1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              curr->bottom(), curr->end(),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              curr->prev_top_at_mark_start(),
 333                              curr->next_top_at_mark_start(),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 #ifdef ASSERT
 406 // A region is added to the collection set as it is retired
 407 // so an address p can point to a region which will be in the
 408 // collection set but has not yet been retired.  This method
 409 // therefore is only accurate during a GC pause after all
 410 // regions have been retired.  It is used for debugging
 411 // to check if an nmethod has references to objects that can
 412 // be move during a partial collection.  Though it can be
 413 // inaccurate, it is sufficient for G1 because the conservative
 414 // implementation of is_scavengable() for G1 will indicate that
 415 // all nmethods must be scanned during a partial collection.
 416 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 417   if (p == NULL) {
 418     return false;
 419   }
 420   return heap_region_containing(p)->in_collection_set();
 421 }
 422 #endif
 423 
 424 // Returns true if the reference points to an object that
 425 // can move in an incremental collection.
 426 bool G1CollectedHeap::is_scavengable(const void* p) {
 427   HeapRegion* hr = heap_region_containing(p);
 428   return !hr->is_humongous();
 429 }
 430 
 431 // Private class members.
 432 
 433 G1CollectedHeap* G1CollectedHeap::_g1h;
 434 
 435 // Private methods.
 436 
 437 HeapRegion*
 438 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 439   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 440   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 441     if (!_secondary_free_list.is_empty()) {
 442       if (G1ConcRegionFreeingVerbose) {
 443         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 444                                "secondary_free_list has %u entries",
 445                                _secondary_free_list.length());
 446       }
 447       // It looks as if there are free regions available on the
 448       // secondary_free_list. Let's move them to the free_list and try
 449       // again to allocate from it.
 450       append_secondary_free_list();
 451 
 452       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 453              "empty we should have moved at least one entry to the free_list");
 454       HeapRegion* res = _hrm.allocate_free_region(is_old);
 455       if (G1ConcRegionFreeingVerbose) {
 456         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 457                                "allocated "HR_FORMAT" from secondary_free_list",
 458                                HR_FORMAT_PARAMS(res));
 459       }
 460       return res;
 461     }
 462 
 463     // Wait here until we get notified either when (a) there are no
 464     // more free regions coming or (b) some regions have been moved on
 465     // the secondary_free_list.
 466     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 467   }
 468 
 469   if (G1ConcRegionFreeingVerbose) {
 470     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 471                            "could not allocate from secondary_free_list");
 472   }
 473   return NULL;
 474 }
 475 
 476 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 477   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 478          "the only time we use this to allocate a humongous region is "
 479          "when we are allocating a single humongous region");
 480 
 481   HeapRegion* res;
 482   if (G1StressConcRegionFreeing) {
 483     if (!_secondary_free_list.is_empty()) {
 484       if (G1ConcRegionFreeingVerbose) {
 485         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 486                                "forced to look at the secondary_free_list");
 487       }
 488       res = new_region_try_secondary_free_list(is_old);
 489       if (res != NULL) {
 490         return res;
 491       }
 492     }
 493   }
 494 
 495   res = _hrm.allocate_free_region(is_old);
 496 
 497   if (res == NULL) {
 498     if (G1ConcRegionFreeingVerbose) {
 499       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 500                              "res == NULL, trying the secondary_free_list");
 501     }
 502     res = new_region_try_secondary_free_list(is_old);
 503   }
 504   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 505     // Currently, only attempts to allocate GC alloc regions set
 506     // do_expand to true. So, we should only reach here during a
 507     // safepoint. If this assumption changes we might have to
 508     // reconsider the use of _expand_heap_after_alloc_failure.
 509     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 510 
 511     ergo_verbose1(ErgoHeapSizing,
 512                   "attempt heap expansion",
 513                   ergo_format_reason("region allocation request failed")
 514                   ergo_format_byte("allocation request"),
 515                   word_size * HeapWordSize);
 516     if (expand(word_size * HeapWordSize)) {
 517       // Given that expand() succeeded in expanding the heap, and we
 518       // always expand the heap by an amount aligned to the heap
 519       // region size, the free list should in theory not be empty.
 520       // In either case allocate_free_region() will check for NULL.
 521       res = _hrm.allocate_free_region(is_old);
 522     } else {
 523       _expand_heap_after_alloc_failure = false;
 524     }
 525   }
 526   return res;
 527 }
 528 
 529 HeapWord*
 530 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 531                                                            uint num_regions,
 532                                                            size_t word_size,
 533                                                            AllocationContext_t context) {
 534   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 535   assert(is_humongous(word_size), "word_size should be humongous");
 536   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 537 
 538   // Index of last region in the series + 1.
 539   uint last = first + num_regions;
 540 
 541   // We need to initialize the region(s) we just discovered. This is
 542   // a bit tricky given that it can happen concurrently with
 543   // refinement threads refining cards on these regions and
 544   // potentially wanting to refine the BOT as they are scanning
 545   // those cards (this can happen shortly after a cleanup; see CR
 546   // 6991377). So we have to set up the region(s) carefully and in
 547   // a specific order.
 548 
 549   // The word size sum of all the regions we will allocate.
 550   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 551   assert(word_size <= word_size_sum, "sanity");
 552 
 553   // This will be the "starts humongous" region.
 554   HeapRegion* first_hr = region_at(first);
 555   // The header of the new object will be placed at the bottom of
 556   // the first region.
 557   HeapWord* new_obj = first_hr->bottom();
 558   // This will be the new end of the first region in the series that
 559   // should also match the end of the last region in the series.
 560   HeapWord* new_end = new_obj + word_size_sum;
 561   // This will be the new top of the first region that will reflect
 562   // this allocation.
 563   HeapWord* new_top = new_obj + word_size;
 564 
 565   // First, we need to zero the header of the space that we will be
 566   // allocating. When we update top further down, some refinement
 567   // threads might try to scan the region. By zeroing the header we
 568   // ensure that any thread that will try to scan the region will
 569   // come across the zero klass word and bail out.
 570   //
 571   // NOTE: It would not have been correct to have used
 572   // CollectedHeap::fill_with_object() and make the space look like
 573   // an int array. The thread that is doing the allocation will
 574   // later update the object header to a potentially different array
 575   // type and, for a very short period of time, the klass and length
 576   // fields will be inconsistent. This could cause a refinement
 577   // thread to calculate the object size incorrectly.
 578   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 579 
 580   // We will set up the first region as "starts humongous". This
 581   // will also update the BOT covering all the regions to reflect
 582   // that there is a single object that starts at the bottom of the
 583   // first region.
 584   first_hr->set_starts_humongous(new_top, new_end);
 585   first_hr->set_allocation_context(context);
 586   // Then, if there are any, we will set up the "continues
 587   // humongous" regions.
 588   HeapRegion* hr = NULL;
 589   for (uint i = first + 1; i < last; ++i) {
 590     hr = region_at(i);
 591     hr->set_continues_humongous(first_hr);
 592     hr->set_allocation_context(context);
 593   }
 594   // If we have "continues humongous" regions (hr != NULL), then the
 595   // end of the last one should match new_end.
 596   assert(hr == NULL || hr->end() == new_end, "sanity");
 597 
 598   // Up to this point no concurrent thread would have been able to
 599   // do any scanning on any region in this series. All the top
 600   // fields still point to bottom, so the intersection between
 601   // [bottom,top] and [card_start,card_end] will be empty. Before we
 602   // update the top fields, we'll do a storestore to make sure that
 603   // no thread sees the update to top before the zeroing of the
 604   // object header and the BOT initialization.
 605   OrderAccess::storestore();
 606 
 607   // Now that the BOT and the object header have been initialized,
 608   // we can update top of the "starts humongous" region.
 609   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 610          "new_top should be in this region");
 611   first_hr->set_top(new_top);
 612   if (_hr_printer.is_active()) {
 613     HeapWord* bottom = first_hr->bottom();
 614     HeapWord* end = first_hr->orig_end();
 615     if ((first + 1) == last) {
 616       // the series has a single humongous region
 617       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 618     } else {
 619       // the series has more than one humongous regions
 620       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 621     }
 622   }
 623 
 624   // Now, we will update the top fields of the "continues humongous"
 625   // regions. The reason we need to do this is that, otherwise,
 626   // these regions would look empty and this will confuse parts of
 627   // G1. For example, the code that looks for a consecutive number
 628   // of empty regions will consider them empty and try to
 629   // re-allocate them. We can extend is_empty() to also include
 630   // !is_continues_humongous(), but it is easier to just update the top
 631   // fields here. The way we set top for all regions (i.e., top ==
 632   // end for all regions but the last one, top == new_top for the
 633   // last one) is actually used when we will free up the humongous
 634   // region in free_humongous_region().
 635   hr = NULL;
 636   for (uint i = first + 1; i < last; ++i) {
 637     hr = region_at(i);
 638     if ((i + 1) == last) {
 639       // last continues humongous region
 640       assert(hr->bottom() < new_top && new_top <= hr->end(),
 641              "new_top should fall on this region");
 642       hr->set_top(new_top);
 643       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 644     } else {
 645       // not last one
 646       assert(new_top > hr->end(), "new_top should be above this region");
 647       hr->set_top(hr->end());
 648       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 649     }
 650   }
 651   // If we have continues humongous regions (hr != NULL), then the
 652   // end of the last one should match new_end and its top should
 653   // match new_top.
 654   assert(hr == NULL ||
 655          (hr->end() == new_end && hr->top() == new_top), "sanity");
 656   check_bitmaps("Humongous Region Allocation", first_hr);
 657 
 658   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 659   _allocator->increase_used(first_hr->used());
 660   _humongous_set.add(first_hr);
 661 
 662   return new_obj;
 663 }
 664 
 665 // If could fit into free regions w/o expansion, try.
 666 // Otherwise, if can expand, do so.
 667 // Otherwise, if using ex regions might help, try with ex given back.
 668 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 669   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 670 
 671   verify_region_sets_optional();
 672 
 673   uint first = G1_NO_HRM_INDEX;
 674   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 675 
 676   if (obj_regions == 1) {
 677     // Only one region to allocate, try to use a fast path by directly allocating
 678     // from the free lists. Do not try to expand here, we will potentially do that
 679     // later.
 680     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 681     if (hr != NULL) {
 682       first = hr->hrm_index();
 683     }
 684   } else {
 685     // We can't allocate humongous regions spanning more than one region while
 686     // cleanupComplete() is running, since some of the regions we find to be
 687     // empty might not yet be added to the free list. It is not straightforward
 688     // to know in which list they are on so that we can remove them. We only
 689     // need to do this if we need to allocate more than one region to satisfy the
 690     // current humongous allocation request. If we are only allocating one region
 691     // we use the one-region region allocation code (see above), that already
 692     // potentially waits for regions from the secondary free list.
 693     wait_while_free_regions_coming();
 694     append_secondary_free_list_if_not_empty_with_lock();
 695 
 696     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 697     // are lucky enough to find some.
 698     first = _hrm.find_contiguous_only_empty(obj_regions);
 699     if (first != G1_NO_HRM_INDEX) {
 700       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 701     }
 702   }
 703 
 704   if (first == G1_NO_HRM_INDEX) {
 705     // Policy: We could not find enough regions for the humongous object in the
 706     // free list. Look through the heap to find a mix of free and uncommitted regions.
 707     // If so, try expansion.
 708     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 709     if (first != G1_NO_HRM_INDEX) {
 710       // We found something. Make sure these regions are committed, i.e. expand
 711       // the heap. Alternatively we could do a defragmentation GC.
 712       ergo_verbose1(ErgoHeapSizing,
 713                     "attempt heap expansion",
 714                     ergo_format_reason("humongous allocation request failed")
 715                     ergo_format_byte("allocation request"),
 716                     word_size * HeapWordSize);
 717 
 718       _hrm.expand_at(first, obj_regions);
 719       g1_policy()->record_new_heap_size(num_regions());
 720 
 721 #ifdef ASSERT
 722       for (uint i = first; i < first + obj_regions; ++i) {
 723         HeapRegion* hr = region_at(i);
 724         assert(hr->is_free(), "sanity");
 725         assert(hr->is_empty(), "sanity");
 726         assert(is_on_master_free_list(hr), "sanity");
 727       }
 728 #endif
 729       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 730     } else {
 731       // Policy: Potentially trigger a defragmentation GC.
 732     }
 733   }
 734 
 735   HeapWord* result = NULL;
 736   if (first != G1_NO_HRM_INDEX) {
 737     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 738                                                        word_size, context);
 739     assert(result != NULL, "it should always return a valid result");
 740 
 741     // A successful humongous object allocation changes the used space
 742     // information of the old generation so we need to recalculate the
 743     // sizes and update the jstat counters here.
 744     g1mm()->update_sizes();
 745   }
 746 
 747   verify_region_sets_optional();
 748 
 749   return result;
 750 }
 751 
 752 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 753   assert_heap_not_locked_and_not_at_safepoint();
 754   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 755 
 756   uint dummy_gc_count_before;
 757   uint dummy_gclocker_retry_count = 0;
 758   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 759 }
 760 
 761 HeapWord*
 762 G1CollectedHeap::mem_allocate(size_t word_size,
 763                               bool*  gc_overhead_limit_was_exceeded) {
 764   assert_heap_not_locked_and_not_at_safepoint();
 765 
 766   // Loop until the allocation is satisfied, or unsatisfied after GC.
 767   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 768     uint gc_count_before;
 769 
 770     HeapWord* result = NULL;
 771     if (!is_humongous(word_size)) {
 772       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 773     } else {
 774       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 775     }
 776     if (result != NULL) {
 777       return result;
 778     }
 779 
 780     // Create the garbage collection operation...
 781     VM_G1CollectForAllocation op(gc_count_before, word_size);
 782     op.set_allocation_context(AllocationContext::current());
 783 
 784     // ...and get the VM thread to execute it.
 785     VMThread::execute(&op);
 786 
 787     if (op.prologue_succeeded() && op.pause_succeeded()) {
 788       // If the operation was successful we'll return the result even
 789       // if it is NULL. If the allocation attempt failed immediately
 790       // after a Full GC, it's unlikely we'll be able to allocate now.
 791       HeapWord* result = op.result();
 792       if (result != NULL && !is_humongous(word_size)) {
 793         // Allocations that take place on VM operations do not do any
 794         // card dirtying and we have to do it here. We only have to do
 795         // this for non-humongous allocations, though.
 796         dirty_young_block(result, word_size);
 797       }
 798       return result;
 799     } else {
 800       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 801         return NULL;
 802       }
 803       assert(op.result() == NULL,
 804              "the result should be NULL if the VM op did not succeed");
 805     }
 806 
 807     // Give a warning if we seem to be looping forever.
 808     if ((QueuedAllocationWarningCount > 0) &&
 809         (try_count % QueuedAllocationWarningCount == 0)) {
 810       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 811     }
 812   }
 813 
 814   ShouldNotReachHere();
 815   return NULL;
 816 }
 817 
 818 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 819                                                    AllocationContext_t context,
 820                                                    uint* gc_count_before_ret,
 821                                                    uint* gclocker_retry_count_ret) {
 822   // Make sure you read the note in attempt_allocation_humongous().
 823 
 824   assert_heap_not_locked_and_not_at_safepoint();
 825   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 826          "be called for humongous allocation requests");
 827 
 828   // We should only get here after the first-level allocation attempt
 829   // (attempt_allocation()) failed to allocate.
 830 
 831   // We will loop until a) we manage to successfully perform the
 832   // allocation or b) we successfully schedule a collection which
 833   // fails to perform the allocation. b) is the only case when we'll
 834   // return NULL.
 835   HeapWord* result = NULL;
 836   for (int try_count = 1; /* we'll return */; try_count += 1) {
 837     bool should_try_gc;
 838     uint gc_count_before;
 839 
 840     {
 841       MutexLockerEx x(Heap_lock);
 842       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 843                                                                                     false /* bot_updates */);
 844       if (result != NULL) {
 845         return result;
 846       }
 847 
 848       // If we reach here, attempt_allocation_locked() above failed to
 849       // allocate a new region. So the mutator alloc region should be NULL.
 850       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 851 
 852       if (GC_locker::is_active_and_needs_gc()) {
 853         if (g1_policy()->can_expand_young_list()) {
 854           // No need for an ergo verbose message here,
 855           // can_expand_young_list() does this when it returns true.
 856           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 857                                                                                        false /* bot_updates */);
 858           if (result != NULL) {
 859             return result;
 860           }
 861         }
 862         should_try_gc = false;
 863       } else {
 864         // The GCLocker may not be active but the GCLocker initiated
 865         // GC may not yet have been performed (GCLocker::needs_gc()
 866         // returns true). In this case we do not try this GC and
 867         // wait until the GCLocker initiated GC is performed, and
 868         // then retry the allocation.
 869         if (GC_locker::needs_gc()) {
 870           should_try_gc = false;
 871         } else {
 872           // Read the GC count while still holding the Heap_lock.
 873           gc_count_before = total_collections();
 874           should_try_gc = true;
 875         }
 876       }
 877     }
 878 
 879     if (should_try_gc) {
 880       bool succeeded;
 881       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 882                                    GCCause::_g1_inc_collection_pause);
 883       if (result != NULL) {
 884         assert(succeeded, "only way to get back a non-NULL result");
 885         return result;
 886       }
 887 
 888       if (succeeded) {
 889         // If we get here we successfully scheduled a collection which
 890         // failed to allocate. No point in trying to allocate
 891         // further. We'll just return NULL.
 892         MutexLockerEx x(Heap_lock);
 893         *gc_count_before_ret = total_collections();
 894         return NULL;
 895       }
 896     } else {
 897       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 898         MutexLockerEx x(Heap_lock);
 899         *gc_count_before_ret = total_collections();
 900         return NULL;
 901       }
 902       // The GCLocker is either active or the GCLocker initiated
 903       // GC has not yet been performed. Stall until it is and
 904       // then retry the allocation.
 905       GC_locker::stall_until_clear();
 906       (*gclocker_retry_count_ret) += 1;
 907     }
 908 
 909     // We can reach here if we were unsuccessful in scheduling a
 910     // collection (because another thread beat us to it) or if we were
 911     // stalled due to the GC locker. In either can we should retry the
 912     // allocation attempt in case another thread successfully
 913     // performed a collection and reclaimed enough space. We do the
 914     // first attempt (without holding the Heap_lock) here and the
 915     // follow-on attempt will be at the start of the next loop
 916     // iteration (after taking the Heap_lock).
 917     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 918                                                                            false /* bot_updates */);
 919     if (result != NULL) {
 920       return result;
 921     }
 922 
 923     // Give a warning if we seem to be looping forever.
 924     if ((QueuedAllocationWarningCount > 0) &&
 925         (try_count % QueuedAllocationWarningCount == 0)) {
 926       warning("G1CollectedHeap::attempt_allocation_slow() "
 927               "retries %d times", try_count);
 928     }
 929   }
 930 
 931   ShouldNotReachHere();
 932   return NULL;
 933 }
 934 
 935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 936                                                         uint* gc_count_before_ret,
 937                                                         uint* gclocker_retry_count_ret) {
 938   // The structure of this method has a lot of similarities to
 939   // attempt_allocation_slow(). The reason these two were not merged
 940   // into a single one is that such a method would require several "if
 941   // allocation is not humongous do this, otherwise do that"
 942   // conditional paths which would obscure its flow. In fact, an early
 943   // version of this code did use a unified method which was harder to
 944   // follow and, as a result, it had subtle bugs that were hard to
 945   // track down. So keeping these two methods separate allows each to
 946   // be more readable. It will be good to keep these two in sync as
 947   // much as possible.
 948 
 949   assert_heap_not_locked_and_not_at_safepoint();
 950   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 951          "should only be called for humongous allocations");
 952 
 953   // Humongous objects can exhaust the heap quickly, so we should check if we
 954   // need to start a marking cycle at each humongous object allocation. We do
 955   // the check before we do the actual allocation. The reason for doing it
 956   // before the allocation is that we avoid having to keep track of the newly
 957   // allocated memory while we do a GC.
 958   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 959                                            word_size)) {
 960     collect(GCCause::_g1_humongous_allocation);
 961   }
 962 
 963   // We will loop until a) we manage to successfully perform the
 964   // allocation or b) we successfully schedule a collection which
 965   // fails to perform the allocation. b) is the only case when we'll
 966   // return NULL.
 967   HeapWord* result = NULL;
 968   for (int try_count = 1; /* we'll return */; try_count += 1) {
 969     bool should_try_gc;
 970     uint gc_count_before;
 971 
 972     {
 973       MutexLockerEx x(Heap_lock);
 974 
 975       // Given that humongous objects are not allocated in young
 976       // regions, we'll first try to do the allocation without doing a
 977       // collection hoping that there's enough space in the heap.
 978       result = humongous_obj_allocate(word_size, AllocationContext::current());
 979       if (result != NULL) {
 980         return result;
 981       }
 982 
 983       if (GC_locker::is_active_and_needs_gc()) {
 984         should_try_gc = false;
 985       } else {
 986          // The GCLocker may not be active but the GCLocker initiated
 987         // GC may not yet have been performed (GCLocker::needs_gc()
 988         // returns true). In this case we do not try this GC and
 989         // wait until the GCLocker initiated GC is performed, and
 990         // then retry the allocation.
 991         if (GC_locker::needs_gc()) {
 992           should_try_gc = false;
 993         } else {
 994           // Read the GC count while still holding the Heap_lock.
 995           gc_count_before = total_collections();
 996           should_try_gc = true;
 997         }
 998       }
 999     }
1000 
1001     if (should_try_gc) {
1002       // If we failed to allocate the humongous object, we should try to
1003       // do a collection pause (if we're allowed) in case it reclaims
1004       // enough space for the allocation to succeed after the pause.
1005 
1006       bool succeeded;
1007       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1008                                    GCCause::_g1_humongous_allocation);
1009       if (result != NULL) {
1010         assert(succeeded, "only way to get back a non-NULL result");
1011         return result;
1012       }
1013 
1014       if (succeeded) {
1015         // If we get here we successfully scheduled a collection which
1016         // failed to allocate. No point in trying to allocate
1017         // further. We'll just return NULL.
1018         MutexLockerEx x(Heap_lock);
1019         *gc_count_before_ret = total_collections();
1020         return NULL;
1021       }
1022     } else {
1023       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1024         MutexLockerEx x(Heap_lock);
1025         *gc_count_before_ret = total_collections();
1026         return NULL;
1027       }
1028       // The GCLocker is either active or the GCLocker initiated
1029       // GC has not yet been performed. Stall until it is and
1030       // then retry the allocation.
1031       GC_locker::stall_until_clear();
1032       (*gclocker_retry_count_ret) += 1;
1033     }
1034 
1035     // We can reach here if we were unsuccessful in scheduling a
1036     // collection (because another thread beat us to it) or if we were
1037     // stalled due to the GC locker. In either can we should retry the
1038     // allocation attempt in case another thread successfully
1039     // performed a collection and reclaimed enough space.  Give a
1040     // warning if we seem to be looping forever.
1041 
1042     if ((QueuedAllocationWarningCount > 0) &&
1043         (try_count % QueuedAllocationWarningCount == 0)) {
1044       warning("G1CollectedHeap::attempt_allocation_humongous() "
1045               "retries %d times", try_count);
1046     }
1047   }
1048 
1049   ShouldNotReachHere();
1050   return NULL;
1051 }
1052 
1053 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1054                                                            AllocationContext_t context,
1055                                                            bool expect_null_mutator_alloc_region) {
1056   assert_at_safepoint(true /* should_be_vm_thread */);
1057   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1058                                              !expect_null_mutator_alloc_region,
1059          "the current alloc region was unexpectedly found to be non-NULL");
1060 
1061   if (!is_humongous(word_size)) {
1062     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1063                                                       false /* bot_updates */);
1064   } else {
1065     HeapWord* result = humongous_obj_allocate(word_size, context);
1066     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1067       g1_policy()->set_initiate_conc_mark_if_possible();
1068     }
1069     return result;
1070   }
1071 
1072   ShouldNotReachHere();
1073 }
1074 
1075 class PostMCRemSetClearClosure: public HeapRegionClosure {
1076   G1CollectedHeap* _g1h;
1077   ModRefBarrierSet* _mr_bs;
1078 public:
1079   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1080     _g1h(g1h), _mr_bs(mr_bs) {}
1081 
1082   bool doHeapRegion(HeapRegion* r) {
1083     HeapRegionRemSet* hrrs = r->rem_set();
1084 
1085     if (r->is_continues_humongous()) {
1086       // We'll assert that the strong code root list and RSet is empty
1087       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1088       assert(hrrs->occupied() == 0, "RSet should be empty");
1089       return false;
1090     }
1091 
1092     _g1h->reset_gc_time_stamps(r);
1093     hrrs->clear();
1094     // You might think here that we could clear just the cards
1095     // corresponding to the used region.  But no: if we leave a dirty card
1096     // in a region we might allocate into, then it would prevent that card
1097     // from being enqueued, and cause it to be missed.
