1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/g1StringDedup.hpp"
  38 #include "gc_implementation/g1/heapRegion.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  40 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  41 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  42 #include "gc_implementation/shared/vmGCOperations.hpp"
  43 #include "gc_implementation/shared/gcTimer.hpp"
  44 #include "gc_implementation/shared/gcTrace.hpp"
  45 #include "gc_implementation/shared/gcTraceTime.hpp"
  46 #include "memory/allocation.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/referencePolicy.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/strongRootsScope.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/prefetch.inline.hpp"
  56 #include "services/memTracker.hpp"
  57 
  58 // Concurrent marking bit map wrapper
  59 
  60 CMBitMapRO::CMBitMapRO(int shifter) :
  61   _bm(),
  62   _shifter(shifter) {
  63   _bmStartWord = 0;
  64   _bmWordSize = 0;
  65 }
  66 
  67 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  68                                                const HeapWord* limit) const {
  69   // First we must round addr *up* to a possible object boundary.
  70   addr = (HeapWord*)align_size_up((intptr_t)addr,
  71                                   HeapWordSize << _shifter);
  72   size_t addrOffset = heapWordToOffset(addr);
  73   if (limit == NULL) {
  74     limit = _bmStartWord + _bmWordSize;
  75   }
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  86                                                  const HeapWord* limit) const {
  87   size_t addrOffset = heapWordToOffset(addr);
  88   if (limit == NULL) {
  89     limit = _bmStartWord + _bmWordSize;
  90   }
  91   size_t limitOffset = heapWordToOffset(limit);
  92   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  93   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  94   assert(nextAddr >= addr, "get_next_one postcondition");
  95   assert(nextAddr == limit || !isMarked(nextAddr),
  96          "get_next_one postcondition");
  97   return nextAddr;
  98 }
  99 
 100 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 101   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 102   return (int) (diff >> _shifter);
 103 }
 104 
 105 #ifndef PRODUCT
 106 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 107   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 108   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 109          "size inconsistency");
 110   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 111          _bmWordSize  == heap_rs.word_size();
 112 }
 113 #endif
 114 
 115 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 116   _bm.print_on_error(st, prefix);
 117 }
 118 
 119 size_t CMBitMap::compute_size(size_t heap_size) {
 120   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 121 }
 122 
 123 size_t CMBitMap::mark_distance() {
 124   return MinObjAlignmentInBytes * BitsPerByte;
 125 }
 126 
 127 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 128   _bmStartWord = heap.start();
 129   _bmWordSize = heap.word_size();
 130 
 131   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 132   _bm.set_size(_bmWordSize >> _shifter);
 133 
 134   storage->set_mapping_changed_listener(&_listener);
 135 }
 136 
 137 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 138   if (zero_filled) {
 139     return;
 140   }
 141   // We need to clear the bitmap on commit, removing any existing information.
 142   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 143   _bm->clearRange(mr);
 144 }
 145 
 146 // Closure used for clearing the given mark bitmap.
 147 class ClearBitmapHRClosure : public HeapRegionClosure {
 148  private:
 149   ConcurrentMark* _cm;
 150   CMBitMap* _bitmap;
 151   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 152  public:
 153   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 154     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 155   }
 156 
 157   virtual bool doHeapRegion(HeapRegion* r) {
 158     size_t const chunk_size_in_words = M / HeapWordSize;
 159 
 160     HeapWord* cur = r->bottom();
 161     HeapWord* const end = r->end();
 162 
 163     while (cur < end) {
 164       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 165       _bitmap->clearRange(mr);
 166 
 167       cur += chunk_size_in_words;
 168 
 169       // Abort iteration if after yielding the marking has been aborted.
 170       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 171         return true;
 172       }
 173       // Repeat the asserts from before the start of the closure. We will do them
 174       // as asserts here to minimize their overhead on the product. However, we
 175       // will have them as guarantees at the beginning / end of the bitmap
 176       // clearing to get some checking in the product.
 177       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 178       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 179     }
 180 
 181     return false;
 182   }
 183 };
 184 
 185 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 186   ClearBitmapHRClosure* _cl;
 187   HeapRegionClaimer     _hrclaimer;
 188   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 189 
 190 public:
 191   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 192       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 193 
 194   void work(uint worker_id) {
 195     if (_suspendible) {
 196       SuspendibleThreadSet::join();
 197     }
 198     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 199     if (_suspendible) {
 200       SuspendibleThreadSet::leave();
 201     }
 202   }
 203 };
 204 
 205 void CMBitMap::clearAll() {
 206   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 207   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 208   uint n_workers = g1h->workers()->active_workers();
 209   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 210   g1h->workers()->run_task(&task);
 211   guarantee(cl.complete(), "Must have completed iteration.");
 212   return;
 213 }
 214 
 215 void CMBitMap::markRange(MemRegion mr) {
 216   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 217   assert(!mr.is_empty(), "unexpected empty region");
 218   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 219           ((HeapWord *) mr.end())),
 220          "markRange memory region end is not card aligned");
 221   // convert address range into offset range
 222   _bm.at_put_range(heapWordToOffset(mr.start()),
 223                    heapWordToOffset(mr.end()), true);
 224 }
 225 
 226 void CMBitMap::clearRange(MemRegion mr) {
 227   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 228   assert(!mr.is_empty(), "unexpected empty region");
 229   // convert address range into offset range
 230   _bm.at_put_range(heapWordToOffset(mr.start()),
 231                    heapWordToOffset(mr.end()), false);
 232 }
 233 
 234 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 235                                             HeapWord* end_addr) {
 236   HeapWord* start = getNextMarkedWordAddress(addr);
 237   start = MIN2(start, end_addr);
 238   HeapWord* end   = getNextUnmarkedWordAddress(start);
 239   end = MIN2(end, end_addr);
 240   assert(start <= end, "Consistency check");
 241   MemRegion mr(start, end);
 242   if (!mr.is_empty()) {
 243     clearRange(mr);
 244   }
 245   return mr;
 246 }
 247 
 248 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 249   _base(NULL), _cm(cm)
 250 #ifdef ASSERT
 251   , _drain_in_progress(false)
 252   , _drain_in_progress_yields(false)
 253 #endif
 254 {}
 255 
 256 bool CMMarkStack::allocate(size_t capacity) {
 257   // allocate a stack of the requisite depth
 258   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 259   if (!rs.is_reserved()) {
 260     warning("ConcurrentMark MarkStack allocation failure");
 261     return false;
 262   }
 263   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 264   if (!_virtual_space.initialize(rs, rs.size())) {
 265     warning("ConcurrentMark MarkStack backing store failure");
 266     // Release the virtual memory reserved for the marking stack
 267     rs.release();
 268     return false;
 269   }
 270   assert(_virtual_space.committed_size() == rs.size(),
 271          "Didn't reserve backing store for all of ConcurrentMark stack?");
 272   _base = (oop*) _virtual_space.low();
 273   setEmpty();
 274   _capacity = (jint) capacity;
 275   _saved_index = -1;
 276   _should_expand = false;
 277   NOT_PRODUCT(_max_depth = 0);
 278   return true;
 279 }
 280 
 281 void CMMarkStack::expand() {
 282   // Called, during remark, if we've overflown the marking stack during marking.
 283   assert(isEmpty(), "stack should been emptied while handling overflow");
 284   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 285   // Clear expansion flag
 286   _should_expand = false;
 287   if (_capacity == (jint) MarkStackSizeMax) {
 288     if (PrintGCDetails && Verbose) {
 289       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 290     }
 291     return;
 292   }
 293   // Double capacity if possible
 294   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 295   // Do not give up existing stack until we have managed to
 296   // get the double capacity that we desired.
 297   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 298                                                            sizeof(oop)));
 299   if (rs.is_reserved()) {
 300     // Release the backing store associated with old stack
 301     _virtual_space.release();
 302     // Reinitialize virtual space for new stack
 303     if (!_virtual_space.initialize(rs, rs.size())) {
 304       fatal("Not enough swap for expanded marking stack capacity");
 305     }
 306     _base = (oop*)(_virtual_space.low());
 307     _index = 0;
 308     _capacity = new_capacity;
 309   } else {
 310     if (PrintGCDetails && Verbose) {
 311       // Failed to double capacity, continue;
 312       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 313                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 314                           _capacity / K, new_capacity / K);
 315     }
 316   }
 317 }
 318 
 319 void CMMarkStack::set_should_expand() {
 320   // If we're resetting the marking state because of an
 321   // marking stack overflow, record that we should, if
 322   // possible, expand the stack.
 323   _should_expand = _cm->has_overflown();
 324 }
 325 
 326 CMMarkStack::~CMMarkStack() {
 327   if (_base != NULL) {
 328     _base = NULL;
 329     _virtual_space.release();
 330   }
 331 }
 332 
 333 void CMMarkStack::par_push(oop ptr) {
 334   while (true) {
 335     if (isFull()) {
 336       _overflow = true;
 337       return;
 338     }
 339     // Otherwise...
 340     jint index = _index;
 341     jint next_index = index+1;
 342     jint res = Atomic::cmpxchg(next_index, &_index, index);
 343     if (res == index) {
 344       _base[index] = ptr;
 345       // Note that we don't maintain this atomically.  We could, but it
 346       // doesn't seem necessary.
 347       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 348       return;
 349     }
 350     // Otherwise, we need to try again.
 351   }
 352 }
 353 
 354 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 355   while (true) {
 356     if (isFull()) {
 357       _overflow = true;
 358       return;
 359     }
 360     // Otherwise...
 361     jint index = _index;
 362     jint next_index = index + n;
 363     if (next_index > _capacity) {
 364       _overflow = true;
 365       return;
 366     }
 367     jint res = Atomic::cmpxchg(next_index, &_index, index);
 368     if (res == index) {
 369       for (int i = 0; i < n; i++) {
 370         int  ind = index + i;
 371         assert(ind < _capacity, "By overflow test above.");
 372         _base[ind] = ptr_arr[i];
 373       }
 374       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 375       return;
 376     }
 377     // Otherwise, we need to try again.
 378   }
 379 }
 380 
 381 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 382   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 383   jint start = _index;
 384   jint next_index = start + n;
 385   if (next_index > _capacity) {
 386     _overflow = true;
 387     return;
 388   }
 389   // Otherwise.
 390   _index = next_index;
 391   for (int i = 0; i < n; i++) {
 392     int ind = start + i;
 393     assert(ind < _capacity, "By overflow test above.");
 394     _base[ind] = ptr_arr[i];
 395   }
 396   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 397 }
 398 
 399 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 400   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 401   jint index = _index;
 402   if (index == 0) {
 403     *n = 0;
 404     return false;
 405   } else {
 406     int k = MIN2(max, index);
 407     jint  new_ind = index - k;
 408     for (int j = 0; j < k; j++) {
 409       ptr_arr[j] = _base[new_ind + j];
 410     }
 411     _index = new_ind;
 412     *n = k;
 413     return true;
 414   }
 415 }
 416 
 417 template<class OopClosureClass>
 418 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 419   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 420          || SafepointSynchronize::is_at_safepoint(),
 421          "Drain recursion must be yield-safe.");
 422   bool res = true;
 423   debug_only(_drain_in_progress = true);
 424   debug_only(_drain_in_progress_yields = yield_after);
 425   while (!isEmpty()) {
 426     oop newOop = pop();
 427     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 428     assert(newOop->is_oop(), "Expected an oop");
 429     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 430            "only grey objects on this stack");
 431     newOop->oop_iterate(cl);
 432     if (yield_after && _cm->do_yield_check()) {
 433       res = false;
 434       break;
 435     }
 436   }
 437   debug_only(_drain_in_progress = false);
 438   return res;
 439 }
 440 
 441 void CMMarkStack::note_start_of_gc() {
 442   assert(_saved_index == -1,
 443          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 444   _saved_index = _index;
 445 }
 446 
 447 void CMMarkStack::note_end_of_gc() {
 448   // This is intentionally a guarantee, instead of an assert. If we
 449   // accidentally add something to the mark stack during GC, it
 450   // will be a correctness issue so it's better if we crash. we'll
 451   // only check this once per GC anyway, so it won't be a performance
 452   // issue in any way.
 453   guarantee(_saved_index == _index,
 454             err_msg("saved index: %d index: %d", _saved_index, _index));
 455   _saved_index = -1;
 456 }
 457 
 458 void CMMarkStack::oops_do(OopClosure* f) {
 459   assert(_saved_index == _index,
 460          err_msg("saved index: %d index: %d", _saved_index, _index));
 461   for (int i = 0; i < _index; i += 1) {
 462     f->do_oop(&_base[i]);
 463   }
 464 }
 465 
 466 CMRootRegions::CMRootRegions() :
 467   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 468   _should_abort(false),  _next_survivor(NULL) { }
 469 
 470 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 471   _young_list = g1h->young_list();
 472   _cm = cm;
 473 }
 474 
 475 void CMRootRegions::prepare_for_scan() {
 476   assert(!scan_in_progress(), "pre-condition");
 477 
 478   // Currently, only survivors can be root regions.
 479   assert(_next_survivor == NULL, "pre-condition");
 480   _next_survivor = _young_list->first_survivor_region();
 481   _scan_in_progress = (_next_survivor != NULL);
 482   _should_abort = false;
 483 }
 484 
 485 HeapRegion* CMRootRegions::claim_next() {
 486   if (_should_abort) {
 487     // If someone has set the should_abort flag, we return NULL to
 488     // force the caller to bail out of their loop.
 489     return NULL;
 490   }
 491 
 492   // Currently, only survivors can be root regions.
 493   HeapRegion* res = _next_survivor;
 494   if (res != NULL) {
 495     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 496     // Read it again in case it changed while we were waiting for the lock.
 497     res = _next_survivor;
 498     if (res != NULL) {
 499       if (res == _young_list->last_survivor_region()) {
 500         // We just claimed the last survivor so store NULL to indicate
 501         // that we're done.
 502         _next_survivor = NULL;
 503       } else {
 504         _next_survivor = res->get_next_young_region();
 505       }
 506     } else {
 507       // Someone else claimed the last survivor while we were trying
 508       // to take the lock so nothing else to do.
 509     }
 510   }
 511   assert(res == NULL || res->is_survivor(), "post-condition");
 512 
 513   return res;
 514 }
 515 
 516 void CMRootRegions::scan_finished() {
 517   assert(scan_in_progress(), "pre-condition");
 518 
 519   // Currently, only survivors can be root regions.
 520   if (!_should_abort) {
 521     assert(_next_survivor == NULL, "we should have claimed all survivors");
 522   }
 523   _next_survivor = NULL;
 524 
 525   {
 526     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 527     _scan_in_progress = false;
 528     RootRegionScan_lock->notify_all();
 529   }
 530 }
 531 
 532 bool CMRootRegions::wait_until_scan_finished() {
 533   if (!scan_in_progress()) return false;
 534 
 535   {
 536     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 537     while (scan_in_progress()) {
 538       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 539     }
 540   }
 541   return true;
 542 }
 543 
 544 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 545 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 546 #endif // _MSC_VER
 547 
 548 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 549   return MAX2((n_par_threads + 2) / 4, 1U);
 550 }
 551 
 552 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 553   _g1h(g1h),
 554   _markBitMap1(),
 555   _markBitMap2(),
 556   _parallel_marking_threads(0),
 557   _max_parallel_marking_threads(0),
 558   _sleep_factor(0.0),
 559   _marking_task_overhead(1.0),
 560   _cleanup_sleep_factor(0.0),
 561   _cleanup_task_overhead(1.0),
 562   _cleanup_list("Cleanup List"),
 563   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 564   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 565             CardTableModRefBS::card_shift,
 566             false /* in_resource_area*/),
 567 
 568   _prevMarkBitMap(&_markBitMap1),
 569   _nextMarkBitMap(&_markBitMap2),
 570 
 571   _markStack(this),
 572   // _finger set in set_non_marking_state
 573 
 574   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 575   // _active_tasks set in set_non_marking_state
 576   // _tasks set inside the constructor
 577   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 578   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 579 
 580   _has_overflown(false),
 581   _concurrent(false),
 582   _has_aborted(false),
 583   _aborted_gc_id(GCId::undefined()),
 584   _restart_for_overflow(false),
 585   _concurrent_marking_in_progress(false),
 586 
 587   // _verbose_level set below
 588 
 589   _init_times(),
 590   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 591   _cleanup_times(),
 592   _total_counting_time(0.0),
 593   _total_rs_scrub_time(0.0),
 594 
 595   _parallel_workers(NULL),
 596 
 597   _count_card_bitmaps(NULL),
 598   _count_marked_bytes(NULL),
 599   _completed_initialization(false) {
 600   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 601   if (verbose_level < no_verbose) {
 602     verbose_level = no_verbose;
 603   }
 604   if (verbose_level > high_verbose) {
 605     verbose_level = high_verbose;
 606   }
 607   _verbose_level = verbose_level;
 608 
 609   if (verbose_low()) {
 610     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 611                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 612   }
 613 
 614   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 615   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 616 
 617   // Create & start a ConcurrentMark thread.
 618   _cmThread = new ConcurrentMarkThread(this);
 619   assert(cmThread() != NULL, "CM Thread should have been created");
 620   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 621   if (_cmThread->osthread() == NULL) {
 622       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 623   }
 624 
 625   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 626   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 627   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 628 
 629   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 630   satb_qs.set_buffer_size(G1SATBBufferSize);
 631 
 632   _root_regions.init(_g1h, this);
 633 
 634   if (ConcGCThreads > ParallelGCThreads) {
 635     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 636             "than ParallelGCThreads (" UINTX_FORMAT ").",
 637             ConcGCThreads, ParallelGCThreads);
 638     return;
 639   }
 640   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 641     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 642     // if both are set
 643     _sleep_factor             = 0.0;
 644     _marking_task_overhead    = 1.0;
 645   } else if (G1MarkingOverheadPercent > 0) {
 646     // We will calculate the number of parallel marking threads based
 647     // on a target overhead with respect to the soft real-time goal
 648     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 649     double overall_cm_overhead =
 650       (double) MaxGCPauseMillis * marking_overhead /
 651       (double) GCPauseIntervalMillis;
 652     double cpu_ratio = 1.0 / (double) os::processor_count();
 653     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 654     double marking_task_overhead =
 655       overall_cm_overhead / marking_thread_num *
 656                                               (double) os::processor_count();
 657     double sleep_factor =
 658                        (1.0 - marking_task_overhead) / marking_task_overhead;
 659 
 660     FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 661     _sleep_factor             = sleep_factor;
 662     _marking_task_overhead    = marking_task_overhead;
 663   } else {
 664     // Calculate the number of parallel marking threads by scaling
 665     // the number of parallel GC threads.
