1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  31 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  32 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  33 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  35 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  37 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  38 #include "gc_implementation/g1/g1EvacFailure.hpp"
  39 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  40 #include "gc_implementation/g1/g1Log.hpp"
  41 #include "gc_implementation/g1/g1MarkSweep.hpp"
  42 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  43 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  46 #include "gc_implementation/g1/g1RootProcessor.hpp"
  47 #include "gc_implementation/g1/g1StringDedup.hpp"
  48 #include "gc_implementation/g1/g1YCTypes.hpp"
  49 #include "gc_implementation/g1/heapRegion.inline.hpp"
  50 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  51 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  52 #include "gc_implementation/g1/vm_operations_g1.hpp"
  53 #include "gc_implementation/shared/gcHeapSummary.hpp"
  54 #include "gc_implementation/shared/gcTimer.hpp"
  55 #include "gc_implementation/shared/gcTrace.hpp"
  56 #include "gc_implementation/shared/gcTraceTime.hpp"
  57 #include "gc_implementation/shared/isGCActiveMark.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/gcLocker.inline.hpp"
  60 #include "memory/generationSpec.hpp"
  61 #include "memory/iterator.hpp"
  62 #include "memory/referenceProcessor.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/orderAccess.inline.hpp"
  66 #include "runtime/vmThread.hpp"
  67 #include "utilities/globalDefinitions.hpp"
  68 #include "utilities/stack.inline.hpp"
  69 
  70 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  71 
  72 // turn it on so that the contents of the young list (scan-only /
  73 // to-be-collected) are printed at "strategic" points before / during
  74 // / after the collection --- this is useful for debugging
  75 #define YOUNG_LIST_VERBOSE 0
  76 // CURRENT STATUS
  77 // This file is under construction.  Search for "FIXME".
  78 
  79 // INVARIANTS/NOTES
  80 //
  81 // All allocation activity covered by the G1CollectedHeap interface is
  82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  83 // and allocate_new_tlab, which are the "entry" points to the
  84 // allocation code from the rest of the JVM.  (Note that this does not
  85 // apply to TLAB allocation, which is not part of this interface: it
  86 // is done by clients of this interface.)
  87 
  88 // Local to this file.
  89 
  90 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure() : _concurrent(true) { }
  94 
  95   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  96     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  97     // This path is executed by the concurrent refine or mutator threads,
  98     // concurrently, and so we do not care if card_ptr contains references
  99     // that point into the collection set.
 100     assert(!oops_into_cset, "should be");
 101 
 102     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 103       // Caller will actually yield.
 104       return false;
 105     }
 106     // Otherwise, we finished successfully; return true.
 107     return true;
 108   }
 109 
 110   void set_concurrent(bool b) { _concurrent = b; }
 111 };
 112 
 113 
 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 115  private:
 116   size_t _num_processed;
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     *card_ptr = CardTableModRefBS::dirty_card_val();
 123     _num_processed++;
 124     return true;
 125   }
 126 
 127   size_t num_processed() const { return _num_processed; }
 128 };
 129 
 130 YoungList::YoungList(G1CollectedHeap* g1h) :
 131     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 132     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 133   guarantee(check_list_empty(false), "just making sure...");
 134 }
 135 
 136 void YoungList::push_region(HeapRegion *hr) {
 137   assert(!hr->is_young(), "should not already be young");
 138   assert(hr->get_next_young_region() == NULL, "cause it should!");
 139 
 140   hr->set_next_young_region(_head);
 141   _head = hr;
 142 
 143   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 144   ++_length;
 145 }
 146 
 147 void YoungList::add_survivor_region(HeapRegion* hr) {
 148   assert(hr->is_survivor(), "should be flagged as survivor region");
 149   assert(hr->get_next_young_region() == NULL, "cause it should!");
 150 
 151   hr->set_next_young_region(_survivor_head);
 152   if (_survivor_head == NULL) {
 153     _survivor_tail = hr;
 154   }
 155   _survivor_head = hr;
 156   ++_survivor_length;
 157 }
 158 
 159 void YoungList::empty_list(HeapRegion* list) {
 160   while (list != NULL) {
 161     HeapRegion* next = list->get_next_young_region();
 162     list->set_next_young_region(NULL);
 163     list->uninstall_surv_rate_group();
 164     // This is called before a Full GC and all the non-empty /
 165     // non-humongous regions at the end of the Full GC will end up as
 166     // old anyway.
 167     list->set_old();
 168     list = next;
 169   }
 170 }
 171 
 172 void YoungList::empty_list() {
 173   assert(check_list_well_formed(), "young list should be well formed");
 174 
 175   empty_list(_head);
 176   _head = NULL;
 177   _length = 0;
 178 
 179   empty_list(_survivor_head);
 180   _survivor_head = NULL;
 181   _survivor_tail = NULL;
 182   _survivor_length = 0;
 183 
 184   _last_sampled_rs_lengths = 0;
 185 
 186   assert(check_list_empty(false), "just making sure...");
 187 }
 188 
 189 bool YoungList::check_list_well_formed() {
 190   bool ret = true;
 191 
 192   uint length = 0;
 193   HeapRegion* curr = _head;
 194   HeapRegion* last = NULL;
 195   while (curr != NULL) {
 196     if (!curr->is_young()) {
 197       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 198                              "incorrectly tagged (y: %d, surv: %d)",
 199                              p2i(curr->bottom()), p2i(curr->end()),
 200                              curr->is_young(), curr->is_survivor());
 201       ret = false;
 202     }
 203     ++length;
 204     last = curr;
 205     curr = curr->get_next_young_region();
 206   }
 207   ret = ret && (length == _length);
 208 
 209   if (!ret) {
 210     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 211     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 212                            length, _length);
 213   }
 214 
 215   return ret;
 216 }
 217 
 218 bool YoungList::check_list_empty(bool check_sample) {
 219   bool ret = true;
 220 
 221   if (_length != 0) {
 222     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 223                   _length);
 224     ret = false;
 225   }
 226   if (check_sample && _last_sampled_rs_lengths != 0) {
 227     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 228     ret = false;
 229   }
 230   if (_head != NULL) {
 231     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 232     ret = false;
 233   }
 234   if (!ret) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 236   }
 237 
 238   return ret;
 239 }
 240 
 241 void
 242 YoungList::rs_length_sampling_init() {
 243   _sampled_rs_lengths = 0;
 244   _curr               = _head;
 245 }
 246 
 247 bool
 248 YoungList::rs_length_sampling_more() {
 249   return _curr != NULL;
 250 }
 251 
 252 void
 253 YoungList::rs_length_sampling_next() {
 254   assert( _curr != NULL, "invariant" );
 255   size_t rs_length = _curr->rem_set()->occupied();
 256 
 257   _sampled_rs_lengths += rs_length;
 258 
 259   // The current region may not yet have been added to the
 260   // incremental collection set (it gets added when it is
 261   // retired as the current allocation region).
 262   if (_curr->in_collection_set()) {
 263     // Update the collection set policy information for this region
 264     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 265   }
 266 
 267   _curr = _curr->get_next_young_region();
 268   if (_curr == NULL) {
 269     _last_sampled_rs_lengths = _sampled_rs_lengths;
 270     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 271   }
 272 }
 273 
 274 void
 275 YoungList::reset_auxilary_lists() {
 276   guarantee( is_empty(), "young list should be empty" );
 277   assert(check_list_well_formed(), "young list should be well formed");
 278 
 279   // Add survivor regions to SurvRateGroup.
 280   _g1h->g1_policy()->note_start_adding_survivor_regions();
 281   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 282 
 283   int young_index_in_cset = 0;
 284   for (HeapRegion* curr = _survivor_head;
 285        curr != NULL;
 286        curr = curr->get_next_young_region()) {
 287     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 288 
 289     // The region is a non-empty survivor so let's add it to
 290     // the incremental collection set for the next evacuation
 291     // pause.
 292     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 293     young_index_in_cset += 1;
 294   }
 295   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 296   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 297 
 298   _head   = _survivor_head;
 299   _length = _survivor_length;
 300   if (_survivor_head != NULL) {
 301     assert(_survivor_tail != NULL, "cause it shouldn't be");
 302     assert(_survivor_length > 0, "invariant");
 303     _survivor_tail->set_next_young_region(NULL);
 304   }
 305 
 306   // Don't clear the survivor list handles until the start of
 307   // the next evacuation pause - we need it in order to re-tag
 308   // the survivor regions from this evacuation pause as 'young'
 309   // at the start of the next.
 310 
 311   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 312 
 313   assert(check_list_well_formed(), "young list should be well formed");
 314 }
 315 
 316 void YoungList::print() {
 317   HeapRegion* lists[] = {_head,   _survivor_head};
 318   const char* names[] = {"YOUNG", "SURVIVOR"};
 319 
 320   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 321     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 322     HeapRegion *curr = lists[list];
 323     if (curr == NULL)
 324       gclog_or_tty->print_cr("  empty");
 325     while (curr != NULL) {
 326       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 327                              HR_FORMAT_PARAMS(curr),
 328                              p2i(curr->prev_top_at_mark_start()),
 329                              p2i(curr->next_top_at_mark_start()),
 330                              curr->age_in_surv_rate_group_cond());
 331       curr = curr->get_next_young_region();
 332     }
 333   }
 334 
 335   gclog_or_tty->cr();
 336 }
 337 
 338 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 339   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 340 }
 341 
 342 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 343   // The from card cache is not the memory that is actually committed. So we cannot
 344   // take advantage of the zero_filled parameter.
 345   reset_from_card_cache(start_idx, num_regions);
 346 }
 347 
 348 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 349 {
 350   // Claim the right to put the region on the dirty cards region list
 351   // by installing a self pointer.
 352   HeapRegion* next = hr->get_next_dirty_cards_region();
 353   if (next == NULL) {
 354     HeapRegion* res = (HeapRegion*)
 355       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 356                           NULL);
 357     if (res == NULL) {
 358       HeapRegion* head;
 359       do {
 360         // Put the region to the dirty cards region list.
 361         head = _dirty_cards_region_list;
 362         next = (HeapRegion*)
 363           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 364         if (next == head) {
 365           assert(hr->get_next_dirty_cards_region() == hr,
 366                  "hr->get_next_dirty_cards_region() != hr");
 367           if (next == NULL) {
 368             // The last region in the list points to itself.
 369             hr->set_next_dirty_cards_region(hr);
 370           } else {
 371             hr->set_next_dirty_cards_region(next);
 372           }
 373         }
 374       } while (next != head);
 375     }
 376   }
 377 }
 378 
 379 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 380 {
 381   HeapRegion* head;
 382   HeapRegion* hr;
 383   do {
 384     head = _dirty_cards_region_list;
 385     if (head == NULL) {
 386       return NULL;
 387     }
 388     HeapRegion* new_head = head->get_next_dirty_cards_region();
 389     if (head == new_head) {
 390       // The last region.
 391       new_head = NULL;
 392     }
 393     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 394                                           head);
 395   } while (hr != head);
 396   assert(hr != NULL, "invariant");
 397   hr->set_next_dirty_cards_region(NULL);
 398   return hr;
 399 }
 400 
 401 // Returns true if the reference points to an object that
 402 // can move in an incremental collection.
 403 bool G1CollectedHeap::is_scavengable(const void* p) {
 404   HeapRegion* hr = heap_region_containing(p);
 405   return !hr->is_humongous();
 406 }
 407 
 408 // Private methods.
 409 
 410 HeapRegion*
 411 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 412   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 413   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 414     if (!_secondary_free_list.is_empty()) {
 415       if (G1ConcRegionFreeingVerbose) {
 416         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 417                                "secondary_free_list has %u entries",
 418                                _secondary_free_list.length());
 419       }
 420       // It looks as if there are free regions available on the
 421       // secondary_free_list. Let's move them to the free_list and try
 422       // again to allocate from it.
 423       append_secondary_free_list();
 424 
 425       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 426              "empty we should have moved at least one entry to the free_list");
 427       HeapRegion* res = _hrm.allocate_free_region(is_old);
 428       if (G1ConcRegionFreeingVerbose) {
 429         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 430                                "allocated "HR_FORMAT" from secondary_free_list",
 431                                HR_FORMAT_PARAMS(res));
 432       }
 433       return res;
 434     }
 435 
 436     // Wait here until we get notified either when (a) there are no
 437     // more free regions coming or (b) some regions have been moved on
 438     // the secondary_free_list.
 439     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 440   }
 441 
 442   if (G1ConcRegionFreeingVerbose) {
 443     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 444                            "could not allocate from secondary_free_list");
 445   }
 446   return NULL;
 447 }
 448 
 449 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 450   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 451          "the only time we use this to allocate a humongous region is "
 452          "when we are allocating a single humongous region");
 453 
 454   HeapRegion* res;
 455   if (G1StressConcRegionFreeing) {
 456     if (!_secondary_free_list.is_empty()) {
 457       if (G1ConcRegionFreeingVerbose) {
 458         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 459                                "forced to look at the secondary_free_list");
 460       }
 461       res = new_region_try_secondary_free_list(is_old);
 462       if (res != NULL) {
 463         return res;
 464       }
 465     }
 466   }
 467 
 468   res = _hrm.allocate_free_region(is_old);
 469 
 470   if (res == NULL) {
 471     if (G1ConcRegionFreeingVerbose) {
 472       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 473                              "res == NULL, trying the secondary_free_list");
 474     }
 475     res = new_region_try_secondary_free_list(is_old);
 476   }
 477   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 478     // Currently, only attempts to allocate GC alloc regions set
 479     // do_expand to true. So, we should only reach here during a
 480     // safepoint. If this assumption changes we might have to
 481     // reconsider the use of _expand_heap_after_alloc_failure.
 482     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 483 
 484     ergo_verbose1(ErgoHeapSizing,
 485                   "attempt heap expansion",
 486                   ergo_format_reason("region allocation request failed")
 487                   ergo_format_byte("allocation request"),
 488                   word_size * HeapWordSize);
 489     if (expand(word_size * HeapWordSize)) {
 490       // Given that expand() succeeded in expanding the heap, and we
 491       // always expand the heap by an amount aligned to the heap
 492       // region size, the free list should in theory not be empty.
 493       // In either case allocate_free_region() will check for NULL.
 494       res = _hrm.allocate_free_region(is_old);
 495     } else {
 496       _expand_heap_after_alloc_failure = false;
 497     }
 498   }
 499   return res;
 500 }
 501 
 502 HeapWord*
 503 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 504                                                            uint num_regions,
 505                                                            size_t word_size,
 506                                                            AllocationContext_t context) {
 507   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 508   assert(is_humongous(word_size), "word_size should be humongous");
 509   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 510 
 511   // Index of last region in the series + 1.
 512   uint last = first + num_regions;
 513 
 514   // We need to initialize the region(s) we just discovered. This is
 515   // a bit tricky given that it can happen concurrently with
 516   // refinement threads refining cards on these regions and
 517   // potentially wanting to refine the BOT as they are scanning
 518   // those cards (this can happen shortly after a cleanup; see CR
 519   // 6991377). So we have to set up the region(s) carefully and in
 520   // a specific order.
 521 
 522   // The word size sum of all the regions we will allocate.
 523   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 524   assert(word_size <= word_size_sum, "sanity");
 525 
 526   // This will be the "starts humongous" region.
 527   HeapRegion* first_hr = region_at(first);
 528   // The header of the new object will be placed at the bottom of
 529   // the first region.
 530   HeapWord* new_obj = first_hr->bottom();
 531   // This will be the new end of the first region in the series that
 532   // should also match the end of the last region in the series.
 533   HeapWord* new_end = new_obj + word_size_sum;
 534   // This will be the new top of the first region that will reflect
 535   // this allocation.
 536   HeapWord* new_top = new_obj + word_size;
 537 
 538   // First, we need to zero the header of the space that we will be
 539   // allocating. When we update top further down, some refinement
 540   // threads might try to scan the region. By zeroing the header we
 541   // ensure that any thread that will try to scan the region will
 542   // come across the zero klass word and bail out.
 543   //
 544   // NOTE: It would not have been correct to have used
 545   // CollectedHeap::fill_with_object() and make the space look like
 546   // an int array. The thread that is doing the allocation will
 547   // later update the object header to a potentially different array
 548   // type and, for a very short period of time, the klass and length
 549   // fields will be inconsistent. This could cause a refinement
 550   // thread to calculate the object size incorrectly.
 551   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 552 
 553   // We will set up the first region as "starts humongous". This
 554   // will also update the BOT covering all the regions to reflect
 555   // that there is a single object that starts at the bottom of the
 556   // first region.
 557   first_hr->set_starts_humongous(new_top, new_end);
 558   first_hr->set_allocation_context(context);
 559   // Then, if there are any, we will set up the "continues
 560   // humongous" regions.
 561   HeapRegion* hr = NULL;
 562   for (uint i = first + 1; i < last; ++i) {
 563     hr = region_at(i);
 564     hr->set_continues_humongous(first_hr);
 565     hr->set_allocation_context(context);
 566   }
 567   // If we have "continues humongous" regions (hr != NULL), then the
 568   // end of the last one should match new_end.
 569   assert(hr == NULL || hr->end() == new_end, "sanity");
 570 
 571   // Up to this point no concurrent thread would have been able to
 572   // do any scanning on any region in this series. All the top
 573   // fields still point to bottom, so the intersection between
 574   // [bottom,top] and [card_start,card_end] will be empty. Before we
 575   // update the top fields, we'll do a storestore to make sure that
 576   // no thread sees the update to top before the zeroing of the
 577   // object header and the BOT initialization.
 578   OrderAccess::storestore();
 579 
 580   // Now that the BOT and the object header have been initialized,
 581   // we can update top of the "starts humongous" region.
 582   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 583          "new_top should be in this region");
 584   first_hr->set_top(new_top);
 585   if (_hr_printer.is_active()) {
 586     HeapWord* bottom = first_hr->bottom();
 587     HeapWord* end = first_hr->orig_end();
 588     if ((first + 1) == last) {
 589       // the series has a single humongous region
 590       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 591     } else {
 592       // the series has more than one humongous regions
 593       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 594     }
 595   }
 596 
 597   // Now, we will update the top fields of the "continues humongous"
 598   // regions. The reason we need to do this is that, otherwise,
 599   // these regions would look empty and this will confuse parts of
 600   // G1. For example, the code that looks for a consecutive number
 601   // of empty regions will consider them empty and try to
 602   // re-allocate them. We can extend is_empty() to also include
 603   // !is_continues_humongous(), but it is easier to just update the top
 604   // fields here. The way we set top for all regions (i.e., top ==
 605   // end for all regions but the last one, top == new_top for the
 606   // last one) is actually used when we will free up the humongous
 607   // region in free_humongous_region().
 608   hr = NULL;
 609   for (uint i = first + 1; i < last; ++i) {
 610     hr = region_at(i);
 611     if ((i + 1) == last) {
 612       // last continues humongous region
 613       assert(hr->bottom() < new_top && new_top <= hr->end(),
 614              "new_top should fall on this region");
 615       hr->set_top(new_top);
 616       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 617     } else {
 618       // not last one
 619       assert(new_top > hr->end(), "new_top should be above this region");
 620       hr->set_top(hr->end());
 621       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 622     }
 623   }
 624   // If we have continues humongous regions (hr != NULL), then the
 625   // end of the last one should match new_end and its top should
 626   // match new_top.
 627   assert(hr == NULL ||
 628          (hr->end() == new_end && hr->top() == new_top), "sanity");
 629   check_bitmaps("Humongous Region Allocation", first_hr);
 630 
 631   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 632   _allocator->increase_used(first_hr->used());
 633   _humongous_set.add(first_hr);
 634 
 635   return new_obj;
 636 }
 637 
 638 // If could fit into free regions w/o expansion, try.
 639 // Otherwise, if can expand, do so.
 640 // Otherwise, if using ex regions might help, try with ex given back.
 641 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 642   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 643 
 644   verify_region_sets_optional();
 645 
 646   uint first = G1_NO_HRM_INDEX;
 647   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 648 
 649   if (obj_regions == 1) {
 650     // Only one region to allocate, try to use a fast path by directly allocating
 651     // from the free lists. Do not try to expand here, we will potentially do that
 652     // later.
 653     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 654     if (hr != NULL) {
 655       first = hr->hrm_index();
 656     }
 657   } else {
 658     // We can't allocate humongous regions spanning more than one region while
 659     // cleanupComplete() is running, since some of the regions we find to be
 660     // empty might not yet be added to the free list. It is not straightforward
 661     // to know in which list they are on so that we can remove them. We only
 662     // need to do this if we need to allocate more than one region to satisfy the
 663     // current humongous allocation request. If we are only allocating one region
 664     // we use the one-region region allocation code (see above), that already
 665     // potentially waits for regions from the secondary free list.
 666     wait_while_free_regions_coming();
 667     append_secondary_free_list_if_not_empty_with_lock();
 668 
 669     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 670     // are lucky enough to find some.
 671     first = _hrm.find_contiguous_only_empty(obj_regions);
 672     if (first != G1_NO_HRM_INDEX) {
 673       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 674     }
 675   }
 676 
 677   if (first == G1_NO_HRM_INDEX) {
 678     // Policy: We could not find enough regions for the humongous object in the
 679     // free list. Look through the heap to find a mix of free and uncommitted regions.
 680     // If so, try expansion.
 681     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 682     if (first != G1_NO_HRM_INDEX) {
 683       // We found something. Make sure these regions are committed, i.e. expand
 684       // the heap. Alternatively we could do a defragmentation GC.
 685       ergo_verbose1(ErgoHeapSizing,
 686                     "attempt heap expansion",
 687                     ergo_format_reason("humongous allocation request failed")
 688                     ergo_format_byte("allocation request"),
 689                     word_size * HeapWordSize);
 690 
 691       _hrm.expand_at(first, obj_regions);
 692       g1_policy()->record_new_heap_size(num_regions());
 693 
 694 #ifdef ASSERT
 695       for (uint i = first; i < first + obj_regions; ++i) {
 696         HeapRegion* hr = region_at(i);
 697         assert(hr->is_free(), "sanity");
 698         assert(hr->is_empty(), "sanity");
 699         assert(is_on_master_free_list(hr), "sanity");
 700       }
 701 #endif
 702       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 703     } else {
 704       // Policy: Potentially trigger a defragmentation GC.
 705     }
 706   }
 707 
 708   HeapWord* result = NULL;
 709   if (first != G1_NO_HRM_INDEX) {
 710     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 711                                                        word_size, context);
 712     assert(result != NULL, "it should always return a valid result");
 713 
 714     // A successful humongous object allocation changes the used space
 715     // information of the old generation so we need to recalculate the
 716     // sizes and update the jstat counters here.
 717     g1mm()->update_sizes();
 718   }
 719 
 720   verify_region_sets_optional();
 721 
 722   return result;
 723 }
 724 
 725 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 726   assert_heap_not_locked_and_not_at_safepoint();
 727   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 728 
 729   uint dummy_gc_count_before;
 730   uint dummy_gclocker_retry_count = 0;
 731   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 732 }
 733 
 734 HeapWord*
 735 G1CollectedHeap::mem_allocate(size_t word_size,
 736                               bool*  gc_overhead_limit_was_exceeded) {
 737   assert_heap_not_locked_and_not_at_safepoint();
 738 
 739   // Loop until the allocation is satisfied, or unsatisfied after GC.
 740   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 741     uint gc_count_before;
 742 
 743     HeapWord* result = NULL;
 744     if (!is_humongous(word_size)) {
 745       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 746     } else {
 747       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 748     }
 749     if (result != NULL) {
 750       return result;
 751     }
 752 
 753     // Create the garbage collection operation...
 754     VM_G1CollectForAllocation op(gc_count_before, word_size);
 755     op.set_allocation_context(AllocationContext::current());
 756 
 757     // ...and get the VM thread to execute it.
 758     VMThread::execute(&op);
 759 
 760     if (op.prologue_succeeded() && op.pause_succeeded()) {
 761       // If the operation was successful we'll return the result even
 762       // if it is NULL. If the allocation attempt failed immediately
 763       // after a Full GC, it's unlikely we'll be able to allocate now.
 764       HeapWord* result = op.result();
 765       if (result != NULL && !is_humongous(word_size)) {
 766         // Allocations that take place on VM operations do not do any
 767         // card dirtying and we have to do it here. We only have to do
 768         // this for non-humongous allocations, though.
 769         dirty_young_block(result, word_size);
 770       }
 771       return result;
 772     } else {
 773       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 774         return NULL;
 775       }
 776       assert(op.result() == NULL,
 777              "the result should be NULL if the VM op did not succeed");
 778     }
 779 
 780     // Give a warning if we seem to be looping forever.
 781     if ((QueuedAllocationWarningCount > 0) &&
 782         (try_count % QueuedAllocationWarningCount == 0)) {
 783       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 784     }
 785   }
 786 
 787   ShouldNotReachHere();
 788   return NULL;
 789 }
 790 
 791 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 792                                                    AllocationContext_t context,
 793                                                    uint* gc_count_before_ret,
 794                                                    uint* gclocker_retry_count_ret) {
 795   // Make sure you read the note in attempt_allocation_humongous().
 796 
 797   assert_heap_not_locked_and_not_at_safepoint();
 798   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 799          "be called for humongous allocation requests");
 800 
 801   // We should only get here after the first-level allocation attempt
 802   // (attempt_allocation()) failed to allocate.
 803 
 804   // We will loop until a) we manage to successfully perform the
 805   // allocation or b) we successfully schedule a collection which
 806   // fails to perform the allocation. b) is the only case when we'll
 807   // return NULL.
 808   HeapWord* result = NULL;
 809   for (int try_count = 1; /* we'll return */; try_count += 1) {
 810     bool should_try_gc;
 811     uint gc_count_before;
 812 
 813     {
 814       MutexLockerEx x(Heap_lock);
 815       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 816                                                                                     false /* bot_updates */);
 817       if (result != NULL) {
 818         return result;
 819       }
 820 
 821       // If we reach here, attempt_allocation_locked() above failed to
 822       // allocate a new region. So the mutator alloc region should be NULL.
 823       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 824 
 825       if (GC_locker::is_active_and_needs_gc()) {
 826         if (g1_policy()->can_expand_young_list()) {
 827           // No need for an ergo verbose message here,
 828           // can_expand_young_list() does this when it returns true.
