1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/g1StringDedup.hpp"
  38 #include "gc_implementation/g1/heapRegion.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  40 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  41 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  42 #include "gc_implementation/shared/vmGCOperations.hpp"
  43 #include "gc_implementation/shared/gcTimer.hpp"
  44 #include "gc_implementation/shared/gcTrace.hpp"
  45 #include "gc_implementation/shared/gcTraceTime.hpp"
  46 #include "memory/allocation.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/referencePolicy.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/strongRootsScope.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/prefetch.inline.hpp"
  56 #include "services/memTracker.hpp"
  57 #include "utilities/taskqueue.inline.hpp"
  58 
  59 // Concurrent marking bit map wrapper
  60 
  61 CMBitMapRO::CMBitMapRO(int shifter) :
  62   _bm(),
  63   _shifter(shifter) {
  64   _bmStartWord = 0;
  65   _bmWordSize = 0;
  66 }
  67 
  68 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  69                                                const HeapWord* limit) const {
  70   // First we must round addr *up* to a possible object boundary.
  71   addr = (HeapWord*)align_size_up((intptr_t)addr,
  72                                   HeapWordSize << _shifter);
  73   size_t addrOffset = heapWordToOffset(addr);
  74   if (limit == NULL) {
  75     limit = _bmStartWord + _bmWordSize;
  76   }
  77   size_t limitOffset = heapWordToOffset(limit);
  78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  80   assert(nextAddr >= addr, "get_next_one postcondition");
  81   assert(nextAddr == limit || isMarked(nextAddr),
  82          "get_next_one postcondition");
  83   return nextAddr;
  84 }
  85 
  86 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  87                                                  const HeapWord* limit) const {
  88   size_t addrOffset = heapWordToOffset(addr);
  89   if (limit == NULL) {
  90     limit = _bmStartWord + _bmWordSize;
  91   }
  92   size_t limitOffset = heapWordToOffset(limit);
  93   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  94   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  95   assert(nextAddr >= addr, "get_next_one postcondition");
  96   assert(nextAddr == limit || !isMarked(nextAddr),
  97          "get_next_one postcondition");
  98   return nextAddr;
  99 }
 100 
 101 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 102   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 103   return (int) (diff >> _shifter);
 104 }
 105 
 106 #ifndef PRODUCT
 107 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 108   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 109   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 110          "size inconsistency");
 111   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 112          _bmWordSize  == heap_rs.word_size();
 113 }
 114 #endif
 115 
 116 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 117   _bm.print_on_error(st, prefix);
 118 }
 119 
 120 size_t CMBitMap::compute_size(size_t heap_size) {
 121   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 122 }
 123 
 124 size_t CMBitMap::mark_distance() {
 125   return MinObjAlignmentInBytes * BitsPerByte;
 126 }
 127 
 128 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 129   _bmStartWord = heap.start();
 130   _bmWordSize = heap.word_size();
 131 
 132   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 133   _bm.set_size(_bmWordSize >> _shifter);
 134 
 135   storage->set_mapping_changed_listener(&_listener);
 136 }
 137 
 138 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 139   if (zero_filled) {
 140     return;
 141   }
 142   // We need to clear the bitmap on commit, removing any existing information.
 143   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 144   _bm->clearRange(mr);
 145 }
 146 
 147 // Closure used for clearing the given mark bitmap.
 148 class ClearBitmapHRClosure : public HeapRegionClosure {
 149  private:
 150   ConcurrentMark* _cm;
 151   CMBitMap* _bitmap;
 152   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 153  public:
 154   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 155     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 156   }
 157 
 158   virtual bool doHeapRegion(HeapRegion* r) {
 159     size_t const chunk_size_in_words = M / HeapWordSize;
 160 
 161     HeapWord* cur = r->bottom();
 162     HeapWord* const end = r->end();
 163 
 164     while (cur < end) {
 165       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 166       _bitmap->clearRange(mr);
 167 
 168       cur += chunk_size_in_words;
 169 
 170       // Abort iteration if after yielding the marking has been aborted.
 171       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 172         return true;
 173       }
 174       // Repeat the asserts from before the start of the closure. We will do them
 175       // as asserts here to minimize their overhead on the product. However, we
 176       // will have them as guarantees at the beginning / end of the bitmap
 177       // clearing to get some checking in the product.
 178       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 179       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 180     }
 181 
 182     return false;
 183   }
 184 };
 185 
 186 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 187   ClearBitmapHRClosure* _cl;
 188   HeapRegionClaimer     _hrclaimer;
 189   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 190 
 191 public:
 192   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 193       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 194 
 195   void work(uint worker_id) {
 196     if (_suspendible) {
 197       SuspendibleThreadSet::join();
 198     }
 199     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 200     if (_suspendible) {
 201       SuspendibleThreadSet::leave();
 202     }
 203   }
 204 };
 205 
 206 void CMBitMap::clearAll() {
 207   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 208   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 209   uint n_workers = g1h->workers()->active_workers();
 210   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 211   g1h->workers()->run_task(&task);
 212   guarantee(cl.complete(), "Must have completed iteration.");
 213   return;
 214 }
 215 
 216 void CMBitMap::markRange(MemRegion mr) {
 217   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 218   assert(!mr.is_empty(), "unexpected empty region");
 219   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 220           ((HeapWord *) mr.end())),
 221          "markRange memory region end is not card aligned");
 222   // convert address range into offset range
 223   _bm.at_put_range(heapWordToOffset(mr.start()),
 224                    heapWordToOffset(mr.end()), true);
 225 }
 226 
 227 void CMBitMap::clearRange(MemRegion mr) {
 228   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 229   assert(!mr.is_empty(), "unexpected empty region");
 230   // convert address range into offset range
 231   _bm.at_put_range(heapWordToOffset(mr.start()),
 232                    heapWordToOffset(mr.end()), false);
 233 }
 234 
 235 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 236                                             HeapWord* end_addr) {
 237   HeapWord* start = getNextMarkedWordAddress(addr);
 238   start = MIN2(start, end_addr);
 239   HeapWord* end   = getNextUnmarkedWordAddress(start);
 240   end = MIN2(end, end_addr);
 241   assert(start <= end, "Consistency check");
 242   MemRegion mr(start, end);
 243   if (!mr.is_empty()) {
 244     clearRange(mr);
 245   }
 246   return mr;
 247 }
 248 
 249 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 250   _base(NULL), _cm(cm)
 251 #ifdef ASSERT
 252   , _drain_in_progress(false)
 253   , _drain_in_progress_yields(false)
 254 #endif
 255 {}
 256 
 257 bool CMMarkStack::allocate(size_t capacity) {
 258   // allocate a stack of the requisite depth
 259   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 260   if (!rs.is_reserved()) {
 261     warning("ConcurrentMark MarkStack allocation failure");
 262     return false;
 263   }
 264   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 265   if (!_virtual_space.initialize(rs, rs.size())) {
 266     warning("ConcurrentMark MarkStack backing store failure");
 267     // Release the virtual memory reserved for the marking stack
 268     rs.release();
 269     return false;
 270   }
 271   assert(_virtual_space.committed_size() == rs.size(),
 272          "Didn't reserve backing store for all of ConcurrentMark stack?");
 273   _base = (oop*) _virtual_space.low();
 274   setEmpty();
 275   _capacity = (jint) capacity;
 276   _saved_index = -1;
 277   _should_expand = false;
 278   NOT_PRODUCT(_max_depth = 0);
 279   return true;
 280 }
 281 
 282 void CMMarkStack::expand() {
 283   // Called, during remark, if we've overflown the marking stack during marking.
 284   assert(isEmpty(), "stack should been emptied while handling overflow");
 285   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 286   // Clear expansion flag
 287   _should_expand = false;
 288   if (_capacity == (jint) MarkStackSizeMax) {
 289     if (PrintGCDetails && Verbose) {
 290       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 291     }
 292     return;
 293   }
 294   // Double capacity if possible
 295   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 296   // Do not give up existing stack until we have managed to
 297   // get the double capacity that we desired.
 298   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 299                                                            sizeof(oop)));
 300   if (rs.is_reserved()) {
 301     // Release the backing store associated with old stack
 302     _virtual_space.release();
 303     // Reinitialize virtual space for new stack
 304     if (!_virtual_space.initialize(rs, rs.size())) {
 305       fatal("Not enough swap for expanded marking stack capacity");
 306     }
 307     _base = (oop*)(_virtual_space.low());
 308     _index = 0;
 309     _capacity = new_capacity;
 310   } else {
 311     if (PrintGCDetails && Verbose) {
 312       // Failed to double capacity, continue;
 313       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 314                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 315                           _capacity / K, new_capacity / K);
 316     }
 317   }
 318 }
 319 
 320 void CMMarkStack::set_should_expand() {
 321   // If we're resetting the marking state because of an
 322   // marking stack overflow, record that we should, if
 323   // possible, expand the stack.
 324   _should_expand = _cm->has_overflown();
 325 }
 326 
 327 CMMarkStack::~CMMarkStack() {
 328   if (_base != NULL) {
 329     _base = NULL;
 330     _virtual_space.release();
 331   }
 332 }
 333 
 334 void CMMarkStack::par_push(oop ptr) {
 335   while (true) {
 336     if (isFull()) {
 337       _overflow = true;
 338       return;
 339     }
 340     // Otherwise...
 341     jint index = _index;
 342     jint next_index = index+1;
 343     jint res = Atomic::cmpxchg(next_index, &_index, index);
 344     if (res == index) {
 345       _base[index] = ptr;
 346       // Note that we don't maintain this atomically.  We could, but it
 347       // doesn't seem necessary.
 348       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 349       return;
 350     }
 351     // Otherwise, we need to try again.
 352   }
 353 }
 354 
 355 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 356   while (true) {
 357     if (isFull()) {
 358       _overflow = true;
 359       return;
 360     }
 361     // Otherwise...
 362     jint index = _index;
 363     jint next_index = index + n;
 364     if (next_index > _capacity) {
 365       _overflow = true;
 366       return;
 367     }
 368     jint res = Atomic::cmpxchg(next_index, &_index, index);
 369     if (res == index) {
 370       for (int i = 0; i < n; i++) {
 371         int  ind = index + i;
 372         assert(ind < _capacity, "By overflow test above.");
 373         _base[ind] = ptr_arr[i];
 374       }
 375       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 376       return;
 377     }
 378     // Otherwise, we need to try again.
 379   }
 380 }
 381 
 382 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 383   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 384   jint start = _index;
 385   jint next_index = start + n;
 386   if (next_index > _capacity) {
 387     _overflow = true;
 388     return;
 389   }
 390   // Otherwise.
 391   _index = next_index;
 392   for (int i = 0; i < n; i++) {
 393     int ind = start + i;
 394     assert(ind < _capacity, "By overflow test above.");
 395     _base[ind] = ptr_arr[i];
 396   }
 397   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 398 }
 399 
 400 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 401   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 402   jint index = _index;
 403   if (index == 0) {
 404     *n = 0;
 405     return false;
 406   } else {
 407     int k = MIN2(max, index);
 408     jint  new_ind = index - k;
 409     for (int j = 0; j < k; j++) {
 410       ptr_arr[j] = _base[new_ind + j];
 411     }
 412     _index = new_ind;
 413     *n = k;
 414     return true;
 415   }
 416 }
 417 
 418 template<class OopClosureClass>
 419 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 420   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 421          || SafepointSynchronize::is_at_safepoint(),
 422          "Drain recursion must be yield-safe.");
 423   bool res = true;
 424   debug_only(_drain_in_progress = true);
 425   debug_only(_drain_in_progress_yields = yield_after);
 426   while (!isEmpty()) {
 427     oop newOop = pop();
 428     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 429     assert(newOop->is_oop(), "Expected an oop");
 430     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 431            "only grey objects on this stack");
 432     newOop->oop_iterate(cl);
 433     if (yield_after && _cm->do_yield_check()) {
 434       res = false;
 435       break;
 436     }
 437   }
 438   debug_only(_drain_in_progress = false);
 439   return res;
 440 }
 441 
 442 void CMMarkStack::note_start_of_gc() {
 443   assert(_saved_index == -1,
 444          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 445   _saved_index = _index;
 446 }
 447 
 448 void CMMarkStack::note_end_of_gc() {
 449   // This is intentionally a guarantee, instead of an assert. If we
 450   // accidentally add something to the mark stack during GC, it
 451   // will be a correctness issue so it's better if we crash. we'll
 452   // only check this once per GC anyway, so it won't be a performance
 453   // issue in any way.
 454   guarantee(_saved_index == _index,
 455             err_msg("saved index: %d index: %d", _saved_index, _index));
 456   _saved_index = -1;
 457 }
 458 
 459 void CMMarkStack::oops_do(OopClosure* f) {
 460   assert(_saved_index == _index,
 461          err_msg("saved index: %d index: %d", _saved_index, _index));
 462   for (int i = 0; i < _index; i += 1) {
 463     f->do_oop(&_base[i]);
 464   }
 465 }
 466 
 467 CMRootRegions::CMRootRegions() :
 468   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 469   _should_abort(false),  _next_survivor(NULL) { }
 470 
 471 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 472   _young_list = g1h->young_list();
 473   _cm = cm;
 474 }
 475 
 476 void CMRootRegions::prepare_for_scan() {
 477   assert(!scan_in_progress(), "pre-condition");
 478 
 479   // Currently, only survivors can be root regions.
 480   assert(_next_survivor == NULL, "pre-condition");
 481   _next_survivor = _young_list->first_survivor_region();
 482   _scan_in_progress = (_next_survivor != NULL);
 483   _should_abort = false;
 484 }
 485 
 486 HeapRegion* CMRootRegions::claim_next() {
 487   if (_should_abort) {
 488     // If someone has set the should_abort flag, we return NULL to
 489     // force the caller to bail out of their loop.
 490     return NULL;
 491   }
 492 
 493   // Currently, only survivors can be root regions.
 494   HeapRegion* res = _next_survivor;
 495   if (res != NULL) {
 496     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 497     // Read it again in case it changed while we were waiting for the lock.
 498     res = _next_survivor;
 499     if (res != NULL) {
 500       if (res == _young_list->last_survivor_region()) {
 501         // We just claimed the last survivor so store NULL to indicate
 502         // that we're done.
 503         _next_survivor = NULL;
 504       } else {
 505         _next_survivor = res->get_next_young_region();
 506       }
 507     } else {
 508       // Someone else claimed the last survivor while we were trying
 509       // to take the lock so nothing else to do.
 510     }
 511   }
 512   assert(res == NULL || res->is_survivor(), "post-condition");
 513 
 514   return res;
 515 }
 516 
 517 void CMRootRegions::scan_finished() {
 518   assert(scan_in_progress(), "pre-condition");
 519 
 520   // Currently, only survivors can be root regions.
 521   if (!_should_abort) {
 522     assert(_next_survivor == NULL, "we should have claimed all survivors");
 523   }
 524   _next_survivor = NULL;
 525 
 526   {
 527     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 528     _scan_in_progress = false;
 529     RootRegionScan_lock->notify_all();
 530   }
 531 }
 532 
 533 bool CMRootRegions::wait_until_scan_finished() {
 534   if (!scan_in_progress()) return false;
 535 
 536   {
 537     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 538     while (scan_in_progress()) {
 539       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 540     }
 541   }
 542   return true;
 543 }
 544 
 545 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 546 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 547 #endif // _MSC_VER
 548 
 549 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 550   return MAX2((n_par_threads + 2) / 4, 1U);
 551 }
 552 
 553 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 554   _g1h(g1h),
 555   _markBitMap1(),
 556   _markBitMap2(),
 557   _parallel_marking_threads(0),
 558   _max_parallel_marking_threads(0),
 559   _sleep_factor(0.0),
 560   _marking_task_overhead(1.0),
 561   _cleanup_sleep_factor(0.0),
 562   _cleanup_task_overhead(1.0),
 563   _cleanup_list("Cleanup List"),
 564   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 565   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 566             CardTableModRefBS::card_shift,
 567             false /* in_resource_area*/),
 568 
 569   _prevMarkBitMap(&_markBitMap1),
 570   _nextMarkBitMap(&_markBitMap2),
 571 
 572   _markStack(this),
 573   // _finger set in set_non_marking_state
 574 
 575   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 576   // _active_tasks set in set_non_marking_state
 577   // _tasks set inside the constructor
 578   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 579   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 580 
 581   _has_overflown(false),
 582   _concurrent(false),
 583   _has_aborted(false),
 584   _aborted_gc_id(GCId::undefined()),
 585   _restart_for_overflow(false),
 586   _concurrent_marking_in_progress(false),
 587 
 588   // _verbose_level set below
 589 
 590   _init_times(),
 591   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 592   _cleanup_times(),
 593   _total_counting_time(0.0),
 594   _total_rs_scrub_time(0.0),
 595 
 596   _parallel_workers(NULL),
 597 
 598   _count_card_bitmaps(NULL),
 599   _count_marked_bytes(NULL),
 600   _completed_initialization(false) {
 601   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 602   if (verbose_level < no_verbose) {
 603     verbose_level = no_verbose;
 604   }
 605   if (verbose_level > high_verbose) {
 606     verbose_level = high_verbose;
 607   }
 608   _verbose_level = verbose_level;
 609 
 610   if (verbose_low()) {
 611     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 612                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 613   }
 614 
 615   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 616   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 617 
 618   // Create & start a ConcurrentMark thread.
 619   _cmThread = new ConcurrentMarkThread(this);
 620   assert(cmThread() != NULL, "CM Thread should have been created");
 621   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 622   if (_cmThread->osthread() == NULL) {
 623       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 624   }
 625 
 626   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 627   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 628   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 629 
 630   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 631   satb_qs.set_buffer_size(G1SATBBufferSize);
 632 
 633   _root_regions.init(_g1h, this);
 634 
 635   if (ConcGCThreads > ParallelGCThreads) {
 636     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 637             "than ParallelGCThreads (" UINTX_FORMAT ").",
 638             ConcGCThreads, ParallelGCThreads);
 639     return;
 640   }
 641   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 642     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 643     // if both are set
 644     _sleep_factor             = 0.0;
 645     _marking_task_overhead    = 1.0;
 646   } else if (G1MarkingOverheadPercent > 0) {
 647     // We will calculate the number of parallel marking threads based
 648     // on a target overhead with respect to the soft real-time goal
 649     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 650     double overall_cm_overhead =
 651       (double) MaxGCPauseMillis * marking_overhead /
 652       (double) GCPauseIntervalMillis;
 653     double cpu_ratio = 1.0 / (double) os::processor_count();
 654     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 655     double marking_task_overhead =
 656       overall_cm_overhead / marking_thread_num *
 657                                               (double) os::processor_count();
 658     double sleep_factor =
 659                        (1.0 - marking_task_overhead) / marking_task_overhead;
 660 
 661     FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 662     _sleep_factor             = sleep_factor;
 663     _marking_task_overhead    = marking_task_overhead;
 664   } else {
 665     // Calculate the number of parallel marking threads by scaling
 666     // the number of parallel GC threads.