1098     // Re: the performance cost: we shouldn't be doing full GC anyway!
1099     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1100 
1101     return false;
1102   }
1103 };
1104 
1105 void G1CollectedHeap::clear_rsets_post_compaction() {
1106   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1107   heap_region_iterate(&rs_clear);
1108 }
1109 
1110 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1111   G1CollectedHeap*   _g1h;
1112   UpdateRSOopClosure _cl;
1113   int                _worker_i;
1114 public:
1115   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1116     _cl(g1->g1_rem_set(), worker_i),
1117     _worker_i(worker_i),
1118     _g1h(g1)
1119   { }
1120 
1121   bool doHeapRegion(HeapRegion* r) {
1122     if (!r->is_continues_humongous()) {
1123       _cl.set_from(r);
1124       r->oop_iterate(&_cl);
1125     }
1126     return false;
1127   }
1128 };
1129 
1130 class ParRebuildRSTask: public AbstractGangTask {
1131   G1CollectedHeap* _g1;
1132   HeapRegionClaimer _hrclaimer;
1133 
1134 public:
1135   ParRebuildRSTask(G1CollectedHeap* g1) :
1136       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1137 
1138   void work(uint worker_id) {
1139     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1140     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1141   }
1142 };
1143 
1144 class PostCompactionPrinterClosure: public HeapRegionClosure {
1145 private:
1146   G1HRPrinter* _hr_printer;
1147 public:
1148   bool doHeapRegion(HeapRegion* hr) {
1149     assert(!hr->is_young(), "not expecting to find young regions");
1150     if (hr->is_free()) {
1151       // We only generate output for non-empty regions.
1152     } else if (hr->is_starts_humongous()) {
1153       if (hr->region_num() == 1) {
1154         // single humongous region
1155         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1156       } else {
1157         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1158       }
1159     } else if (hr->is_continues_humongous()) {
1160       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1161     } else if (hr->is_old()) {
1162       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1163     } else {
1164       ShouldNotReachHere();
1165     }
1166     return false;
1167   }
1168 
1169   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1170     : _hr_printer(hr_printer) { }
1171 };
1172 
1173 void G1CollectedHeap::print_hrm_post_compaction() {
1174   PostCompactionPrinterClosure cl(hr_printer());
1175   heap_region_iterate(&cl);
1176 }
1177 
1178 bool G1CollectedHeap::do_collection(bool explicit_gc,
1179                                     bool clear_all_soft_refs,
1180                                     size_t word_size) {
1181   assert_at_safepoint(true /* should_be_vm_thread */);
1182 
1183   if (GC_locker::check_active_before_gc()) {
1184     return false;
1185   }
1186 
1187   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1188   gc_timer->register_gc_start();
1189 
1190   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1191   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1192 
1193   SvcGCMarker sgcm(SvcGCMarker::FULL);
1194   ResourceMark rm;
1195 
1196   print_heap_before_gc();
1197   trace_heap_before_gc(gc_tracer);
1198 
1199   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1200 
1201   verify_region_sets_optional();
1202 
1203   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1204                            collector_policy()->should_clear_all_soft_refs();
1205 
1206   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1207 
1208   {
1209     IsGCActiveMark x;
1210 
1211     // Timing
1212     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1213     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1214 
1215     {
1216       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1217       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1218       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1219 
1220       g1_policy()->record_full_collection_start();
1221 
1222       // Note: When we have a more flexible GC logging framework that
1223       // allows us to add optional attributes to a GC log record we
1224       // could consider timing and reporting how long we wait in the
1225       // following two methods.
1226       wait_while_free_regions_coming();
1227       // If we start the compaction before the CM threads finish
1228       // scanning the root regions we might trip them over as we'll
1229       // be moving objects / updating references. So let's wait until
1230       // they are done. By telling them to abort, they should complete
1231       // early.
1232       _cm->root_regions()->abort();
1233       _cm->root_regions()->wait_until_scan_finished();
1234       append_secondary_free_list_if_not_empty_with_lock();
1235 
1236       gc_prologue(true);
1237       increment_total_collections(true /* full gc */);
1238       increment_old_marking_cycles_started();
1239 
1240       assert(used() == recalculate_used(), "Should be equal");
1241 
1242       verify_before_gc();
1243 
1244       check_bitmaps("Full GC Start");
1245       pre_full_gc_dump(gc_timer);
1246 
1247       COMPILER2_PRESENT(DerivedPointerTable::clear());
1248 
1249       // Disable discovery and empty the discovered lists
1250       // for the CM ref processor.
1251       ref_processor_cm()->disable_discovery();
1252       ref_processor_cm()->abandon_partial_discovery();
1253       ref_processor_cm()->verify_no_references_recorded();
1254 
1255       // Abandon current iterations of concurrent marking and concurrent
1256       // refinement, if any are in progress. We have to do this before
1257       // wait_until_scan_finished() below.
1258       concurrent_mark()->abort();
1259 
1260       // Make sure we'll choose a new allocation region afterwards.
1261       _allocator->release_mutator_alloc_region();
1262       _allocator->abandon_gc_alloc_regions();
1263       g1_rem_set()->cleanupHRRS();
1264 
1265       // We should call this after we retire any currently active alloc
1266       // regions so that all the ALLOC / RETIRE events are generated
1267       // before the start GC event.
1268       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1269 
1270       // We may have added regions to the current incremental collection
1271       // set between the last GC or pause and now. We need to clear the
1272       // incremental collection set and then start rebuilding it afresh
1273       // after this full GC.
1274       abandon_collection_set(g1_policy()->inc_cset_head());
1275       g1_policy()->clear_incremental_cset();
1276       g1_policy()->stop_incremental_cset_building();
1277 
1278       tear_down_region_sets(false /* free_list_only */);
1279       g1_policy()->set_gcs_are_young(true);
1280 
1281       // See the comments in g1CollectedHeap.hpp and
1282       // G1CollectedHeap::ref_processing_init() about
1283       // how reference processing currently works in G1.
1284 
1285       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1286       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1287 
1288       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1289       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1290 
1291       ref_processor_stw()->enable_discovery();
1292       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1293 
1294       // Do collection work
1295       {
1296         HandleMark hm;  // Discard invalid handles created during gc
1297         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1298       }
1299 
1300       assert(num_free_regions() == 0, "we should not have added any free regions");
1301       rebuild_region_sets(false /* free_list_only */);
1302 
1303       // Enqueue any discovered reference objects that have
1304       // not been removed from the discovered lists.
1305       ref_processor_stw()->enqueue_discovered_references();
1306 
1307       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1308 
1309       MemoryService::track_memory_usage();
1310 
1311       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1312       ref_processor_stw()->verify_no_references_recorded();
1313 
1314       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1315       ClassLoaderDataGraph::purge();
1316       MetaspaceAux::verify_metrics();
1317 
1318       // Note: since we've just done a full GC, concurrent
1319       // marking is no longer active. Therefore we need not
1320       // re-enable reference discovery for the CM ref processor.
1321       // That will be done at the start of the next marking cycle.
1322       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1323       ref_processor_cm()->verify_no_references_recorded();
1324 
1325       reset_gc_time_stamp();
1326       // Since everything potentially moved, we will clear all remembered
1327       // sets, and clear all cards.  Later we will rebuild remembered
1328       // sets. We will also reset the GC time stamps of the regions.
1329       clear_rsets_post_compaction();
1330       check_gc_time_stamps();
1331 
1332       // Resize the heap if necessary.
1333       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1334 
1335       if (_hr_printer.is_active()) {
1336         // We should do this after we potentially resize the heap so
1337         // that all the COMMIT / UNCOMMIT events are generated before
1338         // the end GC event.
1339 
1340         print_hrm_post_compaction();
1341         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1342       }
1343 
1344       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1345       if (hot_card_cache->use_cache()) {
1346         hot_card_cache->reset_card_counts();
1347         hot_card_cache->reset_hot_cache();
1348       }
1349 
1350       // Rebuild remembered sets of all regions.
1351       uint n_workers =
1352         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1353                                                 workers()->active_workers(),
1354                                                 Threads::number_of_non_daemon_threads());
1355       assert(UseDynamicNumberOfGCThreads ||
1356              n_workers == workers()->total_workers(),
1357              "If not dynamic should be using all the  workers");
1358       workers()->set_active_workers(n_workers);
1359       // Set parallel threads in the heap (_n_par_threads) only
1360       // before a parallel phase and always reset it to 0 after
1361       // the phase so that the number of parallel threads does
1362       // no get carried forward to a serial phase where there
1363       // may be code that is "possibly_parallel".
1364       set_par_threads(n_workers);
1365 
1366       ParRebuildRSTask rebuild_rs_task(this);
1367       assert(UseDynamicNumberOfGCThreads ||
1368              workers()->active_workers() == workers()->total_workers(),
1369              "Unless dynamic should use total workers");
1370       // Use the most recent number of  active workers
1371       assert(workers()->active_workers() > 0,
1372              "Active workers not properly set");
1373       set_par_threads(workers()->active_workers());
1374       workers()->run_task(&rebuild_rs_task);
1375       set_par_threads(0);
1376 
1377       // Rebuild the strong code root lists for each region
1378       rebuild_strong_code_roots();
1379 
1380       if (true) { // FIXME
1381         MetaspaceGC::compute_new_size();
1382       }
1383 
1384 #ifdef TRACESPINNING
1385       ParallelTaskTerminator::print_termination_counts();
1386 #endif
1387 
1388       // Discard all rset updates
1389       JavaThread::dirty_card_queue_set().abandon_logs();
1390       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1391 
1392       _young_list->reset_sampled_info();
1393       // At this point there should be no regions in the
1394       // entire heap tagged as young.
1395       assert(check_young_list_empty(true /* check_heap */),
1396              "young list should be empty at this point");
1397 
1398       // Update the number of full collections that have been completed.
1399       increment_old_marking_cycles_completed(false /* concurrent */);
1400 
1401       _hrm.verify_optional();
1402       verify_region_sets_optional();
1403 
1404       verify_after_gc();
1405 
1406       // Clear the previous marking bitmap, if needed for bitmap verification.
1407       // Note we cannot do this when we clear the next marking bitmap in
1408       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1409       // objects marked during a full GC against the previous bitmap.
1410       // But we need to clear it before calling check_bitmaps below since
1411       // the full GC has compacted objects and updated TAMS but not updated
1412       // the prev bitmap.
1413       if (G1VerifyBitmaps) {
1414         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1415       }
1416       check_bitmaps("Full GC End");
1417 
1418       // Start a new incremental collection set for the next pause
1419       assert(g1_policy()->collection_set() == NULL, "must be");
1420       g1_policy()->start_incremental_cset_building();
1421 
1422       clear_cset_fast_test();
1423 
1424       _allocator->init_mutator_alloc_region();
1425 
1426       g1_policy()->record_full_collection_end();
1427 
1428       if (G1Log::fine()) {
1429         g1_policy()->print_heap_transition();
1430       }
1431 
1432       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1433       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1434       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1435       // before any GC notifications are raised.
1436       g1mm()->update_sizes();
1437 
1438       gc_epilogue(true);
1439     }
1440 
1441     if (G1Log::finer()) {
1442       g1_policy()->print_detailed_heap_transition(true /* full */);
1443     }
1444 
1445     print_heap_after_gc();
1446     trace_heap_after_gc(gc_tracer);
1447 
1448     post_full_gc_dump(gc_timer);
1449 
1450     gc_timer->register_gc_end();
1451     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1452   }
1453 
1454   return true;
1455 }
1456 
1457 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1458   // do_collection() will return whether it succeeded in performing
1459   // the GC. Currently, there is no facility on the
1460   // do_full_collection() API to notify the caller than the collection
1461   // did not succeed (e.g., because it was locked out by the GC
1462   // locker). So, right now, we'll ignore the return value.
1463   bool dummy = do_collection(true,                /* explicit_gc */
1464                              clear_all_soft_refs,
1465                              0                    /* word_size */);
1466 }
1467 
1468 // This code is mostly copied from TenuredGeneration.
1469 void
1470 G1CollectedHeap::
1471 resize_if_necessary_after_full_collection(size_t word_size) {
1472   // Include the current allocation, if any, and bytes that will be
1473   // pre-allocated to support collections, as "used".
1474   const size_t used_after_gc = used();
1475   const size_t capacity_after_gc = capacity();
1476   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1477 
1478   // This is enforced in arguments.cpp.
1479   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1480          "otherwise the code below doesn't make sense");
1481 
1482   // We don't have floating point command-line arguments
1483   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1484   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1485   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1486   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1487 
1488   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1489   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1490 
1491   // We have to be careful here as these two calculations can overflow
1492   // 32-bit size_t's.
1493   double used_after_gc_d = (double) used_after_gc;
1494   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1495   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1496 
1497   // Let's make sure that they are both under the max heap size, which
1498   // by default will make them fit into a size_t.
1499   double desired_capacity_upper_bound = (double) max_heap_size;
1500   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1501                                     desired_capacity_upper_bound);
1502   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1503                                     desired_capacity_upper_bound);
1504 
1505   // We can now safely turn them into size_t's.
1506   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1507   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1508 
1509   // This assert only makes sense here, before we adjust them
1510   // with respect to the min and max heap size.
1511   assert(minimum_desired_capacity <= maximum_desired_capacity,
1512          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1513                  "maximum_desired_capacity = "SIZE_FORMAT,
1514                  minimum_desired_capacity, maximum_desired_capacity));
1515 
1516   // Should not be greater than the heap max size. No need to adjust
1517   // it with respect to the heap min size as it's a lower bound (i.e.,
1518   // we'll try to make the capacity larger than it, not smaller).
1519   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1520   // Should not be less than the heap min size. No need to adjust it
1521   // with respect to the heap max size as it's an upper bound (i.e.,
1522   // we'll try to make the capacity smaller than it, not greater).
1523   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1524 
1525   if (capacity_after_gc < minimum_desired_capacity) {
1526     // Don't expand unless it's significant
1527     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1528     ergo_verbose4(ErgoHeapSizing,
1529                   "attempt heap expansion",
1530                   ergo_format_reason("capacity lower than "
1531                                      "min desired capacity after Full GC")
1532                   ergo_format_byte("capacity")
1533                   ergo_format_byte("occupancy")
1534                   ergo_format_byte_perc("min desired capacity"),
1535                   capacity_after_gc, used_after_gc,
1536                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1537     expand(expand_bytes);
1538 
1539     // No expansion, now see if we want to shrink
1540   } else if (capacity_after_gc > maximum_desired_capacity) {
1541     // Capacity too large, compute shrinking size
1542     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1543     ergo_verbose4(ErgoHeapSizing,
1544                   "attempt heap shrinking",
1545                   ergo_format_reason("capacity higher than "
1546                                      "max desired capacity after Full GC")
1547                   ergo_format_byte("capacity")
1548                   ergo_format_byte("occupancy")
1549                   ergo_format_byte_perc("max desired capacity"),
1550                   capacity_after_gc, used_after_gc,
1551                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1552     shrink(shrink_bytes);
1553   }
1554 }
1555 
1556 
1557 HeapWord*
1558 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1559                                            AllocationContext_t context,
1560                                            bool* succeeded) {
1561   assert_at_safepoint(true /* should_be_vm_thread */);
1562 
1563   *succeeded = true;
1564   // Let's attempt the allocation first.
1565   HeapWord* result =
1566     attempt_allocation_at_safepoint(word_size,
1567                                     context,
1568                                     false /* expect_null_mutator_alloc_region */);
1569   if (result != NULL) {
1570     assert(*succeeded, "sanity");
1571     return result;
1572   }
1573 
1574   // In a G1 heap, we're supposed to keep allocation from failing by
1575   // incremental pauses.  Therefore, at least for now, we'll favor
1576   // expansion over collection.  (This might change in the future if we can
1577   // do something smarter than full collection to satisfy a failed alloc.)
1578   result = expand_and_allocate(word_size, context);
1579   if (result != NULL) {
1580     assert(*succeeded, "sanity");
1581     return result;
1582   }
1583 
1584   // Expansion didn't work, we'll try to do a Full GC.
1585   bool gc_succeeded = do_collection(false, /* explicit_gc */
1586                                     false, /* clear_all_soft_refs */
1587                                     word_size);
1588   if (!gc_succeeded) {
1589     *succeeded = false;
1590     return NULL;
1591   }
1592 
1593   // Retry the allocation
1594   result = attempt_allocation_at_safepoint(word_size,
1595                                            context,
1596                                            true /* expect_null_mutator_alloc_region */);
1597   if (result != NULL) {
1598     assert(*succeeded, "sanity");
1599     return result;
1600   }
1601 
1602   // Then, try a Full GC that will collect all soft references.
1603   gc_succeeded = do_collection(false, /* explicit_gc */
1604                                true,  /* clear_all_soft_refs */
1605                                word_size);
1606   if (!gc_succeeded) {
1607     *succeeded = false;
1608     return NULL;
1609   }
1610 
1611   // Retry the allocation once more
1612   result = attempt_allocation_at_safepoint(word_size,
1613                                            context,
1614                                            true /* expect_null_mutator_alloc_region */);
1615   if (result != NULL) {
1616     assert(*succeeded, "sanity");
1617     return result;
1618   }
1619 
1620   assert(!collector_policy()->should_clear_all_soft_refs(),
1621          "Flag should have been handled and cleared prior to this point");
1622 
1623   // What else?  We might try synchronous finalization later.  If the total
1624   // space available is large enough for the allocation, then a more
1625   // complete compaction phase than we've tried so far might be
1626   // appropriate.
1627   assert(*succeeded, "sanity");
1628   return NULL;
1629 }
1630 
1631 // Attempting to expand the heap sufficiently
1632 // to support an allocation of the given "word_size".  If
1633 // successful, perform the allocation and return the address of the
1634 // allocated block, or else "NULL".
1635 
1636 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1637   assert_at_safepoint(true /* should_be_vm_thread */);
1638 
1639   verify_region_sets_optional();
1640 
1641   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1642   ergo_verbose1(ErgoHeapSizing,
1643                 "attempt heap expansion",
1644                 ergo_format_reason("allocation request failed")
1645                 ergo_format_byte("allocation request"),
1646                 word_size * HeapWordSize);
1647   if (expand(expand_bytes)) {
1648     _hrm.verify_optional();
1649     verify_region_sets_optional();
1650     return attempt_allocation_at_safepoint(word_size,
1651                                            context,
1652                                            false /* expect_null_mutator_alloc_region */);
1653   }
1654   return NULL;
1655 }
1656 
1657 bool G1CollectedHeap::expand(size_t expand_bytes) {
1658   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1659   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1660                                        HeapRegion::GrainBytes);
1661   ergo_verbose2(ErgoHeapSizing,
1662                 "expand the heap",
1663                 ergo_format_byte("requested expansion amount")
1664                 ergo_format_byte("attempted expansion amount"),
1665                 expand_bytes, aligned_expand_bytes);
1666 
1667   if (is_maximal_no_gc()) {
1668     ergo_verbose0(ErgoHeapSizing,
1669                       "did not expand the heap",
1670                       ergo_format_reason("heap already fully expanded"));
1671     return false;
1672   }
1673 
1674   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1675   assert(regions_to_expand > 0, "Must expand by at least one region");
1676 
1677   uint expanded_by = _hrm.expand_by(regions_to_expand);
1678 
1679   if (expanded_by > 0) {
1680     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1681     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1682     g1_policy()->record_new_heap_size(num_regions());
1683   } else {
1684     ergo_verbose0(ErgoHeapSizing,
1685                   "did not expand the heap",
1686                   ergo_format_reason("heap expansion operation failed"));
1687     // The expansion of the virtual storage space was unsuccessful.
1688     // Let's see if it was because we ran out of swap.
1689     if (G1ExitOnExpansionFailure &&
1690         _hrm.available() >= regions_to_expand) {
1691       // We had head room...
1692       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1693     }
1694   }
1695   return regions_to_expand > 0;
1696 }
1697 
1698 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1699   size_t aligned_shrink_bytes =
1700     ReservedSpace::page_align_size_down(shrink_bytes);
1701   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1702                                          HeapRegion::GrainBytes);
1703   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1704 
1705   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1706   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1707 
1708   ergo_verbose3(ErgoHeapSizing,
1709                 "shrink the heap",
1710                 ergo_format_byte("requested shrinking amount")
1711                 ergo_format_byte("aligned shrinking amount")
1712                 ergo_format_byte("attempted shrinking amount"),
1713                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1714   if (num_regions_removed > 0) {
1715     g1_policy()->record_new_heap_size(num_regions());
1716   } else {
1717     ergo_verbose0(ErgoHeapSizing,
1718                   "did not shrink the heap",
1719                   ergo_format_reason("heap shrinking operation failed"));
1720   }
1721 }
1722 
1723 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1724   verify_region_sets_optional();
1725 
1726   // We should only reach here at the end of a Full GC which means we
1727   // should not not be holding to any GC alloc regions. The method
1728   // below will make sure of that and do any remaining clean up.
1729   _allocator->abandon_gc_alloc_regions();
1730 
1731   // Instead of tearing down / rebuilding the free lists here, we
1732   // could instead use the remove_all_pending() method on free_list to
1733   // remove only the ones that we need to remove.
1734   tear_down_region_sets(true /* free_list_only */);
1735   shrink_helper(shrink_bytes);
1736   rebuild_region_sets(true /* free_list_only */);
1737 
1738   _hrm.verify_optional();
1739   verify_region_sets_optional();
1740 }
1741 
1742 // Public methods.
1743 
1744 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1745 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1746 #endif // _MSC_VER
1747 
1748 
1749 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1750   SharedHeap(policy_),
1751   _g1_policy(policy_),
1752   _dirty_card_queue_set(false),
1753   _into_cset_dirty_card_queue_set(false),
1754   _is_alive_closure_cm(this),
1755   _is_alive_closure_stw(this),
1756   _ref_processor_cm(NULL),
1757   _ref_processor_stw(NULL),
1758   _bot_shared(NULL),
1759   _evac_failure_scan_stack(NULL),
1760   _mark_in_progress(false),
1761   _cg1r(NULL),
1762   _g1mm(NULL),
1763   _refine_cte_cl(NULL),
1764   _full_collection(false),
1765   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1766   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1767   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1768   _humongous_is_live(),
1769   _has_humongous_reclaim_candidates(false),
1770   _free_regions_coming(false),
1771   _young_list(new YoungList(this)),
1772   _gc_time_stamp(0),
1773   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1774   _old_plab_stats(OldPLABSize, PLABWeight),
1775   _expand_heap_after_alloc_failure(true),
1776   _surviving_young_words(NULL),
1777   _old_marking_cycles_started(0),
1778   _old_marking_cycles_completed(0),
1779   _concurrent_cycle_started(false),
1780   _heap_summary_sent(false),
1781   _in_cset_fast_test(),
1782   _dirty_cards_region_list(NULL),
1783   _worker_cset_start_region(NULL),
1784   _worker_cset_start_region_time_stamp(NULL),
1785   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1786   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1787   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1788   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1789 
1790   _g1h = this;
1791 
1792   _allocator = G1Allocator::create_allocator(_g1h);
1793   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1794 
1795   int n_queues = MAX2((int)ParallelGCThreads, 1);
1796   _task_queues = new RefToScanQueueSet(n_queues);
1797 
1798   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1799   assert(n_rem_sets > 0, "Invariant.");
1800 
1801   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1802   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1803   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1804 
1805   for (int i = 0; i < n_queues; i++) {
1806     RefToScanQueue* q = new RefToScanQueue();
1807     q->initialize();
1808     _task_queues->register_queue(i, q);
1809     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1810   }
1811   clear_cset_start_regions();
1812 
1813   // Initialize the G1EvacuationFailureALot counters and flags.
1814   NOT_PRODUCT(reset_evacuation_should_fail();)
1815 
1816   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1817 }
1818 
1819 jint G1CollectedHeap::initialize() {
1820   CollectedHeap::pre_initialize();
1821   os::enable_vtime();
1822 
1823   G1Log::init();
1824 
1825   // Necessary to satisfy locking discipline assertions.
1826 
1827   MutexLocker x(Heap_lock);
1828 
1829   // We have to initialize the printer before committing the heap, as
1830   // it will be used then.
1831   _hr_printer.set_active(G1PrintHeapRegions);
1832 
1833   // While there are no constraints in the GC code that HeapWordSize
1834   // be any particular value, there are multiple other areas in the
1835   // system which believe this to be true (e.g. oop->object_size in some
1836   // cases incorrectly returns the size in wordSize units rather than
1837   // HeapWordSize).
1838   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1839 
1840   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1841   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1842   size_t heap_alignment = collector_policy()->heap_alignment();
1843 
1844   // Ensure that the sizes are properly aligned.
1845   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1846   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1847   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1848 
1849   _refine_cte_cl = new RefineCardTableEntryClosure();
1850 
1851   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1852 
1853   // Reserve the maximum.
