
 143   } else {
 144     return (pc() - pc_return_offset);
 145   }
 146 }
 147 
 148 // Change the pc in a frame object. This does not change the actual pc in
 149 // actual frame. To do that use patch_pc.
 150 //
 151 void frame::set_pc(address   newpc ) {
 152 #ifdef ASSERT
 153   if (_cb != NULL && _cb->is_nmethod()) {
 154     assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant violation");
 155   }
 156 #endif // ASSERT
 157 
 158   // Unsafe to use the is_deoptimzed tester after changing pc
 159   _deopt_state = unknown;
 160   _pc = newpc;
 161   _cb = CodeCache::find_blob_unsafe(_pc);
 162 
 163 }
 164 
 165 // type testers
 166 bool frame::is_ignored_frame() const {
 167   return false;  // FIXME: some LambdaForm frames should be ignored
 168 }
 169 bool frame::is_deoptimized_frame() const {
 170   assert(_deopt_state != unknown, "not answerable");
 171   return _deopt_state == is_deoptimized;
 172 }
 173 
 174 bool frame::is_native_frame() const {
 175   return (_cb != NULL &&
 176           _cb->is_nmethod() &&
 177           ((nmethod*)_cb)->is_native_method());
 178 }
 179 
 180 bool frame::is_java_frame() const {
 181   if (is_interpreted_frame()) return true;
 182   if (is_compiled_frame())    return true;
 183   return false;
 184 }
 185 
 186 
 187 bool frame::is_compiled_frame() const {
 188   if (_cb != NULL &&
 189       _cb->is_nmethod() &&
 190       ((nmethod*)_cb)->is_java_method()) {
 191     return true;
 192   }
 193   return false;
 194 }
 195 
 196 
 197 bool frame::is_runtime_frame() const {
 198   return (_cb != NULL && _cb->is_runtime_stub());
 199 }
 200 
 201 bool frame::is_safepoint_blob_frame() const {
 202   return (_cb != NULL && _cb->is_safepoint_stub());
 203 }
 204 
 205 // testers
 206 
 207 bool frame::is_first_java_frame() const {
 208   RegisterMap map(JavaThread::current(), false); // No update
 209   frame s;
 210   for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map));
 211   return s.is_first_frame();
 212 }
 213 
 214 
 215 bool frame::entry_frame_is_first() const {
 216   return entry_frame_call_wrapper()->is_first_frame();
 217 }
 218 
 219 JavaCallWrapper* frame::entry_frame_call_wrapper_if_safe(JavaThread* thread) const {
 220   JavaCallWrapper** jcw = entry_frame_call_wrapper_addr();
 221   address addr = (address) jcw;
 222 
 223   // addr must be within the usable part of the stack
 224   if (thread->is_in_usable_stack(addr)) {
 225     return *jcw;
 226   }
 227 
 228   return NULL;
 229 }
 230 
 231 bool frame::should_be_deoptimized() const {
 232   if (_deopt_state == is_deoptimized ||
 233       !is_compiled_frame() ) return false;
 234   assert(_cb != NULL && _cb->is_nmethod(), "must be an nmethod");
 235   nmethod* nm = (nmethod *)_cb;
 236   if (TraceDependencies) {
 237     tty->print("checking (%s) ", nm->is_marked_for_deoptimization() ? "true" : "false");
 238     nm->print_value_on(tty);
 239     tty->cr();
 240   }
 241 
 242   if( !nm->is_marked_for_deoptimization() )
 243     return false;
 244 
 245   // If at the return point, then the frame has already been popped, and
 246   // only the return needs to be executed. Don't deoptimize here.
 247   return !nm->is_at_poll_return(pc());
 248 }
 249 
 250 bool frame::can_be_deoptimized() const {
 251   if (!is_compiled_frame()) return false;
 252   nmethod* nm = (nmethod*)_cb;
 253 
 254   if( !nm->can_be_deoptimized() )
 255     return false;
 256 
 257   return !nm->is_at_poll_return(pc());
 258 }
 259 
 260 void frame::deoptimize(JavaThread* thread) {
 261   // Schedule deoptimization of an nmethod activation with this frame.
 262   assert(_cb != NULL && _cb->is_nmethod(), "must be");
 263   nmethod* nm = (nmethod*)_cb;
 264 
 265   // This is a fix for register window patching race
 266   if (NeedsDeoptSuspend && Thread::current() != thread) {
 267     assert(SafepointSynchronize::is_at_safepoint(),
 268            "patching other threads for deopt may only occur at a safepoint");
 269 
 270     // It is possible especially with DeoptimizeALot/DeoptimizeRandom that
 271     // we could see the frame again and ask for it to be deoptimized since
 272     // it might move for a long time. That is harmless and we just ignore it.
 273     if (id() == thread->must_deopt_id()) {
 274       assert(thread->is_deopt_suspend(), "lost suspension");
 275       return;
 276     }
 277 
 278     // We are at a safepoint so the target thread can only be
 279     // in 4 states:
 280     //     blocked - no problem
 281     //     blocked_trans - no problem (i.e. could have woken up from blocked
 282     //                                 during a safepoint).
 283     //     native - register window pc patching race
 284     //     native_trans - momentary state
 285     //
 286     // We could just wait out a thread in native_trans to block.
 287     // Then we'd have all the issues that the safepoint code has as to
 288     // whether to spin or block. It isn't worth it. Just treat it like
 289     // native and be done with it.
 290     //
 291     // Examine the state of the thread at the start of safepoint since
 292     // threads that were in native at the start of the safepoint could
 293     // come to a halt during the safepoint, changing the current value
 294     // of the safepoint_state.
 295     JavaThreadState state = thread->safepoint_state()->orig_thread_state();
 296     if (state == _thread_in_native || state == _thread_in_native_trans) {
 297       // Since we are at a safepoint the target thread will stop itself
 298       // before it can return to java as long as we remain at the safepoint.
 299       // Therefore we can put an additional request for the thread to stop
 300       // no matter what no (like a suspend). This will cause the thread
 301       // to notice it needs to do the deopt on its own once it leaves native.
 302       //
 303       // The only reason we must do this is because on machine with register
 304       // windows we have a race with patching the return address and the
 305       // window coming live as the thread returns to the Java code (but still
 306       // in native mode) and then blocks. It is only this top most frame
 307       // that is at risk. So in truth we could add an additional check to
 308       // see if this frame is one that is at risk.
 309       RegisterMap map(thread, false);
 310       frame at_risk =  thread->last_frame().sender(&map);
 311       if (id() == at_risk.id()) {
 312         thread->set_must_deopt_id(id());
 313         thread->set_deopt_suspend();
 314         return;
 315       }
 316     }
 317   } // NeedsDeoptSuspend
 318 
 319 
 320   // If the call site is a MethodHandle call site use the MH deopt
 321   // handler.