 667     uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 668     FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 669     _sleep_factor             = 0.0;
 670     _marking_task_overhead    = 1.0;
 671   }
 672 
 673   assert(ConcGCThreads > 0, "Should have been set");
 674   _parallel_marking_threads = (uint) ConcGCThreads;
 675   _max_parallel_marking_threads = _parallel_marking_threads;
 676 
 677   if (parallel_marking_threads() > 1) {
 678     _cleanup_task_overhead = 1.0;
 679   } else {
 680     _cleanup_task_overhead = marking_task_overhead();
 681   }
 682   _cleanup_sleep_factor =
 683                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 684 
 685 #if 0
 686   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 687   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 688   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 689   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 690   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 691 #endif
 692 
 693   _parallel_workers = new FlexibleWorkGang("G1 Marker",
 694        _max_parallel_marking_threads, false, true);
 695   if (_parallel_workers == NULL) {
 696     vm_exit_during_initialization("Failed necessary allocation.");
 697   } else {
 698     _parallel_workers->initialize_workers();
 699   }
 700 
 701   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 702     size_t mark_stack_size =
 703       MIN2(MarkStackSizeMax,
 704           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 705     // Verify that the calculated value for MarkStackSize is in range.
 706     // It would be nice to use the private utility routine from Arguments.
 707     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 708       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 709               "must be between 1 and " SIZE_FORMAT,
 710               mark_stack_size, MarkStackSizeMax);
 711       return;
 712     }
 713     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 714   } else {
 715     // Verify MarkStackSize is in range.
 716     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 717       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 718         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 719           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 720                   "must be between 1 and " SIZE_FORMAT,
 721                   MarkStackSize, MarkStackSizeMax);
 722           return;
 723         }
 724       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 725         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 726           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 727                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 728                   MarkStackSize, MarkStackSizeMax);
 729           return;
 730         }
 731       }
 732     }
 733   }
 734 
 735   if (!_markStack.allocate(MarkStackSize)) {
 736     warning("Failed to allocate CM marking stack");
 737     return;
 738   }
 739 
 740   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 741   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 742 
 743   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 744   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 745 
 746   BitMap::idx_t card_bm_size = _card_bm.size();
 747 
 748   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 749   _active_tasks = _max_worker_id;
 750 
 751   uint max_regions = _g1h->max_regions();
 752   for (uint i = 0; i < _max_worker_id; ++i) {
 753     CMTaskQueue* task_queue = new CMTaskQueue();
 754     task_queue->initialize();
 755     _task_queues->register_queue(i, task_queue);
 756 
 757     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 758     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 759 
 760     _tasks[i] = new CMTask(i, this,
 761                            _count_marked_bytes[i],
 762                            &_count_card_bitmaps[i],
 763                            task_queue, _task_queues);
 764 
 765     _accum_task_vtime[i] = 0.0;
 766   }
 767 
 768   // Calculate the card number for the bottom of the heap. Used
 769   // in biasing indexes into the accounting card bitmaps.
 770   _heap_bottom_card_num =
 771     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 772                                 CardTableModRefBS::card_shift);
 773 
 774   // Clear all the liveness counting data
 775   clear_all_count_data();
 776 
 777   // so that the call below can read a sensible value
 778   _heap_start = g1h->reserved_region().start();
 779   set_non_marking_state();
 780   _completed_initialization = true;
 781 }
 782 
 783 void ConcurrentMark::reset() {
 784   // Starting values for these two. This should be called in a STW
 785   // phase.
 786   MemRegion reserved = _g1h->g1_reserved();
 787   _heap_start = reserved.start();
 788   _heap_end   = reserved.end();
 789 
 790   // Separated the asserts so that we know which one fires.
 791   assert(_heap_start != NULL, "heap bounds should look ok");
 792   assert(_heap_end != NULL, "heap bounds should look ok");
 793   assert(_heap_start < _heap_end, "heap bounds should look ok");
 794 
 795   // Reset all the marking data structures and any necessary flags
 796   reset_marking_state();
 797 
 798   if (verbose_low()) {
 799     gclog_or_tty->print_cr("[global] resetting");
 800   }
 801 
 802   // We do reset all of them, since different phases will use
 803   // different number of active threads. So, it's easiest to have all
 804   // of them ready.
 805   for (uint i = 0; i < _max_worker_id; ++i) {
 806     _tasks[i]->reset(_nextMarkBitMap);
 807   }
 808 
 809   // we need this to make sure that the flag is on during the evac
 810   // pause with initial mark piggy-backed
 811   set_concurrent_marking_in_progress();
 812 }
 813 
 814 
 815 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 816   _markStack.set_should_expand();
 817   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 818   if (clear_overflow) {
 819     clear_has_overflown();
 820   } else {
 821     assert(has_overflown(), "pre-condition");
 822   }
 823   _finger = _heap_start;
 824 
 825   for (uint i = 0; i < _max_worker_id; ++i) {
 826     CMTaskQueue* queue = _task_queues->queue(i);
 827     queue->set_empty();
 828   }
 829 }
 830 
 831 void ConcurrentMark::set_concurrency(uint active_tasks) {
 832   assert(active_tasks <= _max_worker_id, "we should not have more");
 833 
 834   _active_tasks = active_tasks;
 835   // Need to update the three data structures below according to the
 836   // number of active threads for this phase.
 837   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 838   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 839   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 840 }
 841 
 842 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 843   set_concurrency(active_tasks);
 844 
 845   _concurrent = concurrent;
 846   // We propagate this to all tasks, not just the active ones.
 847   for (uint i = 0; i < _max_worker_id; ++i)
 848     _tasks[i]->set_concurrent(concurrent);
 849 
 850   if (concurrent) {
 851     set_concurrent_marking_in_progress();
 852   } else {
 853     // We currently assume that the concurrent flag has been set to
 854     // false before we start remark. At this point we should also be
 855     // in a STW phase.
 856     assert(!concurrent_marking_in_progress(), "invariant");
 857     assert(out_of_regions(),
 858            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 859                    p2i(_finger), p2i(_heap_end)));
 860   }
 861 }
 862 
 863 void ConcurrentMark::set_non_marking_state() {
 864   // We set the global marking state to some default values when we're
 865   // not doing marking.
 866   reset_marking_state();
 867   _active_tasks = 0;
 868   clear_concurrent_marking_in_progress();
 869 }
 870 
 871 ConcurrentMark::~ConcurrentMark() {
 872   // The ConcurrentMark instance is never freed.
 873   ShouldNotReachHere();
 874 }
 875 
 876 void ConcurrentMark::clearNextBitmap() {
 877   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 878 
 879   // Make sure that the concurrent mark thread looks to still be in
 880   // the current cycle.
 881   guarantee(cmThread()->during_cycle(), "invariant");
 882 
 883   // We are finishing up the current cycle by clearing the next
 884   // marking bitmap and getting it ready for the next cycle. During
 885   // this time no other cycle can start. So, let's make sure that this
 886   // is the case.
 887   guarantee(!g1h->mark_in_progress(), "invariant");
 888 
 889   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 890   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 891   _parallel_workers->run_task(&task);
 892 
 893   // Clear the liveness counting data. If the marking has been aborted, the abort()
 894   // call already did that.
 895   if (cl.complete()) {
 896     clear_all_count_data();
 897   }
 898 
 899   // Repeat the asserts from above.
 900   guarantee(cmThread()->during_cycle(), "invariant");
 901   guarantee(!g1h->mark_in_progress(), "invariant");
 902 }
 903 
 904 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 905   CMBitMap* _bitmap;
 906   bool _error;
 907  public:
 908   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 909   }
 910 
 911   virtual bool doHeapRegion(HeapRegion* r) {
 912     // This closure can be called concurrently to the mutator, so we must make sure
 913     // that the result of the getNextMarkedWordAddress() call is compared to the
 914     // value passed to it as limit to detect any found bits.
 915     // We can use the region's orig_end() for the limit and the comparison value
 916     // as it always contains the "real" end of the region that never changes and
 917     // has no side effects.
 918     // Due to the latter, there can also be no problem with the compiler generating
 919     // reloads of the orig_end() call.
 920     HeapWord* end = r->orig_end();
 921     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 922   }
 923 };
 924 
 925 bool ConcurrentMark::nextMarkBitmapIsClear() {
 926   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 927   _g1h->heap_region_iterate(&cl);
 928   return cl.complete();
 929 }
 930 
 931 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 932 public:
 933   bool doHeapRegion(HeapRegion* r) {
 934     if (!r->is_continues_humongous()) {
 935       r->note_start_of_marking();
 936     }
 937     return false;
 938   }
 939 };
 940 
 941 void ConcurrentMark::checkpointRootsInitialPre() {
 942   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 943   G1CollectorPolicy* g1p = g1h->g1_policy();
 944 
 945   _has_aborted = false;
 946 
 947   // Initialize marking structures. This has to be done in a STW phase.
 948   reset();
 949 
 950   // For each region note start of marking.
 951   NoteStartOfMarkHRClosure startcl;
 952   g1h->heap_region_iterate(&startcl);
 953 }
 954 
 955 
 956 void ConcurrentMark::checkpointRootsInitialPost() {
 957   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 958 
 959   // If we force an overflow during remark, the remark operation will
 960   // actually abort and we'll restart concurrent marking. If we always
 961   // force an overflow during remark we'll never actually complete the
 962   // marking phase. So, we initialize this here, at the start of the
 963   // cycle, so that at the remaining overflow number will decrease at
 964   // every remark and we'll eventually not need to cause one.
 965   force_overflow_stw()->init();
 966 
 967   // Start Concurrent Marking weak-reference discovery.
 968   ReferenceProcessor* rp = g1h->ref_processor_cm();
 969   // enable ("weak") refs discovery
 970   rp->enable_discovery();
 971   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 972 
 973   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 974   // This is the start of  the marking cycle, we're expected all
 975   // threads to have SATB queues with active set to false.
 976   satb_mq_set.set_active_all_threads(true, /* new active value */
 977                                      false /* expected_active */);
 978 
 979   _root_regions.prepare_for_scan();
 980 
 981   // update_g1_committed() will be called at the end of an evac pause
 982   // when marking is on. So, it's also called at the end of the
 983   // initial-mark pause to update the heap end, if the heap expands
 984   // during it. No need to call it here.
 985 }
 986 
 987 /*
 988  * Notice that in the next two methods, we actually leave the STS
 989  * during the barrier sync and join it immediately afterwards. If we
 990  * do not do this, the following deadlock can occur: one thread could
 991  * be in the barrier sync code, waiting for the other thread to also
 992  * sync up, whereas another one could be trying to yield, while also
 993  * waiting for the other threads to sync up too.
 994  *
 995  * Note, however, that this code is also used during remark and in
 996  * this case we should not attempt to leave / enter the STS, otherwise
 997  * we'll either hit an assert (debug / fastdebug) or deadlock
 998  * (product). So we should only leave / enter the STS if we are
 999  * operating concurrently.
1000  *
1001  * Because the thread that does the sync barrier has left the STS, it
1002  * is possible to be suspended for a Full GC or an evacuation pause
1003  * could occur. This is actually safe, since the entering the sync
1004  * barrier is one of the last things do_marking_step() does, and it
1005  * doesn't manipulate any data structures afterwards.
1006  */
1007 
1008 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
1009   if (verbose_low()) {
1010     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1011   }
1012 
1013   if (concurrent()) {
1014     SuspendibleThreadSet::leave();
1015   }
1016 
1017   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1018 
1019   if (concurrent()) {
1020     SuspendibleThreadSet::join();
1021   }
1022   // at this point everyone should have synced up and not be doing any
1023   // more work
1024 
1025   if (verbose_low()) {
1026     if (barrier_aborted) {
1027       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1028     } else {
1029       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1030     }
1031   }
1032 
1033   if (barrier_aborted) {
1034     // If the barrier aborted we ignore the overflow condition and
1035     // just abort the whole marking phase as quickly as possible.
1036     return;
1037   }
1038 
1039   // If we're executing the concurrent phase of marking, reset the marking
1040   // state; otherwise the marking state is reset after reference processing,
1041   // during the remark pause.
1042   // If we reset here as a result of an overflow during the remark we will
1043   // see assertion failures from any subsequent set_concurrency_and_phase()
1044   // calls.
1045   if (concurrent()) {
1046     // let the task associated with with worker 0 do this
1047     if (worker_id == 0) {
1048       // task 0 is responsible for clearing the global data structures
1049       // We should be here because of an overflow. During STW we should
1050       // not clear the overflow flag since we rely on it being true when
1051       // we exit this method to abort the pause and restart concurrent
1052       // marking.
1053       reset_marking_state(true /* clear_overflow */);
1054       force_overflow()->update();
1055 
1056       if (G1Log::fine()) {
1057         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1058         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1059       }
1060     }
1061   }
1062 
1063   // after this, each task should reset its own data structures then
1064   // then go into the second barrier
1065 }
1066 
1067 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1068   if (verbose_low()) {
1069     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1070   }
1071 
1072   if (concurrent()) {
1073     SuspendibleThreadSet::leave();
1074   }
1075 
1076   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1077 
1078   if (concurrent()) {
1079     SuspendibleThreadSet::join();
1080   }
1081   // at this point everything should be re-initialized and ready to go
1082 
1083   if (verbose_low()) {
1084     if (barrier_aborted) {
1085       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1086     } else {
1087       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1088     }
1089   }
1090 }
1091 
1092 #ifndef PRODUCT
1093 void ForceOverflowSettings::init() {
1094   _num_remaining = G1ConcMarkForceOverflow;
1095   _force = false;
1096   update();
1097 }
1098 
1099 void ForceOverflowSettings::update() {
1100   if (_num_remaining > 0) {
1101     _num_remaining -= 1;
1102     _force = true;
1103   } else {
1104     _force = false;
1105   }
1106 }
1107 
1108 bool ForceOverflowSettings::should_force() {
1109   if (_force) {
1110     _force = false;
1111     return true;
1112   } else {
1113     return false;
1114   }
1115 }
1116 #endif // !PRODUCT
1117 
1118 class CMConcurrentMarkingTask: public AbstractGangTask {
1119 private:
1120   ConcurrentMark*       _cm;
1121   ConcurrentMarkThread* _cmt;
1122 
1123 public:
1124   void work(uint worker_id) {
1125     assert(Thread::current()->is_ConcurrentGC_thread(),
1126            "this should only be done by a conc GC thread");
1127     ResourceMark rm;
1128 
1129     double start_vtime = os::elapsedVTime();
1130 
1131     SuspendibleThreadSet::join();
1132 
1133     assert(worker_id < _cm->active_tasks(), "invariant");
1134     CMTask* the_task = _cm->task(worker_id);
1135     the_task->record_start_time();
1136     if (!_cm->has_aborted()) {
1137       do {
1138         double start_vtime_sec = os::elapsedVTime();
1139         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1140 
1141         the_task->do_marking_step(mark_step_duration_ms,
1142                                   true  /* do_termination */,
1143                                   false /* is_serial*/);
1144 
1145         double end_vtime_sec = os::elapsedVTime();
1146         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1147         _cm->clear_has_overflown();
1148 
1149         _cm->do_yield_check(worker_id);
1150 
1151         jlong sleep_time_ms;
1152         if (!_cm->has_aborted() && the_task->has_aborted()) {
1153           sleep_time_ms =
1154             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1155           SuspendibleThreadSet::leave();
1156           os::sleep(Thread::current(), sleep_time_ms, false);
1157           SuspendibleThreadSet::join();
1158         }
1159       } while (!_cm->has_aborted() && the_task->has_aborted());
1160     }
1161     the_task->record_end_time();
1162     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1163 
1164     SuspendibleThreadSet::leave();
1165 
1166     double end_vtime = os::elapsedVTime();
1167     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1168   }
1169 
1170   CMConcurrentMarkingTask(ConcurrentMark* cm,
1171                           ConcurrentMarkThread* cmt) :
1172       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1173 
1174   ~CMConcurrentMarkingTask() { }
1175 };
1176 
1177 // Calculates the number of active workers for a concurrent
1178 // phase.
1179 uint ConcurrentMark::calc_parallel_marking_threads() {
1180   uint n_conc_workers = 0;
1181   if (!UseDynamicNumberOfGCThreads ||
1182       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1183        !ForceDynamicNumberOfGCThreads)) {
1184     n_conc_workers = max_parallel_marking_threads();
1185   } else {
1186     n_conc_workers =
1187       AdaptiveSizePolicy::calc_default_active_workers(
1188                                    max_parallel_marking_threads(),
1189                                    1, /* Minimum workers */
1190                                    parallel_marking_threads(),
1191                                    Threads::number_of_non_daemon_threads());
1192     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1193     // that scaling has already gone into "_max_parallel_marking_threads".
1194   }
1195   assert(n_conc_workers > 0, "Always need at least 1");
1196   return n_conc_workers;
1197 }
1198 
1199 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1200   // Currently, only survivors can be root regions.
1201   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1202   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1203 
1204   const uintx interval = PrefetchScanIntervalInBytes;
1205   HeapWord* curr = hr->bottom();
1206   const HeapWord* end = hr->top();
1207   while (curr < end) {
1208     Prefetch::read(curr, interval);
1209     oop obj = oop(curr);
1210     int size = obj->oop_iterate(&cl);
1211     assert(size == obj->size(), "sanity");
1212     curr += size;
1213   }
1214 }
1215 
1216 class CMRootRegionScanTask : public AbstractGangTask {
1217 private:
1218   ConcurrentMark* _cm;
1219 
1220 public:
1221   CMRootRegionScanTask(ConcurrentMark* cm) :
1222     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1223 
1224   void work(uint worker_id) {
1225     assert(Thread::current()->is_ConcurrentGC_thread(),
1226            "this should only be done by a conc GC thread");
1227 
1228     CMRootRegions* root_regions = _cm->root_regions();
1229     HeapRegion* hr = root_regions->claim_next();
1230     while (hr != NULL) {
1231       _cm->scanRootRegion(hr, worker_id);
1232       hr = root_regions->claim_next();
1233     }
1234   }
1235 };
1236 
1237 void ConcurrentMark::scanRootRegions() {
1238   // Start of concurrent marking.
1239   ClassLoaderDataGraph::clear_claimed_marks();
1240 
1241   // scan_in_progress() will have been set to true only if there was
1242   // at least one root region to scan. So, if it's false, we
1243   // should not attempt to do any further work.