 666     uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 667     FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 668     _sleep_factor             = 0.0;
 669     _marking_task_overhead    = 1.0;
 670   }
 671 
 672   assert(ConcGCThreads > 0, "Should have been set");
 673   _parallel_marking_threads = (uint) ConcGCThreads;
 674   _max_parallel_marking_threads = _parallel_marking_threads;
 675 
 676   if (parallel_marking_threads() > 1) {
 677     _cleanup_task_overhead = 1.0;
 678   } else {
 679     _cleanup_task_overhead = marking_task_overhead();
 680   }
 681   _cleanup_sleep_factor =
 682                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 683 
 684 #if 0
 685   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 686   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 687   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 688   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 689   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 690 #endif
 691 
 692   _parallel_workers = new FlexibleWorkGang("G1 Marker",
 693        _max_parallel_marking_threads, false, true);
 694   if (_parallel_workers == NULL) {
 695     vm_exit_during_initialization("Failed necessary allocation.");
 696   } else {
 697     _parallel_workers->initialize_workers();
 698   }
 699 
 700   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 701     size_t mark_stack_size =
 702       MIN2(MarkStackSizeMax,
 703           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 704     // Verify that the calculated value for MarkStackSize is in range.
 705     // It would be nice to use the private utility routine from Arguments.
 706     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 707       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 708               "must be between 1 and " SIZE_FORMAT,
 709               mark_stack_size, MarkStackSizeMax);
 710       return;
 711     }
 712     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 713   } else {
 714     // Verify MarkStackSize is in range.
 715     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 716       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 717         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 718           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 719                   "must be between 1 and " SIZE_FORMAT,
 720                   MarkStackSize, MarkStackSizeMax);
 721           return;
 722         }
 723       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 724         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 725           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 726                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 727                   MarkStackSize, MarkStackSizeMax);
 728           return;
 729         }
 730       }
 731     }
 732   }
 733 
 734   if (!_markStack.allocate(MarkStackSize)) {
 735     warning("Failed to allocate CM marking stack");
 736     return;
 737   }
 738 
 739   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 740   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 741 
 742   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 743   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 744 
 745   BitMap::idx_t card_bm_size = _card_bm.size();
 746 
 747   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 748   _active_tasks = _max_worker_id;
 749 
 750   uint max_regions = _g1h->max_regions();
 751   for (uint i = 0; i < _max_worker_id; ++i) {
 752     CMTaskQueue* task_queue = new CMTaskQueue();
 753     task_queue->initialize();
 754     _task_queues->register_queue(i, task_queue);
 755 
 756     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 757     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 758 
 759     _tasks[i] = new CMTask(i, this,
 760                            _count_marked_bytes[i],
 761                            &_count_card_bitmaps[i],
 762                            task_queue, _task_queues);
 763 
 764     _accum_task_vtime[i] = 0.0;
 765   }
 766 
 767   // Calculate the card number for the bottom of the heap. Used
 768   // in biasing indexes into the accounting card bitmaps.
 769   _heap_bottom_card_num =
 770     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 771                                 CardTableModRefBS::card_shift);
 772 
 773   // Clear all the liveness counting data
 774   clear_all_count_data();
 775 
 776   // so that the call below can read a sensible value
 777   _heap_start = g1h->reserved_region().start();
 778   set_non_marking_state();
 779   _completed_initialization = true;
 780 }
 781 
 782 void ConcurrentMark::reset() {
 783   // Starting values for these two. This should be called in a STW
 784   // phase.
 785   MemRegion reserved = _g1h->g1_reserved();
 786   _heap_start = reserved.start();
 787   _heap_end   = reserved.end();
 788 
 789   // Separated the asserts so that we know which one fires.
 790   assert(_heap_start != NULL, "heap bounds should look ok");
 791   assert(_heap_end != NULL, "heap bounds should look ok");
 792   assert(_heap_start < _heap_end, "heap bounds should look ok");
 793 
 794   // Reset all the marking data structures and any necessary flags
 795   reset_marking_state();
 796 
 797   if (verbose_low()) {
 798     gclog_or_tty->print_cr("[global] resetting");
 799   }
 800 
 801   // We do reset all of them, since different phases will use
 802   // different number of active threads. So, it's easiest to have all
 803   // of them ready.
 804   for (uint i = 0; i < _max_worker_id; ++i) {
 805     _tasks[i]->reset(_nextMarkBitMap);
 806   }
 807 
 808   // we need this to make sure that the flag is on during the evac
 809   // pause with initial mark piggy-backed
 810   set_concurrent_marking_in_progress();
 811 }
 812 
 813 
 814 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 815   _markStack.set_should_expand();
 816   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 817   if (clear_overflow) {
 818     clear_has_overflown();
 819   } else {
 820     assert(has_overflown(), "pre-condition");
 821   }
 822   _finger = _heap_start;
 823 
 824   for (uint i = 0; i < _max_worker_id; ++i) {
 825     CMTaskQueue* queue = _task_queues->queue(i);
 826     queue->set_empty();
 827   }
 828 }
 829 
 830 void ConcurrentMark::set_concurrency(uint active_tasks) {
 831   assert(active_tasks <= _max_worker_id, "we should not have more");
 832 
 833   _active_tasks = active_tasks;
 834   // Need to update the three data structures below according to the
 835   // number of active threads for this phase.
 836   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 837   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 838   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 839 }
 840 
 841 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 842   set_concurrency(active_tasks);
 843 
 844   _concurrent = concurrent;
 845   // We propagate this to all tasks, not just the active ones.
 846   for (uint i = 0; i < _max_worker_id; ++i)
 847     _tasks[i]->set_concurrent(concurrent);
 848 
 849   if (concurrent) {
 850     set_concurrent_marking_in_progress();
 851   } else {
 852     // We currently assume that the concurrent flag has been set to
 853     // false before we start remark. At this point we should also be
 854     // in a STW phase.
 855     assert(!concurrent_marking_in_progress(), "invariant");
 856     assert(out_of_regions(),
 857            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 858                    p2i(_finger), p2i(_heap_end)));
 859   }
 860 }
 861 
 862 void ConcurrentMark::set_non_marking_state() {
 863   // We set the global marking state to some default values when we're
 864   // not doing marking.
 865   reset_marking_state();
 866   _active_tasks = 0;
 867   clear_concurrent_marking_in_progress();
 868 }
 869 
 870 ConcurrentMark::~ConcurrentMark() {
 871   // The ConcurrentMark instance is never freed.
 872   ShouldNotReachHere();
 873 }
 874 
 875 void ConcurrentMark::clearNextBitmap() {
 876   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 877 
 878   // Make sure that the concurrent mark thread looks to still be in
 879   // the current cycle.
 880   guarantee(cmThread()->during_cycle(), "invariant");
 881 
 882   // We are finishing up the current cycle by clearing the next
 883   // marking bitmap and getting it ready for the next cycle. During
 884   // this time no other cycle can start. So, let's make sure that this
 885   // is the case.
 886   guarantee(!g1h->mark_in_progress(), "invariant");
 887 
 888   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 889   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 890   _parallel_workers->run_task(&task);
 891 
 892   // Clear the liveness counting data. If the marking has been aborted, the abort()
 893   // call already did that.
 894   if (cl.complete()) {
 895     clear_all_count_data();
 896   }
 897 
 898   // Repeat the asserts from above.
 899   guarantee(cmThread()->during_cycle(), "invariant");
 900   guarantee(!g1h->mark_in_progress(), "invariant");
 901 }
 902 
 903 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 904   CMBitMap* _bitmap;
 905   bool _error;
 906  public:
 907   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 908   }
 909 
 910   virtual bool doHeapRegion(HeapRegion* r) {
 911     // This closure can be called concurrently to the mutator, so we must make sure
 912     // that the result of the getNextMarkedWordAddress() call is compared to the
 913     // value passed to it as limit to detect any found bits.
 914     // We can use the region's orig_end() for the limit and the comparison value
 915     // as it always contains the "real" end of the region that never changes and
 916     // has no side effects.
 917     // Due to the latter, there can also be no problem with the compiler generating
 918     // reloads of the orig_end() call.
 919     HeapWord* end = r->orig_end();
 920     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 921   }
 922 };
 923 
 924 bool ConcurrentMark::nextMarkBitmapIsClear() {
 925   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 926   _g1h->heap_region_iterate(&cl);
 927   return cl.complete();
 928 }
 929 
 930 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 931 public:
 932   bool doHeapRegion(HeapRegion* r) {
 933     if (!r->is_continues_humongous()) {
 934       r->note_start_of_marking();
 935     }
 936     return false;
 937   }
 938 };
 939 
 940 void ConcurrentMark::checkpointRootsInitialPre() {
 941   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 942   G1CollectorPolicy* g1p = g1h->g1_policy();
 943 
 944   _has_aborted = false;
 945 
 946   // Initialize marking structures. This has to be done in a STW phase.
 947   reset();
 948 
 949   // For each region note start of marking.
 950   NoteStartOfMarkHRClosure startcl;
 951   g1h->heap_region_iterate(&startcl);
 952 }
 953 
 954 
 955 void ConcurrentMark::checkpointRootsInitialPost() {
 956   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 957 
 958   // If we force an overflow during remark, the remark operation will
 959   // actually abort and we'll restart concurrent marking. If we always
 960   // force an overflow during remark we'll never actually complete the
 961   // marking phase. So, we initialize this here, at the start of the
 962   // cycle, so that at the remaining overflow number will decrease at
 963   // every remark and we'll eventually not need to cause one.
 964   force_overflow_stw()->init();
 965 
 966   // Start Concurrent Marking weak-reference discovery.
 967   ReferenceProcessor* rp = g1h->ref_processor_cm();
 968   // enable ("weak") refs discovery
 969   rp->enable_discovery();
 970   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 971 
 972   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 973   // This is the start of  the marking cycle, we're expected all
 974   // threads to have SATB queues with active set to false.
 975   satb_mq_set.set_active_all_threads(true, /* new active value */
 976                                      false /* expected_active */);
 977 
 978   _root_regions.prepare_for_scan();
 979 
 980   // update_g1_committed() will be called at the end of an evac pause
 981   // when marking is on. So, it's also called at the end of the
 982   // initial-mark pause to update the heap end, if the heap expands
 983   // during it. No need to call it here.
 984 }
 985 
 986 /*
 987  * Notice that in the next two methods, we actually leave the STS
 988  * during the barrier sync and join it immediately afterwards. If we
 989  * do not do this, the following deadlock can occur: one thread could
 990  * be in the barrier sync code, waiting for the other thread to also
 991  * sync up, whereas another one could be trying to yield, while also
 992  * waiting for the other threads to sync up too.
 993  *
 994  * Note, however, that this code is also used during remark and in
 995  * this case we should not attempt to leave / enter the STS, otherwise
 996  * we'll either hit an assert (debug / fastdebug) or deadlock
 997  * (product). So we should only leave / enter the STS if we are
 998  * operating concurrently.
 999  *
1000  * Because the thread that does the sync barrier has left the STS, it
1001  * is possible to be suspended for a Full GC or an evacuation pause
1002  * could occur. This is actually safe, since the entering the sync
1003  * barrier is one of the last things do_marking_step() does, and it
1004  * doesn't manipulate any data structures afterwards.
1005  */
1006 
1007 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
1008   if (verbose_low()) {
1009     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1010   }
1011 
1012   if (concurrent()) {
1013     SuspendibleThreadSet::leave();
1014   }
1015 
1016   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1017 
1018   if (concurrent()) {
1019     SuspendibleThreadSet::join();
1020   }
1021   // at this point everyone should have synced up and not be doing any
1022   // more work
1023 
1024   if (verbose_low()) {
1025     if (barrier_aborted) {
1026       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1027     } else {
1028       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1029     }
1030   }
1031 
1032   if (barrier_aborted) {
1033     // If the barrier aborted we ignore the overflow condition and
1034     // just abort the whole marking phase as quickly as possible.
1035     return;
1036   }
1037 
1038   // If we're executing the concurrent phase of marking, reset the marking
1039   // state; otherwise the marking state is reset after reference processing,
1040   // during the remark pause.
1041   // If we reset here as a result of an overflow during the remark we will
1042   // see assertion failures from any subsequent set_concurrency_and_phase()
1043   // calls.
1044   if (concurrent()) {
1045     // let the task associated with with worker 0 do this
1046     if (worker_id == 0) {
1047       // task 0 is responsible for clearing the global data structures
1048       // We should be here because of an overflow. During STW we should
1049       // not clear the overflow flag since we rely on it being true when
1050       // we exit this method to abort the pause and restart concurrent
1051       // marking.
1052       reset_marking_state(true /* clear_overflow */);
1053       force_overflow()->update();
1054 
1055       if (G1Log::fine()) {
1056         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1057         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1058       }
1059     }
1060   }
1061 
1062   // after this, each task should reset its own data structures then
1063   // then go into the second barrier
1064 }
1065 
1066 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1067   if (verbose_low()) {
1068     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1069   }
1070 
1071   if (concurrent()) {
1072     SuspendibleThreadSet::leave();
1073   }
1074 
1075   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1076 
1077   if (concurrent()) {
1078     SuspendibleThreadSet::join();
1079   }
1080   // at this point everything should be re-initialized and ready to go
1081 
1082   if (verbose_low()) {
1083     if (barrier_aborted) {
1084       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1085     } else {
1086       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1087     }
1088   }
1089 }
1090 
1091 #ifndef PRODUCT
1092 void ForceOverflowSettings::init() {
1093   _num_remaining = G1ConcMarkForceOverflow;
1094   _force = false;
1095   update();
1096 }
1097 
1098 void ForceOverflowSettings::update() {
1099   if (_num_remaining > 0) {
1100     _num_remaining -= 1;
1101     _force = true;
1102   } else {
1103     _force = false;
1104   }
1105 }
1106 
1107 bool ForceOverflowSettings::should_force() {
1108   if (_force) {
1109     _force = false;
1110     return true;
1111   } else {
1112     return false;
1113   }
1114 }
1115 #endif // !PRODUCT
1116 
1117 class CMConcurrentMarkingTask: public AbstractGangTask {
1118 private:
1119   ConcurrentMark*       _cm;
1120   ConcurrentMarkThread* _cmt;
1121 
1122 public:
1123   void work(uint worker_id) {
1124     assert(Thread::current()->is_ConcurrentGC_thread(),
1125            "this should only be done by a conc GC thread");
1126     ResourceMark rm;
1127 
1128     double start_vtime = os::elapsedVTime();
1129 
1130     SuspendibleThreadSet::join();
1131 
1132     assert(worker_id < _cm->active_tasks(), "invariant");
1133     CMTask* the_task = _cm->task(worker_id);
1134     the_task->record_start_time();
1135     if (!_cm->has_aborted()) {
1136       do {
1137         double start_vtime_sec = os::elapsedVTime();
1138         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1139 
1140         the_task->do_marking_step(mark_step_duration_ms,
1141                                   true  /* do_termination */,
1142                                   false /* is_serial*/);
1143 
1144         double end_vtime_sec = os::elapsedVTime();
1145         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1146         _cm->clear_has_overflown();
1147 
1148         _cm->do_yield_check(worker_id);
1149 
1150         jlong sleep_time_ms;
1151         if (!_cm->has_aborted() && the_task->has_aborted()) {
1152           sleep_time_ms =
1153             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1154           SuspendibleThreadSet::leave();
1155           os::sleep(Thread::current(), sleep_time_ms, false);
1156           SuspendibleThreadSet::join();
1157         }
1158       } while (!_cm->has_aborted() && the_task->has_aborted());
1159     }
1160     the_task->record_end_time();
1161     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1162 
1163     SuspendibleThreadSet::leave();
1164 
1165     double end_vtime = os::elapsedVTime();
1166     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1167   }
1168 
1169   CMConcurrentMarkingTask(ConcurrentMark* cm,
1170                           ConcurrentMarkThread* cmt) :
1171       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1172 
1173   ~CMConcurrentMarkingTask() { }
1174 };
1175 
1176 // Calculates the number of active workers for a concurrent
1177 // phase.
1178 uint ConcurrentMark::calc_parallel_marking_threads() {
1179   uint n_conc_workers = 0;
1180   if (!UseDynamicNumberOfGCThreads ||
1181       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1182        !ForceDynamicNumberOfGCThreads)) {
1183     n_conc_workers = max_parallel_marking_threads();
1184   } else {
1185     n_conc_workers =
1186       AdaptiveSizePolicy::calc_default_active_workers(
1187                                    max_parallel_marking_threads(),
1188                                    1, /* Minimum workers */
1189                                    parallel_marking_threads(),
1190                                    Threads::number_of_non_daemon_threads());
1191     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1192     // that scaling has already gone into "_max_parallel_marking_threads".
1193   }
1194   assert(n_conc_workers > 0, "Always need at least 1");
1195   return n_conc_workers;
1196 }
1197 
1198 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1199   // Currently, only survivors can be root regions.
1200   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1201   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1202 
1203   const uintx interval = PrefetchScanIntervalInBytes;
1204   HeapWord* curr = hr->bottom();
1205   const HeapWord* end = hr->top();
1206   while (curr < end) {
1207     Prefetch::read(curr, interval);
1208     oop obj = oop(curr);
1209     int size = obj->oop_iterate(&cl);
1210     assert(size == obj->size(), "sanity");
1211     curr += size;
1212   }
1213 }
1214 
1215 class CMRootRegionScanTask : public AbstractGangTask {
1216 private:
1217   ConcurrentMark* _cm;
1218 
1219 public:
1220   CMRootRegionScanTask(ConcurrentMark* cm) :
1221     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1222 
1223   void work(uint worker_id) {
1224     assert(Thread::current()->is_ConcurrentGC_thread(),
1225            "this should only be done by a conc GC thread");
1226 
1227     CMRootRegions* root_regions = _cm->root_regions();
1228     HeapRegion* hr = root_regions->claim_next();
1229     while (hr != NULL) {
1230       _cm->scanRootRegion(hr, worker_id);
1231       hr = root_regions->claim_next();
1232     }
1233   }
1234 };
1235 
1236 void ConcurrentMark::scanRootRegions() {
1237   // Start of concurrent marking.
1238   ClassLoaderDataGraph::clear_claimed_marks();
1239 
1240   // scan_in_progress() will have been set to true only if there was
1241   // at least one root region to scan. So, if it's false, we
1242   // should not attempt to do any further work.