 322   address deopt = nm->is_method_handle_return(pc()) ?
 323     nm->deopt_mh_handler_begin() :
 324     nm->deopt_handler_begin();
 325 
 326   // Save the original pc before we patch in the new one
 327   nm->set_original_pc(this, pc());
 328   patch_pc(thread, deopt);
 329 
 330 #ifdef ASSERT
 331   {
 332     RegisterMap map(thread, false);
 333     frame check = thread->last_frame();
 334     while (id() != check.id()) {
 335       check = check.sender(&map);
 336     }
 337     assert(check.is_deoptimized_frame(), "missed deopt");
 338   }
 339 #endif // ASSERT
 340 }
 341 
 342 frame frame::java_sender() const {
 343   RegisterMap map(JavaThread::current(), false);
 344   frame s;
 345   for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map)) ;
 346   guarantee(s.is_java_frame(), "tried to get caller of first java frame");
 347   return s;
 348 }
 349 
 350 frame frame::real_sender(RegisterMap* map) const {
 351   frame result = sender(map);
 352   while (result.is_runtime_frame() ||
 353          result.is_ignored_frame()) {
 354     result = result.sender(map);
 355   }
 356   return result;
 357 }
 358 
 359 // Note: called by profiler - NOT for current thread
 360 frame frame::profile_find_Java_sender_frame(JavaThread *thread) {
 361 // If we don't recognize this frame, walk back up the stack until we do
 362   RegisterMap map(thread, false);
 363   frame first_java_frame = frame();
 364 
 365   // Find the first Java frame on the stack starting with input frame
 366   if (is_java_frame()) {
 367     // top frame is compiled frame or deoptimized frame
 368     first_java_frame = *this;
 369   } else if (safe_for_sender(thread)) {
 370     for (frame sender_frame = sender(&map);
 371       sender_frame.safe_for_sender(thread) && !sender_frame.is_first_frame();
 372       sender_frame = sender_frame.sender(&map)) {
 373       if (sender_frame.is_java_frame()) {
 374         first_java_frame = sender_frame;
 375         break;
 376       }
 377     }
 378   }
 379   return first_java_frame;
 380 }
 381 
 382 // Interpreter frames
 383 
 384 
 385 void frame::interpreter_frame_set_locals(intptr_t* locs)  {
 386   assert(is_interpreted_frame(), "Not an interpreted frame");
 387   *interpreter_frame_locals_addr() = locs;
 388 }
 389 
 390 Method* frame::interpreter_frame_method() const {
 391   assert(is_interpreted_frame(), "interpreted frame expected");
 392   Method* m = *interpreter_frame_method_addr();
 393   assert(m->is_method(), "not a Method*");
 394   return m;
 395 }
 396 
 397 void frame::interpreter_frame_set_method(Method* method) {
 398   assert(is_interpreted_frame(), "interpreted frame expected");
 399   *interpreter_frame_method_addr() = method;
 400 }
 401 
 402 jint frame::interpreter_frame_bci() const {
 403   assert(is_interpreted_frame(), "interpreted frame expected");
 404   address bcp = interpreter_frame_bcp();
 405   return interpreter_frame_method()->bci_from(bcp);
 406 }
 407 
 408 address frame::interpreter_frame_bcp() const {
 409   assert(is_interpreted_frame(), "interpreted frame expected");
 410   address bcp = (address)*interpreter_frame_bcp_addr();
 411   return interpreter_frame_method()->bcp_from(bcp);
 412 }
 413 
 414 void frame::interpreter_frame_set_bcp(address bcp) {
 415   assert(is_interpreted_frame(), "interpreted frame expected");
 416   *interpreter_frame_bcp_addr() = (intptr_t)bcp;
 417 }
 418 
 419 address frame::interpreter_frame_mdp() const {
 420   assert(ProfileInterpreter, "must be profiling interpreter");
 421   assert(is_interpreted_frame(), "interpreted frame expected");
 422   return (address)*interpreter_frame_mdp_addr();
 423 }
 424 
 425 void frame::interpreter_frame_set_mdp(address mdp) {
 426   assert(is_interpreted_frame(), "interpreted frame expected");
 427   assert(ProfileInterpreter, "must be profiling interpreter");
 428   *interpreter_frame_mdp_addr() = (intptr_t)mdp;
 429 }
 430 
 431 BasicObjectLock* frame::next_monitor_in_interpreter_frame(BasicObjectLock* current) const {
 432   assert(is_interpreted_frame(), "Not an interpreted frame");
 433 #ifdef ASSERT
 434   interpreter_frame_verify_monitor(current);
 435 #endif
 436   BasicObjectLock* next = (BasicObjectLock*) (((intptr_t*) current) + interpreter_frame_monitor_size());
 437   return next;
 438 }
 439 
 440 BasicObjectLock* frame::previous_monitor_in_interpreter_frame(BasicObjectLock* current) const {
 441   assert(is_interpreted_frame(), "Not an interpreted frame");
 442 #ifdef ASSERT
 443 //   // This verification needs to be checked before being enabled
 444 //   interpreter_frame_verify_monitor(current);
 445 #endif
 446   BasicObjectLock* previous = (BasicObjectLock*) (((intptr_t*) current) - interpreter_frame_monitor_size());
 447   return previous;
 448 }
 449 
 450 // Interpreter locals and expression stack locations.
