1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc_implementation/shared/liveRange.hpp"
  29 #include "gc_implementation/shared/spaceDecorator.hpp"
  30 #include "gc_interface/collectedHeap.inline.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/defNewGeneration.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/prefetch.inline.hpp"
  41 #include "runtime/orderAccess.inline.hpp"
  42 #include "runtime/safepoint.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/globalDefinitions.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  48 
  49 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  50                                                 HeapWord* top_obj) {
  51   if (top_obj != NULL) {
  52     if (_sp->block_is_obj(top_obj)) {
  53       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
  54         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  55           // An arrayOop is starting on the dirty card - since we do exact
  56           // store checks for objArrays we are done.
  57         } else {
  58           // Otherwise, it is possible that the object starting on the dirty
  59           // card spans the entire card, and that the store happened on a
  60           // later card.  Figure out where the object ends.
  61           // Use the block_size() method of the space over which
  62           // the iteration is being done.  That space (e.g. CMS) may have
  63           // specific requirements on object sizes which will
  64           // be reflected in the block_size() method.
  65           top = top_obj + oop(top_obj)->size();
  66         }
  67       }
  68     } else {
  69       top = top_obj;
  70     }
  71   } else {
  72     assert(top == _sp->end(), "only case where top_obj == NULL");
  73   }
  74   return top;
  75 }
  76 
  77 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  78                                             HeapWord* bottom,
  79                                             HeapWord* top) {
  80   // 1. Blocks may or may not be objects.
  81   // 2. Even when a block_is_obj(), it may not entirely
  82   //    occupy the block if the block quantum is larger than
  83   //    the object size.
  84   // We can and should try to optimize by calling the non-MemRegion
  85   // version of oop_iterate() for all but the extremal objects
  86   // (for which we need to call the MemRegion version of
  87   // oop_iterate()) To be done post-beta XXX
  88   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  89     // As in the case of contiguous space above, we'd like to
  90     // just use the value returned by oop_iterate to increment the
  91     // current pointer; unfortunately, that won't work in CMS because
  92     // we'd need an interface change (it seems) to have the space
  93     // "adjust the object size" (for instance pad it up to its
  94     // block alignment or minimum block size restrictions. XXX
  95     if (_sp->block_is_obj(bottom) &&
  96         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  97       oop(bottom)->oop_iterate(_cl, mr);
  98     }
  99   }
 100 }
 101 
 102 // We get called with "mr" representing the dirty region
 103 // that we want to process. Because of imprecise marking,
 104 // we may need to extend the incoming "mr" to the right,
 105 // and scan more. However, because we may already have
 106 // scanned some of that extended region, we may need to
 107 // trim its right-end back some so we do not scan what
 108 // we (or another worker thread) may already have scanned
 109 // or planning to scan.
 110 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 111 
 112   // Some collectors need to do special things whenever their dirty
 113   // cards are processed. For instance, CMS must remember mutator updates
 114   // (i.e. dirty cards) so as to re-scan mutated objects.
 115   // Such work can be piggy-backed here on dirty card scanning, so as to make
 116   // it slightly more efficient than doing a complete non-destructive pre-scan
 117   // of the card table.
 118   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
 119   if (pCl != NULL) {
 120     pCl->do_MemRegion(mr);
 121   }
 122 
 123   HeapWord* bottom = mr.start();
 124   HeapWord* last = mr.last();
 125   HeapWord* top = mr.end();
 126   HeapWord* bottom_obj;
 127   HeapWord* top_obj;
 128 
 129   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
 130          _precision == CardTableModRefBS::Precise,
 131          "Only ones we deal with for now.");
 132 
 133   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 134          _cl->idempotent() || _last_bottom == NULL ||
 135          top <= _last_bottom,
 136          "Not decreasing");
 137   NOT_PRODUCT(_last_bottom = mr.start());
 138 
 139   bottom_obj = _sp->block_start(bottom);
 140   top_obj    = _sp->block_start(last);
 141 
 142   assert(bottom_obj <= bottom, "just checking");
 143   assert(top_obj    <= top,    "just checking");
 144 
 145   // Given what we think is the top of the memory region and
 146   // the start of the object at the top, get the actual
 147   // value of the top.