 829           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 830                                                                                        false /* bot_updates */);
 831           if (result != NULL) {
 832             return result;
 833           }
 834         }
 835         should_try_gc = false;
 836       } else {
 837         // The GCLocker may not be active but the GCLocker initiated
 838         // GC may not yet have been performed (GCLocker::needs_gc()
 839         // returns true). In this case we do not try this GC and
 840         // wait until the GCLocker initiated GC is performed, and
 841         // then retry the allocation.
 842         if (GC_locker::needs_gc()) {
 843           should_try_gc = false;
 844         } else {
 845           // Read the GC count while still holding the Heap_lock.
 846           gc_count_before = total_collections();
 847           should_try_gc = true;
 848         }
 849       }
 850     }
 851 
 852     if (should_try_gc) {
 853       bool succeeded;
 854       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 855                                    GCCause::_g1_inc_collection_pause);
 856       if (result != NULL) {
 857         assert(succeeded, "only way to get back a non-NULL result");
 858         return result;
 859       }
 860 
 861       if (succeeded) {
 862         // If we get here we successfully scheduled a collection which
 863         // failed to allocate. No point in trying to allocate
 864         // further. We'll just return NULL.
 865         MutexLockerEx x(Heap_lock);
 866         *gc_count_before_ret = total_collections();
 867         return NULL;
 868       }
 869     } else {
 870       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 871         MutexLockerEx x(Heap_lock);
 872         *gc_count_before_ret = total_collections();
 873         return NULL;
 874       }
 875       // The GCLocker is either active or the GCLocker initiated
 876       // GC has not yet been performed. Stall until it is and
 877       // then retry the allocation.
 878       GC_locker::stall_until_clear();
 879       (*gclocker_retry_count_ret) += 1;
 880     }
 881 
 882     // We can reach here if we were unsuccessful in scheduling a
 883     // collection (because another thread beat us to it) or if we were
 884     // stalled due to the GC locker. In either can we should retry the
 885     // allocation attempt in case another thread successfully
 886     // performed a collection and reclaimed enough space. We do the
 887     // first attempt (without holding the Heap_lock) here and the
 888     // follow-on attempt will be at the start of the next loop
 889     // iteration (after taking the Heap_lock).
 890     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 891                                                                            false /* bot_updates */);
 892     if (result != NULL) {
 893       return result;
 894     }
 895 
 896     // Give a warning if we seem to be looping forever.
 897     if ((QueuedAllocationWarningCount > 0) &&
 898         (try_count % QueuedAllocationWarningCount == 0)) {
 899       warning("G1CollectedHeap::attempt_allocation_slow() "
 900               "retries %d times", try_count);
 901     }
 902   }
 903 
 904   ShouldNotReachHere();
 905   return NULL;
 906 }
 907 
 908 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 909                                                         uint* gc_count_before_ret,
 910                                                         uint* gclocker_retry_count_ret) {
 911   // The structure of this method has a lot of similarities to
 912   // attempt_allocation_slow(). The reason these two were not merged
 913   // into a single one is that such a method would require several "if
 914   // allocation is not humongous do this, otherwise do that"
 915   // conditional paths which would obscure its flow. In fact, an early
 916   // version of this code did use a unified method which was harder to
 917   // follow and, as a result, it had subtle bugs that were hard to
 918   // track down. So keeping these two methods separate allows each to
 919   // be more readable. It will be good to keep these two in sync as
 920   // much as possible.
 921 
 922   assert_heap_not_locked_and_not_at_safepoint();
 923   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 924          "should only be called for humongous allocations");
 925 
 926   // Humongous objects can exhaust the heap quickly, so we should check if we
 927   // need to start a marking cycle at each humongous object allocation. We do
 928   // the check before we do the actual allocation. The reason for doing it
 929   // before the allocation is that we avoid having to keep track of the newly
 930   // allocated memory while we do a GC.
 931   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 932                                            word_size)) {
 933     collect(GCCause::_g1_humongous_allocation);
 934   }
 935 
 936   // We will loop until a) we manage to successfully perform the
 937   // allocation or b) we successfully schedule a collection which
 938   // fails to perform the allocation. b) is the only case when we'll
 939   // return NULL.
 940   HeapWord* result = NULL;
 941   for (int try_count = 1; /* we'll return */; try_count += 1) {
 942     bool should_try_gc;
 943     uint gc_count_before;
 944 
 945     {
 946       MutexLockerEx x(Heap_lock);
 947 
 948       // Given that humongous objects are not allocated in young
 949       // regions, we'll first try to do the allocation without doing a
 950       // collection hoping that there's enough space in the heap.
 951       result = humongous_obj_allocate(word_size, AllocationContext::current());
 952       if (result != NULL) {
 953         return result;
 954       }
 955 
 956       if (GC_locker::is_active_and_needs_gc()) {
 957         should_try_gc = false;
 958       } else {
 959          // The GCLocker may not be active but the GCLocker initiated
 960         // GC may not yet have been performed (GCLocker::needs_gc()
 961         // returns true). In this case we do not try this GC and
 962         // wait until the GCLocker initiated GC is performed, and
 963         // then retry the allocation.
 964         if (GC_locker::needs_gc()) {
 965           should_try_gc = false;
 966         } else {
 967           // Read the GC count while still holding the Heap_lock.
 968           gc_count_before = total_collections();
 969           should_try_gc = true;
 970         }
 971       }
 972     }
 973 
 974     if (should_try_gc) {
 975       // If we failed to allocate the humongous object, we should try to
 976       // do a collection pause (if we're allowed) in case it reclaims
 977       // enough space for the allocation to succeed after the pause.
 978 
 979       bool succeeded;
 980       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 981                                    GCCause::_g1_humongous_allocation);
 982       if (result != NULL) {
 983         assert(succeeded, "only way to get back a non-NULL result");
 984         return result;
 985       }
 986 
 987       if (succeeded) {
 988         // If we get here we successfully scheduled a collection which
 989         // failed to allocate. No point in trying to allocate
 990         // further. We'll just return NULL.
 991         MutexLockerEx x(Heap_lock);
 992         *gc_count_before_ret = total_collections();
 993         return NULL;
 994       }
 995     } else {
 996       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 997         MutexLockerEx x(Heap_lock);
 998         *gc_count_before_ret = total_collections();
 999         return NULL;
1000       }
1001       // The GCLocker is either active or the GCLocker initiated
1002       // GC has not yet been performed. Stall until it is and
1003       // then retry the allocation.
1004       GC_locker::stall_until_clear();
1005       (*gclocker_retry_count_ret) += 1;
1006     }
1007 
1008     // We can reach here if we were unsuccessful in scheduling a
1009     // collection (because another thread beat us to it) or if we were
1010     // stalled due to the GC locker. In either can we should retry the
1011     // allocation attempt in case another thread successfully
1012     // performed a collection and reclaimed enough space.  Give a
1013     // warning if we seem to be looping forever.
1014 
1015     if ((QueuedAllocationWarningCount > 0) &&
1016         (try_count % QueuedAllocationWarningCount == 0)) {
1017       warning("G1CollectedHeap::attempt_allocation_humongous() "
1018               "retries %d times", try_count);
1019     }
1020   }
1021 
1022   ShouldNotReachHere();
1023   return NULL;
1024 }
1025 
1026 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1027                                                            AllocationContext_t context,
1028                                                            bool expect_null_mutator_alloc_region) {
1029   assert_at_safepoint(true /* should_be_vm_thread */);
1030   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1031                                              !expect_null_mutator_alloc_region,
1032          "the current alloc region was unexpectedly found to be non-NULL");
1033 
1034   if (!is_humongous(word_size)) {
1035     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1036                                                       false /* bot_updates */);
1037   } else {
1038     HeapWord* result = humongous_obj_allocate(word_size, context);
1039     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1040       g1_policy()->set_initiate_conc_mark_if_possible();
1041     }
1042     return result;
1043   }
1044 
1045   ShouldNotReachHere();
1046 }
1047 
1048 class PostMCRemSetClearClosure: public HeapRegionClosure {
1049   G1CollectedHeap* _g1h;
1050   ModRefBarrierSet* _mr_bs;
1051 public:
1052   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1053     _g1h(g1h), _mr_bs(mr_bs) {}
1054 
1055   bool doHeapRegion(HeapRegion* r) {
1056     HeapRegionRemSet* hrrs = r->rem_set();
1057 
1058     if (r->is_continues_humongous()) {
1059       // We'll assert that the strong code root list and RSet is empty
1060       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1061       assert(hrrs->occupied() == 0, "RSet should be empty");
1062       return false;
1063     }
1064 
1065     _g1h->reset_gc_time_stamps(r);
1066     hrrs->clear();
1067     // You might think here that we could clear just the cards
1068     // corresponding to the used region.  But no: if we leave a dirty card
1069     // in a region we might allocate into, then it would prevent that card
1070     // from being enqueued, and cause it to be missed.
1071     // Re: the performance cost: we shouldn't be doing full GC anyway!
1072     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1073 
1074     return false;
1075   }
1076 };
1077 
1078 void G1CollectedHeap::clear_rsets_post_compaction() {
1079   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1080   heap_region_iterate(&rs_clear);
1081 }
1082 
1083 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1084   G1CollectedHeap*   _g1h;
1085   UpdateRSOopClosure _cl;
1086   int                _worker_i;
1087 public:
1088   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1089     _cl(g1->g1_rem_set(), worker_i),
1090     _worker_i(worker_i),
1091     _g1h(g1)
1092   { }
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     if (!r->is_continues_humongous()) {
1096       _cl.set_from(r);
1097       r->oop_iterate(&_cl);
1098     }
1099     return false;
1100   }
1101 };
1102 
1103 class ParRebuildRSTask: public AbstractGangTask {
1104   G1CollectedHeap* _g1;
1105   HeapRegionClaimer _hrclaimer;
1106 
1107 public:
1108   ParRebuildRSTask(G1CollectedHeap* g1) :
1109       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1110 
1111   void work(uint worker_id) {
1112     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1113     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1114   }
1115 };
1116 
1117 class PostCompactionPrinterClosure: public HeapRegionClosure {
1118 private:
1119   G1HRPrinter* _hr_printer;
1120 public:
1121   bool doHeapRegion(HeapRegion* hr) {
1122     assert(!hr->is_young(), "not expecting to find young regions");
1123     if (hr->is_free()) {
1124       // We only generate output for non-empty regions.
1125     } else if (hr->is_starts_humongous()) {
1126       if (hr->region_num() == 1) {
1127         // single humongous region
1128         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1129       } else {
1130         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1131       }
1132     } else if (hr->is_continues_humongous()) {
1133       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1134     } else if (hr->is_old()) {
1135       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1136     } else {
1137       ShouldNotReachHere();
1138     }
1139     return false;
1140   }
1141 
1142   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1143     : _hr_printer(hr_printer) { }
1144 };
1145 
1146 void G1CollectedHeap::print_hrm_post_compaction() {
1147   PostCompactionPrinterClosure cl(hr_printer());
1148   heap_region_iterate(&cl);
1149 }
1150 
1151 bool G1CollectedHeap::do_collection(bool explicit_gc,
1152                                     bool clear_all_soft_refs,
1153                                     size_t word_size) {
1154   assert_at_safepoint(true /* should_be_vm_thread */);
1155 
1156   if (GC_locker::check_active_before_gc()) {
1157     return false;
1158   }
1159 
1160   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1161   gc_timer->register_gc_start();
1162 
1163   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1164   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1165 
1166   SvcGCMarker sgcm(SvcGCMarker::FULL);
1167   ResourceMark rm;
1168 
1169   print_heap_before_gc();
1170   trace_heap_before_gc(gc_tracer);
1171 
1172   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1173 
1174   verify_region_sets_optional();
1175 
1176   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1177                            collector_policy()->should_clear_all_soft_refs();
1178 
1179   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1180 
1181   {
1182     IsGCActiveMark x;
1183 
1184     // Timing
1185     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1186     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1187 
1188     {
1189       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1190       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1191       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1192 
1193       g1_policy()->record_full_collection_start();
1194 
1195       // Note: When we have a more flexible GC logging framework that
1196       // allows us to add optional attributes to a GC log record we
1197       // could consider timing and reporting how long we wait in the
1198       // following two methods.
1199       wait_while_free_regions_coming();
1200       // If we start the compaction before the CM threads finish
1201       // scanning the root regions we might trip them over as we'll
1202       // be moving objects / updating references. So let's wait until
1203       // they are done. By telling them to abort, they should complete
1204       // early.
1205       _cm->root_regions()->abort();
1206       _cm->root_regions()->wait_until_scan_finished();
1207       append_secondary_free_list_if_not_empty_with_lock();
1208 
1209       gc_prologue(true);
1210       increment_total_collections(true /* full gc */);
1211       increment_old_marking_cycles_started();
1212 
1213       assert(used() == recalculate_used(), "Should be equal");
1214 
1215       verify_before_gc();
1216 
1217       check_bitmaps("Full GC Start");
1218       pre_full_gc_dump(gc_timer);
1219 
1220       COMPILER2_PRESENT(DerivedPointerTable::clear());
1221 
1222       // Disable discovery and empty the discovered lists
1223       // for the CM ref processor.
1224       ref_processor_cm()->disable_discovery();
1225       ref_processor_cm()->abandon_partial_discovery();
1226       ref_processor_cm()->verify_no_references_recorded();
1227 
1228       // Abandon current iterations of concurrent marking and concurrent
1229       // refinement, if any are in progress. We have to do this before
1230       // wait_until_scan_finished() below.
1231       concurrent_mark()->abort();
1232 
1233       // Make sure we'll choose a new allocation region afterwards.
1234       _allocator->release_mutator_alloc_region();
1235       _allocator->abandon_gc_alloc_regions();
1236       g1_rem_set()->cleanupHRRS();
1237 
1238       // We should call this after we retire any currently active alloc
1239       // regions so that all the ALLOC / RETIRE events are generated
1240       // before the start GC event.
1241       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1242 
1243       // We may have added regions to the current incremental collection
1244       // set between the last GC or pause and now. We need to clear the
1245       // incremental collection set and then start rebuilding it afresh
1246       // after this full GC.
1247       abandon_collection_set(g1_policy()->inc_cset_head());
1248       g1_policy()->clear_incremental_cset();
1249       g1_policy()->stop_incremental_cset_building();
1250 
1251       tear_down_region_sets(false /* free_list_only */);
1252       g1_policy()->set_gcs_are_young(true);
1253 
1254       // See the comments in g1CollectedHeap.hpp and
1255       // G1CollectedHeap::ref_processing_init() about
1256       // how reference processing currently works in G1.
1257 
1258       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1259       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1260 
1261       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1262       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1263 
1264       ref_processor_stw()->enable_discovery();
1265       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1266 
1267       // Do collection work
1268       {
1269         HandleMark hm;  // Discard invalid handles created during gc
1270         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1271       }
1272 
1273       assert(num_free_regions() == 0, "we should not have added any free regions");
1274       rebuild_region_sets(false /* free_list_only */);
1275 
1276       // Enqueue any discovered reference objects that have
1277       // not been removed from the discovered lists.
1278       ref_processor_stw()->enqueue_discovered_references();
1279 
1280       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1281 
1282       MemoryService::track_memory_usage();
1283 
1284       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1285       ref_processor_stw()->verify_no_references_recorded();
1286 
1287       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1288       ClassLoaderDataGraph::purge();
1289       MetaspaceAux::verify_metrics();
1290 
1291       // Note: since we've just done a full GC, concurrent
1292       // marking is no longer active. Therefore we need not
1293       // re-enable reference discovery for the CM ref processor.
1294       // That will be done at the start of the next marking cycle.
1295       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1296       ref_processor_cm()->verify_no_references_recorded();
1297 
1298       reset_gc_time_stamp();
1299       // Since everything potentially moved, we will clear all remembered
1300       // sets, and clear all cards.  Later we will rebuild remembered
1301       // sets. We will also reset the GC time stamps of the regions.
1302       clear_rsets_post_compaction();
1303       check_gc_time_stamps();
1304 
1305       // Resize the heap if necessary.
1306       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1307 
1308       if (_hr_printer.is_active()) {
1309         // We should do this after we potentially resize the heap so
1310         // that all the COMMIT / UNCOMMIT events are generated before
1311         // the end GC event.
1312 
1313         print_hrm_post_compaction();
1314         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1315       }
1316 
1317       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1318       if (hot_card_cache->use_cache()) {
1319         hot_card_cache->reset_card_counts();
1320         hot_card_cache->reset_hot_cache();
1321       }
1322 
1323       // Rebuild remembered sets of all regions.
1324       uint n_workers =
1325         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1326                                                 workers()->active_workers(),
1327                                                 Threads::number_of_non_daemon_threads());
1328       assert(UseDynamicNumberOfGCThreads ||
1329              n_workers == workers()->total_workers(),
1330              "If not dynamic should be using all the  workers");
1331       workers()->set_active_workers(n_workers);
1332       // Set parallel threads in the heap (_n_par_threads) only
1333       // before a parallel phase and always reset it to 0 after
1334       // the phase so that the number of parallel threads does
1335       // no get carried forward to a serial phase where there
1336       // may be code that is "possibly_parallel".
1337       set_par_threads(n_workers);
1338 
1339       ParRebuildRSTask rebuild_rs_task(this);
1340       assert(UseDynamicNumberOfGCThreads ||
1341              workers()->active_workers() == workers()->total_workers(),
1342              "Unless dynamic should use total workers");
1343       // Use the most recent number of  active workers
1344       assert(workers()->active_workers() > 0,
1345              "Active workers not properly set");
1346       set_par_threads(workers()->active_workers());
1347       workers()->run_task(&rebuild_rs_task);
1348       set_par_threads(0);
1349 
1350       // Rebuild the strong code root lists for each region
1351       rebuild_strong_code_roots();
1352 
1353       if (true) { // FIXME
1354         MetaspaceGC::compute_new_size();
1355       }
1356 
1357 #ifdef TRACESPINNING
1358       ParallelTaskTerminator::print_termination_counts();
1359 #endif
1360 
1361       // Discard all rset updates
1362       JavaThread::dirty_card_queue_set().abandon_logs();
1363       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1364 
1365       _young_list->reset_sampled_info();
1366       // At this point there should be no regions in the
1367       // entire heap tagged as young.
1368       assert(check_young_list_empty(true /* check_heap */),
1369              "young list should be empty at this point");
1370 
1371       // Update the number of full collections that have been completed.
1372       increment_old_marking_cycles_completed(false /* concurrent */);
1373 
1374       _hrm.verify_optional();
1375       verify_region_sets_optional();
1376 
1377       verify_after_gc();
1378 
1379       // Clear the previous marking bitmap, if needed for bitmap verification.
1380       // Note we cannot do this when we clear the next marking bitmap in
1381       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1382       // objects marked during a full GC against the previous bitmap.
1383       // But we need to clear it before calling check_bitmaps below since
1384       // the full GC has compacted objects and updated TAMS but not updated
1385       // the prev bitmap.
1386       if (G1VerifyBitmaps) {
1387         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1388       }
1389       check_bitmaps("Full GC End");
1390 
1391       // Start a new incremental collection set for the next pause
1392       assert(g1_policy()->collection_set() == NULL, "must be");
1393       g1_policy()->start_incremental_cset_building();
1394 
1395       clear_cset_fast_test();
1396 
1397       _allocator->init_mutator_alloc_region();
1398 
1399       g1_policy()->record_full_collection_end();
1400 
1401       if (G1Log::fine()) {
1402         g1_policy()->print_heap_transition();
1403       }
1404 
1405       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1406       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1407       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1408       // before any GC notifications are raised.
1409       g1mm()->update_sizes();
1410 
1411       gc_epilogue(true);
1412     }
1413 
1414     if (G1Log::finer()) {
1415       g1_policy()->print_detailed_heap_transition(true /* full */);
1416     }
1417 
1418     print_heap_after_gc();
1419     trace_heap_after_gc(gc_tracer);
1420 
1421     post_full_gc_dump(gc_timer);
1422 
1423     gc_timer->register_gc_end();
1424     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1425   }
1426 
1427   return true;
1428 }
1429 
1430 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1431   // do_collection() will return whether it succeeded in performing
1432   // the GC. Currently, there is no facility on the
1433   // do_full_collection() API to notify the caller than the collection
1434   // did not succeed (e.g., because it was locked out by the GC
1435   // locker). So, right now, we'll ignore the return value.
1436   bool dummy = do_collection(true,                /* explicit_gc */
1437                              clear_all_soft_refs,
1438                              0                    /* word_size */);
1439 }
1440 
1441 // This code is mostly copied from TenuredGeneration.
1442 void
1443 G1CollectedHeap::
1444 resize_if_necessary_after_full_collection(size_t word_size) {
1445   // Include the current allocation, if any, and bytes that will be
1446   // pre-allocated to support collections, as "used".
1447   const size_t used_after_gc = used();
1448   const size_t capacity_after_gc = capacity();
1449   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1450 
1451   // This is enforced in arguments.cpp.
1452   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1453          "otherwise the code below doesn't make sense");
1454 
1455   // We don't have floating point command-line arguments
1456   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1457   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1458   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1459   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1460 
1461   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1462   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1463 
1464   // We have to be careful here as these two calculations can overflow
1465   // 32-bit size_t's.
1466   double used_after_gc_d = (double) used_after_gc;
1467   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1468   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1469 
1470   // Let's make sure that they are both under the max heap size, which
1471   // by default will make them fit into a size_t.
1472   double desired_capacity_upper_bound = (double) max_heap_size;
1473   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1474                                     desired_capacity_upper_bound);
1475   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1476                                     desired_capacity_upper_bound);
1477 
1478   // We can now safely turn them into size_t's.
1479   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1480   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1481 
1482   // This assert only makes sense here, before we adjust them
1483   // with respect to the min and max heap size.
1484   assert(minimum_desired_capacity <= maximum_desired_capacity,
1485          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1486                  "maximum_desired_capacity = "SIZE_FORMAT,
1487                  minimum_desired_capacity, maximum_desired_capacity));
1488 
1489   // Should not be greater than the heap max size. No need to adjust
1490   // it with respect to the heap min size as it's a lower bound (i.e.,
1491   // we'll try to make the capacity larger than it, not smaller).
1492   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1493   // Should not be less than the heap min size. No need to adjust it
1494   // with respect to the heap max size as it's an upper bound (i.e.,
1495   // we'll try to make the capacity smaller than it, not greater).
1496   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1497 
1498   if (capacity_after_gc < minimum_desired_capacity) {
1499     // Don't expand unless it's significant
1500     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1501     ergo_verbose4(ErgoHeapSizing,
1502                   "attempt heap expansion",
1503                   ergo_format_reason("capacity lower than "
1504                                      "min desired capacity after Full GC")
1505                   ergo_format_byte("capacity")
1506                   ergo_format_byte("occupancy")
1507                   ergo_format_byte_perc("min desired capacity"),
1508                   capacity_after_gc, used_after_gc,
1509                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1510     expand(expand_bytes);
1511 
1512     // No expansion, now see if we want to shrink
1513   } else if (capacity_after_gc > maximum_desired_capacity) {
1514     // Capacity too large, compute shrinking size
1515     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1516     ergo_verbose4(ErgoHeapSizing,
1517                   "attempt heap shrinking",
1518                   ergo_format_reason("capacity higher than "
1519                                      "max desired capacity after Full GC")
1520                   ergo_format_byte("capacity")
1521                   ergo_format_byte("occupancy")
1522                   ergo_format_byte_perc("max desired capacity"),
1523                   capacity_after_gc, used_after_gc,
1524                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1525     shrink(shrink_bytes);
1526   }
1527 }
1528 
1529 
1530 HeapWord*
1531 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1532                                            AllocationContext_t context,
1533                                            bool* succeeded) {
1534   assert_at_safepoint(true /* should_be_vm_thread */);
1535 
1536   *succeeded = true;
1537   // Let's attempt the allocation first.
1538   HeapWord* result =
1539     attempt_allocation_at_safepoint(word_size,
1540                                     context,
1541                                     false /* expect_null_mutator_alloc_region */);
1542   if (result != NULL) {
1543     assert(*succeeded, "sanity");
1544     return result;
1545   }
1546 
1547   // In a G1 heap, we're supposed to keep allocation from failing by
1548   // incremental pauses.  Therefore, at least for now, we'll favor
1549   // expansion over collection.  (This might change in the future if we can
1550   // do something smarter than full collection to satisfy a failed alloc.)
1551   result = expand_and_allocate(word_size, context);
1552   if (result != NULL) {
1553     assert(*succeeded, "sanity");
1554     return result;
1555   }
1556 
1557   // Expansion didn't work, we'll try to do a Full GC.
1558   bool gc_succeeded = do_collection(false, /* explicit_gc */
1559                                     false, /* clear_all_soft_refs */
1560                                     word_size);
1561   if (!gc_succeeded) {
1562     *succeeded = false;
1563     return NULL;
1564   }
1565 
1566   // Retry the allocation
1567   result = attempt_allocation_at_safepoint(word_size,
1568                                            context,
1569                                            true /* expect_null_mutator_alloc_region */);
1570   if (result != NULL) {
1571     assert(*succeeded, "sanity");
1572     return result;
1573   }
1574 
1575   // Then, try a Full GC that will collect all soft references.
1576   gc_succeeded = do_collection(false, /* explicit_gc */
1577                                true,  /* clear_all_soft_refs */
1578                                word_size);
1579   if (!gc_succeeded) {
1580     *succeeded = false;
1581     return NULL;
1582   }
1583 
1584   // Retry the allocation once more
1585   result = attempt_allocation_at_safepoint(word_size,
1586                                            context,
1587                                            true /* expect_null_mutator_alloc_region */);
1588   if (result != NULL) {
1589     assert(*succeeded, "sanity");
1590     return result;
1591   }
1592 
1593   assert(!collector_policy()->should_clear_all_soft_refs(),
1594          "Flag should have been handled and cleared prior to this point");
1595 
1596   // What else?  We might try synchronous finalization later.  If the total
1597   // space available is large enough for the allocation, then a more
1598   // complete compaction phase than we've tried so far might be
1599   // appropriate.
1600   assert(*succeeded, "sanity");
1601   return NULL;
1602 }
1603 
1604 // Attempting to expand the heap sufficiently
1605 // to support an allocation of the given "word_size".  If
1606 // successful, perform the allocation and return the address of the
1607 // allocated block, or else "NULL".