1854 
1855   // When compressed oops are enabled, the preferred heap base
1856   // is calculated by subtracting the requested size from the
1857   // 32Gb boundary and using the result as the base address for
1858   // heap reservation. If the requested size is not aligned to
1859   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1860   // into the ReservedHeapSpace constructor) then the actual
1861   // base of the reserved heap may end up differing from the
1862   // address that was requested (i.e. the preferred heap base).
1863   // If this happens then we could end up using a non-optimal
1864   // compressed oops mode.
1865 
1866   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1867                                                  heap_alignment);
1868 
1869   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1870 
1871   // Create the barrier set for the entire reserved region.
1872   G1SATBCardTableLoggingModRefBS* bs
1873     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1874   bs->initialize();
1875   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1876   set_barrier_set(bs);
1877 
1878   // Also create a G1 rem set.
1879   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1880 
1881   // Carve out the G1 part of the heap.
1882 
1883   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1884   G1RegionToSpaceMapper* heap_storage =
1885     G1RegionToSpaceMapper::create_mapper(g1_rs,
1886                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1887                                          HeapRegion::GrainBytes,
1888                                          1,
1889                                          mtJavaHeap);
1890   heap_storage->set_mapping_changed_listener(&_listener);
1891 
1892   // Reserve space for the block offset table. We do not support automatic uncommit
1893   // for the card table at this time. BOT only.
1894   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1895   G1RegionToSpaceMapper* bot_storage =
1896     G1RegionToSpaceMapper::create_mapper(bot_rs,
1897                                          os::vm_page_size(),
1898                                          HeapRegion::GrainBytes,
1899                                          G1BlockOffsetSharedArray::N_bytes,
1900                                          mtGC);
1901 
1902   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1903   G1RegionToSpaceMapper* cardtable_storage =
1904     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1905                                          os::vm_page_size(),
1906                                          HeapRegion::GrainBytes,
1907                                          G1BlockOffsetSharedArray::N_bytes,
1908                                          mtGC);
1909 
1910   // Reserve space for the card counts table.
1911   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1912   G1RegionToSpaceMapper* card_counts_storage =
1913     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1914                                          os::vm_page_size(),
1915                                          HeapRegion::GrainBytes,
1916                                          G1BlockOffsetSharedArray::N_bytes,
1917                                          mtGC);
1918 
1919   // Reserve space for prev and next bitmap.
1920   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1921 
1922   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1923   G1RegionToSpaceMapper* prev_bitmap_storage =
1924     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1925                                          os::vm_page_size(),
1926                                          HeapRegion::GrainBytes,
1927                                          CMBitMap::mark_distance(),
1928                                          mtGC);
1929 
1930   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1931   G1RegionToSpaceMapper* next_bitmap_storage =
1932     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1933                                          os::vm_page_size(),
1934                                          HeapRegion::GrainBytes,
1935                                          CMBitMap::mark_distance(),
1936                                          mtGC);
1937 
1938   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1939   g1_barrier_set()->initialize(cardtable_storage);
1940    // Do later initialization work for concurrent refinement.
1941   _cg1r->init(card_counts_storage);
1942 
1943   // 6843694 - ensure that the maximum region index can fit
1944   // in the remembered set structures.
1945   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1946   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1947 
1948   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1949   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1950   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1951             "too many cards per region");
1952 
1953   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1954 
1955   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1956 
1957   _g1h = this;
1958 
1959   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1960   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1961 
1962   // Create the ConcurrentMark data structure and thread.
1963   // (Must do this late, so that "max_regions" is defined.)
1964   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1965   if (_cm == NULL || !_cm->completed_initialization()) {
1966     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1967     return JNI_ENOMEM;
1968   }
1969   _cmThread = _cm->cmThread();
1970 
1971   // Initialize the from_card cache structure of HeapRegionRemSet.
1972   HeapRegionRemSet::init_heap(max_regions());
1973 
1974   // Now expand into the initial heap size.
1975   if (!expand(init_byte_size)) {
1976     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1977     return JNI_ENOMEM;
1978   }
1979 
1980   // Perform any initialization actions delegated to the policy.
1981   g1_policy()->init();
1982 
1983   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1984                                                SATB_Q_FL_lock,
1985                                                G1SATBProcessCompletedThreshold,
1986                                                Shared_SATB_Q_lock);
1987 
1988   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1989                                                 DirtyCardQ_CBL_mon,
1990                                                 DirtyCardQ_FL_lock,
1991                                                 concurrent_g1_refine()->yellow_zone(),
1992                                                 concurrent_g1_refine()->red_zone(),
1993                                                 Shared_DirtyCardQ_lock);
1994 
1995   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1996                                     DirtyCardQ_CBL_mon,
1997                                     DirtyCardQ_FL_lock,
1998                                     -1, // never trigger processing
1999                                     -1, // no limit on length
2000                                     Shared_DirtyCardQ_lock,
2001                                     &JavaThread::dirty_card_queue_set());
2002 
2003   // Initialize the card queue set used to hold cards containing
2004   // references into the collection set.
2005   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2006                                              DirtyCardQ_CBL_mon,
2007                                              DirtyCardQ_FL_lock,
2008                                              -1, // never trigger processing
2009                                              -1, // no limit on length
2010                                              Shared_DirtyCardQ_lock,
2011                                              &JavaThread::dirty_card_queue_set());
2012 
2013   // Here we allocate the dummy HeapRegion that is required by the
2014   // G1AllocRegion class.
2015   HeapRegion* dummy_region = _hrm.get_dummy_region();
2016 
2017   // We'll re-use the same region whether the alloc region will
2018   // require BOT updates or not and, if it doesn't, then a non-young
2019   // region will complain that it cannot support allocations without
2020   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2021   dummy_region->set_eden();
2022   // Make sure it's full.
2023   dummy_region->set_top(dummy_region->end());
2024   G1AllocRegion::setup(this, dummy_region);
2025 
2026   _allocator->init_mutator_alloc_region();
2027 
2028   // Do create of the monitoring and management support so that
2029   // values in the heap have been properly initialized.
2030   _g1mm = new G1MonitoringSupport(this);
2031 
2032   G1StringDedup::initialize();
2033 
2034   return JNI_OK;
2035 }
2036 
2037 void G1CollectedHeap::stop() {
2038   // Stop all concurrent threads. We do this to make sure these threads
2039   // do not continue to execute and access resources (e.g. gclog_or_tty)
2040   // that are destroyed during shutdown.
2041   _cg1r->stop();
2042   _cmThread->stop();
2043   if (G1StringDedup::is_enabled()) {
2044     G1StringDedup::stop();
2045   }
2046 }
2047 
2048 void G1CollectedHeap::clear_humongous_is_live_table() {
2049   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2050   _humongous_is_live.clear();
2051 }
2052 
2053 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2054   return HeapRegion::max_region_size();
2055 }
2056 
2057 void G1CollectedHeap::ref_processing_init() {
2058   // Reference processing in G1 currently works as follows:
2059   //
2060   // * There are two reference processor instances. One is
2061   //   used to record and process discovered references
2062   //   during concurrent marking; the other is used to
2063   //   record and process references during STW pauses
2064   //   (both full and incremental).
2065   // * Both ref processors need to 'span' the entire heap as
2066   //   the regions in the collection set may be dotted around.
2067   //
2068   // * For the concurrent marking ref processor:
2069   //   * Reference discovery is enabled at initial marking.
2070   //   * Reference discovery is disabled and the discovered
2071   //     references processed etc during remarking.
2072   //   * Reference discovery is MT (see below).
2073   //   * Reference discovery requires a barrier (see below).
2074   //   * Reference processing may or may not be MT
2075   //     (depending on the value of ParallelRefProcEnabled
2076   //     and ParallelGCThreads).
2077   //   * A full GC disables reference discovery by the CM
2078   //     ref processor and abandons any entries on it's
2079   //     discovered lists.
2080   //
2081   // * For the STW processor:
2082   //   * Non MT discovery is enabled at the start of a full GC.
2083   //   * Processing and enqueueing during a full GC is non-MT.
2084   //   * During a full GC, references are processed after marking.
2085   //
2086   //   * Discovery (may or may not be MT) is enabled at the start
2087   //     of an incremental evacuation pause.
2088   //   * References are processed near the end of a STW evacuation pause.
2089   //   * For both types of GC:
2090   //     * Discovery is atomic - i.e. not concurrent.
2091   //     * Reference discovery will not need a barrier.
2092 
2093   SharedHeap::ref_processing_init();
2094   MemRegion mr = reserved_region();
2095 
2096   // Concurrent Mark ref processor
2097   _ref_processor_cm =
2098     new ReferenceProcessor(mr,    // span
2099                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2100                                 // mt processing
2101                            (int) ParallelGCThreads,
2102                                 // degree of mt processing
2103                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2104                                 // mt discovery
2105                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2106                                 // degree of mt discovery
2107                            false,
2108                                 // Reference discovery is not atomic
2109                            &_is_alive_closure_cm);
2110                                 // is alive closure
2111                                 // (for efficiency/performance)
2112 
2113   // STW ref processor
2114   _ref_processor_stw =
2115     new ReferenceProcessor(mr,    // span
2116                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2117                                 // mt processing
2118                            MAX2((int)ParallelGCThreads, 1),
2119                                 // degree of mt processing
2120                            (ParallelGCThreads > 1),
2121                                 // mt discovery
2122                            MAX2((int)ParallelGCThreads, 1),
2123                                 // degree of mt discovery
2124                            true,
2125                                 // Reference discovery is atomic
2126                            &_is_alive_closure_stw);
2127                                 // is alive closure
2128                                 // (for efficiency/performance)
2129 }
2130 
2131 size_t G1CollectedHeap::capacity() const {
2132   return _hrm.length() * HeapRegion::GrainBytes;
2133 }
2134 
2135 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2136   assert(!hr->is_continues_humongous(), "pre-condition");
2137   hr->reset_gc_time_stamp();
2138   if (hr->is_starts_humongous()) {
2139     uint first_index = hr->hrm_index() + 1;
2140     uint last_index = hr->last_hc_index();
2141     for (uint i = first_index; i < last_index; i += 1) {
2142       HeapRegion* chr = region_at(i);
2143       assert(chr->is_continues_humongous(), "sanity");
2144       chr->reset_gc_time_stamp();
2145     }
2146   }
2147 }
2148 
2149 #ifndef PRODUCT
2150 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2151 private:
2152   unsigned _gc_time_stamp;
2153   bool _failures;
2154 
2155 public:
2156   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2157     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2158 
2159   virtual bool doHeapRegion(HeapRegion* hr) {
2160     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2161     if (_gc_time_stamp != region_gc_time_stamp) {
2162       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2163                              "expected %d", HR_FORMAT_PARAMS(hr),
2164                              region_gc_time_stamp, _gc_time_stamp);
2165       _failures = true;
2166     }
2167     return false;
2168   }
2169 
2170   bool failures() { return _failures; }
2171 };
2172 
2173 void G1CollectedHeap::check_gc_time_stamps() {
2174   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2175   heap_region_iterate(&cl);
2176   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2177 }
2178 #endif // PRODUCT
2179 
2180 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2181                                                  DirtyCardQueue* into_cset_dcq,
2182                                                  bool concurrent,
2183                                                  uint worker_i) {
2184   // Clean cards in the hot card cache
2185   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2186   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2187 
2188   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2189   size_t n_completed_buffers = 0;
2190   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2191     n_completed_buffers++;
2192   }
2193   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2194   dcqs.clear_n_completed_buffers();
2195   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2196 }
2197 
2198 
2199 // Computes the sum of the storage used by the various regions.
2200 size_t G1CollectedHeap::used() const {
2201   return _allocator->used();
2202 }
2203 
2204 size_t G1CollectedHeap::used_unlocked() const {
2205   return _allocator->used_unlocked();
2206 }
2207 
2208 class SumUsedClosure: public HeapRegionClosure {
2209   size_t _used;
2210 public:
2211   SumUsedClosure() : _used(0) {}
2212   bool doHeapRegion(HeapRegion* r) {
2213     if (!r->is_continues_humongous()) {
2214       _used += r->used();
2215     }
2216     return false;
2217   }
2218   size_t result() { return _used; }
2219 };
2220 
2221 size_t G1CollectedHeap::recalculate_used() const {
2222   double recalculate_used_start = os::elapsedTime();
2223 
2224   SumUsedClosure blk;
2225   heap_region_iterate(&blk);
2226 
2227   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2228   return blk.result();
2229 }
2230 
2231 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2232   switch (cause) {
2233     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2234     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2235     case GCCause::_g1_humongous_allocation: return true;
2236     case GCCause::_update_allocation_context_stats_inc: return true;
2237     case GCCause::_wb_conc_mark:            return true;
2238     default:                                return false;
2239   }
2240 }
2241 
2242 #ifndef PRODUCT
2243 void G1CollectedHeap::allocate_dummy_regions() {
2244   // Let's fill up most of the region
2245   size_t word_size = HeapRegion::GrainWords - 1024;
2246   // And as a result the region we'll allocate will be humongous.
2247   guarantee(is_humongous(word_size), "sanity");
2248 
2249   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2250     // Let's use the existing mechanism for the allocation
2251     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2252                                                  AllocationContext::system());
2253     if (dummy_obj != NULL) {
2254       MemRegion mr(dummy_obj, word_size);
2255       CollectedHeap::fill_with_object(mr);
2256     } else {
2257       // If we can't allocate once, we probably cannot allocate
2258       // again. Let's get out of the loop.
2259       break;
2260     }
2261   }
2262 }
2263 #endif // !PRODUCT
2264 
2265 void G1CollectedHeap::increment_old_marking_cycles_started() {
2266   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2267     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2268     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2269     _old_marking_cycles_started, _old_marking_cycles_completed));
2270 
2271   _old_marking_cycles_started++;
2272 }
2273 
2274 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2275   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2276 
2277   // We assume that if concurrent == true, then the caller is a
2278   // concurrent thread that was joined the Suspendible Thread
2279   // Set. If there's ever a cheap way to check this, we should add an
2280   // assert here.
2281 
2282   // Given that this method is called at the end of a Full GC or of a
2283   // concurrent cycle, and those can be nested (i.e., a Full GC can
2284   // interrupt a concurrent cycle), the number of full collections
2285   // completed should be either one (in the case where there was no
2286   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2287   // behind the number of full collections started.
2288 
2289   // This is the case for the inner caller, i.e. a Full GC.
2290   assert(concurrent ||
2291          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2292          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2293          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2294                  "is inconsistent with _old_marking_cycles_completed = %u",
2295                  _old_marking_cycles_started, _old_marking_cycles_completed));
2296 
2297   // This is the case for the outer caller, i.e. the concurrent cycle.
2298   assert(!concurrent ||
2299          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2300          err_msg("for outer caller (concurrent cycle): "
2301                  "_old_marking_cycles_started = %u "
2302                  "is inconsistent with _old_marking_cycles_completed = %u",
2303                  _old_marking_cycles_started, _old_marking_cycles_completed));
2304 
2305   _old_marking_cycles_completed += 1;
2306 
2307   // We need to clear the "in_progress" flag in the CM thread before
2308   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2309   // is set) so that if a waiter requests another System.gc() it doesn't
2310   // incorrectly see that a marking cycle is still in progress.
2311   if (concurrent) {
2312     _cmThread->clear_in_progress();
2313   }
2314 
2315   // This notify_all() will ensure that a thread that called
2316   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2317   // and it's waiting for a full GC to finish will be woken up. It is
2318   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2319   FullGCCount_lock->notify_all();
2320 }
2321 
2322 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2323   _concurrent_cycle_started = true;
2324   _gc_timer_cm->register_gc_start(start_time);
2325 
2326   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2327   trace_heap_before_gc(_gc_tracer_cm);
2328 }
2329 
2330 void G1CollectedHeap::register_concurrent_cycle_end() {
2331   if (_concurrent_cycle_started) {
2332     if (_cm->has_aborted()) {
2333       _gc_tracer_cm->report_concurrent_mode_failure();
2334     }
2335 
2336     _gc_timer_cm->register_gc_end();
2337     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2338 
2339     // Clear state variables to prepare for the next concurrent cycle.
2340     _concurrent_cycle_started = false;
2341     _heap_summary_sent = false;
2342   }
2343 }
2344 
2345 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2346   if (_concurrent_cycle_started) {
2347     // This function can be called when:
2348     //  the cleanup pause is run
2349     //  the concurrent cycle is aborted before the cleanup pause.
2350     //  the concurrent cycle is aborted after the cleanup pause,
2351     //   but before the concurrent cycle end has been registered.
2352     // Make sure that we only send the heap information once.
2353     if (!_heap_summary_sent) {
2354       trace_heap_after_gc(_gc_tracer_cm);
2355       _heap_summary_sent = true;
2356     }
2357   }
2358 }
2359 
2360 G1YCType G1CollectedHeap::yc_type() {
2361   bool is_young = g1_policy()->gcs_are_young();
2362   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2363   bool is_during_mark = mark_in_progress();
2364 
2365   if (is_initial_mark) {
2366     return InitialMark;
2367   } else if (is_during_mark) {
2368     return DuringMark;
2369   } else if (is_young) {
2370     return Normal;
2371   } else {
2372     return Mixed;
2373   }
2374 }
2375 
2376 void G1CollectedHeap::collect(GCCause::Cause cause) {
2377   assert_heap_not_locked();
2378 
2379   uint gc_count_before;
2380   uint old_marking_count_before;
2381   uint full_gc_count_before;
2382   bool retry_gc;
2383 
2384   do {
2385     retry_gc = false;
2386 
2387     {
2388       MutexLocker ml(Heap_lock);
2389 
2390       // Read the GC count while holding the Heap_lock
2391       gc_count_before = total_collections();
2392       full_gc_count_before = total_full_collections();
2393       old_marking_count_before = _old_marking_cycles_started;
2394     }
2395 
2396     if (should_do_concurrent_full_gc(cause)) {
2397       // Schedule an initial-mark evacuation pause that will start a
2398       // concurrent cycle. We're setting word_size to 0 which means that
2399       // we are not requesting a post-GC allocation.
2400       VM_G1IncCollectionPause op(gc_count_before,
2401                                  0,     /* word_size */
2402                                  true,  /* should_initiate_conc_mark */
2403                                  g1_policy()->max_pause_time_ms(),
2404                                  cause);
2405       op.set_allocation_context(AllocationContext::current());
2406 
2407       VMThread::execute(&op);
2408       if (!op.pause_succeeded()) {
2409         if (old_marking_count_before == _old_marking_cycles_started) {
2410           retry_gc = op.should_retry_gc();
2411         } else {
2412           // A Full GC happened while we were trying to schedule the
2413           // initial-mark GC. No point in starting a new cycle given
2414           // that the whole heap was collected anyway.
2415         }
2416 
2417         if (retry_gc) {
2418           if (GC_locker::is_active_and_needs_gc()) {
2419             GC_locker::stall_until_clear();
2420           }
2421         }
2422       }
2423     } else {
2424       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2425           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2426 
2427         // Schedule a standard evacuation pause. We're setting word_size
2428         // to 0 which means that we are not requesting a post-GC allocation.
2429         VM_G1IncCollectionPause op(gc_count_before,
2430                                    0,     /* word_size */
2431                                    false, /* should_initiate_conc_mark */
2432                                    g1_policy()->max_pause_time_ms(),
2433                                    cause);
2434         VMThread::execute(&op);
2435       } else {
2436         // Schedule a Full GC.
2437         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2438         VMThread::execute(&op);
2439       }
2440     }
2441   } while (retry_gc);
2442 }
2443 
2444 bool G1CollectedHeap::is_in(const void* p) const {
2445   if (_hrm.reserved().contains(p)) {
2446     // Given that we know that p is in the reserved space,
2447     // heap_region_containing_raw() should successfully
2448     // return the containing region.
2449     HeapRegion* hr = heap_region_containing_raw(p);
2450     return hr->is_in(p);
2451   } else {
2452     return false;
2453   }
2454 }
2455 
2456 #ifdef ASSERT
2457 bool G1CollectedHeap::is_in_exact(const void* p) const {
2458   bool contains = reserved_region().contains(p);
2459   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2460   if (contains && available) {
2461     return true;
2462   } else {
2463     return false;
2464   }
2465 }
2466 #endif
2467 
2468 // Iteration functions.
2469 
2470 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2471 
2472 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2473   ExtendedOopClosure* _cl;
2474 public:
2475   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2476   bool doHeapRegion(HeapRegion* r) {
2477     if (!r->is_continues_humongous()) {
2478       r->oop_iterate(_cl);
2479     }
2480     return false;
2481   }
2482 };
2483 
2484 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2485   IterateOopClosureRegionClosure blk(cl);
2486   heap_region_iterate(&blk);
2487 }
2488 
2489 // Iterates an ObjectClosure over all objects within a HeapRegion.
2490 
2491 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2492   ObjectClosure* _cl;
2493 public:
2494   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2495   bool doHeapRegion(HeapRegion* r) {
2496     if (!r->is_continues_humongous()) {
2497       r->object_iterate(_cl);
2498     }
2499     return false;
2500   }
2501 };
2502 
2503 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2504   IterateObjectClosureRegionClosure blk(cl);
2505   heap_region_iterate(&blk);
2506 }
2507 
2508 // Calls a SpaceClosure on a HeapRegion.
2509 
2510 class SpaceClosureRegionClosure: public HeapRegionClosure {
2511   SpaceClosure* _cl;
2512 public:
2513   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2514   bool doHeapRegion(HeapRegion* r) {
2515     _cl->do_space(r);
2516     return false;
2517   }
2518 };
2519 
2520 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2521   SpaceClosureRegionClosure blk(cl);
2522   heap_region_iterate(&blk);
2523 }
2524 
2525 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2526   _hrm.iterate(cl);
2527 }
2528 
2529 void
2530 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2531                                          uint worker_id,
2532                                          HeapRegionClaimer *hrclaimer,
2533                                          bool concurrent) const {
2534   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2535 }
2536 
2537 // Clear the cached CSet starting regions and (more importantly)
2538 // the time stamps. Called when we reset the GC time stamp.
2539 void G1CollectedHeap::clear_cset_start_regions() {
2540   assert(_worker_cset_start_region != NULL, "sanity");
2541   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2542 
2543   int n_queues = MAX2((int)ParallelGCThreads, 1);
2544   for (int i = 0; i < n_queues; i++) {
2545     _worker_cset_start_region[i] = NULL;
2546     _worker_cset_start_region_time_stamp[i] = 0;
2547   }
2548 }
2549 
2550 // Given the id of a worker, obtain or calculate a suitable
2551 // starting region for iterating over the current collection set.
2552 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2553   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2554 
2555   HeapRegion* result = NULL;
2556   unsigned gc_time_stamp = get_gc_time_stamp();
2557 
2558   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2559     // Cached starting region for current worker was set
2560     // during the current pause - so it's valid.
2561     // Note: the cached starting heap region may be NULL
2562     // (when the collection set is empty).
2563     result = _worker_cset_start_region[worker_i];
2564     assert(result == NULL || result->in_collection_set(), "sanity");
2565     return result;
2566   }
2567 
2568   // The cached entry was not valid so let's calculate
2569   // a suitable starting heap region for this worker.
2570 
2571   // We want the parallel threads to start their collection
2572   // set iteration at different collection set regions to
2573   // avoid contention.
2574   // If we have:
2575   //          n collection set regions
2576   //          p threads
2577   // Then thread t will start at region floor ((t * n) / p)
2578 
2579   result = g1_policy()->collection_set();
2580   uint cs_size = g1_policy()->cset_region_length();
2581   uint active_workers = workers()->active_workers();
2582   assert(UseDynamicNumberOfGCThreads ||
2583            active_workers == workers()->total_workers(),
2584            "Unless dynamic should use total workers");
2585 
2586   uint end_ind   = (cs_size * worker_i) / active_workers;
2587   uint start_ind = 0;
2588 
2589   if (worker_i > 0 &&
2590       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2591     // Previous workers starting region is valid
2592     // so let's iterate from there
2593     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2594     result = _worker_cset_start_region[worker_i - 1];
2595   }
2596 
2597   for (uint i = start_ind; i < end_ind; i++) {
2598     result = result->next_in_collection_set();
2599   }
2600 
2601   // Note: the calculated starting heap region may be NULL
2602   // (when the collection set is empty).
2603   assert(result == NULL || result->in_collection_set(), "sanity");
2604   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2605          "should be updated only once per pause");
2606   _worker_cset_start_region[worker_i] = result;
2607   OrderAccess::storestore();
2608   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2609   return result;
2610 }
2611 
2612 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2613   HeapRegion* r = g1_policy()->collection_set();
2614   while (r != NULL) {
2615     HeapRegion* next = r->next_in_collection_set();
2616     if (cl->doHeapRegion(r)) {
2617       cl->incomplete();
2618       return;
2619     }
2620     r = next;
2621   }
2622 }
2623 
2624 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2625                                                   HeapRegionClosure *cl) {
2626   if (r == NULL) {
2627     // The CSet is empty so there's nothing to do.