 148   top = get_actual_top(top, top_obj);
 149 
 150   // If the previous call did some part of this region, don't redo.
 151   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
 152       _min_done != NULL &&
 153       _min_done < top) {
 154     top = _min_done;
 155   }
 156 
 157   // Top may have been reset, and in fact may be below bottom,
 158   // e.g. the dirty card region is entirely in a now free object
 159   // -- something that could happen with a concurrent sweeper.
 160   bottom = MIN2(bottom, top);
 161   MemRegion extended_mr = MemRegion(bottom, top);
 162   assert(bottom <= top &&
 163          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 164           _min_done == NULL ||
 165           top <= _min_done),
 166          "overlap!");
 167 
 168   // Walk the region if it is not empty; otherwise there is nothing to do.
 169   if (!extended_mr.is_empty()) {
 170     walk_mem_region(extended_mr, bottom_obj, top);
 171   }
 172 
 173   // An idempotent closure might be applied in any order, so we don't
 174   // record a _min_done for it.
 175   if (!_cl->idempotent()) {
 176     _min_done = bottom;
 177   } else {
 178     assert(_min_done == _last_explicit_min_done,
 179            "Don't update _min_done for idempotent cl");
 180   }
 181 }
 182 
 183 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
 184                                           CardTableModRefBS::PrecisionStyle precision,
 185                                           HeapWord* boundary) {
 186   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 187 }
 188 
 189 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 190                                                HeapWord* top_obj) {
 191   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 192     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
 193       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 194         // An arrayOop is starting on the dirty card - since we do exact
 195         // store checks for objArrays we are done.
 196       } else {
 197         // Otherwise, it is possible that the object starting on the dirty
 198         // card spans the entire card, and that the store happened on a
 199         // later card.  Figure out where the object ends.
 200         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 201           "Block size and object size mismatch");
 202         top = top_obj + oop(top_obj)->size();
 203       }
 204     }
 205   } else {
 206     top = (_sp->toContiguousSpace())->top();
 207   }
 208   return top;
 209 }
 210 
 211 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
 212                                       HeapWord* bottom,
 213                                       HeapWord* top) {
 214   // Note that this assumption won't hold if we have a concurrent
 215   // collector in this space, which may have freed up objects after
 216   // they were dirtied and before the stop-the-world GC that is
 217   // examining cards here.
 218   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 219 
 220   if (_boundary != NULL) {
 221     // We have a boundary outside of which we don't want to look
 222     // at objects, so create a filtering closure around the
 223     // oop closure before walking the region.
 224     FilteringClosure filter(_boundary, _cl);
 225     walk_mem_region_with_cl(mr, bottom, top, &filter);
 226   } else {
 227     // No boundary, simply walk the heap with the oop closure.
 228     walk_mem_region_with_cl(mr, bottom, top, _cl);
 229   }
 230 
 231 }
 232 
 233 // We must replicate this so that the static type of "FilteringClosure"
 234 // (see above) is apparent at the oop_iterate calls.
 235 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 236 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 237                                                    HeapWord* bottom,    \
 238                                                    HeapWord* top,       \
 239                                                    ClosureType* cl) {   \
 240   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
 241   if (bottom < top) {                                                   \
 242     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 243     while (next_obj < top) {                                            \
 244       /* Bottom lies entirely below top, so we can call the */          \
 245       /* non-memRegion version of oop_iterate below. */                 \
 246       oop(bottom)->oop_iterate(cl);                                     \
 247       bottom = next_obj;                                                \
 248       next_obj = bottom + oop(bottom)->size();                          \
 249     }                                                                   \
 250     /* Last object. */                                                  \
 251     oop(bottom)->oop_iterate(cl, mr);                                   \
 252   }                                                                     \
 253 }
 254 
 255 // (There are only two of these, rather than N, because the split is due
 256 // only to the introduction of the FilteringClosure, a local part of the
 257 // impl of this abstraction.)