1608 
1609 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1610   assert_at_safepoint(true /* should_be_vm_thread */);
1611 
1612   verify_region_sets_optional();
1613 
1614   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1615   ergo_verbose1(ErgoHeapSizing,
1616                 "attempt heap expansion",
1617                 ergo_format_reason("allocation request failed")
1618                 ergo_format_byte("allocation request"),
1619                 word_size * HeapWordSize);
1620   if (expand(expand_bytes)) {
1621     _hrm.verify_optional();
1622     verify_region_sets_optional();
1623     return attempt_allocation_at_safepoint(word_size,
1624                                            context,
1625                                            false /* expect_null_mutator_alloc_region */);
1626   }
1627   return NULL;
1628 }
1629 
1630 bool G1CollectedHeap::expand(size_t expand_bytes) {
1631   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1632   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1633                                        HeapRegion::GrainBytes);
1634   ergo_verbose2(ErgoHeapSizing,
1635                 "expand the heap",
1636                 ergo_format_byte("requested expansion amount")
1637                 ergo_format_byte("attempted expansion amount"),
1638                 expand_bytes, aligned_expand_bytes);
1639 
1640   if (is_maximal_no_gc()) {
1641     ergo_verbose0(ErgoHeapSizing,
1642                       "did not expand the heap",
1643                       ergo_format_reason("heap already fully expanded"));
1644     return false;
1645   }
1646 
1647   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1648   assert(regions_to_expand > 0, "Must expand by at least one region");
1649 
1650   uint expanded_by = _hrm.expand_by(regions_to_expand);
1651 
1652   if (expanded_by > 0) {
1653     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1654     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1655     g1_policy()->record_new_heap_size(num_regions());
1656   } else {
1657     ergo_verbose0(ErgoHeapSizing,
1658                   "did not expand the heap",
1659                   ergo_format_reason("heap expansion operation failed"));
1660     // The expansion of the virtual storage space was unsuccessful.
1661     // Let's see if it was because we ran out of swap.
1662     if (G1ExitOnExpansionFailure &&
1663         _hrm.available() >= regions_to_expand) {
1664       // We had head room...
1665       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1666     }
1667   }
1668   return regions_to_expand > 0;
1669 }
1670 
1671 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1672   size_t aligned_shrink_bytes =
1673     ReservedSpace::page_align_size_down(shrink_bytes);
1674   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1675                                          HeapRegion::GrainBytes);
1676   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1677 
1678   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1679   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1680 
1681   ergo_verbose3(ErgoHeapSizing,
1682                 "shrink the heap",
1683                 ergo_format_byte("requested shrinking amount")
1684                 ergo_format_byte("aligned shrinking amount")
1685                 ergo_format_byte("attempted shrinking amount"),
1686                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1687   if (num_regions_removed > 0) {
1688     g1_policy()->record_new_heap_size(num_regions());
1689   } else {
1690     ergo_verbose0(ErgoHeapSizing,
1691                   "did not shrink the heap",
1692                   ergo_format_reason("heap shrinking operation failed"));
1693   }
1694 }
1695 
1696 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1697   verify_region_sets_optional();
1698 
1699   // We should only reach here at the end of a Full GC which means we
1700   // should not not be holding to any GC alloc regions. The method
1701   // below will make sure of that and do any remaining clean up.
1702   _allocator->abandon_gc_alloc_regions();
1703 
1704   // Instead of tearing down / rebuilding the free lists here, we
1705   // could instead use the remove_all_pending() method on free_list to
1706   // remove only the ones that we need to remove.
1707   tear_down_region_sets(true /* free_list_only */);
1708   shrink_helper(shrink_bytes);
1709   rebuild_region_sets(true /* free_list_only */);
1710 
1711   _hrm.verify_optional();
1712   verify_region_sets_optional();
1713 }
1714 
1715 // Public methods.
1716 
1717 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1718 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1719 #endif // _MSC_VER
1720 
1721 
1722 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1723   CollectedHeap(),
1724   _g1_policy(policy_),
1725   _dirty_card_queue_set(false),
1726   _into_cset_dirty_card_queue_set(false),
1727   _is_alive_closure_cm(this),
1728   _is_alive_closure_stw(this),
1729   _ref_processor_cm(NULL),
1730   _ref_processor_stw(NULL),
1731   _bot_shared(NULL),
1732   _evac_failure_scan_stack(NULL),
1733   _mark_in_progress(false),
1734   _cg1r(NULL),
1735   _g1mm(NULL),
1736   _refine_cte_cl(NULL),
1737   _full_collection(false),
1738   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1739   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1740   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1741   _humongous_reclaim_candidates(),
1742   _has_humongous_reclaim_candidates(false),
1743   _free_regions_coming(false),
1744   _young_list(new YoungList(this)),
1745   _gc_time_stamp(0),
1746   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1747   _old_plab_stats(OldPLABSize, PLABWeight),
1748   _expand_heap_after_alloc_failure(true),
1749   _surviving_young_words(NULL),
1750   _old_marking_cycles_started(0),
1751   _old_marking_cycles_completed(0),
1752   _concurrent_cycle_started(false),
1753   _heap_summary_sent(false),
1754   _in_cset_fast_test(),
1755   _dirty_cards_region_list(NULL),
1756   _worker_cset_start_region(NULL),
1757   _worker_cset_start_region_time_stamp(NULL),
1758   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1759   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1760   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1761   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1762 
1763   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1764                           /* are_GC_task_threads */true,
1765                           /* are_ConcurrentGC_threads */false);
1766   _workers->initialize_workers();
1767 
1768   _allocator = G1Allocator::create_allocator(this);
1769   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1770 
1771   int n_queues = MAX2((int)ParallelGCThreads, 1);
1772   _task_queues = new RefToScanQueueSet(n_queues);
1773 
1774   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1775   assert(n_rem_sets > 0, "Invariant.");
1776 
1777   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1778   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1779   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1780 
1781   for (int i = 0; i < n_queues; i++) {
1782     RefToScanQueue* q = new RefToScanQueue();
1783     q->initialize();
1784     _task_queues->register_queue(i, q);
1785     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1786   }
1787   clear_cset_start_regions();
1788 
1789   // Initialize the G1EvacuationFailureALot counters and flags.
1790   NOT_PRODUCT(reset_evacuation_should_fail();)
1791 
1792   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1793 }
1794 
1795 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1796                                                                  size_t size,
1797                                                                  size_t translation_factor) {
1798   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1799   // Allocate a new reserved space, preferring to use large pages.
1800   ReservedSpace rs(size, preferred_page_size);
1801   G1RegionToSpaceMapper* result  =
1802     G1RegionToSpaceMapper::create_mapper(rs,
1803                                          size,
1804                                          rs.alignment(),
1805                                          HeapRegion::GrainBytes,
1806                                          translation_factor,
1807                                          mtGC);
1808   if (TracePageSizes) {
1809     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1810                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1811   }
1812   return result;
1813 }
1814 
1815 jint G1CollectedHeap::initialize() {
1816   CollectedHeap::pre_initialize();
1817   os::enable_vtime();
1818 
1819   G1Log::init();
1820 
1821   // Necessary to satisfy locking discipline assertions.
1822 
1823   MutexLocker x(Heap_lock);
1824 
1825   // We have to initialize the printer before committing the heap, as
1826   // it will be used then.
1827   _hr_printer.set_active(G1PrintHeapRegions);
1828 
1829   // While there are no constraints in the GC code that HeapWordSize
1830   // be any particular value, there are multiple other areas in the
1831   // system which believe this to be true (e.g. oop->object_size in some
1832   // cases incorrectly returns the size in wordSize units rather than
1833   // HeapWordSize).
1834   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1835 
1836   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1837   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1838   size_t heap_alignment = collector_policy()->heap_alignment();
1839 
1840   // Ensure that the sizes are properly aligned.
1841   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1842   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1843   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1844 
1845   _refine_cte_cl = new RefineCardTableEntryClosure();
1846 
1847   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1848 
1849   // Reserve the maximum.
1850 
1851   // When compressed oops are enabled, the preferred heap base
1852   // is calculated by subtracting the requested size from the
1853   // 32Gb boundary and using the result as the base address for
1854   // heap reservation. If the requested size is not aligned to
1855   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1856   // into the ReservedHeapSpace constructor) then the actual
1857   // base of the reserved heap may end up differing from the
1858   // address that was requested (i.e. the preferred heap base).
1859   // If this happens then we could end up using a non-optimal
1860   // compressed oops mode.
1861 
1862   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1863                                                  heap_alignment);
1864 
1865   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1866 
1867   // Create the barrier set for the entire reserved region.
1868   G1SATBCardTableLoggingModRefBS* bs
1869     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1870   bs->initialize();
1871   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1872   set_barrier_set(bs);
1873 
1874   // Also create a G1 rem set.
1875   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1876 
1877   // Carve out the G1 part of the heap.
1878 
1879   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1880   G1RegionToSpaceMapper* heap_storage =
1881     G1RegionToSpaceMapper::create_mapper(g1_rs,
1882                                          g1_rs.size(),
1883                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1884                                          HeapRegion::GrainBytes,
1885                                          1,
1886                                          mtJavaHeap);
1887   heap_storage->set_mapping_changed_listener(&_listener);
1888 
1889   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1890   G1RegionToSpaceMapper* bot_storage =
1891     create_aux_memory_mapper("Block offset table",
1892                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1893                              G1BlockOffsetSharedArray::N_bytes);
1894 
1895   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1896   G1RegionToSpaceMapper* cardtable_storage =
1897     create_aux_memory_mapper("Card table",
1898                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1899                              G1BlockOffsetSharedArray::N_bytes);
1900 
1901   G1RegionToSpaceMapper* card_counts_storage =
1902     create_aux_memory_mapper("Card counts table",
1903                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1904                              G1BlockOffsetSharedArray::N_bytes);
1905 
1906   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1907   G1RegionToSpaceMapper* prev_bitmap_storage =
1908     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
1909   G1RegionToSpaceMapper* next_bitmap_storage =
1910     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
1911 
1912   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1913   g1_barrier_set()->initialize(cardtable_storage);
1914    // Do later initialization work for concurrent refinement.
1915   _cg1r->init(card_counts_storage);
1916 
1917   // 6843694 - ensure that the maximum region index can fit
1918   // in the remembered set structures.
1919   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1920   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1921 
1922   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1923   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1924   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1925             "too many cards per region");
1926 
1927   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1928 
1929   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1930 
1931   {
1932     HeapWord* start = _hrm.reserved().start();
1933     HeapWord* end = _hrm.reserved().end();
1934     size_t granularity = HeapRegion::GrainBytes;
1935 
1936     _in_cset_fast_test.initialize(start, end, granularity);
1937     _humongous_reclaim_candidates.initialize(start, end, granularity);
1938   }
1939 
1940   // Create the ConcurrentMark data structure and thread.
1941   // (Must do this late, so that "max_regions" is defined.)
1942   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1943   if (_cm == NULL || !_cm->completed_initialization()) {
1944     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1945     return JNI_ENOMEM;
1946   }
1947   _cmThread = _cm->cmThread();
1948 
1949   // Initialize the from_card cache structure of HeapRegionRemSet.
1950   HeapRegionRemSet::init_heap(max_regions());
1951 
1952   // Now expand into the initial heap size.
1953   if (!expand(init_byte_size)) {
1954     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1955     return JNI_ENOMEM;
1956   }
1957 
1958   // Perform any initialization actions delegated to the policy.
1959   g1_policy()->init();
1960 
1961   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1962                                                SATB_Q_FL_lock,
1963                                                G1SATBProcessCompletedThreshold,
1964                                                Shared_SATB_Q_lock);
1965 
1966   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1967                                                 DirtyCardQ_CBL_mon,
1968                                                 DirtyCardQ_FL_lock,
1969                                                 concurrent_g1_refine()->yellow_zone(),
1970                                                 concurrent_g1_refine()->red_zone(),
1971                                                 Shared_DirtyCardQ_lock);
1972 
1973   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1974                                     DirtyCardQ_CBL_mon,
1975                                     DirtyCardQ_FL_lock,
1976                                     -1, // never trigger processing
1977                                     -1, // no limit on length
1978                                     Shared_DirtyCardQ_lock,
1979                                     &JavaThread::dirty_card_queue_set());
1980 
1981   // Initialize the card queue set used to hold cards containing
1982   // references into the collection set.
1983   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1984                                              DirtyCardQ_CBL_mon,
1985                                              DirtyCardQ_FL_lock,
1986                                              -1, // never trigger processing
1987                                              -1, // no limit on length
1988                                              Shared_DirtyCardQ_lock,
1989                                              &JavaThread::dirty_card_queue_set());
1990 
1991   // Here we allocate the dummy HeapRegion that is required by the
1992   // G1AllocRegion class.
1993   HeapRegion* dummy_region = _hrm.get_dummy_region();
1994 
1995   // We'll re-use the same region whether the alloc region will
1996   // require BOT updates or not and, if it doesn't, then a non-young
1997   // region will complain that it cannot support allocations without
1998   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1999   dummy_region->set_eden();
2000   // Make sure it's full.
2001   dummy_region->set_top(dummy_region->end());
2002   G1AllocRegion::setup(this, dummy_region);
2003 
2004   _allocator->init_mutator_alloc_region();
2005 
2006   // Do create of the monitoring and management support so that
2007   // values in the heap have been properly initialized.
2008   _g1mm = new G1MonitoringSupport(this);
2009 
2010   G1StringDedup::initialize();
2011 
2012   return JNI_OK;
2013 }
2014 
2015 void G1CollectedHeap::stop() {
2016   // Stop all concurrent threads. We do this to make sure these threads
2017   // do not continue to execute and access resources (e.g. gclog_or_tty)
2018   // that are destroyed during shutdown.
2019   _cg1r->stop();
2020   _cmThread->stop();
2021   if (G1StringDedup::is_enabled()) {
2022     G1StringDedup::stop();
2023   }
2024 }
2025 
2026 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2027   return HeapRegion::max_region_size();
2028 }
2029 
2030 void G1CollectedHeap::post_initialize() {
2031   CollectedHeap::post_initialize();
2032   ref_processing_init();
2033 }
2034 
2035 void G1CollectedHeap::ref_processing_init() {
2036   // Reference processing in G1 currently works as follows:
2037   //
2038   // * There are two reference processor instances. One is
2039   //   used to record and process discovered references
2040   //   during concurrent marking; the other is used to
2041   //   record and process references during STW pauses
2042   //   (both full and incremental).
2043   // * Both ref processors need to 'span' the entire heap as
2044   //   the regions in the collection set may be dotted around.
2045   //
2046   // * For the concurrent marking ref processor:
2047   //   * Reference discovery is enabled at initial marking.
2048   //   * Reference discovery is disabled and the discovered
2049   //     references processed etc during remarking.
2050   //   * Reference discovery is MT (see below).
2051   //   * Reference discovery requires a barrier (see below).
2052   //   * Reference processing may or may not be MT
2053   //     (depending on the value of ParallelRefProcEnabled
2054   //     and ParallelGCThreads).
2055   //   * A full GC disables reference discovery by the CM
2056   //     ref processor and abandons any entries on it's
2057   //     discovered lists.
2058   //
2059   // * For the STW processor:
2060   //   * Non MT discovery is enabled at the start of a full GC.
2061   //   * Processing and enqueueing during a full GC is non-MT.
2062   //   * During a full GC, references are processed after marking.
2063   //
2064   //   * Discovery (may or may not be MT) is enabled at the start
2065   //     of an incremental evacuation pause.
2066   //   * References are processed near the end of a STW evacuation pause.
2067   //   * For both types of GC:
2068   //     * Discovery is atomic - i.e. not concurrent.
2069   //     * Reference discovery will not need a barrier.
2070 
2071   MemRegion mr = reserved_region();
2072 
2073   // Concurrent Mark ref processor
2074   _ref_processor_cm =
2075     new ReferenceProcessor(mr,    // span
2076                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2077                                 // mt processing
2078                            (int) ParallelGCThreads,
2079                                 // degree of mt processing
2080                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2081                                 // mt discovery
2082                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2083                                 // degree of mt discovery
2084                            false,
2085                                 // Reference discovery is not atomic
2086                            &_is_alive_closure_cm);
2087                                 // is alive closure
2088                                 // (for efficiency/performance)
2089 
2090   // STW ref processor
2091   _ref_processor_stw =
2092     new ReferenceProcessor(mr,    // span
2093                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2094                                 // mt processing
2095                            MAX2((int)ParallelGCThreads, 1),
2096                                 // degree of mt processing
2097                            (ParallelGCThreads > 1),
2098                                 // mt discovery
2099                            MAX2((int)ParallelGCThreads, 1),
2100                                 // degree of mt discovery
2101                            true,
2102                                 // Reference discovery is atomic
2103                            &_is_alive_closure_stw);
2104                                 // is alive closure
2105                                 // (for efficiency/performance)
2106 }
2107 
2108 size_t G1CollectedHeap::capacity() const {
2109   return _hrm.length() * HeapRegion::GrainBytes;
2110 }
2111 
2112 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2113   assert(!hr->is_continues_humongous(), "pre-condition");
2114   hr->reset_gc_time_stamp();
2115   if (hr->is_starts_humongous()) {
2116     uint first_index = hr->hrm_index() + 1;
2117     uint last_index = hr->last_hc_index();
2118     for (uint i = first_index; i < last_index; i += 1) {
2119       HeapRegion* chr = region_at(i);
2120       assert(chr->is_continues_humongous(), "sanity");
2121       chr->reset_gc_time_stamp();
2122     }
2123   }
2124 }
2125 
2126 #ifndef PRODUCT
2127 
2128 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2129 private:
2130   unsigned _gc_time_stamp;
2131   bool _failures;
2132 
2133 public:
2134   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2135     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2136 
2137   virtual bool doHeapRegion(HeapRegion* hr) {
2138     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2139     if (_gc_time_stamp != region_gc_time_stamp) {
2140       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2141                              "expected %d", HR_FORMAT_PARAMS(hr),
2142                              region_gc_time_stamp, _gc_time_stamp);
2143       _failures = true;
2144     }
2145     return false;
2146   }
2147 
2148   bool failures() { return _failures; }
2149 };
2150 
2151 void G1CollectedHeap::check_gc_time_stamps() {
2152   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2153   heap_region_iterate(&cl);
2154   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2155 }
2156 #endif // PRODUCT
2157 
2158 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2159                                                  DirtyCardQueue* into_cset_dcq,
2160                                                  bool concurrent,
2161                                                  uint worker_i) {
2162   // Clean cards in the hot card cache
2163   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2164   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2165 
2166   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2167   size_t n_completed_buffers = 0;
2168   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2169     n_completed_buffers++;
2170   }
2171   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2172   dcqs.clear_n_completed_buffers();
2173   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2174 }
2175 
2176 
2177 // Computes the sum of the storage used by the various regions.
2178 size_t G1CollectedHeap::used() const {
2179   return _allocator->used();
2180 }
2181 
2182 size_t G1CollectedHeap::used_unlocked() const {
2183   return _allocator->used_unlocked();
2184 }
2185 
2186 class SumUsedClosure: public HeapRegionClosure {
2187   size_t _used;
2188 public:
2189   SumUsedClosure() : _used(0) {}
2190   bool doHeapRegion(HeapRegion* r) {
2191     if (!r->is_continues_humongous()) {
2192       _used += r->used();
2193     }
2194     return false;
2195   }
2196   size_t result() { return _used; }
2197 };
2198 
2199 size_t G1CollectedHeap::recalculate_used() const {
2200   double recalculate_used_start = os::elapsedTime();
2201 
2202   SumUsedClosure blk;
2203   heap_region_iterate(&blk);
2204 
2205   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2206   return blk.result();
2207 }
2208 
2209 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2210   switch (cause) {
2211     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2212     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2213     case GCCause::_g1_humongous_allocation: return true;
2214     case GCCause::_update_allocation_context_stats_inc: return true;
2215     case GCCause::_wb_conc_mark:            return true;
2216     default:                                return false;
2217   }
2218 }
2219 
2220 #ifndef PRODUCT
2221 void G1CollectedHeap::allocate_dummy_regions() {
2222   // Let's fill up most of the region
2223   size_t word_size = HeapRegion::GrainWords - 1024;
2224   // And as a result the region we'll allocate will be humongous.
2225   guarantee(is_humongous(word_size), "sanity");
2226 
2227   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2228     // Let's use the existing mechanism for the allocation
2229     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2230                                                  AllocationContext::system());
2231     if (dummy_obj != NULL) {
2232       MemRegion mr(dummy_obj, word_size);
2233       CollectedHeap::fill_with_object(mr);
2234     } else {
2235       // If we can't allocate once, we probably cannot allocate
2236       // again. Let's get out of the loop.
2237       break;
2238     }
2239   }
2240 }
2241 #endif // !PRODUCT
2242 
2243 void G1CollectedHeap::increment_old_marking_cycles_started() {
2244   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2245     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2246     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2247     _old_marking_cycles_started, _old_marking_cycles_completed));
2248 
2249   _old_marking_cycles_started++;
2250 }
2251 
2252 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2253   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2254 
2255   // We assume that if concurrent == true, then the caller is a
2256   // concurrent thread that was joined the Suspendible Thread
2257   // Set. If there's ever a cheap way to check this, we should add an
2258   // assert here.
2259 
2260   // Given that this method is called at the end of a Full GC or of a
2261   // concurrent cycle, and those can be nested (i.e., a Full GC can
2262   // interrupt a concurrent cycle), the number of full collections
2263   // completed should be either one (in the case where there was no
2264   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2265   // behind the number of full collections started.
2266 
2267   // This is the case for the inner caller, i.e. a Full GC.
2268   assert(concurrent ||
2269          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2270          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2271          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2272                  "is inconsistent with _old_marking_cycles_completed = %u",
2273                  _old_marking_cycles_started, _old_marking_cycles_completed));
2274 
2275   // This is the case for the outer caller, i.e. the concurrent cycle.
2276   assert(!concurrent ||
2277          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2278          err_msg("for outer caller (concurrent cycle): "
2279                  "_old_marking_cycles_started = %u "
2280                  "is inconsistent with _old_marking_cycles_completed = %u",
2281                  _old_marking_cycles_started, _old_marking_cycles_completed));
2282 
2283   _old_marking_cycles_completed += 1;
2284 
2285   // We need to clear the "in_progress" flag in the CM thread before
2286   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2287   // is set) so that if a waiter requests another System.gc() it doesn't
2288   // incorrectly see that a marking cycle is still in progress.
2289   if (concurrent) {
2290     _cmThread->clear_in_progress();
2291   }
2292 
2293   // This notify_all() will ensure that a thread that called
2294   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2295   // and it's waiting for a full GC to finish will be woken up. It is
2296   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2297   FullGCCount_lock->notify_all();
2298 }
2299 
2300 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2301   _concurrent_cycle_started = true;
2302   _gc_timer_cm->register_gc_start(start_time);
2303 
2304   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2305   trace_heap_before_gc(_gc_tracer_cm);
2306 }
2307 
2308 void G1CollectedHeap::register_concurrent_cycle_end() {
2309   if (_concurrent_cycle_started) {
2310     if (_cm->has_aborted()) {
2311       _gc_tracer_cm->report_concurrent_mode_failure();
2312     }
2313 
2314     _gc_timer_cm->register_gc_end();
2315     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2316 
2317     // Clear state variables to prepare for the next concurrent cycle.
2318     _concurrent_cycle_started = false;
2319     _heap_summary_sent = false;
2320   }
2321 }
2322 
2323 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2324   if (_concurrent_cycle_started) {
2325     // This function can be called when:
2326     //  the cleanup pause is run
2327     //  the concurrent cycle is aborted before the cleanup pause.
2328     //  the concurrent cycle is aborted after the cleanup pause,
2329     //   but before the concurrent cycle end has been registered.
2330     // Make sure that we only send the heap information once.
2331     if (!_heap_summary_sent) {
2332       trace_heap_after_gc(_gc_tracer_cm);
2333       _heap_summary_sent = true;
2334     }
2335   }
2336 }
2337 
2338 G1YCType G1CollectedHeap::yc_type() {
2339   bool is_young = g1_policy()->gcs_are_young();
2340   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2341   bool is_during_mark = mark_in_progress();
2342 
2343   if (is_initial_mark) {
2344     return InitialMark;
2345   } else if (is_during_mark) {
2346     return DuringMark;
2347   } else if (is_young) {
2348     return Normal;
2349   } else {
2350     return Mixed;
2351   }
2352 }
2353 
2354 void G1CollectedHeap::collect(GCCause::Cause cause) {
2355   assert_heap_not_locked();
2356 
2357   uint gc_count_before;
2358   uint old_marking_count_before;
2359   uint full_gc_count_before;
2360   bool retry_gc;
2361 
2362   do {
2363     retry_gc = false;
2364 
2365     {
2366       MutexLocker ml(Heap_lock);
2367 
2368       // Read the GC count while holding the Heap_lock
2369       gc_count_before = total_collections();
2370       full_gc_count_before = total_full_collections();
2371       old_marking_count_before = _old_marking_cycles_started;
2372     }
2373 
2374     if (should_do_concurrent_full_gc(cause)) {
2375       // Schedule an initial-mark evacuation pause that will start a
2376       // concurrent cycle. We're setting word_size to 0 which means that
2377       // we are not requesting a post-GC allocation.
2378       VM_G1IncCollectionPause op(gc_count_before,
2379                                  0,     /* word_size */
2380                                  true,  /* should_initiate_conc_mark */
2381                                  g1_policy()->max_pause_time_ms(),
2382                                  cause);
2383       op.set_allocation_context(AllocationContext::current());
2384 
2385       VMThread::execute(&op);
2386       if (!op.pause_succeeded()) {
2387         if (old_marking_count_before == _old_marking_cycles_started) {
2388           retry_gc = op.should_retry_gc();
2389         } else {
2390           // A Full GC happened while we were trying to schedule the
2391           // initial-mark GC. No point in starting a new cycle given
2392           // that the whole heap was collected anyway.