1243   if (root_regions()->scan_in_progress()) {
1244     _parallel_marking_threads = calc_parallel_marking_threads();
1245     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1246            "Maximum number of marking threads exceeded");
1247     uint active_workers = MAX2(1U, parallel_marking_threads());
1248 
1249     CMRootRegionScanTask task(this);
1250     _parallel_workers->set_active_workers(active_workers);
1251     _parallel_workers->run_task(&task);
1252 
1253     // It's possible that has_aborted() is true here without actually
1254     // aborting the survivor scan earlier. This is OK as it's
1255     // mainly used for sanity checking.
1256     root_regions()->scan_finished();
1257   }
1258 }
1259 
1260 void ConcurrentMark::markFromRoots() {
1261   // we might be tempted to assert that:
1262   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1263   //        "inconsistent argument?");
1264   // However that wouldn't be right, because it's possible that
1265   // a safepoint is indeed in progress as a younger generation
1266   // stop-the-world GC happens even as we mark in this generation.
1267 
1268   _restart_for_overflow = false;
1269   force_overflow_conc()->init();
1270 
1271   // _g1h has _n_par_threads
1272   _parallel_marking_threads = calc_parallel_marking_threads();
1273   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1274     "Maximum number of marking threads exceeded");
1275 
1276   uint active_workers = MAX2(1U, parallel_marking_threads());
1277 
1278   // Parallel task terminator is set in "set_concurrency_and_phase()"
1279   set_concurrency_and_phase(active_workers, true /* concurrent */);
1280 
1281   CMConcurrentMarkingTask markingTask(this, cmThread());
1282   _parallel_workers->set_active_workers(active_workers);
1283   // Don't set _n_par_threads because it affects MT in process_roots()
1284   // and the decisions on that MT processing is made elsewhere.
1285   assert(_parallel_workers->active_workers() > 0, "Should have been set");
1286   _parallel_workers->run_task(&markingTask);
1287   print_stats();
1288 }
1289 
1290 // Helper class to get rid of some boilerplate code.
1291 class G1CMTraceTime : public GCTraceTime {
1292   static bool doit_and_prepend(bool doit) {
1293     if (doit) {
1294       gclog_or_tty->put(' ');
1295     }
1296     return doit;
1297   }
1298 
1299  public:
1300   G1CMTraceTime(const char* title, bool doit)
1301     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1302         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1303   }
1304 };
1305 
1306 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1307   // world is stopped at this checkpoint
1308   assert(SafepointSynchronize::is_at_safepoint(),
1309          "world should be stopped");
1310 
1311   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1312 
1313   // If a full collection has happened, we shouldn't do this.
1314   if (has_aborted()) {
1315     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1316     return;
1317   }
1318 
1319   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1320 
1321   if (VerifyDuringGC) {
1322     HandleMark hm;  // handle scope
1323     g1h->prepare_for_verify();
1324     Universe::verify(VerifyOption_G1UsePrevMarking,
1325                      " VerifyDuringGC:(before)");
1326   }
1327   g1h->check_bitmaps("Remark Start");
1328 
1329   G1CollectorPolicy* g1p = g1h->g1_policy();
1330   g1p->record_concurrent_mark_remark_start();
1331 
1332   double start = os::elapsedTime();
1333 
1334   checkpointRootsFinalWork();
1335 
1336   double mark_work_end = os::elapsedTime();
1337 
1338   weakRefsWork(clear_all_soft_refs);
1339 
1340   if (has_overflown()) {
1341     // Oops.  We overflowed.  Restart concurrent marking.
1342     _restart_for_overflow = true;
1343     if (G1TraceMarkStackOverflow) {
1344       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1345     }
1346 
1347     // Verify the heap w.r.t. the previous marking bitmap.
1348     if (VerifyDuringGC) {
1349       HandleMark hm;  // handle scope
1350       g1h->prepare_for_verify();
1351       Universe::verify(VerifyOption_G1UsePrevMarking,
1352                        " VerifyDuringGC:(overflow)");
1353     }
1354 
1355     // Clear the marking state because we will be restarting
1356     // marking due to overflowing the global mark stack.
1357     reset_marking_state();
1358   } else {
1359     {
1360       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1361 
1362       // Aggregate the per-task counting data that we have accumulated
1363       // while marking.
1364       aggregate_count_data();
1365     }
1366 
1367     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1368     // We're done with marking.
1369     // This is the end of  the marking cycle, we're expected all
1370     // threads to have SATB queues with active set to true.
1371     satb_mq_set.set_active_all_threads(false, /* new active value */
1372                                        true /* expected_active */);
1373 
1374     if (VerifyDuringGC) {
1375       HandleMark hm;  // handle scope
1376       g1h->prepare_for_verify();
1377       Universe::verify(VerifyOption_G1UseNextMarking,
1378                        " VerifyDuringGC:(after)");
1379     }
1380     g1h->check_bitmaps("Remark End");
1381     assert(!restart_for_overflow(), "sanity");
1382     // Completely reset the marking state since marking completed
1383     set_non_marking_state();
1384   }
1385 
1386   // Expand the marking stack, if we have to and if we can.
1387   if (_markStack.should_expand()) {
1388     _markStack.expand();
1389   }
1390 
1391   // Statistics
1392   double now = os::elapsedTime();
1393   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1394   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1395   _remark_times.add((now - start) * 1000.0);
1396 
1397   g1p->record_concurrent_mark_remark_end();
1398 
1399   G1CMIsAliveClosure is_alive(g1h);
1400   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1401 }
1402 
1403 // Base class of the closures that finalize and verify the
1404 // liveness counting data.
1405 class CMCountDataClosureBase: public HeapRegionClosure {
1406 protected:
1407   G1CollectedHeap* _g1h;
1408   ConcurrentMark* _cm;
1409   CardTableModRefBS* _ct_bs;
1410 
1411   BitMap* _region_bm;
1412   BitMap* _card_bm;
1413 
1414   // Takes a region that's not empty (i.e., it has at least one
1415   // live object in it and sets its corresponding bit on the region
1416   // bitmap to 1. If the region is "starts humongous" it will also set
1417   // to 1 the bits on the region bitmap that correspond to its
1418   // associated "continues humongous" regions.
1419   void set_bit_for_region(HeapRegion* hr) {
1420     assert(!hr->is_continues_humongous(), "should have filtered those out");
1421 
1422     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1423     if (!hr->is_starts_humongous()) {
1424       // Normal (non-humongous) case: just set the bit.
1425       _region_bm->par_at_put(index, true);
1426     } else {
1427       // Starts humongous case: calculate how many regions are part of
1428       // this humongous region and then set the bit range.
1429       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1430       _region_bm->par_at_put_range(index, end_index, true);
1431     }
1432   }
1433 
1434 public:
1435   CMCountDataClosureBase(G1CollectedHeap* g1h,
1436                          BitMap* region_bm, BitMap* card_bm):
1437     _g1h(g1h), _cm(g1h->concurrent_mark()),
1438     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1439     _region_bm(region_bm), _card_bm(card_bm) { }
1440 };
1441 
1442 // Closure that calculates the # live objects per region. Used
1443 // for verification purposes during the cleanup pause.
1444 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1445   CMBitMapRO* _bm;
1446   size_t _region_marked_bytes;
1447 
1448 public:
1449   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1450                          BitMap* region_bm, BitMap* card_bm) :
1451     CMCountDataClosureBase(g1h, region_bm, card_bm),
1452     _bm(bm), _region_marked_bytes(0) { }
1453 
1454   bool doHeapRegion(HeapRegion* hr) {
1455 
1456     if (hr->is_continues_humongous()) {
1457       // We will ignore these here and process them when their
1458       // associated "starts humongous" region is processed (see
1459       // set_bit_for_heap_region()). Note that we cannot rely on their
1460       // associated "starts humongous" region to have their bit set to
1461       // 1 since, due to the region chunking in the parallel region
1462       // iteration, a "continues humongous" region might be visited
1463       // before its associated "starts humongous".
1464       return false;
1465     }
1466 
1467     HeapWord* ntams = hr->next_top_at_mark_start();
1468     HeapWord* start = hr->bottom();
1469 
1470     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1471            err_msg("Preconditions not met - "
1472                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1473                    p2i(start), p2i(ntams), p2i(hr->end())));
1474 
1475     // Find the first marked object at or after "start".
1476     start = _bm->getNextMarkedWordAddress(start, ntams);
1477 
1478     size_t marked_bytes = 0;
1479 
1480     while (start < ntams) {
1481       oop obj = oop(start);
1482       int obj_sz = obj->size();
1483       HeapWord* obj_end = start + obj_sz;
1484 
1485       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1486       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1487 
1488       // Note: if we're looking at the last region in heap - obj_end
1489       // could be actually just beyond the end of the heap; end_idx
1490       // will then correspond to a (non-existent) card that is also
1491       // just beyond the heap.
1492       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1493         // end of object is not card aligned - increment to cover
1494         // all the cards spanned by the object
1495         end_idx += 1;
1496       }
1497 
1498       // Set the bits in the card BM for the cards spanned by this object.
1499       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1500 
1501       // Add the size of this object to the number of marked bytes.
1502       marked_bytes += (size_t)obj_sz * HeapWordSize;
1503 
1504       // Find the next marked object after this one.
1505       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1506     }
1507 
1508     // Mark the allocated-since-marking portion...
1509     HeapWord* top = hr->top();
1510     if (ntams < top) {
1511       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1512       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1513 
1514       // Note: if we're looking at the last region in heap - top
1515       // could be actually just beyond the end of the heap; end_idx
1516       // will then correspond to a (non-existent) card that is also
1517       // just beyond the heap.
1518       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1519         // end of object is not card aligned - increment to cover
1520         // all the cards spanned by the object
1521         end_idx += 1;
1522       }
1523       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1524 
1525       // This definitely means the region has live objects.
1526       set_bit_for_region(hr);
1527     }
1528 
1529     // Update the live region bitmap.
1530     if (marked_bytes > 0) {
1531       set_bit_for_region(hr);
1532     }
1533 
1534     // Set the marked bytes for the current region so that
1535     // it can be queried by a calling verification routine
1536     _region_marked_bytes = marked_bytes;
1537 
1538     return false;
1539   }
1540 
1541   size_t region_marked_bytes() const { return _region_marked_bytes; }
1542 };
1543 
1544 // Heap region closure used for verifying the counting data
1545 // that was accumulated concurrently and aggregated during
1546 // the remark pause. This closure is applied to the heap
1547 // regions during the STW cleanup pause.
1548 
1549 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1550   G1CollectedHeap* _g1h;
1551   ConcurrentMark* _cm;
1552   CalcLiveObjectsClosure _calc_cl;
1553   BitMap* _region_bm;   // Region BM to be verified
1554   BitMap* _card_bm;     // Card BM to be verified
1555   bool _verbose;        // verbose output?
1556 
1557   BitMap* _exp_region_bm; // Expected Region BM values
1558   BitMap* _exp_card_bm;   // Expected card BM values
1559 
1560   int _failures;
1561 
1562 public:
1563   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1564                                 BitMap* region_bm,
1565                                 BitMap* card_bm,
1566                                 BitMap* exp_region_bm,
1567                                 BitMap* exp_card_bm,
1568                                 bool verbose) :
1569     _g1h(g1h), _cm(g1h->concurrent_mark()),
1570     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1571     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1572     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1573     _failures(0) { }
1574 
1575   int failures() const { return _failures; }
1576 
1577   bool doHeapRegion(HeapRegion* hr) {
1578     if (hr->is_continues_humongous()) {
1579       // We will ignore these here and process them when their
1580       // associated "starts humongous" region is processed (see
1581       // set_bit_for_heap_region()). Note that we cannot rely on their
1582       // associated "starts humongous" region to have their bit set to
1583       // 1 since, due to the region chunking in the parallel region
1584       // iteration, a "continues humongous" region might be visited
1585       // before its associated "starts humongous".
1586       return false;
1587     }
1588 
1589     int failures = 0;
1590 
1591     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1592     // this region and set the corresponding bits in the expected region
1593     // and card bitmaps.
1594     bool res = _calc_cl.doHeapRegion(hr);
1595     assert(res == false, "should be continuing");
1596 
1597     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1598                     Mutex::_no_safepoint_check_flag);
1599 
1600     // Verify the marked bytes for this region.
1601     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1602     size_t act_marked_bytes = hr->next_marked_bytes();
1603 
1604     // We're not OK if expected marked bytes > actual marked bytes. It means
1605     // we have missed accounting some objects during the actual marking.
1606     if (exp_marked_bytes > act_marked_bytes) {
1607       if (_verbose) {
1608         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1609                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1610                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1611       }
1612       failures += 1;
1613     }
1614 
1615     // Verify the bit, for this region, in the actual and expected
1616     // (which was just calculated) region bit maps.
1617     // We're not OK if the bit in the calculated expected region
1618     // bitmap is set and the bit in the actual region bitmap is not.
1619     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1620 
1621     bool expected = _exp_region_bm->at(index);
1622     bool actual = _region_bm->at(index);
1623     if (expected && !actual) {
1624       if (_verbose) {
1625         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1626                                "expected: %s, actual: %s",
1627                                hr->hrm_index(),
1628                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1629       }
1630       failures += 1;
1631     }
1632 
1633     // Verify that the card bit maps for the cards spanned by the current
1634     // region match. We have an error if we have a set bit in the expected
1635     // bit map and the corresponding bit in the actual bitmap is not set.
1636 
1637     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1638     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1639 
1640     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1641       expected = _exp_card_bm->at(i);
1642       actual = _card_bm->at(i);
1643 
1644       if (expected && !actual) {
1645         if (_verbose) {
1646           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1647                                  "expected: %s, actual: %s",
1648                                  hr->hrm_index(), i,
1649                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1650         }
1651         failures += 1;
1652       }
1653     }
1654 
1655     if (failures > 0 && _verbose)  {
1656       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1657                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1658                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1659                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1660     }
1661 
1662     _failures += failures;
1663 
1664     // We could stop iteration over the heap when we
1665     // find the first violating region by returning true.
1666     return false;
1667   }
1668 };
1669 
1670 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1671 protected:
1672   G1CollectedHeap* _g1h;
1673   ConcurrentMark* _cm;
1674   BitMap* _actual_region_bm;
1675   BitMap* _actual_card_bm;
1676 
1677   uint    _n_workers;
1678 
1679   BitMap* _expected_region_bm;
1680   BitMap* _expected_card_bm;
1681 
1682   int  _failures;
1683   bool _verbose;
1684 
1685   HeapRegionClaimer _hrclaimer;
1686 
1687 public:
1688   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1689                             BitMap* region_bm, BitMap* card_bm,
1690                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1691     : AbstractGangTask("G1 verify final counting"),
1692       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1693       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1694       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1695       _failures(0), _verbose(false),
1696       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1697     assert(VerifyDuringGC, "don't call this otherwise");
1698     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1699     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1700 
1701     _verbose = _cm->verbose_medium();
1702   }
1703 
1704   void work(uint worker_id) {
1705     assert(worker_id < _n_workers, "invariant");
1706 
1707     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1708                                             _actual_region_bm, _actual_card_bm,
1709                                             _expected_region_bm,
1710                                             _expected_card_bm,
1711                                             _verbose);
1712 
1713     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1714 
1715     Atomic::add(verify_cl.failures(), &_failures);
1716   }
1717 
1718   int failures() const { return _failures; }
1719 };
1720 
1721 // Closure that finalizes the liveness counting data.
1722 // Used during the cleanup pause.
1723 // Sets the bits corresponding to the interval [NTAMS, top]
1724 // (which contains the implicitly live objects) in the
1725 // card liveness bitmap. Also sets the bit for each region,
1726 // containing live data, in the region liveness bitmap.
1727 
1728 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1729  public:
1730   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1731                               BitMap* region_bm,
1732                               BitMap* card_bm) :
1733     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1734 
1735   bool doHeapRegion(HeapRegion* hr) {
1736 
1737     if (hr->is_continues_humongous()) {
1738       // We will ignore these here and process them when their
1739       // associated "starts humongous" region is processed (see
1740       // set_bit_for_heap_region()). Note that we cannot rely on their
1741       // associated "starts humongous" region to have their bit set to
1742       // 1 since, due to the region chunking in the parallel region
1743       // iteration, a "continues humongous" region might be visited
1744       // before its associated "starts humongous".
1745       return false;
1746     }
1747 
1748     HeapWord* ntams = hr->next_top_at_mark_start();
1749     HeapWord* top   = hr->top();
1750 
1751     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1752 
1753     // Mark the allocated-since-marking portion...
1754     if (ntams < top) {
1755       // This definitely means the region has live objects.
1756       set_bit_for_region(hr);
1757 
1758       // Now set the bits in the card bitmap for [ntams, top)
1759       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1760       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1761 
1762       // Note: if we're looking at the last region in heap - top
1763       // could be actually just beyond the end of the heap; end_idx
1764       // will then correspond to a (non-existent) card that is also
1765       // just beyond the heap.
1766       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1767         // end of object is not card aligned - increment to cover
1768         // all the cards spanned by the object
1769         end_idx += 1;
1770       }
1771 
1772       assert(end_idx <= _card_bm->size(),
1773              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1774                      end_idx, _card_bm->size()));
1775       assert(start_idx < _card_bm->size(),
1776              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1777                      start_idx, _card_bm->size()));
1778 
1779       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1780     }
1781 
1782     // Set the bit for the region if it contains live data
1783     if (hr->next_marked_bytes() > 0) {
1784       set_bit_for_region(hr);
1785     }
1786 
1787     return false;
1788   }
1789 };
1790 
1791 class G1ParFinalCountTask: public AbstractGangTask {
1792 protected:
1793   G1CollectedHeap* _g1h;
1794   ConcurrentMark* _cm;
1795   BitMap* _actual_region_bm;
1796   BitMap* _actual_card_bm;
1797 
1798   uint    _n_workers;
1799   HeapRegionClaimer _hrclaimer;
1800 
1801 public:
1802   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1803     : AbstractGangTask("G1 final counting"),
1804       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1805       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1806       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1807   }
1808 
1809   void work(uint worker_id) {
1810     assert(worker_id < _n_workers, "invariant");
1811 
1812     FinalCountDataUpdateClosure final_update_cl(_g1h,
1813                                                 _actual_region_bm,
1814                                                 _actual_card_bm);
1815 
1816     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1817   }
1818 };
1819 
1820 class G1ParNoteEndTask;
1821 
1822 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1823   G1CollectedHeap* _g1;
1824   size_t _max_live_bytes;
1825   uint _regions_claimed;
1826   size_t _freed_bytes;
1827   FreeRegionList* _local_cleanup_list;
1828   HeapRegionSetCount _old_regions_removed;
1829   HeapRegionSetCount _humongous_regions_removed;
1830   HRRSCleanupTask* _hrrs_cleanup_task;
1831   double _claimed_region_time;
1832   double _max_region_time;
1833 
1834 public:
1835   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1836                              FreeRegionList* local_cleanup_list,
1837                              HRRSCleanupTask* hrrs_cleanup_task) :
1838     _g1(g1),
1839     _max_live_bytes(0), _regions_claimed(0),
1840     _freed_bytes(0),
1841     _claimed_region_time(0.0), _max_region_time(0.0),
1842     _local_cleanup_list(local_cleanup_list),
1843     _old_regions_removed(),
1844     _humongous_regions_removed(),
1845     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1846 
1847   size_t freed_bytes() { return _freed_bytes; }
1848   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1849   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1850 
1851   bool doHeapRegion(HeapRegion *hr) {
1852     if (hr->is_continues_humongous()) {
1853       return false;
1854     }
1855     // We use a claim value of zero here because all regions
1856     // were claimed with value 1 in the FinalCount task.