1244   if (root_regions()->scan_in_progress()) {
1245     _parallel_marking_threads = calc_parallel_marking_threads();
1246     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1247            "Maximum number of marking threads exceeded");
1248     uint active_workers = MAX2(1U, parallel_marking_threads());
1249 
1250     CMRootRegionScanTask task(this);
1251     _parallel_workers->set_active_workers(active_workers);
1252     _parallel_workers->run_task(&task);
1253 
1254     // It's possible that has_aborted() is true here without actually
1255     // aborting the survivor scan earlier. This is OK as it's
1256     // mainly used for sanity checking.
1257     root_regions()->scan_finished();
1258   }
1259 }
1260 
1261 void ConcurrentMark::markFromRoots() {
1262   // we might be tempted to assert that:
1263   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1264   //        "inconsistent argument?");
1265   // However that wouldn't be right, because it's possible that
1266   // a safepoint is indeed in progress as a younger generation
1267   // stop-the-world GC happens even as we mark in this generation.
1268 
1269   _restart_for_overflow = false;
1270   force_overflow_conc()->init();
1271 
1272   // _g1h has _n_par_threads
1273   _parallel_marking_threads = calc_parallel_marking_threads();
1274   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1275     "Maximum number of marking threads exceeded");
1276 
1277   uint active_workers = MAX2(1U, parallel_marking_threads());
1278 
1279   // Parallel task terminator is set in "set_concurrency_and_phase()"
1280   set_concurrency_and_phase(active_workers, true /* concurrent */);
1281 
1282   CMConcurrentMarkingTask markingTask(this, cmThread());
1283   _parallel_workers->set_active_workers(active_workers);
1284   // Don't set _n_par_threads because it affects MT in process_roots()
1285   // and the decisions on that MT processing is made elsewhere.
1286   assert(_parallel_workers->active_workers() > 0, "Should have been set");
1287   _parallel_workers->run_task(&markingTask);
1288   print_stats();
1289 }
1290 
1291 // Helper class to get rid of some boilerplate code.
1292 class G1CMTraceTime : public GCTraceTime {
1293   static bool doit_and_prepend(bool doit) {
1294     if (doit) {
1295       gclog_or_tty->put(' ');
1296     }
1297     return doit;
1298   }
1299 
1300  public:
1301   G1CMTraceTime(const char* title, bool doit)
1302     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1303         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1304   }
1305 };
1306 
1307 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1308   // world is stopped at this checkpoint
1309   assert(SafepointSynchronize::is_at_safepoint(),
1310          "world should be stopped");
1311 
1312   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1313 
1314   // If a full collection has happened, we shouldn't do this.
1315   if (has_aborted()) {
1316     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1317     return;
1318   }
1319 
1320   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1321 
1322   if (VerifyDuringGC) {
1323     HandleMark hm;  // handle scope
1324     g1h->prepare_for_verify();
1325     Universe::verify(VerifyOption_G1UsePrevMarking,
1326                      " VerifyDuringGC:(before)");
1327   }
1328   g1h->check_bitmaps("Remark Start");
1329 
1330   G1CollectorPolicy* g1p = g1h->g1_policy();
1331   g1p->record_concurrent_mark_remark_start();
1332 
1333   double start = os::elapsedTime();
1334 
1335   checkpointRootsFinalWork();
1336 
1337   double mark_work_end = os::elapsedTime();
1338 
1339   weakRefsWork(clear_all_soft_refs);
1340 
1341   if (has_overflown()) {
1342     // Oops.  We overflowed.  Restart concurrent marking.
1343     _restart_for_overflow = true;
1344     if (G1TraceMarkStackOverflow) {
1345       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1346     }
1347 
1348     // Verify the heap w.r.t. the previous marking bitmap.
1349     if (VerifyDuringGC) {
1350       HandleMark hm;  // handle scope
1351       g1h->prepare_for_verify();
1352       Universe::verify(VerifyOption_G1UsePrevMarking,
1353                        " VerifyDuringGC:(overflow)");
1354     }
1355 
1356     // Clear the marking state because we will be restarting
1357     // marking due to overflowing the global mark stack.
1358     reset_marking_state();
1359   } else {
1360     {
1361       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1362 
1363       // Aggregate the per-task counting data that we have accumulated
1364       // while marking.
1365       aggregate_count_data();
1366     }
1367 
1368     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1369     // We're done with marking.
1370     // This is the end of  the marking cycle, we're expected all
1371     // threads to have SATB queues with active set to true.
1372     satb_mq_set.set_active_all_threads(false, /* new active value */
1373                                        true /* expected_active */);
1374 
1375     if (VerifyDuringGC) {
1376       HandleMark hm;  // handle scope
1377       g1h->prepare_for_verify();
1378       Universe::verify(VerifyOption_G1UseNextMarking,
1379                        " VerifyDuringGC:(after)");
1380     }
1381     g1h->check_bitmaps("Remark End");
1382     assert(!restart_for_overflow(), "sanity");
1383     // Completely reset the marking state since marking completed
1384     set_non_marking_state();
1385   }
1386 
1387   // Expand the marking stack, if we have to and if we can.
1388   if (_markStack.should_expand()) {
1389     _markStack.expand();
1390   }
1391 
1392   // Statistics
1393   double now = os::elapsedTime();
1394   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1395   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1396   _remark_times.add((now - start) * 1000.0);
1397 
1398   g1p->record_concurrent_mark_remark_end();
1399 
1400   G1CMIsAliveClosure is_alive(g1h);
1401   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1402 }
1403 
1404 // Base class of the closures that finalize and verify the
1405 // liveness counting data.
1406 class CMCountDataClosureBase: public HeapRegionClosure {
1407 protected:
1408   G1CollectedHeap* _g1h;
1409   ConcurrentMark* _cm;
1410   CardTableModRefBS* _ct_bs;
1411 
1412   BitMap* _region_bm;
1413   BitMap* _card_bm;
1414 
1415   // Takes a region that's not empty (i.e., it has at least one
1416   // live object in it and sets its corresponding bit on the region
1417   // bitmap to 1. If the region is "starts humongous" it will also set
1418   // to 1 the bits on the region bitmap that correspond to its
1419   // associated "continues humongous" regions.
1420   void set_bit_for_region(HeapRegion* hr) {
1421     assert(!hr->is_continues_humongous(), "should have filtered those out");
1422 
1423     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1424     if (!hr->is_starts_humongous()) {
1425       // Normal (non-humongous) case: just set the bit.
1426       _region_bm->par_at_put(index, true);
1427     } else {
1428       // Starts humongous case: calculate how many regions are part of
1429       // this humongous region and then set the bit range.
1430       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1431       _region_bm->par_at_put_range(index, end_index, true);
1432     }
1433   }
1434 
1435 public:
1436   CMCountDataClosureBase(G1CollectedHeap* g1h,
1437                          BitMap* region_bm, BitMap* card_bm):
1438     _g1h(g1h), _cm(g1h->concurrent_mark()),
1439     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1440     _region_bm(region_bm), _card_bm(card_bm) { }
1441 };
1442 
1443 // Closure that calculates the # live objects per region. Used
1444 // for verification purposes during the cleanup pause.
1445 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1446   CMBitMapRO* _bm;
1447   size_t _region_marked_bytes;
1448 
1449 public:
1450   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1451                          BitMap* region_bm, BitMap* card_bm) :
1452     CMCountDataClosureBase(g1h, region_bm, card_bm),
1453     _bm(bm), _region_marked_bytes(0) { }
1454 
1455   bool doHeapRegion(HeapRegion* hr) {
1456 
1457     if (hr->is_continues_humongous()) {
1458       // We will ignore these here and process them when their
1459       // associated "starts humongous" region is processed (see
1460       // set_bit_for_heap_region()). Note that we cannot rely on their
1461       // associated "starts humongous" region to have their bit set to
1462       // 1 since, due to the region chunking in the parallel region
1463       // iteration, a "continues humongous" region might be visited
1464       // before its associated "starts humongous".
1465       return false;
1466     }
1467 
1468     HeapWord* ntams = hr->next_top_at_mark_start();
1469     HeapWord* start = hr->bottom();
1470 
1471     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1472            err_msg("Preconditions not met - "
1473                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1474                    p2i(start), p2i(ntams), p2i(hr->end())));
1475 
1476     // Find the first marked object at or after "start".
1477     start = _bm->getNextMarkedWordAddress(start, ntams);
1478 
1479     size_t marked_bytes = 0;
1480 
1481     while (start < ntams) {
1482       oop obj = oop(start);
1483       int obj_sz = obj->size();
1484       HeapWord* obj_end = start + obj_sz;
1485 
1486       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1487       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1488 
1489       // Note: if we're looking at the last region in heap - obj_end
1490       // could be actually just beyond the end of the heap; end_idx
1491       // will then correspond to a (non-existent) card that is also
1492       // just beyond the heap.
1493       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1494         // end of object is not card aligned - increment to cover
1495         // all the cards spanned by the object
1496         end_idx += 1;
1497       }
1498 
1499       // Set the bits in the card BM for the cards spanned by this object.
1500       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1501 
1502       // Add the size of this object to the number of marked bytes.
1503       marked_bytes += (size_t)obj_sz * HeapWordSize;
1504 
1505       // Find the next marked object after this one.
1506       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1507     }
1508 
1509     // Mark the allocated-since-marking portion...
1510     HeapWord* top = hr->top();
1511     if (ntams < top) {
1512       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1513       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1514 
1515       // Note: if we're looking at the last region in heap - top
1516       // could be actually just beyond the end of the heap; end_idx
1517       // will then correspond to a (non-existent) card that is also
1518       // just beyond the heap.
1519       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1520         // end of object is not card aligned - increment to cover
1521         // all the cards spanned by the object
1522         end_idx += 1;
1523       }
1524       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1525 
1526       // This definitely means the region has live objects.
1527       set_bit_for_region(hr);
1528     }
1529 
1530     // Update the live region bitmap.
1531     if (marked_bytes > 0) {
1532       set_bit_for_region(hr);
1533     }
1534 
1535     // Set the marked bytes for the current region so that
1536     // it can be queried by a calling verification routine
1537     _region_marked_bytes = marked_bytes;
1538 
1539     return false;
1540   }
1541 
1542   size_t region_marked_bytes() const { return _region_marked_bytes; }
1543 };
1544 
1545 // Heap region closure used for verifying the counting data
1546 // that was accumulated concurrently and aggregated during
1547 // the remark pause. This closure is applied to the heap
1548 // regions during the STW cleanup pause.
1549 
1550 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1551   G1CollectedHeap* _g1h;
1552   ConcurrentMark* _cm;
1553   CalcLiveObjectsClosure _calc_cl;
1554   BitMap* _region_bm;   // Region BM to be verified
1555   BitMap* _card_bm;     // Card BM to be verified
1556   bool _verbose;        // verbose output?
1557 
1558   BitMap* _exp_region_bm; // Expected Region BM values
1559   BitMap* _exp_card_bm;   // Expected card BM values
1560 
1561   int _failures;
1562 
1563 public:
1564   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1565                                 BitMap* region_bm,
1566                                 BitMap* card_bm,
1567                                 BitMap* exp_region_bm,
1568                                 BitMap* exp_card_bm,
1569                                 bool verbose) :
1570     _g1h(g1h), _cm(g1h->concurrent_mark()),
1571     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1572     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1573     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1574     _failures(0) { }
1575 
1576   int failures() const { return _failures; }
1577 
1578   bool doHeapRegion(HeapRegion* hr) {
1579     if (hr->is_continues_humongous()) {
1580       // We will ignore these here and process them when their
1581       // associated "starts humongous" region is processed (see
1582       // set_bit_for_heap_region()). Note that we cannot rely on their
1583       // associated "starts humongous" region to have their bit set to
1584       // 1 since, due to the region chunking in the parallel region
1585       // iteration, a "continues humongous" region might be visited
1586       // before its associated "starts humongous".
1587       return false;
1588     }
1589 
1590     int failures = 0;
1591 
1592     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1593     // this region and set the corresponding bits in the expected region
1594     // and card bitmaps.
1595     bool res = _calc_cl.doHeapRegion(hr);
1596     assert(res == false, "should be continuing");
1597 
1598     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1599                     Mutex::_no_safepoint_check_flag);
1600 
1601     // Verify the marked bytes for this region.
1602     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1603     size_t act_marked_bytes = hr->next_marked_bytes();
1604 
1605     // We're not OK if expected marked bytes > actual marked bytes. It means
1606     // we have missed accounting some objects during the actual marking.
1607     if (exp_marked_bytes > act_marked_bytes) {
1608       if (_verbose) {
1609         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1610                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1611                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1612       }
1613       failures += 1;
1614     }
1615 
1616     // Verify the bit, for this region, in the actual and expected
1617     // (which was just calculated) region bit maps.
1618     // We're not OK if the bit in the calculated expected region
1619     // bitmap is set and the bit in the actual region bitmap is not.
1620     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1621 
1622     bool expected = _exp_region_bm->at(index);
1623     bool actual = _region_bm->at(index);
1624     if (expected && !actual) {
1625       if (_verbose) {
1626         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1627                                "expected: %s, actual: %s",
1628                                hr->hrm_index(),
1629                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1630       }
1631       failures += 1;
1632     }
1633 
1634     // Verify that the card bit maps for the cards spanned by the current
1635     // region match. We have an error if we have a set bit in the expected
1636     // bit map and the corresponding bit in the actual bitmap is not set.
1637 
1638     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1639     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1640 
1641     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1642       expected = _exp_card_bm->at(i);
1643       actual = _card_bm->at(i);
1644 
1645       if (expected && !actual) {
1646         if (_verbose) {
1647           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1648                                  "expected: %s, actual: %s",
1649                                  hr->hrm_index(), i,
1650                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1651         }
1652         failures += 1;
1653       }
1654     }
1655 
1656     if (failures > 0 && _verbose)  {
1657       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1658                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1659                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1660                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1661     }
1662 
1663     _failures += failures;
1664 
1665     // We could stop iteration over the heap when we
1666     // find the first violating region by returning true.
1667     return false;
1668   }
1669 };
1670 
1671 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1672 protected:
1673   G1CollectedHeap* _g1h;
1674   ConcurrentMark* _cm;
1675   BitMap* _actual_region_bm;
1676   BitMap* _actual_card_bm;
1677 
1678   uint    _n_workers;
1679 
1680   BitMap* _expected_region_bm;
1681   BitMap* _expected_card_bm;
1682 
1683   int  _failures;
1684   bool _verbose;
1685 
1686   HeapRegionClaimer _hrclaimer;
1687 
1688 public:
1689   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1690                             BitMap* region_bm, BitMap* card_bm,
1691                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1692     : AbstractGangTask("G1 verify final counting"),
1693       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1694       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1695       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1696       _failures(0), _verbose(false),
1697       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1698     assert(VerifyDuringGC, "don't call this otherwise");
1699     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1700     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1701 
1702     _verbose = _cm->verbose_medium();
1703   }
1704 
1705   void work(uint worker_id) {
1706     assert(worker_id < _n_workers, "invariant");
1707 
1708     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1709                                             _actual_region_bm, _actual_card_bm,
1710                                             _expected_region_bm,
1711                                             _expected_card_bm,
1712                                             _verbose);
1713 
1714     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1715 
1716     Atomic::add(verify_cl.failures(), &_failures);
1717   }
1718 
1719   int failures() const { return _failures; }
1720 };
1721 
1722 // Closure that finalizes the liveness counting data.
1723 // Used during the cleanup pause.
1724 // Sets the bits corresponding to the interval [NTAMS, top]
1725 // (which contains the implicitly live objects) in the
1726 // card liveness bitmap. Also sets the bit for each region,
1727 // containing live data, in the region liveness bitmap.
1728 
1729 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1730  public:
1731   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1732                               BitMap* region_bm,
1733                               BitMap* card_bm) :
1734     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1735 
1736   bool doHeapRegion(HeapRegion* hr) {
1737 
1738     if (hr->is_continues_humongous()) {
1739       // We will ignore these here and process them when their
1740       // associated "starts humongous" region is processed (see
1741       // set_bit_for_heap_region()). Note that we cannot rely on their
1742       // associated "starts humongous" region to have their bit set to
1743       // 1 since, due to the region chunking in the parallel region
1744       // iteration, a "continues humongous" region might be visited
1745       // before its associated "starts humongous".
1746       return false;
1747     }
1748 
1749     HeapWord* ntams = hr->next_top_at_mark_start();
1750     HeapWord* top   = hr->top();
1751 
1752     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1753 
1754     // Mark the allocated-since-marking portion...
1755     if (ntams < top) {
1756       // This definitely means the region has live objects.
1757       set_bit_for_region(hr);
1758 
1759       // Now set the bits in the card bitmap for [ntams, top)
1760       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1761       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1762 
1763       // Note: if we're looking at the last region in heap - top
1764       // could be actually just beyond the end of the heap; end_idx
1765       // will then correspond to a (non-existent) card that is also
1766       // just beyond the heap.
1767       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1768         // end of object is not card aligned - increment to cover
1769         // all the cards spanned by the object
1770         end_idx += 1;
1771       }
1772 
1773       assert(end_idx <= _card_bm->size(),
1774              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1775                      end_idx, _card_bm->size()));
1776       assert(start_idx < _card_bm->size(),
1777              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1778                      start_idx, _card_bm->size()));
1779 
1780       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1781     }
1782 
1783     // Set the bit for the region if it contains live data
1784     if (hr->next_marked_bytes() > 0) {
1785       set_bit_for_region(hr);
1786     }
1787 
1788     return false;
1789   }
1790 };
1791 
1792 class G1ParFinalCountTask: public AbstractGangTask {
1793 protected:
1794   G1CollectedHeap* _g1h;
1795   ConcurrentMark* _cm;
1796   BitMap* _actual_region_bm;
1797   BitMap* _actual_card_bm;
1798 
1799   uint    _n_workers;
1800   HeapRegionClaimer _hrclaimer;
1801 
1802 public:
1803   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1804     : AbstractGangTask("G1 final counting"),
1805       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1806       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1807       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1808   }
1809 
1810   void work(uint worker_id) {
1811     assert(worker_id < _n_workers, "invariant");
1812 
1813     FinalCountDataUpdateClosure final_update_cl(_g1h,
1814                                                 _actual_region_bm,
1815                                                 _actual_card_bm);
1816 
1817     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1818   }
1819 };
1820 
1821 class G1ParNoteEndTask;
1822 
1823 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1824   G1CollectedHeap* _g1;
1825   size_t _max_live_bytes;
1826   uint _regions_claimed;
1827   size_t _freed_bytes;
1828   FreeRegionList* _local_cleanup_list;
1829   HeapRegionSetCount _old_regions_removed;
1830   HeapRegionSetCount _humongous_regions_removed;
1831   HRRSCleanupTask* _hrrs_cleanup_task;
1832   double _claimed_region_time;
1833   double _max_region_time;
1834 
1835 public:
1836   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1837                              FreeRegionList* local_cleanup_list,
1838                              HRRSCleanupTask* hrrs_cleanup_task) :
1839     _g1(g1),
1840     _max_live_bytes(0), _regions_claimed(0),
1841     _freed_bytes(0),
1842     _claimed_region_time(0.0), _max_region_time(0.0),
1843     _local_cleanup_list(local_cleanup_list),
1844     _old_regions_removed(),
1845     _humongous_regions_removed(),
1846     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1847 
1848   size_t freed_bytes() { return _freed_bytes; }
1849   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1850   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1851 
1852   bool doHeapRegion(HeapRegion *hr) {
1853     if (hr->is_continues_humongous()) {
1854       return false;
1855     }
1856     // We use a claim value of zero here because all regions
1857     // were claimed with value 1 in the FinalCount task.