 258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 260 
 261 DirtyCardToOopClosure*
 262 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
 263                              CardTableModRefBS::PrecisionStyle precision,
 264                              HeapWord* boundary) {
 265   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 266 }
 267 
 268 void Space::initialize(MemRegion mr,
 269                        bool clear_space,
 270                        bool mangle_space) {
 271   HeapWord* bottom = mr.start();
 272   HeapWord* end    = mr.end();
 273   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 274          "invalid space boundaries");
 275   set_bottom(bottom);
 276   set_end(end);
 277   if (clear_space) clear(mangle_space);
 278 }
 279 
 280 void Space::clear(bool mangle_space) {
 281   if (ZapUnusedHeapArea && mangle_space) {
 282     mangle_unused_area();
 283   }
 284 }
 285 
 286 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 287     _concurrent_iteration_safe_limit(NULL) {
 288   _mangler = new GenSpaceMangler(this);
 289 }
 290 
 291 ContiguousSpace::~ContiguousSpace() {
 292   delete _mangler;
 293 }
 294 
 295 void ContiguousSpace::initialize(MemRegion mr,
 296                                  bool clear_space,
 297                                  bool mangle_space)
 298 {
 299   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 300   set_concurrent_iteration_safe_limit(top());
 301 }
 302 
 303 void ContiguousSpace::clear(bool mangle_space) {
 304   set_top(bottom());
 305   set_saved_mark();
 306   CompactibleSpace::clear(mangle_space);
 307 }
 308 
 309 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 310   return p >= _top;
 311 }
 312 
 313 void OffsetTableContigSpace::clear(bool mangle_space) {
 314   ContiguousSpace::clear(mangle_space);
 315   _offsets.initialize_threshold();
 316 }
 317 
 318 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 319   Space::set_bottom(new_bottom);
 320   _offsets.set_bottom(new_bottom);
 321 }
 322 
 323 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 324   // Space should not advertise an increase in size
 325   // until after the underlying offset table has been enlarged.
 326   _offsets.resize(pointer_delta(new_end, bottom()));
 327   Space::set_end(new_end);
 328 }
 329 
 330 #ifndef PRODUCT
 331 
 332 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 333   mangler()->set_top_for_allocations(v);
 334 }
 335 void ContiguousSpace::set_top_for_allocations() {
 336   mangler()->set_top_for_allocations(top());
 337 }
 338 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 339   mangler()->check_mangled_unused_area(limit);
 340 }
 341 
 342 void ContiguousSpace::check_mangled_unused_area_complete() {
 343   mangler()->check_mangled_unused_area_complete();
 344 }
 345 
 346 // Mangled only the unused space that has not previously
 347 // been mangled and that has not been allocated since being
 348 // mangled.
 349 void ContiguousSpace::mangle_unused_area() {
 350   mangler()->mangle_unused_area();
 351 }
 352 void ContiguousSpace::mangle_unused_area_complete() {
 353   mangler()->mangle_unused_area_complete();
 354 }
 355 #endif  // NOT_PRODUCT
 356 
 357 void CompactibleSpace::initialize(MemRegion mr,
 358                                   bool clear_space,
 359                                   bool mangle_space) {
 360   Space::initialize(mr, clear_space, mangle_space);
 361   set_compaction_top(bottom());
 362   _next_compaction_space = NULL;
 363 }
 364 
 365 void CompactibleSpace::clear(bool mangle_space) {
 366   Space::clear(mangle_space);
 367   _compaction_top = bottom();
 368 }
 369 
 370 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 371                                     CompactPoint* cp, HeapWord* compact_top) {
 372   // q is alive
 373   // First check if we should switch compaction space
 374   assert(this == cp->space, "'this' should be current compaction space.");
 375   size_t compaction_max_size = pointer_delta(end(), compact_top);
 376   while (size > compaction_max_size) {
 377     // switch to next compaction space
 378     cp->space->set_compaction_top(compact_top);
 379     cp->space = cp->space->next_compaction_space();
 380     if (cp->space == NULL) {
 381       cp->gen = GenCollectedHeap::heap()->young_gen();
 382       assert(cp->gen != NULL, "compaction must succeed");
 383       cp->space = cp->gen->first_compaction_space();
 384       assert(cp->space != NULL, "generation must have a first compaction space");
 385     }
 386     compact_top = cp->space->bottom();
 387     cp->space->set_compaction_top(compact_top);
 388     cp->threshold = cp->space->initialize_threshold();
 389     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 390   }
 391 
 392   // store the forwarding pointer into the mark word
 393   if ((HeapWord*)q != compact_top) {
 394     q->forward_to(oop(compact_top));
 395     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 396   } else {
 397     // if the object isn't moving we can just set the mark to the default
 398     // mark and handle it specially later on.