 451 
 452 intptr_t* frame::interpreter_frame_local_at(int index) const {
 453   const int n = Interpreter::local_offset_in_bytes(index)/wordSize;
 454   return &((*interpreter_frame_locals_addr())[n]);
 455 }
 456 
 457 intptr_t* frame::interpreter_frame_expression_stack_at(jint offset) const {
 458   const int i = offset * interpreter_frame_expression_stack_direction();
 459   const int n = i * Interpreter::stackElementWords;
 460   return &(interpreter_frame_expression_stack()[n]);
 461 }
 462 
 463 jint frame::interpreter_frame_expression_stack_size() const {
 464   // Number of elements on the interpreter expression stack
 465   // Callers should span by stackElementWords
 466   int element_size = Interpreter::stackElementWords;
 467   size_t stack_size = 0;
 468   if (frame::interpreter_frame_expression_stack_direction() < 0) {
 469     stack_size = (interpreter_frame_expression_stack() -
 470                   interpreter_frame_tos_address() + 1)/element_size;
 471   } else {
 472     stack_size = (interpreter_frame_tos_address() -
 473                   interpreter_frame_expression_stack() + 1)/element_size;
 474   }
 475   assert( stack_size <= (size_t)max_jint, "stack size too big");
 476   return ((jint)stack_size);
 477 }
 478 
 479 
 480 // (frame::interpreter_frame_sender_sp accessor is in frame_<arch>.cpp)
 481 
 482 const char* frame::print_name() const {
 483   if (is_native_frame())      return "Native";
 484   if (is_interpreted_frame()) return "Interpreted";
 485   if (is_compiled_frame()) {
 486     if (is_deoptimized_frame()) return "Deoptimized";
 487     return "Compiled";
 488   }
 489   if (sp() == NULL)            return "Empty";
 490   return "C";
 491 }
 492 
 493 void frame::print_value_on(outputStream* st, JavaThread *thread) const {
 494   NOT_PRODUCT(address begin = pc()-40;)
 495   NOT_PRODUCT(address end   = NULL;)
 496 
 497   st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), sp(), unextended_sp());
 498   if (sp() != NULL)
 499     st->print(", fp=" INTPTR_FORMAT ", real_fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT, fp(), real_fp(), pc());
 500 
 501   if (StubRoutines::contains(pc())) {
 502     st->print_cr(")");
 503     st->print("(");
 504     StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
 505     st->print("~Stub::%s", desc->name());
 506     NOT_PRODUCT(begin = desc->begin(); end = desc->end();)
 507   } else if (Interpreter::contains(pc())) {
 508     st->print_cr(")");
 509     st->print("(");
 510     InterpreterCodelet* desc = Interpreter::codelet_containing(pc());
 511     if (desc != NULL) {
 512       st->print("~");
 513       desc->print_on(st);
 514       NOT_PRODUCT(begin = desc->code_begin(); end = desc->code_end();)
 515     } else {
 516       st->print("~interpreter");
 517     }
 518   }
 519   st->print_cr(")");
 520 
 521   if (_cb != NULL) {
 522     st->print("     ");
 523     _cb->print_value_on(st);
 524     st->cr();
 525 #ifndef PRODUCT
 526     if (end == NULL) {
 527       begin = _cb->code_begin();
 528       end   = _cb->code_end();
 529     }
 530 #endif
 531   }
 532   NOT_PRODUCT(if (WizardMode && Verbose) Disassembler::decode(begin, end);)
 533 }
 534 
 535 
 536 void frame::print_on(outputStream* st) const {
 537   print_value_on(st,NULL);
 538   if (is_interpreted_frame()) {
 539     interpreter_frame_print_on(st);
 540   }
 541 }
 542 
 543 
 544 void frame::interpreter_frame_print_on(outputStream* st) const {
 545 #ifndef PRODUCT
 546   assert(is_interpreted_frame(), "Not an interpreted frame");
 547   jint i;
 548   for (i = 0; i < interpreter_frame_method()->max_locals(); i++ ) {
 549     intptr_t x = *interpreter_frame_local_at(i);
 550     st->print(" - local  [" INTPTR_FORMAT "]", x);
 551     st->fill_to(23);
 552     st->print_cr("; #%d", i);
 553   }
 554   for (i = interpreter_frame_expression_stack_size() - 1; i >= 0; --i ) {
 555     intptr_t x = *interpreter_frame_expression_stack_at(i);
 556     st->print(" - stack  [" INTPTR_FORMAT "]", x);
 557     st->fill_to(23);
 558     st->print_cr("; #%d", i);
 559   }
 560   // locks for synchronization
 561   for (BasicObjectLock* current = interpreter_frame_monitor_end();
 562        current < interpreter_frame_monitor_begin();
 563        current = next_monitor_in_interpreter_frame(current)) {
 564     st->print(" - obj    [");
 565     current->obj()->print_value_on(st);
 566     st->print_cr("]");
 567     st->print(" - lock   [");
 568     current->lock()->print_on(st);
 569     st->print_cr("]");
 570   }
 571   // monitor
 572   st->print_cr(" - monitor[" INTPTR_FORMAT "]", interpreter_frame_monitor_begin());
 573   // bcp
 574   st->print(" - bcp    [" INTPTR_FORMAT "]", interpreter_frame_bcp());
 575   st->fill_to(23);
 576   st->print_cr("; @%d", interpreter_frame_bci());
 577   // locals
 578   st->print_cr(" - locals [" INTPTR_FORMAT "]", interpreter_frame_local_at(0));
 579   // method
 580   st->print(" - method [" INTPTR_FORMAT "]", (address)interpreter_frame_method());
 581   st->fill_to(23);
 582   st->print("; ");
 583   interpreter_frame_method()->print_name(st);
 584   st->cr();
 585 #endif
 586 }
 587 
 588 // Print whether the frame is in the VM or OS indicating a HotSpot problem.
 589 // Otherwise, it's likely a bug in the native library that the Java code calls,
 590 // hopefully indicating where to submit bugs.
 591 void frame::print_C_frame(outputStream* st, char* buf, int buflen, address pc) {
 592   // C/C++ frame
 593   bool in_vm = os::address_is_in_vm(pc);
 594   st->print(in_vm ? "V" : "C");
 595 
 596   int offset;
 597   bool found;
 598 
 599   // libname
 600   found = os::dll_address_to_library_name(pc, buf, buflen, &offset);
 601   if (found) {
 602     // skip directory names
 603     const char *p1, *p2;
 604     p1 = buf;
 605     int len = (int)strlen(os::file_separator());
 606     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
 607     st->print("  [%s+0x%x]", p1, offset);
 608   } else {
 609     st->print("  " PTR_FORMAT, pc);
 610   }
 611 
 612   // function name - os::dll_address_to_function_name() may return confusing
 613   // names if pc is within jvm.dll or libjvm.so, because JVM only has
 614   // JVM_xxxx and a few other symbols in the dynamic symbol table. Do this
 615   // only for native libraries.
 616   if (!in_vm || Decoder::can_decode_C_frame_in_vm()) {
 617     found = os::dll_address_to_function_name(pc, buf, buflen, &offset);
 618 
 619     if (found) {
 620       st->print("  %s+0x%x", buf, offset);
 621     }
 622   }
 623 }
 624 
 625 // frame::print_on_error() is called by fatal error handler. Notice that we may
 626 // crash inside this function if stack frame is corrupted. The fatal error
 627 // handler can catch and handle the crash. Here we assume the frame is valid.
 628 //
 629 // First letter indicates type of the frame:
 630 //    J: Java frame (compiled)
 631 //    j: Java frame (interpreted)
 632 //    V: VM frame (C/C++)
 633 //    v: Other frames running VM generated code (e.g. stubs, adapters, etc.)
 634 //    C: C/C++ frame
 635 //
 636 // We don't need detailed frame type as that in frame::print_name(). "C"
 637 // suggests the problem is in user lib; everything else is likely a VM bug.