1858     _g1->reset_gc_time_stamps(hr);
1859     double start = os::elapsedTime();
1860     _regions_claimed++;
1861     hr->note_end_of_marking();
1862     _max_live_bytes += hr->max_live_bytes();
1863 
1864     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1865       _freed_bytes += hr->used();
1866       hr->set_containing_set(NULL);
1867       if (hr->is_humongous()) {
1868         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1869         _humongous_regions_removed.increment(1u, hr->capacity());
1870         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1871       } else {
1872         _old_regions_removed.increment(1u, hr->capacity());
1873         _g1->free_region(hr, _local_cleanup_list, true);
1874       }
1875     } else {
1876       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1877     }
1878 
1879     double region_time = (os::elapsedTime() - start);
1880     _claimed_region_time += region_time;
1881     if (region_time > _max_region_time) {
1882       _max_region_time = region_time;
1883     }
1884     return false;
1885   }
1886 
1887   size_t max_live_bytes() { return _max_live_bytes; }
1888   uint regions_claimed() { return _regions_claimed; }
1889   double claimed_region_time_sec() { return _claimed_region_time; }
1890   double max_region_time_sec() { return _max_region_time; }
1891 };
1892 
1893 class G1ParNoteEndTask: public AbstractGangTask {
1894   friend class G1NoteEndOfConcMarkClosure;
1895 
1896 protected:
1897   G1CollectedHeap* _g1h;
1898   size_t _max_live_bytes;
1899   size_t _freed_bytes;
1900   FreeRegionList* _cleanup_list;
1901   HeapRegionClaimer _hrclaimer;
1902 
1903 public:
1904   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1905       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1906   }
1907 
1908   void work(uint worker_id) {
1909     FreeRegionList local_cleanup_list("Local Cleanup List");
1910     HRRSCleanupTask hrrs_cleanup_task;
1911     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1912                                            &hrrs_cleanup_task);
1913     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1914     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1915 
1916     // Now update the lists
1917     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1918     {
1919       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1920       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1921       _max_live_bytes += g1_note_end.max_live_bytes();
1922       _freed_bytes += g1_note_end.freed_bytes();
1923 
1924       // If we iterate over the global cleanup list at the end of
1925       // cleanup to do this printing we will not guarantee to only
1926       // generate output for the newly-reclaimed regions (the list
1927       // might not be empty at the beginning of cleanup; we might
1928       // still be working on its previous contents). So we do the
1929       // printing here, before we append the new regions to the global
1930       // cleanup list.
1931 
1932       G1HRPrinter* hr_printer = _g1h->hr_printer();
1933       if (hr_printer->is_active()) {
1934         FreeRegionListIterator iter(&local_cleanup_list);
1935         while (iter.more_available()) {
1936           HeapRegion* hr = iter.get_next();
1937           hr_printer->cleanup(hr);
1938         }
1939       }
1940 
1941       _cleanup_list->add_ordered(&local_cleanup_list);
1942       assert(local_cleanup_list.is_empty(), "post-condition");
1943 
1944       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1945     }
1946   }
1947   size_t max_live_bytes() { return _max_live_bytes; }
1948   size_t freed_bytes() { return _freed_bytes; }
1949 };
1950 
1951 class G1ParScrubRemSetTask: public AbstractGangTask {
1952 protected:
1953   G1RemSet* _g1rs;
1954   BitMap* _region_bm;
1955   BitMap* _card_bm;
1956   HeapRegionClaimer _hrclaimer;
1957 
1958 public:
1959   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1960       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1961   }
1962 
1963   void work(uint worker_id) {
1964     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1965   }
1966 
1967 };
1968 
1969 void ConcurrentMark::cleanup() {
1970   // world is stopped at this checkpoint
1971   assert(SafepointSynchronize::is_at_safepoint(),
1972          "world should be stopped");
1973   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1974 
1975   // If a full collection has happened, we shouldn't do this.
1976   if (has_aborted()) {
1977     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1978     return;
1979   }
1980 
1981   g1h->verify_region_sets_optional();
1982 
1983   if (VerifyDuringGC) {
1984     HandleMark hm;  // handle scope
1985     g1h->prepare_for_verify();
1986     Universe::verify(VerifyOption_G1UsePrevMarking,
1987                      " VerifyDuringGC:(before)");
1988   }
1989   g1h->check_bitmaps("Cleanup Start");
1990 
1991   G1CollectorPolicy* g1p = g1h->g1_policy();
1992   g1p->record_concurrent_mark_cleanup_start();
1993 
1994   double start = os::elapsedTime();
1995 
1996   HeapRegionRemSet::reset_for_cleanup_tasks();
1997 
1998   uint n_workers;
1999 
2000   // Do counting once more with the world stopped for good measure.
2001   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2002 
2003   g1h->set_par_threads();
2004   n_workers = g1h->n_par_threads();
2005   assert(g1h->n_par_threads() == n_workers,
2006          "Should not have been reset");
2007   g1h->workers()->run_task(&g1_par_count_task);
2008   // Done with the parallel phase so reset to 0.
2009   g1h->set_par_threads(0);
2010 
2011   if (VerifyDuringGC) {
2012     // Verify that the counting data accumulated during marking matches
2013     // that calculated by walking the marking bitmap.
2014 
2015     // Bitmaps to hold expected values
2016     BitMap expected_region_bm(_region_bm.size(), true);
2017     BitMap expected_card_bm(_card_bm.size(), true);
2018 
2019     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2020                                                  &_region_bm,
2021                                                  &_card_bm,
2022                                                  &expected_region_bm,
2023                                                  &expected_card_bm);
2024 
2025     g1h->set_par_threads((int)n_workers);
2026     g1h->workers()->run_task(&g1_par_verify_task);
2027     // Done with the parallel phase so reset to 0.
2028     g1h->set_par_threads(0);
2029 
2030     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2031   }
2032 
2033   size_t start_used_bytes = g1h->used();
2034   g1h->set_marking_complete();
2035 
2036   double count_end = os::elapsedTime();
2037   double this_final_counting_time = (count_end - start);
2038   _total_counting_time += this_final_counting_time;
2039 
2040   if (G1PrintRegionLivenessInfo) {
2041     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2042     _g1h->heap_region_iterate(&cl);
2043   }
2044 
2045   // Install newly created mark bitMap as "prev".
2046   swapMarkBitMaps();
2047 
2048   g1h->reset_gc_time_stamp();
2049 
2050   // Note end of marking in all heap regions.
2051   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2052   g1h->set_par_threads((int)n_workers);
2053   g1h->workers()->run_task(&g1_par_note_end_task);
2054   g1h->set_par_threads(0);
2055   g1h->check_gc_time_stamps();
2056 
2057   if (!cleanup_list_is_empty()) {
2058     // The cleanup list is not empty, so we'll have to process it
2059     // concurrently. Notify anyone else that might be wanting free
2060     // regions that there will be more free regions coming soon.
2061     g1h->set_free_regions_coming();
2062   }
2063 
2064   // call below, since it affects the metric by which we sort the heap
2065   // regions.
2066   if (G1ScrubRemSets) {
2067     double rs_scrub_start = os::elapsedTime();
2068     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2069     g1h->set_par_threads((int)n_workers);
2070     g1h->workers()->run_task(&g1_par_scrub_rs_task);
2071     g1h->set_par_threads(0);
2072 
2073     double rs_scrub_end = os::elapsedTime();
2074     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2075     _total_rs_scrub_time += this_rs_scrub_time;
2076   }
2077 
2078   // this will also free any regions totally full of garbage objects,
2079   // and sort the regions.
2080   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2081 
2082   // Statistics.
2083   double end = os::elapsedTime();
2084   _cleanup_times.add((end - start) * 1000.0);
2085 
2086   if (G1Log::fine()) {
2087     g1h->g1_policy()->print_heap_transition(start_used_bytes);
2088   }
2089 
2090   // Clean up will have freed any regions completely full of garbage.
2091   // Update the soft reference policy with the new heap occupancy.
2092   Universe::update_heap_info_at_gc();
2093 
2094   if (VerifyDuringGC) {
2095     HandleMark hm;  // handle scope
2096     g1h->prepare_for_verify();
2097     Universe::verify(VerifyOption_G1UsePrevMarking,
2098                      " VerifyDuringGC:(after)");
2099   }
2100 
2101   g1h->check_bitmaps("Cleanup End");
2102 
2103   g1h->verify_region_sets_optional();
2104 
2105   // We need to make this be a "collection" so any collection pause that
2106   // races with it goes around and waits for completeCleanup to finish.
2107   g1h->increment_total_collections();
2108 
2109   // Clean out dead classes and update Metaspace sizes.
2110   if (ClassUnloadingWithConcurrentMark) {
2111     ClassLoaderDataGraph::purge();
2112   }
2113   MetaspaceGC::compute_new_size();
2114 
2115   // We reclaimed old regions so we should calculate the sizes to make
2116   // sure we update the old gen/space data.
2117   g1h->g1mm()->update_sizes();
2118   g1h->allocation_context_stats().update_after_mark();
2119 
2120   g1h->trace_heap_after_concurrent_cycle();
2121 }
2122 
2123 void ConcurrentMark::completeCleanup() {
2124   if (has_aborted()) return;
2125 
2126   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2127 
2128   _cleanup_list.verify_optional();
2129   FreeRegionList tmp_free_list("Tmp Free List");
2130 
2131   if (G1ConcRegionFreeingVerbose) {
2132     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2133                            "cleanup list has %u entries",
2134                            _cleanup_list.length());
2135   }
2136 
2137   // No one else should be accessing the _cleanup_list at this point,
2138   // so it is not necessary to take any locks
2139   while (!_cleanup_list.is_empty()) {
2140     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2141     assert(hr != NULL, "Got NULL from a non-empty list");
2142     hr->par_clear();
2143     tmp_free_list.add_ordered(hr);
2144 
2145     // Instead of adding one region at a time to the secondary_free_list,
2146     // we accumulate them in the local list and move them a few at a
2147     // time. This also cuts down on the number of notify_all() calls
2148     // we do during this process. We'll also append the local list when
2149     // _cleanup_list is empty (which means we just removed the last
2150     // region from the _cleanup_list).
2151     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2152         _cleanup_list.is_empty()) {
2153       if (G1ConcRegionFreeingVerbose) {
2154         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2155                                "appending %u entries to the secondary_free_list, "
2156                                "cleanup list still has %u entries",
2157                                tmp_free_list.length(),
2158                                _cleanup_list.length());
2159       }
2160 
2161       {
2162         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2163         g1h->secondary_free_list_add(&tmp_free_list);
2164         SecondaryFreeList_lock->notify_all();
2165       }
2166 #ifndef PRODUCT
2167       if (G1StressConcRegionFreeing) {
2168         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2169           os::sleep(Thread::current(), (jlong) 1, false);
2170         }
2171       }
2172 #endif
2173     }
2174   }
2175   assert(tmp_free_list.is_empty(), "post-condition");
2176 }
2177 
2178 // Supporting Object and Oop closures for reference discovery
2179 // and processing in during marking
2180 
2181 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2182   HeapWord* addr = (HeapWord*)obj;
2183   return addr != NULL &&
2184          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2185 }
2186 
2187 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2188 // Uses the CMTask associated with a worker thread (for serial reference
2189 // processing the CMTask for worker 0 is used) to preserve (mark) and
2190 // trace referent objects.
2191 //
2192 // Using the CMTask and embedded local queues avoids having the worker
2193 // threads operating on the global mark stack. This reduces the risk
2194 // of overflowing the stack - which we would rather avoid at this late
2195 // state. Also using the tasks' local queues removes the potential
2196 // of the workers interfering with each other that could occur if
2197 // operating on the global stack.
2198 
2199 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2200   ConcurrentMark* _cm;
2201   CMTask*         _task;
2202   int             _ref_counter_limit;
2203   int             _ref_counter;
2204   bool            _is_serial;
2205  public:
2206   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2207     _cm(cm), _task(task), _is_serial(is_serial),
2208     _ref_counter_limit(G1RefProcDrainInterval) {
2209     assert(_ref_counter_limit > 0, "sanity");
2210     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2211     _ref_counter = _ref_counter_limit;
2212   }
2213 
2214   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2215   virtual void do_oop(      oop* p) { do_oop_work(p); }
2216 
2217   template <class T> void do_oop_work(T* p) {
2218     if (!_cm->has_overflown()) {
2219       oop obj = oopDesc::load_decode_heap_oop(p);
2220       if (_cm->verbose_high()) {
2221         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2222                                "*"PTR_FORMAT" = "PTR_FORMAT,
2223                                _task->worker_id(), p2i(p), p2i((void*) obj));
2224       }
2225 
2226       _task->deal_with_reference(obj);
2227       _ref_counter--;
2228 
2229       if (_ref_counter == 0) {
2230         // We have dealt with _ref_counter_limit references, pushing them
2231         // and objects reachable from them on to the local stack (and
2232         // possibly the global stack). Call CMTask::do_marking_step() to
2233         // process these entries.
2234         //
2235         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2236         // there's nothing more to do (i.e. we're done with the entries that
2237         // were pushed as a result of the CMTask::deal_with_reference() calls
2238         // above) or we overflow.
2239         //
2240         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2241         // flag while there may still be some work to do. (See the comment at
2242         // the beginning of CMTask::do_marking_step() for those conditions -
2243         // one of which is reaching the specified time target.) It is only
2244         // when CMTask::do_marking_step() returns without setting the
2245         // has_aborted() flag that the marking step has completed.
2246         do {
2247           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2248           _task->do_marking_step(mark_step_duration_ms,
2249                                  false      /* do_termination */,
2250                                  _is_serial);
2251         } while (_task->has_aborted() && !_cm->has_overflown());
2252         _ref_counter = _ref_counter_limit;
2253       }
2254     } else {
2255       if (_cm->verbose_high()) {
2256          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2257       }
2258     }
2259   }
2260 };
2261 
2262 // 'Drain' oop closure used by both serial and parallel reference processing.
2263 // Uses the CMTask associated with a given worker thread (for serial
2264 // reference processing the CMtask for worker 0 is used). Calls the
2265 // do_marking_step routine, with an unbelievably large timeout value,
2266 // to drain the marking data structures of the remaining entries
2267 // added by the 'keep alive' oop closure above.
2268 
2269 class G1CMDrainMarkingStackClosure: public VoidClosure {
2270   ConcurrentMark* _cm;
2271   CMTask*         _task;
2272   bool            _is_serial;
2273  public:
2274   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2275     _cm(cm), _task(task), _is_serial(is_serial) {
2276     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2277   }
2278 
2279   void do_void() {
2280     do {
2281       if (_cm->verbose_high()) {
2282         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2283                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2284       }
2285 
2286       // We call CMTask::do_marking_step() to completely drain the local
2287       // and global marking stacks of entries pushed by the 'keep alive'
2288       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2289       //
2290       // CMTask::do_marking_step() is called in a loop, which we'll exit
2291       // if there's nothing more to do (i.e. we've completely drained the
2292       // entries that were pushed as a a result of applying the 'keep alive'
2293       // closure to the entries on the discovered ref lists) or we overflow
2294       // the global marking stack.
2295       //
2296       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2297       // flag while there may still be some work to do. (See the comment at
2298       // the beginning of CMTask::do_marking_step() for those conditions -
2299       // one of which is reaching the specified time target.) It is only
2300       // when CMTask::do_marking_step() returns without setting the
2301       // has_aborted() flag that the marking step has completed.
2302 
2303       _task->do_marking_step(1000000000.0 /* something very large */,
2304                              true         /* do_termination */,
2305                              _is_serial);
2306     } while (_task->has_aborted() && !_cm->has_overflown());
2307   }
2308 };
2309 
2310 // Implementation of AbstractRefProcTaskExecutor for parallel
2311 // reference processing at the end of G1 concurrent marking
2312 
2313 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2314 private:
2315   G1CollectedHeap* _g1h;
2316   ConcurrentMark*  _cm;
2317   WorkGang*        _workers;
2318   int              _active_workers;
2319 
2320 public:
2321   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2322                         ConcurrentMark* cm,
2323                         WorkGang* workers,
2324                         int n_workers) :
2325     _g1h(g1h), _cm(cm),
2326     _workers(workers), _active_workers(n_workers) { }
2327 
2328   // Executes the given task using concurrent marking worker threads.
2329   virtual void execute(ProcessTask& task);
2330   virtual void execute(EnqueueTask& task);
2331 };
2332 
2333 class G1CMRefProcTaskProxy: public AbstractGangTask {
2334   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2335   ProcessTask&     _proc_task;
2336   G1CollectedHeap* _g1h;
2337   ConcurrentMark*  _cm;
2338 
2339 public:
2340   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2341                      G1CollectedHeap* g1h,
2342                      ConcurrentMark* cm) :
2343     AbstractGangTask("Process reference objects in parallel"),
2344     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2345     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2346     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2347   }
2348 
2349   virtual void work(uint worker_id) {
2350     ResourceMark rm;
2351     HandleMark hm;
2352     CMTask* task = _cm->task(worker_id);
2353     G1CMIsAliveClosure g1_is_alive(_g1h);
2354     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2355     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2356 
2357     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2358   }
2359 };
2360 
2361 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2362   assert(_workers != NULL, "Need parallel worker threads.");
2363   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2364 
2365   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2366 
2367   // We need to reset the concurrency level before each
2368   // proxy task execution, so that the termination protocol
2369   // and overflow handling in CMTask::do_marking_step() knows
2370   // how many workers to wait for.