2393         }
2394 
2395         if (retry_gc) {
2396           if (GC_locker::is_active_and_needs_gc()) {
2397             GC_locker::stall_until_clear();
2398           }
2399         }
2400       }
2401     } else {
2402       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2403           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2404 
2405         // Schedule a standard evacuation pause. We're setting word_size
2406         // to 0 which means that we are not requesting a post-GC allocation.
2407         VM_G1IncCollectionPause op(gc_count_before,
2408                                    0,     /* word_size */
2409                                    false, /* should_initiate_conc_mark */
2410                                    g1_policy()->max_pause_time_ms(),
2411                                    cause);
2412         VMThread::execute(&op);
2413       } else {
2414         // Schedule a Full GC.
2415         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2416         VMThread::execute(&op);
2417       }
2418     }
2419   } while (retry_gc);
2420 }
2421 
2422 bool G1CollectedHeap::is_in(const void* p) const {
2423   if (_hrm.reserved().contains(p)) {
2424     // Given that we know that p is in the reserved space,
2425     // heap_region_containing_raw() should successfully
2426     // return the containing region.
2427     HeapRegion* hr = heap_region_containing_raw(p);
2428     return hr->is_in(p);
2429   } else {
2430     return false;
2431   }
2432 }
2433 
2434 #ifdef ASSERT
2435 bool G1CollectedHeap::is_in_exact(const void* p) const {
2436   bool contains = reserved_region().contains(p);
2437   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2438   if (contains && available) {
2439     return true;
2440   } else {
2441     return false;
2442   }
2443 }
2444 #endif
2445 
2446 // Iteration functions.
2447 
2448 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2449 
2450 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2451   ExtendedOopClosure* _cl;
2452 public:
2453   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2454   bool doHeapRegion(HeapRegion* r) {
2455     if (!r->is_continues_humongous()) {
2456       r->oop_iterate(_cl);
2457     }
2458     return false;
2459   }
2460 };
2461 
2462 // Iterates an ObjectClosure over all objects within a HeapRegion.
2463 
2464 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2465   ObjectClosure* _cl;
2466 public:
2467   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2468   bool doHeapRegion(HeapRegion* r) {
2469     if (!r->is_continues_humongous()) {
2470       r->object_iterate(_cl);
2471     }
2472     return false;
2473   }
2474 };
2475 
2476 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2477   IterateObjectClosureRegionClosure blk(cl);
2478   heap_region_iterate(&blk);
2479 }
2480 
2481 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2482   _hrm.iterate(cl);
2483 }
2484 
2485 void
2486 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2487                                          uint worker_id,
2488                                          HeapRegionClaimer *hrclaimer,
2489                                          bool concurrent) const {
2490   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2491 }
2492 
2493 // Clear the cached CSet starting regions and (more importantly)
2494 // the time stamps. Called when we reset the GC time stamp.
2495 void G1CollectedHeap::clear_cset_start_regions() {
2496   assert(_worker_cset_start_region != NULL, "sanity");
2497   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2498 
2499   int n_queues = MAX2((int)ParallelGCThreads, 1);
2500   for (int i = 0; i < n_queues; i++) {
2501     _worker_cset_start_region[i] = NULL;
2502     _worker_cset_start_region_time_stamp[i] = 0;
2503   }
2504 }
2505 
2506 // Given the id of a worker, obtain or calculate a suitable
2507 // starting region for iterating over the current collection set.
2508 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2509   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2510 
2511   HeapRegion* result = NULL;
2512   unsigned gc_time_stamp = get_gc_time_stamp();
2513 
2514   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2515     // Cached starting region for current worker was set
2516     // during the current pause - so it's valid.
2517     // Note: the cached starting heap region may be NULL
2518     // (when the collection set is empty).
2519     result = _worker_cset_start_region[worker_i];
2520     assert(result == NULL || result->in_collection_set(), "sanity");
2521     return result;
2522   }
2523 
2524   // The cached entry was not valid so let's calculate
2525   // a suitable starting heap region for this worker.
2526 
2527   // We want the parallel threads to start their collection
2528   // set iteration at different collection set regions to
2529   // avoid contention.
2530   // If we have:
2531   //          n collection set regions
2532   //          p threads
2533   // Then thread t will start at region floor ((t * n) / p)
2534 
2535   result = g1_policy()->collection_set();
2536   uint cs_size = g1_policy()->cset_region_length();
2537   uint active_workers = workers()->active_workers();
2538   assert(UseDynamicNumberOfGCThreads ||
2539            active_workers == workers()->total_workers(),
2540            "Unless dynamic should use total workers");
2541 
2542   uint end_ind   = (cs_size * worker_i) / active_workers;
2543   uint start_ind = 0;
2544 
2545   if (worker_i > 0 &&
2546       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2547     // Previous workers starting region is valid
2548     // so let's iterate from there
2549     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2550     result = _worker_cset_start_region[worker_i - 1];
2551   }
2552 
2553   for (uint i = start_ind; i < end_ind; i++) {
2554     result = result->next_in_collection_set();
2555   }
2556 
2557   // Note: the calculated starting heap region may be NULL
2558   // (when the collection set is empty).
2559   assert(result == NULL || result->in_collection_set(), "sanity");
2560   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2561          "should be updated only once per pause");
2562   _worker_cset_start_region[worker_i] = result;
2563   OrderAccess::storestore();
2564   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2565   return result;
2566 }
2567 
2568 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2569   HeapRegion* r = g1_policy()->collection_set();
2570   while (r != NULL) {
2571     HeapRegion* next = r->next_in_collection_set();
2572     if (cl->doHeapRegion(r)) {
2573       cl->incomplete();
2574       return;
2575     }
2576     r = next;
2577   }
2578 }
2579 
2580 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2581                                                   HeapRegionClosure *cl) {
2582   if (r == NULL) {
2583     // The CSet is empty so there's nothing to do.
2584     return;
2585   }
2586 
2587   assert(r->in_collection_set(),
2588          "Start region must be a member of the collection set.");
2589   HeapRegion* cur = r;
2590   while (cur != NULL) {
2591     HeapRegion* next = cur->next_in_collection_set();
2592     if (cl->doHeapRegion(cur) && false) {
2593       cl->incomplete();
2594       return;
2595     }
2596     cur = next;
2597   }
2598   cur = g1_policy()->collection_set();
2599   while (cur != r) {
2600     HeapRegion* next = cur->next_in_collection_set();
2601     if (cl->doHeapRegion(cur) && false) {
2602       cl->incomplete();
2603       return;
2604     }
2605     cur = next;
2606   }
2607 }
2608 
2609 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2610   HeapRegion* result = _hrm.next_region_in_heap(from);
2611   while (result != NULL && result->is_humongous()) {
2612     result = _hrm.next_region_in_heap(result);
2613   }
2614   return result;
2615 }
2616 
2617 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2618   HeapRegion* hr = heap_region_containing(addr);
2619   return hr->block_start(addr);
2620 }
2621 
2622 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2623   HeapRegion* hr = heap_region_containing(addr);
2624   return hr->block_size(addr);
2625 }
2626 
2627 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2628   HeapRegion* hr = heap_region_containing(addr);
2629   return hr->block_is_obj(addr);
2630 }
2631 
2632 bool G1CollectedHeap::supports_tlab_allocation() const {
2633   return true;
2634 }
2635 
2636 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2637   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2638 }
2639 
2640 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2641   return young_list()->eden_used_bytes();
2642 }
2643 
2644 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2645 // must be smaller than the humongous object limit.
2646 size_t G1CollectedHeap::max_tlab_size() const {
2647   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2648 }
2649 
2650 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2651   // Return the remaining space in the cur alloc region, but not less than
2652   // the min TLAB size.
2653 
2654   // Also, this value can be at most the humongous object threshold,
2655   // since we can't allow tlabs to grow big enough to accommodate
2656   // humongous objects.
2657 
2658   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2659   size_t max_tlab = max_tlab_size() * wordSize;
2660   if (hr == NULL) {
2661     return max_tlab;
2662   } else {
2663     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2664   }
2665 }
2666 
2667 size_t G1CollectedHeap::max_capacity() const {
2668   return _hrm.reserved().byte_size();
2669 }
2670 
2671 jlong G1CollectedHeap::millis_since_last_gc() {
2672   // assert(false, "NYI");
2673   return 0;
2674 }
2675 
2676 void G1CollectedHeap::prepare_for_verify() {
2677   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2678     ensure_parsability(false);
2679   }
2680   g1_rem_set()->prepare_for_verify();
2681 }
2682 
2683 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2684                                               VerifyOption vo) {
2685   switch (vo) {
2686   case VerifyOption_G1UsePrevMarking:
2687     return hr->obj_allocated_since_prev_marking(obj);
2688   case VerifyOption_G1UseNextMarking:
2689     return hr->obj_allocated_since_next_marking(obj);
2690   case VerifyOption_G1UseMarkWord:
2691     return false;
2692   default:
2693     ShouldNotReachHere();
2694   }
2695   return false; // keep some compilers happy
2696 }
2697 
2698 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2699   switch (vo) {
2700   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2701   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2702   case VerifyOption_G1UseMarkWord:    return NULL;
2703   default:                            ShouldNotReachHere();
2704   }
2705   return NULL; // keep some compilers happy
2706 }
2707 
2708 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2709   switch (vo) {
2710   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2711   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2712   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2713   default:                            ShouldNotReachHere();
2714   }
2715   return false; // keep some compilers happy
2716 }
2717 
2718 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2719   switch (vo) {
2720   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2721   case VerifyOption_G1UseNextMarking: return "NTAMS";
2722   case VerifyOption_G1UseMarkWord:    return "NONE";
2723   default:                            ShouldNotReachHere();
2724   }
2725   return NULL; // keep some compilers happy
2726 }
2727 
2728 class VerifyRootsClosure: public OopClosure {
2729 private:
2730   G1CollectedHeap* _g1h;
2731   VerifyOption     _vo;
2732   bool             _failures;
2733 public:
2734   // _vo == UsePrevMarking -> use "prev" marking information,
2735   // _vo == UseNextMarking -> use "next" marking information,
2736   // _vo == UseMarkWord    -> use mark word from object header.
2737   VerifyRootsClosure(VerifyOption vo) :
2738     _g1h(G1CollectedHeap::heap()),
2739     _vo(vo),
2740     _failures(false) { }
2741 
2742   bool failures() { return _failures; }
2743 
2744   template <class T> void do_oop_nv(T* p) {
2745     T heap_oop = oopDesc::load_heap_oop(p);
2746     if (!oopDesc::is_null(heap_oop)) {
2747       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2748       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2749         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2750                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2751         if (_vo == VerifyOption_G1UseMarkWord) {
2752           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2753         }
2754         obj->print_on(gclog_or_tty);
2755         _failures = true;
2756       }
2757     }
2758   }
2759 
2760   void do_oop(oop* p)       { do_oop_nv(p); }
2761   void do_oop(narrowOop* p) { do_oop_nv(p); }
2762 };
2763 
2764 class G1VerifyCodeRootOopClosure: public OopClosure {
2765   G1CollectedHeap* _g1h;
2766   OopClosure* _root_cl;
2767   nmethod* _nm;
2768   VerifyOption _vo;
2769   bool _failures;
2770 
2771   template <class T> void do_oop_work(T* p) {
2772     // First verify that this root is live
2773     _root_cl->do_oop(p);
2774 
2775     if (!G1VerifyHeapRegionCodeRoots) {
2776       // We're not verifying the code roots attached to heap region.
2777       return;
2778     }
2779 
2780     // Don't check the code roots during marking verification in a full GC
2781     if (_vo == VerifyOption_G1UseMarkWord) {
2782       return;
2783     }
2784 
2785     // Now verify that the current nmethod (which contains p) is
2786     // in the code root list of the heap region containing the
2787     // object referenced by p.
2788 
2789     T heap_oop = oopDesc::load_heap_oop(p);
2790     if (!oopDesc::is_null(heap_oop)) {
2791       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2792 
2793       // Now fetch the region containing the object
2794       HeapRegion* hr = _g1h->heap_region_containing(obj);
2795       HeapRegionRemSet* hrrs = hr->rem_set();
2796       // Verify that the strong code root list for this region
2797       // contains the nmethod
2798       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2799         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2800                                "from nmethod "PTR_FORMAT" not in strong "
2801                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2802                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2803         _failures = true;
2804       }
2805     }
2806   }
2807 
2808 public:
2809   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2810     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2811 
2812   void do_oop(oop* p) { do_oop_work(p); }
2813   void do_oop(narrowOop* p) { do_oop_work(p); }
2814 
2815   void set_nmethod(nmethod* nm) { _nm = nm; }
2816   bool failures() { return _failures; }
2817 };
2818 
2819 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2820   G1VerifyCodeRootOopClosure* _oop_cl;
2821 
2822 public:
2823   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2824     _oop_cl(oop_cl) {}
2825 
2826   void do_code_blob(CodeBlob* cb) {
2827     nmethod* nm = cb->as_nmethod_or_null();
2828     if (nm != NULL) {
2829       _oop_cl->set_nmethod(nm);
2830       nm->oops_do(_oop_cl);
2831     }
2832   }
2833 };
2834 
2835 class YoungRefCounterClosure : public OopClosure {
2836   G1CollectedHeap* _g1h;
2837   int              _count;
2838  public:
2839   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2840   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2841   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2842 
2843   int count() { return _count; }
2844   void reset_count() { _count = 0; };
2845 };
2846 
2847 class VerifyKlassClosure: public KlassClosure {
2848   YoungRefCounterClosure _young_ref_counter_closure;
2849   OopClosure *_oop_closure;
2850  public:
2851   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2852   void do_klass(Klass* k) {
2853     k->oops_do(_oop_closure);
2854 
2855     _young_ref_counter_closure.reset_count();
2856     k->oops_do(&_young_ref_counter_closure);
2857     if (_young_ref_counter_closure.count() > 0) {
2858       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
2859     }
2860   }
2861 };
2862 
2863 class VerifyLivenessOopClosure: public OopClosure {
2864   G1CollectedHeap* _g1h;
2865   VerifyOption _vo;
2866 public:
2867   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2868     _g1h(g1h), _vo(vo)
2869   { }
2870   void do_oop(narrowOop *p) { do_oop_work(p); }
2871   void do_oop(      oop *p) { do_oop_work(p); }
2872 
2873   template <class T> void do_oop_work(T *p) {
2874     oop obj = oopDesc::load_decode_heap_oop(p);
2875     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2876               "Dead object referenced by a not dead object");
2877   }
2878 };
2879 
2880 class VerifyObjsInRegionClosure: public ObjectClosure {
2881 private:
2882   G1CollectedHeap* _g1h;
2883   size_t _live_bytes;
2884   HeapRegion *_hr;
2885   VerifyOption _vo;
2886 public:
2887   // _vo == UsePrevMarking -> use "prev" marking information,
2888   // _vo == UseNextMarking -> use "next" marking information,
2889   // _vo == UseMarkWord    -> use mark word from object header.
2890   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2891     : _live_bytes(0), _hr(hr), _vo(vo) {
2892     _g1h = G1CollectedHeap::heap();
2893   }
2894   void do_object(oop o) {
2895     VerifyLivenessOopClosure isLive(_g1h, _vo);
2896     assert(o != NULL, "Huh?");
2897     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2898       // If the object is alive according to the mark word,
2899       // then verify that the marking information agrees.
2900       // Note we can't verify the contra-positive of the
2901       // above: if the object is dead (according to the mark
2902       // word), it may not be marked, or may have been marked
2903       // but has since became dead, or may have been allocated
2904       // since the last marking.
2905       if (_vo == VerifyOption_G1UseMarkWord) {
2906         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2907       }
2908 
2909       o->oop_iterate_no_header(&isLive);
2910       if (!_hr->obj_allocated_since_prev_marking(o)) {
2911         size_t obj_size = o->size();    // Make sure we don't overflow
2912         _live_bytes += (obj_size * HeapWordSize);
2913       }
2914     }
2915   }
2916   size_t live_bytes() { return _live_bytes; }
2917 };
2918 
2919 class PrintObjsInRegionClosure : public ObjectClosure {
2920   HeapRegion *_hr;
2921   G1CollectedHeap *_g1;
2922 public:
2923   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2924     _g1 = G1CollectedHeap::heap();
2925   };
2926 
2927   void do_object(oop o) {
2928     if (o != NULL) {
2929       HeapWord *start = (HeapWord *) o;
2930       size_t word_sz = o->size();
2931       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2932                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2933                           p2i(o), word_sz,
2934                           _g1->isMarkedPrev(o),
2935                           _g1->isMarkedNext(o),
2936                           _hr->obj_allocated_since_prev_marking(o));
2937       HeapWord *end = start + word_sz;
2938       HeapWord *cur;
2939       int *val;
2940       for (cur = start; cur < end; cur++) {
2941         val = (int *) cur;
2942         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", p2i(val), *val);
2943       }
2944     }
2945   }
2946 };
2947 
2948 class VerifyRegionClosure: public HeapRegionClosure {
2949 private:
2950   bool             _par;
2951   VerifyOption     _vo;
2952   bool             _failures;
2953 public:
2954   // _vo == UsePrevMarking -> use "prev" marking information,
2955   // _vo == UseNextMarking -> use "next" marking information,
2956   // _vo == UseMarkWord    -> use mark word from object header.
2957   VerifyRegionClosure(bool par, VerifyOption vo)
2958     : _par(par),
2959       _vo(vo),
2960       _failures(false) {}
2961 
2962   bool failures() {
2963     return _failures;
2964   }
2965 
2966   bool doHeapRegion(HeapRegion* r) {
2967     if (!r->is_continues_humongous()) {
2968       bool failures = false;
2969       r->verify(_vo, &failures);
2970       if (failures) {
2971         _failures = true;
2972       } else {
2973         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2974         r->object_iterate(&not_dead_yet_cl);
2975         if (_vo != VerifyOption_G1UseNextMarking) {
2976           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2977             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2978                                    "max_live_bytes "SIZE_FORMAT" "
2979                                    "< calculated "SIZE_FORMAT,
2980                                    p2i(r->bottom()), p2i(r->end()),
2981                                    r->max_live_bytes(),
2982                                  not_dead_yet_cl.live_bytes());
2983             _failures = true;
2984           }
2985         } else {
2986           // When vo == UseNextMarking we cannot currently do a sanity
2987           // check on the live bytes as the calculation has not been
2988           // finalized yet.
2989         }
2990       }
2991     }
2992     return false; // stop the region iteration if we hit a failure
2993   }
2994 };
2995 
2996 // This is the task used for parallel verification of the heap regions
2997 
2998 class G1ParVerifyTask: public AbstractGangTask {
2999 private:
3000   G1CollectedHeap*  _g1h;
3001   VerifyOption      _vo;
3002   bool              _failures;
3003   HeapRegionClaimer _hrclaimer;
3004 
3005 public:
3006   // _vo == UsePrevMarking -> use "prev" marking information,
3007   // _vo == UseNextMarking -> use "next" marking information,
3008   // _vo == UseMarkWord    -> use mark word from object header.
3009   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3010       AbstractGangTask("Parallel verify task"),
3011       _g1h(g1h),
3012       _vo(vo),
3013       _failures(false),
3014       _hrclaimer(g1h->workers()->active_workers()) {}
3015 
3016   bool failures() {
3017     return _failures;
3018   }
3019 
3020   void work(uint worker_id) {
3021     HandleMark hm;
3022     VerifyRegionClosure blk(true, _vo);
3023     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3024     if (blk.failures()) {
3025       _failures = true;
3026     }
3027   }
3028 };
3029 
3030 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3031   if (SafepointSynchronize::is_at_safepoint()) {
3032     assert(Thread::current()->is_VM_thread(),
3033            "Expected to be executed serially by the VM thread at this point");
3034 
3035     if (!silent) { gclog_or_tty->print("Roots "); }
3036     VerifyRootsClosure rootsCl(vo);
3037     VerifyKlassClosure klassCl(this, &rootsCl);
3038     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3039 
3040     // We apply the relevant closures to all the oops in the
3041     // system dictionary, class loader data graph, the string table
3042     // and the nmethods in the code cache.
3043     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3044     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3045 
3046     {
3047       G1RootProcessor root_processor(this);
3048       root_processor.process_all_roots(&rootsCl,
3049                                        &cldCl,
3050                                        &blobsCl);
3051     }
3052 
3053     bool failures = rootsCl.failures() || codeRootsCl.failures();
3054 
3055     if (vo != VerifyOption_G1UseMarkWord) {
3056       // If we're verifying during a full GC then the region sets
3057       // will have been torn down at the start of the GC. Therefore
3058       // verifying the region sets will fail. So we only verify
3059       // the region sets when not in a full GC.
3060       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3061       verify_region_sets();
3062     }
3063 
3064     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3065     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3066 
3067       G1ParVerifyTask task(this, vo);
3068       assert(UseDynamicNumberOfGCThreads ||
3069         workers()->active_workers() == workers()->total_workers(),
3070         "If not dynamic should be using all the workers");
3071       int n_workers = workers()->active_workers();
3072       set_par_threads(n_workers);
3073       workers()->run_task(&task);
3074       set_par_threads(0);
3075       if (task.failures()) {
3076         failures = true;
3077       }
3078 
3079     } else {
3080       VerifyRegionClosure blk(false, vo);
3081       heap_region_iterate(&blk);
3082       if (blk.failures()) {
3083         failures = true;
3084       }
3085     }
3086 
3087     if (G1StringDedup::is_enabled()) {
3088       if (!silent) gclog_or_tty->print("StrDedup ");
3089       G1StringDedup::verify();
3090     }
3091 
3092     if (failures) {
3093       gclog_or_tty->print_cr("Heap:");
3094       // It helps to have the per-region information in the output to
3095       // help us track down what went wrong. This is why we call
3096       // print_extended_on() instead of print_on().
3097       print_extended_on(gclog_or_tty);
3098       gclog_or_tty->cr();
3099       gclog_or_tty->flush();
3100     }
3101     guarantee(!failures, "there should not have been any failures");
3102   } else {
3103     if (!silent) {
3104       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3105       if (G1StringDedup::is_enabled()) {
3106         gclog_or_tty->print(", StrDedup");
3107       }
3108       gclog_or_tty->print(") ");
3109     }
3110   }
3111 }
3112 
3113 void G1CollectedHeap::verify(bool silent) {
3114   verify(silent, VerifyOption_G1UsePrevMarking);
3115 }
3116 
3117 double G1CollectedHeap::verify(bool guard, const char* msg) {
3118   double verify_time_ms = 0.0;
3119 
3120   if (guard && total_collections() >= VerifyGCStartAt) {
3121     double verify_start = os::elapsedTime();
3122     HandleMark hm;  // Discard invalid handles created during verification
3123     prepare_for_verify();
3124     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3125     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3126   }
3127 
3128   return verify_time_ms;
3129 }
3130 
3131 void G1CollectedHeap::verify_before_gc() {
3132   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3133   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3134 }
3135 
3136 void G1CollectedHeap::verify_after_gc() {
3137   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3138   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3139 }
3140 
3141 class PrintRegionClosure: public HeapRegionClosure {
3142   outputStream* _st;
3143 public:
3144   PrintRegionClosure(outputStream* st) : _st(st) {}
3145   bool doHeapRegion(HeapRegion* r) {
3146     r->print_on(_st);
3147     return false;
3148   }
3149 };
3150 
3151 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3152                                        const HeapRegion* hr,
3153                                        const VerifyOption vo) const {
3154   switch (vo) {
3155   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3156   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3157   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3158   default:                            ShouldNotReachHere();
3159   }
3160   return false; // keep some compilers happy
3161 }
3162 
3163 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3164                                        const VerifyOption vo) const {
3165   switch (vo) {
3166   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3167   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3168   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3169   default:                            ShouldNotReachHere();
3170   }
3171   return false; // keep some compilers happy
3172 }
3173 
3174 void G1CollectedHeap::print_on(outputStream* st) const {
3175   st->print(" %-20s", "garbage-first heap");
3176   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3177             capacity()/K, used_unlocked()/K);
3178   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3179             p2i(_hrm.reserved().start()),
3180             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3181             p2i(_hrm.reserved().end()));
3182   st->cr();
3183   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3184   uint young_regions = _young_list->length();
3185   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3186             (size_t) young_regions * HeapRegion::GrainBytes / K);
3187   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3188   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3189             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3190   st->cr();
3191   MetaspaceAux::print_on(st);
3192 }
3193 
3194 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3195   print_on(st);
3196 
3197   // Print the per-region information.
3198   st->cr();
3199   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3200                "HS=humongous(starts), HC=humongous(continues), "
3201                "CS=collection set, F=free, TS=gc time stamp, "
3202                "PTAMS=previous top-at-mark-start, "
3203                "NTAMS=next top-at-mark-start)");
3204   PrintRegionClosure blk(st);
3205   heap_region_iterate(&blk);
3206 }
3207 
3208 void G1CollectedHeap::print_on_error(outputStream* st) const {
3209   this->CollectedHeap::print_on_error(st);
3210 
3211   if (_cm != NULL) {
3212     st->cr();
3213     _cm->print_on_error(st);
3214   }
3215 }
3216 
3217 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3218   workers()->print_worker_threads_on(st);
3219   _cmThread->print_on(st);
3220   st->cr();
3221   _cm->print_worker_threads_on(st);
3222   _cg1r->print_worker_threads_on(st);
3223   if (G1StringDedup::is_enabled()) {
3224     G1StringDedup::print_worker_threads_on(st);
3225   }
3226 }
3227 
3228 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3229   workers()->threads_do(tc);
3230   tc->do_thread(_cmThread);
3231   _cg1r->threads_do(tc);
3232   if (G1StringDedup::is_enabled()) {
3233     G1StringDedup::threads_do(tc);
3234   }
3235 }
3236 
3237 void G1CollectedHeap::print_tracing_info() const {
3238   // We'll overload this to mean "trace GC pause statistics."
3239   if (TraceYoungGenTime || TraceOldGenTime) {
3240     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3241     // to that.
3242     g1_policy()->print_tracing_info();
3243   }
3244   if (G1SummarizeRSetStats) {
3245     g1_rem_set()->print_summary_info();
3246   }
3247   if (G1SummarizeConcMark) {
3248     concurrent_mark()->print_summary_info();
3249   }
3250   g1_policy()->print_yg_surv_rate_info();
3251 }
3252 
3253 #ifndef PRODUCT
3254 // Helpful for debugging RSet issues.