 638 
 639 void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose) const {
 640   if (_cb != NULL) {
 641     if (Interpreter::contains(pc())) {
 642       Method* m = this->interpreter_frame_method();
 643       if (m != NULL) {
 644         m->name_and_sig_as_C_string(buf, buflen);
 645         st->print("j  %s", buf);
 646         st->print("+%d", this->interpreter_frame_bci());
 647       } else {
 648         st->print("j  " PTR_FORMAT, pc());
 649       }
 650     } else if (StubRoutines::contains(pc())) {
 651       StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
 652       if (desc != NULL) {
 653         st->print("v  ~StubRoutines::%s", desc->name());
 654       } else {
 655         st->print("v  ~StubRoutines::" PTR_FORMAT, pc());
 656       }
 657     } else if (_cb->is_buffer_blob()) {
 658       st->print("v  ~BufferBlob::%s", ((BufferBlob *)_cb)->name());
 659     } else if (_cb->is_nmethod()) {
 660       nmethod* nm = (nmethod*)_cb;
 661       Method* m = nm->method();
 662       if (m != NULL) {
 663         m->name_and_sig_as_C_string(buf, buflen);
 664         st->print("J %d%s %s %s (%d bytes) @ " PTR_FORMAT " [" PTR_FORMAT "+0x%x]",
 665                   nm->compile_id(), (nm->is_osr_method() ? "%" : ""),
 666                   ((nm->compiler() != NULL) ? nm->compiler()->name() : ""),
 667                   buf, m->code_size(), _pc, _cb->code_begin(), _pc - _cb->code_begin());
 668       } else {
 669         st->print("J  " PTR_FORMAT, pc());
 670       }
 671     } else if (_cb->is_runtime_stub()) {
 672       st->print("v  ~RuntimeStub::%s", ((RuntimeStub *)_cb)->name());
 673     } else if (_cb->is_deoptimization_stub()) {
 674       st->print("v  ~DeoptimizationBlob");
 675     } else if (_cb->is_exception_stub()) {
 676       st->print("v  ~ExceptionBlob");
 677     } else if (_cb->is_safepoint_stub()) {
 678       st->print("v  ~SafepointBlob");
 679     } else {
 680       st->print("v  blob " PTR_FORMAT, pc());
 681     }
 682   } else {
 683     print_C_frame(st, buf, buflen, pc());
 684   }
 685 }
 686 
 687 
 688 /*
 689   The interpreter_frame_expression_stack_at method in the case of SPARC needs the
 690   max_stack value of the method in order to compute the expression stack address.
 691   It uses the Method* in order to get the max_stack value but during GC this
 692   Method* value saved on the frame is changed by reverse_and_push and hence cannot
 693   be used. So we save the max_stack value in the FrameClosure object and pass it
 694   down to the interpreter_frame_expression_stack_at method
 695 */
 696 class InterpreterFrameClosure : public OffsetClosure {
 697  private:
 698   frame* _fr;
 699   OopClosure* _f;
 700   int    _max_locals;
 701   int    _max_stack;
 702 
 703  public:
 704   InterpreterFrameClosure(frame* fr, int max_locals, int max_stack,
 705                           OopClosure* f) {
 706     _fr         = fr;
 707     _max_locals = max_locals;
 708     _max_stack  = max_stack;
 709     _f          = f;
 710   }
 711 
 712   void offset_do(int offset) {
 713     oop* addr;
 714     if (offset < _max_locals) {
 715       addr = (oop*) _fr->interpreter_frame_local_at(offset);
 716       assert((intptr_t*)addr >= _fr->sp(), "must be inside the frame");
 717       _f->do_oop(addr);
 718     } else {
 719       addr = (oop*) _fr->interpreter_frame_expression_stack_at((offset - _max_locals));
 720       // In case of exceptions, the expression stack is invalid and the esp will be reset to express
 721       // this condition. Therefore, we call f only if addr is 'inside' the stack (i.e., addr >= esp for Intel).
 722       bool in_stack;
 723       if (frame::interpreter_frame_expression_stack_direction() > 0) {
 724         in_stack = (intptr_t*)addr <= _fr->interpreter_frame_tos_address();
 725       } else {
 726         in_stack = (intptr_t*)addr >= _fr->interpreter_frame_tos_address();
 727       }
 728       if (in_stack) {
 729         _f->do_oop(addr);
 730       }
 731     }
 732   }
 733 
 734   int max_locals()  { return _max_locals; }
 735   frame* fr()       { return _fr; }
 736 };
 737 
 738 
 739 class InterpretedArgumentOopFinder: public SignatureInfo {
 740  private:
 741   OopClosure* _f;        // Closure to invoke
 742   int    _offset;        // TOS-relative offset, decremented with each argument
 743   bool   _has_receiver;  // true if the callee has a receiver
 744   frame* _fr;
 745 
 746   void set(int size, BasicType type) {
 747     _offset -= size;
 748     if (type == T_OBJECT || type == T_ARRAY) oop_offset_do();
 749   }
 750 
 751   void oop_offset_do() {
 752     oop* addr;
 753     addr = (oop*)_fr->interpreter_frame_tos_at(_offset);
 754     _f->do_oop(addr);
 755   }
 756 
 757  public:
 758   InterpretedArgumentOopFinder(Symbol* signature, bool has_receiver, frame* fr, OopClosure* f) : SignatureInfo(signature), _has_receiver(has_receiver) {
 759     // compute size of arguments
 760     int args_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0);
 761     assert(!fr->is_interpreted_frame() ||
 762            args_size <= fr->interpreter_frame_expression_stack_size(),
 763             "args cannot be on stack anymore");
 764     // initialize InterpretedArgumentOopFinder
 765     _f         = f;
 766     _fr        = fr;
 767     _offset    = args_size;
 768   }
 769 
 770   void oops_do() {
 771     if (_has_receiver) {
 772       --_offset;
 773       oop_offset_do();
 774     }
 775     iterate_parameters();
 776   }
 777 };
 778 
 779 
 780 // Entry frame has following form (n arguments)
 781 //         +-----------+
 782 //   sp -> |  last arg |
 783 //         +-----------+
 784 //         :    :::    :
 785 //         +-----------+
 786 // (sp+n)->|  first arg|
 787 //         +-----------+
 788 
 789 
 790 
 791 // visits and GC's all the arguments in entry frame
 792 class EntryFrameOopFinder: public SignatureInfo {
 793  private:
 794   bool   _is_static;
 795   int    _offset;
 796   frame* _fr;
 797   OopClosure* _f;
 798 
 799   void set(int size, BasicType type) {
 800     assert (_offset >= 0, "illegal offset");
 801     if (type == T_OBJECT || type == T_ARRAY) oop_at_offset_do(_offset);
 802     _offset -= size;
 803   }
 804 
 805   void oop_at_offset_do(int offset) {
 806     assert (offset >= 0, "illegal offset");
 807     oop* addr = (oop*) _fr->entry_frame_argument_at(offset);