2371   _cm->set_concurrency(_active_workers);
2372   _g1h->set_par_threads(_active_workers);
2373   _workers->run_task(&proc_task_proxy);
2374   _g1h->set_par_threads(0);
2375 }
2376 
2377 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2378   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2379   EnqueueTask& _enq_task;
2380 
2381 public:
2382   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2383     AbstractGangTask("Enqueue reference objects in parallel"),
2384     _enq_task(enq_task) { }
2385 
2386   virtual void work(uint worker_id) {
2387     _enq_task.work(worker_id);
2388   }
2389 };
2390 
2391 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2392   assert(_workers != NULL, "Need parallel worker threads.");
2393   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2394 
2395   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2396 
2397   // Not strictly necessary but...
2398   //
2399   // We need to reset the concurrency level before each
2400   // proxy task execution, so that the termination protocol
2401   // and overflow handling in CMTask::do_marking_step() knows
2402   // how many workers to wait for.
2403   _cm->set_concurrency(_active_workers);
2404   _g1h->set_par_threads(_active_workers);
2405   _workers->run_task(&enq_task_proxy);
2406   _g1h->set_par_threads(0);
2407 }
2408 
2409 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2410   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2411 }
2412 
2413 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2414   if (has_overflown()) {
2415     // Skip processing the discovered references if we have
2416     // overflown the global marking stack. Reference objects
2417     // only get discovered once so it is OK to not
2418     // de-populate the discovered reference lists. We could have,
2419     // but the only benefit would be that, when marking restarts,
2420     // less reference objects are discovered.
2421     return;
2422   }
2423 
2424   ResourceMark rm;
2425   HandleMark   hm;
2426 
2427   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2428 
2429   // Is alive closure.
2430   G1CMIsAliveClosure g1_is_alive(g1h);
2431 
2432   // Inner scope to exclude the cleaning of the string and symbol
2433   // tables from the displayed time.
2434   {
2435     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2436 
2437     ReferenceProcessor* rp = g1h->ref_processor_cm();
2438 
2439     // See the comment in G1CollectedHeap::ref_processing_init()
2440     // about how reference processing currently works in G1.
2441 
2442     // Set the soft reference policy
2443     rp->setup_policy(clear_all_soft_refs);
2444     assert(_markStack.isEmpty(), "mark stack should be empty");
2445 
2446     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2447     // in serial reference processing. Note these closures are also
2448     // used for serially processing (by the the current thread) the
2449     // JNI references during parallel reference processing.
2450     //
2451     // These closures do not need to synchronize with the worker
2452     // threads involved in parallel reference processing as these
2453     // instances are executed serially by the current thread (e.g.
2454     // reference processing is not multi-threaded and is thus
2455     // performed by the current thread instead of a gang worker).
2456     //
2457     // The gang tasks involved in parallel reference processing create
2458     // their own instances of these closures, which do their own
2459     // synchronization among themselves.
2460     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2461     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2462 
2463     // We need at least one active thread. If reference processing
2464     // is not multi-threaded we use the current (VMThread) thread,
2465     // otherwise we use the work gang from the G1CollectedHeap and
2466     // we utilize all the worker threads we can.
2467     bool processing_is_mt = rp->processing_is_mt();
2468     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2469     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2470 
2471     // Parallel processing task executor.
2472     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2473                                               g1h->workers(), active_workers);
2474     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2475 
2476     // Set the concurrency level. The phase was already set prior to
2477     // executing the remark task.
2478     set_concurrency(active_workers);
2479 
2480     // Set the degree of MT processing here.  If the discovery was done MT,
2481     // the number of threads involved during discovery could differ from
2482     // the number of active workers.  This is OK as long as the discovered
2483     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2484     rp->set_active_mt_degree(active_workers);
2485 
2486     // Process the weak references.
2487     const ReferenceProcessorStats& stats =
2488         rp->process_discovered_references(&g1_is_alive,
2489                                           &g1_keep_alive,
2490                                           &g1_drain_mark_stack,
2491                                           executor,
2492                                           g1h->gc_timer_cm(),
2493                                           concurrent_gc_id());
2494     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2495 
2496     // The do_oop work routines of the keep_alive and drain_marking_stack
2497     // oop closures will set the has_overflown flag if we overflow the
2498     // global marking stack.
2499 
2500     assert(_markStack.overflow() || _markStack.isEmpty(),
2501             "mark stack should be empty (unless it overflowed)");
2502 
2503     if (_markStack.overflow()) {
2504       // This should have been done already when we tried to push an
2505       // entry on to the global mark stack. But let's do it again.
2506       set_has_overflown();
2507     }
2508 
2509     assert(rp->num_q() == active_workers, "why not");
2510 
2511     rp->enqueue_discovered_references(executor);
2512 
2513     rp->verify_no_references_recorded();
2514     assert(!rp->discovery_enabled(), "Post condition");
2515   }
2516 
2517   if (has_overflown()) {
2518     // We can not trust g1_is_alive if the marking stack overflowed
2519     return;
2520   }
2521 
2522   assert(_markStack.isEmpty(), "Marking should have completed");
2523 
2524   // Unload Klasses, String, Symbols, Code Cache, etc.
2525   {
2526     G1CMTraceTime trace("Unloading", G1Log::finer());
2527 
2528     if (ClassUnloadingWithConcurrentMark) {
2529       bool purged_classes;
2530 
2531       {
2532         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2533         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2534       }
2535 
2536       {
2537         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2538         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2539       }
2540     }
2541 
2542     if (G1StringDedup::is_enabled()) {
2543       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2544       G1StringDedup::unlink(&g1_is_alive);
2545     }
2546   }
2547 }
2548 
2549 void ConcurrentMark::swapMarkBitMaps() {
2550   CMBitMapRO* temp = _prevMarkBitMap;
2551   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2552   _nextMarkBitMap  = (CMBitMap*)  temp;
2553 }
2554 
2555 class CMObjectClosure;
2556 
2557 // Closure for iterating over objects, currently only used for
2558 // processing SATB buffers.
2559 class CMObjectClosure : public ObjectClosure {
2560 private:
2561   CMTask* _task;
2562 
2563 public:
2564   void do_object(oop obj) {
2565     _task->deal_with_reference(obj);
2566   }
2567 
2568   CMObjectClosure(CMTask* task) : _task(task) { }
2569 };
2570 
2571 class G1RemarkThreadsClosure : public ThreadClosure {
2572   CMObjectClosure _cm_obj;
2573   G1CMOopClosure _cm_cl;
2574   MarkingCodeBlobClosure _code_cl;
2575   int _thread_parity;
2576 
2577  public:
2578   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2579     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2580     _thread_parity(Threads::thread_claim_parity()) {}
2581 
2582   void do_thread(Thread* thread) {
2583     if (thread->is_Java_thread()) {
2584       if (thread->claim_oops_do(true, _thread_parity)) {
2585         JavaThread* jt = (JavaThread*)thread;
2586 
2587         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2588         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2589         // * Alive if on the stack of an executing method
2590         // * Weakly reachable otherwise
2591         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2592         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2593         jt->nmethods_do(&_code_cl);
2594 
2595         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2596       }
2597     } else if (thread->is_VM_thread()) {
2598       if (thread->claim_oops_do(true, _thread_parity)) {
2599         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2600       }
2601     }
2602   }
2603 };
2604 
2605 class CMRemarkTask: public AbstractGangTask {
2606 private:
2607   ConcurrentMark* _cm;
2608 public:
2609   void work(uint worker_id) {
2610     // Since all available tasks are actually started, we should
2611     // only proceed if we're supposed to be active.
2612     if (worker_id < _cm->active_tasks()) {
2613       CMTask* task = _cm->task(worker_id);
2614       task->record_start_time();
2615       {
2616         ResourceMark rm;
2617         HandleMark hm;
2618 
2619         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2620         Threads::threads_do(&threads_f);
2621       }
2622 
2623       do {
2624         task->do_marking_step(1000000000.0 /* something very large */,
2625                               true         /* do_termination       */,
2626                               false        /* is_serial            */);
2627       } while (task->has_aborted() && !_cm->has_overflown());
2628       // If we overflow, then we do not want to restart. We instead
2629       // want to abort remark and do concurrent marking again.
2630       task->record_end_time();
2631     }
2632   }
2633 
2634   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2635     AbstractGangTask("Par Remark"), _cm(cm) {
2636     _cm->terminator()->reset_for_reuse(active_workers);
2637   }
2638 };
2639 
2640 void ConcurrentMark::checkpointRootsFinalWork() {
2641   ResourceMark rm;
2642   HandleMark   hm;
2643   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2644 
2645   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2646 
2647   g1h->ensure_parsability(false);
2648 
2649   StrongRootsScope srs;
2650   // this is remark, so we'll use up all active threads
2651   uint active_workers = g1h->workers()->active_workers();
2652   if (active_workers == 0) {
2653     assert(active_workers > 0, "Should have been set earlier");
2654     active_workers = (uint) ParallelGCThreads;
2655     g1h->workers()->set_active_workers(active_workers);
2656   }
2657   set_concurrency_and_phase(active_workers, false /* concurrent */);
2658   // Leave _parallel_marking_threads at it's
2659   // value originally calculated in the ConcurrentMark
2660   // constructor and pass values of the active workers
2661   // through the gang in the task.
2662 
2663   CMRemarkTask remarkTask(this, active_workers);
2664   // We will start all available threads, even if we decide that the
2665   // active_workers will be fewer. The extra ones will just bail out
2666   // immediately.
2667   g1h->set_par_threads(active_workers);
2668   g1h->workers()->run_task(&remarkTask);
2669   g1h->set_par_threads(0);
2670 
2671   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2672   guarantee(has_overflown() ||
2673             satb_mq_set.completed_buffers_num() == 0,
2674             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2675                     BOOL_TO_STR(has_overflown()),
2676                     satb_mq_set.completed_buffers_num()));
2677 
2678   print_stats();
2679 }
2680 
2681 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2682   // Note we are overriding the read-only view of the prev map here, via
2683   // the cast.
2684   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2685 }
2686 
2687 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2688   _nextMarkBitMap->clearRange(mr);
2689 }
2690 
2691 HeapRegion*
2692 ConcurrentMark::claim_region(uint worker_id) {
2693   // "checkpoint" the finger
2694   HeapWord* finger = _finger;
2695 
2696   // _heap_end will not change underneath our feet; it only changes at
2697   // yield points.
2698   while (finger < _heap_end) {
2699     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2700 
2701     // Note on how this code handles humongous regions. In the
2702     // normal case the finger will reach the start of a "starts
2703     // humongous" (SH) region. Its end will either be the end of the
2704     // last "continues humongous" (CH) region in the sequence, or the
2705     // standard end of the SH region (if the SH is the only region in
2706     // the sequence). That way claim_region() will skip over the CH
2707     // regions. However, there is a subtle race between a CM thread
2708     // executing this method and a mutator thread doing a humongous
2709     // object allocation. The two are not mutually exclusive as the CM
2710     // thread does not need to hold the Heap_lock when it gets
2711     // here. So there is a chance that claim_region() will come across
2712     // a free region that's in the progress of becoming a SH or a CH
2713     // region. In the former case, it will either
2714     //   a) Miss the update to the region's end, in which case it will
2715     //      visit every subsequent CH region, will find their bitmaps
2716     //      empty, and do nothing, or
2717     //   b) Will observe the update of the region's end (in which case
2718     //      it will skip the subsequent CH regions).
2719     // If it comes across a region that suddenly becomes CH, the
2720     // scenario will be similar to b). So, the race between
2721     // claim_region() and a humongous object allocation might force us
2722     // to do a bit of unnecessary work (due to some unnecessary bitmap
2723     // iterations) but it should not introduce and correctness issues.
2724     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2725 
2726     // Above heap_region_containing_raw may return NULL as we always scan claim
2727     // until the end of the heap. In this case, just jump to the next region.
2728     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2729 
2730     // Is the gap between reading the finger and doing the CAS too long?
2731     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2732     if (res == finger && curr_region != NULL) {
2733       // we succeeded
2734       HeapWord*   bottom        = curr_region->bottom();
2735       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2736 
2737       if (verbose_low()) {
2738         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2739                                "["PTR_FORMAT", "PTR_FORMAT"), "
2740                                "limit = "PTR_FORMAT,
2741                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2742       }
2743 
2744       // notice that _finger == end cannot be guaranteed here since,
2745       // someone else might have moved the finger even further
2746       assert(_finger >= end, "the finger should have moved forward");
2747 
2748       if (verbose_low()) {
2749         gclog_or_tty->print_cr("[%u] we were successful with region = "
2750                                PTR_FORMAT, worker_id, p2i(curr_region));
2751       }
2752 
2753       if (limit > bottom) {
2754         if (verbose_low()) {
2755           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2756                                  "returning it ", worker_id, p2i(curr_region));
2757         }
2758         return curr_region;
2759       } else {
2760         assert(limit == bottom,
2761                "the region limit should be at bottom");
2762         if (verbose_low()) {
2763           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2764                                  "returning NULL", worker_id, p2i(curr_region));
2765         }
2766         // we return NULL and the caller should try calling
2767         // claim_region() again.
2768         return NULL;
2769       }
2770     } else {
2771       assert(_finger > finger, "the finger should have moved forward");
2772       if (verbose_low()) {
2773         if (curr_region == NULL) {
2774           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2775                                  "global finger = "PTR_FORMAT", "
2776                                  "our finger = "PTR_FORMAT,
2777                                  worker_id, p2i(_finger), p2i(finger));
2778         } else {
2779           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2780                                  "global finger = "PTR_FORMAT", "
2781                                  "our finger = "PTR_FORMAT,
2782                                  worker_id, p2i(_finger), p2i(finger));
2783         }
2784       }
2785 
2786       // read it again
2787       finger = _finger;
2788     }
2789   }
2790 
2791   return NULL;
2792 }
2793 
2794 #ifndef PRODUCT
2795 enum VerifyNoCSetOopsPhase {
2796   VerifyNoCSetOopsStack,
2797   VerifyNoCSetOopsQueues,
2798   VerifyNoCSetOopsSATBCompleted,
2799   VerifyNoCSetOopsSATBThread
2800 };
2801 
2802 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2803 private:
2804   G1CollectedHeap* _g1h;
2805   VerifyNoCSetOopsPhase _phase;
2806   int _info;
2807 
2808   const char* phase_str() {
2809     switch (_phase) {
2810     case VerifyNoCSetOopsStack:         return "Stack";
2811     case VerifyNoCSetOopsQueues:        return "Queue";
2812     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2813     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2814     default:                            ShouldNotReachHere();
2815     }
2816     return NULL;
2817   }
2818 
2819   void do_object_work(oop obj) {
2820     guarantee(!_g1h->obj_in_cs(obj),
2821               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2822                       p2i((void*) obj), phase_str(), _info));
2823   }
2824 
2825 public:
2826   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2827 
2828   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2829     _phase = phase;
2830     _info = info;
2831   }
2832 
2833   virtual void do_oop(oop* p) {
2834     oop obj = oopDesc::load_decode_heap_oop(p);
2835     do_object_work(obj);
2836   }
2837 
2838   virtual void do_oop(narrowOop* p) {
2839     // We should not come across narrow oops while scanning marking
2840     // stacks and SATB buffers.
2841     ShouldNotReachHere();
2842   }
2843 
2844   virtual void do_object(oop obj) {
2845     do_object_work(obj);
2846   }
2847 };
2848 
2849 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2850                                          bool verify_enqueued_buffers,
2851                                          bool verify_thread_buffers,
2852                                          bool verify_fingers) {
2853   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2854   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2855     return;
2856   }
2857 
2858   VerifyNoCSetOopsClosure cl;
2859 
2860   if (verify_stacks) {
2861     // Verify entries on the global mark stack
2862     cl.set_phase(VerifyNoCSetOopsStack);
2863     _markStack.oops_do(&cl);
2864 
2865     // Verify entries on the task queues
2866     for (uint i = 0; i < _max_worker_id; i += 1) {
2867       cl.set_phase(VerifyNoCSetOopsQueues, i);
2868       CMTaskQueue* queue = _task_queues->queue(i);
2869       queue->oops_do(&cl);
2870     }
2871   }
2872 
2873   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2874 
2875   // Verify entries on the enqueued SATB buffers
2876   if (verify_enqueued_buffers) {
2877     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2878     satb_qs.iterate_completed_buffers_read_only(&cl);
2879   }
2880 
2881   // Verify entries on the per-thread SATB buffers
2882   if (verify_thread_buffers) {
2883     cl.set_phase(VerifyNoCSetOopsSATBThread);
2884     satb_qs.iterate_thread_buffers_read_only(&cl);
2885   }
2886 
2887   if (verify_fingers) {
2888     // Verify the global finger
2889     HeapWord* global_finger = finger();
2890     if (global_finger != NULL && global_finger < _heap_end) {
2891       // The global finger always points to a heap region boundary. We
2892       // use heap_region_containing_raw() to get the containing region
2893       // given that the global finger could be pointing to a free region
2894       // which subsequently becomes continues humongous. If that
2895       // happens, heap_region_containing() will return the bottom of the
2896       // corresponding starts humongous region and the check below will
2897       // not hold any more.
2898       // Since we always iterate over all regions, we might get a NULL HeapRegion
2899       // here.
2900       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2901       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2902                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
2903                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
2904     }
2905 
2906     // Verify the task fingers
2907     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2908     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
2909       CMTask* task = _tasks[i];
2910       HeapWord* task_finger = task->finger();
2911       if (task_finger != NULL && task_finger < _heap_end) {
2912         // See above note on the global finger verification.
2913         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
2914         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2915                   !task_hr->in_collection_set(),
2916                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
2917                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
2918       }
2919     }
2920   }
2921 }
2922 #endif // PRODUCT
2923 
2924 // Aggregate the counting data that was constructed concurrently
2925 // with marking.
2926 class AggregateCountDataHRClosure: public HeapRegionClosure {
2927   G1CollectedHeap* _g1h;
2928   ConcurrentMark* _cm;
2929   CardTableModRefBS* _ct_bs;
2930   BitMap* _cm_card_bm;
2931   uint _max_worker_id;
2932 
2933  public:
2934   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2935                               BitMap* cm_card_bm,
2936                               uint max_worker_id) :
2937     _g1h(g1h), _cm(g1h->concurrent_mark()),
2938     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2939     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2940 
2941   bool doHeapRegion(HeapRegion* hr) {
2942     if (hr->is_continues_humongous()) {
2943       // We will ignore these here and process them when their
2944       // associated "starts humongous" region is processed.
2945       // Note that we cannot rely on their associated
2946       // "starts humongous" region to have their bit set to 1
2947       // since, due to the region chunking in the parallel region
2948       // iteration, a "continues humongous" region might be visited
2949       // before its associated "starts humongous".