2628     return;
2629   }
2630 
2631   assert(r->in_collection_set(),
2632          "Start region must be a member of the collection set.");
2633   HeapRegion* cur = r;
2634   while (cur != NULL) {
2635     HeapRegion* next = cur->next_in_collection_set();
2636     if (cl->doHeapRegion(cur) && false) {
2637       cl->incomplete();
2638       return;
2639     }
2640     cur = next;
2641   }
2642   cur = g1_policy()->collection_set();
2643   while (cur != r) {
2644     HeapRegion* next = cur->next_in_collection_set();
2645     if (cl->doHeapRegion(cur) && false) {
2646       cl->incomplete();
2647       return;
2648     }
2649     cur = next;
2650   }
2651 }
2652 
2653 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2654   HeapRegion* result = _hrm.next_region_in_heap(from);
2655   while (result != NULL && result->is_humongous()) {
2656     result = _hrm.next_region_in_heap(result);
2657   }
2658   return result;
2659 }
2660 
2661 Space* G1CollectedHeap::space_containing(const void* addr) const {
2662   return heap_region_containing(addr);
2663 }
2664 
2665 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2666   Space* sp = space_containing(addr);
2667   return sp->block_start(addr);
2668 }
2669 
2670 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2671   Space* sp = space_containing(addr);
2672   return sp->block_size(addr);
2673 }
2674 
2675 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2676   Space* sp = space_containing(addr);
2677   return sp->block_is_obj(addr);
2678 }
2679 
2680 bool G1CollectedHeap::supports_tlab_allocation() const {
2681   return true;
2682 }
2683 
2684 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2685   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2686 }
2687 
2688 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2689   return young_list()->eden_used_bytes();
2690 }
2691 
2692 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2693 // must be smaller than the humongous object limit.
2694 size_t G1CollectedHeap::max_tlab_size() const {
2695   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2696 }
2697 
2698 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2699   // Return the remaining space in the cur alloc region, but not less than
2700   // the min TLAB size.
2701 
2702   // Also, this value can be at most the humongous object threshold,
2703   // since we can't allow tlabs to grow big enough to accommodate
2704   // humongous objects.
2705 
2706   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2707   size_t max_tlab = max_tlab_size() * wordSize;
2708   if (hr == NULL) {
2709     return max_tlab;
2710   } else {
2711     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2712   }
2713 }
2714 
2715 size_t G1CollectedHeap::max_capacity() const {
2716   return _hrm.reserved().byte_size();
2717 }
2718 
2719 jlong G1CollectedHeap::millis_since_last_gc() {
2720   // assert(false, "NYI");
2721   return 0;
2722 }
2723 
2724 void G1CollectedHeap::prepare_for_verify() {
2725   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2726     ensure_parsability(false);
2727   }
2728   g1_rem_set()->prepare_for_verify();
2729 }
2730 
2731 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2732                                               VerifyOption vo) {
2733   switch (vo) {
2734   case VerifyOption_G1UsePrevMarking:
2735     return hr->obj_allocated_since_prev_marking(obj);
2736   case VerifyOption_G1UseNextMarking:
2737     return hr->obj_allocated_since_next_marking(obj);
2738   case VerifyOption_G1UseMarkWord:
2739     return false;
2740   default:
2741     ShouldNotReachHere();
2742   }
2743   return false; // keep some compilers happy
2744 }
2745 
2746 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2747   switch (vo) {
2748   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2749   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2750   case VerifyOption_G1UseMarkWord:    return NULL;
2751   default:                            ShouldNotReachHere();
2752   }
2753   return NULL; // keep some compilers happy
2754 }
2755 
2756 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2757   switch (vo) {
2758   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2759   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2760   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2761   default:                            ShouldNotReachHere();
2762   }
2763   return false; // keep some compilers happy
2764 }
2765 
2766 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2767   switch (vo) {
2768   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2769   case VerifyOption_G1UseNextMarking: return "NTAMS";
2770   case VerifyOption_G1UseMarkWord:    return "NONE";
2771   default:                            ShouldNotReachHere();
2772   }
2773   return NULL; // keep some compilers happy
2774 }
2775 
2776 class VerifyRootsClosure: public OopClosure {
2777 private:
2778   G1CollectedHeap* _g1h;
2779   VerifyOption     _vo;
2780   bool             _failures;
2781 public:
2782   // _vo == UsePrevMarking -> use "prev" marking information,
2783   // _vo == UseNextMarking -> use "next" marking information,
2784   // _vo == UseMarkWord    -> use mark word from object header.
2785   VerifyRootsClosure(VerifyOption vo) :
2786     _g1h(G1CollectedHeap::heap()),
2787     _vo(vo),
2788     _failures(false) { }
2789 
2790   bool failures() { return _failures; }
2791 
2792   template <class T> void do_oop_nv(T* p) {
2793     T heap_oop = oopDesc::load_heap_oop(p);
2794     if (!oopDesc::is_null(heap_oop)) {
2795       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2796       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2797         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2798                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2799         if (_vo == VerifyOption_G1UseMarkWord) {
2800           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2801         }
2802         obj->print_on(gclog_or_tty);
2803         _failures = true;
2804       }
2805     }
2806   }
2807 
2808   void do_oop(oop* p)       { do_oop_nv(p); }
2809   void do_oop(narrowOop* p) { do_oop_nv(p); }
2810 };
2811 
2812 class G1VerifyCodeRootOopClosure: public OopClosure {
2813   G1CollectedHeap* _g1h;
2814   OopClosure* _root_cl;
2815   nmethod* _nm;
2816   VerifyOption _vo;
2817   bool _failures;
2818 
2819   template <class T> void do_oop_work(T* p) {
2820     // First verify that this root is live
2821     _root_cl->do_oop(p);
2822 
2823     if (!G1VerifyHeapRegionCodeRoots) {
2824       // We're not verifying the code roots attached to heap region.
2825       return;
2826     }
2827 
2828     // Don't check the code roots during marking verification in a full GC
2829     if (_vo == VerifyOption_G1UseMarkWord) {
2830       return;
2831     }
2832 
2833     // Now verify that the current nmethod (which contains p) is
2834     // in the code root list of the heap region containing the
2835     // object referenced by p.
2836 
2837     T heap_oop = oopDesc::load_heap_oop(p);
2838     if (!oopDesc::is_null(heap_oop)) {
2839       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2840 
2841       // Now fetch the region containing the object
2842       HeapRegion* hr = _g1h->heap_region_containing(obj);
2843       HeapRegionRemSet* hrrs = hr->rem_set();
2844       // Verify that the strong code root list for this region
2845       // contains the nmethod
2846       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2847         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2848                               "from nmethod "PTR_FORMAT" not in strong "
2849                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2850                               p, _nm, hr->bottom(), hr->end());
2851         _failures = true;
2852       }
2853     }
2854   }
2855 
2856 public:
2857   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2858     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2859 
2860   void do_oop(oop* p) { do_oop_work(p); }
2861   void do_oop(narrowOop* p) { do_oop_work(p); }
2862 
2863   void set_nmethod(nmethod* nm) { _nm = nm; }
2864   bool failures() { return _failures; }
2865 };
2866 
2867 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2868   G1VerifyCodeRootOopClosure* _oop_cl;
2869 
2870 public:
2871   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2872     _oop_cl(oop_cl) {}
2873 
2874   void do_code_blob(CodeBlob* cb) {
2875     nmethod* nm = cb->as_nmethod_or_null();
2876     if (nm != NULL) {
2877       _oop_cl->set_nmethod(nm);
2878       nm->oops_do(_oop_cl);
2879     }
2880   }
2881 };
2882 
2883 class YoungRefCounterClosure : public OopClosure {
2884   G1CollectedHeap* _g1h;
2885   int              _count;
2886  public:
2887   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2888   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2889   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2890 
2891   int count() { return _count; }
2892   void reset_count() { _count = 0; };
2893 };
2894 
2895 class VerifyKlassClosure: public KlassClosure {
2896   YoungRefCounterClosure _young_ref_counter_closure;
2897   OopClosure *_oop_closure;
2898  public:
2899   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2900   void do_klass(Klass* k) {
2901     k->oops_do(_oop_closure);
2902 
2903     _young_ref_counter_closure.reset_count();
2904     k->oops_do(&_young_ref_counter_closure);
2905     if (_young_ref_counter_closure.count() > 0) {
2906       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2907     }
2908   }
2909 };
2910 
2911 class VerifyLivenessOopClosure: public OopClosure {
2912   G1CollectedHeap* _g1h;
2913   VerifyOption _vo;
2914 public:
2915   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2916     _g1h(g1h), _vo(vo)
2917   { }
2918   void do_oop(narrowOop *p) { do_oop_work(p); }
2919   void do_oop(      oop *p) { do_oop_work(p); }
2920 
2921   template <class T> void do_oop_work(T *p) {
2922     oop obj = oopDesc::load_decode_heap_oop(p);
2923     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2924               "Dead object referenced by a not dead object");
2925   }
2926 };
2927 
2928 class VerifyObjsInRegionClosure: public ObjectClosure {
2929 private:
2930   G1CollectedHeap* _g1h;
2931   size_t _live_bytes;
2932   HeapRegion *_hr;
2933   VerifyOption _vo;
2934 public:
2935   // _vo == UsePrevMarking -> use "prev" marking information,
2936   // _vo == UseNextMarking -> use "next" marking information,
2937   // _vo == UseMarkWord    -> use mark word from object header.
2938   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2939     : _live_bytes(0), _hr(hr), _vo(vo) {
2940     _g1h = G1CollectedHeap::heap();
2941   }
2942   void do_object(oop o) {
2943     VerifyLivenessOopClosure isLive(_g1h, _vo);
2944     assert(o != NULL, "Huh?");
2945     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2946       // If the object is alive according to the mark word,
2947       // then verify that the marking information agrees.
2948       // Note we can't verify the contra-positive of the
2949       // above: if the object is dead (according to the mark
2950       // word), it may not be marked, or may have been marked
2951       // but has since became dead, or may have been allocated
2952       // since the last marking.
2953       if (_vo == VerifyOption_G1UseMarkWord) {
2954         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2955       }
2956 
2957       o->oop_iterate_no_header(&isLive);
2958       if (!_hr->obj_allocated_since_prev_marking(o)) {
2959         size_t obj_size = o->size();    // Make sure we don't overflow
2960         _live_bytes += (obj_size * HeapWordSize);
2961       }
2962     }
2963   }
2964   size_t live_bytes() { return _live_bytes; }
2965 };
2966 
2967 class PrintObjsInRegionClosure : public ObjectClosure {
2968   HeapRegion *_hr;
2969   G1CollectedHeap *_g1;
2970 public:
2971   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2972     _g1 = G1CollectedHeap::heap();
2973   };
2974 
2975   void do_object(oop o) {
2976     if (o != NULL) {
2977       HeapWord *start = (HeapWord *) o;
2978       size_t word_sz = o->size();
2979       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2980                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2981                           (void*) o, word_sz,
2982                           _g1->isMarkedPrev(o),
2983                           _g1->isMarkedNext(o),
2984                           _hr->obj_allocated_since_prev_marking(o));
2985       HeapWord *end = start + word_sz;
2986       HeapWord *cur;
2987       int *val;
2988       for (cur = start; cur < end; cur++) {
2989         val = (int *) cur;
2990         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2991       }
2992     }
2993   }
2994 };
2995 
2996 class VerifyRegionClosure: public HeapRegionClosure {
2997 private:
2998   bool             _par;
2999   VerifyOption     _vo;
3000   bool             _failures;
3001 public:
3002   // _vo == UsePrevMarking -> use "prev" marking information,
3003   // _vo == UseNextMarking -> use "next" marking information,
3004   // _vo == UseMarkWord    -> use mark word from object header.
3005   VerifyRegionClosure(bool par, VerifyOption vo)
3006     : _par(par),
3007       _vo(vo),
3008       _failures(false) {}
3009 
3010   bool failures() {
3011     return _failures;
3012   }
3013 
3014   bool doHeapRegion(HeapRegion* r) {
3015     if (!r->is_continues_humongous()) {
3016       bool failures = false;
3017       r->verify(_vo, &failures);
3018       if (failures) {
3019         _failures = true;
3020       } else {
3021         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3022         r->object_iterate(&not_dead_yet_cl);
3023         if (_vo != VerifyOption_G1UseNextMarking) {
3024           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3025             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3026                                    "max_live_bytes "SIZE_FORMAT" "
3027                                    "< calculated "SIZE_FORMAT,
3028                                    r->bottom(), r->end(),
3029                                    r->max_live_bytes(),
3030                                  not_dead_yet_cl.live_bytes());
3031             _failures = true;
3032           }
3033         } else {
3034           // When vo == UseNextMarking we cannot currently do a sanity
3035           // check on the live bytes as the calculation has not been
3036           // finalized yet.
3037         }
3038       }
3039     }
3040     return false; // stop the region iteration if we hit a failure
3041   }
3042 };
3043 
3044 // This is the task used for parallel verification of the heap regions
3045 
3046 class G1ParVerifyTask: public AbstractGangTask {
3047 private:
3048   G1CollectedHeap*  _g1h;
3049   VerifyOption      _vo;
3050   bool              _failures;
3051   HeapRegionClaimer _hrclaimer;
3052 
3053 public:
3054   // _vo == UsePrevMarking -> use "prev" marking information,
3055   // _vo == UseNextMarking -> use "next" marking information,
3056   // _vo == UseMarkWord    -> use mark word from object header.
3057   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3058       AbstractGangTask("Parallel verify task"),
3059       _g1h(g1h),
3060       _vo(vo),
3061       _failures(false),
3062       _hrclaimer(g1h->workers()->active_workers()) {}
3063 
3064   bool failures() {
3065     return _failures;
3066   }
3067 
3068   void work(uint worker_id) {
3069     HandleMark hm;
3070     VerifyRegionClosure blk(true, _vo);
3071     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3072     if (blk.failures()) {
3073       _failures = true;
3074     }
3075   }
3076 };
3077 
3078 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3079   if (SafepointSynchronize::is_at_safepoint()) {
3080     assert(Thread::current()->is_VM_thread(),
3081            "Expected to be executed serially by the VM thread at this point");
3082 
3083     if (!silent) { gclog_or_tty->print("Roots "); }
3084     VerifyRootsClosure rootsCl(vo);
3085     VerifyKlassClosure klassCl(this, &rootsCl);
3086     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3087 
3088     // We apply the relevant closures to all the oops in the
3089     // system dictionary, class loader data graph, the string table
3090     // and the nmethods in the code cache.
3091     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3092     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3093 
3094     {
3095       G1RootProcessor root_processor(this);
3096       root_processor.process_all_roots(&rootsCl,
3097                                        &cldCl,
3098                                        &blobsCl);
3099     }
3100 
3101     bool failures = rootsCl.failures() || codeRootsCl.failures();
3102 
3103     if (vo != VerifyOption_G1UseMarkWord) {
3104       // If we're verifying during a full GC then the region sets
3105       // will have been torn down at the start of the GC. Therefore
3106       // verifying the region sets will fail. So we only verify
3107       // the region sets when not in a full GC.
3108       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3109       verify_region_sets();
3110     }
3111 
3112     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3113     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3114 
3115       G1ParVerifyTask task(this, vo);
3116       assert(UseDynamicNumberOfGCThreads ||
3117         workers()->active_workers() == workers()->total_workers(),
3118         "If not dynamic should be using all the workers");
3119       int n_workers = workers()->active_workers();
3120       set_par_threads(n_workers);
3121       workers()->run_task(&task);
3122       set_par_threads(0);
3123       if (task.failures()) {
3124         failures = true;
3125       }
3126 
3127     } else {
3128       VerifyRegionClosure blk(false, vo);
3129       heap_region_iterate(&blk);
3130       if (blk.failures()) {
3131         failures = true;
3132       }
3133     }
3134 
3135     if (G1StringDedup::is_enabled()) {
3136       if (!silent) gclog_or_tty->print("StrDedup ");
3137       G1StringDedup::verify();
3138     }
3139 
3140     if (failures) {
3141       gclog_or_tty->print_cr("Heap:");
3142       // It helps to have the per-region information in the output to
3143       // help us track down what went wrong. This is why we call
3144       // print_extended_on() instead of print_on().
3145       print_extended_on(gclog_or_tty);
3146       gclog_or_tty->cr();
3147 #ifndef PRODUCT
3148       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3149         concurrent_mark()->print_reachable("at-verification-failure",
3150                                            vo, false /* all */);
3151       }
3152 #endif
3153       gclog_or_tty->flush();
3154     }
3155     guarantee(!failures, "there should not have been any failures");
3156   } else {
3157     if (!silent) {
3158       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3159       if (G1StringDedup::is_enabled()) {
3160         gclog_or_tty->print(", StrDedup");
3161       }
3162       gclog_or_tty->print(") ");
3163     }
3164   }
3165 }
3166 
3167 void G1CollectedHeap::verify(bool silent) {
3168   verify(silent, VerifyOption_G1UsePrevMarking);
3169 }
3170 
3171 double G1CollectedHeap::verify(bool guard, const char* msg) {
3172   double verify_time_ms = 0.0;
3173 
3174   if (guard && total_collections() >= VerifyGCStartAt) {
3175     double verify_start = os::elapsedTime();
3176     HandleMark hm;  // Discard invalid handles created during verification
3177     prepare_for_verify();
3178     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3179     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3180   }
3181 
3182   return verify_time_ms;
3183 }
3184 
3185 void G1CollectedHeap::verify_before_gc() {
3186   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3187   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3188 }
3189 
3190 void G1CollectedHeap::verify_after_gc() {
3191   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3192   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3193 }
3194 
3195 class PrintRegionClosure: public HeapRegionClosure {
3196   outputStream* _st;
3197 public:
3198   PrintRegionClosure(outputStream* st) : _st(st) {}
3199   bool doHeapRegion(HeapRegion* r) {
3200     r->print_on(_st);
3201     return false;
3202   }
3203 };
3204 
3205 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3206                                        const HeapRegion* hr,
3207                                        const VerifyOption vo) const {
3208   switch (vo) {
3209   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3210   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3211   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3212   default:                            ShouldNotReachHere();
3213   }
3214   return false; // keep some compilers happy
3215 }
3216 
3217 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3218                                        const VerifyOption vo) const {
3219   switch (vo) {
3220   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3221   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3222   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3223   default:                            ShouldNotReachHere();
3224   }
3225   return false; // keep some compilers happy
3226 }
3227 
3228 void G1CollectedHeap::print_on(outputStream* st) const {
3229   st->print(" %-20s", "garbage-first heap");
3230   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3231             capacity()/K, used_unlocked()/K);
3232   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3233             _hrm.reserved().start(),
3234             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3235             _hrm.reserved().end());
3236   st->cr();
3237   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3238   uint young_regions = _young_list->length();
3239   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3240             (size_t) young_regions * HeapRegion::GrainBytes / K);
3241   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3242   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3243             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3244   st->cr();
3245   MetaspaceAux::print_on(st);
3246 }
3247 
3248 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3249   print_on(st);
3250 
3251   // Print the per-region information.
3252   st->cr();
3253   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3254                "HS=humongous(starts), HC=humongous(continues), "
3255                "CS=collection set, F=free, TS=gc time stamp, "
3256                "PTAMS=previous top-at-mark-start, "
3257                "NTAMS=next top-at-mark-start)");
3258   PrintRegionClosure blk(st);
3259   heap_region_iterate(&blk);
3260 }
3261 
3262 void G1CollectedHeap::print_on_error(outputStream* st) const {
3263   this->CollectedHeap::print_on_error(st);
3264 
3265   if (_cm != NULL) {
3266     st->cr();
3267     _cm->print_on_error(st);
3268   }
3269 }
3270 
3271 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3272   workers()->print_worker_threads_on(st);
3273   _cmThread->print_on(st);
3274   st->cr();
3275   _cm->print_worker_threads_on(st);
3276   _cg1r->print_worker_threads_on(st);
3277   if (G1StringDedup::is_enabled()) {
3278     G1StringDedup::print_worker_threads_on(st);
3279   }
3280 }
3281 
3282 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3283   workers()->threads_do(tc);
3284   tc->do_thread(_cmThread);
3285   _cg1r->threads_do(tc);
3286   if (G1StringDedup::is_enabled()) {
3287     G1StringDedup::threads_do(tc);
3288   }
3289 }
3290 
3291 void G1CollectedHeap::print_tracing_info() const {
3292   // We'll overload this to mean "trace GC pause statistics."
3293   if (TraceYoungGenTime || TraceOldGenTime) {
3294     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3295     // to that.
3296     g1_policy()->print_tracing_info();
3297   }
3298   if (G1SummarizeRSetStats) {
3299     g1_rem_set()->print_summary_info();
3300   }
3301   if (G1SummarizeConcMark) {
3302     concurrent_mark()->print_summary_info();
3303   }
3304   g1_policy()->print_yg_surv_rate_info();
3305 }
3306 
3307 #ifndef PRODUCT
3308 // Helpful for debugging RSet issues.
3309 
3310 class PrintRSetsClosure : public HeapRegionClosure {
3311 private:
3312   const char* _msg;
3313   size_t _occupied_sum;
3314 
3315 public:
3316   bool doHeapRegion(HeapRegion* r) {
3317     HeapRegionRemSet* hrrs = r->rem_set();
3318     size_t occupied = hrrs->occupied();
3319     _occupied_sum += occupied;
3320 
3321     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3322                            HR_FORMAT_PARAMS(r));
3323     if (occupied == 0) {
3324       gclog_or_tty->print_cr("  RSet is empty");
3325     } else {
3326       hrrs->print();
3327     }
3328     gclog_or_tty->print_cr("----------");
3329     return false;
3330   }
3331 
3332   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3333     gclog_or_tty->cr();
3334     gclog_or_tty->print_cr("========================================");
3335     gclog_or_tty->print_cr("%s", msg);
3336     gclog_or_tty->cr();
3337   }
3338 
3339   ~PrintRSetsClosure() {
3340     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3341     gclog_or_tty->print_cr("========================================");
3342     gclog_or_tty->cr();
3343   }
3344 };
3345 
3346 void G1CollectedHeap::print_cset_rsets() {
3347   PrintRSetsClosure cl("Printing CSet RSets");
3348   collection_set_iterate(&cl);
3349 }
3350 
3351 void G1CollectedHeap::print_all_rsets() {
3352   PrintRSetsClosure cl("Printing All RSets");;
3353   heap_region_iterate(&cl);
3354 }
3355 #endif // PRODUCT
3356 
3357 G1CollectedHeap* G1CollectedHeap::heap() {
3358   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3359          "not a garbage-first heap");
3360   return _g1h;
3361 }
3362 
3363 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3364   // always_do_update_barrier = false;
3365   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3366   // Fill TLAB's and such
3367   accumulate_statistics_all_tlabs();
3368   ensure_parsability(true);
3369 
3370   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3371       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3372     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3373   }
3374 }
3375 
3376 void G1CollectedHeap::gc_epilogue(bool full) {
3377 
3378   if (G1SummarizeRSetStats &&
3379       (G1SummarizeRSetStatsPeriod > 0) &&
3380       // we are at the end of the GC. Total collections has already been increased.
3381       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3382     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3383   }
3384 
3385   // FIXME: what is this about?
3386   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3387   // is set.
3388   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3389                         "derived pointer present"));
3390   // always_do_update_barrier = true;
3391 
3392   resize_all_tlabs();
3393   allocation_context_stats().update(full);
3394 
3395   // We have just completed a GC. Update the soft reference
3396   // policy with the new heap occupancy
3397   Universe::update_heap_info_at_gc();
3398 }
3399 
3400 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3401                                                uint gc_count_before,
3402                                                bool* succeeded,
3403                                                GCCause::Cause gc_cause) {
3404   assert_heap_not_locked_and_not_at_safepoint();
3405   g1_policy()->record_stop_world_start();
3406   VM_G1IncCollectionPause op(gc_count_before,
3407                              word_size,
3408                              false, /* should_initiate_conc_mark */
3409                              g1_policy()->max_pause_time_ms(),
3410                              gc_cause);
3411 
3412   op.set_allocation_context(AllocationContext::current());
3413   VMThread::execute(&op);
3414 
3415   HeapWord* result = op.result();
3416   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3417   assert(result == NULL || ret_succeeded,
3418          "the result should be NULL if the VM did not succeed");
3419   *succeeded = ret_succeeded;
3420 
3421   assert_heap_not_locked();
3422   return result;
3423 }
3424 
3425 void
3426 G1CollectedHeap::doConcurrentMark() {
3427   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3428   if (!_cmThread->in_progress()) {
3429     _cmThread->set_started();
3430     CGC_lock->notify();
3431   }
3432 }
3433 
3434 size_t G1CollectedHeap::pending_card_num() {
3435   size_t extra_cards = 0;
3436   JavaThread *curr = Threads::first();
3437   while (curr != NULL) {
3438     DirtyCardQueue& dcq = curr->dirty_card_queue();
3439     extra_cards += dcq.size();
3440     curr = curr->next();
3441   }
3442   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3443   size_t buffer_size = dcqs.buffer_size();
3444   size_t buffer_num = dcqs.completed_buffers_num();
3445 
3446   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3447   // in bytes - not the number of 'entries'. We need to convert
3448   // into a number of cards.