1857     _g1->reset_gc_time_stamps(hr);
1858     double start = os::elapsedTime();
1859     _regions_claimed++;
1860     hr->note_end_of_marking();
1861     _max_live_bytes += hr->max_live_bytes();
1862 
1863     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1864       _freed_bytes += hr->used();
1865       hr->set_containing_set(NULL);
1866       if (hr->is_humongous()) {
1867         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1868         _humongous_regions_removed.increment(1u, hr->capacity());
1869         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1870       } else {
1871         _old_regions_removed.increment(1u, hr->capacity());
1872         _g1->free_region(hr, _local_cleanup_list, true);
1873       }
1874     } else {
1875       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1876     }
1877 
1878     double region_time = (os::elapsedTime() - start);
1879     _claimed_region_time += region_time;
1880     if (region_time > _max_region_time) {
1881       _max_region_time = region_time;
1882     }
1883     return false;
1884   }
1885 
1886   size_t max_live_bytes() { return _max_live_bytes; }
1887   uint regions_claimed() { return _regions_claimed; }
1888   double claimed_region_time_sec() { return _claimed_region_time; }
1889   double max_region_time_sec() { return _max_region_time; }
1890 };
1891 
1892 class G1ParNoteEndTask: public AbstractGangTask {
1893   friend class G1NoteEndOfConcMarkClosure;
1894 
1895 protected:
1896   G1CollectedHeap* _g1h;
1897   size_t _max_live_bytes;
1898   size_t _freed_bytes;
1899   FreeRegionList* _cleanup_list;
1900   HeapRegionClaimer _hrclaimer;
1901 
1902 public:
1903   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1904       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1905   }
1906 
1907   void work(uint worker_id) {
1908     FreeRegionList local_cleanup_list("Local Cleanup List");
1909     HRRSCleanupTask hrrs_cleanup_task;
1910     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1911                                            &hrrs_cleanup_task);
1912     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1913     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1914 
1915     // Now update the lists
1916     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1917     {
1918       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1919       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1920       _max_live_bytes += g1_note_end.max_live_bytes();
1921       _freed_bytes += g1_note_end.freed_bytes();
1922 
1923       // If we iterate over the global cleanup list at the end of
1924       // cleanup to do this printing we will not guarantee to only
1925       // generate output for the newly-reclaimed regions (the list
1926       // might not be empty at the beginning of cleanup; we might
1927       // still be working on its previous contents). So we do the
1928       // printing here, before we append the new regions to the global
1929       // cleanup list.
1930 
1931       G1HRPrinter* hr_printer = _g1h->hr_printer();
1932       if (hr_printer->is_active()) {
1933         FreeRegionListIterator iter(&local_cleanup_list);
1934         while (iter.more_available()) {
1935           HeapRegion* hr = iter.get_next();
1936           hr_printer->cleanup(hr);
1937         }
1938       }
1939 
1940       _cleanup_list->add_ordered(&local_cleanup_list);
1941       assert(local_cleanup_list.is_empty(), "post-condition");
1942 
1943       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1944     }
1945   }
1946   size_t max_live_bytes() { return _max_live_bytes; }
1947   size_t freed_bytes() { return _freed_bytes; }
1948 };
1949 
1950 class G1ParScrubRemSetTask: public AbstractGangTask {
1951 protected:
1952   G1RemSet* _g1rs;
1953   BitMap* _region_bm;
1954   BitMap* _card_bm;
1955   HeapRegionClaimer _hrclaimer;
1956 
1957 public:
1958   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1959       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1960   }
1961 
1962   void work(uint worker_id) {
1963     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1964   }
1965 
1966 };
1967 
1968 void ConcurrentMark::cleanup() {
1969   // world is stopped at this checkpoint
1970   assert(SafepointSynchronize::is_at_safepoint(),
1971          "world should be stopped");
1972   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1973 
1974   // If a full collection has happened, we shouldn't do this.
1975   if (has_aborted()) {
1976     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1977     return;
1978   }
1979 
1980   g1h->verify_region_sets_optional();
1981 
1982   if (VerifyDuringGC) {
1983     HandleMark hm;  // handle scope
1984     g1h->prepare_for_verify();
1985     Universe::verify(VerifyOption_G1UsePrevMarking,
1986                      " VerifyDuringGC:(before)");
1987   }
1988   g1h->check_bitmaps("Cleanup Start");
1989 
1990   G1CollectorPolicy* g1p = g1h->g1_policy();
1991   g1p->record_concurrent_mark_cleanup_start();
1992 
1993   double start = os::elapsedTime();
1994 
1995   HeapRegionRemSet::reset_for_cleanup_tasks();
1996 
1997   uint n_workers;
1998 
1999   // Do counting once more with the world stopped for good measure.
2000   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2001 
2002   g1h->set_par_threads();
2003   n_workers = g1h->n_par_threads();
2004   assert(g1h->n_par_threads() == n_workers,
2005          "Should not have been reset");
2006   g1h->workers()->run_task(&g1_par_count_task);
2007   // Done with the parallel phase so reset to 0.
2008   g1h->set_par_threads(0);
2009 
2010   if (VerifyDuringGC) {
2011     // Verify that the counting data accumulated during marking matches
2012     // that calculated by walking the marking bitmap.
2013 
2014     // Bitmaps to hold expected values
2015     BitMap expected_region_bm(_region_bm.size(), true);
2016     BitMap expected_card_bm(_card_bm.size(), true);
2017 
2018     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2019                                                  &_region_bm,
2020                                                  &_card_bm,
2021                                                  &expected_region_bm,
2022                                                  &expected_card_bm);
2023 
2024     g1h->set_par_threads((int)n_workers);
2025     g1h->workers()->run_task(&g1_par_verify_task);
2026     // Done with the parallel phase so reset to 0.
2027     g1h->set_par_threads(0);
2028 
2029     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2030   }
2031 
2032   size_t start_used_bytes = g1h->used();
2033   g1h->set_marking_complete();
2034 
2035   double count_end = os::elapsedTime();
2036   double this_final_counting_time = (count_end - start);
2037   _total_counting_time += this_final_counting_time;
2038 
2039   if (G1PrintRegionLivenessInfo) {
2040     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2041     _g1h->heap_region_iterate(&cl);
2042   }
2043 
2044   // Install newly created mark bitMap as "prev".
2045   swapMarkBitMaps();
2046 
2047   g1h->reset_gc_time_stamp();
2048 
2049   // Note end of marking in all heap regions.
2050   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2051   g1h->set_par_threads((int)n_workers);
2052   g1h->workers()->run_task(&g1_par_note_end_task);
2053   g1h->set_par_threads(0);
2054   g1h->check_gc_time_stamps();
2055 
2056   if (!cleanup_list_is_empty()) {
2057     // The cleanup list is not empty, so we'll have to process it
2058     // concurrently. Notify anyone else that might be wanting free
2059     // regions that there will be more free regions coming soon.
2060     g1h->set_free_regions_coming();
2061   }
2062 
2063   // call below, since it affects the metric by which we sort the heap
2064   // regions.
2065   if (G1ScrubRemSets) {
2066     double rs_scrub_start = os::elapsedTime();
2067     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2068     g1h->set_par_threads((int)n_workers);
2069     g1h->workers()->run_task(&g1_par_scrub_rs_task);
2070     g1h->set_par_threads(0);
2071 
2072     double rs_scrub_end = os::elapsedTime();
2073     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2074     _total_rs_scrub_time += this_rs_scrub_time;
2075   }
2076 
2077   // this will also free any regions totally full of garbage objects,
2078   // and sort the regions.
2079   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2080 
2081   // Statistics.
2082   double end = os::elapsedTime();
2083   _cleanup_times.add((end - start) * 1000.0);
2084 
2085   if (G1Log::fine()) {
2086     g1h->g1_policy()->print_heap_transition(start_used_bytes);
2087   }
2088 
2089   // Clean up will have freed any regions completely full of garbage.
2090   // Update the soft reference policy with the new heap occupancy.
2091   Universe::update_heap_info_at_gc();
2092 
2093   if (VerifyDuringGC) {
2094     HandleMark hm;  // handle scope
2095     g1h->prepare_for_verify();
2096     Universe::verify(VerifyOption_G1UsePrevMarking,
2097                      " VerifyDuringGC:(after)");
2098   }
2099 
2100   g1h->check_bitmaps("Cleanup End");
2101 
2102   g1h->verify_region_sets_optional();
2103 
2104   // We need to make this be a "collection" so any collection pause that
2105   // races with it goes around and waits for completeCleanup to finish.
2106   g1h->increment_total_collections();
2107 
2108   // Clean out dead classes and update Metaspace sizes.
2109   if (ClassUnloadingWithConcurrentMark) {
2110     ClassLoaderDataGraph::purge();
2111   }
2112   MetaspaceGC::compute_new_size();
2113 
2114   // We reclaimed old regions so we should calculate the sizes to make
2115   // sure we update the old gen/space data.
2116   g1h->g1mm()->update_sizes();
2117   g1h->allocation_context_stats().update_after_mark();
2118 
2119   g1h->trace_heap_after_concurrent_cycle();
2120 }
2121 
2122 void ConcurrentMark::completeCleanup() {
2123   if (has_aborted()) return;
2124 
2125   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2126 
2127   _cleanup_list.verify_optional();
2128   FreeRegionList tmp_free_list("Tmp Free List");
2129 
2130   if (G1ConcRegionFreeingVerbose) {
2131     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2132                            "cleanup list has %u entries",
2133                            _cleanup_list.length());
2134   }
2135 
2136   // No one else should be accessing the _cleanup_list at this point,
2137   // so it is not necessary to take any locks
2138   while (!_cleanup_list.is_empty()) {
2139     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2140     assert(hr != NULL, "Got NULL from a non-empty list");
2141     hr->par_clear();
2142     tmp_free_list.add_ordered(hr);
2143 
2144     // Instead of adding one region at a time to the secondary_free_list,
2145     // we accumulate them in the local list and move them a few at a
2146     // time. This also cuts down on the number of notify_all() calls
2147     // we do during this process. We'll also append the local list when
2148     // _cleanup_list is empty (which means we just removed the last
2149     // region from the _cleanup_list).
2150     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2151         _cleanup_list.is_empty()) {
2152       if (G1ConcRegionFreeingVerbose) {
2153         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2154                                "appending %u entries to the secondary_free_list, "
2155                                "cleanup list still has %u entries",
2156                                tmp_free_list.length(),
2157                                _cleanup_list.length());
2158       }
2159 
2160       {
2161         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2162         g1h->secondary_free_list_add(&tmp_free_list);
2163         SecondaryFreeList_lock->notify_all();
2164       }
2165 #ifndef PRODUCT
2166       if (G1StressConcRegionFreeing) {
2167         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2168           os::sleep(Thread::current(), (jlong) 1, false);
2169         }
2170       }
2171 #endif
2172     }
2173   }
2174   assert(tmp_free_list.is_empty(), "post-condition");
2175 }
2176 
2177 // Supporting Object and Oop closures for reference discovery
2178 // and processing in during marking
2179 
2180 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2181   HeapWord* addr = (HeapWord*)obj;
2182   return addr != NULL &&
2183          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2184 }
2185 
2186 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2187 // Uses the CMTask associated with a worker thread (for serial reference
2188 // processing the CMTask for worker 0 is used) to preserve (mark) and
2189 // trace referent objects.
2190 //
2191 // Using the CMTask and embedded local queues avoids having the worker
2192 // threads operating on the global mark stack. This reduces the risk
2193 // of overflowing the stack - which we would rather avoid at this late
2194 // state. Also using the tasks' local queues removes the potential
2195 // of the workers interfering with each other that could occur if
2196 // operating on the global stack.
2197 
2198 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2199   ConcurrentMark* _cm;
2200   CMTask*         _task;
2201   int             _ref_counter_limit;
2202   int             _ref_counter;
2203   bool            _is_serial;
2204  public:
2205   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2206     _cm(cm), _task(task), _is_serial(is_serial),
2207     _ref_counter_limit(G1RefProcDrainInterval) {
2208     assert(_ref_counter_limit > 0, "sanity");
2209     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2210     _ref_counter = _ref_counter_limit;
2211   }
2212 
2213   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2214   virtual void do_oop(      oop* p) { do_oop_work(p); }
2215 
2216   template <class T> void do_oop_work(T* p) {
2217     if (!_cm->has_overflown()) {
2218       oop obj = oopDesc::load_decode_heap_oop(p);
2219       if (_cm->verbose_high()) {
2220         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2221                                "*"PTR_FORMAT" = "PTR_FORMAT,
2222                                _task->worker_id(), p2i(p), p2i((void*) obj));
2223       }
2224 
2225       _task->deal_with_reference(obj);
2226       _ref_counter--;
2227 
2228       if (_ref_counter == 0) {
2229         // We have dealt with _ref_counter_limit references, pushing them
2230         // and objects reachable from them on to the local stack (and
2231         // possibly the global stack). Call CMTask::do_marking_step() to
2232         // process these entries.
2233         //
2234         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2235         // there's nothing more to do (i.e. we're done with the entries that
2236         // were pushed as a result of the CMTask::deal_with_reference() calls
2237         // above) or we overflow.
2238         //
2239         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2240         // flag while there may still be some work to do. (See the comment at
2241         // the beginning of CMTask::do_marking_step() for those conditions -
2242         // one of which is reaching the specified time target.) It is only
2243         // when CMTask::do_marking_step() returns without setting the
2244         // has_aborted() flag that the marking step has completed.
2245         do {
2246           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2247           _task->do_marking_step(mark_step_duration_ms,
2248                                  false      /* do_termination */,
2249                                  _is_serial);
2250         } while (_task->has_aborted() && !_cm->has_overflown());
2251         _ref_counter = _ref_counter_limit;
2252       }
2253     } else {
2254       if (_cm->verbose_high()) {
2255          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2256       }
2257     }
2258   }
2259 };
2260 
2261 // 'Drain' oop closure used by both serial and parallel reference processing.
2262 // Uses the CMTask associated with a given worker thread (for serial
2263 // reference processing the CMtask for worker 0 is used). Calls the
2264 // do_marking_step routine, with an unbelievably large timeout value,
2265 // to drain the marking data structures of the remaining entries
2266 // added by the 'keep alive' oop closure above.
2267 
2268 class G1CMDrainMarkingStackClosure: public VoidClosure {
2269   ConcurrentMark* _cm;
2270   CMTask*         _task;
2271   bool            _is_serial;
2272  public:
2273   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2274     _cm(cm), _task(task), _is_serial(is_serial) {
2275     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2276   }
2277 
2278   void do_void() {
2279     do {
2280       if (_cm->verbose_high()) {
2281         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2282                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2283       }
2284 
2285       // We call CMTask::do_marking_step() to completely drain the local
2286       // and global marking stacks of entries pushed by the 'keep alive'
2287       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2288       //
2289       // CMTask::do_marking_step() is called in a loop, which we'll exit
2290       // if there's nothing more to do (i.e. we've completely drained the
2291       // entries that were pushed as a a result of applying the 'keep alive'
2292       // closure to the entries on the discovered ref lists) or we overflow
2293       // the global marking stack.
2294       //
2295       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2296       // flag while there may still be some work to do. (See the comment at
2297       // the beginning of CMTask::do_marking_step() for those conditions -
2298       // one of which is reaching the specified time target.) It is only
2299       // when CMTask::do_marking_step() returns without setting the
2300       // has_aborted() flag that the marking step has completed.
2301 
2302       _task->do_marking_step(1000000000.0 /* something very large */,
2303                              true         /* do_termination */,
2304                              _is_serial);
2305     } while (_task->has_aborted() && !_cm->has_overflown());
2306   }
2307 };
2308 
2309 // Implementation of AbstractRefProcTaskExecutor for parallel
2310 // reference processing at the end of G1 concurrent marking
2311 
2312 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2313 private:
2314   G1CollectedHeap* _g1h;
2315   ConcurrentMark*  _cm;
2316   WorkGang*        _workers;
2317   int              _active_workers;
2318 
2319 public:
2320   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2321                         ConcurrentMark* cm,
2322                         WorkGang* workers,
2323                         int n_workers) :
2324     _g1h(g1h), _cm(cm),
2325     _workers(workers), _active_workers(n_workers) { }
2326 
2327   // Executes the given task using concurrent marking worker threads.
2328   virtual void execute(ProcessTask& task);
2329   virtual void execute(EnqueueTask& task);
2330 };
2331 
2332 class G1CMRefProcTaskProxy: public AbstractGangTask {
2333   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2334   ProcessTask&     _proc_task;
2335   G1CollectedHeap* _g1h;
2336   ConcurrentMark*  _cm;
2337 
2338 public:
2339   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2340                      G1CollectedHeap* g1h,
2341                      ConcurrentMark* cm) :
2342     AbstractGangTask("Process reference objects in parallel"),
2343     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2344     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2345     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2346   }
2347 
2348   virtual void work(uint worker_id) {
2349     ResourceMark rm;
2350     HandleMark hm;
2351     CMTask* task = _cm->task(worker_id);
2352     G1CMIsAliveClosure g1_is_alive(_g1h);
2353     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2354     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2355 
2356     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2357   }
2358 };
2359 
2360 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2361   assert(_workers != NULL, "Need parallel worker threads.");
2362   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2363 
2364   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2365 
2366   // We need to reset the concurrency level before each
2367   // proxy task execution, so that the termination protocol
2368   // and overflow handling in CMTask::do_marking_step() knows
2369   // how many workers to wait for.