2950       return false;
2951     }
2952 
2953     HeapWord* start = hr->bottom();
2954     HeapWord* limit = hr->next_top_at_mark_start();
2955     HeapWord* end = hr->end();
2956 
2957     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2958            err_msg("Preconditions not met - "
2959                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
2960                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
2961                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
2962 
2963     assert(hr->next_marked_bytes() == 0, "Precondition");
2964 
2965     if (start == limit) {
2966       // NTAMS of this region has not been set so nothing to do.
2967       return false;
2968     }
2969 
2970     // 'start' should be in the heap.
2971     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2972     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2973     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2974 
2975     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2976     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2977     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2978 
2979     // If ntams is not card aligned then we bump card bitmap index
2980     // for limit so that we get the all the cards spanned by
2981     // the object ending at ntams.
2982     // Note: if this is the last region in the heap then ntams
2983     // could be actually just beyond the end of the the heap;
2984     // limit_idx will then  correspond to a (non-existent) card
2985     // that is also outside the heap.
2986     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2987       limit_idx += 1;
2988     }
2989 
2990     assert(limit_idx <= end_idx, "or else use atomics");
2991 
2992     // Aggregate the "stripe" in the count data associated with hr.
2993     uint hrm_index = hr->hrm_index();
2994     size_t marked_bytes = 0;
2995 
2996     for (uint i = 0; i < _max_worker_id; i += 1) {
2997       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2998       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2999 
3000       // Fetch the marked_bytes in this region for task i and
3001       // add it to the running total for this region.
3002       marked_bytes += marked_bytes_array[hrm_index];
3003 
3004       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3005       // into the global card bitmap.
3006       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3007 
3008       while (scan_idx < limit_idx) {
3009         assert(task_card_bm->at(scan_idx) == true, "should be");
3010         _cm_card_bm->set_bit(scan_idx);
3011         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3012 
3013         // BitMap::get_next_one_offset() can handle the case when
3014         // its left_offset parameter is greater than its right_offset
3015         // parameter. It does, however, have an early exit if
3016         // left_offset == right_offset. So let's limit the value
3017         // passed in for left offset here.
3018         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3019         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3020       }
3021     }
3022 
3023     // Update the marked bytes for this region.
3024     hr->add_to_marked_bytes(marked_bytes);
3025 
3026     // Next heap region
3027     return false;
3028   }
3029 };
3030 
3031 class G1AggregateCountDataTask: public AbstractGangTask {
3032 protected:
3033   G1CollectedHeap* _g1h;
3034   ConcurrentMark* _cm;
3035   BitMap* _cm_card_bm;
3036   uint _max_worker_id;
3037   int _active_workers;
3038   HeapRegionClaimer _hrclaimer;
3039 
3040 public:
3041   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3042                            ConcurrentMark* cm,
3043                            BitMap* cm_card_bm,
3044                            uint max_worker_id,
3045                            int n_workers) :
3046       AbstractGangTask("Count Aggregation"),
3047       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3048       _max_worker_id(max_worker_id),
3049       _active_workers(n_workers),
3050       _hrclaimer(_active_workers) {
3051   }
3052 
3053   void work(uint worker_id) {
3054     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3055 
3056     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3057   }
3058 };
3059 
3060 
3061 void ConcurrentMark::aggregate_count_data() {
3062   int n_workers = _g1h->workers()->active_workers();
3063 
3064   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3065                                            _max_worker_id, n_workers);
3066 
3067   _g1h->set_par_threads(n_workers);
3068   _g1h->workers()->run_task(&g1_par_agg_task);
3069   _g1h->set_par_threads(0);
3070 }
3071 
3072 // Clear the per-worker arrays used to store the per-region counting data
3073 void ConcurrentMark::clear_all_count_data() {
3074   // Clear the global card bitmap - it will be filled during
3075   // liveness count aggregation (during remark) and the
3076   // final counting task.
3077   _card_bm.clear();
3078 
3079   // Clear the global region bitmap - it will be filled as part
3080   // of the final counting task.
3081   _region_bm.clear();
3082 
3083   uint max_regions = _g1h->max_regions();
3084   assert(_max_worker_id > 0, "uninitialized");
3085 
3086   for (uint i = 0; i < _max_worker_id; i += 1) {
3087     BitMap* task_card_bm = count_card_bitmap_for(i);
3088     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3089 
3090     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3091     assert(marked_bytes_array != NULL, "uninitialized");
3092 
3093     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3094     task_card_bm->clear();
3095   }
3096 }
3097 
3098 void ConcurrentMark::print_stats() {
3099   if (verbose_stats()) {
3100     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3101     for (size_t i = 0; i < _active_tasks; ++i) {
3102       _tasks[i]->print_stats();
3103       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3104     }
3105   }
3106 }
3107 
3108 // abandon current marking iteration due to a Full GC
3109 void ConcurrentMark::abort() {
3110   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3111   // concurrent bitmap clearing.
3112   _nextMarkBitMap->clearAll();
3113 
3114   // Note we cannot clear the previous marking bitmap here
3115   // since VerifyDuringGC verifies the objects marked during
3116   // a full GC against the previous bitmap.
3117 
3118   // Clear the liveness counting data
3119   clear_all_count_data();
3120   // Empty mark stack
3121   reset_marking_state();
3122   for (uint i = 0; i < _max_worker_id; ++i) {
3123     _tasks[i]->clear_region_fields();
3124   }
3125   _first_overflow_barrier_sync.abort();
3126   _second_overflow_barrier_sync.abort();
3127   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3128   if (!gc_id.is_undefined()) {
3129     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3130     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3131     _aborted_gc_id = gc_id;
3132    }
3133   _has_aborted = true;
3134 
3135   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3136   satb_mq_set.abandon_partial_marking();
3137   // This can be called either during or outside marking, we'll read
3138   // the expected_active value from the SATB queue set.
3139   satb_mq_set.set_active_all_threads(
3140                                  false, /* new active value */
3141                                  satb_mq_set.is_active() /* expected_active */);
3142 
3143   _g1h->trace_heap_after_concurrent_cycle();
3144   _g1h->register_concurrent_cycle_end();
3145 }
3146 
3147 const GCId& ConcurrentMark::concurrent_gc_id() {
3148   if (has_aborted()) {
3149     return _aborted_gc_id;
3150   }
3151   return _g1h->gc_tracer_cm()->gc_id();
3152 }
3153 
3154 static void print_ms_time_info(const char* prefix, const char* name,
3155                                NumberSeq& ns) {
3156   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3157                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3158   if (ns.num() > 0) {
3159     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3160                            prefix, ns.sd(), ns.maximum());
3161   }
3162 }
3163 
3164 void ConcurrentMark::print_summary_info() {
3165   gclog_or_tty->print_cr(" Concurrent marking:");
3166   print_ms_time_info("  ", "init marks", _init_times);
3167   print_ms_time_info("  ", "remarks", _remark_times);
3168   {
3169     print_ms_time_info("     ", "final marks", _remark_mark_times);
3170     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3171 
3172   }
3173   print_ms_time_info("  ", "cleanups", _cleanup_times);
3174   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3175                          _total_counting_time,
3176                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3177                           (double)_cleanup_times.num()
3178                          : 0.0));
3179   if (G1ScrubRemSets) {
3180     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3181                            _total_rs_scrub_time,
3182                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3183                             (double)_cleanup_times.num()
3184                            : 0.0));
3185   }
3186   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3187                          (_init_times.sum() + _remark_times.sum() +
3188                           _cleanup_times.sum())/1000.0);
3189   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3190                 "(%8.2f s marking).",
3191                 cmThread()->vtime_accum(),
3192                 cmThread()->vtime_mark_accum());
3193 }
3194 
3195 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3196   _parallel_workers->print_worker_threads_on(st);
3197 }
3198 
3199 void ConcurrentMark::print_on_error(outputStream* st) const {
3200   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3201       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3202   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3203   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3204 }
3205 
3206 // We take a break if someone is trying to stop the world.
3207 bool ConcurrentMark::do_yield_check(uint worker_id) {
3208   if (SuspendibleThreadSet::should_yield()) {
3209     if (worker_id == 0) {
3210       _g1h->g1_policy()->record_concurrent_pause();
3211     }
3212     SuspendibleThreadSet::yield();
3213     return true;
3214   } else {
3215     return false;
3216   }
3217 }
3218 
3219 #ifndef PRODUCT
3220 // for debugging purposes
3221 void ConcurrentMark::print_finger() {
3222   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3223                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3224   for (uint i = 0; i < _max_worker_id; ++i) {
3225     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3226   }
3227   gclog_or_tty->cr();
3228 }
3229 #endif
3230 
3231 template<bool scan>
3232 inline void CMTask::process_grey_object(oop obj) {
3233   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
3234   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3235 
3236   if (_cm->verbose_high()) {
3237     gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
3238                            _worker_id, p2i((void*) obj));
3239   }
3240 
3241   size_t obj_size = obj->size();
3242   _words_scanned += obj_size;
3243 
3244   if (scan) {
3245     obj->oop_iterate(_cm_oop_closure);
3246   }
3247   statsOnly( ++_objs_scanned );
3248   check_limits();
3249 }
3250 
3251 template void CMTask::process_grey_object<true>(oop);
3252 template void CMTask::process_grey_object<false>(oop);
3253 
3254 // Closure for iteration over bitmaps
3255 class CMBitMapClosure : public BitMapClosure {
3256 private:
3257   // the bitmap that is being iterated over
3258   CMBitMap*                   _nextMarkBitMap;
3259   ConcurrentMark*             _cm;
3260   CMTask*                     _task;
3261 
3262 public:
3263   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3264     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3265 
3266   bool do_bit(size_t offset) {
3267     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3268     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3269     assert( addr < _cm->finger(), "invariant");
3270 
3271     statsOnly( _task->increase_objs_found_on_bitmap() );
3272     assert(addr >= _task->finger(), "invariant");
3273 
3274     // We move that task's local finger along.
3275     _task->move_finger_to(addr);
3276 
3277     _task->scan_object(oop(addr));
3278     // we only partially drain the local queue and global stack
3279     _task->drain_local_queue(true);
3280     _task->drain_global_stack(true);
3281 
3282     // if the has_aborted flag has been raised, we need to bail out of
3283     // the iteration
3284     return !_task->has_aborted();
3285   }
3286 };
3287 
3288 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3289                                ConcurrentMark* cm,
3290                                CMTask* task)
3291   : _g1h(g1h), _cm(cm), _task(task) {
3292   assert(_ref_processor == NULL, "should be initialized to NULL");
3293 
3294   if (G1UseConcMarkReferenceProcessing) {
3295     _ref_processor = g1h->ref_processor_cm();
3296     assert(_ref_processor != NULL, "should not be NULL");
3297   }
3298 }
3299 
3300 void CMTask::setup_for_region(HeapRegion* hr) {
3301   assert(hr != NULL,
3302         "claim_region() should have filtered out NULL regions");
3303   assert(!hr->is_continues_humongous(),
3304         "claim_region() should have filtered out continues humongous regions");
3305 
3306   if (_cm->verbose_low()) {
3307     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3308                            _worker_id, p2i(hr));
3309   }
3310 
3311   _curr_region  = hr;
3312   _finger       = hr->bottom();
3313   update_region_limit();
3314 }
3315 
3316 void CMTask::update_region_limit() {
3317   HeapRegion* hr            = _curr_region;
3318   HeapWord* bottom          = hr->bottom();
3319   HeapWord* limit           = hr->next_top_at_mark_start();
3320 
3321   if (limit == bottom) {
3322     if (_cm->verbose_low()) {
3323       gclog_or_tty->print_cr("[%u] found an empty region "
3324                              "["PTR_FORMAT", "PTR_FORMAT")",
3325                              _worker_id, p2i(bottom), p2i(limit));
3326     }
3327     // The region was collected underneath our feet.
3328     // We set the finger to bottom to ensure that the bitmap
3329     // iteration that will follow this will not do anything.
3330     // (this is not a condition that holds when we set the region up,
3331     // as the region is not supposed to be empty in the first place)
3332     _finger = bottom;
3333   } else if (limit >= _region_limit) {
3334     assert(limit >= _finger, "peace of mind");
3335   } else {
3336     assert(limit < _region_limit, "only way to get here");
3337     // This can happen under some pretty unusual circumstances.  An
3338     // evacuation pause empties the region underneath our feet (NTAMS
3339     // at bottom). We then do some allocation in the region (NTAMS
3340     // stays at bottom), followed by the region being used as a GC
3341     // alloc region (NTAMS will move to top() and the objects
3342     // originally below it will be grayed). All objects now marked in
3343     // the region are explicitly grayed, if below the global finger,
3344     // and we do not need in fact to scan anything else. So, we simply
3345     // set _finger to be limit to ensure that the bitmap iteration
3346     // doesn't do anything.
3347     _finger = limit;
3348   }
3349 
3350   _region_limit = limit;
3351 }
3352 
3353 void CMTask::giveup_current_region() {
3354   assert(_curr_region != NULL, "invariant");
3355   if (_cm->verbose_low()) {
3356     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3357                            _worker_id, p2i(_curr_region));
3358   }
3359   clear_region_fields();
3360 }
3361 
3362 void CMTask::clear_region_fields() {
3363   // Values for these three fields that indicate that we're not
3364   // holding on to a region.
3365   _curr_region   = NULL;
3366   _finger        = NULL;
3367   _region_limit  = NULL;
3368 }
3369 
3370 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3371   if (cm_oop_closure == NULL) {
3372     assert(_cm_oop_closure != NULL, "invariant");
3373   } else {
3374     assert(_cm_oop_closure == NULL, "invariant");
3375   }
3376   _cm_oop_closure = cm_oop_closure;
3377 }
3378 
3379 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3380   guarantee(nextMarkBitMap != NULL, "invariant");
3381 
3382   if (_cm->verbose_low()) {
3383     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3384   }
3385 
3386   _nextMarkBitMap                = nextMarkBitMap;
3387   clear_region_fields();
3388 
3389   _calls                         = 0;
3390   _elapsed_time_ms               = 0.0;
3391   _termination_time_ms           = 0.0;
3392   _termination_start_time_ms     = 0.0;
3393 
3394 #if _MARKING_STATS_
3395   _aborted                       = 0;
3396   _aborted_overflow              = 0;
3397   _aborted_cm_aborted            = 0;
3398   _aborted_yield                 = 0;
3399   _aborted_timed_out             = 0;
3400   _aborted_satb                  = 0;
3401   _aborted_termination           = 0;
3402   _steal_attempts                = 0;
3403   _steals                        = 0;
3404   _local_pushes                  = 0;
3405   _local_pops                    = 0;
3406   _local_max_size                = 0;
3407   _objs_scanned                  = 0;
3408   _global_pushes                 = 0;
3409   _global_pops                   = 0;
3410   _global_max_size               = 0;
3411   _global_transfers_to           = 0;
3412   _global_transfers_from         = 0;
3413   _regions_claimed               = 0;
3414   _objs_found_on_bitmap          = 0;
3415   _satb_buffers_processed        = 0;
3416 #endif // _MARKING_STATS_
3417 }
3418 
3419 bool CMTask::should_exit_termination() {
3420   regular_clock_call();
3421   // This is called when we are in the termination protocol. We should
3422   // quit if, for some reason, this task wants to abort or the global
3423   // stack is not empty (this means that we can get work from it).
3424   return !_cm->mark_stack_empty() || has_aborted();
3425 }
3426 
3427 void CMTask::reached_limit() {
3428   assert(_words_scanned >= _words_scanned_limit ||
3429          _refs_reached >= _refs_reached_limit ,
3430          "shouldn't have been called otherwise");
3431   regular_clock_call();
3432 }
3433 
3434 void CMTask::regular_clock_call() {
3435   if (has_aborted()) return;
3436 
3437   // First, we need to recalculate the words scanned and refs reached
3438   // limits for the next clock call.
3439   recalculate_limits();
3440 
3441   // During the regular clock call we do the following
3442 
3443   // (1) If an overflow has been flagged, then we abort.
3444   if (_cm->has_overflown()) {
3445     set_has_aborted();
3446     return;
3447   }
3448 
3449   // If we are not concurrent (i.e. we're doing remark) we don't need
3450   // to check anything else. The other steps are only needed during
3451   // the concurrent marking phase.
3452   if (!concurrent()) return;
3453 
3454   // (2) If marking has been aborted for Full GC, then we also abort.
3455   if (_cm->has_aborted()) {
3456     set_has_aborted();
3457     statsOnly( ++_aborted_cm_aborted );
3458     return;
3459   }
3460 
3461   double curr_time_ms = os::elapsedVTime() * 1000.0;
3462 
3463   // (3) If marking stats are enabled, then we update the step history.
3464 #if _MARKING_STATS_
3465   if (_words_scanned >= _words_scanned_limit) {
3466     ++_clock_due_to_scanning;
3467   }
3468   if (_refs_reached >= _refs_reached_limit) {
3469     ++_clock_due_to_marking;
3470   }
3471 
3472   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3473   _interval_start_time_ms = curr_time_ms;
3474   _all_clock_intervals_ms.add(last_interval_ms);
3475 
3476   if (_cm->verbose_medium()) {
3477       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3478                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3479                         _worker_id, last_interval_ms,
3480                         _words_scanned,
3481                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3482                         _refs_reached,
3483                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3484   }
3485 #endif // _MARKING_STATS_
3486 
3487   // (4) We check whether we should yield. If we have to, then we abort.
3488   if (SuspendibleThreadSet::should_yield()) {
3489     // We should yield. To do this we abort the task. The caller is
3490     // responsible for yielding.
3491     set_has_aborted();
3492     statsOnly( ++_aborted_yield );
3493     return;
3494   }
3495 
3496   // (5) We check whether we've reached our time quota. If we have,
3497   // then we abort.
3498   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3499   if (elapsed_time_ms > _time_target_ms) {
3500     set_has_aborted();
3501     _has_timed_out = true;
3502     statsOnly( ++_aborted_timed_out );
3503     return;
3504   }
3505 
3506   // (6) Finally, we check whether there are enough completed STAB
3507   // buffers available for processing. If there are, we abort.
3508   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3509   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3510     if (_cm->verbose_low()) {
3511       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3512                              _worker_id);
3513     }
3514     // we do need to process SATB buffers, we'll abort and restart
3515     // the marking task to do so
3516     set_has_aborted();
3517     statsOnly( ++_aborted_satb );
3518     return;
3519   }
3520 }
3521 
3522 void CMTask::recalculate_limits() {
3523   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3524   _words_scanned_limit      = _real_words_scanned_limit;
3525 
3526   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3527   _refs_reached_limit       = _real_refs_reached_limit;
3528 }
3529 
3530 void CMTask::decrease_limits() {
3531   // This is called when we believe that we're going to do an infrequent
3532   // operation which will increase the per byte scanned cost (i.e. move
3533   // entries to/from the global stack). It basically tries to decrease the
3534   // scanning limit so that the clock is called earlier.