3449   return (buffer_size * buffer_num + extra_cards) / oopSize;
3450 }
3451 
3452 size_t G1CollectedHeap::cards_scanned() {
3453   return g1_rem_set()->cardsScanned();
3454 }
3455 
3456 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3457   HeapRegion* region = region_at(index);
3458   assert(region->is_starts_humongous(), "Must start a humongous object");
3459   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3460 }
3461 
3462 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3463  private:
3464   size_t _total_humongous;
3465   size_t _candidate_humongous;
3466 
3467   DirtyCardQueue _dcq;
3468 
3469   bool humongous_region_is_candidate(uint index) {
3470     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3471     assert(region->is_starts_humongous(), "Must start a humongous object");
3472     HeapRegionRemSet* const rset = region->rem_set();
3473     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3474     return !oop(region->bottom())->is_objArray() &&
3475            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3476             (!allow_stale_refs && rset->is_empty()));
3477   }
3478 
3479  public:
3480   RegisterHumongousWithInCSetFastTestClosure()
3481   : _total_humongous(0),
3482     _candidate_humongous(0),
3483     _dcq(&JavaThread::dirty_card_queue_set()) {
3484   }
3485 
3486   virtual bool doHeapRegion(HeapRegion* r) {
3487     if (!r->is_starts_humongous()) {
3488       return false;
3489     }
3490     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3491 
3492     uint region_idx = r->hrm_index();
3493     bool is_candidate = humongous_region_is_candidate(region_idx);
3494     // Is_candidate already filters out humongous object with large remembered sets.
3495     // If we have a humongous object with a few remembered sets, we simply flush these
3496     // remembered set entries into the DCQS. That will result in automatic
3497     // re-evaluation of their remembered set entries during the following evacuation
3498     // phase.
3499     if (is_candidate) {
3500       if (!r->rem_set()->is_empty()) {
3501         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3502                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3503         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3504         HeapRegionRemSetIterator hrrs(r->rem_set());
3505         size_t card_index;
3506         while (hrrs.has_next(card_index)) {
3507           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3508           // The remembered set might contain references to already freed
3509           // regions. Filter out such entries to avoid failing card table
3510           // verification.
3511           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3512             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3513               *card_ptr = CardTableModRefBS::dirty_card_val();
3514               _dcq.enqueue(card_ptr);
3515             }
3516           }
3517         }
3518         r->rem_set()->clear_locked();
3519       }
3520       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3521       g1h->register_humongous_region_with_cset(region_idx);
3522       _candidate_humongous++;
3523     }
3524     _total_humongous++;
3525 
3526     return false;
3527   }
3528 
3529   size_t total_humongous() const { return _total_humongous; }
3530   size_t candidate_humongous() const { return _candidate_humongous; }
3531 
3532   void flush_rem_set_entries() { _dcq.flush(); }
3533 };
3534 
3535 void G1CollectedHeap::register_humongous_regions_with_cset() {
3536   if (!G1EagerReclaimHumongousObjects) {
3537     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3538     return;
3539   }
3540   double time = os::elapsed_counter();
3541 
3542   RegisterHumongousWithInCSetFastTestClosure cl;
3543   heap_region_iterate(&cl);
3544 
3545   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3546   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3547                                                                   cl.total_humongous(),
3548                                                                   cl.candidate_humongous());
3549   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3550 
3551   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3552     clear_humongous_is_live_table();
3553   }
3554 
3555   // Finally flush all remembered set entries to re-check into the global DCQS.
3556   cl.flush_rem_set_entries();
3557 }
3558 
3559 void
3560 G1CollectedHeap::setup_surviving_young_words() {
3561   assert(_surviving_young_words == NULL, "pre-condition");
3562   uint array_length = g1_policy()->young_cset_region_length();
3563   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3564   if (_surviving_young_words == NULL) {
3565     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3566                           "Not enough space for young surv words summary.");
3567   }
3568   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3569 #ifdef ASSERT
3570   for (uint i = 0;  i < array_length; ++i) {
3571     assert( _surviving_young_words[i] == 0, "memset above" );
3572   }
3573 #endif // !ASSERT
3574 }
3575 
3576 void
3577 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3578   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3579   uint array_length = g1_policy()->young_cset_region_length();
3580   for (uint i = 0; i < array_length; ++i) {
3581     _surviving_young_words[i] += surv_young_words[i];
3582   }
3583 }
3584 
3585 void
3586 G1CollectedHeap::cleanup_surviving_young_words() {
3587   guarantee( _surviving_young_words != NULL, "pre-condition" );
3588   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3589   _surviving_young_words = NULL;
3590 }
3591 
3592 #ifdef ASSERT
3593 class VerifyCSetClosure: public HeapRegionClosure {
3594 public:
3595   bool doHeapRegion(HeapRegion* hr) {
3596     // Here we check that the CSet region's RSet is ready for parallel
3597     // iteration. The fields that we'll verify are only manipulated
3598     // when the region is part of a CSet and is collected. Afterwards,
3599     // we reset these fields when we clear the region's RSet (when the
3600     // region is freed) so they are ready when the region is
3601     // re-allocated. The only exception to this is if there's an
3602     // evacuation failure and instead of freeing the region we leave
3603     // it in the heap. In that case, we reset these fields during
3604     // evacuation failure handling.
3605     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3606 
3607     // Here's a good place to add any other checks we'd like to
3608     // perform on CSet regions.
3609     return false;
3610   }
3611 };
3612 #endif // ASSERT
3613 
3614 #if TASKQUEUE_STATS
3615 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3616   st->print_raw_cr("GC Task Stats");
3617   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3618   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3619 }
3620 
3621 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3622   print_taskqueue_stats_hdr(st);
3623 
3624   TaskQueueStats totals;
3625   const int n = workers()->total_workers();
3626   for (int i = 0; i < n; ++i) {
3627     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3628     totals += task_queue(i)->stats;
3629   }
3630   st->print_raw("tot "); totals.print(st); st->cr();
3631 
3632   DEBUG_ONLY(totals.verify());
3633 }
3634 
3635 void G1CollectedHeap::reset_taskqueue_stats() {
3636   const int n = workers()->total_workers();
3637   for (int i = 0; i < n; ++i) {
3638     task_queue(i)->stats.reset();
3639   }
3640 }
3641 #endif // TASKQUEUE_STATS
3642 
3643 void G1CollectedHeap::log_gc_header() {
3644   if (!G1Log::fine()) {
3645     return;
3646   }
3647 
3648   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3649 
3650   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3651     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3652     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3653 
3654   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3655 }
3656 
3657 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3658   if (!G1Log::fine()) {
3659     return;
3660   }
3661 
3662   if (G1Log::finer()) {
3663     if (evacuation_failed()) {
3664       gclog_or_tty->print(" (to-space exhausted)");
3665     }
3666     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3667     g1_policy()->phase_times()->note_gc_end();
3668     g1_policy()->phase_times()->print(pause_time_sec);
3669     g1_policy()->print_detailed_heap_transition();
3670   } else {
3671     if (evacuation_failed()) {
3672       gclog_or_tty->print("--");
3673     }
3674     g1_policy()->print_heap_transition();
3675     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3676   }
3677   gclog_or_tty->flush();
3678 }
3679 
3680 bool
3681 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3682   assert_at_safepoint(true /* should_be_vm_thread */);
3683   guarantee(!is_gc_active(), "collection is not reentrant");
3684 
3685   if (GC_locker::check_active_before_gc()) {
3686     return false;
3687   }
3688 
3689   _gc_timer_stw->register_gc_start();
3690 
3691   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3692 
3693   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3694   ResourceMark rm;
3695 
3696   print_heap_before_gc();
3697   trace_heap_before_gc(_gc_tracer_stw);
3698 
3699   verify_region_sets_optional();
3700   verify_dirty_young_regions();
3701 
3702   // This call will decide whether this pause is an initial-mark
3703   // pause. If it is, during_initial_mark_pause() will return true
3704   // for the duration of this pause.
3705   g1_policy()->decide_on_conc_mark_initiation();
3706 
3707   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3708   assert(!g1_policy()->during_initial_mark_pause() ||
3709           g1_policy()->gcs_are_young(), "sanity");
3710 
3711   // We also do not allow mixed GCs during marking.
3712   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3713 
3714   // Record whether this pause is an initial mark. When the current
3715   // thread has completed its logging output and it's safe to signal
3716   // the CM thread, the flag's value in the policy has been reset.
3717   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3718 
3719   // Inner scope for scope based logging, timers, and stats collection
3720   {
3721     EvacuationInfo evacuation_info;
3722 
3723     if (g1_policy()->during_initial_mark_pause()) {
3724       // We are about to start a marking cycle, so we increment the
3725       // full collection counter.
3726       increment_old_marking_cycles_started();
3727       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3728     }
3729 
3730     _gc_tracer_stw->report_yc_type(yc_type());
3731 
3732     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3733 
3734     uint active_workers = workers()->active_workers();
3735     double pause_start_sec = os::elapsedTime();
3736     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3737     log_gc_header();
3738 
3739     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3740     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3741 
3742     // If the secondary_free_list is not empty, append it to the
3743     // free_list. No need to wait for the cleanup operation to finish;
3744     // the region allocation code will check the secondary_free_list
3745     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3746     // set, skip this step so that the region allocation code has to
3747     // get entries from the secondary_free_list.
3748     if (!G1StressConcRegionFreeing) {
3749       append_secondary_free_list_if_not_empty_with_lock();
3750     }
3751 
3752     assert(check_young_list_well_formed(), "young list should be well formed");
3753 
3754     // Don't dynamically change the number of GC threads this early.  A value of
3755     // 0 is used to indicate serial work.  When parallel work is done,
3756     // it will be set.
3757 
3758     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3759       IsGCActiveMark x;
3760 
3761       gc_prologue(false);
3762       increment_total_collections(false /* full gc */);
3763       increment_gc_time_stamp();
3764 
3765       verify_before_gc();
3766 
3767       check_bitmaps("GC Start");
3768 
3769       COMPILER2_PRESENT(DerivedPointerTable::clear());
3770 
3771       // Please see comment in g1CollectedHeap.hpp and
3772       // G1CollectedHeap::ref_processing_init() to see how
3773       // reference processing currently works in G1.
3774 
3775       // Enable discovery in the STW reference processor
3776       ref_processor_stw()->enable_discovery();
3777 
3778       {
3779         // We want to temporarily turn off discovery by the
3780         // CM ref processor, if necessary, and turn it back on
3781         // on again later if we do. Using a scoped
3782         // NoRefDiscovery object will do this.
3783         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3784 
3785         // Forget the current alloc region (we might even choose it to be part
3786         // of the collection set!).
3787         _allocator->release_mutator_alloc_region();
3788 
3789         // We should call this after we retire the mutator alloc
3790         // region(s) so that all the ALLOC / RETIRE events are generated
3791         // before the start GC event.
3792         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3793 
3794         // This timing is only used by the ergonomics to handle our pause target.
3795         // It is unclear why this should not include the full pause. We will
3796         // investigate this in CR 7178365.
3797         //
3798         // Preserving the old comment here if that helps the investigation:
3799         //
3800         // The elapsed time induced by the start time below deliberately elides
3801         // the possible verification above.
3802         double sample_start_time_sec = os::elapsedTime();
3803 
3804 #if YOUNG_LIST_VERBOSE
3805         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3806         _young_list->print();
3807         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3808 #endif // YOUNG_LIST_VERBOSE
3809 
3810         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3811 
3812         double scan_wait_start = os::elapsedTime();
3813         // We have to wait until the CM threads finish scanning the
3814         // root regions as it's the only way to ensure that all the
3815         // objects on them have been correctly scanned before we start
3816         // moving them during the GC.
3817         bool waited = _cm->root_regions()->wait_until_scan_finished();
3818         double wait_time_ms = 0.0;
3819         if (waited) {
3820           double scan_wait_end = os::elapsedTime();
3821           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3822         }
3823         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3824 
3825 #if YOUNG_LIST_VERBOSE
3826         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3827         _young_list->print();
3828 #endif // YOUNG_LIST_VERBOSE
3829 
3830         if (g1_policy()->during_initial_mark_pause()) {
3831           concurrent_mark()->checkpointRootsInitialPre();
3832         }
3833 
3834 #if YOUNG_LIST_VERBOSE
3835         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3836         _young_list->print();
3837         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3838 #endif // YOUNG_LIST_VERBOSE
3839 
3840         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3841 
3842         register_humongous_regions_with_cset();
3843 
3844         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3845 
3846         _cm->note_start_of_gc();
3847         // We should not verify the per-thread SATB buffers given that
3848         // we have not filtered them yet (we'll do so during the
3849         // GC). We also call this after finalize_cset() to
3850         // ensure that the CSet has been finalized.
3851         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3852                                  true  /* verify_enqueued_buffers */,
3853                                  false /* verify_thread_buffers */,
3854                                  true  /* verify_fingers */);
3855 
3856         if (_hr_printer.is_active()) {
3857           HeapRegion* hr = g1_policy()->collection_set();
3858           while (hr != NULL) {
3859             _hr_printer.cset(hr);
3860             hr = hr->next_in_collection_set();
3861           }
3862         }
3863 
3864 #ifdef ASSERT
3865         VerifyCSetClosure cl;
3866         collection_set_iterate(&cl);
3867 #endif // ASSERT
3868 
3869         setup_surviving_young_words();
3870 
3871         // Initialize the GC alloc regions.
3872         _allocator->init_gc_alloc_regions(evacuation_info);
3873 
3874         // Actually do the work...
3875         evacuate_collection_set(evacuation_info);
3876 
3877         // We do this to mainly verify the per-thread SATB buffers
3878         // (which have been filtered by now) since we didn't verify
3879         // them earlier. No point in re-checking the stacks / enqueued
3880         // buffers given that the CSet has not changed since last time
3881         // we checked.
3882         _cm->verify_no_cset_oops(false /* verify_stacks */,
3883                                  false /* verify_enqueued_buffers */,
3884                                  true  /* verify_thread_buffers */,
3885                                  true  /* verify_fingers */);
3886 
3887         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3888 
3889         eagerly_reclaim_humongous_regions();
3890 
3891         g1_policy()->clear_collection_set();
3892 
3893         cleanup_surviving_young_words();
3894 
3895         // Start a new incremental collection set for the next pause.
3896         g1_policy()->start_incremental_cset_building();
3897 
3898         clear_cset_fast_test();
3899 
3900         _young_list->reset_sampled_info();
3901 
3902         // Don't check the whole heap at this point as the
3903         // GC alloc regions from this pause have been tagged
3904         // as survivors and moved on to the survivor list.
3905         // Survivor regions will fail the !is_young() check.
3906         assert(check_young_list_empty(false /* check_heap */),
3907           "young list should be empty");
3908 
3909 #if YOUNG_LIST_VERBOSE
3910         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3911         _young_list->print();
3912 #endif // YOUNG_LIST_VERBOSE
3913 
3914         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3915                                              _young_list->first_survivor_region(),
3916                                              _young_list->last_survivor_region());
3917 
3918         _young_list->reset_auxilary_lists();
3919 
3920         if (evacuation_failed()) {
3921           _allocator->set_used(recalculate_used());
3922           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3923           for (uint i = 0; i < n_queues; i++) {
3924             if (_evacuation_failed_info_array[i].has_failed()) {
3925               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3926             }
3927           }
3928         } else {
3929           // The "used" of the the collection set have already been subtracted
3930           // when they were freed.  Add in the bytes evacuated.
3931           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3932         }
3933 
3934         if (g1_policy()->during_initial_mark_pause()) {
3935           // We have to do this before we notify the CM threads that
3936           // they can start working to make sure that all the
3937           // appropriate initialization is done on the CM object.
3938           concurrent_mark()->checkpointRootsInitialPost();
3939           set_marking_started();
3940           // Note that we don't actually trigger the CM thread at
3941           // this point. We do that later when we're sure that
3942           // the current thread has completed its logging output.
3943         }
3944 
3945         allocate_dummy_regions();
3946 
3947 #if YOUNG_LIST_VERBOSE
3948         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3949         _young_list->print();
3950         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3951 #endif // YOUNG_LIST_VERBOSE
3952 
3953         _allocator->init_mutator_alloc_region();
3954 
3955         {
3956           size_t expand_bytes = g1_policy()->expansion_amount();
3957           if (expand_bytes > 0) {
3958             size_t bytes_before = capacity();
3959             // No need for an ergo verbose message here,
3960             // expansion_amount() does this when it returns a value > 0.
3961             if (!expand(expand_bytes)) {
3962               // We failed to expand the heap. Cannot do anything about it.
3963             }
3964           }
3965         }
3966 
3967         // We redo the verification but now wrt to the new CSet which
3968         // has just got initialized after the previous CSet was freed.
3969         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3970                                  true  /* verify_enqueued_buffers */,
3971                                  true  /* verify_thread_buffers */,
3972                                  true  /* verify_fingers */);
3973         _cm->note_end_of_gc();
3974 
3975         // This timing is only used by the ergonomics to handle our pause target.
3976         // It is unclear why this should not include the full pause. We will
3977         // investigate this in CR 7178365.
3978         double sample_end_time_sec = os::elapsedTime();
3979         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3980         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3981 
3982         MemoryService::track_memory_usage();
3983 
3984         // In prepare_for_verify() below we'll need to scan the deferred
3985         // update buffers to bring the RSets up-to-date if
3986         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3987         // the update buffers we'll probably need to scan cards on the
3988         // regions we just allocated to (i.e., the GC alloc
3989         // regions). However, during the last GC we called
3990         // set_saved_mark() on all the GC alloc regions, so card
3991         // scanning might skip the [saved_mark_word()...top()] area of
3992         // those regions (i.e., the area we allocated objects into
3993         // during the last GC). But it shouldn't. Given that
3994         // saved_mark_word() is conditional on whether the GC time stamp
3995         // on the region is current or not, by incrementing the GC time
3996         // stamp here we invalidate all the GC time stamps on all the
3997         // regions and saved_mark_word() will simply return top() for
3998         // all the regions. This is a nicer way of ensuring this rather
3999         // than iterating over the regions and fixing them. In fact, the
4000         // GC time stamp increment here also ensures that
4001         // saved_mark_word() will return top() between pauses, i.e.,
4002         // during concurrent refinement. So we don't need the
4003         // is_gc_active() check to decided which top to use when
4004         // scanning cards (see CR 7039627).
4005         increment_gc_time_stamp();
4006 
4007         verify_after_gc();
4008         check_bitmaps("GC End");
4009 
4010         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4011         ref_processor_stw()->verify_no_references_recorded();
4012 
4013         // CM reference discovery will be re-enabled if necessary.
4014       }
4015 
4016       // We should do this after we potentially expand the heap so
4017       // that all the COMMIT events are generated before the end GC
4018       // event, and after we retire the GC alloc regions so that all
4019       // RETIRE events are generated before the end GC event.
4020       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4021 
4022 #ifdef TRACESPINNING
4023       ParallelTaskTerminator::print_termination_counts();
4024 #endif
4025 
4026       gc_epilogue(false);
4027     }
4028 
4029     // Print the remainder of the GC log output.
4030     log_gc_footer(os::elapsedTime() - pause_start_sec);
4031 
4032     // It is not yet to safe to tell the concurrent mark to
4033     // start as we have some optional output below. We don't want the
4034     // output from the concurrent mark thread interfering with this
4035     // logging output either.
4036 
4037     _hrm.verify_optional();
4038     verify_region_sets_optional();
4039 
4040     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4041     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4042 
4043     print_heap_after_gc();
4044     trace_heap_after_gc(_gc_tracer_stw);
4045 
4046     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4047     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4048     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4049     // before any GC notifications are raised.
4050     g1mm()->update_sizes();
4051 
4052     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4053     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4054     _gc_timer_stw->register_gc_end();
4055     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4056   }
4057   // It should now be safe to tell the concurrent mark thread to start
4058   // without its logging output interfering with the logging output
4059   // that came from the pause.
4060 
4061   if (should_start_conc_mark) {
4062     // CAUTION: after the doConcurrentMark() call below,
4063     // the concurrent marking thread(s) could be running
4064     // concurrently with us. Make sure that anything after
4065     // this point does not assume that we are the only GC thread
4066     // running. Note: of course, the actual marking work will
4067     // not start until the safepoint itself is released in
4068     // SuspendibleThreadSet::desynchronize().
4069     doConcurrentMark();
4070   }
4071 
4072   return true;
4073 }
4074 
4075 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4076   _drain_in_progress = false;
4077   set_evac_failure_closure(cl);
4078   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4079 }
4080 
4081 void G1CollectedHeap::finalize_for_evac_failure() {
4082   assert(_evac_failure_scan_stack != NULL &&
4083          _evac_failure_scan_stack->length() == 0,
4084          "Postcondition");
4085   assert(!_drain_in_progress, "Postcondition");
4086   delete _evac_failure_scan_stack;
4087   _evac_failure_scan_stack = NULL;
4088 }
4089 
4090 void G1CollectedHeap::remove_self_forwarding_pointers() {
4091   double remove_self_forwards_start = os::elapsedTime();
4092 
4093   set_par_threads();
4094   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4095   workers()->run_task(&rsfp_task);
4096   set_par_threads(0);
4097 
4098   // Now restore saved marks, if any.
4099   assert(_objs_with_preserved_marks.size() ==
4100             _preserved_marks_of_objs.size(), "Both or none.");
4101   while (!_objs_with_preserved_marks.is_empty()) {
4102     oop obj = _objs_with_preserved_marks.pop();
4103     markOop m = _preserved_marks_of_objs.pop();
4104     obj->set_mark(m);
4105   }
4106   _objs_with_preserved_marks.clear(true);
4107   _preserved_marks_of_objs.clear(true);
4108 
4109   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4110 }
4111 
4112 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4113   _evac_failure_scan_stack->push(obj);
4114 }
4115 
4116 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4117   assert(_evac_failure_scan_stack != NULL, "precondition");
4118 
4119   while (_evac_failure_scan_stack->length() > 0) {
4120      oop obj = _evac_failure_scan_stack->pop();
4121      _evac_failure_closure->set_region(heap_region_containing(obj));
4122      obj->oop_iterate_backwards(_evac_failure_closure);
4123   }
4124 }
4125 
4126 oop
4127 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4128                                                oop old) {
4129   assert(obj_in_cs(old),
4130          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4131                  (HeapWord*) old));
4132   markOop m = old->mark();
4133   oop forward_ptr = old->forward_to_atomic(old);
4134   if (forward_ptr == NULL) {
4135     // Forward-to-self succeeded.
4136     assert(_par_scan_state != NULL, "par scan state");
4137     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4138     uint queue_num = _par_scan_state->queue_num();
4139 
4140     _evacuation_failed = true;
4141     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4142     if (_evac_failure_closure != cl) {
4143       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4144       assert(!_drain_in_progress,
4145              "Should only be true while someone holds the lock.");
4146       // Set the global evac-failure closure to the current thread's.
4147       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4148       set_evac_failure_closure(cl);
4149       // Now do the common part.
4150       handle_evacuation_failure_common(old, m);
4151       // Reset to NULL.
4152       set_evac_failure_closure(NULL);
4153     } else {
4154       // The lock is already held, and this is recursive.
4155       assert(_drain_in_progress, "This should only be the recursive case.");
4156       handle_evacuation_failure_common(old, m);
4157     }
4158     return old;
4159   } else {
4160     // Forward-to-self failed. Either someone else managed to allocate
4161     // space for this object (old != forward_ptr) or they beat us in
4162     // self-forwarding it (old == forward_ptr).
4163     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4164            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4165                    "should not be in the CSet",
4166                    (HeapWord*) old, (HeapWord*) forward_ptr));
4167     return forward_ptr;
4168   }
4169 }
4170 
4171 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4172   preserve_mark_if_necessary(old, m);
4173 
4174   HeapRegion* r = heap_region_containing(old);
4175   if (!r->evacuation_failed()) {
4176     r->set_evacuation_failed(true);
4177     _hr_printer.evac_failure(r);
4178   }
4179 
4180   push_on_evac_failure_scan_stack(old);
4181 
4182   if (!_drain_in_progress) {
4183     // prevent recursion in copy_to_survivor_space()
4184     _drain_in_progress = true;
4185     drain_evac_failure_scan_stack();
4186     _drain_in_progress = false;
4187   }
4188 }
4189 
4190 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4191   assert(evacuation_failed(), "Oversaving!");
4192   // We want to call the "for_promotion_failure" version only in the
4193   // case of a promotion failure.