2370   _cm->set_concurrency(_active_workers);
2371   _g1h->set_par_threads(_active_workers);
2372   _workers->run_task(&proc_task_proxy);
2373   _g1h->set_par_threads(0);
2374 }
2375 
2376 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2377   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2378   EnqueueTask& _enq_task;
2379 
2380 public:
2381   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2382     AbstractGangTask("Enqueue reference objects in parallel"),
2383     _enq_task(enq_task) { }
2384 
2385   virtual void work(uint worker_id) {
2386     _enq_task.work(worker_id);
2387   }
2388 };
2389 
2390 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2391   assert(_workers != NULL, "Need parallel worker threads.");
2392   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2393 
2394   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2395 
2396   // Not strictly necessary but...
2397   //
2398   // We need to reset the concurrency level before each
2399   // proxy task execution, so that the termination protocol
2400   // and overflow handling in CMTask::do_marking_step() knows
2401   // how many workers to wait for.
2402   _cm->set_concurrency(_active_workers);
2403   _g1h->set_par_threads(_active_workers);
2404   _workers->run_task(&enq_task_proxy);
2405   _g1h->set_par_threads(0);
2406 }
2407 
2408 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2409   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2410 }
2411 
2412 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2413   if (has_overflown()) {
2414     // Skip processing the discovered references if we have
2415     // overflown the global marking stack. Reference objects
2416     // only get discovered once so it is OK to not
2417     // de-populate the discovered reference lists. We could have,
2418     // but the only benefit would be that, when marking restarts,
2419     // less reference objects are discovered.
2420     return;
2421   }
2422 
2423   ResourceMark rm;
2424   HandleMark   hm;
2425 
2426   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2427 
2428   // Is alive closure.
2429   G1CMIsAliveClosure g1_is_alive(g1h);
2430 
2431   // Inner scope to exclude the cleaning of the string and symbol
2432   // tables from the displayed time.
2433   {
2434     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2435 
2436     ReferenceProcessor* rp = g1h->ref_processor_cm();
2437 
2438     // See the comment in G1CollectedHeap::ref_processing_init()
2439     // about how reference processing currently works in G1.
2440 
2441     // Set the soft reference policy
2442     rp->setup_policy(clear_all_soft_refs);
2443     assert(_markStack.isEmpty(), "mark stack should be empty");
2444 
2445     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2446     // in serial reference processing. Note these closures are also
2447     // used for serially processing (by the the current thread) the
2448     // JNI references during parallel reference processing.
2449     //
2450     // These closures do not need to synchronize with the worker
2451     // threads involved in parallel reference processing as these
2452     // instances are executed serially by the current thread (e.g.
2453     // reference processing is not multi-threaded and is thus
2454     // performed by the current thread instead of a gang worker).
2455     //
2456     // The gang tasks involved in parallel reference processing create
2457     // their own instances of these closures, which do their own
2458     // synchronization among themselves.
2459     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2460     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2461 
2462     // We need at least one active thread. If reference processing
2463     // is not multi-threaded we use the current (VMThread) thread,
2464     // otherwise we use the work gang from the G1CollectedHeap and
2465     // we utilize all the worker threads we can.
2466     bool processing_is_mt = rp->processing_is_mt();
2467     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2468     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2469 
2470     // Parallel processing task executor.
2471     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2472                                               g1h->workers(), active_workers);
2473     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2474 
2475     // Set the concurrency level. The phase was already set prior to
2476     // executing the remark task.
2477     set_concurrency(active_workers);
2478 
2479     // Set the degree of MT processing here.  If the discovery was done MT,
2480     // the number of threads involved during discovery could differ from
2481     // the number of active workers.  This is OK as long as the discovered
2482     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2483     rp->set_active_mt_degree(active_workers);
2484 
2485     // Process the weak references.
2486     const ReferenceProcessorStats& stats =
2487         rp->process_discovered_references(&g1_is_alive,
2488                                           &g1_keep_alive,
2489                                           &g1_drain_mark_stack,
2490                                           executor,
2491                                           g1h->gc_timer_cm(),
2492                                           concurrent_gc_id());
2493     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2494 
2495     // The do_oop work routines of the keep_alive and drain_marking_stack
2496     // oop closures will set the has_overflown flag if we overflow the
2497     // global marking stack.
2498 
2499     assert(_markStack.overflow() || _markStack.isEmpty(),
2500             "mark stack should be empty (unless it overflowed)");
2501 
2502     if (_markStack.overflow()) {
2503       // This should have been done already when we tried to push an
2504       // entry on to the global mark stack. But let's do it again.
2505       set_has_overflown();
2506     }
2507 
2508     assert(rp->num_q() == active_workers, "why not");
2509 
2510     rp->enqueue_discovered_references(executor);
2511 
2512     rp->verify_no_references_recorded();
2513     assert(!rp->discovery_enabled(), "Post condition");
2514   }
2515 
2516   if (has_overflown()) {
2517     // We can not trust g1_is_alive if the marking stack overflowed
2518     return;
2519   }
2520 
2521   assert(_markStack.isEmpty(), "Marking should have completed");
2522 
2523   // Unload Klasses, String, Symbols, Code Cache, etc.
2524   {
2525     G1CMTraceTime trace("Unloading", G1Log::finer());
2526 
2527     if (ClassUnloadingWithConcurrentMark) {
2528       bool purged_classes;
2529 
2530       {
2531         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2532         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2533       }
2534 
2535       {
2536         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2537         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2538       }
2539     }
2540 
2541     if (G1StringDedup::is_enabled()) {
2542       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2543       G1StringDedup::unlink(&g1_is_alive);
2544     }
2545   }
2546 }
2547 
2548 void ConcurrentMark::swapMarkBitMaps() {
2549   CMBitMapRO* temp = _prevMarkBitMap;
2550   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2551   _nextMarkBitMap  = (CMBitMap*)  temp;
2552 }
2553 
2554 class CMObjectClosure;
2555 
2556 // Closure for iterating over objects, currently only used for
2557 // processing SATB buffers.
2558 class CMObjectClosure : public ObjectClosure {
2559 private:
2560   CMTask* _task;
2561 
2562 public:
2563   void do_object(oop obj) {
2564     _task->deal_with_reference(obj);
2565   }
2566 
2567   CMObjectClosure(CMTask* task) : _task(task) { }
2568 };
2569 
2570 class G1RemarkThreadsClosure : public ThreadClosure {
2571   CMObjectClosure _cm_obj;
2572   G1CMOopClosure _cm_cl;
2573   MarkingCodeBlobClosure _code_cl;
2574   int _thread_parity;
2575 
2576  public:
2577   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2578     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2579     _thread_parity(Threads::thread_claim_parity()) {}
2580 
2581   void do_thread(Thread* thread) {
2582     if (thread->is_Java_thread()) {
2583       if (thread->claim_oops_do(true, _thread_parity)) {
2584         JavaThread* jt = (JavaThread*)thread;
2585 
2586         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2587         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2588         // * Alive if on the stack of an executing method
2589         // * Weakly reachable otherwise
2590         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2591         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2592         jt->nmethods_do(&_code_cl);
2593 
2594         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2595       }
2596     } else if (thread->is_VM_thread()) {
2597       if (thread->claim_oops_do(true, _thread_parity)) {
2598         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2599       }
2600     }
2601   }
2602 };
2603 
2604 class CMRemarkTask: public AbstractGangTask {
2605 private:
2606   ConcurrentMark* _cm;
2607 public:
2608   void work(uint worker_id) {
2609     // Since all available tasks are actually started, we should
2610     // only proceed if we're supposed to be active.
2611     if (worker_id < _cm->active_tasks()) {
2612       CMTask* task = _cm->task(worker_id);
2613       task->record_start_time();
2614       {
2615         ResourceMark rm;
2616         HandleMark hm;
2617 
2618         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2619         Threads::threads_do(&threads_f);
2620       }
2621 
2622       do {
2623         task->do_marking_step(1000000000.0 /* something very large */,
2624                               true         /* do_termination       */,
2625                               false        /* is_serial            */);
2626       } while (task->has_aborted() && !_cm->has_overflown());
2627       // If we overflow, then we do not want to restart. We instead
2628       // want to abort remark and do concurrent marking again.
2629       task->record_end_time();
2630     }
2631   }
2632 
2633   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2634     AbstractGangTask("Par Remark"), _cm(cm) {
2635     _cm->terminator()->reset_for_reuse(active_workers);
2636   }
2637 };
2638 
2639 void ConcurrentMark::checkpointRootsFinalWork() {
2640   ResourceMark rm;
2641   HandleMark   hm;
2642   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2643 
2644   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2645 
2646   g1h->ensure_parsability(false);
2647 
2648   StrongRootsScope srs;
2649   // this is remark, so we'll use up all active threads
2650   uint active_workers = g1h->workers()->active_workers();
2651   if (active_workers == 0) {
2652     assert(active_workers > 0, "Should have been set earlier");
2653     active_workers = (uint) ParallelGCThreads;
2654     g1h->workers()->set_active_workers(active_workers);
2655   }
2656   set_concurrency_and_phase(active_workers, false /* concurrent */);
2657   // Leave _parallel_marking_threads at it's
2658   // value originally calculated in the ConcurrentMark
2659   // constructor and pass values of the active workers
2660   // through the gang in the task.
2661 
2662   CMRemarkTask remarkTask(this, active_workers);
2663   // We will start all available threads, even if we decide that the
2664   // active_workers will be fewer. The extra ones will just bail out
2665   // immediately.
2666   g1h->set_par_threads(active_workers);
2667   g1h->workers()->run_task(&remarkTask);
2668   g1h->set_par_threads(0);
2669 
2670   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2671   guarantee(has_overflown() ||
2672             satb_mq_set.completed_buffers_num() == 0,
2673             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2674                     BOOL_TO_STR(has_overflown()),
2675                     satb_mq_set.completed_buffers_num()));
2676 
2677   print_stats();
2678 }
2679 
2680 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2681   // Note we are overriding the read-only view of the prev map here, via
2682   // the cast.
2683   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2684 }
2685 
2686 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2687   _nextMarkBitMap->clearRange(mr);
2688 }
2689 
2690 HeapRegion*
2691 ConcurrentMark::claim_region(uint worker_id) {
2692   // "checkpoint" the finger
2693   HeapWord* finger = _finger;
2694 
2695   // _heap_end will not change underneath our feet; it only changes at
2696   // yield points.
2697   while (finger < _heap_end) {
2698     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2699 
2700     // Note on how this code handles humongous regions. In the
2701     // normal case the finger will reach the start of a "starts
2702     // humongous" (SH) region. Its end will either be the end of the
2703     // last "continues humongous" (CH) region in the sequence, or the
2704     // standard end of the SH region (if the SH is the only region in
2705     // the sequence). That way claim_region() will skip over the CH
2706     // regions. However, there is a subtle race between a CM thread
2707     // executing this method and a mutator thread doing a humongous
2708     // object allocation. The two are not mutually exclusive as the CM
2709     // thread does not need to hold the Heap_lock when it gets
2710     // here. So there is a chance that claim_region() will come across
2711     // a free region that's in the progress of becoming a SH or a CH
2712     // region. In the former case, it will either
2713     //   a) Miss the update to the region's end, in which case it will
2714     //      visit every subsequent CH region, will find their bitmaps
2715     //      empty, and do nothing, or
2716     //   b) Will observe the update of the region's end (in which case
2717     //      it will skip the subsequent CH regions).
2718     // If it comes across a region that suddenly becomes CH, the
2719     // scenario will be similar to b). So, the race between
2720     // claim_region() and a humongous object allocation might force us
2721     // to do a bit of unnecessary work (due to some unnecessary bitmap
2722     // iterations) but it should not introduce and correctness issues.
2723     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2724 
2725     // Above heap_region_containing_raw may return NULL as we always scan claim
2726     // until the end of the heap. In this case, just jump to the next region.
2727     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2728 
2729     // Is the gap between reading the finger and doing the CAS too long?
2730     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2731     if (res == finger && curr_region != NULL) {
2732       // we succeeded
2733       HeapWord*   bottom        = curr_region->bottom();
2734       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2735 
2736       if (verbose_low()) {
2737         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2738                                "["PTR_FORMAT", "PTR_FORMAT"), "
2739                                "limit = "PTR_FORMAT,
2740                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2741       }
2742 
2743       // notice that _finger == end cannot be guaranteed here since,
2744       // someone else might have moved the finger even further
2745       assert(_finger >= end, "the finger should have moved forward");
2746 
2747       if (verbose_low()) {
2748         gclog_or_tty->print_cr("[%u] we were successful with region = "
2749                                PTR_FORMAT, worker_id, p2i(curr_region));
2750       }
2751 
2752       if (limit > bottom) {
2753         if (verbose_low()) {
2754           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2755                                  "returning it ", worker_id, p2i(curr_region));
2756         }
2757         return curr_region;
2758       } else {
2759         assert(limit == bottom,
2760                "the region limit should be at bottom");
2761         if (verbose_low()) {
2762           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2763                                  "returning NULL", worker_id, p2i(curr_region));
2764         }
2765         // we return NULL and the caller should try calling
2766         // claim_region() again.
2767         return NULL;
2768       }
2769     } else {
2770       assert(_finger > finger, "the finger should have moved forward");
2771       if (verbose_low()) {
2772         if (curr_region == NULL) {
2773           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2774                                  "global finger = "PTR_FORMAT", "
2775                                  "our finger = "PTR_FORMAT,
2776                                  worker_id, p2i(_finger), p2i(finger));
2777         } else {
2778           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2779                                  "global finger = "PTR_FORMAT", "
2780                                  "our finger = "PTR_FORMAT,
2781                                  worker_id, p2i(_finger), p2i(finger));
2782         }
2783       }
2784 
2785       // read it again
2786       finger = _finger;
2787     }
2788   }
2789 
2790   return NULL;
2791 }
2792 
2793 #ifndef PRODUCT
2794 enum VerifyNoCSetOopsPhase {
2795   VerifyNoCSetOopsStack,
2796   VerifyNoCSetOopsQueues,
2797   VerifyNoCSetOopsSATBCompleted,
2798   VerifyNoCSetOopsSATBThread
2799 };
2800 
2801 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2802 private:
2803   G1CollectedHeap* _g1h;
2804   VerifyNoCSetOopsPhase _phase;
2805   int _info;
2806 
2807   const char* phase_str() {
2808     switch (_phase) {
2809     case VerifyNoCSetOopsStack:         return "Stack";
2810     case VerifyNoCSetOopsQueues:        return "Queue";
2811     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2812     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2813     default:                            ShouldNotReachHere();
2814     }
2815     return NULL;
2816   }
2817 
2818   void do_object_work(oop obj) {
2819     guarantee(!_g1h->obj_in_cs(obj),
2820               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2821                       p2i((void*) obj), phase_str(), _info));
2822   }
2823 
2824 public:
2825   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2826 
2827   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2828     _phase = phase;
2829     _info = info;
2830   }
2831 
2832   virtual void do_oop(oop* p) {
2833     oop obj = oopDesc::load_decode_heap_oop(p);
2834     do_object_work(obj);
2835   }
2836 
2837   virtual void do_oop(narrowOop* p) {
2838     // We should not come across narrow oops while scanning marking
2839     // stacks and SATB buffers.
2840     ShouldNotReachHere();
2841   }
2842 
2843   virtual void do_object(oop obj) {
2844     do_object_work(obj);
2845   }
2846 };
2847 
2848 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2849                                          bool verify_enqueued_buffers,
2850                                          bool verify_thread_buffers,
2851                                          bool verify_fingers) {
2852   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2853   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2854     return;
2855   }
2856 
2857   VerifyNoCSetOopsClosure cl;
2858 
2859   if (verify_stacks) {
2860     // Verify entries on the global mark stack
2861     cl.set_phase(VerifyNoCSetOopsStack);
2862     _markStack.oops_do(&cl);
2863 
2864     // Verify entries on the task queues
2865     for (uint i = 0; i < _max_worker_id; i += 1) {
2866       cl.set_phase(VerifyNoCSetOopsQueues, i);
2867       CMTaskQueue* queue = _task_queues->queue(i);
2868       queue->oops_do(&cl);
2869     }
2870   }
2871 
2872   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2873 
2874   // Verify entries on the enqueued SATB buffers
2875   if (verify_enqueued_buffers) {
2876     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2877     satb_qs.iterate_completed_buffers_read_only(&cl);
2878   }
2879 
2880   // Verify entries on the per-thread SATB buffers
2881   if (verify_thread_buffers) {
2882     cl.set_phase(VerifyNoCSetOopsSATBThread);
2883     satb_qs.iterate_thread_buffers_read_only(&cl);
2884   }
2885 
2886   if (verify_fingers) {
2887     // Verify the global finger
2888     HeapWord* global_finger = finger();
2889     if (global_finger != NULL && global_finger < _heap_end) {
2890       // The global finger always points to a heap region boundary. We
2891       // use heap_region_containing_raw() to get the containing region
2892       // given that the global finger could be pointing to a free region
2893       // which subsequently becomes continues humongous. If that
2894       // happens, heap_region_containing() will return the bottom of the
2895       // corresponding starts humongous region and the check below will
2896       // not hold any more.
2897       // Since we always iterate over all regions, we might get a NULL HeapRegion
2898       // here.
2899       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2900       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2901                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
2902                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
2903     }
2904 
2905     // Verify the task fingers
2906     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2907     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
2908       CMTask* task = _tasks[i];
2909       HeapWord* task_finger = task->finger();
2910       if (task_finger != NULL && task_finger < _heap_end) {
2911         // See above note on the global finger verification.
2912         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
2913         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2914                   !task_hr->in_collection_set(),
2915                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
2916                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
2917       }
2918     }
2919   }
2920 }
2921 #endif // PRODUCT
2922 
2923 // Aggregate the counting data that was constructed concurrently
2924 // with marking.
2925 class AggregateCountDataHRClosure: public HeapRegionClosure {
2926   G1CollectedHeap* _g1h;
2927   ConcurrentMark* _cm;
2928   CardTableModRefBS* _ct_bs;
2929   BitMap* _cm_card_bm;
2930   uint _max_worker_id;
2931 
2932  public:
2933   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2934                               BitMap* cm_card_bm,
2935                               uint max_worker_id) :
2936     _g1h(g1h), _cm(g1h->concurrent_mark()),
2937     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2938     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2939 
2940   bool doHeapRegion(HeapRegion* hr) {
2941     if (hr->is_continues_humongous()) {
2942       // We will ignore these here and process them when their
2943       // associated "starts humongous" region is processed.
2944       // Note that we cannot rely on their associated
2945       // "starts humongous" region to have their bit set to 1
2946       // since, due to the region chunking in the parallel region
2947       // iteration, a "continues humongous" region might be visited
2948       // before its associated "starts humongous".