 399     q->init_mark();
 400     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 401   }
 402 
 403   compact_top += size;
 404 
 405   // we need to update the offset table so that the beginnings of objects can be
 406   // found during scavenge.  Note that we are updating the offset table based on
 407   // where the object will be once the compaction phase finishes.
 408   if (compact_top > cp->threshold)
 409     cp->threshold =
 410       cp->space->cross_threshold(compact_top - size, compact_top);
 411   return compact_top;
 412 }
 413 
 414 
 415 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
 416                                         HeapWord* q, size_t deadlength) {
 417   if (allowed_deadspace_words >= deadlength) {
 418     allowed_deadspace_words -= deadlength;
 419     CollectedHeap::fill_with_object(q, deadlength);
 420     oop(q)->set_mark(oop(q)->mark()->set_marked());
 421     assert((int) deadlength == oop(q)->size(), "bad filler object size");
 422     // Recall that we required "q == compaction_top".
 423     return true;
 424   } else {
 425     allowed_deadspace_words = 0;
 426     return false;
 427   }
 428 }
 429 
 430 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 431   scan_and_forward(this, cp);
 432 }
 433 
 434 void CompactibleSpace::adjust_pointers() {
 435   // Check first is there is any work to do.
 436   if (used() == 0) {
 437     return;   // Nothing to do.
 438   }
 439 
 440   scan_and_adjust_pointers(this);
 441 }
 442 
 443 void CompactibleSpace::compact() {
 444   scan_and_compact(this);
 445 }
 446 
 447 void Space::print_short() const { print_short_on(tty); }
 448 
 449 void Space::print_short_on(outputStream* st) const {
 450   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 451               (int) ((double) used() * 100 / capacity()));
 452 }
 453 
 454 void Space::print() const { print_on(tty); }
 455 
 456 void Space::print_on(outputStream* st) const {
 457   print_short_on(st);
 458   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 459                 bottom(), end());
 460 }
 461 
 462 void ContiguousSpace::print_on(outputStream* st) const {
 463   print_short_on(st);
 464   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 465                 bottom(), top(), end());
 466 }
 467 
 468 void OffsetTableContigSpace::print_on(outputStream* st) const {
 469   print_short_on(st);
 470   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 471                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 472               bottom(), top(), _offsets.threshold(), end());
 473 }
 474 
 475 void ContiguousSpace::verify() const {
 476   HeapWord* p = bottom();
 477   HeapWord* t = top();
 478   HeapWord* prev_p = NULL;
 479   while (p < t) {
 480     oop(p)->verify();
 481     prev_p = p;
 482     p += oop(p)->size();
 483   }
 484   guarantee(p == top(), "end of last object must match end of space");
 485   if (top() != end()) {
 486     guarantee(top() == block_start_const(end()-1) &&
 487               top() == block_start_const(top()),
 488               "top should be start of unallocated block, if it exists");
 489   }
 490 }
 491 
 492 void Space::oop_iterate(ExtendedOopClosure* blk) {
 493   ObjectToOopClosure blk2(blk);
 494   object_iterate(&blk2);
 495 }
 496 
 497 bool Space::obj_is_alive(const HeapWord* p) const {
 498   assert (block_is_obj(p), "The address should point to an object");
 499   return true;
 500 }
 501 
 502 #if INCLUDE_ALL_GCS
 503 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
 504                                                                             \
 505   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
 506     HeapWord* obj_addr = mr.start();                                        \
 507     HeapWord* t = mr.end();                                                 \
 508     while (obj_addr < t) {                                                  \
 509       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
 510       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
 511     }                                                                       \
 512   }
 513 
 514   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
 515 
 516 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
 517 #endif // INCLUDE_ALL_GCS
 518 
 519 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
 520   if (is_empty()) return;
 521   HeapWord* obj_addr = bottom();
 522   HeapWord* t = top();
 523   // Could call objects iterate, but this is easier.