4194   if (m->must_be_preserved_for_promotion_failure(obj)) {
4195     _objs_with_preserved_marks.push(obj);
4196     _preserved_marks_of_objs.push(m);
4197   }
4198 }
4199 
4200 void G1ParCopyHelper::mark_object(oop obj) {
4201   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4202 
4203   // We know that the object is not moving so it's safe to read its size.
4204   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4205 }
4206 
4207 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4208   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4209   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4210   assert(from_obj != to_obj, "should not be self-forwarded");
4211 
4212   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4213   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4214 
4215   // The object might be in the process of being copied by another
4216   // worker so we cannot trust that its to-space image is
4217   // well-formed. So we have to read its size from its from-space
4218   // image which we know should not be changing.
4219   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4220 }
4221 
4222 template <class T>
4223 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4224   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4225     _scanned_klass->record_modified_oops();
4226   }
4227 }
4228 
4229 template <G1Barrier barrier, G1Mark do_mark_object>
4230 template <class T>
4231 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4232   T heap_oop = oopDesc::load_heap_oop(p);
4233 
4234   if (oopDesc::is_null(heap_oop)) {
4235     return;
4236   }
4237 
4238   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4239 
4240   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4241 
4242   const InCSetState state = _g1->in_cset_state(obj);
4243   if (state.is_in_cset()) {
4244     oop forwardee;
4245     markOop m = obj->mark();
4246     if (m->is_marked()) {
4247       forwardee = (oop) m->decode_pointer();
4248     } else {
4249       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4250     }
4251     assert(forwardee != NULL, "forwardee should not be NULL");
4252     oopDesc::encode_store_heap_oop(p, forwardee);
4253     if (do_mark_object != G1MarkNone && forwardee != obj) {
4254       // If the object is self-forwarded we don't need to explicitly
4255       // mark it, the evacuation failure protocol will do so.
4256       mark_forwarded_object(obj, forwardee);
4257     }
4258 
4259     if (barrier == G1BarrierKlass) {
4260       do_klass_barrier(p, forwardee);
4261     }
4262   } else {
4263     if (state.is_humongous()) {
4264       _g1->set_humongous_is_live(obj);
4265     }
4266     // The object is not in collection set. If we're a root scanning
4267     // closure during an initial mark pause then attempt to mark the object.
4268     if (do_mark_object == G1MarkFromRoot) {
4269       mark_object(obj);
4270     }
4271   }
4272 
4273   if (barrier == G1BarrierEvac) {
4274     _par_scan_state->update_rs(_from, p, _worker_id);
4275   }
4276 }
4277 
4278 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4279 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4280 
4281 class G1ParEvacuateFollowersClosure : public VoidClosure {
4282 protected:
4283   G1CollectedHeap*              _g1h;
4284   G1ParScanThreadState*         _par_scan_state;
4285   RefToScanQueueSet*            _queues;
4286   ParallelTaskTerminator*       _terminator;
4287 
4288   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4289   RefToScanQueueSet*      queues()         { return _queues; }
4290   ParallelTaskTerminator* terminator()     { return _terminator; }
4291 
4292 public:
4293   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4294                                 G1ParScanThreadState* par_scan_state,
4295                                 RefToScanQueueSet* queues,
4296                                 ParallelTaskTerminator* terminator)
4297     : _g1h(g1h), _par_scan_state(par_scan_state),
4298       _queues(queues), _terminator(terminator) {}
4299 
4300   void do_void();
4301 
4302 private:
4303   inline bool offer_termination();
4304 };
4305 
4306 bool G1ParEvacuateFollowersClosure::offer_termination() {
4307   G1ParScanThreadState* const pss = par_scan_state();
4308   pss->start_term_time();
4309   const bool res = terminator()->offer_termination();
4310   pss->end_term_time();
4311   return res;
4312 }
4313 
4314 void G1ParEvacuateFollowersClosure::do_void() {
4315   G1ParScanThreadState* const pss = par_scan_state();
4316   pss->trim_queue();
4317   do {
4318     pss->steal_and_trim_queue(queues());
4319   } while (!offer_termination());
4320 }
4321 
4322 class G1KlassScanClosure : public KlassClosure {
4323  G1ParCopyHelper* _closure;
4324  bool             _process_only_dirty;
4325  int              _count;
4326  public:
4327   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4328       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4329   void do_klass(Klass* klass) {
4330     // If the klass has not been dirtied we know that there's
4331     // no references into  the young gen and we can skip it.
4332    if (!_process_only_dirty || klass->has_modified_oops()) {
4333       // Clean the klass since we're going to scavenge all the metadata.
4334       klass->clear_modified_oops();
4335 
4336       // Tell the closure that this klass is the Klass to scavenge
4337       // and is the one to dirty if oops are left pointing into the young gen.
4338       _closure->set_scanned_klass(klass);
4339 
4340       klass->oops_do(_closure);
4341 
4342       _closure->set_scanned_klass(NULL);
4343     }
4344     _count++;
4345   }
4346 };
4347 
4348 class G1ParTask : public AbstractGangTask {
4349 protected:
4350   G1CollectedHeap*       _g1h;
4351   RefToScanQueueSet      *_queues;
4352   G1RootProcessor*       _root_processor;
4353   ParallelTaskTerminator _terminator;
4354   uint _n_workers;
4355 
4356   Mutex _stats_lock;
4357   Mutex* stats_lock() { return &_stats_lock; }
4358 
4359 public:
4360   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4361     : AbstractGangTask("G1 collection"),
4362       _g1h(g1h),
4363       _queues(task_queues),
4364       _root_processor(root_processor),
4365       _terminator(0, _queues),
4366       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4367   {}
4368 
4369   RefToScanQueueSet* queues() { return _queues; }
4370 
4371   RefToScanQueue *work_queue(int i) {
4372     return queues()->queue(i);
4373   }
4374 
4375   ParallelTaskTerminator* terminator() { return &_terminator; }
4376 
4377   virtual void set_for_termination(int active_workers) {
4378     _root_processor->set_num_workers(active_workers);
4379     terminator()->reset_for_reuse(active_workers);
4380     _n_workers = active_workers;
4381   }
4382 
4383   // Helps out with CLD processing.
4384   //
4385   // During InitialMark we need to:
4386   // 1) Scavenge all CLDs for the young GC.
4387   // 2) Mark all objects directly reachable from strong CLDs.
4388   template <G1Mark do_mark_object>
4389   class G1CLDClosure : public CLDClosure {
4390     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4391     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4392     G1KlassScanClosure                                _klass_in_cld_closure;
4393     bool                                              _claim;
4394 
4395    public:
4396     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4397                  bool only_young, bool claim)
4398         : _oop_closure(oop_closure),
4399           _oop_in_klass_closure(oop_closure->g1(),
4400                                 oop_closure->pss(),
4401                                 oop_closure->rp()),
4402           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4403           _claim(claim) {
4404 
4405     }
4406 
4407     void do_cld(ClassLoaderData* cld) {
4408       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4409     }
4410   };
4411 
4412   void work(uint worker_id) {
4413     if (worker_id >= _n_workers) return;  // no work needed this round
4414 
4415     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4416 
4417     {
4418       ResourceMark rm;
4419       HandleMark   hm;
4420 
4421       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4422 
4423       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4424       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4425 
4426       pss.set_evac_failure_closure(&evac_failure_cl);
4427 
4428       bool only_young = _g1h->g1_policy()->gcs_are_young();
4429 
4430       // Non-IM young GC.
4431       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4432       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4433                                                                                only_young, // Only process dirty klasses.
4434                                                                                false);     // No need to claim CLDs.
4435       // IM young GC.
4436       //    Strong roots closures.
4437       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4438       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4439                                                                                false, // Process all klasses.
4440                                                                                true); // Need to claim CLDs.
4441       //    Weak roots closures.
4442       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4443       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4444                                                                                     false, // Process all klasses.
4445                                                                                     true); // Need to claim CLDs.
4446 
4447       OopClosure* strong_root_cl;
4448       OopClosure* weak_root_cl;
4449       CLDClosure* strong_cld_cl;
4450       CLDClosure* weak_cld_cl;
4451 
4452       bool trace_metadata = false;
4453 
4454       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4455         // We also need to mark copied objects.
4456         strong_root_cl = &scan_mark_root_cl;
4457         strong_cld_cl  = &scan_mark_cld_cl;
4458         if (ClassUnloadingWithConcurrentMark) {
4459           weak_root_cl = &scan_mark_weak_root_cl;
4460           weak_cld_cl  = &scan_mark_weak_cld_cl;
4461           trace_metadata = true;
4462         } else {
4463           weak_root_cl = &scan_mark_root_cl;
4464           weak_cld_cl  = &scan_mark_cld_cl;
4465         }
4466       } else {
4467         strong_root_cl = &scan_only_root_cl;
4468         weak_root_cl   = &scan_only_root_cl;
4469         strong_cld_cl  = &scan_only_cld_cl;
4470         weak_cld_cl    = &scan_only_cld_cl;
4471       }
4472 
4473       pss.start_strong_roots();
4474 
4475       _root_processor->evacuate_roots(strong_root_cl,
4476                                       weak_root_cl,
4477                                       strong_cld_cl,
4478                                       weak_cld_cl,
4479                                       trace_metadata,
4480                                       worker_id);
4481 
4482       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4483       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4484                                             weak_root_cl,
4485                                             worker_id);
4486       pss.end_strong_roots();
4487 
4488       {
4489         double start = os::elapsedTime();
4490         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4491         evac.do_void();
4492         double elapsed_sec = os::elapsedTime() - start;
4493         double term_sec = pss.term_time();
4494         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4495         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4496         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4497       }
4498       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4499       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4500 
4501       if (PrintTerminationStats) {
4502         MutexLocker x(stats_lock());
4503         pss.print_termination_stats(worker_id);
4504       }
4505 
4506       assert(pss.queue_is_empty(), "should be empty");
4507 
4508       // Close the inner scope so that the ResourceMark and HandleMark
4509       // destructors are executed here and are included as part of the
4510       // "GC Worker Time".
4511     }
4512     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4513   }
4514 };
4515 
4516 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4517 private:
4518   BoolObjectClosure* _is_alive;
4519   int _initial_string_table_size;
4520   int _initial_symbol_table_size;
4521 
4522   bool  _process_strings;
4523   int _strings_processed;
4524   int _strings_removed;
4525 
4526   bool  _process_symbols;
4527   int _symbols_processed;
4528   int _symbols_removed;
4529 
4530 public:
4531   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4532     AbstractGangTask("String/Symbol Unlinking"),
4533     _is_alive(is_alive),
4534     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4535     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4536 
4537     _initial_string_table_size = StringTable::the_table()->table_size();
4538     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4539     if (process_strings) {
4540       StringTable::clear_parallel_claimed_index();
4541     }
4542     if (process_symbols) {
4543       SymbolTable::clear_parallel_claimed_index();
4544     }
4545   }
4546 
4547   ~G1StringSymbolTableUnlinkTask() {
4548     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4549               err_msg("claim value %d after unlink less than initial string table size %d",
4550                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4551     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4552               err_msg("claim value %d after unlink less than initial symbol table size %d",
4553                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4554 
4555     if (G1TraceStringSymbolTableScrubbing) {
4556       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4557                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4558                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4559                              strings_processed(), strings_removed(),
4560                              symbols_processed(), symbols_removed());
4561     }
4562   }
4563 
4564   void work(uint worker_id) {
4565     int strings_processed = 0;
4566     int strings_removed = 0;
4567     int symbols_processed = 0;
4568     int symbols_removed = 0;
4569     if (_process_strings) {
4570       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4571       Atomic::add(strings_processed, &_strings_processed);
4572       Atomic::add(strings_removed, &_strings_removed);
4573     }
4574     if (_process_symbols) {
4575       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4576       Atomic::add(symbols_processed, &_symbols_processed);
4577       Atomic::add(symbols_removed, &_symbols_removed);
4578     }
4579   }
4580 
4581   size_t strings_processed() const { return (size_t)_strings_processed; }
4582   size_t strings_removed()   const { return (size_t)_strings_removed; }
4583 
4584   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4585   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4586 };
4587 
4588 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4589 private:
4590   static Monitor* _lock;
4591 
4592   BoolObjectClosure* const _is_alive;
4593   const bool               _unloading_occurred;
4594   const uint               _num_workers;
4595 
4596   // Variables used to claim nmethods.
4597   nmethod* _first_nmethod;
4598   volatile nmethod* _claimed_nmethod;
4599 
4600   // The list of nmethods that need to be processed by the second pass.
4601   volatile nmethod* _postponed_list;
4602   volatile uint     _num_entered_barrier;
4603 
4604  public:
4605   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4606       _is_alive(is_alive),
4607       _unloading_occurred(unloading_occurred),
4608       _num_workers(num_workers),
4609       _first_nmethod(NULL),
4610       _claimed_nmethod(NULL),
4611       _postponed_list(NULL),
4612       _num_entered_barrier(0)
4613   {
4614     nmethod::increase_unloading_clock();
4615     // Get first alive nmethod
4616     NMethodIterator iter = NMethodIterator();
4617     if(iter.next_alive()) {
4618       _first_nmethod = iter.method();
4619     }
4620     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4621   }
4622 
4623   ~G1CodeCacheUnloadingTask() {
4624     CodeCache::verify_clean_inline_caches();
4625 
4626     CodeCache::set_needs_cache_clean(false);
4627     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4628 
4629     CodeCache::verify_icholder_relocations();
4630   }
4631 
4632  private:
4633   void add_to_postponed_list(nmethod* nm) {
4634       nmethod* old;
4635       do {
4636         old = (nmethod*)_postponed_list;
4637         nm->set_unloading_next(old);
4638       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4639   }
4640 
4641   void clean_nmethod(nmethod* nm) {
4642     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4643 
4644     if (postponed) {
4645       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4646       add_to_postponed_list(nm);
4647     }
4648 
4649     // Mark that this thread has been cleaned/unloaded.
4650     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4651     nm->set_unloading_clock(nmethod::global_unloading_clock());
4652   }
4653 
4654   void clean_nmethod_postponed(nmethod* nm) {
4655     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4656   }
4657 
4658   static const int MaxClaimNmethods = 16;
4659 
4660   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4661     nmethod* first;
4662     NMethodIterator last;
4663 
4664     do {
4665       *num_claimed_nmethods = 0;
4666 
4667       first = (nmethod*)_claimed_nmethod;
4668       last = NMethodIterator(first);
4669 
4670       if (first != NULL) {
4671 
4672         for (int i = 0; i < MaxClaimNmethods; i++) {
4673           if (!last.next_alive()) {
4674             break;
4675           }
4676           claimed_nmethods[i] = last.method();
4677           (*num_claimed_nmethods)++;
4678         }
4679       }
4680 
4681     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4682   }
4683 
4684   nmethod* claim_postponed_nmethod() {
4685     nmethod* claim;
4686     nmethod* next;
4687 
4688     do {
4689       claim = (nmethod*)_postponed_list;
4690       if (claim == NULL) {
4691         return NULL;
4692       }
4693 
4694       next = claim->unloading_next();
4695 
4696     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4697 
4698     return claim;
4699   }
4700 
4701  public:
4702   // Mark that we're done with the first pass of nmethod cleaning.
4703   void barrier_mark(uint worker_id) {
4704     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4705     _num_entered_barrier++;
4706     if (_num_entered_barrier == _num_workers) {
4707       ml.notify_all();
4708     }
4709   }
4710 
4711   // See if we have to wait for the other workers to
4712   // finish their first-pass nmethod cleaning work.
4713   void barrier_wait(uint worker_id) {
4714     if (_num_entered_barrier < _num_workers) {
4715       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4716       while (_num_entered_barrier < _num_workers) {
4717           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4718       }
4719     }
4720   }
4721 
4722   // Cleaning and unloading of nmethods. Some work has to be postponed
4723   // to the second pass, when we know which nmethods survive.
4724   void work_first_pass(uint worker_id) {
4725     // The first nmethods is claimed by the first worker.
4726     if (worker_id == 0 && _first_nmethod != NULL) {
4727       clean_nmethod(_first_nmethod);
4728       _first_nmethod = NULL;
4729     }
4730 
4731     int num_claimed_nmethods;
4732     nmethod* claimed_nmethods[MaxClaimNmethods];
4733 
4734     while (true) {
4735       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4736 
4737       if (num_claimed_nmethods == 0) {
4738         break;
4739       }
4740 
4741       for (int i = 0; i < num_claimed_nmethods; i++) {
4742         clean_nmethod(claimed_nmethods[i]);
4743       }
4744     }
4745   }
4746 
4747   void work_second_pass(uint worker_id) {
4748     nmethod* nm;
4749     // Take care of postponed nmethods.
4750     while ((nm = claim_postponed_nmethod()) != NULL) {
4751       clean_nmethod_postponed(nm);
4752     }
4753   }
4754 };
4755 
4756 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4757 
4758 class G1KlassCleaningTask : public StackObj {
4759   BoolObjectClosure*                      _is_alive;
4760   volatile jint                           _clean_klass_tree_claimed;
4761   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4762 
4763  public:
4764   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4765       _is_alive(is_alive),
4766       _clean_klass_tree_claimed(0),
4767       _klass_iterator() {
4768   }
4769 
4770  private:
4771   bool claim_clean_klass_tree_task() {
4772     if (_clean_klass_tree_claimed) {
4773       return false;
4774     }
4775 
4776     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4777   }
4778 
4779   InstanceKlass* claim_next_klass() {
4780     Klass* klass;
4781     do {
4782       klass =_klass_iterator.next_klass();
4783     } while (klass != NULL && !klass->oop_is_instance());
4784 
4785     return (InstanceKlass*)klass;
4786   }
4787 
4788 public:
4789 
4790   void clean_klass(InstanceKlass* ik) {
4791     ik->clean_implementors_list(_is_alive);
4792     ik->clean_method_data(_is_alive);
4793 
4794     // G1 specific cleanup work that has
4795     // been moved here to be done in parallel.
4796     ik->clean_dependent_nmethods();
4797   }
4798 
4799   void work() {
4800     ResourceMark rm;
4801 
4802     // One worker will clean the subklass/sibling klass tree.
4803     if (claim_clean_klass_tree_task()) {
4804       Klass::clean_subklass_tree(_is_alive);
4805     }
4806 
4807     // All workers will help cleaning the classes,
4808     InstanceKlass* klass;
4809     while ((klass = claim_next_klass()) != NULL) {
4810       clean_klass(klass);
4811     }
4812   }
4813 };
4814 
4815 // To minimize the remark pause times, the tasks below are done in parallel.
4816 class G1ParallelCleaningTask : public AbstractGangTask {
4817 private:
4818   G1StringSymbolTableUnlinkTask _string_symbol_task;
4819   G1CodeCacheUnloadingTask      _code_cache_task;
4820   G1KlassCleaningTask           _klass_cleaning_task;
4821 
4822 public:
4823   // The constructor is run in the VMThread.
4824   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4825       AbstractGangTask("Parallel Cleaning"),
4826       _string_symbol_task(is_alive, process_strings, process_symbols),
4827       _code_cache_task(num_workers, is_alive, unloading_occurred),
4828       _klass_cleaning_task(is_alive) {
4829   }
4830 
4831   // The parallel work done by all worker threads.
4832   void work(uint worker_id) {
4833     // Do first pass of code cache cleaning.
4834     _code_cache_task.work_first_pass(worker_id);
4835 
4836     // Let the threads mark that the first pass is done.
4837     _code_cache_task.barrier_mark(worker_id);
4838 
4839     // Clean the Strings and Symbols.
4840     _string_symbol_task.work(worker_id);
4841 
4842     // Wait for all workers to finish the first code cache cleaning pass.
4843     _code_cache_task.barrier_wait(worker_id);
4844 
4845     // Do the second code cache cleaning work, which realize on
4846     // the liveness information gathered during the first pass.
4847     _code_cache_task.work_second_pass(worker_id);
4848 
4849     // Clean all klasses that were not unloaded.
4850     _klass_cleaning_task.work();
4851   }
4852 };
4853 
4854 
4855 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4856                                         bool process_strings,
4857                                         bool process_symbols,
4858                                         bool class_unloading_occurred) {
4859   uint n_workers = workers()->active_workers();
4860 
4861   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4862                                         n_workers, class_unloading_occurred);
4863   set_par_threads(n_workers);
4864   workers()->run_task(&g1_unlink_task);
4865   set_par_threads(0);
4866 }
4867 
4868 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4869                                                      bool process_strings, bool process_symbols) {
4870   {
4871     uint n_workers = _g1h->workers()->active_workers();
4872     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4873     set_par_threads(n_workers);
4874     workers()->run_task(&g1_unlink_task);
4875     set_par_threads(0);
4876   }
4877 
4878   if (G1StringDedup::is_enabled()) {
4879     G1StringDedup::unlink(is_alive);
4880   }
4881 }
4882 
4883 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4884  private:
4885   DirtyCardQueueSet* _queue;
4886  public:
4887   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4888 
4889   virtual void work(uint worker_id) {
4890     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4891     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4892 
4893     RedirtyLoggedCardTableEntryClosure cl;
4894     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4895 
4896     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4897   }
4898 };
4899 
4900 void G1CollectedHeap::redirty_logged_cards() {
4901   double redirty_logged_cards_start = os::elapsedTime();
4902 
4903   uint n_workers = _g1h->workers()->active_workers();
4904 
4905   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4906   dirty_card_queue_set().reset_for_par_iteration();
4907   set_par_threads(n_workers);
4908   workers()->run_task(&redirty_task);
4909   set_par_threads(0);
4910 
4911   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4912   dcq.merge_bufferlists(&dirty_card_queue_set());
4913   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4914 
4915   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4916 }
4917 
4918 // Weak Reference Processing support
4919 
4920 // An always "is_alive" closure that is used to preserve referents.
4921 // If the object is non-null then it's alive.  Used in the preservation
4922 // of referent objects that are pointed to by reference objects
4923 // discovered by the CM ref processor.
4924 class G1AlwaysAliveClosure: public BoolObjectClosure {
4925   G1CollectedHeap* _g1;
4926 public:
4927   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4928   bool do_object_b(oop p) {
4929     if (p != NULL) {
4930       return true;
4931     }
4932     return false;
4933   }
4934 };
4935 
4936 bool G1STWIsAliveClosure::do_object_b(oop p) {
4937   // An object is reachable if it is outside the collection set,
4938   // or is inside and copied.
4939   return !_g1->obj_in_cs(p) || p->is_forwarded();
4940 }
4941 
4942 // Non Copying Keep Alive closure
4943 class G1KeepAliveClosure: public OopClosure {
4944   G1CollectedHeap* _g1;
4945 public:
4946   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4947   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4948   void do_oop(oop* p) {
4949     oop obj = *p;
4950     assert(obj != NULL, "the caller should have filtered out NULL values");
4951 
4952     const InCSetState cset_state = _g1->in_cset_state(obj);
4953     if (!cset_state.is_in_cset_or_humongous()) {
4954       return;
4955     }
4956     if (cset_state.is_in_cset()) {
4957       assert( obj->is_forwarded(), "invariant" );
4958       *p = obj->forwardee();
4959     } else {
4960       assert(!obj->is_forwarded(), "invariant" );
4961       assert(cset_state.is_humongous(),
4962              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4963       _g1->set_humongous_is_live(obj);
4964     }
4965   }
4966 };
4967 
4968 // Copying Keep Alive closure - can be called from both
4969 // serial and parallel code as long as different worker
4970 // threads utilize different G1ParScanThreadState instances
4971 // and different queues.
4972 
4973 class G1CopyingKeepAliveClosure: public OopClosure {
4974   G1CollectedHeap*         _g1h;
4975   OopClosure*              _copy_non_heap_obj_cl;
4976   G1ParScanThreadState*    _par_scan_state;
4977 
4978 public:
4979   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4980                             OopClosure* non_heap_obj_cl,
4981                             G1ParScanThreadState* pss):
4982     _g1h(g1h),
4983     _copy_non_heap_obj_cl(non_heap_obj_cl),
4984     _par_scan_state(pss)
4985   {}
4986 
4987   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4988   virtual void do_oop(      oop* p) { do_oop_work(p); }
4989 
4990   template <class T> void do_oop_work(T* p) {
4991     oop obj = oopDesc::load_decode_heap_oop(p);
4992 
4993     if (_g1h->is_in_cset_or_humongous(obj)) {
4994       // If the referent object has been forwarded (either copied
4995       // to a new location or to itself in the event of an
4996       // evacuation failure) then we need to update the reference
4997       // field and, if both reference and referent are in the G1
4998       // heap, update the RSet for the referent.
4999       //
5000       // If the referent has not been forwarded then we have to keep
5001       // it alive by policy. Therefore we have copy the referent.