3535 
3536   if (_cm->verbose_medium()) {
3537     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3538   }
3539 
3540   _words_scanned_limit = _real_words_scanned_limit -
3541     3 * words_scanned_period / 4;
3542   _refs_reached_limit  = _real_refs_reached_limit -
3543     3 * refs_reached_period / 4;
3544 }
3545 
3546 void CMTask::move_entries_to_global_stack() {
3547   // local array where we'll store the entries that will be popped
3548   // from the local queue
3549   oop buffer[global_stack_transfer_size];
3550 
3551   int n = 0;
3552   oop obj;
3553   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3554     buffer[n] = obj;
3555     ++n;
3556   }
3557 
3558   if (n > 0) {
3559     // we popped at least one entry from the local queue
3560 
3561     statsOnly( ++_global_transfers_to; _local_pops += n );
3562 
3563     if (!_cm->mark_stack_push(buffer, n)) {
3564       if (_cm->verbose_low()) {
3565         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3566                                _worker_id);
3567       }
3568       set_has_aborted();
3569     } else {
3570       // the transfer was successful
3571 
3572       if (_cm->verbose_medium()) {
3573         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3574                                _worker_id, n);
3575       }
3576       statsOnly( size_t tmp_size = _cm->mark_stack_size();
3577                  if (tmp_size > _global_max_size) {
3578                    _global_max_size = tmp_size;
3579                  }
3580                  _global_pushes += n );
3581     }
3582   }
3583 
3584   // this operation was quite expensive, so decrease the limits
3585   decrease_limits();
3586 }
3587 
3588 void CMTask::get_entries_from_global_stack() {
3589   // local array where we'll store the entries that will be popped
3590   // from the global stack.
3591   oop buffer[global_stack_transfer_size];
3592   int n;
3593   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3594   assert(n <= global_stack_transfer_size,
3595          "we should not pop more than the given limit");
3596   if (n > 0) {
3597     // yes, we did actually pop at least one entry
3598 
3599     statsOnly( ++_global_transfers_from; _global_pops += n );
3600     if (_cm->verbose_medium()) {
3601       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3602                              _worker_id, n);
3603     }
3604     for (int i = 0; i < n; ++i) {
3605       bool success = _task_queue->push(buffer[i]);
3606       // We only call this when the local queue is empty or under a
3607       // given target limit. So, we do not expect this push to fail.
3608       assert(success, "invariant");
3609     }
3610 
3611     statsOnly( size_t tmp_size = (size_t)_task_queue->size();
3612                if (tmp_size > _local_max_size) {
3613                  _local_max_size = tmp_size;
3614                }
3615                _local_pushes += n );
3616   }
3617 
3618   // this operation was quite expensive, so decrease the limits
3619   decrease_limits();
3620 }
3621 
3622 void CMTask::drain_local_queue(bool partially) {
3623   if (has_aborted()) return;
3624 
3625   // Decide what the target size is, depending whether we're going to
3626   // drain it partially (so that other tasks can steal if they run out
3627   // of things to do) or totally (at the very end).
3628   size_t target_size;
3629   if (partially) {
3630     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3631   } else {
3632     target_size = 0;
3633   }
3634 
3635   if (_task_queue->size() > target_size) {
3636     if (_cm->verbose_high()) {
3637       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3638                              _worker_id, target_size);
3639     }
3640 
3641     oop obj;
3642     bool ret = _task_queue->pop_local(obj);
3643     while (ret) {
3644       statsOnly( ++_local_pops );
3645 
3646       if (_cm->verbose_high()) {
3647         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3648                                p2i((void*) obj));
3649       }
3650 
3651       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3652       assert(!_g1h->is_on_master_free_list(
3653                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3654 
3655       scan_object(obj);
3656 
3657       if (_task_queue->size() <= target_size || has_aborted()) {
3658         ret = false;
3659       } else {
3660         ret = _task_queue->pop_local(obj);
3661       }
3662     }
3663 
3664     if (_cm->verbose_high()) {
3665       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3666                              _worker_id, _task_queue->size());
3667     }
3668   }
3669 }
3670 
3671 void CMTask::drain_global_stack(bool partially) {
3672   if (has_aborted()) return;
3673 
3674   // We have a policy to drain the local queue before we attempt to
3675   // drain the global stack.
3676   assert(partially || _task_queue->size() == 0, "invariant");
3677 
3678   // Decide what the target size is, depending whether we're going to
3679   // drain it partially (so that other tasks can steal if they run out
3680   // of things to do) or totally (at the very end).  Notice that,
3681   // because we move entries from the global stack in chunks or
3682   // because another task might be doing the same, we might in fact
3683   // drop below the target. But, this is not a problem.
3684   size_t target_size;
3685   if (partially) {
3686     target_size = _cm->partial_mark_stack_size_target();
3687   } else {
3688     target_size = 0;
3689   }
3690 
3691   if (_cm->mark_stack_size() > target_size) {
3692     if (_cm->verbose_low()) {
3693       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3694                              _worker_id, target_size);
3695     }
3696 
3697     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3698       get_entries_from_global_stack();
3699       drain_local_queue(partially);
3700     }
3701 
3702     if (_cm->verbose_low()) {
3703       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3704                              _worker_id, _cm->mark_stack_size());
3705     }
3706   }
3707 }
3708 
3709 // SATB Queue has several assumptions on whether to call the par or
3710 // non-par versions of the methods. this is why some of the code is
3711 // replicated. We should really get rid of the single-threaded version
3712 // of the code to simplify things.
3713 void CMTask::drain_satb_buffers() {
3714   if (has_aborted()) return;
3715 
3716   // We set this so that the regular clock knows that we're in the
3717   // middle of draining buffers and doesn't set the abort flag when it
3718   // notices that SATB buffers are available for draining. It'd be
3719   // very counter productive if it did that. :-)
3720   _draining_satb_buffers = true;
3721 
3722   CMObjectClosure oc(this);
3723   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3724 
3725   // This keeps claiming and applying the closure to completed buffers
3726   // until we run out of buffers or we need to abort.
3727   while (!has_aborted() &&
3728          satb_mq_set.apply_closure_to_completed_buffer(&oc)) {
3729     if (_cm->verbose_medium()) {
3730       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3731     }
3732     statsOnly( ++_satb_buffers_processed );
3733     regular_clock_call();
3734   }
3735 
3736   _draining_satb_buffers = false;
3737 
3738   assert(has_aborted() ||
3739          concurrent() ||
3740          satb_mq_set.completed_buffers_num() == 0, "invariant");
3741 
3742   // again, this was a potentially expensive operation, decrease the
3743   // limits to get the regular clock call early
3744   decrease_limits();
3745 }
3746 
3747 void CMTask::print_stats() {
3748   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3749                          _worker_id, _calls);
3750   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3751                          _elapsed_time_ms, _termination_time_ms);
3752   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3753                          _step_times_ms.num(), _step_times_ms.avg(),
3754                          _step_times_ms.sd());
3755   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3756                          _step_times_ms.maximum(), _step_times_ms.sum());
3757 
3758 #if _MARKING_STATS_
3759   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3760                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3761                          _all_clock_intervals_ms.sd());
3762   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3763                          _all_clock_intervals_ms.maximum(),
3764                          _all_clock_intervals_ms.sum());
3765   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = " SIZE_FORMAT ", marking = " SIZE_FORMAT,
3766                          _clock_due_to_scanning, _clock_due_to_marking);
3767   gclog_or_tty->print_cr("  Objects: scanned = " SIZE_FORMAT ", found on the bitmap = " SIZE_FORMAT,
3768                          _objs_scanned, _objs_found_on_bitmap);
3769   gclog_or_tty->print_cr("  Local Queue:  pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3770                          _local_pushes, _local_pops, _local_max_size);
3771   gclog_or_tty->print_cr("  Global Stack: pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3772                          _global_pushes, _global_pops, _global_max_size);
3773   gclog_or_tty->print_cr("                transfers to = " SIZE_FORMAT ", transfers from = " SIZE_FORMAT,
3774                          _global_transfers_to,_global_transfers_from);
3775   gclog_or_tty->print_cr("  Regions: claimed = " SIZE_FORMAT, _regions_claimed);
3776   gclog_or_tty->print_cr("  SATB buffers: processed = " SIZE_FORMAT, _satb_buffers_processed);
3777   gclog_or_tty->print_cr("  Steals: attempts = " SIZE_FORMAT ", successes = " SIZE_FORMAT,
3778                          _steal_attempts, _steals);
3779   gclog_or_tty->print_cr("  Aborted: " SIZE_FORMAT ", due to", _aborted);
3780   gclog_or_tty->print_cr("    overflow: " SIZE_FORMAT ", global abort: " SIZE_FORMAT ", yield: " SIZE_FORMAT,
3781                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3782   gclog_or_tty->print_cr("    time out: " SIZE_FORMAT ", SATB: " SIZE_FORMAT ", termination: " SIZE_FORMAT,
3783                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3784 #endif // _MARKING_STATS_
3785 }
3786 
3787 /*****************************************************************************
3788 
3789     The do_marking_step(time_target_ms, ...) method is the building
3790     block of the parallel marking framework. It can be called in parallel
3791     with other invocations of do_marking_step() on different tasks
3792     (but only one per task, obviously) and concurrently with the
3793     mutator threads, or during remark, hence it eliminates the need
3794     for two versions of the code. When called during remark, it will
3795     pick up from where the task left off during the concurrent marking
3796     phase. Interestingly, tasks are also claimable during evacuation
3797     pauses too, since do_marking_step() ensures that it aborts before
3798     it needs to yield.
3799 
3800     The data structures that it uses to do marking work are the
3801     following:
3802 
3803       (1) Marking Bitmap. If there are gray objects that appear only
3804       on the bitmap (this happens either when dealing with an overflow
3805       or when the initial marking phase has simply marked the roots
3806       and didn't push them on the stack), then tasks claim heap
3807       regions whose bitmap they then scan to find gray objects. A
3808       global finger indicates where the end of the last claimed region
3809       is. A local finger indicates how far into the region a task has
3810       scanned. The two fingers are used to determine how to gray an
3811       object (i.e. whether simply marking it is OK, as it will be
3812       visited by a task in the future, or whether it needs to be also
3813       pushed on a stack).
3814 
3815       (2) Local Queue. The local queue of the task which is accessed
3816       reasonably efficiently by the task. Other tasks can steal from
3817       it when they run out of work. Throughout the marking phase, a
3818       task attempts to keep its local queue short but not totally
3819       empty, so that entries are available for stealing by other
3820       tasks. Only when there is no more work, a task will totally
3821       drain its local queue.
3822 
3823       (3) Global Mark Stack. This handles local queue overflow. During
3824       marking only sets of entries are moved between it and the local
3825       queues, as access to it requires a mutex and more fine-grain
3826       interaction with it which might cause contention. If it
3827       overflows, then the marking phase should restart and iterate
3828       over the bitmap to identify gray objects. Throughout the marking
3829       phase, tasks attempt to keep the global mark stack at a small
3830       length but not totally empty, so that entries are available for
3831       popping by other tasks. Only when there is no more work, tasks
3832       will totally drain the global mark stack.
3833 
3834       (4) SATB Buffer Queue. This is where completed SATB buffers are
3835       made available. Buffers are regularly removed from this queue
3836       and scanned for roots, so that the queue doesn't get too
3837       long. During remark, all completed buffers are processed, as
3838       well as the filled in parts of any uncompleted buffers.
3839 
3840     The do_marking_step() method tries to abort when the time target
3841     has been reached. There are a few other cases when the
3842     do_marking_step() method also aborts:
3843 
3844       (1) When the marking phase has been aborted (after a Full GC).
3845 
3846       (2) When a global overflow (on the global stack) has been
3847       triggered. Before the task aborts, it will actually sync up with
3848       the other tasks to ensure that all the marking data structures
3849       (local queues, stacks, fingers etc.)  are re-initialized so that
3850       when do_marking_step() completes, the marking phase can
3851       immediately restart.
3852 
3853       (3) When enough completed SATB buffers are available. The
3854       do_marking_step() method only tries to drain SATB buffers right
3855       at the beginning. So, if enough buffers are available, the
3856       marking step aborts and the SATB buffers are processed at
3857       the beginning of the next invocation.
3858 
3859       (4) To yield. when we have to yield then we abort and yield
3860       right at the end of do_marking_step(). This saves us from a lot
3861       of hassle as, by yielding we might allow a Full GC. If this
3862       happens then objects will be compacted underneath our feet, the
3863       heap might shrink, etc. We save checking for this by just
3864       aborting and doing the yield right at the end.
3865 
3866     From the above it follows that the do_marking_step() method should
3867     be called in a loop (or, otherwise, regularly) until it completes.
3868 
3869     If a marking step completes without its has_aborted() flag being
3870     true, it means it has completed the current marking phase (and
3871     also all other marking tasks have done so and have all synced up).
3872 
3873     A method called regular_clock_call() is invoked "regularly" (in
3874     sub ms intervals) throughout marking. It is this clock method that
3875     checks all the abort conditions which were mentioned above and
3876     decides when the task should abort. A work-based scheme is used to
3877     trigger this clock method: when the number of object words the
3878     marking phase has scanned or the number of references the marking
3879     phase has visited reach a given limit. Additional invocations to
3880     the method clock have been planted in a few other strategic places
3881     too. The initial reason for the clock method was to avoid calling
3882     vtime too regularly, as it is quite expensive. So, once it was in
3883     place, it was natural to piggy-back all the other conditions on it
3884     too and not constantly check them throughout the code.
3885 
3886     If do_termination is true then do_marking_step will enter its
3887     termination protocol.
3888 
3889     The value of is_serial must be true when do_marking_step is being
3890     called serially (i.e. by the VMThread) and do_marking_step should
3891     skip any synchronization in the termination and overflow code.
3892     Examples include the serial remark code and the serial reference
3893     processing closures.
3894 
3895     The value of is_serial must be false when do_marking_step is
3896     being called by any of the worker threads in a work gang.
3897     Examples include the concurrent marking code (CMMarkingTask),
3898     the MT remark code, and the MT reference processing closures.
3899 
3900  *****************************************************************************/
3901 
3902 void CMTask::do_marking_step(double time_target_ms,
3903                              bool do_termination,
3904                              bool is_serial) {
3905   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3906   assert(concurrent() == _cm->concurrent(), "they should be the same");
3907 
3908   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3909   assert(_task_queues != NULL, "invariant");
3910   assert(_task_queue != NULL, "invariant");
3911   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3912 
3913   assert(!_claimed,
3914          "only one thread should claim this task at any one time");
3915 
3916   // OK, this doesn't safeguard again all possible scenarios, as it is
3917   // possible for two threads to set the _claimed flag at the same
3918   // time. But it is only for debugging purposes anyway and it will
3919   // catch most problems.
3920   _claimed = true;
3921 
3922   _start_time_ms = os::elapsedVTime() * 1000.0;
3923   statsOnly( _interval_start_time_ms = _start_time_ms );
3924 
3925   // If do_stealing is true then do_marking_step will attempt to
3926   // steal work from the other CMTasks. It only makes sense to
3927   // enable stealing when the termination protocol is enabled
3928   // and do_marking_step() is not being called serially.
3929   bool do_stealing = do_termination && !is_serial;
3930 
3931   double diff_prediction_ms =
3932     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
3933   _time_target_ms = time_target_ms - diff_prediction_ms;
3934 
3935   // set up the variables that are used in the work-based scheme to
3936   // call the regular clock method
3937   _words_scanned = 0;
3938   _refs_reached  = 0;
3939   recalculate_limits();
3940 
3941   // clear all flags
3942   clear_has_aborted();
3943   _has_timed_out = false;
3944   _draining_satb_buffers = false;
3945 
3946   ++_calls;
3947 
3948   if (_cm->verbose_low()) {
3949     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
3950                            "target = %1.2lfms >>>>>>>>>>",
3951                            _worker_id, _calls, _time_target_ms);
3952   }
3953 
3954   // Set up the bitmap and oop closures. Anything that uses them is
3955   // eventually called from this method, so it is OK to allocate these
3956   // statically.
3957   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3958   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3959   set_cm_oop_closure(&cm_oop_closure);
3960 
3961   if (_cm->has_overflown()) {
3962     // This can happen if the mark stack overflows during a GC pause
3963     // and this task, after a yield point, restarts. We have to abort
3964     // as we need to get into the overflow protocol which happens
3965     // right at the end of this task.
3966     set_has_aborted();
3967   }
3968 
3969   // First drain any available SATB buffers. After this, we will not
3970   // look at SATB buffers before the next invocation of this method.
3971   // If enough completed SATB buffers are queued up, the regular clock
3972   // will abort this task so that it restarts.
3973   drain_satb_buffers();
3974   // ...then partially drain the local queue and the global stack
3975   drain_local_queue(true);
3976   drain_global_stack(true);
3977 
3978   do {
3979     if (!has_aborted() && _curr_region != NULL) {
3980       // This means that we're already holding on to a region.
3981       assert(_finger != NULL, "if region is not NULL, then the finger "
3982              "should not be NULL either");
3983 
3984       // We might have restarted this task after an evacuation pause
3985       // which might have evacuated the region we're holding on to
3986       // underneath our feet. Let's read its limit again to make sure
3987       // that we do not iterate over a region of the heap that
3988       // contains garbage (update_region_limit() will also move
3989       // _finger to the start of the region if it is found empty).
3990       update_region_limit();
3991       // We will start from _finger not from the start of the region,
3992       // as we might be restarting this task after aborting half-way
3993       // through scanning this region. In this case, _finger points to
3994       // the address where we last found a marked object. If this is a
3995       // fresh region, _finger points to start().
3996       MemRegion mr = MemRegion(_finger, _region_limit);
3997 
3998       if (_cm->verbose_low()) {
3999         gclog_or_tty->print_cr("[%u] we're scanning part "
4000                                "["PTR_FORMAT", "PTR_FORMAT") "
4001                                "of region "HR_FORMAT,
4002                                _worker_id, p2i(_finger), p2i(_region_limit),
4003                                HR_FORMAT_PARAMS(_curr_region));
4004       }
4005 
4006       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4007              "humongous regions should go around loop once only");
4008 
4009       // Some special cases:
4010       // If the memory region is empty, we can just give up the region.