 524   while (obj_addr < t) {
 525     obj_addr += oop(obj_addr)->oop_iterate(blk);
 526   }
 527 }
 528 
 529 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 530   if (is_empty()) return;
 531   WaterMark bm = bottom_mark();
 532   object_iterate_from(bm, blk);
 533 }
 534 
 535 // For a ContiguousSpace object_iterate() and safe_object_iterate()
 536 // are the same.
 537 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 538   object_iterate(blk);
 539 }
 540 
 541 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
 542   assert(mark.space() == this, "Mark does not match space");
 543   HeapWord* p = mark.point();
 544   while (p < top()) {
 545     blk->do_object(oop(p));
 546     p += oop(p)->size();
 547   }
 548 }
 549 
 550 HeapWord*
 551 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
 552   HeapWord * limit = concurrent_iteration_safe_limit();
 553   assert(limit <= top(), "sanity check");
 554   for (HeapWord* p = bottom(); p < limit;) {
 555     size_t size = blk->do_object_careful(oop(p));
 556     if (size == 0) {
 557       return p;  // failed at p
 558     } else {
 559       p += size;
 560     }
 561   }
 562   return NULL; // all done
 563 }
 564 
 565 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
 566                                                                           \
 567 void ContiguousSpace::                                                    \
 568 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
 569   HeapWord* t;                                                            \
 570   HeapWord* p = saved_mark_word();                                        \
 571   assert(p != NULL, "expected saved mark");                               \
 572                                                                           \
 573   const intx interval = PrefetchScanIntervalInBytes;                      \
 574   do {                                                                    \
 575     t = top();                                                            \
 576     while (p < t) {                                                       \
 577       Prefetch::write(p, interval);                                       \
 578       debug_only(HeapWord* prev = p);                                     \
 579       oop m = oop(p);                                                     \
 580       p += m->oop_iterate(blk);                                           \
 581     }                                                                     \
 582   } while (t < top());                                                    \
 583                                                                           \
 584   set_saved_mark_word(p);                                                 \
 585 }
 586 
 587 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
 588 
 589 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
 590 
 591 // Very general, slow implementation.
 592 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 593   assert(MemRegion(bottom(), end()).contains(p),
 594          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 595                   p, bottom(), end()));
 596   if (p >= top()) {
 597     return top();
 598   } else {
 599     HeapWord* last = bottom();
 600     HeapWord* cur = last;
 601     while (cur <= p) {
 602       last = cur;
 603       cur += oop(cur)->size();
 604     }
 605     assert(oop(last)->is_oop(),
 606            err_msg(PTR_FORMAT " should be an object start", last));
 607     return last;
 608   }
 609 }
 610 
 611 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 612   assert(MemRegion(bottom(), end()).contains(p),
 613          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 614                   p, bottom(), end()));
 615   HeapWord* current_top = top();
 616   assert(p <= current_top,
 617          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
 618                   p, current_top));
 619   assert(p == current_top || oop(p)->is_oop(),
 620          err_msg("p (" PTR_FORMAT ") is not a block start - "
 621                  "current_top: " PTR_FORMAT ", is_oop: %s",
 622                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
 623   if (p < current_top) {
 624     return oop(p)->size();
 625   } else {
 626     assert(p == current_top, "just checking");
 627     return pointer_delta(end(), (HeapWord*) p);
 628   }
 629 }
 630 
 631 // This version requires locking.
 632 inline HeapWord* ContiguousSpace::allocate_impl(size_t size) {
 633   assert(Heap_lock->owned_by_self() ||
 634          (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
 635          "not locked");
 636   HeapWord* obj = top();
 637   if (pointer_delta(end(), obj) >= size) {
 638     HeapWord* new_top = obj + size;
 639     set_top(new_top);
 640     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 641     return obj;
 642   } else {
 643     return NULL;
 644   }
 645 }
 646 
 647 // This version is lock-free.