5002       //
5003       // If the reference field is in the G1 heap then we can push
5004       // on the PSS queue. When the queue is drained (after each
5005       // phase of reference processing) the object and it's followers
5006       // will be copied, the reference field set to point to the
5007       // new location, and the RSet updated. Otherwise we need to
5008       // use the the non-heap or metadata closures directly to copy
5009       // the referent object and update the pointer, while avoiding
5010       // updating the RSet.
5011 
5012       if (_g1h->is_in_g1_reserved(p)) {
5013         _par_scan_state->push_on_queue(p);
5014       } else {
5015         assert(!Metaspace::contains((const void*)p),
5016                err_msg("Unexpectedly found a pointer from metadata: "
5017                               PTR_FORMAT, p));
5018         _copy_non_heap_obj_cl->do_oop(p);
5019       }
5020     }
5021   }
5022 };
5023 
5024 // Serial drain queue closure. Called as the 'complete_gc'
5025 // closure for each discovered list in some of the
5026 // reference processing phases.
5027 
5028 class G1STWDrainQueueClosure: public VoidClosure {
5029 protected:
5030   G1CollectedHeap* _g1h;
5031   G1ParScanThreadState* _par_scan_state;
5032 
5033   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5034 
5035 public:
5036   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5037     _g1h(g1h),
5038     _par_scan_state(pss)
5039   { }
5040 
5041   void do_void() {
5042     G1ParScanThreadState* const pss = par_scan_state();
5043     pss->trim_queue();
5044   }
5045 };
5046 
5047 // Parallel Reference Processing closures
5048 
5049 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5050 // processing during G1 evacuation pauses.
5051 
5052 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5053 private:
5054   G1CollectedHeap*   _g1h;
5055   RefToScanQueueSet* _queues;
5056   FlexibleWorkGang*  _workers;
5057   int                _active_workers;
5058 
5059 public:
5060   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5061                         FlexibleWorkGang* workers,
5062                         RefToScanQueueSet *task_queues,
5063                         int n_workers) :
5064     _g1h(g1h),
5065     _queues(task_queues),
5066     _workers(workers),
5067     _active_workers(n_workers)
5068   {
5069     assert(n_workers > 0, "shouldn't call this otherwise");
5070   }
5071 
5072   // Executes the given task using concurrent marking worker threads.
5073   virtual void execute(ProcessTask& task);
5074   virtual void execute(EnqueueTask& task);
5075 };
5076 
5077 // Gang task for possibly parallel reference processing
5078 
5079 class G1STWRefProcTaskProxy: public AbstractGangTask {
5080   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5081   ProcessTask&     _proc_task;
5082   G1CollectedHeap* _g1h;
5083   RefToScanQueueSet *_task_queues;
5084   ParallelTaskTerminator* _terminator;
5085 
5086 public:
5087   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5088                      G1CollectedHeap* g1h,
5089                      RefToScanQueueSet *task_queues,
5090                      ParallelTaskTerminator* terminator) :
5091     AbstractGangTask("Process reference objects in parallel"),
5092     _proc_task(proc_task),
5093     _g1h(g1h),
5094     _task_queues(task_queues),
5095     _terminator(terminator)
5096   {}
5097 
5098   virtual void work(uint worker_id) {
5099     // The reference processing task executed by a single worker.
5100     ResourceMark rm;
5101     HandleMark   hm;
5102 
5103     G1STWIsAliveClosure is_alive(_g1h);
5104 
5105     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5106     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5107 
5108     pss.set_evac_failure_closure(&evac_failure_cl);
5109 
5110     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5111 
5112     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5113 
5114     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5115 
5116     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5117       // We also need to mark copied objects.
5118       copy_non_heap_cl = &copy_mark_non_heap_cl;
5119     }
5120 
5121     // Keep alive closure.
5122     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5123 
5124     // Complete GC closure
5125     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5126 
5127     // Call the reference processing task's work routine.
5128     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5129 
5130     // Note we cannot assert that the refs array is empty here as not all
5131     // of the processing tasks (specifically phase2 - pp2_work) execute
5132     // the complete_gc closure (which ordinarily would drain the queue) so
5133     // the queue may not be empty.
5134   }
5135 };
5136 
5137 // Driver routine for parallel reference processing.
5138 // Creates an instance of the ref processing gang
5139 // task and has the worker threads execute it.
5140 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5141   assert(_workers != NULL, "Need parallel worker threads.");
5142 
5143   ParallelTaskTerminator terminator(_active_workers, _queues);
5144   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5145 
5146   _g1h->set_par_threads(_active_workers);
5147   _workers->run_task(&proc_task_proxy);
5148   _g1h->set_par_threads(0);
5149 }
5150 
5151 // Gang task for parallel reference enqueueing.
5152 
5153 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5154   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5155   EnqueueTask& _enq_task;
5156 
5157 public:
5158   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5159     AbstractGangTask("Enqueue reference objects in parallel"),
5160     _enq_task(enq_task)
5161   { }
5162 
5163   virtual void work(uint worker_id) {
5164     _enq_task.work(worker_id);
5165   }
5166 };
5167 
5168 // Driver routine for parallel reference enqueueing.
5169 // Creates an instance of the ref enqueueing gang
5170 // task and has the worker threads execute it.
5171 
5172 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5173   assert(_workers != NULL, "Need parallel worker threads.");
5174 
5175   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5176 
5177   _g1h->set_par_threads(_active_workers);
5178   _workers->run_task(&enq_task_proxy);
5179   _g1h->set_par_threads(0);
5180 }
5181 
5182 // End of weak reference support closures
5183 
5184 // Abstract task used to preserve (i.e. copy) any referent objects
5185 // that are in the collection set and are pointed to by reference
5186 // objects discovered by the CM ref processor.
5187 
5188 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5189 protected:
5190   G1CollectedHeap* _g1h;
5191   RefToScanQueueSet      *_queues;
5192   ParallelTaskTerminator _terminator;
5193   uint _n_workers;
5194 
5195 public:
5196   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5197     AbstractGangTask("ParPreserveCMReferents"),
5198     _g1h(g1h),
5199     _queues(task_queues),
5200     _terminator(workers, _queues),
5201     _n_workers(workers)
5202   { }
5203 
5204   void work(uint worker_id) {
5205     ResourceMark rm;
5206     HandleMark   hm;
5207 
5208     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5209     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5210 
5211     pss.set_evac_failure_closure(&evac_failure_cl);
5212 
5213     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5214 
5215     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5216 
5217     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5218 
5219     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5220 
5221     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5222       // We also need to mark copied objects.
5223       copy_non_heap_cl = &copy_mark_non_heap_cl;
5224     }
5225 
5226     // Is alive closure
5227     G1AlwaysAliveClosure always_alive(_g1h);
5228 
5229     // Copying keep alive closure. Applied to referent objects that need
5230     // to be copied.
5231     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5232 
5233     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5234 
5235     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5236     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5237 
5238     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5239     // So this must be true - but assert just in case someone decides to
5240     // change the worker ids.
5241     assert(worker_id < limit, "sanity");
5242     assert(!rp->discovery_is_atomic(), "check this code");
5243 
5244     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5245     for (uint idx = worker_id; idx < limit; idx += stride) {
5246       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5247 
5248       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5249       while (iter.has_next()) {
5250         // Since discovery is not atomic for the CM ref processor, we
5251         // can see some null referent objects.
5252         iter.load_ptrs(DEBUG_ONLY(true));
5253         oop ref = iter.obj();
5254 
5255         // This will filter nulls.
5256         if (iter.is_referent_alive()) {
5257           iter.make_referent_alive();
5258         }
5259         iter.move_to_next();
5260       }
5261     }
5262 
5263     // Drain the queue - which may cause stealing
5264     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5265     drain_queue.do_void();
5266     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5267     assert(pss.queue_is_empty(), "should be");
5268   }
5269 };
5270 
5271 // Weak Reference processing during an evacuation pause (part 1).
5272 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5273   double ref_proc_start = os::elapsedTime();
5274 
5275   ReferenceProcessor* rp = _ref_processor_stw;
5276   assert(rp->discovery_enabled(), "should have been enabled");
5277 
5278   // Any reference objects, in the collection set, that were 'discovered'
5279   // by the CM ref processor should have already been copied (either by
5280   // applying the external root copy closure to the discovered lists, or
5281   // by following an RSet entry).
5282   //
5283   // But some of the referents, that are in the collection set, that these
5284   // reference objects point to may not have been copied: the STW ref
5285   // processor would have seen that the reference object had already
5286   // been 'discovered' and would have skipped discovering the reference,
5287   // but would not have treated the reference object as a regular oop.
5288   // As a result the copy closure would not have been applied to the
5289   // referent object.
5290   //
5291   // We need to explicitly copy these referent objects - the references
5292   // will be processed at the end of remarking.
5293   //
5294   // We also need to do this copying before we process the reference
5295   // objects discovered by the STW ref processor in case one of these
5296   // referents points to another object which is also referenced by an
5297   // object discovered by the STW ref processor.
5298 
5299   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5300 
5301   set_par_threads(no_of_gc_workers);
5302   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5303                                                  no_of_gc_workers,
5304                                                  _task_queues);
5305 
5306   workers()->run_task(&keep_cm_referents);
5307 
5308   set_par_threads(0);
5309 
5310   // Closure to test whether a referent is alive.
5311   G1STWIsAliveClosure is_alive(this);
5312 
5313   // Even when parallel reference processing is enabled, the processing
5314   // of JNI refs is serial and performed serially by the current thread
5315   // rather than by a worker. The following PSS will be used for processing
5316   // JNI refs.
5317 
5318   // Use only a single queue for this PSS.
5319   G1ParScanThreadState            pss(this, 0, NULL);
5320 
5321   // We do not embed a reference processor in the copying/scanning
5322   // closures while we're actually processing the discovered
5323   // reference objects.
5324   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5325 
5326   pss.set_evac_failure_closure(&evac_failure_cl);
5327 
5328   assert(pss.queue_is_empty(), "pre-condition");
5329 
5330   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5331 
5332   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5333 
5334   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5335 
5336   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5337     // We also need to mark copied objects.
5338     copy_non_heap_cl = &copy_mark_non_heap_cl;
5339   }
5340 
5341   // Keep alive closure.
5342   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5343 
5344   // Serial Complete GC closure
5345   G1STWDrainQueueClosure drain_queue(this, &pss);
5346 
5347   // Setup the soft refs policy...
5348   rp->setup_policy(false);
5349 
5350   ReferenceProcessorStats stats;
5351   if (!rp->processing_is_mt()) {
5352     // Serial reference processing...
5353     stats = rp->process_discovered_references(&is_alive,
5354                                               &keep_alive,
5355                                               &drain_queue,
5356                                               NULL,
5357                                               _gc_timer_stw,
5358                                               _gc_tracer_stw->gc_id());
5359   } else {
5360     // Parallel reference processing
5361     assert(rp->num_q() == no_of_gc_workers, "sanity");
5362     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5363 
5364     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5365     stats = rp->process_discovered_references(&is_alive,
5366                                               &keep_alive,
5367                                               &drain_queue,
5368                                               &par_task_executor,
5369                                               _gc_timer_stw,
5370                                               _gc_tracer_stw->gc_id());
5371   }
5372 
5373   _gc_tracer_stw->report_gc_reference_stats(stats);
5374 
5375   // We have completed copying any necessary live referent objects.
5376   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5377 
5378   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5379   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5380 }
5381 
5382 // Weak Reference processing during an evacuation pause (part 2).
5383 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5384   double ref_enq_start = os::elapsedTime();
5385 
5386   ReferenceProcessor* rp = _ref_processor_stw;
5387   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5388 
5389   // Now enqueue any remaining on the discovered lists on to
5390   // the pending list.
5391   if (!rp->processing_is_mt()) {
5392     // Serial reference processing...
5393     rp->enqueue_discovered_references();
5394   } else {
5395     // Parallel reference enqueueing
5396 
5397     assert(no_of_gc_workers == workers()->active_workers(),
5398            "Need to reset active workers");
5399     assert(rp->num_q() == no_of_gc_workers, "sanity");
5400     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5401 
5402     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5403     rp->enqueue_discovered_references(&par_task_executor);
5404   }
5405 
5406   rp->verify_no_references_recorded();
5407   assert(!rp->discovery_enabled(), "should have been disabled");
5408 
5409   // FIXME
5410   // CM's reference processing also cleans up the string and symbol tables.
5411   // Should we do that here also? We could, but it is a serial operation
5412   // and could significantly increase the pause time.
5413 
5414   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5415   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5416 }
5417 
5418 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5419   _expand_heap_after_alloc_failure = true;
5420   _evacuation_failed = false;
5421 
5422   // Should G1EvacuationFailureALot be in effect for this GC?
5423   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5424 
5425   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5426 
5427   // Disable the hot card cache.
5428   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5429   hot_card_cache->reset_hot_cache_claimed_index();
5430   hot_card_cache->set_use_cache(false);
5431 
5432   uint n_workers;
5433   n_workers =
5434     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5435                                    workers()->active_workers(),
5436                                    Threads::number_of_non_daemon_threads());
5437   assert(UseDynamicNumberOfGCThreads ||
5438          n_workers == workers()->total_workers(),
5439          "If not dynamic should be using all the  workers");
5440   workers()->set_active_workers(n_workers);
5441   set_par_threads(n_workers);
5442 
5443 
5444   init_for_evac_failure(NULL);
5445 
5446   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5447   double start_par_time_sec = os::elapsedTime();
5448   double end_par_time_sec;
5449 
5450   {
5451     G1RootProcessor root_processor(this);
5452     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5453     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5454     if (g1_policy()->during_initial_mark_pause()) {
5455       ClassLoaderDataGraph::clear_claimed_marks();
5456     }
5457 
5458      // The individual threads will set their evac-failure closures.
5459      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5460      // These tasks use ShareHeap::_process_strong_tasks
5461      assert(UseDynamicNumberOfGCThreads ||
5462             workers()->active_workers() == workers()->total_workers(),
5463             "If not dynamic should be using all the  workers");
5464     workers()->run_task(&g1_par_task);
5465     end_par_time_sec = os::elapsedTime();
5466 
5467     // Closing the inner scope will execute the destructor
5468     // for the G1RootProcessor object. We record the current
5469     // elapsed time before closing the scope so that time
5470     // taken for the destructor is NOT included in the
5471     // reported parallel time.
5472   }
5473 
5474   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5475 
5476   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5477   phase_times->record_par_time(par_time_ms);
5478 
5479   double code_root_fixup_time_ms =
5480         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5481   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5482 
5483   set_par_threads(0);
5484 
5485   // Process any discovered reference objects - we have
5486   // to do this _before_ we retire the GC alloc regions
5487   // as we may have to copy some 'reachable' referent
5488   // objects (and their reachable sub-graphs) that were
5489   // not copied during the pause.
5490   process_discovered_references(n_workers);
5491 
5492   if (G1StringDedup::is_enabled()) {
5493     double fixup_start = os::elapsedTime();
5494 
5495     G1STWIsAliveClosure is_alive(this);
5496     G1KeepAliveClosure keep_alive(this);
5497     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5498 
5499     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5500     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5501   }
5502 
5503   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5504   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5505 
5506   // Reset and re-enable the hot card cache.
5507   // Note the counts for the cards in the regions in the
5508   // collection set are reset when the collection set is freed.
5509   hot_card_cache->reset_hot_cache();
5510   hot_card_cache->set_use_cache(true);
5511 
5512   purge_code_root_memory();
5513 
5514   finalize_for_evac_failure();
5515 
5516   if (evacuation_failed()) {
5517     remove_self_forwarding_pointers();
5518 
5519     // Reset the G1EvacuationFailureALot counters and flags
5520     // Note: the values are reset only when an actual
5521     // evacuation failure occurs.
5522     NOT_PRODUCT(reset_evacuation_should_fail();)
5523   }
5524 
5525   // Enqueue any remaining references remaining on the STW
5526   // reference processor's discovered lists. We need to do
5527   // this after the card table is cleaned (and verified) as
5528   // the act of enqueueing entries on to the pending list
5529   // will log these updates (and dirty their associated
5530   // cards). We need these updates logged to update any
5531   // RSets.
5532   enqueue_discovered_references(n_workers);
5533 
5534   redirty_logged_cards();
5535   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5536 }
5537 
5538 void G1CollectedHeap::free_region(HeapRegion* hr,
5539                                   FreeRegionList* free_list,
5540                                   bool par,
5541                                   bool locked) {
5542   assert(!hr->is_free(), "the region should not be free");
5543   assert(!hr->is_empty(), "the region should not be empty");
5544   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5545   assert(free_list != NULL, "pre-condition");
5546 
5547   if (G1VerifyBitmaps) {
5548     MemRegion mr(hr->bottom(), hr->end());
5549     concurrent_mark()->clearRangePrevBitmap(mr);
5550   }
5551 
5552   // Clear the card counts for this region.
5553   // Note: we only need to do this if the region is not young
5554   // (since we don't refine cards in young regions).
5555   if (!hr->is_young()) {
5556     _cg1r->hot_card_cache()->reset_card_counts(hr);
5557   }
5558   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5559   free_list->add_ordered(hr);
5560 }
5561 
5562 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5563                                      FreeRegionList* free_list,
5564                                      bool par) {
5565   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5566   assert(free_list != NULL, "pre-condition");
5567 
5568   size_t hr_capacity = hr->capacity();
5569   // We need to read this before we make the region non-humongous,
5570   // otherwise the information will be gone.
5571   uint last_index = hr->last_hc_index();
5572   hr->clear_humongous();
5573   free_region(hr, free_list, par);
5574 
5575   uint i = hr->hrm_index() + 1;
5576   while (i < last_index) {
5577     HeapRegion* curr_hr = region_at(i);
5578     assert(curr_hr->is_continues_humongous(), "invariant");
5579     curr_hr->clear_humongous();
5580     free_region(curr_hr, free_list, par);
5581     i += 1;
5582   }
5583 }
5584 
5585 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5586                                        const HeapRegionSetCount& humongous_regions_removed) {
5587   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5588     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5589     _old_set.bulk_remove(old_regions_removed);
5590     _humongous_set.bulk_remove(humongous_regions_removed);
5591   }
5592 
5593 }
5594 
5595 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5596   assert(list != NULL, "list can't be null");
5597   if (!list->is_empty()) {
5598     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5599     _hrm.insert_list_into_free_list(list);
5600   }
5601 }
5602 
5603 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5604   _allocator->decrease_used(bytes);
5605 }
5606 
5607 class G1ParCleanupCTTask : public AbstractGangTask {
5608   G1SATBCardTableModRefBS* _ct_bs;
5609   G1CollectedHeap* _g1h;
5610   HeapRegion* volatile _su_head;
5611 public:
5612   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5613                      G1CollectedHeap* g1h) :
5614     AbstractGangTask("G1 Par Cleanup CT Task"),
5615     _ct_bs(ct_bs), _g1h(g1h) { }
5616 
5617   void work(uint worker_id) {
5618     HeapRegion* r;
5619     while (r = _g1h->pop_dirty_cards_region()) {
5620       clear_cards(r);
5621     }
5622   }
5623 
5624   void clear_cards(HeapRegion* r) {
5625     // Cards of the survivors should have already been dirtied.
5626     if (!r->is_survivor()) {
5627       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5628     }
5629   }
5630 };
5631 
5632 #ifndef PRODUCT
5633 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5634   G1CollectedHeap* _g1h;
5635   G1SATBCardTableModRefBS* _ct_bs;
5636 public:
5637   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5638     : _g1h(g1h), _ct_bs(ct_bs) { }
5639   virtual bool doHeapRegion(HeapRegion* r) {
5640     if (r->is_survivor()) {
5641       _g1h->verify_dirty_region(r);
5642     } else {
5643       _g1h->verify_not_dirty_region(r);
5644     }
5645     return false;
5646   }
5647 };
5648 
5649 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5650   // All of the region should be clean.
5651   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5652   MemRegion mr(hr->bottom(), hr->end());
5653   ct_bs->verify_not_dirty_region(mr);
5654 }
5655 
5656 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5657   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5658   // dirty allocated blocks as they allocate them. The thread that
5659   // retires each region and replaces it with a new one will do a
5660   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5661   // not dirty that area (one less thing to have to do while holding
5662   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5663   // is dirty.
5664   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5665   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5666   if (hr->is_young()) {
5667     ct_bs->verify_g1_young_region(mr);
5668   } else {
5669     ct_bs->verify_dirty_region(mr);
5670   }
5671 }
5672 
5673 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5674   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5675   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5676     verify_dirty_region(hr);
5677   }
5678 }
5679 
5680 void G1CollectedHeap::verify_dirty_young_regions() {
5681   verify_dirty_young_list(_young_list->first_region());
5682 }
5683 
5684 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5685                                                HeapWord* tams, HeapWord* end) {
5686   guarantee(tams <= end,
5687             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5688   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5689   if (result < end) {
5690     gclog_or_tty->cr();
5691     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5692                            bitmap_name, result);
5693     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5694                            bitmap_name, tams, end);
5695     return false;
5696   }
5697   return true;
5698 }
5699 
5700 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5701   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5702   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5703 
5704   HeapWord* bottom = hr->bottom();
5705   HeapWord* ptams  = hr->prev_top_at_mark_start();
5706   HeapWord* ntams  = hr->next_top_at_mark_start();
5707   HeapWord* end    = hr->end();
5708 
5709   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5710 
5711   bool res_n = true;
5712   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5713   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5714   // if we happen to be in that state.
5715   if (mark_in_progress() || !_cmThread->in_progress()) {
5716     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5717   }
5718   if (!res_p || !res_n) {
5719     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5720                            HR_FORMAT_PARAMS(hr));
5721     gclog_or_tty->print_cr("#### Caller: %s", caller);
5722     return false;
5723   }
5724   return true;
5725 }
5726 
5727 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5728   if (!G1VerifyBitmaps) return;
5729 
5730   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5731 }
5732 
5733 class G1VerifyBitmapClosure : public HeapRegionClosure {
5734 private:
5735   const char* _caller;
5736   G1CollectedHeap* _g1h;
5737   bool _failures;
5738 
5739 public:
5740   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5741     _caller(caller), _g1h(g1h), _failures(false) { }
5742 
5743   bool failures() { return _failures; }
5744 
5745   virtual bool doHeapRegion(HeapRegion* hr) {
5746     if (hr->is_continues_humongous()) return false;
5747 
5748     bool result = _g1h->verify_bitmaps(_caller, hr);
5749     if (!result) {
5750       _failures = true;
5751     }
5752     return false;
5753   }
5754 };
5755 
5756 void G1CollectedHeap::check_bitmaps(const char* caller) {
5757   if (!G1VerifyBitmaps) return;
5758 
5759   G1VerifyBitmapClosure cl(caller, this);
5760   heap_region_iterate(&cl);
5761   guarantee(!cl.failures(), "bitmap verification");
5762 }
5763 
5764 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5765  private:
5766   bool _failures;
5767  public:
5768   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5769 
5770   virtual bool doHeapRegion(HeapRegion* hr) {
5771     uint i = hr->hrm_index();
5772     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5773     if (hr->is_humongous()) {
5774       if (hr->in_collection_set()) {
5775         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5776         _failures = true;
5777         return true;
5778       }
5779       if (cset_state.is_in_cset()) {
5780         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5781         _failures = true;
5782         return true;
5783       }
5784       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5785         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5786         _failures = true;
5787         return true;
5788       }
5789     } else {
5790       if (cset_state.is_humongous()) {
5791         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5792         _failures = true;
5793         return true;
5794       }
5795       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5796         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5797                                hr->in_collection_set(), cset_state.value(), i);
5798         _failures = true;
5799         return true;
5800       }
5801       if (cset_state.is_in_cset()) {
5802         if (hr->is_young() != (cset_state.is_young())) {
5803           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5804                                  hr->is_young(), cset_state.value(), i);
5805           _failures = true;
5806           return true;
5807         }
5808         if (hr->is_old() != (cset_state.is_old())) {
5809           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5810                                  hr->is_old(), cset_state.value(), i);
5811           _failures = true;
5812           return true;
5813         }
5814       }
5815     }
5816     return false;
5817   }
5818 
5819   bool failures() const { return _failures; }
5820 };
5821 
5822 bool G1CollectedHeap::check_cset_fast_test() {
5823   G1CheckCSetFastTableClosure cl;
5824   _hrm.iterate(&cl);
5825   return !cl.failures();
5826 }
5827 #endif // PRODUCT
5828 
5829 void G1CollectedHeap::cleanUpCardTable() {
5830   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5831   double start = os::elapsedTime();
5832 
5833   {
5834     // Iterate over the dirty cards region list.