 808     _f->do_oop(addr);
 809   }
 810 
 811  public:
 812    EntryFrameOopFinder(frame* frame, Symbol* signature, bool is_static) : SignatureInfo(signature) {
 813      _f = NULL; // will be set later
 814      _fr = frame;
 815      _is_static = is_static;
 816      _offset = ArgumentSizeComputer(signature).size() - 1; // last parameter is at index 0
 817    }
 818 
 819   void arguments_do(OopClosure* f) {
 820     _f = f;
 821     if (!_is_static) oop_at_offset_do(_offset+1); // do the receiver
 822     iterate_parameters();
 823   }
 824 
 825 };
 826 
 827 oop* frame::interpreter_callee_receiver_addr(Symbol* signature) {
 828   ArgumentSizeComputer asc(signature);
 829   int size = asc.size();
 830   return (oop *)interpreter_frame_tos_at(size);
 831 }
 832 
 833 
 834 void frame::oops_interpreted_do(OopClosure* f, CLDClosure* cld_f,
 835     const RegisterMap* map, bool query_oop_map_cache) {
 836   assert(is_interpreted_frame(), "Not an interpreted frame");
 837   assert(map != NULL, "map must be set");
 838   Thread *thread = Thread::current();
 839   methodHandle m (thread, interpreter_frame_method());
 840   jint      bci = interpreter_frame_bci();
 841 
 842   assert(!Universe::heap()->is_in(m()),
 843           "must be valid oop");
 844   assert(m->is_method(), "checking frame value");
 845   assert((m->is_native() && bci == 0)  ||
 846          (!m->is_native() && bci >= 0 && bci < m->code_size()),
 847          "invalid bci value");
 848 
 849   // Handle the monitor elements in the activation
 850   for (
 851     BasicObjectLock* current = interpreter_frame_monitor_end();
 852     current < interpreter_frame_monitor_begin();
 853     current = next_monitor_in_interpreter_frame(current)
 854   ) {
 855 #ifdef ASSERT
 856     interpreter_frame_verify_monitor(current);
 857 #endif
 858     current->oops_do(f);
 859   }
 860 
 861   // process fixed part
 862   if (cld_f != NULL) {
 863     // The method pointer in the frame might be the only path to the method's
 864     // klass, and the klass needs to be kept alive while executing. The GCs
 865     // don't trace through method pointers, so typically in similar situations
 866     // the mirror or the class loader of the klass are installed as a GC root.
 867     // To minimize the overhead of doing that here, we ask the GC to pass down a
 868     // closure that knows how to keep klasses alive given a ClassLoaderData.
 869     cld_f->do_cld(m->method_holder()->class_loader_data());
 870   }
 871 
 872   if (m->is_native() PPC32_ONLY(&& m->is_static())) {
 873     f->do_oop(interpreter_frame_temp_oop_addr());
 874   }
 875 
 876   int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
 877 
 878   Symbol* signature = NULL;
 879   bool has_receiver = false;
 880 
 881   // Process a callee's arguments if we are at a call site
 882   // (i.e., if we are at an invoke bytecode)
 883   // This is used sometimes for calling into the VM, not for another
 884   // interpreted or compiled frame.
 885   if (!m->is_native()) {
 886     Bytecode_invoke call = Bytecode_invoke_check(m, bci);
 887     if (call.is_valid()) {
 888       signature = call.signature();
 889       has_receiver = call.has_receiver();
 890       if (map->include_argument_oops() &&
 891           interpreter_frame_expression_stack_size() > 0) {
 892         ResourceMark rm(thread);  // is this right ???
 893         // we are at a call site & the expression stack is not empty
 894         // => process callee's arguments
 895         //
 896         // Note: The expression stack can be empty if an exception
 897         //       occurred during method resolution/execution. In all
 898         //       cases we empty the expression stack completely be-
 899         //       fore handling the exception (the exception handling
 900         //       code in the interpreter calls a blocking runtime
 901         //       routine which can cause this code to be executed).
 902         //       (was bug gri 7/27/98)
 903         oops_interpreted_arguments_do(signature, has_receiver, f);
 904       }
 905     }
 906   }
 907 
 908   InterpreterFrameClosure blk(this, max_locals, m->max_stack(), f);
 909 
 910   // process locals & expression stack
 911   InterpreterOopMap mask;
 912   if (query_oop_map_cache) {
 913     m->mask_for(bci, &mask);
 914   } else {
 915     OopMapCache::compute_one_oop_map(m, bci, &mask);
 916   }
 917   mask.iterate_oop(&blk);
 918 }
 919 
 920 
 921 void frame::oops_interpreted_arguments_do(Symbol* signature, bool has_receiver, OopClosure* f) {
 922   InterpretedArgumentOopFinder finder(signature, has_receiver, this, f);
 923   finder.oops_do();
 924 }
 925 
 926 void frame::oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* reg_map) {
 927   assert(_cb != NULL, "sanity check");
 928   if (_cb->oop_maps() != NULL) {
 929     OopMapSet::oops_do(this, reg_map, f);
 930 
 931     // Preserve potential arguments for a callee. We handle this by dispatching
 932     // on the codeblob. For c2i, we do
 933     if (reg_map->include_argument_oops()) {
 934       _cb->preserve_callee_argument_oops(*this, reg_map, f);
 935     }
 936   }
 937   // In cases where perm gen is collected, GC will want to mark
 938   // oops referenced from nmethods active on thread stacks so as to
 939   // prevent them from being collected. However, this visit should be
 940   // restricted to certain phases of the collection only. The
 941   // closure decides how it wants nmethods to be traced.
 942   if (cf != NULL)
 943     cf->do_code_blob(_cb);
 944 }
 945 
 946 class CompiledArgumentOopFinder: public SignatureInfo {
 947  protected:
 948   OopClosure*     _f;
 949   int             _offset;        // the current offset, incremented with each argument
 950   bool            _has_receiver;  // true if the callee has a receiver
 951   bool            _has_appendix;  // true if the call has an appendix
 952   frame           _fr;
 953   RegisterMap*    _reg_map;
 954   int             _arg_size;
 955   VMRegPair*      _regs;        // VMReg list of arguments
 956 
 957   void set(int size, BasicType type) {
 958     if (type == T_OBJECT || type == T_ARRAY) handle_oop_offset();
 959     _offset += size;
 960   }
 961 
 962   virtual void handle_oop_offset() {
 963     // Extract low order register number from register array.
 964     // In LP64-land, the high-order bits are valid but unhelpful.
