1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  27 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  28 #include "gc_implementation/parNew/parNewGeneration.hpp"
  29 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/copyFailedInfo.hpp"
  33 #include "gc_implementation/shared/gcHeapSummary.hpp"
  34 #include "gc_implementation/shared/gcTimer.hpp"
  35 #include "gc_implementation/shared/gcTrace.hpp"
  36 #include "gc_implementation/shared/gcTraceTime.hpp"
  37 #include "gc_implementation/shared/plab.inline.hpp"
  38 #include "gc_implementation/shared/spaceDecorator.hpp"
  39 #include "memory/defNewGeneration.inline.hpp"
  40 #include "memory/genCollectedHeap.hpp"
  41 #include "memory/genOopClosures.inline.hpp"
  42 #include "memory/generation.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/strongRootsScope.hpp"
  46 #include "memory/space.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/thread.inline.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #include "utilities/taskqueue.inline.hpp"
  58 #include "utilities/workgroup.hpp"
  59 
  60 #ifdef _MSC_VER
  61 #pragma warning( push )
  62 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  63 #endif
  64 ParScanThreadState::ParScanThreadState(Space* to_space_,
  65                                        ParNewGeneration* gen_,
  66                                        Generation* old_gen_,
  67                                        int thread_num_,
  68                                        ObjToScanQueueSet* work_queue_set_,
  69                                        Stack<oop, mtGC>* overflow_stacks_,
  70                                        size_t desired_plab_sz_,
  71                                        ParallelTaskTerminator& term_) :
  72   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  73   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  74   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  75   _ageTable(false), // false ==> not the global age table, no perf data.
  76   _to_space_alloc_buffer(desired_plab_sz_),
  77   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  78   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  79   _older_gen_closure(gen_, this),
  80   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  81                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
  82                       work_queue_set_, &term_),
  83   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  84   _keep_alive_closure(&_scan_weak_ref_closure),
  85   _strong_roots_time(0.0), _term_time(0.0)
  86 {
  87   #if TASKQUEUE_STATS
  88   _term_attempts = 0;
  89   _overflow_refills = 0;
  90   _overflow_refill_objs = 0;
  91   #endif // TASKQUEUE_STATS
  92 
  93   _survivor_chunk_array =
  94     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  95   _hash_seed = 17;  // Might want to take time-based random value.
  96   _start = os::elapsedTime();
  97   _old_gen_closure.set_generation(old_gen_);
  98   _old_gen_root_closure.set_generation(old_gen_);
  99 }
 100 #ifdef _MSC_VER
 101 #pragma warning( pop )
 102 #endif
 103 
 104 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 105                                               size_t plab_word_size) {
 106   ChunkArray* sca = survivor_chunk_array();
 107   if (sca != NULL) {
 108     // A non-null SCA implies that we want the PLAB data recorded.
 109     sca->record_sample(plab_start, plab_word_size);
 110   }
 111 }
 112 
 113 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 114   return new_obj->is_objArray() &&
 115          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 116          new_obj != old_obj;
 117 }
 118 
 119 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 120   assert(old->is_objArray(), "must be obj array");
 121   assert(old->is_forwarded(), "must be forwarded");
 122   assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
 123   assert(!old_gen()->is_in(old), "must be in young generation.");
 124 
 125   objArrayOop obj = objArrayOop(old->forwardee());
 126   // Process ParGCArrayScanChunk elements now
 127   // and push the remainder back onto queue
 128   int start     = arrayOop(old)->length();
 129   int end       = obj->length();
 130   int remainder = end - start;
 131   assert(start <= end, "just checking");
 132   if (remainder > 2 * ParGCArrayScanChunk) {
 133     // Test above combines last partial chunk with a full chunk
 134     end = start + ParGCArrayScanChunk;
 135     arrayOop(old)->set_length(end);
 136     // Push remainder.
 137     bool ok = work_queue()->push(old);
 138     assert(ok, "just popped, push must be okay");
 139   } else {
 140     // Restore length so that it can be used if there
 141     // is a promotion failure and forwarding pointers
 142     // must be removed.
 143     arrayOop(old)->set_length(end);
 144   }
 145 
 146   // process our set of indices (include header in first chunk)
 147   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 148   if ((HeapWord *)obj < young_old_boundary()) {
 149     // object is in to_space
 150     obj->oop_iterate_range(&_to_space_closure, start, end);
 151   } else {
 152     // object is in old generation
 153     obj->oop_iterate_range(&_old_gen_closure, start, end);
 154   }
 155 }
 156 
 157 
 158 void ParScanThreadState::trim_queues(int max_size) {
 159   ObjToScanQueue* queue = work_queue();
 160   do {
 161     while (queue->size() > (juint)max_size) {
 162       oop obj_to_scan;
 163       if (queue->pop_local(obj_to_scan)) {
 164         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 165           if (obj_to_scan->is_objArray() &&
 166               obj_to_scan->is_forwarded() &&
 167               obj_to_scan->forwardee() != obj_to_scan) {
 168             scan_partial_array_and_push_remainder(obj_to_scan);
 169           } else {
 170             // object is in to_space
 171             obj_to_scan->oop_iterate(&_to_space_closure);
 172           }
 173         } else {
 174           // object is in old generation
 175           obj_to_scan->oop_iterate(&_old_gen_closure);
 176         }
 177       }
 178     }
 179     // For the  case of compressed oops, we have a private, non-shared
 180     // overflow stack, so we eagerly drain it so as to more evenly
 181     // distribute load early. Note: this may be good to do in
 182     // general rather than delay for the final stealing phase.