3255 
3256 class PrintRSetsClosure : public HeapRegionClosure {
3257 private:
3258   const char* _msg;
3259   size_t _occupied_sum;
3260 
3261 public:
3262   bool doHeapRegion(HeapRegion* r) {
3263     HeapRegionRemSet* hrrs = r->rem_set();
3264     size_t occupied = hrrs->occupied();
3265     _occupied_sum += occupied;
3266 
3267     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3268                            HR_FORMAT_PARAMS(r));
3269     if (occupied == 0) {
3270       gclog_or_tty->print_cr("  RSet is empty");
3271     } else {
3272       hrrs->print();
3273     }
3274     gclog_or_tty->print_cr("----------");
3275     return false;
3276   }
3277 
3278   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3279     gclog_or_tty->cr();
3280     gclog_or_tty->print_cr("========================================");
3281     gclog_or_tty->print_cr("%s", msg);
3282     gclog_or_tty->cr();
3283   }
3284 
3285   ~PrintRSetsClosure() {
3286     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3287     gclog_or_tty->print_cr("========================================");
3288     gclog_or_tty->cr();
3289   }
3290 };
3291 
3292 void G1CollectedHeap::print_cset_rsets() {
3293   PrintRSetsClosure cl("Printing CSet RSets");
3294   collection_set_iterate(&cl);
3295 }
3296 
3297 void G1CollectedHeap::print_all_rsets() {
3298   PrintRSetsClosure cl("Printing All RSets");;
3299   heap_region_iterate(&cl);
3300 }
3301 #endif // PRODUCT
3302 
3303 G1CollectedHeap* G1CollectedHeap::heap() {
3304   CollectedHeap* heap = Universe::heap();
3305   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3306   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3307   return (G1CollectedHeap*)heap;
3308 }
3309 
3310 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3311   // always_do_update_barrier = false;
3312   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3313   // Fill TLAB's and such
3314   accumulate_statistics_all_tlabs();
3315   ensure_parsability(true);
3316 
3317   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3318       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3319     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3320   }
3321 }
3322 
3323 void G1CollectedHeap::gc_epilogue(bool full) {
3324 
3325   if (G1SummarizeRSetStats &&
3326       (G1SummarizeRSetStatsPeriod > 0) &&
3327       // we are at the end of the GC. Total collections has already been increased.
3328       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3329     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3330   }
3331 
3332   // FIXME: what is this about?
3333   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3334   // is set.
3335   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3336                         "derived pointer present"));
3337   // always_do_update_barrier = true;
3338 
3339   resize_all_tlabs();
3340   allocation_context_stats().update(full);
3341 
3342   // We have just completed a GC. Update the soft reference
3343   // policy with the new heap occupancy
3344   Universe::update_heap_info_at_gc();
3345 }
3346 
3347 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3348                                                uint gc_count_before,
3349                                                bool* succeeded,
3350                                                GCCause::Cause gc_cause) {
3351   assert_heap_not_locked_and_not_at_safepoint();
3352   g1_policy()->record_stop_world_start();
3353   VM_G1IncCollectionPause op(gc_count_before,
3354                              word_size,
3355                              false, /* should_initiate_conc_mark */
3356                              g1_policy()->max_pause_time_ms(),
3357                              gc_cause);
3358 
3359   op.set_allocation_context(AllocationContext::current());
3360   VMThread::execute(&op);
3361 
3362   HeapWord* result = op.result();
3363   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3364   assert(result == NULL || ret_succeeded,
3365          "the result should be NULL if the VM did not succeed");
3366   *succeeded = ret_succeeded;
3367 
3368   assert_heap_not_locked();
3369   return result;
3370 }
3371 
3372 void
3373 G1CollectedHeap::doConcurrentMark() {
3374   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3375   if (!_cmThread->in_progress()) {
3376     _cmThread->set_started();
3377     CGC_lock->notify();
3378   }
3379 }
3380 
3381 size_t G1CollectedHeap::pending_card_num() {
3382   size_t extra_cards = 0;
3383   JavaThread *curr = Threads::first();
3384   while (curr != NULL) {
3385     DirtyCardQueue& dcq = curr->dirty_card_queue();
3386     extra_cards += dcq.size();
3387     curr = curr->next();
3388   }
3389   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3390   size_t buffer_size = dcqs.buffer_size();
3391   size_t buffer_num = dcqs.completed_buffers_num();
3392 
3393   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3394   // in bytes - not the number of 'entries'. We need to convert
3395   // into a number of cards.
3396   return (buffer_size * buffer_num + extra_cards) / oopSize;
3397 }
3398 
3399 size_t G1CollectedHeap::cards_scanned() {
3400   return g1_rem_set()->cardsScanned();
3401 }
3402 
3403 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3404  private:
3405   size_t _total_humongous;
3406   size_t _candidate_humongous;
3407 
3408   DirtyCardQueue _dcq;
3409 
3410   // We don't nominate objects with many remembered set entries, on
3411   // the assumption that such objects are likely still live.
3412   bool is_remset_small(HeapRegion* region) const {
3413     HeapRegionRemSet* const rset = region->rem_set();
3414     return G1EagerReclaimHumongousObjectsWithStaleRefs
3415       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3416       : rset->is_empty();
3417   }
3418 
3419   bool is_typeArray_region(HeapRegion* region) const {
3420     return oop(region->bottom())->is_typeArray();
3421   }
3422 
3423   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3424     assert(region->is_starts_humongous(), "Must start a humongous object");
3425 
3426     // Candidate selection must satisfy the following constraints
3427     // while concurrent marking is in progress:
3428     //
3429     // * In order to maintain SATB invariants, an object must not be
3430     // reclaimed if it was allocated before the start of marking and
3431     // has not had its references scanned.  Such an object must have
3432     // its references (including type metadata) scanned to ensure no
3433     // live objects are missed by the marking process.  Objects
3434     // allocated after the start of concurrent marking don't need to
3435     // be scanned.
3436     //
3437     // * An object must not be reclaimed if it is on the concurrent
3438     // mark stack.  Objects allocated after the start of concurrent
3439     // marking are never pushed on the mark stack.
3440     //
3441     // Nominating only objects allocated after the start of concurrent
3442     // marking is sufficient to meet both constraints.  This may miss
3443     // some objects that satisfy the constraints, but the marking data
3444     // structures don't support efficiently performing the needed
3445     // additional tests or scrubbing of the mark stack.
3446     //
3447     // However, we presently only nominate is_typeArray() objects.
3448     // A humongous object containing references induces remembered
3449     // set entries on other regions.  In order to reclaim such an
3450     // object, those remembered sets would need to be cleaned up.
3451     //
3452     // We also treat is_typeArray() objects specially, allowing them
3453     // to be reclaimed even if allocated before the start of
3454     // concurrent mark.  For this we rely on mark stack insertion to
3455     // exclude is_typeArray() objects, preventing reclaiming an object
3456     // that is in the mark stack.  We also rely on the metadata for
3457     // such objects to be built-in and so ensured to be kept live.
3458     // Frequent allocation and drop of large binary blobs is an
3459     // important use case for eager reclaim, and this special handling
3460     // may reduce needed headroom.
3461 
3462     return is_typeArray_region(region) && is_remset_small(region);
3463   }
3464 
3465  public:
3466   RegisterHumongousWithInCSetFastTestClosure()
3467   : _total_humongous(0),
3468     _candidate_humongous(0),
3469     _dcq(&JavaThread::dirty_card_queue_set()) {
3470   }
3471 
3472   virtual bool doHeapRegion(HeapRegion* r) {
3473     if (!r->is_starts_humongous()) {
3474       return false;
3475     }
3476     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3477 
3478     bool is_candidate = humongous_region_is_candidate(g1h, r);
3479     uint rindex = r->hrm_index();
3480     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3481     if (is_candidate) {
3482       _candidate_humongous++;
3483       g1h->register_humongous_region_with_cset(rindex);
3484       // Is_candidate already filters out humongous object with large remembered sets.
3485       // If we have a humongous object with a few remembered sets, we simply flush these
3486       // remembered set entries into the DCQS. That will result in automatic
3487       // re-evaluation of their remembered set entries during the following evacuation
3488       // phase.
3489       if (!r->rem_set()->is_empty()) {
3490         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3491                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3492         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3493         HeapRegionRemSetIterator hrrs(r->rem_set());
3494         size_t card_index;
3495         while (hrrs.has_next(card_index)) {
3496           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3497           // The remembered set might contain references to already freed
3498           // regions. Filter out such entries to avoid failing card table
3499           // verification.
3500           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3501             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3502               *card_ptr = CardTableModRefBS::dirty_card_val();
3503               _dcq.enqueue(card_ptr);
3504             }
3505           }
3506         }
3507         r->rem_set()->clear_locked();
3508       }
3509       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3510     }
3511     _total_humongous++;
3512 
3513     return false;
3514   }
3515 
3516   size_t total_humongous() const { return _total_humongous; }
3517   size_t candidate_humongous() const { return _candidate_humongous; }
3518 
3519   void flush_rem_set_entries() { _dcq.flush(); }
3520 };
3521 
3522 void G1CollectedHeap::register_humongous_regions_with_cset() {
3523   if (!G1EagerReclaimHumongousObjects) {
3524     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3525     return;
3526   }
3527   double time = os::elapsed_counter();
3528 
3529   // Collect reclaim candidate information and register candidates with cset.
3530   RegisterHumongousWithInCSetFastTestClosure cl;
3531   heap_region_iterate(&cl);
3532 
3533   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3534   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3535                                                                   cl.total_humongous(),
3536                                                                   cl.candidate_humongous());
3537   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3538 
3539   // Finally flush all remembered set entries to re-check into the global DCQS.
3540   cl.flush_rem_set_entries();
3541 }
3542 
3543 void
3544 G1CollectedHeap::setup_surviving_young_words() {
3545   assert(_surviving_young_words == NULL, "pre-condition");
3546   uint array_length = g1_policy()->young_cset_region_length();
3547   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3548   if (_surviving_young_words == NULL) {
3549     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3550                           "Not enough space for young surv words summary.");
3551   }
3552   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3553 #ifdef ASSERT
3554   for (uint i = 0;  i < array_length; ++i) {
3555     assert( _surviving_young_words[i] == 0, "memset above" );
3556   }
3557 #endif // !ASSERT
3558 }
3559 
3560 void
3561 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3562   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3563   uint array_length = g1_policy()->young_cset_region_length();
3564   for (uint i = 0; i < array_length; ++i) {
3565     _surviving_young_words[i] += surv_young_words[i];
3566   }
3567 }
3568 
3569 void
3570 G1CollectedHeap::cleanup_surviving_young_words() {
3571   guarantee( _surviving_young_words != NULL, "pre-condition" );
3572   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3573   _surviving_young_words = NULL;
3574 }
3575 
3576 #ifdef ASSERT
3577 class VerifyCSetClosure: public HeapRegionClosure {
3578 public:
3579   bool doHeapRegion(HeapRegion* hr) {
3580     // Here we check that the CSet region's RSet is ready for parallel
3581     // iteration. The fields that we'll verify are only manipulated
3582     // when the region is part of a CSet and is collected. Afterwards,
3583     // we reset these fields when we clear the region's RSet (when the
3584     // region is freed) so they are ready when the region is
3585     // re-allocated. The only exception to this is if there's an
3586     // evacuation failure and instead of freeing the region we leave
3587     // it in the heap. In that case, we reset these fields during
3588     // evacuation failure handling.
3589     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3590 
3591     // Here's a good place to add any other checks we'd like to
3592     // perform on CSet regions.
3593     return false;
3594   }
3595 };
3596 #endif // ASSERT
3597 
3598 #if TASKQUEUE_STATS
3599 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3600   st->print_raw_cr("GC Task Stats");
3601   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3602   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3603 }
3604 
3605 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3606   print_taskqueue_stats_hdr(st);
3607 
3608   TaskQueueStats totals;
3609   const int n = workers()->total_workers();
3610   for (int i = 0; i < n; ++i) {
3611     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3612     totals += task_queue(i)->stats;
3613   }
3614   st->print_raw("tot "); totals.print(st); st->cr();
3615 
3616   DEBUG_ONLY(totals.verify());
3617 }
3618 
3619 void G1CollectedHeap::reset_taskqueue_stats() {
3620   const int n = workers()->total_workers();
3621   for (int i = 0; i < n; ++i) {
3622     task_queue(i)->stats.reset();
3623   }
3624 }
3625 #endif // TASKQUEUE_STATS
3626 
3627 void G1CollectedHeap::log_gc_header() {
3628   if (!G1Log::fine()) {
3629     return;
3630   }
3631 
3632   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3633 
3634   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3635     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3636     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3637 
3638   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3639 }
3640 
3641 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3642   if (!G1Log::fine()) {
3643     return;
3644   }
3645 
3646   if (G1Log::finer()) {
3647     if (evacuation_failed()) {
3648       gclog_or_tty->print(" (to-space exhausted)");
3649     }
3650     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3651     g1_policy()->phase_times()->note_gc_end();
3652     g1_policy()->phase_times()->print(pause_time_sec);
3653     g1_policy()->print_detailed_heap_transition();
3654   } else {
3655     if (evacuation_failed()) {
3656       gclog_or_tty->print("--");
3657     }
3658     g1_policy()->print_heap_transition();
3659     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3660   }
3661   gclog_or_tty->flush();
3662 }
3663 
3664 bool
3665 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3666   assert_at_safepoint(true /* should_be_vm_thread */);
3667   guarantee(!is_gc_active(), "collection is not reentrant");
3668 
3669   if (GC_locker::check_active_before_gc()) {
3670     return false;
3671   }
3672 
3673   _gc_timer_stw->register_gc_start();
3674 
3675   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3676 
3677   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3678   ResourceMark rm;
3679 
3680   print_heap_before_gc();
3681   trace_heap_before_gc(_gc_tracer_stw);
3682 
3683   verify_region_sets_optional();
3684   verify_dirty_young_regions();
3685 
3686   // This call will decide whether this pause is an initial-mark
3687   // pause. If it is, during_initial_mark_pause() will return true
3688   // for the duration of this pause.
3689   g1_policy()->decide_on_conc_mark_initiation();
3690 
3691   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3692   assert(!g1_policy()->during_initial_mark_pause() ||
3693           g1_policy()->gcs_are_young(), "sanity");
3694 
3695   // We also do not allow mixed GCs during marking.
3696   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3697 
3698   // Record whether this pause is an initial mark. When the current
3699   // thread has completed its logging output and it's safe to signal
3700   // the CM thread, the flag's value in the policy has been reset.
3701   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3702 
3703   // Inner scope for scope based logging, timers, and stats collection
3704   {
3705     EvacuationInfo evacuation_info;
3706 
3707     if (g1_policy()->during_initial_mark_pause()) {
3708       // We are about to start a marking cycle, so we increment the
3709       // full collection counter.
3710       increment_old_marking_cycles_started();
3711       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3712     }
3713 
3714     _gc_tracer_stw->report_yc_type(yc_type());
3715 
3716     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3717 
3718     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3719                                                                   workers()->active_workers(),
3720                                                                   Threads::number_of_non_daemon_threads());
3721     assert(UseDynamicNumberOfGCThreads ||
3722            active_workers == workers()->total_workers(),
3723            "If not dynamic should be using all the  workers");
3724     workers()->set_active_workers(active_workers);
3725 
3726     double pause_start_sec = os::elapsedTime();
3727     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3728     log_gc_header();
3729 
3730     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3731     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3732 
3733     // If the secondary_free_list is not empty, append it to the
3734     // free_list. No need to wait for the cleanup operation to finish;
3735     // the region allocation code will check the secondary_free_list
3736     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3737     // set, skip this step so that the region allocation code has to
3738     // get entries from the secondary_free_list.
3739     if (!G1StressConcRegionFreeing) {
3740       append_secondary_free_list_if_not_empty_with_lock();
3741     }
3742 
3743     assert(check_young_list_well_formed(), "young list should be well formed");
3744 
3745     // Don't dynamically change the number of GC threads this early.  A value of
3746     // 0 is used to indicate serial work.  When parallel work is done,
3747     // it will be set.
3748 
3749     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3750       IsGCActiveMark x;
3751 
3752       gc_prologue(false);
3753       increment_total_collections(false /* full gc */);
3754       increment_gc_time_stamp();
3755 
3756       verify_before_gc();
3757 
3758       check_bitmaps("GC Start");
3759 
3760       COMPILER2_PRESENT(DerivedPointerTable::clear());
3761 
3762       // Please see comment in g1CollectedHeap.hpp and
3763       // G1CollectedHeap::ref_processing_init() to see how
3764       // reference processing currently works in G1.
3765 
3766       // Enable discovery in the STW reference processor
3767       ref_processor_stw()->enable_discovery();
3768 
3769       {
3770         // We want to temporarily turn off discovery by the
3771         // CM ref processor, if necessary, and turn it back on
3772         // on again later if we do. Using a scoped
3773         // NoRefDiscovery object will do this.
3774         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3775 
3776         // Forget the current alloc region (we might even choose it to be part
3777         // of the collection set!).
3778         _allocator->release_mutator_alloc_region();
3779 
3780         // We should call this after we retire the mutator alloc
3781         // region(s) so that all the ALLOC / RETIRE events are generated
3782         // before the start GC event.
3783         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3784 
3785         // This timing is only used by the ergonomics to handle our pause target.
3786         // It is unclear why this should not include the full pause. We will
3787         // investigate this in CR 7178365.
3788         //
3789         // Preserving the old comment here if that helps the investigation:
3790         //
3791         // The elapsed time induced by the start time below deliberately elides
3792         // the possible verification above.
3793         double sample_start_time_sec = os::elapsedTime();
3794 
3795 #if YOUNG_LIST_VERBOSE
3796         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3797         _young_list->print();
3798         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3799 #endif // YOUNG_LIST_VERBOSE
3800 
3801         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3802 
3803         double scan_wait_start = os::elapsedTime();
3804         // We have to wait until the CM threads finish scanning the
3805         // root regions as it's the only way to ensure that all the
3806         // objects on them have been correctly scanned before we start
3807         // moving them during the GC.
3808         bool waited = _cm->root_regions()->wait_until_scan_finished();
3809         double wait_time_ms = 0.0;
3810         if (waited) {
3811           double scan_wait_end = os::elapsedTime();
3812           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3813         }
3814         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3815 
3816 #if YOUNG_LIST_VERBOSE
3817         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3818         _young_list->print();
3819 #endif // YOUNG_LIST_VERBOSE
3820 
3821         if (g1_policy()->during_initial_mark_pause()) {
3822           concurrent_mark()->checkpointRootsInitialPre();
3823         }
3824 
3825 #if YOUNG_LIST_VERBOSE
3826         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3827         _young_list->print();
3828         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3829 #endif // YOUNG_LIST_VERBOSE
3830 
3831         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3832 
3833         register_humongous_regions_with_cset();
3834 
3835         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3836 
3837         _cm->note_start_of_gc();
3838         // We should not verify the per-thread SATB buffers given that
3839         // we have not filtered them yet (we'll do so during the
3840         // GC). We also call this after finalize_cset() to
3841         // ensure that the CSet has been finalized.
3842         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3843                                  true  /* verify_enqueued_buffers */,
3844                                  false /* verify_thread_buffers */,
3845                                  true  /* verify_fingers */);
3846 
3847         if (_hr_printer.is_active()) {
3848           HeapRegion* hr = g1_policy()->collection_set();
3849           while (hr != NULL) {
3850             _hr_printer.cset(hr);
3851             hr = hr->next_in_collection_set();
3852           }
3853         }
3854 
3855 #ifdef ASSERT
3856         VerifyCSetClosure cl;
3857         collection_set_iterate(&cl);
3858 #endif // ASSERT
3859 
3860         setup_surviving_young_words();
3861 
3862         // Initialize the GC alloc regions.
3863         _allocator->init_gc_alloc_regions(evacuation_info);
3864 
3865         // Actually do the work...
3866         evacuate_collection_set(evacuation_info);
3867 
3868         // We do this to mainly verify the per-thread SATB buffers
3869         // (which have been filtered by now) since we didn't verify
3870         // them earlier. No point in re-checking the stacks / enqueued
3871         // buffers given that the CSet has not changed since last time
3872         // we checked.
3873         _cm->verify_no_cset_oops(false /* verify_stacks */,
3874                                  false /* verify_enqueued_buffers */,
3875                                  true  /* verify_thread_buffers */,
3876                                  true  /* verify_fingers */);
3877 
3878         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3879 
3880         eagerly_reclaim_humongous_regions();
3881 
3882         g1_policy()->clear_collection_set();
3883 
3884         cleanup_surviving_young_words();
3885 
3886         // Start a new incremental collection set for the next pause.
3887         g1_policy()->start_incremental_cset_building();
3888 
3889         clear_cset_fast_test();
3890 
3891         _young_list->reset_sampled_info();
3892 
3893         // Don't check the whole heap at this point as the
3894         // GC alloc regions from this pause have been tagged
3895         // as survivors and moved on to the survivor list.
3896         // Survivor regions will fail the !is_young() check.
3897         assert(check_young_list_empty(false /* check_heap */),
3898           "young list should be empty");
3899 
3900 #if YOUNG_LIST_VERBOSE
3901         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3902         _young_list->print();
3903 #endif // YOUNG_LIST_VERBOSE
3904 
3905         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3906                                              _young_list->first_survivor_region(),
3907                                              _young_list->last_survivor_region());
3908 
3909         _young_list->reset_auxilary_lists();
3910 
3911         if (evacuation_failed()) {
3912           _allocator->set_used(recalculate_used());
3913           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3914           for (uint i = 0; i < n_queues; i++) {
3915             if (_evacuation_failed_info_array[i].has_failed()) {
3916               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3917             }
3918           }
3919         } else {
3920           // The "used" of the the collection set have already been subtracted
3921           // when they were freed.  Add in the bytes evacuated.
3922           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3923         }
3924 
3925         if (g1_policy()->during_initial_mark_pause()) {
3926           // We have to do this before we notify the CM threads that
3927           // they can start working to make sure that all the
3928           // appropriate initialization is done on the CM object.
3929           concurrent_mark()->checkpointRootsInitialPost();
3930           set_marking_started();
3931           // Note that we don't actually trigger the CM thread at
3932           // this point. We do that later when we're sure that
3933           // the current thread has completed its logging output.
3934         }
3935 
3936         allocate_dummy_regions();
3937 
3938 #if YOUNG_LIST_VERBOSE
3939         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3940         _young_list->print();
3941         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3942 #endif // YOUNG_LIST_VERBOSE
3943 
3944         _allocator->init_mutator_alloc_region();
3945 
3946         {
3947           size_t expand_bytes = g1_policy()->expansion_amount();
3948           if (expand_bytes > 0) {
3949             size_t bytes_before = capacity();
3950             // No need for an ergo verbose message here,
3951             // expansion_amount() does this when it returns a value > 0.
3952             if (!expand(expand_bytes)) {
3953               // We failed to expand the heap. Cannot do anything about it.
3954             }
3955           }
3956         }
3957 
3958         // We redo the verification but now wrt to the new CSet which
3959         // has just got initialized after the previous CSet was freed.
3960         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3961                                  true  /* verify_enqueued_buffers */,
3962                                  true  /* verify_thread_buffers */,
3963                                  true  /* verify_fingers */);
3964         _cm->note_end_of_gc();
3965 
3966         // This timing is only used by the ergonomics to handle our pause target.
3967         // It is unclear why this should not include the full pause. We will
3968         // investigate this in CR 7178365.
3969         double sample_end_time_sec = os::elapsedTime();
3970         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3971         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3972 
3973         MemoryService::track_memory_usage();
3974 
3975         // In prepare_for_verify() below we'll need to scan the deferred
3976         // update buffers to bring the RSets up-to-date if
3977         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3978         // the update buffers we'll probably need to scan cards on the
3979         // regions we just allocated to (i.e., the GC alloc
3980         // regions). However, during the last GC we called
3981         // set_saved_mark() on all the GC alloc regions, so card
3982         // scanning might skip the [saved_mark_word()...top()] area of
3983         // those regions (i.e., the area we allocated objects into
3984         // during the last GC). But it shouldn't. Given that
3985         // saved_mark_word() is conditional on whether the GC time stamp
3986         // on the region is current or not, by incrementing the GC time
3987         // stamp here we invalidate all the GC time stamps on all the
3988         // regions and saved_mark_word() will simply return top() for
3989         // all the regions. This is a nicer way of ensuring this rather
3990         // than iterating over the regions and fixing them. In fact, the
3991         // GC time stamp increment here also ensures that
3992         // saved_mark_word() will return top() between pauses, i.e.,
3993         // during concurrent refinement. So we don't need the
3994         // is_gc_active() check to decided which top to use when
3995         // scanning cards (see CR 7039627).
3996         increment_gc_time_stamp();
3997 
3998         verify_after_gc();
3999         check_bitmaps("GC End");
4000 
4001         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4002         ref_processor_stw()->verify_no_references_recorded();
4003 
4004         // CM reference discovery will be re-enabled if necessary.
4005       }
4006 
4007       // We should do this after we potentially expand the heap so
4008       // that all the COMMIT events are generated before the end GC
4009       // event, and after we retire the GC alloc regions so that all
4010       // RETIRE events are generated before the end GC event.
4011       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4012 
4013 #ifdef TRACESPINNING
4014       ParallelTaskTerminator::print_termination_counts();
4015 #endif
4016 
4017       gc_epilogue(false);
4018     }
4019 
4020     // Print the remainder of the GC log output.
4021     log_gc_footer(os::elapsedTime() - pause_start_sec);
4022 
4023     // It is not yet to safe to tell the concurrent mark to
4024     // start as we have some optional output below. We don't want the
4025     // output from the concurrent mark thread interfering with this
4026     // logging output either.
4027 
4028     _hrm.verify_optional();
4029     verify_region_sets_optional();
4030 
4031     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4032     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4033 
4034     print_heap_after_gc();
4035     trace_heap_after_gc(_gc_tracer_stw);
4036 
4037     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4038     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4039     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4040     // before any GC notifications are raised.
4041     g1mm()->update_sizes();
4042 
4043     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4044     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4045     _gc_timer_stw->register_gc_end();
4046     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4047   }
4048   // It should now be safe to tell the concurrent mark thread to start
4049   // without its logging output interfering with the logging output
4050   // that came from the pause.