 648 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) {
 649   do {
 650     HeapWord* obj = top();
 651     if (pointer_delta(end(), obj) >= size) {
 652       HeapWord* new_top = obj + size;
 653       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 654       // result can be one of two:
 655       //  the old top value: the exchange succeeded
 656       //  otherwise: the new value of the top is returned.
 657       if (result == obj) {
 658         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 659         return obj;
 660       }
 661     } else {
 662       return NULL;
 663     }
 664   } while (true);
 665 }
 666 
 667 HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
 668   assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked");
 669   HeapWord* end_value = end();
 670 
 671   HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes);
 672   if (obj == NULL) {
 673     return NULL;
 674   }
 675 
 676   if (pointer_delta(end_value, obj) >= size) {
 677     HeapWord* new_top = obj + size;
 678     set_top(new_top);
 679     assert(is_ptr_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top),
 680       "checking alignment");
 681     return obj;
 682   } else {
 683     set_top(obj);
 684     return NULL;
 685   }
 686 }
 687 
 688 // Requires locking.
 689 HeapWord* ContiguousSpace::allocate(size_t size) {
 690   return allocate_impl(size);
 691 }
 692 
 693 // Lock-free.
 694 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 695   return par_allocate_impl(size);
 696 }
 697 
 698 void ContiguousSpace::allocate_temporary_filler(int factor) {
 699   // allocate temporary type array decreasing free size with factor 'factor'
 700   assert(factor >= 0, "just checking");
 701   size_t size = pointer_delta(end(), top());
 702 
 703   // if space is full, return
 704   if (size == 0) return;
 705 
 706   if (factor > 0) {
 707     size -= size/factor;
 708   }
 709   size = align_object_size(size);
 710 
 711   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 712   if (size >= (size_t)align_object_size(array_header_size)) {
 713     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 714     // allocate uninitialized int array
 715     typeArrayOop t = (typeArrayOop) allocate(size);
 716     assert(t != NULL, "allocation should succeed");
 717     t->set_mark(markOopDesc::prototype());
 718     t->set_klass(Universe::intArrayKlassObj());
 719     t->set_length((int)length);
 720   } else {
 721     assert(size == CollectedHeap::min_fill_size(),
 722            "size for smallest fake object doesn't match");
 723     instanceOop obj = (instanceOop) allocate(size);
 724     obj->set_mark(markOopDesc::prototype());
 725     obj->set_klass_gap(0);
 726     obj->set_klass(SystemDictionary::Object_klass());
 727   }
 728 }
 729 
 730 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 731   return _offsets.initialize_threshold();
 732 }
 733 
 734 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 735   _offsets.alloc_block(start, end);
 736   return _offsets.threshold();
 737 }
 738 
 739 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 740                                                MemRegion mr) :
 741   _offsets(sharedOffsetArray, mr),
 742   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 743 {
 744   _offsets.set_contig_space(this);
 745   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 746 }
 747 
 748 #define OBJ_SAMPLE_INTERVAL 0
 749 #define BLOCK_SAMPLE_INTERVAL 100
 750 
 751 void OffsetTableContigSpace::verify() const {
 752   HeapWord* p = bottom();
 753   HeapWord* prev_p = NULL;
 754   int objs = 0;
 755   int blocks = 0;
 756 
 757   if (VerifyObjectStartArray) {
 758     _offsets.verify();
 759   }
 760 
 761   while (p < top()) {
 762     size_t size = oop(p)->size();
 763     // For a sampling of objects in the space, find it using the
 764     // block offset table.
 765     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 766       guarantee(p == block_start_const(p + (size/2)),
 767                 "check offset computation");
 768       blocks = 0;
 769     } else {
 770       blocks++;
 771     }
 772 
 773     if (objs == OBJ_SAMPLE_INTERVAL) {
 774       oop(p)->verify();
 775       objs = 0;
 776     } else {
 777       objs++;
 778     }
 779     prev_p = p;
 780     p += size;
 781   }
 782   guarantee(p == top(), "end of last object must match end of space");
 783 }
 784 
 785 
 786 size_t TenuredSpace::allowed_dead_ratio() const {
 787   return MarkSweepDeadRatio;
 788 }