4011       // If the current region is humongous then we only need to check
4012       // the bitmap for the bit associated with the start of the object,
4013       // scan the object if it's live, and give up the region.
4014       // Otherwise, let's iterate over the bitmap of the part of the region
4015       // that is left.
4016       // If the iteration is successful, give up the region.
4017       if (mr.is_empty()) {
4018         giveup_current_region();
4019         regular_clock_call();
4020       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4021         if (_nextMarkBitMap->isMarked(mr.start())) {
4022           // The object is marked - apply the closure
4023           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4024           bitmap_closure.do_bit(offset);
4025         }
4026         // Even if this task aborted while scanning the humongous object
4027         // we can (and should) give up the current region.
4028         giveup_current_region();
4029         regular_clock_call();
4030       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4031         giveup_current_region();
4032         regular_clock_call();
4033       } else {
4034         assert(has_aborted(), "currently the only way to do so");
4035         // The only way to abort the bitmap iteration is to return
4036         // false from the do_bit() method. However, inside the
4037         // do_bit() method we move the _finger to point to the
4038         // object currently being looked at. So, if we bail out, we
4039         // have definitely set _finger to something non-null.
4040         assert(_finger != NULL, "invariant");
4041 
4042         // Region iteration was actually aborted. So now _finger
4043         // points to the address of the object we last scanned. If we
4044         // leave it there, when we restart this task, we will rescan
4045         // the object. It is easy to avoid this. We move the finger by
4046         // enough to point to the next possible object header (the
4047         // bitmap knows by how much we need to move it as it knows its
4048         // granularity).
4049         assert(_finger < _region_limit, "invariant");
4050         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4051         // Check if bitmap iteration was aborted while scanning the last object
4052         if (new_finger >= _region_limit) {
4053           giveup_current_region();
4054         } else {
4055           move_finger_to(new_finger);
4056         }
4057       }
4058     }
4059     // At this point we have either completed iterating over the
4060     // region we were holding on to, or we have aborted.
4061 
4062     // We then partially drain the local queue and the global stack.
4063     // (Do we really need this?)
4064     drain_local_queue(true);
4065     drain_global_stack(true);
4066 
4067     // Read the note on the claim_region() method on why it might
4068     // return NULL with potentially more regions available for
4069     // claiming and why we have to check out_of_regions() to determine
4070     // whether we're done or not.
4071     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4072       // We are going to try to claim a new region. We should have
4073       // given up on the previous one.
4074       // Separated the asserts so that we know which one fires.
4075       assert(_curr_region  == NULL, "invariant");
4076       assert(_finger       == NULL, "invariant");
4077       assert(_region_limit == NULL, "invariant");
4078       if (_cm->verbose_low()) {
4079         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4080       }
4081       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4082       if (claimed_region != NULL) {
4083         // Yes, we managed to claim one
4084         statsOnly( ++_regions_claimed );
4085 
4086         if (_cm->verbose_low()) {
4087           gclog_or_tty->print_cr("[%u] we successfully claimed "
4088                                  "region "PTR_FORMAT,
4089                                  _worker_id, p2i(claimed_region));
4090         }
4091 
4092         setup_for_region(claimed_region);
4093         assert(_curr_region == claimed_region, "invariant");
4094       }
4095       // It is important to call the regular clock here. It might take
4096       // a while to claim a region if, for example, we hit a large
4097       // block of empty regions. So we need to call the regular clock
4098       // method once round the loop to make sure it's called
4099       // frequently enough.
4100       regular_clock_call();
4101     }
4102 
4103     if (!has_aborted() && _curr_region == NULL) {
4104       assert(_cm->out_of_regions(),
4105              "at this point we should be out of regions");
4106     }
4107   } while ( _curr_region != NULL && !has_aborted());
4108 
4109   if (!has_aborted()) {
4110     // We cannot check whether the global stack is empty, since other
4111     // tasks might be pushing objects to it concurrently.
4112     assert(_cm->out_of_regions(),
4113            "at this point we should be out of regions");
4114 
4115     if (_cm->verbose_low()) {
4116       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4117     }
4118 
4119     // Try to reduce the number of available SATB buffers so that
4120     // remark has less work to do.
4121     drain_satb_buffers();
4122   }
4123 
4124   // Since we've done everything else, we can now totally drain the
4125   // local queue and global stack.
4126   drain_local_queue(false);
4127   drain_global_stack(false);
4128 
4129   // Attempt at work stealing from other task's queues.
4130   if (do_stealing && !has_aborted()) {
4131     // We have not aborted. This means that we have finished all that
4132     // we could. Let's try to do some stealing...
4133 
4134     // We cannot check whether the global stack is empty, since other
4135     // tasks might be pushing objects to it concurrently.
4136     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4137            "only way to reach here");
4138 
4139     if (_cm->verbose_low()) {
4140       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4141     }
4142 
4143     while (!has_aborted()) {
4144       oop obj;
4145       statsOnly( ++_steal_attempts );
4146 
4147       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4148         if (_cm->verbose_medium()) {
4149           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4150                                  _worker_id, p2i((void*) obj));
4151         }
4152 
4153         statsOnly( ++_steals );
4154 
4155         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4156                "any stolen object should be marked");
4157         scan_object(obj);
4158 
4159         // And since we're towards the end, let's totally drain the
4160         // local queue and global stack.
4161         drain_local_queue(false);
4162         drain_global_stack(false);
4163       } else {
4164         break;
4165       }
4166     }
4167   }
4168 
4169   // If we are about to wrap up and go into termination, check if we
4170   // should raise the overflow flag.
4171   if (do_termination && !has_aborted()) {
4172     if (_cm->force_overflow()->should_force()) {
4173       _cm->set_has_overflown();
4174       regular_clock_call();
4175     }
4176   }
4177 
4178   // We still haven't aborted. Now, let's try to get into the
4179   // termination protocol.
4180   if (do_termination && !has_aborted()) {
4181     // We cannot check whether the global stack is empty, since other
4182     // tasks might be concurrently pushing objects on it.
4183     // Separated the asserts so that we know which one fires.
4184     assert(_cm->out_of_regions(), "only way to reach here");
4185     assert(_task_queue->size() == 0, "only way to reach here");
4186 
4187     if (_cm->verbose_low()) {
4188       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4189     }
4190 
4191     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4192 
4193     // The CMTask class also extends the TerminatorTerminator class,
4194     // hence its should_exit_termination() method will also decide
4195     // whether to exit the termination protocol or not.
4196     bool finished = (is_serial ||
4197                      _cm->terminator()->offer_termination(this));
4198     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4199     _termination_time_ms +=
4200       termination_end_time_ms - _termination_start_time_ms;
4201 
4202     if (finished) {
4203       // We're all done.
4204 
4205       if (_worker_id == 0) {
4206         // let's allow task 0 to do this
4207         if (concurrent()) {
4208           assert(_cm->concurrent_marking_in_progress(), "invariant");
4209           // we need to set this to false before the next
4210           // safepoint. This way we ensure that the marking phase
4211           // doesn't observe any more heap expansions.
4212           _cm->clear_concurrent_marking_in_progress();
4213         }
4214       }
4215 
4216       // We can now guarantee that the global stack is empty, since
4217       // all other tasks have finished. We separated the guarantees so
4218       // that, if a condition is false, we can immediately find out
4219       // which one.
4220       guarantee(_cm->out_of_regions(), "only way to reach here");
4221       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4222       guarantee(_task_queue->size() == 0, "only way to reach here");
4223       guarantee(!_cm->has_overflown(), "only way to reach here");
4224       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4225 
4226       if (_cm->verbose_low()) {
4227         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4228       }
4229     } else {
4230       // Apparently there's more work to do. Let's abort this task. It
4231       // will restart it and we can hopefully find more things to do.
4232 
4233       if (_cm->verbose_low()) {
4234         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4235                                _worker_id);
4236       }
4237 
4238       set_has_aborted();
4239       statsOnly( ++_aborted_termination );
4240     }
4241   }
4242 
4243   // Mainly for debugging purposes to make sure that a pointer to the
4244   // closure which was statically allocated in this frame doesn't
4245   // escape it by accident.
4246   set_cm_oop_closure(NULL);
4247   double end_time_ms = os::elapsedVTime() * 1000.0;
4248   double elapsed_time_ms = end_time_ms - _start_time_ms;
4249   // Update the step history.
4250   _step_times_ms.add(elapsed_time_ms);
4251 
4252   if (has_aborted()) {
4253     // The task was aborted for some reason.
4254 
4255     statsOnly( ++_aborted );
4256 
4257     if (_has_timed_out) {
4258       double diff_ms = elapsed_time_ms - _time_target_ms;
4259       // Keep statistics of how well we did with respect to hitting
4260       // our target only if we actually timed out (if we aborted for
4261       // other reasons, then the results might get skewed).
4262       _marking_step_diffs_ms.add(diff_ms);
4263     }
4264 
4265     if (_cm->has_overflown()) {
4266       // This is the interesting one. We aborted because a global
4267       // overflow was raised. This means we have to restart the
4268       // marking phase and start iterating over regions. However, in
4269       // order to do this we have to make sure that all tasks stop
4270       // what they are doing and re-initialize in a safe manner. We
4271       // will achieve this with the use of two barrier sync points.
4272 
4273       if (_cm->verbose_low()) {
4274         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4275       }
4276 
4277       if (!is_serial) {
4278         // We only need to enter the sync barrier if being called
4279         // from a parallel context
4280         _cm->enter_first_sync_barrier(_worker_id);
4281 
4282         // When we exit this sync barrier we know that all tasks have
4283         // stopped doing marking work. So, it's now safe to
4284         // re-initialize our data structures. At the end of this method,
4285         // task 0 will clear the global data structures.
4286       }
4287 
4288       statsOnly( ++_aborted_overflow );
4289 
4290       // We clear the local state of this task...
4291       clear_region_fields();
4292 
4293       if (!is_serial) {
4294         // ...and enter the second barrier.
4295         _cm->enter_second_sync_barrier(_worker_id);
4296       }
4297       // At this point, if we're during the concurrent phase of
4298       // marking, everything has been re-initialized and we're
4299       // ready to restart.
4300     }
4301 
4302     if (_cm->verbose_low()) {
4303       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4304                              "elapsed = %1.2lfms <<<<<<<<<<",
4305                              _worker_id, _time_target_ms, elapsed_time_ms);
4306       if (_cm->has_aborted()) {
4307         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4308                                _worker_id);
4309       }
4310     }
4311   } else {
4312     if (_cm->verbose_low()) {
4313       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4314                              "elapsed = %1.2lfms <<<<<<<<<<",
4315                              _worker_id, _time_target_ms, elapsed_time_ms);
4316     }
4317   }
4318 
4319   _claimed = false;
4320 }
4321 
4322 CMTask::CMTask(uint worker_id,
4323                ConcurrentMark* cm,
4324                size_t* marked_bytes,
4325                BitMap* card_bm,
4326                CMTaskQueue* task_queue,
4327                CMTaskQueueSet* task_queues)
4328   : _g1h(G1CollectedHeap::heap()),
4329     _worker_id(worker_id), _cm(cm),
4330     _claimed(false),
4331     _nextMarkBitMap(NULL), _hash_seed(17),
4332     _task_queue(task_queue),
4333     _task_queues(task_queues),
4334     _cm_oop_closure(NULL),
4335     _marked_bytes_array(marked_bytes),
4336     _card_bm(card_bm) {
4337   guarantee(task_queue != NULL, "invariant");
4338   guarantee(task_queues != NULL, "invariant");
4339 
4340   statsOnly( _clock_due_to_scanning = 0;
4341              _clock_due_to_marking  = 0 );
4342 
4343   _marking_step_diffs_ms.add(0.5);
4344 }
4345 
4346 // These are formatting macros that are used below to ensure
4347 // consistent formatting. The *_H_* versions are used to format the
4348 // header for a particular value and they should be kept consistent
4349 // with the corresponding macro. Also note that most of the macros add
4350 // the necessary white space (as a prefix) which makes them a bit
4351 // easier to compose.
4352 
4353 // All the output lines are prefixed with this string to be able to
4354 // identify them easily in a large log file.
4355 #define G1PPRL_LINE_PREFIX            "###"
4356 
4357 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4358 #ifdef _LP64
4359 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4360 #else // _LP64
4361 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4362 #endif // _LP64
4363 
4364 // For per-region info
4365 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4366 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4367 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4368 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4369 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4370 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4371 
4372 // For summary info
4373 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4374 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4375 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4376 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4377 
4378 G1PrintRegionLivenessInfoClosure::
4379 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4380   : _out(out),
4381     _total_used_bytes(0), _total_capacity_bytes(0),
4382     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4383     _hum_used_bytes(0), _hum_capacity_bytes(0),
4384     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4385     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4386   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4387   MemRegion g1_reserved = g1h->g1_reserved();
4388   double now = os::elapsedTime();
4389 
4390   // Print the header of the output.
4391   _out->cr();
4392   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4393   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4394                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4395                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4396                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4397                  HeapRegion::GrainBytes);
4398   _out->print_cr(G1PPRL_LINE_PREFIX);
4399   _out->print_cr(G1PPRL_LINE_PREFIX
4400                 G1PPRL_TYPE_H_FORMAT
4401                 G1PPRL_ADDR_BASE_H_FORMAT
4402                 G1PPRL_BYTE_H_FORMAT
4403                 G1PPRL_BYTE_H_FORMAT
4404                 G1PPRL_BYTE_H_FORMAT
4405                 G1PPRL_DOUBLE_H_FORMAT
4406                 G1PPRL_BYTE_H_FORMAT
4407                 G1PPRL_BYTE_H_FORMAT,
4408                 "type", "address-range",
4409                 "used", "prev-live", "next-live", "gc-eff",
4410                 "remset", "code-roots");
4411   _out->print_cr(G1PPRL_LINE_PREFIX
4412                 G1PPRL_TYPE_H_FORMAT
4413                 G1PPRL_ADDR_BASE_H_FORMAT
4414                 G1PPRL_BYTE_H_FORMAT
4415                 G1PPRL_BYTE_H_FORMAT
4416                 G1PPRL_BYTE_H_FORMAT
4417                 G1PPRL_DOUBLE_H_FORMAT
4418                 G1PPRL_BYTE_H_FORMAT
4419                 G1PPRL_BYTE_H_FORMAT,
4420                 "", "",
4421                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4422                 "(bytes)", "(bytes)");
4423 }
4424 
4425 // It takes as a parameter a reference to one of the _hum_* fields, it
4426 // deduces the corresponding value for a region in a humongous region
4427 // series (either the region size, or what's left if the _hum_* field
4428 // is < the region size), and updates the _hum_* field accordingly.
4429 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4430   size_t bytes = 0;
4431   // The > 0 check is to deal with the prev and next live bytes which
4432   // could be 0.
4433   if (*hum_bytes > 0) {
4434     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4435     *hum_bytes -= bytes;
4436   }
4437   return bytes;
4438 }
4439 
4440 // It deduces the values for a region in a humongous region series
4441 // from the _hum_* fields and updates those accordingly. It assumes
4442 // that that _hum_* fields have already been set up from the "starts
4443 // humongous" region and we visit the regions in address order.
4444 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4445                                                      size_t* capacity_bytes,
4446                                                      size_t* prev_live_bytes,
4447                                                      size_t* next_live_bytes) {
4448   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4449   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4450   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4451   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4452   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4453 }
4454 
4455 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4456   const char* type       = r->get_type_str();
4457   HeapWord* bottom       = r->bottom();
4458   HeapWord* end          = r->end();
4459   size_t capacity_bytes  = r->capacity();
4460   size_t used_bytes      = r->used();
4461   size_t prev_live_bytes = r->live_bytes();
4462   size_t next_live_bytes = r->next_live_bytes();
4463   double gc_eff          = r->gc_efficiency();
4464   size_t remset_bytes    = r->rem_set()->mem_size();
4465   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4466 
4467   if (r->is_starts_humongous()) {
4468     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4469            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4470            "they should have been zeroed after the last time we used them");
4471     // Set up the _hum_* fields.
4472     _hum_capacity_bytes  = capacity_bytes;
4473     _hum_used_bytes      = used_bytes;
4474     _hum_prev_live_bytes = prev_live_bytes;
4475     _hum_next_live_bytes = next_live_bytes;
4476     get_hum_bytes(&used_bytes, &capacity_bytes,
4477                   &prev_live_bytes, &next_live_bytes);
4478     end = bottom + HeapRegion::GrainWords;
4479   } else if (r->is_continues_humongous()) {
4480     get_hum_bytes(&used_bytes, &capacity_bytes,
4481                   &prev_live_bytes, &next_live_bytes);
4482     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4483   }
4484 
4485   _total_used_bytes      += used_bytes;
4486   _total_capacity_bytes  += capacity_bytes;
4487   _total_prev_live_bytes += prev_live_bytes;
4488   _total_next_live_bytes += next_live_bytes;
4489   _total_remset_bytes    += remset_bytes;
4490   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4491 
4492   // Print a line for this particular region.
4493   _out->print_cr(G1PPRL_LINE_PREFIX
4494                  G1PPRL_TYPE_FORMAT
4495                  G1PPRL_ADDR_BASE_FORMAT
4496                  G1PPRL_BYTE_FORMAT
4497                  G1PPRL_BYTE_FORMAT
4498                  G1PPRL_BYTE_FORMAT
4499                  G1PPRL_DOUBLE_FORMAT
4500                  G1PPRL_BYTE_FORMAT
4501                  G1PPRL_BYTE_FORMAT,
4502                  type, p2i(bottom), p2i(end),
4503                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4504                  remset_bytes, strong_code_roots_bytes);
4505 
4506   return false;
4507 }
4508 
4509 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4510   // add static memory usages to remembered set sizes
4511   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4512   // Print the footer of the output.
4513   _out->print_cr(G1PPRL_LINE_PREFIX);
4514   _out->print_cr(G1PPRL_LINE_PREFIX
4515                  " SUMMARY"
4516                  G1PPRL_SUM_MB_FORMAT("capacity")
4517                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4518                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4519                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4520                  G1PPRL_SUM_MB_FORMAT("remset")
4521                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4522                  bytes_to_mb(_total_capacity_bytes),
4523                  bytes_to_mb(_total_used_bytes),
4524                  perc(_total_used_bytes, _total_capacity_bytes),
4525                  bytes_to_mb(_total_prev_live_bytes),
4526                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4527                  bytes_to_mb(_total_next_live_bytes),
4528                  perc(_total_next_live_bytes, _total_capacity_bytes),
4529                  bytes_to_mb(_total_remset_bytes),
4530                  bytes_to_mb(_total_strong_code_roots_bytes));
4531   _out->cr();
4532 }