 965     VMReg reg = _regs[_offset].first();
 966     oop *loc = _fr.oopmapreg_to_location(reg, _reg_map);
 967     _f->do_oop(loc);
 968   }
 969 
 970  public:
 971   CompiledArgumentOopFinder(Symbol* signature, bool has_receiver, bool has_appendix, OopClosure* f, frame fr,  const RegisterMap* reg_map)
 972     : SignatureInfo(signature) {
 973 
 974     // initialize CompiledArgumentOopFinder
 975     _f         = f;
 976     _offset    = 0;
 977     _has_receiver = has_receiver;
 978     _has_appendix = has_appendix;
 979     _fr        = fr;
 980     _reg_map   = (RegisterMap*)reg_map;
 981     _arg_size  = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0) + (has_appendix ? 1 : 0);
 982 
 983     int arg_size;
 984     _regs = SharedRuntime::find_callee_arguments(signature, has_receiver, has_appendix, &arg_size);
 985     assert(arg_size == _arg_size, "wrong arg size");
 986   }
 987 
 988   void oops_do() {
 989     if (_has_receiver) {
 990       handle_oop_offset();
 991       _offset++;
 992     }
 993     iterate_parameters();
 994     if (_has_appendix) {
 995       handle_oop_offset();
 996       _offset++;
 997     }
 998   }
 999 };
1000 
1001 void frame::oops_compiled_arguments_do(Symbol* signature, bool has_receiver, bool has_appendix, const RegisterMap* reg_map, OopClosure* f) {
1002   ResourceMark rm;
1003   CompiledArgumentOopFinder finder(signature, has_receiver, has_appendix, f, *this, reg_map);
1004   finder.oops_do();
1005 }
1006 
1007 
1008 // Get receiver out of callers frame, i.e. find parameter 0 in callers
1009 // frame.  Consult ADLC for where parameter 0 is to be found.  Then
1010 // check local reg_map for it being a callee-save register or argument
1011 // register, both of which are saved in the local frame.  If not found
1012 // there, it must be an in-stack argument of the caller.
1013 // Note: caller.sp() points to callee-arguments
1014 oop frame::retrieve_receiver(RegisterMap* reg_map) {
1015   frame caller = *this;
1016 
1017   // First consult the ADLC on where it puts parameter 0 for this signature.
1018   VMReg reg = SharedRuntime::name_for_receiver();
1019   oop* oop_adr = caller.oopmapreg_to_location(reg, reg_map);
1020   if (oop_adr == NULL) {
1021     guarantee(oop_adr != NULL, "bad register save location");
1022     return NULL;
1023   }
1024   oop r = *oop_adr;
1025   assert(Universe::heap()->is_in_or_null(r), err_msg("bad receiver: " INTPTR_FORMAT " (" INTX_FORMAT ")", (void *) r, (void *) r));
1026   return r;
1027 }
1028 
1029 
1030 oop* frame::oopmapreg_to_location(VMReg reg, const RegisterMap* reg_map) const {
1031   if(reg->is_reg()) {
1032     // If it is passed in a register, it got spilled in the stub frame.
1033     return (oop *)reg_map->location(reg);
1034   } else {
1035     int sp_offset_in_bytes = reg->reg2stack() * VMRegImpl::stack_slot_size;
1036     return (oop*)(((address)unextended_sp()) + sp_offset_in_bytes);
1037   }
1038 }
1039 
1040 BasicLock* frame::get_native_monitor() {
1041   nmethod* nm = (nmethod*)_cb;
1042   assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native(),
1043          "Should not call this unless it's a native nmethod");
1044   int byte_offset = in_bytes(nm->native_basic_lock_sp_offset());
1045   assert(byte_offset >= 0, "should not see invalid offset");
1046   return (BasicLock*) &sp()[byte_offset / wordSize];
1047 }
1048 
1049 oop frame::get_native_receiver() {
1050   nmethod* nm = (nmethod*)_cb;
1051   assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native(),
1052          "Should not call this unless it's a native nmethod");
1053   int byte_offset = in_bytes(nm->native_receiver_sp_offset());
1054   assert(byte_offset >= 0, "should not see invalid offset");
1055   oop owner = ((oop*) sp())[byte_offset / wordSize];
1056   assert( Universe::heap()->is_in(owner), "bad receiver" );
1057   return owner;
1058 }
1059 
1060 void frame::oops_entry_do(OopClosure* f, const RegisterMap* map) {
1061   assert(map != NULL, "map must be set");
1062   if (map->include_argument_oops()) {
1063     // must collect argument oops, as nobody else is doing it
1064     Thread *thread = Thread::current();
1065     methodHandle m (thread, entry_frame_call_wrapper()->callee_method());
1066     EntryFrameOopFinder finder(this, m->signature(), m->is_static());
1067     finder.arguments_do(f);
1068   }
1069   // Traverse the Handle Block saved in the entry frame
1070   entry_frame_call_wrapper()->oops_do(f);
1071 }
1072 
1073 
1074 void frame::oops_do_internal(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache) {
1075 #ifndef PRODUCT
1076   // simulate GC crash here to dump java thread in error report
1077   if (CrashGCForDumpingJavaThread) {
1078     char *t = NULL;
1079     *t = 'c';
1080   }
1081 #endif
1082   if (is_interpreted_frame()) {
1083     oops_interpreted_do(f, cld_f, map, use_interpreter_oop_map_cache);
1084   } else if (is_entry_frame()) {
1085     oops_entry_do(f, map);
1086   } else if (CodeCache::contains(pc())) {
1087     oops_code_blob_do(f, cf, map);
1088 #ifdef SHARK
1089   } else if (is_fake_stub_frame()) {
1090     // nothing to do
1091 #endif // SHARK
1092   } else {
1093     ShouldNotReachHere();
1094   }
1095 }
1096 
1097 void frame::nmethods_do(CodeBlobClosure* cf) {
1098   if (_cb != NULL && _cb->is_nmethod()) {
1099     cf->do_code_blob(_cb);
1100   }
1101 }
1102 
1103 
1104 // call f() on the interpreted Method*s in the stack.
1105 // Have to walk the entire code cache for the compiled frames Yuck.