2949       return false;
2950     }
2951 
2952     HeapWord* start = hr->bottom();
2953     HeapWord* limit = hr->next_top_at_mark_start();
2954     HeapWord* end = hr->end();
2955 
2956     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2957            err_msg("Preconditions not met - "
2958                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
2959                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
2960                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
2961 
2962     assert(hr->next_marked_bytes() == 0, "Precondition");
2963 
2964     if (start == limit) {
2965       // NTAMS of this region has not been set so nothing to do.
2966       return false;
2967     }
2968 
2969     // 'start' should be in the heap.
2970     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2971     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2972     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2973 
2974     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2975     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2976     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2977 
2978     // If ntams is not card aligned then we bump card bitmap index
2979     // for limit so that we get the all the cards spanned by
2980     // the object ending at ntams.
2981     // Note: if this is the last region in the heap then ntams
2982     // could be actually just beyond the end of the the heap;
2983     // limit_idx will then  correspond to a (non-existent) card
2984     // that is also outside the heap.
2985     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2986       limit_idx += 1;
2987     }
2988 
2989     assert(limit_idx <= end_idx, "or else use atomics");
2990 
2991     // Aggregate the "stripe" in the count data associated with hr.
2992     uint hrm_index = hr->hrm_index();
2993     size_t marked_bytes = 0;
2994 
2995     for (uint i = 0; i < _max_worker_id; i += 1) {
2996       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2997       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2998 
2999       // Fetch the marked_bytes in this region for task i and
3000       // add it to the running total for this region.
3001       marked_bytes += marked_bytes_array[hrm_index];
3002 
3003       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3004       // into the global card bitmap.
3005       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3006 
3007       while (scan_idx < limit_idx) {
3008         assert(task_card_bm->at(scan_idx) == true, "should be");
3009         _cm_card_bm->set_bit(scan_idx);
3010         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3011 
3012         // BitMap::get_next_one_offset() can handle the case when
3013         // its left_offset parameter is greater than its right_offset
3014         // parameter. It does, however, have an early exit if
3015         // left_offset == right_offset. So let's limit the value
3016         // passed in for left offset here.
3017         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3018         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3019       }
3020     }
3021 
3022     // Update the marked bytes for this region.
3023     hr->add_to_marked_bytes(marked_bytes);
3024 
3025     // Next heap region
3026     return false;
3027   }
3028 };
3029 
3030 class G1AggregateCountDataTask: public AbstractGangTask {
3031 protected:
3032   G1CollectedHeap* _g1h;
3033   ConcurrentMark* _cm;
3034   BitMap* _cm_card_bm;
3035   uint _max_worker_id;
3036   int _active_workers;
3037   HeapRegionClaimer _hrclaimer;
3038 
3039 public:
3040   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3041                            ConcurrentMark* cm,
3042                            BitMap* cm_card_bm,
3043                            uint max_worker_id,
3044                            int n_workers) :
3045       AbstractGangTask("Count Aggregation"),
3046       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3047       _max_worker_id(max_worker_id),
3048       _active_workers(n_workers),
3049       _hrclaimer(_active_workers) {
3050   }
3051 
3052   void work(uint worker_id) {
3053     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3054 
3055     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3056   }
3057 };
3058 
3059 
3060 void ConcurrentMark::aggregate_count_data() {
3061   int n_workers = _g1h->workers()->active_workers();
3062 
3063   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3064                                            _max_worker_id, n_workers);
3065 
3066   _g1h->set_par_threads(n_workers);
3067   _g1h->workers()->run_task(&g1_par_agg_task);
3068   _g1h->set_par_threads(0);
3069 }
3070 
3071 // Clear the per-worker arrays used to store the per-region counting data
3072 void ConcurrentMark::clear_all_count_data() {
3073   // Clear the global card bitmap - it will be filled during
3074   // liveness count aggregation (during remark) and the
3075   // final counting task.
3076   _card_bm.clear();
3077 
3078   // Clear the global region bitmap - it will be filled as part
3079   // of the final counting task.
3080   _region_bm.clear();
3081 
3082   uint max_regions = _g1h->max_regions();
3083   assert(_max_worker_id > 0, "uninitialized");
3084 
3085   for (uint i = 0; i < _max_worker_id; i += 1) {
3086     BitMap* task_card_bm = count_card_bitmap_for(i);
3087     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3088 
3089     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3090     assert(marked_bytes_array != NULL, "uninitialized");
3091 
3092     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3093     task_card_bm->clear();
3094   }
3095 }
3096 
3097 void ConcurrentMark::print_stats() {
3098   if (verbose_stats()) {
3099     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3100     for (size_t i = 0; i < _active_tasks; ++i) {
3101       _tasks[i]->print_stats();
3102       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3103     }
3104   }
3105 }
3106 
3107 // abandon current marking iteration due to a Full GC
3108 void ConcurrentMark::abort() {
3109   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3110   // concurrent bitmap clearing.
3111   _nextMarkBitMap->clearAll();
3112 
3113   // Note we cannot clear the previous marking bitmap here
3114   // since VerifyDuringGC verifies the objects marked during
3115   // a full GC against the previous bitmap.
3116 
3117   // Clear the liveness counting data
3118   clear_all_count_data();
3119   // Empty mark stack
3120   reset_marking_state();
3121   for (uint i = 0; i < _max_worker_id; ++i) {
3122     _tasks[i]->clear_region_fields();
3123   }
3124   _first_overflow_barrier_sync.abort();
3125   _second_overflow_barrier_sync.abort();
3126   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3127   if (!gc_id.is_undefined()) {
3128     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3129     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3130     _aborted_gc_id = gc_id;
3131    }
3132   _has_aborted = true;
3133 
3134   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3135   satb_mq_set.abandon_partial_marking();
3136   // This can be called either during or outside marking, we'll read
3137   // the expected_active value from the SATB queue set.
3138   satb_mq_set.set_active_all_threads(
3139                                  false, /* new active value */
3140                                  satb_mq_set.is_active() /* expected_active */);
3141 
3142   _g1h->trace_heap_after_concurrent_cycle();
3143   _g1h->register_concurrent_cycle_end();
3144 }
3145 
3146 const GCId& ConcurrentMark::concurrent_gc_id() {
3147   if (has_aborted()) {
3148     return _aborted_gc_id;
3149   }
3150   return _g1h->gc_tracer_cm()->gc_id();
3151 }
3152 
3153 static void print_ms_time_info(const char* prefix, const char* name,
3154                                NumberSeq& ns) {
3155   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3156                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3157   if (ns.num() > 0) {
3158     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3159                            prefix, ns.sd(), ns.maximum());
3160   }
3161 }
3162 
3163 void ConcurrentMark::print_summary_info() {
3164   gclog_or_tty->print_cr(" Concurrent marking:");
3165   print_ms_time_info("  ", "init marks", _init_times);
3166   print_ms_time_info("  ", "remarks", _remark_times);
3167   {
3168     print_ms_time_info("     ", "final marks", _remark_mark_times);
3169     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3170 
3171   }
3172   print_ms_time_info("  ", "cleanups", _cleanup_times);
3173   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3174                          _total_counting_time,
3175                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3176                           (double)_cleanup_times.num()
3177                          : 0.0));
3178   if (G1ScrubRemSets) {
3179     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3180                            _total_rs_scrub_time,
3181                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3182                             (double)_cleanup_times.num()
3183                            : 0.0));
3184   }
3185   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3186                          (_init_times.sum() + _remark_times.sum() +
3187                           _cleanup_times.sum())/1000.0);
3188   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3189                 "(%8.2f s marking).",
3190                 cmThread()->vtime_accum(),
3191                 cmThread()->vtime_mark_accum());
3192 }
3193 
3194 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3195   _parallel_workers->print_worker_threads_on(st);
3196 }
3197 
3198 void ConcurrentMark::print_on_error(outputStream* st) const {
3199   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3200       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3201   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3202   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3203 }
3204 
3205 // We take a break if someone is trying to stop the world.
3206 bool ConcurrentMark::do_yield_check(uint worker_id) {
3207   if (SuspendibleThreadSet::should_yield()) {
3208     if (worker_id == 0) {
3209       _g1h->g1_policy()->record_concurrent_pause();
3210     }
3211     SuspendibleThreadSet::yield();
3212     return true;
3213   } else {
3214     return false;
3215   }
3216 }
3217 
3218 #ifndef PRODUCT
3219 // for debugging purposes
3220 void ConcurrentMark::print_finger() {
3221   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3222                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3223   for (uint i = 0; i < _max_worker_id; ++i) {
3224     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3225   }
3226   gclog_or_tty->cr();
3227 }
3228 #endif
3229 
3230 template<bool scan>
3231 inline void CMTask::process_grey_object(oop obj) {
3232   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
3233   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3234 
3235   if (_cm->verbose_high()) {
3236     gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
3237                            _worker_id, p2i((void*) obj));
3238   }
3239 
3240   size_t obj_size = obj->size();
3241   _words_scanned += obj_size;
3242 
3243   if (scan) {
3244     obj->oop_iterate(_cm_oop_closure);
3245   }
3246   statsOnly( ++_objs_scanned );
3247   check_limits();
3248 }
3249 
3250 template void CMTask::process_grey_object<true>(oop);
3251 template void CMTask::process_grey_object<false>(oop);
3252 
3253 // Closure for iteration over bitmaps
3254 class CMBitMapClosure : public BitMapClosure {
3255 private:
3256   // the bitmap that is being iterated over
3257   CMBitMap*                   _nextMarkBitMap;
3258   ConcurrentMark*             _cm;
3259   CMTask*                     _task;
3260 
3261 public:
3262   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3263     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3264 
3265   bool do_bit(size_t offset) {
3266     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3267     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3268     assert( addr < _cm->finger(), "invariant");
3269 
3270     statsOnly( _task->increase_objs_found_on_bitmap() );
3271     assert(addr >= _task->finger(), "invariant");
3272 
3273     // We move that task's local finger along.
3274     _task->move_finger_to(addr);
3275 
3276     _task->scan_object(oop(addr));
3277     // we only partially drain the local queue and global stack
3278     _task->drain_local_queue(true);
3279     _task->drain_global_stack(true);
3280 
3281     // if the has_aborted flag has been raised, we need to bail out of
3282     // the iteration
3283     return !_task->has_aborted();
3284   }
3285 };
3286 
3287 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3288                                ConcurrentMark* cm,
3289                                CMTask* task)
3290   : _g1h(g1h), _cm(cm), _task(task) {
3291   assert(_ref_processor == NULL, "should be initialized to NULL");
3292 
3293   if (G1UseConcMarkReferenceProcessing) {
3294     _ref_processor = g1h->ref_processor_cm();
3295     assert(_ref_processor != NULL, "should not be NULL");
3296   }
3297 }
3298 
3299 void CMTask::setup_for_region(HeapRegion* hr) {
3300   assert(hr != NULL,
3301         "claim_region() should have filtered out NULL regions");
3302   assert(!hr->is_continues_humongous(),
3303         "claim_region() should have filtered out continues humongous regions");
3304 
3305   if (_cm->verbose_low()) {
3306     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3307                            _worker_id, p2i(hr));
3308   }
3309 
3310   _curr_region  = hr;
3311   _finger       = hr->bottom();
3312   update_region_limit();
3313 }
3314 
3315 void CMTask::update_region_limit() {
3316   HeapRegion* hr            = _curr_region;
3317   HeapWord* bottom          = hr->bottom();
3318   HeapWord* limit           = hr->next_top_at_mark_start();
3319 
3320   if (limit == bottom) {
3321     if (_cm->verbose_low()) {
3322       gclog_or_tty->print_cr("[%u] found an empty region "
3323                              "["PTR_FORMAT", "PTR_FORMAT")",
3324                              _worker_id, p2i(bottom), p2i(limit));
3325     }
3326     // The region was collected underneath our feet.
3327     // We set the finger to bottom to ensure that the bitmap
3328     // iteration that will follow this will not do anything.
3329     // (this is not a condition that holds when we set the region up,
3330     // as the region is not supposed to be empty in the first place)
3331     _finger = bottom;
3332   } else if (limit >= _region_limit) {
3333     assert(limit >= _finger, "peace of mind");
3334   } else {
3335     assert(limit < _region_limit, "only way to get here");
3336     // This can happen under some pretty unusual circumstances.  An
3337     // evacuation pause empties the region underneath our feet (NTAMS
3338     // at bottom). We then do some allocation in the region (NTAMS
3339     // stays at bottom), followed by the region being used as a GC
3340     // alloc region (NTAMS will move to top() and the objects
3341     // originally below it will be grayed). All objects now marked in
3342     // the region are explicitly grayed, if below the global finger,
3343     // and we do not need in fact to scan anything else. So, we simply
3344     // set _finger to be limit to ensure that the bitmap iteration
3345     // doesn't do anything.
3346     _finger = limit;
3347   }
3348 
3349   _region_limit = limit;
3350 }
3351 
3352 void CMTask::giveup_current_region() {
3353   assert(_curr_region != NULL, "invariant");
3354   if (_cm->verbose_low()) {
3355     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3356                            _worker_id, p2i(_curr_region));
3357   }
3358   clear_region_fields();
3359 }
3360 
3361 void CMTask::clear_region_fields() {
3362   // Values for these three fields that indicate that we're not
3363   // holding on to a region.
3364   _curr_region   = NULL;
3365   _finger        = NULL;
3366   _region_limit  = NULL;
3367 }
3368 
3369 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3370   if (cm_oop_closure == NULL) {
3371     assert(_cm_oop_closure != NULL, "invariant");
3372   } else {
3373     assert(_cm_oop_closure == NULL, "invariant");
3374   }
3375   _cm_oop_closure = cm_oop_closure;
3376 }
3377 
3378 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3379   guarantee(nextMarkBitMap != NULL, "invariant");
3380 
3381   if (_cm->verbose_low()) {
3382     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3383   }
3384 
3385   _nextMarkBitMap                = nextMarkBitMap;
3386   clear_region_fields();
3387 
3388   _calls                         = 0;
3389   _elapsed_time_ms               = 0.0;
3390   _termination_time_ms           = 0.0;
3391   _termination_start_time_ms     = 0.0;
3392 
3393 #if _MARKING_STATS_
3394   _aborted                       = 0;
3395   _aborted_overflow              = 0;
3396   _aborted_cm_aborted            = 0;
3397   _aborted_yield                 = 0;
3398   _aborted_timed_out             = 0;
3399   _aborted_satb                  = 0;
3400   _aborted_termination           = 0;
3401   _steal_attempts                = 0;
3402   _steals                        = 0;
3403   _local_pushes                  = 0;
3404   _local_pops                    = 0;
3405   _local_max_size                = 0;
3406   _objs_scanned                  = 0;
3407   _global_pushes                 = 0;
3408   _global_pops                   = 0;
3409   _global_max_size               = 0;
3410   _global_transfers_to           = 0;
3411   _global_transfers_from         = 0;
3412   _regions_claimed               = 0;
3413   _objs_found_on_bitmap          = 0;
3414   _satb_buffers_processed        = 0;
3415 #endif // _MARKING_STATS_
3416 }
3417 
3418 bool CMTask::should_exit_termination() {
3419   regular_clock_call();
3420   // This is called when we are in the termination protocol. We should
3421   // quit if, for some reason, this task wants to abort or the global
3422   // stack is not empty (this means that we can get work from it).
3423   return !_cm->mark_stack_empty() || has_aborted();
3424 }
3425 
3426 void CMTask::reached_limit() {
3427   assert(_words_scanned >= _words_scanned_limit ||
3428          _refs_reached >= _refs_reached_limit ,
3429          "shouldn't have been called otherwise");
3430   regular_clock_call();
3431 }
3432 
3433 void CMTask::regular_clock_call() {
3434   if (has_aborted()) return;
3435 
3436   // First, we need to recalculate the words scanned and refs reached
3437   // limits for the next clock call.
3438   recalculate_limits();
3439 
3440   // During the regular clock call we do the following
3441 
3442   // (1) If an overflow has been flagged, then we abort.
3443   if (_cm->has_overflown()) {
3444     set_has_aborted();
3445     return;
3446   }
3447 
3448   // If we are not concurrent (i.e. we're doing remark) we don't need
3449   // to check anything else. The other steps are only needed during
3450   // the concurrent marking phase.
3451   if (!concurrent()) return;
3452 
3453   // (2) If marking has been aborted for Full GC, then we also abort.
3454   if (_cm->has_aborted()) {
3455     set_has_aborted();
3456     statsOnly( ++_aborted_cm_aborted );
3457     return;
3458   }
3459 
3460   double curr_time_ms = os::elapsedVTime() * 1000.0;
3461 
3462   // (3) If marking stats are enabled, then we update the step history.
3463 #if _MARKING_STATS_
3464   if (_words_scanned >= _words_scanned_limit) {
3465     ++_clock_due_to_scanning;
3466   }
3467   if (_refs_reached >= _refs_reached_limit) {
3468     ++_clock_due_to_marking;
3469   }
3470 
3471   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3472   _interval_start_time_ms = curr_time_ms;
3473   _all_clock_intervals_ms.add(last_interval_ms);
3474 
3475   if (_cm->verbose_medium()) {
3476       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3477                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3478                         _worker_id, last_interval_ms,
3479                         _words_scanned,
3480                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3481                         _refs_reached,
3482                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3483   }
3484 #endif // _MARKING_STATS_
3485 
3486   // (4) We check whether we should yield. If we have to, then we abort.
3487   if (SuspendibleThreadSet::should_yield()) {
3488     // We should yield. To do this we abort the task. The caller is
3489     // responsible for yielding.
3490     set_has_aborted();
3491     statsOnly( ++_aborted_yield );
3492     return;
3493   }
3494 
3495   // (5) We check whether we've reached our time quota. If we have,
3496   // then we abort.
3497   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3498   if (elapsed_time_ms > _time_target_ms) {
3499     set_has_aborted();
3500     _has_timed_out = true;
3501     statsOnly( ++_aborted_timed_out );
3502     return;
3503   }
3504 
3505   // (6) Finally, we check whether there are enough completed STAB
3506   // buffers available for processing. If there are, we abort.
3507   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3508   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3509     if (_cm->verbose_low()) {
3510       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3511                              _worker_id);
3512     }
3513     // we do need to process SATB buffers, we'll abort and restart
3514     // the marking task to do so
3515     set_has_aborted();
3516     statsOnly( ++_aborted_satb );
3517     return;
3518   }
3519 }
3520 
3521 void CMTask::recalculate_limits() {
3522   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3523   _words_scanned_limit      = _real_words_scanned_limit;
3524 
3525   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3526   _refs_reached_limit       = _real_refs_reached_limit;
3527 }
3528 
3529 void CMTask::decrease_limits() {
3530   // This is called when we believe that we're going to do an infrequent
3531   // operation which will increase the per byte scanned cost (i.e. move
3532   // entries to/from the global stack). It basically tries to decrease the
3533   // scanning limit so that the clock is called earlier.