4051 
4052   if (should_start_conc_mark) {
4053     // CAUTION: after the doConcurrentMark() call below,
4054     // the concurrent marking thread(s) could be running
4055     // concurrently with us. Make sure that anything after
4056     // this point does not assume that we are the only GC thread
4057     // running. Note: of course, the actual marking work will
4058     // not start until the safepoint itself is released in
4059     // SuspendibleThreadSet::desynchronize().
4060     doConcurrentMark();
4061   }
4062 
4063   return true;
4064 }
4065 
4066 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4067   _drain_in_progress = false;
4068   set_evac_failure_closure(cl);
4069   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4070 }
4071 
4072 void G1CollectedHeap::finalize_for_evac_failure() {
4073   assert(_evac_failure_scan_stack != NULL &&
4074          _evac_failure_scan_stack->length() == 0,
4075          "Postcondition");
4076   assert(!_drain_in_progress, "Postcondition");
4077   delete _evac_failure_scan_stack;
4078   _evac_failure_scan_stack = NULL;
4079 }
4080 
4081 void G1CollectedHeap::remove_self_forwarding_pointers() {
4082   double remove_self_forwards_start = os::elapsedTime();
4083 
4084   set_par_threads();
4085   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4086   workers()->run_task(&rsfp_task);
4087   set_par_threads(0);
4088 
4089   // Now restore saved marks, if any.
4090   assert(_objs_with_preserved_marks.size() ==
4091             _preserved_marks_of_objs.size(), "Both or none.");
4092   while (!_objs_with_preserved_marks.is_empty()) {
4093     oop obj = _objs_with_preserved_marks.pop();
4094     markOop m = _preserved_marks_of_objs.pop();
4095     obj->set_mark(m);
4096   }
4097   _objs_with_preserved_marks.clear(true);
4098   _preserved_marks_of_objs.clear(true);
4099 
4100   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4101 }
4102 
4103 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4104   _evac_failure_scan_stack->push(obj);
4105 }
4106 
4107 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4108   assert(_evac_failure_scan_stack != NULL, "precondition");
4109 
4110   while (_evac_failure_scan_stack->length() > 0) {
4111      oop obj = _evac_failure_scan_stack->pop();
4112      _evac_failure_closure->set_region(heap_region_containing(obj));
4113      obj->oop_iterate_backwards(_evac_failure_closure);
4114   }
4115 }
4116 
4117 oop
4118 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4119                                                oop old) {
4120   assert(obj_in_cs(old),
4121          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4122                  p2i(old)));
4123   markOop m = old->mark();
4124   oop forward_ptr = old->forward_to_atomic(old);
4125   if (forward_ptr == NULL) {
4126     // Forward-to-self succeeded.
4127     assert(_par_scan_state != NULL, "par scan state");
4128     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4129     uint queue_num = _par_scan_state->queue_num();
4130 
4131     _evacuation_failed = true;
4132     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4133     if (_evac_failure_closure != cl) {
4134       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4135       assert(!_drain_in_progress,
4136              "Should only be true while someone holds the lock.");
4137       // Set the global evac-failure closure to the current thread's.
4138       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4139       set_evac_failure_closure(cl);
4140       // Now do the common part.
4141       handle_evacuation_failure_common(old, m);
4142       // Reset to NULL.
4143       set_evac_failure_closure(NULL);
4144     } else {
4145       // The lock is already held, and this is recursive.
4146       assert(_drain_in_progress, "This should only be the recursive case.");
4147       handle_evacuation_failure_common(old, m);
4148     }
4149     return old;
4150   } else {
4151     // Forward-to-self failed. Either someone else managed to allocate
4152     // space for this object (old != forward_ptr) or they beat us in
4153     // self-forwarding it (old == forward_ptr).
4154     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4155            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4156                    "should not be in the CSet",
4157                    p2i(old), p2i(forward_ptr)));
4158     return forward_ptr;
4159   }
4160 }
4161 
4162 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4163   preserve_mark_if_necessary(old, m);
4164 
4165   HeapRegion* r = heap_region_containing(old);
4166   if (!r->evacuation_failed()) {
4167     r->set_evacuation_failed(true);
4168     _hr_printer.evac_failure(r);
4169   }
4170 
4171   push_on_evac_failure_scan_stack(old);
4172 
4173   if (!_drain_in_progress) {
4174     // prevent recursion in copy_to_survivor_space()
4175     _drain_in_progress = true;
4176     drain_evac_failure_scan_stack();
4177     _drain_in_progress = false;
4178   }
4179 }
4180 
4181 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4182   assert(evacuation_failed(), "Oversaving!");
4183   // We want to call the "for_promotion_failure" version only in the
4184   // case of a promotion failure.
4185   if (m->must_be_preserved_for_promotion_failure(obj)) {
4186     _objs_with_preserved_marks.push(obj);
4187     _preserved_marks_of_objs.push(m);
4188   }
4189 }
4190 
4191 void G1ParCopyHelper::mark_object(oop obj) {
4192   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4193 
4194   // We know that the object is not moving so it's safe to read its size.
4195   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4196 }
4197 
4198 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4199   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4200   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4201   assert(from_obj != to_obj, "should not be self-forwarded");
4202 
4203   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4204   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4205 
4206   // The object might be in the process of being copied by another
4207   // worker so we cannot trust that its to-space image is
4208   // well-formed. So we have to read its size from its from-space
4209   // image which we know should not be changing.
4210   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4211 }
4212 
4213 template <class T>
4214 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4215   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4216     _scanned_klass->record_modified_oops();
4217   }
4218 }
4219 
4220 template <G1Barrier barrier, G1Mark do_mark_object>
4221 template <class T>
4222 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4223   T heap_oop = oopDesc::load_heap_oop(p);
4224 
4225   if (oopDesc::is_null(heap_oop)) {
4226     return;
4227   }
4228 
4229   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4230 
4231   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4232 
4233   const InCSetState state = _g1->in_cset_state(obj);
4234   if (state.is_in_cset()) {
4235     oop forwardee;
4236     markOop m = obj->mark();
4237     if (m->is_marked()) {
4238       forwardee = (oop) m->decode_pointer();
4239     } else {
4240       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4241     }
4242     assert(forwardee != NULL, "forwardee should not be NULL");
4243     oopDesc::encode_store_heap_oop(p, forwardee);
4244     if (do_mark_object != G1MarkNone && forwardee != obj) {
4245       // If the object is self-forwarded we don't need to explicitly
4246       // mark it, the evacuation failure protocol will do so.
4247       mark_forwarded_object(obj, forwardee);
4248     }
4249 
4250     if (barrier == G1BarrierKlass) {
4251       do_klass_barrier(p, forwardee);
4252     }
4253   } else {
4254     if (state.is_humongous()) {
4255       _g1->set_humongous_is_live(obj);
4256     }
4257     // The object is not in collection set. If we're a root scanning
4258     // closure during an initial mark pause then attempt to mark the object.
4259     if (do_mark_object == G1MarkFromRoot) {
4260       mark_object(obj);
4261     }
4262   }
4263 
4264   if (barrier == G1BarrierEvac) {
4265     _par_scan_state->update_rs(_from, p, _worker_id);
4266   }
4267 }
4268 
4269 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4270 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4271 
4272 class G1ParEvacuateFollowersClosure : public VoidClosure {
4273 protected:
4274   G1CollectedHeap*              _g1h;
4275   G1ParScanThreadState*         _par_scan_state;
4276   RefToScanQueueSet*            _queues;
4277   ParallelTaskTerminator*       _terminator;
4278 
4279   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4280   RefToScanQueueSet*      queues()         { return _queues; }
4281   ParallelTaskTerminator* terminator()     { return _terminator; }
4282 
4283 public:
4284   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4285                                 G1ParScanThreadState* par_scan_state,
4286                                 RefToScanQueueSet* queues,
4287                                 ParallelTaskTerminator* terminator)
4288     : _g1h(g1h), _par_scan_state(par_scan_state),
4289       _queues(queues), _terminator(terminator) {}
4290 
4291   void do_void();
4292 
4293 private:
4294   inline bool offer_termination();
4295 };
4296 
4297 bool G1ParEvacuateFollowersClosure::offer_termination() {
4298   G1ParScanThreadState* const pss = par_scan_state();
4299   pss->start_term_time();
4300   const bool res = terminator()->offer_termination();
4301   pss->end_term_time();
4302   return res;
4303 }
4304 
4305 void G1ParEvacuateFollowersClosure::do_void() {
4306   G1ParScanThreadState* const pss = par_scan_state();
4307   pss->trim_queue();
4308   do {
4309     pss->steal_and_trim_queue(queues());
4310   } while (!offer_termination());
4311 }
4312 
4313 class G1KlassScanClosure : public KlassClosure {
4314  G1ParCopyHelper* _closure;
4315  bool             _process_only_dirty;
4316  int              _count;
4317  public:
4318   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4319       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4320   void do_klass(Klass* klass) {
4321     // If the klass has not been dirtied we know that there's
4322     // no references into  the young gen and we can skip it.
4323    if (!_process_only_dirty || klass->has_modified_oops()) {
4324       // Clean the klass since we're going to scavenge all the metadata.
4325       klass->clear_modified_oops();
4326 
4327       // Tell the closure that this klass is the Klass to scavenge
4328       // and is the one to dirty if oops are left pointing into the young gen.
4329       _closure->set_scanned_klass(klass);
4330 
4331       klass->oops_do(_closure);
4332 
4333       _closure->set_scanned_klass(NULL);
4334     }
4335     _count++;
4336   }
4337 };
4338 
4339 class G1ParTask : public AbstractGangTask {
4340 protected:
4341   G1CollectedHeap*       _g1h;
4342   RefToScanQueueSet      *_queues;
4343   G1RootProcessor*       _root_processor;
4344   ParallelTaskTerminator _terminator;
4345   uint _n_workers;
4346 
4347   Mutex _stats_lock;
4348   Mutex* stats_lock() { return &_stats_lock; }
4349 
4350 public:
4351   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4352     : AbstractGangTask("G1 collection"),
4353       _g1h(g1h),
4354       _queues(task_queues),
4355       _root_processor(root_processor),
4356       _terminator(0, _queues),
4357       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4358   {}
4359 
4360   RefToScanQueueSet* queues() { return _queues; }
4361 
4362   RefToScanQueue *work_queue(int i) {
4363     return queues()->queue(i);
4364   }
4365 
4366   ParallelTaskTerminator* terminator() { return &_terminator; }
4367 
4368   virtual void set_for_termination(int active_workers) {
4369     _root_processor->set_num_workers(active_workers);
4370     terminator()->reset_for_reuse(active_workers);
4371     _n_workers = active_workers;
4372   }
4373 
4374   // Helps out with CLD processing.
4375   //
4376   // During InitialMark we need to:
4377   // 1) Scavenge all CLDs for the young GC.
4378   // 2) Mark all objects directly reachable from strong CLDs.
4379   template <G1Mark do_mark_object>
4380   class G1CLDClosure : public CLDClosure {
4381     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4382     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4383     G1KlassScanClosure                                _klass_in_cld_closure;
4384     bool                                              _claim;
4385 
4386    public:
4387     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4388                  bool only_young, bool claim)
4389         : _oop_closure(oop_closure),
4390           _oop_in_klass_closure(oop_closure->g1(),
4391                                 oop_closure->pss(),
4392                                 oop_closure->rp()),
4393           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4394           _claim(claim) {
4395 
4396     }
4397 
4398     void do_cld(ClassLoaderData* cld) {
4399       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4400     }
4401   };
4402 
4403   void work(uint worker_id) {
4404     if (worker_id >= _n_workers) return;  // no work needed this round
4405 
4406     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4407 
4408     {
4409       ResourceMark rm;
4410       HandleMark   hm;
4411 
4412       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4413 
4414       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4415       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4416 
4417       pss.set_evac_failure_closure(&evac_failure_cl);
4418 
4419       bool only_young = _g1h->g1_policy()->gcs_are_young();
4420 
4421       // Non-IM young GC.
4422       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4423       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4424                                                                                only_young, // Only process dirty klasses.
4425                                                                                false);     // No need to claim CLDs.
4426       // IM young GC.
4427       //    Strong roots closures.
4428       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4429       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4430                                                                                false, // Process all klasses.
4431                                                                                true); // Need to claim CLDs.
4432       //    Weak roots closures.
4433       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4434       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4435                                                                                     false, // Process all klasses.
4436                                                                                     true); // Need to claim CLDs.
4437 
4438       OopClosure* strong_root_cl;
4439       OopClosure* weak_root_cl;
4440       CLDClosure* strong_cld_cl;
4441       CLDClosure* weak_cld_cl;
4442 
4443       bool trace_metadata = false;
4444 
4445       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4446         // We also need to mark copied objects.
4447         strong_root_cl = &scan_mark_root_cl;
4448         strong_cld_cl  = &scan_mark_cld_cl;
4449         if (ClassUnloadingWithConcurrentMark) {
4450           weak_root_cl = &scan_mark_weak_root_cl;
4451           weak_cld_cl  = &scan_mark_weak_cld_cl;
4452           trace_metadata = true;
4453         } else {
4454           weak_root_cl = &scan_mark_root_cl;
4455           weak_cld_cl  = &scan_mark_cld_cl;
4456         }
4457       } else {
4458         strong_root_cl = &scan_only_root_cl;
4459         weak_root_cl   = &scan_only_root_cl;
4460         strong_cld_cl  = &scan_only_cld_cl;
4461         weak_cld_cl    = &scan_only_cld_cl;
4462       }
4463 
4464       pss.start_strong_roots();
4465 
4466       _root_processor->evacuate_roots(strong_root_cl,
4467                                       weak_root_cl,
4468                                       strong_cld_cl,
4469                                       weak_cld_cl,
4470                                       trace_metadata,
4471                                       worker_id);
4472 
4473       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4474       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4475                                             weak_root_cl,
4476                                             worker_id);
4477       pss.end_strong_roots();
4478 
4479       {
4480         double start = os::elapsedTime();
4481         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4482         evac.do_void();
4483         double elapsed_sec = os::elapsedTime() - start;
4484         double term_sec = pss.term_time();
4485         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4486         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4487         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4488       }
4489       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4490       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4491 
4492       if (PrintTerminationStats) {
4493         MutexLocker x(stats_lock());
4494         pss.print_termination_stats(worker_id);
4495       }
4496 
4497       assert(pss.queue_is_empty(), "should be empty");
4498 
4499       // Close the inner scope so that the ResourceMark and HandleMark
4500       // destructors are executed here and are included as part of the
4501       // "GC Worker Time".
4502     }
4503     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4504   }
4505 };
4506 
4507 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4508 private:
4509   BoolObjectClosure* _is_alive;
4510   int _initial_string_table_size;
4511   int _initial_symbol_table_size;
4512 
4513   bool  _process_strings;
4514   int _strings_processed;
4515   int _strings_removed;
4516 
4517   bool  _process_symbols;
4518   int _symbols_processed;
4519   int _symbols_removed;
4520 
4521 public:
4522   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4523     AbstractGangTask("String/Symbol Unlinking"),
4524     _is_alive(is_alive),
4525     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4526     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4527 
4528     _initial_string_table_size = StringTable::the_table()->table_size();
4529     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4530     if (process_strings) {
4531       StringTable::clear_parallel_claimed_index();
4532     }
4533     if (process_symbols) {
4534       SymbolTable::clear_parallel_claimed_index();
4535     }
4536   }
4537 
4538   ~G1StringSymbolTableUnlinkTask() {
4539     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4540               err_msg("claim value %d after unlink less than initial string table size %d",
4541                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4542     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4543               err_msg("claim value %d after unlink less than initial symbol table size %d",
4544                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4545 
4546     if (G1TraceStringSymbolTableScrubbing) {
4547       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4548                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4549                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4550                              strings_processed(), strings_removed(),
4551                              symbols_processed(), symbols_removed());
4552     }
4553   }
4554 
4555   void work(uint worker_id) {
4556     int strings_processed = 0;
4557     int strings_removed = 0;
4558     int symbols_processed = 0;
4559     int symbols_removed = 0;
4560     if (_process_strings) {
4561       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4562       Atomic::add(strings_processed, &_strings_processed);
4563       Atomic::add(strings_removed, &_strings_removed);
4564     }
4565     if (_process_symbols) {
4566       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4567       Atomic::add(symbols_processed, &_symbols_processed);
4568       Atomic::add(symbols_removed, &_symbols_removed);
4569     }
4570   }
4571 
4572   size_t strings_processed() const { return (size_t)_strings_processed; }
4573   size_t strings_removed()   const { return (size_t)_strings_removed; }
4574 
4575   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4576   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4577 };
4578 
4579 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4580 private:
4581   static Monitor* _lock;
4582 
4583   BoolObjectClosure* const _is_alive;
4584   const bool               _unloading_occurred;
4585   const uint               _num_workers;
4586 
4587   // Variables used to claim nmethods.
4588   nmethod* _first_nmethod;
4589   volatile nmethod* _claimed_nmethod;
4590 
4591   // The list of nmethods that need to be processed by the second pass.
4592   volatile nmethod* _postponed_list;
4593   volatile uint     _num_entered_barrier;
4594 
4595  public:
4596   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4597       _is_alive(is_alive),
4598       _unloading_occurred(unloading_occurred),
4599       _num_workers(num_workers),
4600       _first_nmethod(NULL),
4601       _claimed_nmethod(NULL),
4602       _postponed_list(NULL),
4603       _num_entered_barrier(0)
4604   {
4605     nmethod::increase_unloading_clock();
4606     // Get first alive nmethod
4607     NMethodIterator iter = NMethodIterator();
4608     if(iter.next_alive()) {
4609       _first_nmethod = iter.method();
4610     }
4611     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4612   }
4613 
4614   ~G1CodeCacheUnloadingTask() {
4615     CodeCache::verify_clean_inline_caches();
4616 
4617     CodeCache::set_needs_cache_clean(false);
4618     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4619 
4620     CodeCache::verify_icholder_relocations();
4621   }
4622 
4623  private:
4624   void add_to_postponed_list(nmethod* nm) {
4625       nmethod* old;
4626       do {
4627         old = (nmethod*)_postponed_list;
4628         nm->set_unloading_next(old);
4629       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4630   }
4631 
4632   void clean_nmethod(nmethod* nm) {
4633     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4634 
4635     if (postponed) {
4636       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4637       add_to_postponed_list(nm);
4638     }
4639 
4640     // Mark that this thread has been cleaned/unloaded.
4641     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4642     nm->set_unloading_clock(nmethod::global_unloading_clock());
4643   }
4644 
4645   void clean_nmethod_postponed(nmethod* nm) {
4646     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4647   }
4648 
4649   static const int MaxClaimNmethods = 16;
4650 
4651   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4652     nmethod* first;
4653     NMethodIterator last;
4654 
4655     do {
4656       *num_claimed_nmethods = 0;
4657 
4658       first = (nmethod*)_claimed_nmethod;
4659       last = NMethodIterator(first);
4660 
4661       if (first != NULL) {
4662 
4663         for (int i = 0; i < MaxClaimNmethods; i++) {
4664           if (!last.next_alive()) {
4665             break;
4666           }
4667           claimed_nmethods[i] = last.method();
4668           (*num_claimed_nmethods)++;
4669         }
4670       }
4671 
4672     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4673   }
4674 
4675   nmethod* claim_postponed_nmethod() {
4676     nmethod* claim;
4677     nmethod* next;
4678 
4679     do {
4680       claim = (nmethod*)_postponed_list;
4681       if (claim == NULL) {
4682         return NULL;
4683       }
4684 
4685       next = claim->unloading_next();
4686 
4687     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4688 
4689     return claim;
4690   }
4691 
4692  public:
4693   // Mark that we're done with the first pass of nmethod cleaning.
4694   void barrier_mark(uint worker_id) {
4695     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4696     _num_entered_barrier++;
4697     if (_num_entered_barrier == _num_workers) {
4698       ml.notify_all();
4699     }
4700   }
4701 
4702   // See if we have to wait for the other workers to
4703   // finish their first-pass nmethod cleaning work.
4704   void barrier_wait(uint worker_id) {
4705     if (_num_entered_barrier < _num_workers) {
4706       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4707       while (_num_entered_barrier < _num_workers) {
4708           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4709       }
4710     }
4711   }
4712 
4713   // Cleaning and unloading of nmethods. Some work has to be postponed
4714   // to the second pass, when we know which nmethods survive.
4715   void work_first_pass(uint worker_id) {
4716     // The first nmethods is claimed by the first worker.
4717     if (worker_id == 0 && _first_nmethod != NULL) {
4718       clean_nmethod(_first_nmethod);
4719       _first_nmethod = NULL;
4720     }
4721 
4722     int num_claimed_nmethods;
4723     nmethod* claimed_nmethods[MaxClaimNmethods];
4724 
4725     while (true) {
4726       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4727 
4728       if (num_claimed_nmethods == 0) {
4729         break;
4730       }
4731 
4732       for (int i = 0; i < num_claimed_nmethods; i++) {
4733         clean_nmethod(claimed_nmethods[i]);
4734       }
4735     }
4736   }
4737 
4738   void work_second_pass(uint worker_id) {
4739     nmethod* nm;
4740     // Take care of postponed nmethods.
4741     while ((nm = claim_postponed_nmethod()) != NULL) {
4742       clean_nmethod_postponed(nm);
4743     }
4744   }
4745 };
4746 
4747 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4748 
4749 class G1KlassCleaningTask : public StackObj {
4750   BoolObjectClosure*                      _is_alive;
4751   volatile jint                           _clean_klass_tree_claimed;
4752   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4753 
4754  public:
4755   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4756       _is_alive(is_alive),
4757       _clean_klass_tree_claimed(0),
4758       _klass_iterator() {
4759   }
4760 
4761  private:
4762   bool claim_clean_klass_tree_task() {
4763     if (_clean_klass_tree_claimed) {
4764       return false;
4765     }
4766 
4767     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4768   }
4769 
4770   InstanceKlass* claim_next_klass() {
4771     Klass* klass;
4772     do {
4773       klass =_klass_iterator.next_klass();
4774     } while (klass != NULL && !klass->oop_is_instance());
4775 
4776     return (InstanceKlass*)klass;
4777   }
4778 
4779 public:
4780 
4781   void clean_klass(InstanceKlass* ik) {
4782     ik->clean_implementors_list(_is_alive);
4783     ik->clean_method_data(_is_alive);
4784 
4785     // G1 specific cleanup work that has
4786     // been moved here to be done in parallel.
4787     ik->clean_dependent_nmethods();
4788   }
4789 
4790   void work() {
4791     ResourceMark rm;
4792 
4793     // One worker will clean the subklass/sibling klass tree.
4794     if (claim_clean_klass_tree_task()) {
4795       Klass::clean_subklass_tree(_is_alive);
4796     }
4797 
4798     // All workers will help cleaning the classes,
4799     InstanceKlass* klass;
4800     while ((klass = claim_next_klass()) != NULL) {
4801       clean_klass(klass);
4802     }
4803   }
4804 };
4805 
4806 // To minimize the remark pause times, the tasks below are done in parallel.
4807 class G1ParallelCleaningTask : public AbstractGangTask {
4808 private:
4809   G1StringSymbolTableUnlinkTask _string_symbol_task;
4810   G1CodeCacheUnloadingTask      _code_cache_task;
4811   G1KlassCleaningTask           _klass_cleaning_task;
4812 
4813 public:
4814   // The constructor is run in the VMThread.
4815   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4816       AbstractGangTask("Parallel Cleaning"),
4817       _string_symbol_task(is_alive, process_strings, process_symbols),
4818       _code_cache_task(num_workers, is_alive, unloading_occurred),
4819       _klass_cleaning_task(is_alive) {
4820   }
4821 
4822   // The parallel work done by all worker threads.
4823   void work(uint worker_id) {
4824     // Do first pass of code cache cleaning.
4825     _code_cache_task.work_first_pass(worker_id);
4826 
4827     // Let the threads mark that the first pass is done.
4828     _code_cache_task.barrier_mark(worker_id);
4829 
4830     // Clean the Strings and Symbols.
4831     _string_symbol_task.work(worker_id);
4832 
4833     // Wait for all workers to finish the first code cache cleaning pass.
4834     _code_cache_task.barrier_wait(worker_id);
4835 
4836     // Do the second code cache cleaning work, which realize on
4837     // the liveness information gathered during the first pass.
4838     _code_cache_task.work_second_pass(worker_id);
4839 
4840     // Clean all klasses that were not unloaded.
4841     _klass_cleaning_task.work();
4842   }
4843 };
4844 
4845 
4846 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4847                                         bool process_strings,
4848                                         bool process_symbols,
4849                                         bool class_unloading_occurred) {
4850   uint n_workers = workers()->active_workers();
4851 
4852   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4853                                         n_workers, class_unloading_occurred);
4854   set_par_threads(n_workers);
4855   workers()->run_task(&g1_unlink_task);
4856   set_par_threads(0);
4857 }
4858 
4859 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4860                                                      bool process_strings, bool process_symbols) {
4861   {
4862     uint n_workers = workers()->active_workers();
4863     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4864     set_par_threads(n_workers);
4865     workers()->run_task(&g1_unlink_task);
4866     set_par_threads(0);
4867   }
4868 
4869   if (G1StringDedup::is_enabled()) {
4870     G1StringDedup::unlink(is_alive);
4871   }
4872 }
4873 
4874 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4875  private:
4876   DirtyCardQueueSet* _queue;
4877  public:
4878   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4879 
4880   virtual void work(uint worker_id) {
4881     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4882     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4883 
4884     RedirtyLoggedCardTableEntryClosure cl;
4885     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4886 
4887     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4888   }
4889 };
4890 
4891 void G1CollectedHeap::redirty_logged_cards() {
4892   double redirty_logged_cards_start = os::elapsedTime();
4893 
4894   uint n_workers = workers()->active_workers();
4895 
4896   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4897   dirty_card_queue_set().reset_for_par_iteration();
4898   set_par_threads(n_workers);
4899   workers()->run_task(&redirty_task);
4900   set_par_threads(0);
4901 
4902   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4903   dcq.merge_bufferlists(&dirty_card_queue_set());
4904   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4905 
4906   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4907 }
4908 
4909 // Weak Reference Processing support
4910 
4911 // An always "is_alive" closure that is used to preserve referents.