1106 void frame::metadata_do(void f(Metadata*)) {
1107   if (_cb != NULL && Interpreter::contains(pc())) {
1108     Method* m = this->interpreter_frame_method();
1109     assert(m != NULL, "huh?");
1110     f(m);
1111   }
1112 }
1113 
1114 # ifdef ENABLE_ZAP_DEAD_LOCALS
1115 
1116 void frame::CheckValueClosure::do_oop(oop* p) {
1117   if (CheckOopishValues && Universe::heap()->is_in_reserved(*p)) {
1118     warning("value @ " INTPTR_FORMAT " looks oopish (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current());
1119   }
1120 }
1121 frame::CheckValueClosure frame::_check_value;
1122 
1123 
1124 void frame::CheckOopClosure::do_oop(oop* p) {
1125   if (*p != NULL && !(*p)->is_oop()) {
1126     warning("value @ " INTPTR_FORMAT " should be an oop (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current());
1127  }
1128 }
1129 frame::CheckOopClosure frame::_check_oop;
1130 
1131 void frame::check_derived_oop(oop* base, oop* derived) {
1132   _check_oop.do_oop(base);
1133 }
1134 
1135 
1136 void frame::ZapDeadClosure::do_oop(oop* p) {
1137   if (TraceZapDeadLocals) tty->print_cr("zapping @ " INTPTR_FORMAT " containing " INTPTR_FORMAT, p, (address)*p);
1138   *p = cast_to_oop<intptr_t>(0xbabebabe);
1139 }
1140 frame::ZapDeadClosure frame::_zap_dead;
1141 
1142 void frame::zap_dead_locals(JavaThread* thread, const RegisterMap* map) {
1143   assert(thread == Thread::current(), "need to synchronize to do this to another thread");
1144   // Tracing - part 1
1145   if (TraceZapDeadLocals) {
1146     ResourceMark rm(thread);
1147     tty->print_cr("--------------------------------------------------------------------------------");
1148     tty->print("Zapping dead locals in ");
1149     print_on(tty);
1150     tty->cr();
1151   }
1152   // Zapping
1153        if (is_entry_frame      ()) zap_dead_entry_locals      (thread, map);
1154   else if (is_interpreted_frame()) zap_dead_interpreted_locals(thread, map);
1155   else if (is_compiled_frame()) zap_dead_compiled_locals   (thread, map);
1156 
1157   else
1158     // could be is_runtime_frame
1159     // so remove error: ShouldNotReachHere();
1160     ;
1161   // Tracing - part 2
1162   if (TraceZapDeadLocals) {
1163     tty->cr();
1164   }
1165 }
1166 
1167 
1168 void frame::zap_dead_interpreted_locals(JavaThread *thread, const RegisterMap* map) {
1169   // get current interpreter 'pc'
1170   assert(is_interpreted_frame(), "Not an interpreted frame");
1171   Method* m   = interpreter_frame_method();
1172   int       bci = interpreter_frame_bci();
1173 
1174   int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
1175 
1176   // process dynamic part
1177   InterpreterFrameClosure value_blk(this, max_locals, m->max_stack(),
1178                                     &_check_value);
1179   InterpreterFrameClosure   oop_blk(this, max_locals, m->max_stack(),
1180                                     &_check_oop  );
1181   InterpreterFrameClosure  dead_blk(this, max_locals, m->max_stack(),
1182                                     &_zap_dead   );
1183 
1184   // get frame map
1185   InterpreterOopMap mask;
1186   m->mask_for(bci, &mask);
1187   mask.iterate_all( &oop_blk, &value_blk, &dead_blk);
1188 }
1189 
1190 
1191 void frame::zap_dead_compiled_locals(JavaThread* thread, const RegisterMap* reg_map) {
1192 
1193   ResourceMark rm(thread);
1194   assert(_cb != NULL, "sanity check");
1195   if (_cb->oop_maps() != NULL) {
1196     OopMapSet::all_do(this, reg_map, &_check_oop, check_derived_oop, &_check_value);
1197   }
1198 }
1199 
1200 
1201 void frame::zap_dead_entry_locals(JavaThread*, const RegisterMap*) {
1202   if (TraceZapDeadLocals) warning("frame::zap_dead_entry_locals unimplemented");
1203 }
1204 
1205 
1206 void frame::zap_dead_deoptimized_locals(JavaThread*, const RegisterMap*) {
1207   if (TraceZapDeadLocals) warning("frame::zap_dead_deoptimized_locals unimplemented");
1208 }
1209 
1210 # endif // ENABLE_ZAP_DEAD_LOCALS
1211 
1212 void frame::verify(const RegisterMap* map) {
1213   // for now make sure receiver type is correct
1214   if (is_interpreted_frame()) {
1215     Method* method = interpreter_frame_method();
1216     guarantee(method->is_method(), "method is wrong in frame::verify");
1217     if (!method->is_static()) {
1218       // fetch the receiver
1219       oop* p = (oop*) interpreter_frame_local_at(0);
1220       // make sure we have the right receiver type
1221     }
1222   }
1223   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), "must be empty before verify");)
1224   oops_do_internal(&VerifyOopClosure::verify_oop, NULL, NULL, (RegisterMap*)map, false);
1225 }
1226 
1227 
1228 #ifdef ASSERT
1229 bool frame::verify_return_pc(address x) {
1230   if (StubRoutines::returns_to_call_stub(x)) {
1231     return true;
1232   }
1233   if (CodeCache::contains(x)) {
1234     return true;
1235   }
1236   if (Interpreter::contains(x)) {
1237     return true;
1238   }
1239   return false;
1240 }
1241 #endif
1242 
1243 #ifdef ASSERT
1244 void frame::interpreter_frame_verify_monitor(BasicObjectLock* value) const {
1245   assert(is_interpreted_frame(), "Not an interpreted frame");
1246   // verify that the value is in the right part of the frame
1247   address low_mark  = (address) interpreter_frame_monitor_end();
1248   address high_mark = (address) interpreter_frame_monitor_begin();
1249   address current   = (address) value;
1250 
1251   const int monitor_size = frame::interpreter_frame_monitor_size();
1252   guarantee((high_mark - current) % monitor_size  ==  0         , "Misaligned top of BasicObjectLock*");
1253   guarantee( high_mark > current                                , "Current BasicObjectLock* higher than high_mark");
1254 
1255   guarantee((current - low_mark) % monitor_size  ==  0         , "Misaligned bottom of BasicObjectLock*");
1256   guarantee( current >= low_mark                               , "Current BasicObjectLock* below than low_mark");
1257 }
1258 #endif
1259 
1260 #ifndef PRODUCT
1261 void frame::describe(FrameValues& values, int frame_no) {
1262   // boundaries: sp and the 'real' frame pointer
1263   values.describe(-1, sp(), err_msg("sp for #%d", frame_no), 1);
1264   intptr_t* frame_pointer = real_fp(); // Note: may differ from fp()
1265 
1266   // print frame info at the highest boundary
1267   intptr_t* info_address = MAX2(sp(), frame_pointer);
1268 
1269   if (info_address != frame_pointer) {
1270     // print frame_pointer explicitly if not marked by the frame info
1271     values.describe(-1, frame_pointer, err_msg("frame pointer for #%d", frame_no), 1);
1272   }
1273 
1274   if (is_entry_frame() || is_compiled_frame() || is_interpreted_frame() || is_native_frame()) {
1275     // Label values common to most frames
1276     values.describe(-1, unextended_sp(), err_msg("unextended_sp for #%d", frame_no));
1277   }
1278 
1279   if (is_interpreted_frame()) {
1280     Method* m = interpreter_frame_method();
1281     int bci = interpreter_frame_bci();