3534 
3535   if (_cm->verbose_medium()) {
3536     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3537   }
3538 
3539   _words_scanned_limit = _real_words_scanned_limit -
3540     3 * words_scanned_period / 4;
3541   _refs_reached_limit  = _real_refs_reached_limit -
3542     3 * refs_reached_period / 4;
3543 }
3544 
3545 void CMTask::move_entries_to_global_stack() {
3546   // local array where we'll store the entries that will be popped
3547   // from the local queue
3548   oop buffer[global_stack_transfer_size];
3549 
3550   int n = 0;
3551   oop obj;
3552   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3553     buffer[n] = obj;
3554     ++n;
3555   }
3556 
3557   if (n > 0) {
3558     // we popped at least one entry from the local queue
3559 
3560     statsOnly( ++_global_transfers_to; _local_pops += n );
3561 
3562     if (!_cm->mark_stack_push(buffer, n)) {
3563       if (_cm->verbose_low()) {
3564         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3565                                _worker_id);
3566       }
3567       set_has_aborted();
3568     } else {
3569       // the transfer was successful
3570 
3571       if (_cm->verbose_medium()) {
3572         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3573                                _worker_id, n);
3574       }
3575       statsOnly( size_t tmp_size = _cm->mark_stack_size();
3576                  if (tmp_size > _global_max_size) {
3577                    _global_max_size = tmp_size;
3578                  }
3579                  _global_pushes += n );
3580     }
3581   }
3582 
3583   // this operation was quite expensive, so decrease the limits
3584   decrease_limits();
3585 }
3586 
3587 void CMTask::get_entries_from_global_stack() {
3588   // local array where we'll store the entries that will be popped
3589   // from the global stack.
3590   oop buffer[global_stack_transfer_size];
3591   int n;
3592   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3593   assert(n <= global_stack_transfer_size,
3594          "we should not pop more than the given limit");
3595   if (n > 0) {
3596     // yes, we did actually pop at least one entry
3597 
3598     statsOnly( ++_global_transfers_from; _global_pops += n );
3599     if (_cm->verbose_medium()) {
3600       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3601                              _worker_id, n);
3602     }
3603     for (int i = 0; i < n; ++i) {
3604       bool success = _task_queue->push(buffer[i]);
3605       // We only call this when the local queue is empty or under a
3606       // given target limit. So, we do not expect this push to fail.
3607       assert(success, "invariant");
3608     }
3609 
3610     statsOnly( size_t tmp_size = (size_t)_task_queue->size();
3611                if (tmp_size > _local_max_size) {
3612                  _local_max_size = tmp_size;
3613                }
3614                _local_pushes += n );
3615   }
3616 
3617   // this operation was quite expensive, so decrease the limits
3618   decrease_limits();
3619 }
3620 
3621 void CMTask::drain_local_queue(bool partially) {
3622   if (has_aborted()) return;
3623 
3624   // Decide what the target size is, depending whether we're going to
3625   // drain it partially (so that other tasks can steal if they run out
3626   // of things to do) or totally (at the very end).
3627   size_t target_size;
3628   if (partially) {
3629     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3630   } else {
3631     target_size = 0;
3632   }
3633 
3634   if (_task_queue->size() > target_size) {
3635     if (_cm->verbose_high()) {
3636       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3637                              _worker_id, target_size);
3638     }
3639 
3640     oop obj;
3641     bool ret = _task_queue->pop_local(obj);
3642     while (ret) {
3643       statsOnly( ++_local_pops );
3644 
3645       if (_cm->verbose_high()) {
3646         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3647                                p2i((void*) obj));
3648       }
3649 
3650       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3651       assert(!_g1h->is_on_master_free_list(
3652                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3653 
3654       scan_object(obj);
3655 
3656       if (_task_queue->size() <= target_size || has_aborted()) {
3657         ret = false;
3658       } else {
3659         ret = _task_queue->pop_local(obj);
3660       }
3661     }
3662 
3663     if (_cm->verbose_high()) {
3664       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3665                              _worker_id, _task_queue->size());
3666     }
3667   }
3668 }
3669 
3670 void CMTask::drain_global_stack(bool partially) {
3671   if (has_aborted()) return;
3672 
3673   // We have a policy to drain the local queue before we attempt to
3674   // drain the global stack.
3675   assert(partially || _task_queue->size() == 0, "invariant");
3676 
3677   // Decide what the target size is, depending whether we're going to
3678   // drain it partially (so that other tasks can steal if they run out
3679   // of things to do) or totally (at the very end).  Notice that,
3680   // because we move entries from the global stack in chunks or
3681   // because another task might be doing the same, we might in fact
3682   // drop below the target. But, this is not a problem.
3683   size_t target_size;
3684   if (partially) {
3685     target_size = _cm->partial_mark_stack_size_target();
3686   } else {
3687     target_size = 0;
3688   }
3689 
3690   if (_cm->mark_stack_size() > target_size) {
3691     if (_cm->verbose_low()) {
3692       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3693                              _worker_id, target_size);
3694     }
3695 
3696     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3697       get_entries_from_global_stack();
3698       drain_local_queue(partially);
3699     }
3700 
3701     if (_cm->verbose_low()) {
3702       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3703                              _worker_id, _cm->mark_stack_size());
3704     }
3705   }
3706 }
3707 
3708 // SATB Queue has several assumptions on whether to call the par or
3709 // non-par versions of the methods. this is why some of the code is
3710 // replicated. We should really get rid of the single-threaded version
3711 // of the code to simplify things.
3712 void CMTask::drain_satb_buffers() {
3713   if (has_aborted()) return;
3714 
3715   // We set this so that the regular clock knows that we're in the
3716   // middle of draining buffers and doesn't set the abort flag when it
3717   // notices that SATB buffers are available for draining. It'd be
3718   // very counter productive if it did that. :-)
3719   _draining_satb_buffers = true;
3720 
3721   CMObjectClosure oc(this);
3722   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3723 
3724   // This keeps claiming and applying the closure to completed buffers
3725   // until we run out of buffers or we need to abort.
3726   while (!has_aborted() &&
3727          satb_mq_set.apply_closure_to_completed_buffer(&oc)) {
3728     if (_cm->verbose_medium()) {
3729       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3730     }
3731     statsOnly( ++_satb_buffers_processed );
3732     regular_clock_call();
3733   }
3734 
3735   _draining_satb_buffers = false;
3736 
3737   assert(has_aborted() ||
3738          concurrent() ||
3739          satb_mq_set.completed_buffers_num() == 0, "invariant");
3740 
3741   // again, this was a potentially expensive operation, decrease the
3742   // limits to get the regular clock call early
3743   decrease_limits();
3744 }
3745 
3746 void CMTask::print_stats() {
3747   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3748                          _worker_id, _calls);
3749   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3750                          _elapsed_time_ms, _termination_time_ms);
3751   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3752                          _step_times_ms.num(), _step_times_ms.avg(),
3753                          _step_times_ms.sd());
3754   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3755                          _step_times_ms.maximum(), _step_times_ms.sum());
3756 
3757 #if _MARKING_STATS_
3758   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3759                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3760                          _all_clock_intervals_ms.sd());
3761   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3762                          _all_clock_intervals_ms.maximum(),
3763                          _all_clock_intervals_ms.sum());
3764   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = " SIZE_FORMAT ", marking = " SIZE_FORMAT,
3765                          _clock_due_to_scanning, _clock_due_to_marking);
3766   gclog_or_tty->print_cr("  Objects: scanned = " SIZE_FORMAT ", found on the bitmap = " SIZE_FORMAT,
3767                          _objs_scanned, _objs_found_on_bitmap);
3768   gclog_or_tty->print_cr("  Local Queue:  pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3769                          _local_pushes, _local_pops, _local_max_size);
3770   gclog_or_tty->print_cr("  Global Stack: pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3771                          _global_pushes, _global_pops, _global_max_size);
3772   gclog_or_tty->print_cr("                transfers to = " SIZE_FORMAT ", transfers from = " SIZE_FORMAT,
3773                          _global_transfers_to,_global_transfers_from);
3774   gclog_or_tty->print_cr("  Regions: claimed = " SIZE_FORMAT, _regions_claimed);
3775   gclog_or_tty->print_cr("  SATB buffers: processed = " SIZE_FORMAT, _satb_buffers_processed);
3776   gclog_or_tty->print_cr("  Steals: attempts = " SIZE_FORMAT ", successes = " SIZE_FORMAT,
3777                          _steal_attempts, _steals);
3778   gclog_or_tty->print_cr("  Aborted: " SIZE_FORMAT ", due to", _aborted);
3779   gclog_or_tty->print_cr("    overflow: " SIZE_FORMAT ", global abort: " SIZE_FORMAT ", yield: " SIZE_FORMAT,
3780                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3781   gclog_or_tty->print_cr("    time out: " SIZE_FORMAT ", SATB: " SIZE_FORMAT ", termination: " SIZE_FORMAT,
3782                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3783 #endif // _MARKING_STATS_
3784 }
3785 
3786 /*****************************************************************************
3787 
3788     The do_marking_step(time_target_ms, ...) method is the building
3789     block of the parallel marking framework. It can be called in parallel
3790     with other invocations of do_marking_step() on different tasks
3791     (but only one per task, obviously) and concurrently with the
3792     mutator threads, or during remark, hence it eliminates the need
3793     for two versions of the code. When called during remark, it will
3794     pick up from where the task left off during the concurrent marking
3795     phase. Interestingly, tasks are also claimable during evacuation
3796     pauses too, since do_marking_step() ensures that it aborts before
3797     it needs to yield.
3798 
3799     The data structures that it uses to do marking work are the
3800     following:
3801 
3802       (1) Marking Bitmap. If there are gray objects that appear only
3803       on the bitmap (this happens either when dealing with an overflow
3804       or when the initial marking phase has simply marked the roots
3805       and didn't push them on the stack), then tasks claim heap
3806       regions whose bitmap they then scan to find gray objects. A
3807       global finger indicates where the end of the last claimed region
3808       is. A local finger indicates how far into the region a task has
3809       scanned. The two fingers are used to determine how to gray an
3810       object (i.e. whether simply marking it is OK, as it will be
3811       visited by a task in the future, or whether it needs to be also
3812       pushed on a stack).
3813 
3814       (2) Local Queue. The local queue of the task which is accessed
3815       reasonably efficiently by the task. Other tasks can steal from
3816       it when they run out of work. Throughout the marking phase, a
3817       task attempts to keep its local queue short but not totally
3818       empty, so that entries are available for stealing by other
3819       tasks. Only when there is no more work, a task will totally
3820       drain its local queue.
3821 
3822       (3) Global Mark Stack. This handles local queue overflow. During
3823       marking only sets of entries are moved between it and the local
3824       queues, as access to it requires a mutex and more fine-grain
3825       interaction with it which might cause contention. If it
3826       overflows, then the marking phase should restart and iterate
3827       over the bitmap to identify gray objects. Throughout the marking
3828       phase, tasks attempt to keep the global mark stack at a small
3829       length but not totally empty, so that entries are available for
3830       popping by other tasks. Only when there is no more work, tasks
3831       will totally drain the global mark stack.
3832 
3833       (4) SATB Buffer Queue. This is where completed SATB buffers are
3834       made available. Buffers are regularly removed from this queue
3835       and scanned for roots, so that the queue doesn't get too
3836       long. During remark, all completed buffers are processed, as
3837       well as the filled in parts of any uncompleted buffers.
3838 
3839     The do_marking_step() method tries to abort when the time target
3840     has been reached. There are a few other cases when the
3841     do_marking_step() method also aborts:
3842 
3843       (1) When the marking phase has been aborted (after a Full GC).
3844 
3845       (2) When a global overflow (on the global stack) has been
3846       triggered. Before the task aborts, it will actually sync up with
3847       the other tasks to ensure that all the marking data structures
3848       (local queues, stacks, fingers etc.)  are re-initialized so that
3849       when do_marking_step() completes, the marking phase can
3850       immediately restart.
3851 
3852       (3) When enough completed SATB buffers are available. The
3853       do_marking_step() method only tries to drain SATB buffers right
3854       at the beginning. So, if enough buffers are available, the
3855       marking step aborts and the SATB buffers are processed at
3856       the beginning of the next invocation.
3857 
3858       (4) To yield. when we have to yield then we abort and yield
3859       right at the end of do_marking_step(). This saves us from a lot
3860       of hassle as, by yielding we might allow a Full GC. If this
3861       happens then objects will be compacted underneath our feet, the
3862       heap might shrink, etc. We save checking for this by just
3863       aborting and doing the yield right at the end.
3864 
3865     From the above it follows that the do_marking_step() method should
3866     be called in a loop (or, otherwise, regularly) until it completes.
3867 
3868     If a marking step completes without its has_aborted() flag being
3869     true, it means it has completed the current marking phase (and
3870     also all other marking tasks have done so and have all synced up).
3871 
3872     A method called regular_clock_call() is invoked "regularly" (in
3873     sub ms intervals) throughout marking. It is this clock method that
3874     checks all the abort conditions which were mentioned above and
3875     decides when the task should abort. A work-based scheme is used to
3876     trigger this clock method: when the number of object words the
3877     marking phase has scanned or the number of references the marking
3878     phase has visited reach a given limit. Additional invocations to
3879     the method clock have been planted in a few other strategic places
3880     too. The initial reason for the clock method was to avoid calling
3881     vtime too regularly, as it is quite expensive. So, once it was in
3882     place, it was natural to piggy-back all the other conditions on it
3883     too and not constantly check them throughout the code.
3884 
3885     If do_termination is true then do_marking_step will enter its
3886     termination protocol.
3887 
3888     The value of is_serial must be true when do_marking_step is being
3889     called serially (i.e. by the VMThread) and do_marking_step should
3890     skip any synchronization in the termination and overflow code.
3891     Examples include the serial remark code and the serial reference
3892     processing closures.
3893 
3894     The value of is_serial must be false when do_marking_step is
3895     being called by any of the worker threads in a work gang.
3896     Examples include the concurrent marking code (CMMarkingTask),
3897     the MT remark code, and the MT reference processing closures.
3898 
3899  *****************************************************************************/
3900 
3901 void CMTask::do_marking_step(double time_target_ms,
3902                              bool do_termination,
3903                              bool is_serial) {
3904   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3905   assert(concurrent() == _cm->concurrent(), "they should be the same");
3906 
3907   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3908   assert(_task_queues != NULL, "invariant");
3909   assert(_task_queue != NULL, "invariant");
3910   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3911 
3912   assert(!_claimed,
3913          "only one thread should claim this task at any one time");
3914 
3915   // OK, this doesn't safeguard again all possible scenarios, as it is
3916   // possible for two threads to set the _claimed flag at the same
3917   // time. But it is only for debugging purposes anyway and it will
3918   // catch most problems.
3919   _claimed = true;
3920 
3921   _start_time_ms = os::elapsedVTime() * 1000.0;
3922   statsOnly( _interval_start_time_ms = _start_time_ms );
3923 
3924   // If do_stealing is true then do_marking_step will attempt to
3925   // steal work from the other CMTasks. It only makes sense to
3926   // enable stealing when the termination protocol is enabled
3927   // and do_marking_step() is not being called serially.
3928   bool do_stealing = do_termination && !is_serial;
3929 
3930   double diff_prediction_ms =
3931     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
3932   _time_target_ms = time_target_ms - diff_prediction_ms;
3933 
3934   // set up the variables that are used in the work-based scheme to
3935   // call the regular clock method
3936   _words_scanned = 0;
3937   _refs_reached  = 0;
3938   recalculate_limits();
3939 
3940   // clear all flags
3941   clear_has_aborted();
3942   _has_timed_out = false;
3943   _draining_satb_buffers = false;
3944 
3945   ++_calls;
3946 
3947   if (_cm->verbose_low()) {
3948     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
3949                            "target = %1.2lfms >>>>>>>>>>",
3950                            _worker_id, _calls, _time_target_ms);
3951   }
3952 
3953   // Set up the bitmap and oop closures. Anything that uses them is
3954   // eventually called from this method, so it is OK to allocate these
3955   // statically.
3956   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3957   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3958   set_cm_oop_closure(&cm_oop_closure);
3959 
3960   if (_cm->has_overflown()) {
3961     // This can happen if the mark stack overflows during a GC pause
3962     // and this task, after a yield point, restarts. We have to abort
3963     // as we need to get into the overflow protocol which happens
3964     // right at the end of this task.
3965     set_has_aborted();
3966   }
3967 
3968   // First drain any available SATB buffers. After this, we will not
3969   // look at SATB buffers before the next invocation of this method.
3970   // If enough completed SATB buffers are queued up, the regular clock
3971   // will abort this task so that it restarts.
3972   drain_satb_buffers();
3973   // ...then partially drain the local queue and the global stack
3974   drain_local_queue(true);
3975   drain_global_stack(true);
3976 
3977   do {
3978     if (!has_aborted() && _curr_region != NULL) {
3979       // This means that we're already holding on to a region.
3980       assert(_finger != NULL, "if region is not NULL, then the finger "
3981              "should not be NULL either");
3982 
3983       // We might have restarted this task after an evacuation pause
3984       // which might have evacuated the region we're holding on to
3985       // underneath our feet. Let's read its limit again to make sure
3986       // that we do not iterate over a region of the heap that
3987       // contains garbage (update_region_limit() will also move
3988       // _finger to the start of the region if it is found empty).
3989       update_region_limit();
3990       // We will start from _finger not from the start of the region,
3991       // as we might be restarting this task after aborting half-way
3992       // through scanning this region. In this case, _finger points to
3993       // the address where we last found a marked object. If this is a
3994       // fresh region, _finger points to start().
3995       MemRegion mr = MemRegion(_finger, _region_limit);
3996 
3997       if (_cm->verbose_low()) {
3998         gclog_or_tty->print_cr("[%u] we're scanning part "
3999                                "["PTR_FORMAT", "PTR_FORMAT") "
4000                                "of region "HR_FORMAT,
4001                                _worker_id, p2i(_finger), p2i(_region_limit),
4002                                HR_FORMAT_PARAMS(_curr_region));
4003       }
4004 
4005       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4006              "humongous regions should go around loop once only");
4007 
4008       // Some special cases:
4009       // If the memory region is empty, we can just give up the region.