4912 // If the object is non-null then it's alive.  Used in the preservation
4913 // of referent objects that are pointed to by reference objects
4914 // discovered by the CM ref processor.
4915 class G1AlwaysAliveClosure: public BoolObjectClosure {
4916   G1CollectedHeap* _g1;
4917 public:
4918   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4919   bool do_object_b(oop p) {
4920     if (p != NULL) {
4921       return true;
4922     }
4923     return false;
4924   }
4925 };
4926 
4927 bool G1STWIsAliveClosure::do_object_b(oop p) {
4928   // An object is reachable if it is outside the collection set,
4929   // or is inside and copied.
4930   return !_g1->obj_in_cs(p) || p->is_forwarded();
4931 }
4932 
4933 // Non Copying Keep Alive closure
4934 class G1KeepAliveClosure: public OopClosure {
4935   G1CollectedHeap* _g1;
4936 public:
4937   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4938   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4939   void do_oop(oop* p) {
4940     oop obj = *p;
4941     assert(obj != NULL, "the caller should have filtered out NULL values");
4942 
4943     const InCSetState cset_state = _g1->in_cset_state(obj);
4944     if (!cset_state.is_in_cset_or_humongous()) {
4945       return;
4946     }
4947     if (cset_state.is_in_cset()) {
4948       assert( obj->is_forwarded(), "invariant" );
4949       *p = obj->forwardee();
4950     } else {
4951       assert(!obj->is_forwarded(), "invariant" );
4952       assert(cset_state.is_humongous(),
4953              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4954       _g1->set_humongous_is_live(obj);
4955     }
4956   }
4957 };
4958 
4959 // Copying Keep Alive closure - can be called from both
4960 // serial and parallel code as long as different worker
4961 // threads utilize different G1ParScanThreadState instances
4962 // and different queues.
4963 
4964 class G1CopyingKeepAliveClosure: public OopClosure {
4965   G1CollectedHeap*         _g1h;
4966   OopClosure*              _copy_non_heap_obj_cl;
4967   G1ParScanThreadState*    _par_scan_state;
4968 
4969 public:
4970   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4971                             OopClosure* non_heap_obj_cl,
4972                             G1ParScanThreadState* pss):
4973     _g1h(g1h),
4974     _copy_non_heap_obj_cl(non_heap_obj_cl),
4975     _par_scan_state(pss)
4976   {}
4977 
4978   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4979   virtual void do_oop(      oop* p) { do_oop_work(p); }
4980 
4981   template <class T> void do_oop_work(T* p) {
4982     oop obj = oopDesc::load_decode_heap_oop(p);
4983 
4984     if (_g1h->is_in_cset_or_humongous(obj)) {
4985       // If the referent object has been forwarded (either copied
4986       // to a new location or to itself in the event of an
4987       // evacuation failure) then we need to update the reference
4988       // field and, if both reference and referent are in the G1
4989       // heap, update the RSet for the referent.
4990       //
4991       // If the referent has not been forwarded then we have to keep
4992       // it alive by policy. Therefore we have copy the referent.
4993       //
4994       // If the reference field is in the G1 heap then we can push
4995       // on the PSS queue. When the queue is drained (after each
4996       // phase of reference processing) the object and it's followers
4997       // will be copied, the reference field set to point to the
4998       // new location, and the RSet updated. Otherwise we need to
4999       // use the the non-heap or metadata closures directly to copy
5000       // the referent object and update the pointer, while avoiding
5001       // updating the RSet.
5002 
5003       if (_g1h->is_in_g1_reserved(p)) {
5004         _par_scan_state->push_on_queue(p);
5005       } else {
5006         assert(!Metaspace::contains((const void*)p),
5007                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5008         _copy_non_heap_obj_cl->do_oop(p);
5009       }
5010     }
5011   }
5012 };
5013 
5014 // Serial drain queue closure. Called as the 'complete_gc'
5015 // closure for each discovered list in some of the
5016 // reference processing phases.
5017 
5018 class G1STWDrainQueueClosure: public VoidClosure {
5019 protected:
5020   G1CollectedHeap* _g1h;
5021   G1ParScanThreadState* _par_scan_state;
5022 
5023   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5024 
5025 public:
5026   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5027     _g1h(g1h),
5028     _par_scan_state(pss)
5029   { }
5030 
5031   void do_void() {
5032     G1ParScanThreadState* const pss = par_scan_state();
5033     pss->trim_queue();
5034   }
5035 };
5036 
5037 // Parallel Reference Processing closures
5038 
5039 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5040 // processing during G1 evacuation pauses.
5041 
5042 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5043 private:
5044   G1CollectedHeap*   _g1h;
5045   RefToScanQueueSet* _queues;
5046   FlexibleWorkGang*  _workers;
5047   int                _active_workers;
5048 
5049 public:
5050   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5051                         FlexibleWorkGang* workers,
5052                         RefToScanQueueSet *task_queues,
5053                         int n_workers) :
5054     _g1h(g1h),
5055     _queues(task_queues),
5056     _workers(workers),
5057     _active_workers(n_workers)
5058   {
5059     assert(n_workers > 0, "shouldn't call this otherwise");
5060   }
5061 
5062   // Executes the given task using concurrent marking worker threads.
5063   virtual void execute(ProcessTask& task);
5064   virtual void execute(EnqueueTask& task);
5065 };
5066 
5067 // Gang task for possibly parallel reference processing
5068 
5069 class G1STWRefProcTaskProxy: public AbstractGangTask {
5070   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5071   ProcessTask&     _proc_task;
5072   G1CollectedHeap* _g1h;
5073   RefToScanQueueSet *_task_queues;
5074   ParallelTaskTerminator* _terminator;
5075 
5076 public:
5077   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5078                      G1CollectedHeap* g1h,
5079                      RefToScanQueueSet *task_queues,
5080                      ParallelTaskTerminator* terminator) :
5081     AbstractGangTask("Process reference objects in parallel"),
5082     _proc_task(proc_task),
5083     _g1h(g1h),
5084     _task_queues(task_queues),
5085     _terminator(terminator)
5086   {}
5087 
5088   virtual void work(uint worker_id) {
5089     // The reference processing task executed by a single worker.
5090     ResourceMark rm;
5091     HandleMark   hm;
5092 
5093     G1STWIsAliveClosure is_alive(_g1h);
5094 
5095     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5096     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5097 
5098     pss.set_evac_failure_closure(&evac_failure_cl);
5099 
5100     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5101 
5102     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5103 
5104     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5105 
5106     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5107       // We also need to mark copied objects.
5108       copy_non_heap_cl = &copy_mark_non_heap_cl;
5109     }
5110 
5111     // Keep alive closure.
5112     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5113 
5114     // Complete GC closure
5115     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5116 
5117     // Call the reference processing task's work routine.
5118     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5119 
5120     // Note we cannot assert that the refs array is empty here as not all
5121     // of the processing tasks (specifically phase2 - pp2_work) execute
5122     // the complete_gc closure (which ordinarily would drain the queue) so
5123     // the queue may not be empty.
5124   }
5125 };
5126 
5127 // Driver routine for parallel reference processing.
5128 // Creates an instance of the ref processing gang
5129 // task and has the worker threads execute it.
5130 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5131   assert(_workers != NULL, "Need parallel worker threads.");
5132 
5133   ParallelTaskTerminator terminator(_active_workers, _queues);
5134   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5135 
5136   _g1h->set_par_threads(_active_workers);
5137   _workers->run_task(&proc_task_proxy);
5138   _g1h->set_par_threads(0);
5139 }
5140 
5141 // Gang task for parallel reference enqueueing.
5142 
5143 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5144   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5145   EnqueueTask& _enq_task;
5146 
5147 public:
5148   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5149     AbstractGangTask("Enqueue reference objects in parallel"),
5150     _enq_task(enq_task)
5151   { }
5152 
5153   virtual void work(uint worker_id) {
5154     _enq_task.work(worker_id);
5155   }
5156 };
5157 
5158 // Driver routine for parallel reference enqueueing.
5159 // Creates an instance of the ref enqueueing gang
5160 // task and has the worker threads execute it.
5161 
5162 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5163   assert(_workers != NULL, "Need parallel worker threads.");
5164 
5165   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5166 
5167   _g1h->set_par_threads(_active_workers);
5168   _workers->run_task(&enq_task_proxy);
5169   _g1h->set_par_threads(0);
5170 }
5171 
5172 // End of weak reference support closures
5173 
5174 // Abstract task used to preserve (i.e. copy) any referent objects
5175 // that are in the collection set and are pointed to by reference
5176 // objects discovered by the CM ref processor.
5177 
5178 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5179 protected:
5180   G1CollectedHeap* _g1h;
5181   RefToScanQueueSet      *_queues;
5182   ParallelTaskTerminator _terminator;
5183   uint _n_workers;
5184 
5185 public:
5186   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5187     AbstractGangTask("ParPreserveCMReferents"),
5188     _g1h(g1h),
5189     _queues(task_queues),
5190     _terminator(workers, _queues),
5191     _n_workers(workers)
5192   { }
5193 
5194   void work(uint worker_id) {
5195     ResourceMark rm;
5196     HandleMark   hm;
5197 
5198     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5199     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5200 
5201     pss.set_evac_failure_closure(&evac_failure_cl);
5202 
5203     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5204 
5205     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5206 
5207     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5208 
5209     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5210 
5211     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5212       // We also need to mark copied objects.
5213       copy_non_heap_cl = &copy_mark_non_heap_cl;
5214     }
5215 
5216     // Is alive closure
5217     G1AlwaysAliveClosure always_alive(_g1h);
5218 
5219     // Copying keep alive closure. Applied to referent objects that need
5220     // to be copied.
5221     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5222 
5223     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5224 
5225     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5226     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5227 
5228     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5229     // So this must be true - but assert just in case someone decides to
5230     // change the worker ids.
5231     assert(worker_id < limit, "sanity");
5232     assert(!rp->discovery_is_atomic(), "check this code");
5233 
5234     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5235     for (uint idx = worker_id; idx < limit; idx += stride) {
5236       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5237 
5238       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5239       while (iter.has_next()) {
5240         // Since discovery is not atomic for the CM ref processor, we
5241         // can see some null referent objects.
5242         iter.load_ptrs(DEBUG_ONLY(true));
5243         oop ref = iter.obj();
5244 
5245         // This will filter nulls.
5246         if (iter.is_referent_alive()) {
5247           iter.make_referent_alive();
5248         }
5249         iter.move_to_next();
5250       }
5251     }
5252 
5253     // Drain the queue - which may cause stealing
5254     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5255     drain_queue.do_void();
5256     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5257     assert(pss.queue_is_empty(), "should be");
5258   }
5259 };
5260 
5261 // Weak Reference processing during an evacuation pause (part 1).
5262 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5263   double ref_proc_start = os::elapsedTime();
5264 
5265   ReferenceProcessor* rp = _ref_processor_stw;
5266   assert(rp->discovery_enabled(), "should have been enabled");
5267 
5268   // Any reference objects, in the collection set, that were 'discovered'
5269   // by the CM ref processor should have already been copied (either by
5270   // applying the external root copy closure to the discovered lists, or
5271   // by following an RSet entry).
5272   //
5273   // But some of the referents, that are in the collection set, that these
5274   // reference objects point to may not have been copied: the STW ref
5275   // processor would have seen that the reference object had already
5276   // been 'discovered' and would have skipped discovering the reference,
5277   // but would not have treated the reference object as a regular oop.
5278   // As a result the copy closure would not have been applied to the
5279   // referent object.
5280   //
5281   // We need to explicitly copy these referent objects - the references
5282   // will be processed at the end of remarking.
5283   //
5284   // We also need to do this copying before we process the reference
5285   // objects discovered by the STW ref processor in case one of these
5286   // referents points to another object which is also referenced by an
5287   // object discovered by the STW ref processor.
5288 
5289   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5290 
5291   set_par_threads(no_of_gc_workers);
5292   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5293                                                  no_of_gc_workers,
5294                                                  _task_queues);
5295 
5296   workers()->run_task(&keep_cm_referents);
5297 
5298   set_par_threads(0);
5299 
5300   // Closure to test whether a referent is alive.
5301   G1STWIsAliveClosure is_alive(this);
5302 
5303   // Even when parallel reference processing is enabled, the processing
5304   // of JNI refs is serial and performed serially by the current thread
5305   // rather than by a worker. The following PSS will be used for processing
5306   // JNI refs.
5307 
5308   // Use only a single queue for this PSS.
5309   G1ParScanThreadState            pss(this, 0, NULL);
5310 
5311   // We do not embed a reference processor in the copying/scanning
5312   // closures while we're actually processing the discovered
5313   // reference objects.
5314   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5315 
5316   pss.set_evac_failure_closure(&evac_failure_cl);
5317 
5318   assert(pss.queue_is_empty(), "pre-condition");
5319 
5320   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5321 
5322   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5323 
5324   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5325 
5326   if (g1_policy()->during_initial_mark_pause()) {
5327     // We also need to mark copied objects.
5328     copy_non_heap_cl = &copy_mark_non_heap_cl;
5329   }
5330 
5331   // Keep alive closure.
5332   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5333 
5334   // Serial Complete GC closure
5335   G1STWDrainQueueClosure drain_queue(this, &pss);
5336 
5337   // Setup the soft refs policy...
5338   rp->setup_policy(false);
5339 
5340   ReferenceProcessorStats stats;
5341   if (!rp->processing_is_mt()) {
5342     // Serial reference processing...
5343     stats = rp->process_discovered_references(&is_alive,
5344                                               &keep_alive,
5345                                               &drain_queue,
5346                                               NULL,
5347                                               _gc_timer_stw,
5348                                               _gc_tracer_stw->gc_id());
5349   } else {
5350     // Parallel reference processing
5351     assert(rp->num_q() == no_of_gc_workers, "sanity");
5352     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5353 
5354     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5355     stats = rp->process_discovered_references(&is_alive,
5356                                               &keep_alive,
5357                                               &drain_queue,
5358                                               &par_task_executor,
5359                                               _gc_timer_stw,
5360                                               _gc_tracer_stw->gc_id());
5361   }
5362 
5363   _gc_tracer_stw->report_gc_reference_stats(stats);
5364 
5365   // We have completed copying any necessary live referent objects.
5366   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5367 
5368   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5369   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5370 }
5371 
5372 // Weak Reference processing during an evacuation pause (part 2).
5373 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5374   double ref_enq_start = os::elapsedTime();
5375 
5376   ReferenceProcessor* rp = _ref_processor_stw;
5377   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5378 
5379   // Now enqueue any remaining on the discovered lists on to
5380   // the pending list.
5381   if (!rp->processing_is_mt()) {
5382     // Serial reference processing...
5383     rp->enqueue_discovered_references();
5384   } else {
5385     // Parallel reference enqueueing
5386 
5387     assert(no_of_gc_workers == workers()->active_workers(),
5388            "Need to reset active workers");
5389     assert(rp->num_q() == no_of_gc_workers, "sanity");
5390     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5391 
5392     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5393     rp->enqueue_discovered_references(&par_task_executor);
5394   }
5395 
5396   rp->verify_no_references_recorded();
5397   assert(!rp->discovery_enabled(), "should have been disabled");
5398 
5399   // FIXME
5400   // CM's reference processing also cleans up the string and symbol tables.
5401   // Should we do that here also? We could, but it is a serial operation
5402   // and could significantly increase the pause time.
5403 
5404   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5405   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5406 }
5407 
5408 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5409   _expand_heap_after_alloc_failure = true;
5410   _evacuation_failed = false;
5411 
5412   // Should G1EvacuationFailureALot be in effect for this GC?
5413   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5414 
5415   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5416 
5417   // Disable the hot card cache.
5418   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5419   hot_card_cache->reset_hot_cache_claimed_index();
5420   hot_card_cache->set_use_cache(false);
5421 
5422   const uint n_workers = workers()->active_workers();
5423   assert(UseDynamicNumberOfGCThreads ||
5424          n_workers == workers()->total_workers(),
5425          "If not dynamic should be using all the  workers");
5426   set_par_threads(n_workers);
5427 
5428 
5429   init_for_evac_failure(NULL);
5430 
5431   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5432   double start_par_time_sec = os::elapsedTime();
5433   double end_par_time_sec;
5434 
5435   {
5436     G1RootProcessor root_processor(this);
5437     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5438     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5439     if (g1_policy()->during_initial_mark_pause()) {
5440       ClassLoaderDataGraph::clear_claimed_marks();
5441     }
5442 
5443      // The individual threads will set their evac-failure closures.
5444      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5445      // These tasks use ShareHeap::_process_strong_tasks
5446      assert(UseDynamicNumberOfGCThreads ||
5447             workers()->active_workers() == workers()->total_workers(),
5448             "If not dynamic should be using all the  workers");
5449     workers()->run_task(&g1_par_task);
5450     end_par_time_sec = os::elapsedTime();
5451 
5452     // Closing the inner scope will execute the destructor
5453     // for the G1RootProcessor object. We record the current
5454     // elapsed time before closing the scope so that time
5455     // taken for the destructor is NOT included in the
5456     // reported parallel time.
5457   }
5458 
5459   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5460 
5461   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5462   phase_times->record_par_time(par_time_ms);
5463 
5464   double code_root_fixup_time_ms =
5465         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5466   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5467 
5468   set_par_threads(0);
5469 
5470   // Process any discovered reference objects - we have
5471   // to do this _before_ we retire the GC alloc regions
5472   // as we may have to copy some 'reachable' referent
5473   // objects (and their reachable sub-graphs) that were
5474   // not copied during the pause.
5475   process_discovered_references(n_workers);
5476 
5477   if (G1StringDedup::is_enabled()) {
5478     double fixup_start = os::elapsedTime();
5479 
5480     G1STWIsAliveClosure is_alive(this);
5481     G1KeepAliveClosure keep_alive(this);
5482     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5483 
5484     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5485     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5486   }
5487 
5488   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5489   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5490 
5491   // Reset and re-enable the hot card cache.
5492   // Note the counts for the cards in the regions in the
5493   // collection set are reset when the collection set is freed.
5494   hot_card_cache->reset_hot_cache();
5495   hot_card_cache->set_use_cache(true);
5496 
5497   purge_code_root_memory();
5498 
5499   finalize_for_evac_failure();
5500 
5501   if (evacuation_failed()) {
5502     remove_self_forwarding_pointers();
5503 
5504     // Reset the G1EvacuationFailureALot counters and flags
5505     // Note: the values are reset only when an actual
5506     // evacuation failure occurs.
5507     NOT_PRODUCT(reset_evacuation_should_fail();)
5508   }
5509 
5510   // Enqueue any remaining references remaining on the STW
5511   // reference processor's discovered lists. We need to do
5512   // this after the card table is cleaned (and verified) as
5513   // the act of enqueueing entries on to the pending list
5514   // will log these updates (and dirty their associated
5515   // cards). We need these updates logged to update any
5516   // RSets.
5517   enqueue_discovered_references(n_workers);
5518 
5519   redirty_logged_cards();
5520   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5521 }
5522 
5523 void G1CollectedHeap::free_region(HeapRegion* hr,
5524                                   FreeRegionList* free_list,
5525                                   bool par,
5526                                   bool locked) {
5527   assert(!hr->is_free(), "the region should not be free");
5528   assert(!hr->is_empty(), "the region should not be empty");
5529   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5530   assert(free_list != NULL, "pre-condition");
5531 
5532   if (G1VerifyBitmaps) {
5533     MemRegion mr(hr->bottom(), hr->end());
5534     concurrent_mark()->clearRangePrevBitmap(mr);
5535   }
5536 
5537   // Clear the card counts for this region.
5538   // Note: we only need to do this if the region is not young
5539   // (since we don't refine cards in young regions).
5540   if (!hr->is_young()) {
5541     _cg1r->hot_card_cache()->reset_card_counts(hr);
5542   }
5543   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5544   free_list->add_ordered(hr);
5545 }
5546 
5547 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5548                                      FreeRegionList* free_list,
5549                                      bool par) {
5550   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5551   assert(free_list != NULL, "pre-condition");
5552 
5553   size_t hr_capacity = hr->capacity();
5554   // We need to read this before we make the region non-humongous,
5555   // otherwise the information will be gone.
5556   uint last_index = hr->last_hc_index();
5557   hr->clear_humongous();
5558   free_region(hr, free_list, par);
5559 
5560   uint i = hr->hrm_index() + 1;
5561   while (i < last_index) {
5562     HeapRegion* curr_hr = region_at(i);
5563     assert(curr_hr->is_continues_humongous(), "invariant");
5564     curr_hr->clear_humongous();
5565     free_region(curr_hr, free_list, par);
5566     i += 1;
5567   }
5568 }
5569 
5570 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5571                                        const HeapRegionSetCount& humongous_regions_removed) {
5572   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5573     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5574     _old_set.bulk_remove(old_regions_removed);
5575     _humongous_set.bulk_remove(humongous_regions_removed);
5576   }
5577 
5578 }
5579 
5580 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5581   assert(list != NULL, "list can't be null");
5582   if (!list->is_empty()) {
5583     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5584     _hrm.insert_list_into_free_list(list);
5585   }
5586 }
5587 
5588 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5589   _allocator->decrease_used(bytes);
5590 }
5591 
5592 class G1ParCleanupCTTask : public AbstractGangTask {
5593   G1SATBCardTableModRefBS* _ct_bs;
5594   G1CollectedHeap* _g1h;
5595   HeapRegion* volatile _su_head;
5596 public:
5597   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5598                      G1CollectedHeap* g1h) :
5599     AbstractGangTask("G1 Par Cleanup CT Task"),
5600     _ct_bs(ct_bs), _g1h(g1h) { }
5601 
5602   void work(uint worker_id) {
5603     HeapRegion* r;
5604     while (r = _g1h->pop_dirty_cards_region()) {
5605       clear_cards(r);
5606     }
5607   }
5608 
5609   void clear_cards(HeapRegion* r) {
5610     // Cards of the survivors should have already been dirtied.
5611     if (!r->is_survivor()) {
5612       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5613     }
5614   }
5615 };
5616 
5617 #ifndef PRODUCT
5618 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5619   G1CollectedHeap* _g1h;
5620   G1SATBCardTableModRefBS* _ct_bs;
5621 public:
5622   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5623     : _g1h(g1h), _ct_bs(ct_bs) { }
5624   virtual bool doHeapRegion(HeapRegion* r) {
5625     if (r->is_survivor()) {
5626       _g1h->verify_dirty_region(r);
5627     } else {
5628       _g1h->verify_not_dirty_region(r);
5629     }
5630     return false;
5631   }
5632 };
5633 
5634 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5635   // All of the region should be clean.
5636   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5637   MemRegion mr(hr->bottom(), hr->end());
5638   ct_bs->verify_not_dirty_region(mr);
5639 }
5640 
5641 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5642   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5643   // dirty allocated blocks as they allocate them. The thread that
5644   // retires each region and replaces it with a new one will do a
5645   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5646   // not dirty that area (one less thing to have to do while holding
5647   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5648   // is dirty.
5649   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5650   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5651   if (hr->is_young()) {
5652     ct_bs->verify_g1_young_region(mr);
5653   } else {
5654     ct_bs->verify_dirty_region(mr);
5655   }
5656 }
5657 
5658 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5659   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5660   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5661     verify_dirty_region(hr);
5662   }
5663 }
5664 
5665 void G1CollectedHeap::verify_dirty_young_regions() {
5666   verify_dirty_young_list(_young_list->first_region());
5667 }
5668 
5669 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5670                                                HeapWord* tams, HeapWord* end) {
5671   guarantee(tams <= end,
5672             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5673   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5674   if (result < end) {
5675     gclog_or_tty->cr();
5676     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5677                            bitmap_name, p2i(result));
5678     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5679                            bitmap_name, p2i(tams), p2i(end));
5680     return false;
5681   }
5682   return true;
5683 }
5684 
5685 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5686   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5687   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5688 
5689   HeapWord* bottom = hr->bottom();
5690   HeapWord* ptams  = hr->prev_top_at_mark_start();
5691   HeapWord* ntams  = hr->next_top_at_mark_start();
5692   HeapWord* end    = hr->end();
5693 
5694   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5695 
5696   bool res_n = true;
5697   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5698   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5699   // if we happen to be in that state.
5700   if (mark_in_progress() || !_cmThread->in_progress()) {
5701     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5702   }
5703   if (!res_p || !res_n) {
5704     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5705                            HR_FORMAT_PARAMS(hr));
5706     gclog_or_tty->print_cr("#### Caller: %s", caller);
5707     return false;
5708   }
5709   return true;
5710 }
5711 
5712 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5713   if (!G1VerifyBitmaps) return;
5714 
5715   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5716 }
5717 
5718 class G1VerifyBitmapClosure : public HeapRegionClosure {
5719 private:
5720   const char* _caller;
5721   G1CollectedHeap* _g1h;
5722   bool _failures;
5723 
5724 public:
5725   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5726     _caller(caller), _g1h(g1h), _failures(false) { }
5727 
5728   bool failures() { return _failures; }
5729 
5730   virtual bool doHeapRegion(HeapRegion* hr) {
5731     if (hr->is_continues_humongous()) return false;
5732 
5733     bool result = _g1h->verify_bitmaps(_caller, hr);
5734     if (!result) {
5735       _failures = true;
5736     }
5737     return false;
5738   }
5739 };
5740 
5741 void G1CollectedHeap::check_bitmaps(const char* caller) {
5742   if (!G1VerifyBitmaps) return;
5743 
5744   G1VerifyBitmapClosure cl(caller, this);
5745   heap_region_iterate(&cl);
5746   guarantee(!cl.failures(), "bitmap verification");
5747 }
5748 
5749 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5750  private:
5751   bool _failures;
5752  public:
5753   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5754 
5755   virtual bool doHeapRegion(HeapRegion* hr) {
5756     uint i = hr->hrm_index();
5757     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5758     if (hr->is_humongous()) {
5759       if (hr->in_collection_set()) {
5760         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5761         _failures = true;
5762         return true;
5763       }
5764       if (cset_state.is_in_cset()) {
5765         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5766         _failures = true;
5767         return true;
5768       }
5769       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5770         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5771         _failures = true;
5772         return true;
5773       }
5774     } else {
5775       if (cset_state.is_humongous()) {
5776         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5777         _failures = true;
5778         return true;
5779       }
5780       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5781         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5782                                hr->in_collection_set(), cset_state.value(), i);
5783         _failures = true;
5784         return true;
5785       }
5786       if (cset_state.is_in_cset()) {
5787         if (hr->is_young() != (cset_state.is_young())) {
5788           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5789                                  hr->is_young(), cset_state.value(), i);
5790           _failures = true;
5791           return true;
5792         }
5793         if (hr->is_old() != (cset_state.is_old())) {
5794           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5795                                  hr->is_old(), cset_state.value(), i);
5796           _failures = true;
5797           return true;
5798         }
5799       }
5800     }
5801     return false;
5802   }
5803 
5804   bool failures() const { return _failures; }
5805 };
5806 
5807 bool G1CollectedHeap::check_cset_fast_test() {
5808   G1CheckCSetFastTableClosure cl;
5809   _hrm.iterate(&cl);
5810   return !cl.failures();
5811 }
5812 #endif // PRODUCT
5813 
5814 void G1CollectedHeap::cleanUpCardTable() {
5815   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5816   double start = os::elapsedTime();
5817 
5818   {
5819     // Iterate over the dirty cards region list.