1282 
1283     // Label the method and current bci
1284     values.describe(-1, info_address,
1285                     FormatBuffer<1024>("#%d method %s @ %d", frame_no, m->name_and_sig_as_C_string(), bci), 2);
1286     values.describe(-1, info_address,
1287                     err_msg("- %d locals %d max stack", m->max_locals(), m->max_stack()), 1);
1288     if (m->max_locals() > 0) {
1289       intptr_t* l0 = interpreter_frame_local_at(0);
1290       intptr_t* ln = interpreter_frame_local_at(m->max_locals() - 1);
1291       values.describe(-1, MAX2(l0, ln), err_msg("locals for #%d", frame_no), 1);
1292       // Report each local and mark as owned by this frame
1293       for (int l = 0; l < m->max_locals(); l++) {
1294         intptr_t* l0 = interpreter_frame_local_at(l);
1295         values.describe(frame_no, l0, err_msg("local %d", l));
1296       }
1297     }
1298 
1299     // Compute the actual expression stack size
1300     InterpreterOopMap mask;
1301     OopMapCache::compute_one_oop_map(m, bci, &mask);
1302     intptr_t* tos = NULL;
1303     // Report each stack element and mark as owned by this frame
1304     for (int e = 0; e < mask.expression_stack_size(); e++) {
1305       tos = MAX2(tos, interpreter_frame_expression_stack_at(e));
1306       values.describe(frame_no, interpreter_frame_expression_stack_at(e),
1307                       err_msg("stack %d", e));
1308     }
1309     if (tos != NULL) {
1310       values.describe(-1, tos, err_msg("expression stack for #%d", frame_no), 1);
1311     }
1312     if (interpreter_frame_monitor_begin() != interpreter_frame_monitor_end()) {
1313       values.describe(frame_no, (intptr_t*)interpreter_frame_monitor_begin(), "monitors begin");
1314       values.describe(frame_no, (intptr_t*)interpreter_frame_monitor_end(), "monitors end");
1315     }
1316   } else if (is_entry_frame()) {
1317     // For now just label the frame
1318     values.describe(-1, info_address, err_msg("#%d entry frame", frame_no), 2);
1319   } else if (is_compiled_frame()) {
1320     // For now just label the frame
1321     nmethod* nm = cb()->as_nmethod_or_null();
1322     values.describe(-1, info_address,
1323                     FormatBuffer<1024>("#%d nmethod " INTPTR_FORMAT " for method %s%s", frame_no,
1324                                        nm, nm->method()->name_and_sig_as_C_string(),
1325                                        (_deopt_state == is_deoptimized) ?
1326                                        " (deoptimized)" :
1327                                        ((_deopt_state == unknown) ? " (state unknown)" : "")),
1328                     2);
1329   } else if (is_native_frame()) {
1330     // For now just label the frame
1331     nmethod* nm = cb()->as_nmethod_or_null();
1332     values.describe(-1, info_address,
1333                     FormatBuffer<1024>("#%d nmethod " INTPTR_FORMAT " for native method %s", frame_no,
1334                                        nm, nm->method()->name_and_sig_as_C_string()), 2);
1335   } else {
1336     // provide default info if not handled before
1337     char *info = (char *) "special frame";
1338     if ((_cb != NULL) &&
1339         (_cb->name() != NULL)) {
1340       info = (char *)_cb->name();
1341     }
1342     values.describe(-1, info_address, err_msg("#%d <%s>", frame_no, info), 2);
1343   }
1344 
1345   // platform dependent additional data
1346   describe_pd(values, frame_no);
1347 }
1348 
1349 #endif
1350 
1351 
1352 //-----------------------------------------------------------------------------------
1353 // StackFrameStream implementation
1354 
1355 StackFrameStream::StackFrameStream(JavaThread *thread, bool update) : _reg_map(thread, update) {
1356   assert(thread->has_last_Java_frame(), "sanity check");
1357   _fr = thread->last_frame();
1358   _is_done = false;
1359 }
1360 
1361 
1362 #ifndef PRODUCT
1363 
1364 void FrameValues::describe(int owner, intptr_t* location, const char* description, int priority) {
1365   FrameValue fv;
1366   fv.location = location;
1367   fv.owner = owner;
1368   fv.priority = priority;
1369   fv.description = NEW_RESOURCE_ARRAY(char, strlen(description) + 1);
1370   strcpy(fv.description, description);
1371   _values.append(fv);
1372 }
1373 
1374 
1375 #ifdef ASSERT
1376 void FrameValues::validate() {
1377   _values.sort(compare);
1378   bool error = false;
1379   FrameValue prev;
1380   prev.owner = -1;
1381   for (int i = _values.length() - 1; i >= 0; i--) {
1382     FrameValue fv = _values.at(i);
1383     if (fv.owner == -1) continue;
1384     if (prev.owner == -1) {
1385       prev = fv;
1386       continue;
1387     }
1388     if (prev.location == fv.location) {
1389       if (fv.owner != prev.owner) {
1390         tty->print_cr("overlapping storage");
1391         tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", prev.location, *prev.location, prev.description);
1392         tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", fv.location, *fv.location, fv.description);
1393         error = true;
1394       }
1395     } else {
1396       prev = fv;
1397     }
1398   }
1399   assert(!error, "invalid layout");
1400 }
1401 #endif // ASSERT
1402 
1403 void FrameValues::print(JavaThread* thread) {
1404   _values.sort(compare);
1405 
1406   // Sometimes values like the fp can be invalid values if the
1407   // register map wasn't updated during the walk.  Trim out values
1408   // that aren't actually in the stack of the thread.
1409   int min_index = 0;
1410   int max_index = _values.length() - 1;
1411   intptr_t* v0 = _values.at(min_index).location;
1412   intptr_t* v1 = _values.at(max_index).location;
1413 
1414   if (thread == Thread::current()) {
1415     while (!thread->is_in_stack((address)v0)) {
1416       v0 = _values.at(++min_index).location;
1417     }
1418     while (!thread->is_in_stack((address)v1)) {
1419       v1 = _values.at(--max_index).location;
1420     }
1421   } else {
1422     while (!thread->on_local_stack((address)v0)) {
1423       v0 = _values.at(++min_index).location;
1424     }
1425     while (!thread->on_local_stack((address)v1)) {
1426       v1 = _values.at(--max_index).location;
1427     }
1428   }
1429   intptr_t* min = MIN2(v0, v1);
1430   intptr_t* max = MAX2(v0, v1);
1431   intptr_t* cur = max;
1432   intptr_t* last = NULL;
1433   for (int i = max_index; i >= min_index; i--) {
1434     FrameValue fv = _values.at(i);
1435     while (cur > fv.location) {
1436       tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT, cur, *cur);
1437       cur--;
1438     }
1439     if (last == fv.location) {
1440       const char* spacer = "          " LP64_ONLY("        ");
1441       tty->print_cr(" %s  %s %s", spacer, spacer, fv.description);
1442     } else {
1443       tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", fv.location, *fv.location, fv.description);
1444       last = fv.location;
1445       cur--;
1446     }
1447   }
1448 }
1449 
1450 #endif // ndef PRODUCT