4010       // If the current region is humongous then we only need to check
4011       // the bitmap for the bit associated with the start of the object,
4012       // scan the object if it's live, and give up the region.
4013       // Otherwise, let's iterate over the bitmap of the part of the region
4014       // that is left.
4015       // If the iteration is successful, give up the region.
4016       if (mr.is_empty()) {
4017         giveup_current_region();
4018         regular_clock_call();
4019       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4020         if (_nextMarkBitMap->isMarked(mr.start())) {
4021           // The object is marked - apply the closure
4022           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4023           bitmap_closure.do_bit(offset);
4024         }
4025         // Even if this task aborted while scanning the humongous object
4026         // we can (and should) give up the current region.
4027         giveup_current_region();
4028         regular_clock_call();
4029       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4030         giveup_current_region();
4031         regular_clock_call();
4032       } else {
4033         assert(has_aborted(), "currently the only way to do so");
4034         // The only way to abort the bitmap iteration is to return
4035         // false from the do_bit() method. However, inside the
4036         // do_bit() method we move the _finger to point to the
4037         // object currently being looked at. So, if we bail out, we
4038         // have definitely set _finger to something non-null.
4039         assert(_finger != NULL, "invariant");
4040 
4041         // Region iteration was actually aborted. So now _finger
4042         // points to the address of the object we last scanned. If we
4043         // leave it there, when we restart this task, we will rescan
4044         // the object. It is easy to avoid this. We move the finger by
4045         // enough to point to the next possible object header (the
4046         // bitmap knows by how much we need to move it as it knows its
4047         // granularity).
4048         assert(_finger < _region_limit, "invariant");
4049         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4050         // Check if bitmap iteration was aborted while scanning the last object
4051         if (new_finger >= _region_limit) {
4052           giveup_current_region();
4053         } else {
4054           move_finger_to(new_finger);
4055         }
4056       }
4057     }
4058     // At this point we have either completed iterating over the
4059     // region we were holding on to, or we have aborted.
4060 
4061     // We then partially drain the local queue and the global stack.
4062     // (Do we really need this?)
4063     drain_local_queue(true);
4064     drain_global_stack(true);
4065 
4066     // Read the note on the claim_region() method on why it might
4067     // return NULL with potentially more regions available for
4068     // claiming and why we have to check out_of_regions() to determine
4069     // whether we're done or not.
4070     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4071       // We are going to try to claim a new region. We should have
4072       // given up on the previous one.
4073       // Separated the asserts so that we know which one fires.
4074       assert(_curr_region  == NULL, "invariant");
4075       assert(_finger       == NULL, "invariant");
4076       assert(_region_limit == NULL, "invariant");
4077       if (_cm->verbose_low()) {
4078         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4079       }
4080       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4081       if (claimed_region != NULL) {
4082         // Yes, we managed to claim one
4083         statsOnly( ++_regions_claimed );
4084 
4085         if (_cm->verbose_low()) {
4086           gclog_or_tty->print_cr("[%u] we successfully claimed "
4087                                  "region "PTR_FORMAT,
4088                                  _worker_id, p2i(claimed_region));
4089         }
4090 
4091         setup_for_region(claimed_region);
4092         assert(_curr_region == claimed_region, "invariant");
4093       }
4094       // It is important to call the regular clock here. It might take
4095       // a while to claim a region if, for example, we hit a large
4096       // block of empty regions. So we need to call the regular clock
4097       // method once round the loop to make sure it's called
4098       // frequently enough.
4099       regular_clock_call();
4100     }
4101 
4102     if (!has_aborted() && _curr_region == NULL) {
4103       assert(_cm->out_of_regions(),
4104              "at this point we should be out of regions");
4105     }
4106   } while ( _curr_region != NULL && !has_aborted());
4107 
4108   if (!has_aborted()) {
4109     // We cannot check whether the global stack is empty, since other
4110     // tasks might be pushing objects to it concurrently.
4111     assert(_cm->out_of_regions(),
4112            "at this point we should be out of regions");
4113 
4114     if (_cm->verbose_low()) {
4115       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4116     }
4117 
4118     // Try to reduce the number of available SATB buffers so that
4119     // remark has less work to do.
4120     drain_satb_buffers();
4121   }
4122 
4123   // Since we've done everything else, we can now totally drain the
4124   // local queue and global stack.
4125   drain_local_queue(false);
4126   drain_global_stack(false);
4127 
4128   // Attempt at work stealing from other task's queues.
4129   if (do_stealing && !has_aborted()) {
4130     // We have not aborted. This means that we have finished all that
4131     // we could. Let's try to do some stealing...
4132 
4133     // We cannot check whether the global stack is empty, since other
4134     // tasks might be pushing objects to it concurrently.
4135     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4136            "only way to reach here");
4137 
4138     if (_cm->verbose_low()) {
4139       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4140     }
4141 
4142     while (!has_aborted()) {
4143       oop obj;
4144       statsOnly( ++_steal_attempts );
4145 
4146       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4147         if (_cm->verbose_medium()) {
4148           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4149                                  _worker_id, p2i((void*) obj));
4150         }
4151 
4152         statsOnly( ++_steals );
4153 
4154         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4155                "any stolen object should be marked");
4156         scan_object(obj);
4157 
4158         // And since we're towards the end, let's totally drain the
4159         // local queue and global stack.
4160         drain_local_queue(false);
4161         drain_global_stack(false);
4162       } else {
4163         break;
4164       }
4165     }
4166   }
4167 
4168   // If we are about to wrap up and go into termination, check if we
4169   // should raise the overflow flag.
4170   if (do_termination && !has_aborted()) {
4171     if (_cm->force_overflow()->should_force()) {
4172       _cm->set_has_overflown();
4173       regular_clock_call();
4174     }
4175   }
4176 
4177   // We still haven't aborted. Now, let's try to get into the
4178   // termination protocol.
4179   if (do_termination && !has_aborted()) {
4180     // We cannot check whether the global stack is empty, since other
4181     // tasks might be concurrently pushing objects on it.
4182     // Separated the asserts so that we know which one fires.
4183     assert(_cm->out_of_regions(), "only way to reach here");
4184     assert(_task_queue->size() == 0, "only way to reach here");
4185 
4186     if (_cm->verbose_low()) {
4187       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4188     }
4189 
4190     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4191 
4192     // The CMTask class also extends the TerminatorTerminator class,
4193     // hence its should_exit_termination() method will also decide
4194     // whether to exit the termination protocol or not.
4195     bool finished = (is_serial ||
4196                      _cm->terminator()->offer_termination(this));
4197     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4198     _termination_time_ms +=
4199       termination_end_time_ms - _termination_start_time_ms;
4200 
4201     if (finished) {
4202       // We're all done.
4203 
4204       if (_worker_id == 0) {
4205         // let's allow task 0 to do this
4206         if (concurrent()) {
4207           assert(_cm->concurrent_marking_in_progress(), "invariant");
4208           // we need to set this to false before the next
4209           // safepoint. This way we ensure that the marking phase
4210           // doesn't observe any more heap expansions.
4211           _cm->clear_concurrent_marking_in_progress();
4212         }
4213       }
4214 
4215       // We can now guarantee that the global stack is empty, since
4216       // all other tasks have finished. We separated the guarantees so
4217       // that, if a condition is false, we can immediately find out
4218       // which one.
4219       guarantee(_cm->out_of_regions(), "only way to reach here");
4220       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4221       guarantee(_task_queue->size() == 0, "only way to reach here");
4222       guarantee(!_cm->has_overflown(), "only way to reach here");
4223       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4224 
4225       if (_cm->verbose_low()) {
4226         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4227       }
4228     } else {
4229       // Apparently there's more work to do. Let's abort this task. It
4230       // will restart it and we can hopefully find more things to do.
4231 
4232       if (_cm->verbose_low()) {
4233         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4234                                _worker_id);
4235       }
4236 
4237       set_has_aborted();
4238       statsOnly( ++_aborted_termination );
4239     }
4240   }
4241 
4242   // Mainly for debugging purposes to make sure that a pointer to the
4243   // closure which was statically allocated in this frame doesn't
4244   // escape it by accident.
4245   set_cm_oop_closure(NULL);
4246   double end_time_ms = os::elapsedVTime() * 1000.0;
4247   double elapsed_time_ms = end_time_ms - _start_time_ms;
4248   // Update the step history.
4249   _step_times_ms.add(elapsed_time_ms);
4250 
4251   if (has_aborted()) {
4252     // The task was aborted for some reason.
4253 
4254     statsOnly( ++_aborted );
4255 
4256     if (_has_timed_out) {
4257       double diff_ms = elapsed_time_ms - _time_target_ms;
4258       // Keep statistics of how well we did with respect to hitting
4259       // our target only if we actually timed out (if we aborted for
4260       // other reasons, then the results might get skewed).
4261       _marking_step_diffs_ms.add(diff_ms);
4262     }
4263 
4264     if (_cm->has_overflown()) {
4265       // This is the interesting one. We aborted because a global
4266       // overflow was raised. This means we have to restart the
4267       // marking phase and start iterating over regions. However, in
4268       // order to do this we have to make sure that all tasks stop
4269       // what they are doing and re-initialize in a safe manner. We
4270       // will achieve this with the use of two barrier sync points.
4271 
4272       if (_cm->verbose_low()) {
4273         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4274       }
4275 
4276       if (!is_serial) {
4277         // We only need to enter the sync barrier if being called
4278         // from a parallel context
4279         _cm->enter_first_sync_barrier(_worker_id);
4280 
4281         // When we exit this sync barrier we know that all tasks have
4282         // stopped doing marking work. So, it's now safe to
4283         // re-initialize our data structures. At the end of this method,
4284         // task 0 will clear the global data structures.
4285       }
4286 
4287       statsOnly( ++_aborted_overflow );
4288 
4289       // We clear the local state of this task...
4290       clear_region_fields();
4291 
4292       if (!is_serial) {
4293         // ...and enter the second barrier.
4294         _cm->enter_second_sync_barrier(_worker_id);
4295       }
4296       // At this point, if we're during the concurrent phase of
4297       // marking, everything has been re-initialized and we're
4298       // ready to restart.
4299     }
4300 
4301     if (_cm->verbose_low()) {
4302       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4303                              "elapsed = %1.2lfms <<<<<<<<<<",
4304                              _worker_id, _time_target_ms, elapsed_time_ms);
4305       if (_cm->has_aborted()) {
4306         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4307                                _worker_id);
4308       }
4309     }
4310   } else {
4311     if (_cm->verbose_low()) {
4312       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4313                              "elapsed = %1.2lfms <<<<<<<<<<",
4314                              _worker_id, _time_target_ms, elapsed_time_ms);
4315     }
4316   }
4317 
4318   _claimed = false;
4319 }
4320 
4321 CMTask::CMTask(uint worker_id,
4322                ConcurrentMark* cm,
4323                size_t* marked_bytes,
4324                BitMap* card_bm,
4325                CMTaskQueue* task_queue,
4326                CMTaskQueueSet* task_queues)
4327   : _g1h(G1CollectedHeap::heap()),
4328     _worker_id(worker_id), _cm(cm),
4329     _claimed(false),
4330     _nextMarkBitMap(NULL), _hash_seed(17),
4331     _task_queue(task_queue),
4332     _task_queues(task_queues),
4333     _cm_oop_closure(NULL),
4334     _marked_bytes_array(marked_bytes),
4335     _card_bm(card_bm) {
4336   guarantee(task_queue != NULL, "invariant");
4337   guarantee(task_queues != NULL, "invariant");
4338 
4339   statsOnly( _clock_due_to_scanning = 0;
4340              _clock_due_to_marking  = 0 );
4341 
4342   _marking_step_diffs_ms.add(0.5);
4343 }
4344 
4345 // These are formatting macros that are used below to ensure
4346 // consistent formatting. The *_H_* versions are used to format the
4347 // header for a particular value and they should be kept consistent
4348 // with the corresponding macro. Also note that most of the macros add
4349 // the necessary white space (as a prefix) which makes them a bit
4350 // easier to compose.
4351 
4352 // All the output lines are prefixed with this string to be able to
4353 // identify them easily in a large log file.
4354 #define G1PPRL_LINE_PREFIX            "###"
4355 
4356 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4357 #ifdef _LP64
4358 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4359 #else // _LP64
4360 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4361 #endif // _LP64
4362 
4363 // For per-region info
4364 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4365 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4366 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4367 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4368 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4369 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4370 
4371 // For summary info
4372 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4373 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4374 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4375 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4376 
4377 G1PrintRegionLivenessInfoClosure::
4378 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4379   : _out(out),
4380     _total_used_bytes(0), _total_capacity_bytes(0),
4381     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4382     _hum_used_bytes(0), _hum_capacity_bytes(0),
4383     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4384     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4386   MemRegion g1_reserved = g1h->g1_reserved();
4387   double now = os::elapsedTime();
4388 
4389   // Print the header of the output.
4390   _out->cr();
4391   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4392   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4393                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4394                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4395                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4396                  HeapRegion::GrainBytes);
4397   _out->print_cr(G1PPRL_LINE_PREFIX);
4398   _out->print_cr(G1PPRL_LINE_PREFIX
4399                 G1PPRL_TYPE_H_FORMAT
4400                 G1PPRL_ADDR_BASE_H_FORMAT
4401                 G1PPRL_BYTE_H_FORMAT
4402                 G1PPRL_BYTE_H_FORMAT
4403                 G1PPRL_BYTE_H_FORMAT
4404                 G1PPRL_DOUBLE_H_FORMAT
4405                 G1PPRL_BYTE_H_FORMAT
4406                 G1PPRL_BYTE_H_FORMAT,
4407                 "type", "address-range",
4408                 "used", "prev-live", "next-live", "gc-eff",
4409                 "remset", "code-roots");
4410   _out->print_cr(G1PPRL_LINE_PREFIX
4411                 G1PPRL_TYPE_H_FORMAT
4412                 G1PPRL_ADDR_BASE_H_FORMAT
4413                 G1PPRL_BYTE_H_FORMAT
4414                 G1PPRL_BYTE_H_FORMAT
4415                 G1PPRL_BYTE_H_FORMAT
4416                 G1PPRL_DOUBLE_H_FORMAT
4417                 G1PPRL_BYTE_H_FORMAT
4418                 G1PPRL_BYTE_H_FORMAT,
4419                 "", "",
4420                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4421                 "(bytes)", "(bytes)");
4422 }
4423 
4424 // It takes as a parameter a reference to one of the _hum_* fields, it
4425 // deduces the corresponding value for a region in a humongous region
4426 // series (either the region size, or what's left if the _hum_* field
4427 // is < the region size), and updates the _hum_* field accordingly.
4428 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4429   size_t bytes = 0;
4430   // The > 0 check is to deal with the prev and next live bytes which
4431   // could be 0.
4432   if (*hum_bytes > 0) {
4433     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4434     *hum_bytes -= bytes;
4435   }
4436   return bytes;
4437 }
4438 
4439 // It deduces the values for a region in a humongous region series
4440 // from the _hum_* fields and updates those accordingly. It assumes
4441 // that that _hum_* fields have already been set up from the "starts
4442 // humongous" region and we visit the regions in address order.
4443 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4444                                                      size_t* capacity_bytes,
4445                                                      size_t* prev_live_bytes,
4446                                                      size_t* next_live_bytes) {
4447   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4448   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4449   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4450   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4451   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4452 }
4453 
4454 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4455   const char* type       = r->get_type_str();
4456   HeapWord* bottom       = r->bottom();
4457   HeapWord* end          = r->end();
4458   size_t capacity_bytes  = r->capacity();
4459   size_t used_bytes      = r->used();
4460   size_t prev_live_bytes = r->live_bytes();
4461   size_t next_live_bytes = r->next_live_bytes();
4462   double gc_eff          = r->gc_efficiency();
4463   size_t remset_bytes    = r->rem_set()->mem_size();
4464   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4465 
4466   if (r->is_starts_humongous()) {
4467     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4468            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4469            "they should have been zeroed after the last time we used them");
4470     // Set up the _hum_* fields.
4471     _hum_capacity_bytes  = capacity_bytes;
4472     _hum_used_bytes      = used_bytes;
4473     _hum_prev_live_bytes = prev_live_bytes;
4474     _hum_next_live_bytes = next_live_bytes;
4475     get_hum_bytes(&used_bytes, &capacity_bytes,
4476                   &prev_live_bytes, &next_live_bytes);
4477     end = bottom + HeapRegion::GrainWords;
4478   } else if (r->is_continues_humongous()) {
4479     get_hum_bytes(&used_bytes, &capacity_bytes,
4480                   &prev_live_bytes, &next_live_bytes);
4481     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4482   }
4483 
4484   _total_used_bytes      += used_bytes;
4485   _total_capacity_bytes  += capacity_bytes;
4486   _total_prev_live_bytes += prev_live_bytes;
4487   _total_next_live_bytes += next_live_bytes;
4488   _total_remset_bytes    += remset_bytes;
4489   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4490 
4491   // Print a line for this particular region.
4492   _out->print_cr(G1PPRL_LINE_PREFIX
4493                  G1PPRL_TYPE_FORMAT
4494                  G1PPRL_ADDR_BASE_FORMAT
4495                  G1PPRL_BYTE_FORMAT
4496                  G1PPRL_BYTE_FORMAT
4497                  G1PPRL_BYTE_FORMAT
4498                  G1PPRL_DOUBLE_FORMAT
4499                  G1PPRL_BYTE_FORMAT
4500                  G1PPRL_BYTE_FORMAT,
4501                  type, p2i(bottom), p2i(end),
4502                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4503                  remset_bytes, strong_code_roots_bytes);
4504 
4505   return false;
4506 }
4507 
4508 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4509   // add static memory usages to remembered set sizes
4510   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4511   // Print the footer of the output.
4512   _out->print_cr(G1PPRL_LINE_PREFIX);
4513   _out->print_cr(G1PPRL_LINE_PREFIX
4514                  " SUMMARY"
4515                  G1PPRL_SUM_MB_FORMAT("capacity")
4516                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4517                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4518                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4519                  G1PPRL_SUM_MB_FORMAT("remset")
4520                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4521                  bytes_to_mb(_total_capacity_bytes),
4522                  bytes_to_mb(_total_used_bytes),
4523                  perc(_total_used_bytes, _total_capacity_bytes),
4524                  bytes_to_mb(_total_prev_live_bytes),
4525                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4526                  bytes_to_mb(_total_next_live_bytes),
4527                  perc(_total_next_live_bytes, _total_capacity_bytes),
4528                  bytes_to_mb(_total_remset_bytes),
4529                  bytes_to_mb(_total_strong_code_roots_bytes));
4530   _out->cr();
4531 }