5820     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5821 
5822     set_par_threads();
5823     workers()->run_task(&cleanup_task);
5824     set_par_threads(0);
5825 #ifndef PRODUCT
5826     if (G1VerifyCTCleanup || VerifyAfterGC) {
5827       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5828       heap_region_iterate(&cleanup_verifier);
5829     }
5830 #endif
5831   }
5832 
5833   double elapsed = os::elapsedTime() - start;
5834   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5835 }
5836 
5837 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5838   size_t pre_used = 0;
5839   FreeRegionList local_free_list("Local List for CSet Freeing");
5840 
5841   double young_time_ms     = 0.0;
5842   double non_young_time_ms = 0.0;
5843 
5844   // Since the collection set is a superset of the the young list,
5845   // all we need to do to clear the young list is clear its
5846   // head and length, and unlink any young regions in the code below
5847   _young_list->clear();
5848 
5849   G1CollectorPolicy* policy = g1_policy();
5850 
5851   double start_sec = os::elapsedTime();
5852   bool non_young = true;
5853 
5854   HeapRegion* cur = cs_head;
5855   int age_bound = -1;
5856   size_t rs_lengths = 0;
5857 
5858   while (cur != NULL) {
5859     assert(!is_on_master_free_list(cur), "sanity");
5860     if (non_young) {
5861       if (cur->is_young()) {
5862         double end_sec = os::elapsedTime();
5863         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5864         non_young_time_ms += elapsed_ms;
5865 
5866         start_sec = os::elapsedTime();
5867         non_young = false;
5868       }
5869     } else {
5870       if (!cur->is_young()) {
5871         double end_sec = os::elapsedTime();
5872         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5873         young_time_ms += elapsed_ms;
5874 
5875         start_sec = os::elapsedTime();
5876         non_young = true;
5877       }
5878     }
5879 
5880     rs_lengths += cur->rem_set()->occupied_locked();
5881 
5882     HeapRegion* next = cur->next_in_collection_set();
5883     assert(cur->in_collection_set(), "bad CS");
5884     cur->set_next_in_collection_set(NULL);
5885     clear_in_cset(cur);
5886 
5887     if (cur->is_young()) {
5888       int index = cur->young_index_in_cset();
5889       assert(index != -1, "invariant");
5890       assert((uint) index < policy->young_cset_region_length(), "invariant");
5891       size_t words_survived = _surviving_young_words[index];
5892       cur->record_surv_words_in_group(words_survived);
5893 
5894       // At this point the we have 'popped' cur from the collection set
5895       // (linked via next_in_collection_set()) but it is still in the
5896       // young list (linked via next_young_region()). Clear the
5897       // _next_young_region field.
5898       cur->set_next_young_region(NULL);
5899     } else {
5900       int index = cur->young_index_in_cset();
5901       assert(index == -1, "invariant");
5902     }
5903 
5904     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5905             (!cur->is_young() && cur->young_index_in_cset() == -1),
5906             "invariant" );
5907 
5908     if (!cur->evacuation_failed()) {
5909       MemRegion used_mr = cur->used_region();
5910 
5911       // And the region is empty.
5912       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5913       pre_used += cur->used();
5914       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5915     } else {
5916       cur->uninstall_surv_rate_group();
5917       if (cur->is_young()) {
5918         cur->set_young_index_in_cset(-1);
5919       }
5920       cur->set_evacuation_failed(false);
5921       // The region is now considered to be old.
5922       cur->set_old();
5923       _old_set.add(cur);
5924       evacuation_info.increment_collectionset_used_after(cur->used());
5925     }
5926     cur = next;
5927   }
5928 
5929   evacuation_info.set_regions_freed(local_free_list.length());
5930   policy->record_max_rs_lengths(rs_lengths);
5931   policy->cset_regions_freed();
5932 
5933   double end_sec = os::elapsedTime();
5934   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5935 
5936   if (non_young) {
5937     non_young_time_ms += elapsed_ms;
5938   } else {
5939     young_time_ms += elapsed_ms;
5940   }
5941 
5942   prepend_to_freelist(&local_free_list);
5943   decrement_summary_bytes(pre_used);
5944   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5945   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5946 }
5947 
5948 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5949  private:
5950   FreeRegionList* _free_region_list;
5951   HeapRegionSet* _proxy_set;
5952   HeapRegionSetCount _humongous_regions_removed;
5953   size_t _freed_bytes;
5954  public:
5955 
5956   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5957     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5958   }
5959 
5960   virtual bool doHeapRegion(HeapRegion* r) {
5961     if (!r->is_starts_humongous()) {
5962       return false;
5963     }
5964 
5965     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5966 
5967     oop obj = (oop)r->bottom();
5968     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5969 
5970     // The following checks whether the humongous object is live are sufficient.
5971     // The main additional check (in addition to having a reference from the roots
5972     // or the young gen) is whether the humongous object has a remembered set entry.
5973     //
5974     // A humongous object cannot be live if there is no remembered set for it
5975     // because:
5976     // - there can be no references from within humongous starts regions referencing
5977     // the object because we never allocate other objects into them.
5978     // (I.e. there are no intra-region references that may be missed by the
5979     // remembered set)
5980     // - as soon there is a remembered set entry to the humongous starts region
5981     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5982     // until the end of a concurrent mark.
5983     //
5984     // It is not required to check whether the object has been found dead by marking
5985     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5986     // all objects allocated during that time are considered live.
5987     // SATB marking is even more conservative than the remembered set.
5988     // So if at this point in the collection there is no remembered set entry,
5989     // nobody has a reference to it.
5990     // At the start of collection we flush all refinement logs, and remembered sets
5991     // are completely up-to-date wrt to references to the humongous object.
5992     //
5993     // Other implementation considerations:
5994     // - never consider object arrays at this time because they would pose
5995     // considerable effort for cleaning up the the remembered sets. This is
5996     // required because stale remembered sets might reference locations that
5997     // are currently allocated into.
5998     uint region_idx = r->hrm_index();
5999     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6000         !r->rem_set()->is_empty()) {
6001 
6002       if (G1TraceEagerReclaimHumongousObjects) {
6003         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6004                                region_idx,
6005                                (size_t)obj->size() * HeapWordSize,
6006                                p2i(r->bottom()),
6007                                r->region_num(),
6008                                r->rem_set()->occupied(),
6009                                r->rem_set()->strong_code_roots_list_length(),
6010                                next_bitmap->isMarked(r->bottom()),
6011                                g1h->is_humongous_reclaim_candidate(region_idx),
6012                                obj->is_typeArray()
6013                               );
6014       }
6015 
6016       return false;
6017     }
6018 
6019     guarantee(obj->is_typeArray(),
6020               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6021                       PTR_FORMAT " is not.",
6022                       p2i(r->bottom())));
6023 
6024     if (G1TraceEagerReclaimHumongousObjects) {
6025       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6026                              region_idx,
6027                              (size_t)obj->size() * HeapWordSize,
6028                              p2i(r->bottom()),
6029                              r->region_num(),
6030                              r->rem_set()->occupied(),
6031                              r->rem_set()->strong_code_roots_list_length(),
6032                              next_bitmap->isMarked(r->bottom()),
6033                              g1h->is_humongous_reclaim_candidate(region_idx),
6034                              obj->is_typeArray()
6035                             );
6036     }
6037     // Need to clear mark bit of the humongous object if already set.
6038     if (next_bitmap->isMarked(r->bottom())) {
6039       next_bitmap->clear(r->bottom());
6040     }
6041     _freed_bytes += r->used();
6042     r->set_containing_set(NULL);
6043     _humongous_regions_removed.increment(1u, r->capacity());
6044     g1h->free_humongous_region(r, _free_region_list, false);
6045 
6046     return false;
6047   }
6048 
6049   HeapRegionSetCount& humongous_free_count() {
6050     return _humongous_regions_removed;
6051   }
6052 
6053   size_t bytes_freed() const {
6054     return _freed_bytes;
6055   }
6056 
6057   size_t humongous_reclaimed() const {
6058     return _humongous_regions_removed.length();
6059   }
6060 };
6061 
6062 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6063   assert_at_safepoint(true);
6064 
6065   if (!G1EagerReclaimHumongousObjects ||
6066       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6067     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6068     return;
6069   }
6070 
6071   double start_time = os::elapsedTime();
6072 
6073   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6074 
6075   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6076   heap_region_iterate(&cl);
6077 
6078   HeapRegionSetCount empty_set;
6079   remove_from_old_sets(empty_set, cl.humongous_free_count());
6080 
6081   G1HRPrinter* hrp = hr_printer();
6082   if (hrp->is_active()) {
6083     FreeRegionListIterator iter(&local_cleanup_list);
6084     while (iter.more_available()) {
6085       HeapRegion* hr = iter.get_next();
6086       hrp->cleanup(hr);
6087     }
6088   }
6089 
6090   prepend_to_freelist(&local_cleanup_list);
6091   decrement_summary_bytes(cl.bytes_freed());
6092 
6093   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6094                                                                     cl.humongous_reclaimed());
6095 }
6096 
6097 // This routine is similar to the above but does not record
6098 // any policy statistics or update free lists; we are abandoning
6099 // the current incremental collection set in preparation of a
6100 // full collection. After the full GC we will start to build up
6101 // the incremental collection set again.
6102 // This is only called when we're doing a full collection
6103 // and is immediately followed by the tearing down of the young list.
6104 
6105 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6106   HeapRegion* cur = cs_head;
6107 
6108   while (cur != NULL) {
6109     HeapRegion* next = cur->next_in_collection_set();
6110     assert(cur->in_collection_set(), "bad CS");
6111     cur->set_next_in_collection_set(NULL);
6112     clear_in_cset(cur);
6113     cur->set_young_index_in_cset(-1);
6114     cur = next;
6115   }
6116 }
6117 
6118 void G1CollectedHeap::set_free_regions_coming() {
6119   if (G1ConcRegionFreeingVerbose) {
6120     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6121                            "setting free regions coming");
6122   }
6123 
6124   assert(!free_regions_coming(), "pre-condition");
6125   _free_regions_coming = true;
6126 }
6127 
6128 void G1CollectedHeap::reset_free_regions_coming() {
6129   assert(free_regions_coming(), "pre-condition");
6130 
6131   {
6132     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6133     _free_regions_coming = false;
6134     SecondaryFreeList_lock->notify_all();
6135   }
6136 
6137   if (G1ConcRegionFreeingVerbose) {
6138     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6139                            "reset free regions coming");
6140   }
6141 }
6142 
6143 void G1CollectedHeap::wait_while_free_regions_coming() {
6144   // Most of the time we won't have to wait, so let's do a quick test
6145   // first before we take the lock.
6146   if (!free_regions_coming()) {
6147     return;
6148   }
6149 
6150   if (G1ConcRegionFreeingVerbose) {
6151     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6152                            "waiting for free regions");
6153   }
6154 
6155   {
6156     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6157     while (free_regions_coming()) {
6158       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6159     }
6160   }
6161 
6162   if (G1ConcRegionFreeingVerbose) {
6163     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6164                            "done waiting for free regions");
6165   }
6166 }
6167 
6168 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6169   _young_list->push_region(hr);
6170 }
6171 
6172 class NoYoungRegionsClosure: public HeapRegionClosure {
6173 private:
6174   bool _success;
6175 public:
6176   NoYoungRegionsClosure() : _success(true) { }
6177   bool doHeapRegion(HeapRegion* r) {
6178     if (r->is_young()) {
6179       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6180                              p2i(r->bottom()), p2i(r->end()));
6181       _success = false;
6182     }
6183     return false;
6184   }
6185   bool success() { return _success; }
6186 };
6187 
6188 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6189   bool ret = _young_list->check_list_empty(check_sample);
6190 
6191   if (check_heap) {
6192     NoYoungRegionsClosure closure;
6193     heap_region_iterate(&closure);
6194     ret = ret && closure.success();
6195   }
6196 
6197   return ret;
6198 }
6199 
6200 class TearDownRegionSetsClosure : public HeapRegionClosure {
6201 private:
6202   HeapRegionSet *_old_set;
6203 
6204 public:
6205   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6206 
6207   bool doHeapRegion(HeapRegion* r) {
6208     if (r->is_old()) {
6209       _old_set->remove(r);
6210     } else {
6211       // We ignore free regions, we'll empty the free list afterwards.
6212       // We ignore young regions, we'll empty the young list afterwards.
6213       // We ignore humongous regions, we're not tearing down the
6214       // humongous regions set.
6215       assert(r->is_free() || r->is_young() || r->is_humongous(),
6216              "it cannot be another type");
6217     }
6218     return false;
6219   }
6220 
6221   ~TearDownRegionSetsClosure() {
6222     assert(_old_set->is_empty(), "post-condition");
6223   }
6224 };
6225 
6226 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6227   assert_at_safepoint(true /* should_be_vm_thread */);
6228 
6229   if (!free_list_only) {
6230     TearDownRegionSetsClosure cl(&_old_set);
6231     heap_region_iterate(&cl);
6232 
6233     // Note that emptying the _young_list is postponed and instead done as
6234     // the first step when rebuilding the regions sets again. The reason for
6235     // this is that during a full GC string deduplication needs to know if
6236     // a collected region was young or old when the full GC was initiated.
6237   }
6238   _hrm.remove_all_free_regions();
6239 }
6240 
6241 class RebuildRegionSetsClosure : public HeapRegionClosure {
6242 private:
6243   bool            _free_list_only;
6244   HeapRegionSet*   _old_set;
6245   HeapRegionManager*   _hrm;
6246   size_t          _total_used;
6247 
6248 public:
6249   RebuildRegionSetsClosure(bool free_list_only,
6250                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6251     _free_list_only(free_list_only),
6252     _old_set(old_set), _hrm(hrm), _total_used(0) {
6253     assert(_hrm->num_free_regions() == 0, "pre-condition");
6254     if (!free_list_only) {
6255       assert(_old_set->is_empty(), "pre-condition");
6256     }
6257   }
6258 
6259   bool doHeapRegion(HeapRegion* r) {
6260     if (r->is_continues_humongous()) {
6261       return false;
6262     }
6263 
6264     if (r->is_empty()) {
6265       // Add free regions to the free list
6266       r->set_free();
6267       r->set_allocation_context(AllocationContext::system());
6268       _hrm->insert_into_free_list(r);
6269     } else if (!_free_list_only) {
6270       assert(!r->is_young(), "we should not come across young regions");
6271 
6272       if (r->is_humongous()) {
6273         // We ignore humongous regions, we left the humongous set unchanged
6274       } else {
6275         // Objects that were compacted would have ended up on regions
6276         // that were previously old or free.
6277         assert(r->is_free() || r->is_old(), "invariant");
6278         // We now consider them old, so register as such.
6279         r->set_old();
6280         _old_set->add(r);
6281       }
6282       _total_used += r->used();
6283     }
6284 
6285     return false;
6286   }
6287 
6288   size_t total_used() {
6289     return _total_used;
6290   }
6291 };
6292 
6293 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6294   assert_at_safepoint(true /* should_be_vm_thread */);
6295 
6296   if (!free_list_only) {
6297     _young_list->empty_list();
6298   }
6299 
6300   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6301   heap_region_iterate(&cl);
6302 
6303   if (!free_list_only) {
6304     _allocator->set_used(cl.total_used());
6305   }
6306   assert(_allocator->used_unlocked() == recalculate_used(),
6307          err_msg("inconsistent _allocator->used_unlocked(), "
6308                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6309                  _allocator->used_unlocked(), recalculate_used()));
6310 }
6311 
6312 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6313   _refine_cte_cl->set_concurrent(concurrent);
6314 }
6315 
6316 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6317   HeapRegion* hr = heap_region_containing(p);
6318   return hr->is_in(p);
6319 }
6320 
6321 // Methods for the mutator alloc region
6322 
6323 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6324                                                       bool force) {
6325   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6326   assert(!force || g1_policy()->can_expand_young_list(),
6327          "if force is true we should be able to expand the young list");
6328   bool young_list_full = g1_policy()->is_young_list_full();
6329   if (force || !young_list_full) {
6330     HeapRegion* new_alloc_region = new_region(word_size,
6331                                               false /* is_old */,
6332                                               false /* do_expand */);
6333     if (new_alloc_region != NULL) {
6334       set_region_short_lived_locked(new_alloc_region);
6335       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6336       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6337       return new_alloc_region;
6338     }
6339   }
6340   return NULL;
6341 }
6342 
6343 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6344                                                   size_t allocated_bytes) {
6345   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6346   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6347 
6348   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6349   _allocator->increase_used(allocated_bytes);
6350   _hr_printer.retire(alloc_region);
6351   // We update the eden sizes here, when the region is retired,
6352   // instead of when it's allocated, since this is the point that its
6353   // used space has been recored in _summary_bytes_used.
6354   g1mm()->update_eden_size();
6355 }
6356 
6357 void G1CollectedHeap::set_par_threads() {
6358   // Don't change the number of workers.  Use the value previously set
6359   // in the workgroup.
6360   uint n_workers = workers()->active_workers();
6361   assert(UseDynamicNumberOfGCThreads ||
6362            n_workers == workers()->total_workers(),
6363       "Otherwise should be using the total number of workers");
6364   if (n_workers == 0) {
6365     assert(false, "Should have been set in prior evacuation pause.");
6366     n_workers = ParallelGCThreads;
6367     workers()->set_active_workers(n_workers);
6368   }
6369   set_par_threads(n_workers);
6370 }
6371 
6372 // Methods for the GC alloc regions
6373 
6374 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6375                                                  uint count,
6376                                                  InCSetState dest) {
6377   assert(FreeList_lock->owned_by_self(), "pre-condition");
6378 
6379   if (count < g1_policy()->max_regions(dest)) {
6380     const bool is_survivor = (dest.is_young());
6381     HeapRegion* new_alloc_region = new_region(word_size,
6382                                               !is_survivor,
6383                                               true /* do_expand */);
6384     if (new_alloc_region != NULL) {
6385       // We really only need to do this for old regions given that we
6386       // should never scan survivors. But it doesn't hurt to do it
6387       // for survivors too.
6388       new_alloc_region->record_timestamp();
6389       if (is_survivor) {
6390         new_alloc_region->set_survivor();
6391         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6392         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6393       } else {
6394         new_alloc_region->set_old();
6395         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6396         check_bitmaps("Old Region Allocation", new_alloc_region);
6397       }
6398       bool during_im = g1_policy()->during_initial_mark_pause();
6399       new_alloc_region->note_start_of_copying(during_im);
6400       return new_alloc_region;
6401     }
6402   }
6403   return NULL;
6404 }
6405 
6406 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6407                                              size_t allocated_bytes,
6408                                              InCSetState dest) {
6409   bool during_im = g1_policy()->during_initial_mark_pause();
6410   alloc_region->note_end_of_copying(during_im);
6411   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6412   if (dest.is_young()) {
6413     young_list()->add_survivor_region(alloc_region);
6414   } else {
6415     _old_set.add(alloc_region);
6416   }
6417   _hr_printer.retire(alloc_region);
6418 }
6419 
6420 // Heap region set verification
6421 
6422 class VerifyRegionListsClosure : public HeapRegionClosure {
6423 private:
6424   HeapRegionSet*   _old_set;
6425   HeapRegionSet*   _humongous_set;
6426   HeapRegionManager*   _hrm;
6427 
6428 public:
6429   HeapRegionSetCount _old_count;
6430   HeapRegionSetCount _humongous_count;
6431   HeapRegionSetCount _free_count;
6432 
6433   VerifyRegionListsClosure(HeapRegionSet* old_set,
6434                            HeapRegionSet* humongous_set,
6435                            HeapRegionManager* hrm) :
6436     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6437     _old_count(), _humongous_count(), _free_count(){ }
6438 
6439   bool doHeapRegion(HeapRegion* hr) {
6440     if (hr->is_continues_humongous()) {
6441       return false;
6442     }
6443 
6444     if (hr->is_young()) {
6445       // TODO
6446     } else if (hr->is_starts_humongous()) {
6447       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6448       _humongous_count.increment(1u, hr->capacity());
6449     } else if (hr->is_empty()) {
6450       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6451       _free_count.increment(1u, hr->capacity());
6452     } else if (hr->is_old()) {
6453       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6454       _old_count.increment(1u, hr->capacity());
6455     } else {
6456       ShouldNotReachHere();
6457     }
6458     return false;
6459   }
6460 
6461   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6462     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6463     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6464         old_set->total_capacity_bytes(), _old_count.capacity()));
6465 
6466     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6467     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6468         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6469 
6470     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6471     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6472         free_list->total_capacity_bytes(), _free_count.capacity()));
6473   }
6474 };
6475 
6476 void G1CollectedHeap::verify_region_sets() {
6477   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6478 
6479   // First, check the explicit lists.
6480   _hrm.verify();
6481   {
6482     // Given that a concurrent operation might be adding regions to
6483     // the secondary free list we have to take the lock before
6484     // verifying it.
6485     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6486     _secondary_free_list.verify_list();
6487   }
6488 
6489   // If a concurrent region freeing operation is in progress it will
6490   // be difficult to correctly attributed any free regions we come
6491   // across to the correct free list given that they might belong to
6492   // one of several (free_list, secondary_free_list, any local lists,
6493   // etc.). So, if that's the case we will skip the rest of the
6494   // verification operation. Alternatively, waiting for the concurrent
6495   // operation to complete will have a non-trivial effect on the GC's
6496   // operation (no concurrent operation will last longer than the
6497   // interval between two calls to verification) and it might hide
6498   // any issues that we would like to catch during testing.
6499   if (free_regions_coming()) {
6500     return;
6501   }
6502 
6503   // Make sure we append the secondary_free_list on the free_list so
6504   // that all free regions we will come across can be safely
6505   // attributed to the free_list.
6506   append_secondary_free_list_if_not_empty_with_lock();
6507 
6508   // Finally, make sure that the region accounting in the lists is
6509   // consistent with what we see in the heap.
6510 
6511   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6512   heap_region_iterate(&cl);
6513   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6514 }
6515 
6516 // Optimized nmethod scanning
6517 
6518 class RegisterNMethodOopClosure: public OopClosure {
6519   G1CollectedHeap* _g1h;
6520   nmethod* _nm;
6521 
6522   template <class T> void do_oop_work(T* p) {
6523     T heap_oop = oopDesc::load_heap_oop(p);
6524     if (!oopDesc::is_null(heap_oop)) {
6525       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6526       HeapRegion* hr = _g1h->heap_region_containing(obj);
6527       assert(!hr->is_continues_humongous(),
6528              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6529                      " starting at "HR_FORMAT,
6530                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6531 
6532       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6533       hr->add_strong_code_root_locked(_nm);
6534     }
6535   }
6536 
6537 public:
6538   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6539     _g1h(g1h), _nm(nm) {}
6540 
6541   void do_oop(oop* p)       { do_oop_work(p); }
6542   void do_oop(narrowOop* p) { do_oop_work(p); }
6543 };
6544 
6545 class UnregisterNMethodOopClosure: public OopClosure {
6546   G1CollectedHeap* _g1h;
6547   nmethod* _nm;
6548 
6549   template <class T> void do_oop_work(T* p) {
6550     T heap_oop = oopDesc::load_heap_oop(p);
6551     if (!oopDesc::is_null(heap_oop)) {
6552       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6553       HeapRegion* hr = _g1h->heap_region_containing(obj);
6554       assert(!hr->is_continues_humongous(),
6555              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6556                      " starting at "HR_FORMAT,
6557                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6558 
6559       hr->remove_strong_code_root(_nm);
6560     }
6561   }
6562 
6563 public:
6564   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6565     _g1h(g1h), _nm(nm) {}
6566 
6567   void do_oop(oop* p)       { do_oop_work(p); }
6568   void do_oop(narrowOop* p) { do_oop_work(p); }
6569 };
6570 
6571 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6572   CollectedHeap::register_nmethod(nm);
6573 
6574   guarantee(nm != NULL, "sanity");
6575   RegisterNMethodOopClosure reg_cl(this, nm);
6576   nm->oops_do(&reg_cl);
6577 }
6578 
6579 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6580   CollectedHeap::unregister_nmethod(nm);
6581 
6582   guarantee(nm != NULL, "sanity");
6583   UnregisterNMethodOopClosure reg_cl(this, nm);
6584   nm->oops_do(&reg_cl, true);
6585 }
6586 
6587 void G1CollectedHeap::purge_code_root_memory() {
6588   double purge_start = os::elapsedTime();
6589   G1CodeRootSet::purge();
6590   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6591   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6592 }
6593 
6594 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6595   G1CollectedHeap* _g1h;
6596 
6597 public:
6598   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6599     _g1h(g1h) {}
6600 
6601   void do_code_blob(CodeBlob* cb) {
6602     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6603     if (nm == NULL) {
6604       return;
6605     }
6606 
6607     if (ScavengeRootsInCode) {
6608       _g1h->register_nmethod(nm);
6609     }
6610   }
6611 };
6612 
6613 void G1CollectedHeap::rebuild_strong_code_roots() {
6614   RebuildStrongCodeRootClosure blob_cl(this);
6615   CodeCache::blobs_do(&blob_cl);
6616 }