5835     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5836 
5837     set_par_threads();
5838     workers()->run_task(&cleanup_task);
5839     set_par_threads(0);
5840 #ifndef PRODUCT
5841     if (G1VerifyCTCleanup || VerifyAfterGC) {
5842       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5843       heap_region_iterate(&cleanup_verifier);
5844     }
5845 #endif
5846   }
5847 
5848   double elapsed = os::elapsedTime() - start;
5849   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5850 }
5851 
5852 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5853   size_t pre_used = 0;
5854   FreeRegionList local_free_list("Local List for CSet Freeing");
5855 
5856   double young_time_ms     = 0.0;
5857   double non_young_time_ms = 0.0;
5858 
5859   // Since the collection set is a superset of the the young list,
5860   // all we need to do to clear the young list is clear its
5861   // head and length, and unlink any young regions in the code below
5862   _young_list->clear();
5863 
5864   G1CollectorPolicy* policy = g1_policy();
5865 
5866   double start_sec = os::elapsedTime();
5867   bool non_young = true;
5868 
5869   HeapRegion* cur = cs_head;
5870   int age_bound = -1;
5871   size_t rs_lengths = 0;
5872 
5873   while (cur != NULL) {
5874     assert(!is_on_master_free_list(cur), "sanity");
5875     if (non_young) {
5876       if (cur->is_young()) {
5877         double end_sec = os::elapsedTime();
5878         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5879         non_young_time_ms += elapsed_ms;
5880 
5881         start_sec = os::elapsedTime();
5882         non_young = false;
5883       }
5884     } else {
5885       if (!cur->is_young()) {
5886         double end_sec = os::elapsedTime();
5887         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5888         young_time_ms += elapsed_ms;
5889 
5890         start_sec = os::elapsedTime();
5891         non_young = true;
5892       }
5893     }
5894 
5895     rs_lengths += cur->rem_set()->occupied_locked();
5896 
5897     HeapRegion* next = cur->next_in_collection_set();
5898     assert(cur->in_collection_set(), "bad CS");
5899     cur->set_next_in_collection_set(NULL);
5900     clear_in_cset(cur);
5901 
5902     if (cur->is_young()) {
5903       int index = cur->young_index_in_cset();
5904       assert(index != -1, "invariant");
5905       assert((uint) index < policy->young_cset_region_length(), "invariant");
5906       size_t words_survived = _surviving_young_words[index];
5907       cur->record_surv_words_in_group(words_survived);
5908 
5909       // At this point the we have 'popped' cur from the collection set
5910       // (linked via next_in_collection_set()) but it is still in the
5911       // young list (linked via next_young_region()). Clear the
5912       // _next_young_region field.
5913       cur->set_next_young_region(NULL);
5914     } else {
5915       int index = cur->young_index_in_cset();
5916       assert(index == -1, "invariant");
5917     }
5918 
5919     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5920             (!cur->is_young() && cur->young_index_in_cset() == -1),
5921             "invariant" );
5922 
5923     if (!cur->evacuation_failed()) {
5924       MemRegion used_mr = cur->used_region();
5925 
5926       // And the region is empty.
5927       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5928       pre_used += cur->used();
5929       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5930     } else {
5931       cur->uninstall_surv_rate_group();
5932       if (cur->is_young()) {
5933         cur->set_young_index_in_cset(-1);
5934       }
5935       cur->set_evacuation_failed(false);
5936       // The region is now considered to be old.
5937       cur->set_old();
5938       _old_set.add(cur);
5939       evacuation_info.increment_collectionset_used_after(cur->used());
5940     }
5941     cur = next;
5942   }
5943 
5944   evacuation_info.set_regions_freed(local_free_list.length());
5945   policy->record_max_rs_lengths(rs_lengths);
5946   policy->cset_regions_freed();
5947 
5948   double end_sec = os::elapsedTime();
5949   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5950 
5951   if (non_young) {
5952     non_young_time_ms += elapsed_ms;
5953   } else {
5954     young_time_ms += elapsed_ms;
5955   }
5956 
5957   prepend_to_freelist(&local_free_list);
5958   decrement_summary_bytes(pre_used);
5959   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5960   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5961 }
5962 
5963 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5964  private:
5965   FreeRegionList* _free_region_list;
5966   HeapRegionSet* _proxy_set;
5967   HeapRegionSetCount _humongous_regions_removed;
5968   size_t _freed_bytes;
5969  public:
5970 
5971   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5972     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5973   }
5974 
5975   virtual bool doHeapRegion(HeapRegion* r) {
5976     if (!r->is_starts_humongous()) {
5977       return false;
5978     }
5979 
5980     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5981 
5982     oop obj = (oop)r->bottom();
5983     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5984 
5985     // The following checks whether the humongous object is live are sufficient.
5986     // The main additional check (in addition to having a reference from the roots
5987     // or the young gen) is whether the humongous object has a remembered set entry.
5988     //
5989     // A humongous object cannot be live if there is no remembered set for it
5990     // because:
5991     // - there can be no references from within humongous starts regions referencing
5992     // the object because we never allocate other objects into them.
5993     // (I.e. there are no intra-region references that may be missed by the
5994     // remembered set)
5995     // - as soon there is a remembered set entry to the humongous starts region
5996     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5997     // until the end of a concurrent mark.
5998     //
5999     // It is not required to check whether the object has been found dead by marking
6000     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6001     // all objects allocated during that time are considered live.
6002     // SATB marking is even more conservative than the remembered set.
6003     // So if at this point in the collection there is no remembered set entry,
6004     // nobody has a reference to it.
6005     // At the start of collection we flush all refinement logs, and remembered sets
6006     // are completely up-to-date wrt to references to the humongous object.
6007     //
6008     // Other implementation considerations:
6009     // - never consider object arrays at this time because they would pose
6010     // considerable effort for cleaning up the the remembered sets. This is
6011     // required because stale remembered sets might reference locations that
6012     // are currently allocated into.
6013     uint region_idx = r->hrm_index();
6014     if (g1h->humongous_is_live(region_idx) ||
6015         g1h->humongous_region_is_always_live(region_idx)) {
6016 
6017       if (G1TraceEagerReclaimHumongousObjects) {
6018         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6019                                region_idx,
6020                                obj->size()*HeapWordSize,
6021                                r->bottom(),
6022                                r->region_num(),
6023                                r->rem_set()->occupied(),
6024                                r->rem_set()->strong_code_roots_list_length(),
6025                                next_bitmap->isMarked(r->bottom()),
6026                                g1h->humongous_is_live(region_idx),
6027                                obj->is_objArray()
6028                               );
6029       }
6030 
6031       return false;
6032     }
6033 
6034     guarantee(!obj->is_objArray(),
6035               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6036                       r->bottom()));
6037 
6038     if (G1TraceEagerReclaimHumongousObjects) {
6039       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6040                              region_idx,
6041                              obj->size()*HeapWordSize,
6042                              r->bottom(),
6043                              r->region_num(),
6044                              r->rem_set()->occupied(),
6045                              r->rem_set()->strong_code_roots_list_length(),
6046                              next_bitmap->isMarked(r->bottom()),
6047                              g1h->humongous_is_live(region_idx),
6048                              obj->is_objArray()
6049                             );
6050     }
6051     // Need to clear mark bit of the humongous object if already set.
6052     if (next_bitmap->isMarked(r->bottom())) {
6053       next_bitmap->clear(r->bottom());
6054     }
6055     _freed_bytes += r->used();
6056     r->set_containing_set(NULL);
6057     _humongous_regions_removed.increment(1u, r->capacity());
6058     g1h->free_humongous_region(r, _free_region_list, false);
6059 
6060     return false;
6061   }
6062 
6063   HeapRegionSetCount& humongous_free_count() {
6064     return _humongous_regions_removed;
6065   }
6066 
6067   size_t bytes_freed() const {
6068     return _freed_bytes;
6069   }
6070 
6071   size_t humongous_reclaimed() const {
6072     return _humongous_regions_removed.length();
6073   }
6074 };
6075 
6076 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6077   assert_at_safepoint(true);
6078 
6079   if (!G1EagerReclaimHumongousObjects ||
6080       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6081     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6082     return;
6083   }
6084 
6085   double start_time = os::elapsedTime();
6086 
6087   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6088 
6089   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6090   heap_region_iterate(&cl);
6091 
6092   HeapRegionSetCount empty_set;
6093   remove_from_old_sets(empty_set, cl.humongous_free_count());
6094 
6095   G1HRPrinter* hr_printer = _g1h->hr_printer();
6096   if (hr_printer->is_active()) {
6097     FreeRegionListIterator iter(&local_cleanup_list);
6098     while (iter.more_available()) {
6099       HeapRegion* hr = iter.get_next();
6100       hr_printer->cleanup(hr);
6101     }
6102   }
6103 
6104   prepend_to_freelist(&local_cleanup_list);
6105   decrement_summary_bytes(cl.bytes_freed());
6106 
6107   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6108                                                                     cl.humongous_reclaimed());
6109 }
6110 
6111 // This routine is similar to the above but does not record
6112 // any policy statistics or update free lists; we are abandoning
6113 // the current incremental collection set in preparation of a
6114 // full collection. After the full GC we will start to build up
6115 // the incremental collection set again.
6116 // This is only called when we're doing a full collection
6117 // and is immediately followed by the tearing down of the young list.
6118 
6119 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6120   HeapRegion* cur = cs_head;
6121 
6122   while (cur != NULL) {
6123     HeapRegion* next = cur->next_in_collection_set();
6124     assert(cur->in_collection_set(), "bad CS");
6125     cur->set_next_in_collection_set(NULL);
6126     clear_in_cset(cur);
6127     cur->set_young_index_in_cset(-1);
6128     cur = next;
6129   }
6130 }
6131 
6132 void G1CollectedHeap::set_free_regions_coming() {
6133   if (G1ConcRegionFreeingVerbose) {
6134     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6135                            "setting free regions coming");
6136   }
6137 
6138   assert(!free_regions_coming(), "pre-condition");
6139   _free_regions_coming = true;
6140 }
6141 
6142 void G1CollectedHeap::reset_free_regions_coming() {
6143   assert(free_regions_coming(), "pre-condition");
6144 
6145   {
6146     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6147     _free_regions_coming = false;
6148     SecondaryFreeList_lock->notify_all();
6149   }
6150 
6151   if (G1ConcRegionFreeingVerbose) {
6152     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6153                            "reset free regions coming");
6154   }
6155 }
6156 
6157 void G1CollectedHeap::wait_while_free_regions_coming() {
6158   // Most of the time we won't have to wait, so let's do a quick test
6159   // first before we take the lock.
6160   if (!free_regions_coming()) {
6161     return;
6162   }
6163 
6164   if (G1ConcRegionFreeingVerbose) {
6165     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6166                            "waiting for free regions");
6167   }
6168 
6169   {
6170     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6171     while (free_regions_coming()) {
6172       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6173     }
6174   }
6175 
6176   if (G1ConcRegionFreeingVerbose) {
6177     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6178                            "done waiting for free regions");
6179   }
6180 }
6181 
6182 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6183   assert(heap_lock_held_for_gc(),
6184               "the heap lock should already be held by or for this thread");
6185   _young_list->push_region(hr);
6186 }
6187 
6188 class NoYoungRegionsClosure: public HeapRegionClosure {
6189 private:
6190   bool _success;
6191 public:
6192   NoYoungRegionsClosure() : _success(true) { }
6193   bool doHeapRegion(HeapRegion* r) {
6194     if (r->is_young()) {
6195       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6196                              r->bottom(), r->end());
6197       _success = false;
6198     }
6199     return false;
6200   }
6201   bool success() { return _success; }
6202 };
6203 
6204 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6205   bool ret = _young_list->check_list_empty(check_sample);
6206 
6207   if (check_heap) {
6208     NoYoungRegionsClosure closure;
6209     heap_region_iterate(&closure);
6210     ret = ret && closure.success();
6211   }
6212 
6213   return ret;
6214 }
6215 
6216 class TearDownRegionSetsClosure : public HeapRegionClosure {
6217 private:
6218   HeapRegionSet *_old_set;
6219 
6220 public:
6221   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6222 
6223   bool doHeapRegion(HeapRegion* r) {
6224     if (r->is_old()) {
6225       _old_set->remove(r);
6226     } else {
6227       // We ignore free regions, we'll empty the free list afterwards.
6228       // We ignore young regions, we'll empty the young list afterwards.
6229       // We ignore humongous regions, we're not tearing down the
6230       // humongous regions set.
6231       assert(r->is_free() || r->is_young() || r->is_humongous(),
6232              "it cannot be another type");
6233     }
6234     return false;
6235   }
6236 
6237   ~TearDownRegionSetsClosure() {
6238     assert(_old_set->is_empty(), "post-condition");
6239   }
6240 };
6241 
6242 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6243   assert_at_safepoint(true /* should_be_vm_thread */);
6244 
6245   if (!free_list_only) {
6246     TearDownRegionSetsClosure cl(&_old_set);
6247     heap_region_iterate(&cl);
6248 
6249     // Note that emptying the _young_list is postponed and instead done as
6250     // the first step when rebuilding the regions sets again. The reason for
6251     // this is that during a full GC string deduplication needs to know if
6252     // a collected region was young or old when the full GC was initiated.
6253   }
6254   _hrm.remove_all_free_regions();
6255 }
6256 
6257 class RebuildRegionSetsClosure : public HeapRegionClosure {
6258 private:
6259   bool            _free_list_only;
6260   HeapRegionSet*   _old_set;
6261   HeapRegionManager*   _hrm;
6262   size_t          _total_used;
6263 
6264 public:
6265   RebuildRegionSetsClosure(bool free_list_only,
6266                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6267     _free_list_only(free_list_only),
6268     _old_set(old_set), _hrm(hrm), _total_used(0) {
6269     assert(_hrm->num_free_regions() == 0, "pre-condition");
6270     if (!free_list_only) {
6271       assert(_old_set->is_empty(), "pre-condition");
6272     }
6273   }
6274 
6275   bool doHeapRegion(HeapRegion* r) {
6276     if (r->is_continues_humongous()) {
6277       return false;
6278     }
6279 
6280     if (r->is_empty()) {
6281       // Add free regions to the free list
6282       r->set_free();
6283       r->set_allocation_context(AllocationContext::system());
6284       _hrm->insert_into_free_list(r);
6285     } else if (!_free_list_only) {
6286       assert(!r->is_young(), "we should not come across young regions");
6287 
6288       if (r->is_humongous()) {
6289         // We ignore humongous regions, we left the humongous set unchanged
6290       } else {
6291         // Objects that were compacted would have ended up on regions
6292         // that were previously old or free.
6293         assert(r->is_free() || r->is_old(), "invariant");
6294         // We now consider them old, so register as such.
6295         r->set_old();
6296         _old_set->add(r);
6297       }
6298       _total_used += r->used();
6299     }
6300 
6301     return false;
6302   }
6303 
6304   size_t total_used() {
6305     return _total_used;
6306   }
6307 };
6308 
6309 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6310   assert_at_safepoint(true /* should_be_vm_thread */);
6311 
6312   if (!free_list_only) {
6313     _young_list->empty_list();
6314   }
6315 
6316   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6317   heap_region_iterate(&cl);
6318 
6319   if (!free_list_only) {
6320     _allocator->set_used(cl.total_used());
6321   }
6322   assert(_allocator->used_unlocked() == recalculate_used(),
6323          err_msg("inconsistent _allocator->used_unlocked(), "
6324                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6325                  _allocator->used_unlocked(), recalculate_used()));
6326 }
6327 
6328 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6329   _refine_cte_cl->set_concurrent(concurrent);
6330 }
6331 
6332 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6333   HeapRegion* hr = heap_region_containing(p);
6334   return hr->is_in(p);
6335 }
6336 
6337 // Methods for the mutator alloc region
6338 
6339 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6340                                                       bool force) {
6341   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6342   assert(!force || g1_policy()->can_expand_young_list(),
6343          "if force is true we should be able to expand the young list");
6344   bool young_list_full = g1_policy()->is_young_list_full();
6345   if (force || !young_list_full) {
6346     HeapRegion* new_alloc_region = new_region(word_size,
6347                                               false /* is_old */,
6348                                               false /* do_expand */);
6349     if (new_alloc_region != NULL) {
6350       set_region_short_lived_locked(new_alloc_region);
6351       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6352       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6353       return new_alloc_region;
6354     }
6355   }
6356   return NULL;
6357 }
6358 
6359 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6360                                                   size_t allocated_bytes) {
6361   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6362   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6363 
6364   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6365   _allocator->increase_used(allocated_bytes);
6366   _hr_printer.retire(alloc_region);
6367   // We update the eden sizes here, when the region is retired,
6368   // instead of when it's allocated, since this is the point that its
6369   // used space has been recored in _summary_bytes_used.
6370   g1mm()->update_eden_size();
6371 }
6372 
6373 void G1CollectedHeap::set_par_threads() {
6374   // Don't change the number of workers.  Use the value previously set
6375   // in the workgroup.
6376   uint n_workers = workers()->active_workers();
6377   assert(UseDynamicNumberOfGCThreads ||
6378            n_workers == workers()->total_workers(),
6379       "Otherwise should be using the total number of workers");
6380   if (n_workers == 0) {
6381     assert(false, "Should have been set in prior evacuation pause.");
6382     n_workers = ParallelGCThreads;
6383     workers()->set_active_workers(n_workers);
6384   }
6385   set_par_threads(n_workers);
6386 }
6387 
6388 // Methods for the GC alloc regions
6389 
6390 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6391                                                  uint count,
6392                                                  InCSetState dest) {
6393   assert(FreeList_lock->owned_by_self(), "pre-condition");
6394 
6395   if (count < g1_policy()->max_regions(dest)) {
6396     const bool is_survivor = (dest.is_young());
6397     HeapRegion* new_alloc_region = new_region(word_size,
6398                                               !is_survivor,
6399                                               true /* do_expand */);
6400     if (new_alloc_region != NULL) {
6401       // We really only need to do this for old regions given that we
6402       // should never scan survivors. But it doesn't hurt to do it
6403       // for survivors too.
6404       new_alloc_region->record_timestamp();
6405       if (is_survivor) {
6406         new_alloc_region->set_survivor();
6407         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6408         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6409       } else {
6410         new_alloc_region->set_old();
6411         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6412         check_bitmaps("Old Region Allocation", new_alloc_region);
6413       }
6414       bool during_im = g1_policy()->during_initial_mark_pause();
6415       new_alloc_region->note_start_of_copying(during_im);
6416       return new_alloc_region;
6417     }
6418   }
6419   return NULL;
6420 }
6421 
6422 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6423                                              size_t allocated_bytes,
6424                                              InCSetState dest) {
6425   bool during_im = g1_policy()->during_initial_mark_pause();
6426   alloc_region->note_end_of_copying(during_im);
6427   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6428   if (dest.is_young()) {
6429     young_list()->add_survivor_region(alloc_region);
6430   } else {
6431     _old_set.add(alloc_region);
6432   }
6433   _hr_printer.retire(alloc_region);
6434 }
6435 
6436 // Heap region set verification
6437 
6438 class VerifyRegionListsClosure : public HeapRegionClosure {
6439 private:
6440   HeapRegionSet*   _old_set;
6441   HeapRegionSet*   _humongous_set;
6442   HeapRegionManager*   _hrm;
6443 
6444 public:
6445   HeapRegionSetCount _old_count;
6446   HeapRegionSetCount _humongous_count;
6447   HeapRegionSetCount _free_count;
6448 
6449   VerifyRegionListsClosure(HeapRegionSet* old_set,
6450                            HeapRegionSet* humongous_set,
6451                            HeapRegionManager* hrm) :
6452     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6453     _old_count(), _humongous_count(), _free_count(){ }
6454 
6455   bool doHeapRegion(HeapRegion* hr) {
6456     if (hr->is_continues_humongous()) {
6457       return false;
6458     }
6459 
6460     if (hr->is_young()) {
6461       // TODO
6462     } else if (hr->is_starts_humongous()) {
6463       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6464       _humongous_count.increment(1u, hr->capacity());
6465     } else if (hr->is_empty()) {
6466       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6467       _free_count.increment(1u, hr->capacity());
6468     } else if (hr->is_old()) {
6469       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6470       _old_count.increment(1u, hr->capacity());
6471     } else {
6472       ShouldNotReachHere();
6473     }
6474     return false;
6475   }
6476 
6477   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6478     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6479     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6480         old_set->total_capacity_bytes(), _old_count.capacity()));
6481 
6482     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6483     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6484         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6485 
6486     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6487     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6488         free_list->total_capacity_bytes(), _free_count.capacity()));
6489   }
6490 };
6491 
6492 void G1CollectedHeap::verify_region_sets() {
6493   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6494 
6495   // First, check the explicit lists.
6496   _hrm.verify();
6497   {
6498     // Given that a concurrent operation might be adding regions to
6499     // the secondary free list we have to take the lock before
6500     // verifying it.
6501     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6502     _secondary_free_list.verify_list();
6503   }
6504 
6505   // If a concurrent region freeing operation is in progress it will
6506   // be difficult to correctly attributed any free regions we come
6507   // across to the correct free list given that they might belong to
6508   // one of several (free_list, secondary_free_list, any local lists,
6509   // etc.). So, if that's the case we will skip the rest of the
6510   // verification operation. Alternatively, waiting for the concurrent
6511   // operation to complete will have a non-trivial effect on the GC's
6512   // operation (no concurrent operation will last longer than the
6513   // interval between two calls to verification) and it might hide
6514   // any issues that we would like to catch during testing.
6515   if (free_regions_coming()) {
6516     return;
6517   }
6518 
6519   // Make sure we append the secondary_free_list on the free_list so
6520   // that all free regions we will come across can be safely
6521   // attributed to the free_list.
6522   append_secondary_free_list_if_not_empty_with_lock();
6523 
6524   // Finally, make sure that the region accounting in the lists is
6525   // consistent with what we see in the heap.
6526 
6527   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6528   heap_region_iterate(&cl);
6529   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6530 }
6531 
6532 // Optimized nmethod scanning
6533 
6534 class RegisterNMethodOopClosure: public OopClosure {
6535   G1CollectedHeap* _g1h;
6536   nmethod* _nm;
6537 
6538   template <class T> void do_oop_work(T* p) {
6539     T heap_oop = oopDesc::load_heap_oop(p);
6540     if (!oopDesc::is_null(heap_oop)) {
6541       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6542       HeapRegion* hr = _g1h->heap_region_containing(obj);
6543       assert(!hr->is_continues_humongous(),
6544              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6545                      " starting at "HR_FORMAT,
6546                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6547 
6548       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6549       hr->add_strong_code_root_locked(_nm);
6550     }
6551   }
6552 
6553 public:
6554   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6555     _g1h(g1h), _nm(nm) {}
6556 
6557   void do_oop(oop* p)       { do_oop_work(p); }
6558   void do_oop(narrowOop* p) { do_oop_work(p); }
6559 };
6560 
6561 class UnregisterNMethodOopClosure: public OopClosure {
6562   G1CollectedHeap* _g1h;
6563   nmethod* _nm;
6564 
6565   template <class T> void do_oop_work(T* p) {
6566     T heap_oop = oopDesc::load_heap_oop(p);
6567     if (!oopDesc::is_null(heap_oop)) {
6568       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6569       HeapRegion* hr = _g1h->heap_region_containing(obj);
6570       assert(!hr->is_continues_humongous(),
6571              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6572                      " starting at "HR_FORMAT,
6573                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6574 
6575       hr->remove_strong_code_root(_nm);
6576     }
6577   }
6578 
6579 public:
6580   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6581     _g1h(g1h), _nm(nm) {}
6582 
6583   void do_oop(oop* p)       { do_oop_work(p); }
6584   void do_oop(narrowOop* p) { do_oop_work(p); }
6585 };
6586 
6587 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6588   CollectedHeap::register_nmethod(nm);
6589 
6590   guarantee(nm != NULL, "sanity");
6591   RegisterNMethodOopClosure reg_cl(this, nm);
6592   nm->oops_do(&reg_cl);
6593 }
6594 
6595 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6596   CollectedHeap::unregister_nmethod(nm);
6597 
6598   guarantee(nm != NULL, "sanity");
6599   UnregisterNMethodOopClosure reg_cl(this, nm);
6600   nm->oops_do(&reg_cl, true);
6601 }
6602 
6603 void G1CollectedHeap::purge_code_root_memory() {
6604   double purge_start = os::elapsedTime();
6605   G1CodeRootSet::purge();
6606   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6607   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6608 }
6609 
6610 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6611   G1CollectedHeap* _g1h;
6612 
6613 public:
6614   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6615     _g1h(g1h) {}
6616 
6617   void do_code_blob(CodeBlob* cb) {
6618     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6619     if (nm == NULL) {
6620       return;
6621     }
6622 
6623     if (ScavengeRootsInCode) {
6624       _g1h->register_nmethod(nm);
6625     }
6626   }
6627 };
6628 
6629 void G1CollectedHeap::rebuild_strong_code_roots() {
6630   RebuildStrongCodeRootClosure blob_cl(this);
6631   CodeCache::blobs_do(&blob_cl);
6632 }