 183     // If applicable, we'll transfer a set of objects over to our
 184     // work queue, allowing them to be stolen and draining our
 185     // private overflow stack.
 186   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 187 }
 188 
 189 bool ParScanThreadState::take_from_overflow_stack() {
 190   assert(ParGCUseLocalOverflow, "Else should not call");
 191   assert(young_gen()->overflow_list() == NULL, "Error");
 192   ObjToScanQueue* queue = work_queue();
 193   Stack<oop, mtGC>* const of_stack = overflow_stack();
 194   const size_t num_overflow_elems = of_stack->size();
 195   const size_t space_available = queue->max_elems() - queue->size();
 196   const size_t num_take_elems = MIN3(space_available / 4,
 197                                      ParGCDesiredObjsFromOverflowList,
 198                                      num_overflow_elems);
 199   // Transfer the most recent num_take_elems from the overflow
 200   // stack to our work queue.
 201   for (size_t i = 0; i != num_take_elems; i++) {
 202     oop cur = of_stack->pop();
 203     oop obj_to_push = cur->forwardee();
 204     assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
 205     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 206     assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 207     if (should_be_partially_scanned(obj_to_push, cur)) {
 208       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 209       obj_to_push = cur;
 210     }
 211     bool ok = queue->push(obj_to_push);
 212     assert(ok, "Should have succeeded");
 213   }
 214   assert(young_gen()->overflow_list() == NULL, "Error");
 215   return num_take_elems > 0;  // was something transferred?
 216 }
 217 
 218 void ParScanThreadState::push_on_overflow_stack(oop p) {
 219   assert(ParGCUseLocalOverflow, "Else should not call");
 220   overflow_stack()->push(p);
 221   assert(young_gen()->overflow_list() == NULL, "Error");
 222 }
 223 
 224 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 225 
 226   // Otherwise, if the object is small enough, try to reallocate the
 227   // buffer.
 228   HeapWord* obj = NULL;
 229   if (!_to_space_full) {
 230     PLAB* const plab = to_space_alloc_buffer();
 231     Space*            const sp   = to_space();
 232     if (word_sz * 100 <
 233         ParallelGCBufferWastePct * plab->word_sz()) {
 234       // Is small enough; abandon this buffer and start a new one.
 235       plab->retire();
 236       size_t buf_size = plab->word_sz();
 237       HeapWord* buf_space = sp->par_allocate(buf_size);
 238       if (buf_space == NULL) {
 239         const size_t min_bytes =
 240           PLAB::min_size() << LogHeapWordSize;
 241         size_t free_bytes = sp->free();
 242         while(buf_space == NULL && free_bytes >= min_bytes) {
 243           buf_size = free_bytes >> LogHeapWordSize;
 244           assert(buf_size == (size_t)align_object_size(buf_size),
 245                  "Invariant");
 246           buf_space  = sp->par_allocate(buf_size);
 247           free_bytes = sp->free();
 248         }
 249       }
 250       if (buf_space != NULL) {
 251         plab->set_word_size(buf_size);
 252         plab->set_buf(buf_space);
 253         record_survivor_plab(buf_space, buf_size);
 254         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 255         // Note that we cannot compare buf_size < word_sz below
 256         // because of AlignmentReserve (see PLAB::allocate()).
 257         assert(obj != NULL || plab->words_remaining() < word_sz,
 258                "Else should have been able to allocate");
 259         // It's conceivable that we may be able to use the
 260         // buffer we just grabbed for subsequent small requests
 261         // even if not for this one.
 262       } else {
 263         // We're used up.
 264         _to_space_full = true;
 265       }
 266 
 267     } else {
 268       // Too large; allocate the object individually.
 269       obj = sp->par_allocate(word_sz);
 270     }
 271   }
 272   return obj;
 273 }
 274 
 275 
 276 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 277                                                 size_t word_sz) {
 278   // Is the alloc in the current alloc buffer?
 279   if (to_space_alloc_buffer()->contains(obj)) {
 280     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 281            "Should contain whole object.");
 282     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 283   } else {
 284     CollectedHeap::fill_with_object(obj, word_sz);
 285   }
 286 }
 287 
 288 void ParScanThreadState::print_promotion_failure_size() {
 289   if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
 290     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 291                         _thread_num, _promotion_failed_info.first_size());
 292   }
 293 }
 294 
 295 class ParScanThreadStateSet: private ResourceArray {
 296 public:
 297   // Initializes states for the specified number of threads;
 298   ParScanThreadStateSet(int                     num_threads,
 299                         Space&                  to_space,
 300                         ParNewGeneration&       gen,
 301                         Generation&             old_gen,
 302                         ObjToScanQueueSet&      queue_set,
 303                         Stack<oop, mtGC>*       overflow_stacks_,
 304                         size_t                  desired_plab_sz,
 305                         ParallelTaskTerminator& term);
 306 
 307   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 308 
 309   inline ParScanThreadState& thread_state(int i);
 310 
 311   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
 312   void reset(int active_workers, bool promotion_failed);
 313   void flush();
 314 
 315   #if TASKQUEUE_STATS
 316   static void
 317     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 318   void print_termination_stats(outputStream* const st = gclog_or_tty);
 319   static void
 320     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 321   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 322   void reset_stats();
 323   #endif // TASKQUEUE_STATS
 324 
 325 private:
 326   ParallelTaskTerminator& _term;
 327   ParNewGeneration&       _gen;
 328   Generation&             _old_gen;
 329  public:
 330   bool is_valid(int id) const { return id < length(); }
 331   ParallelTaskTerminator* terminator() { return &_term; }
 332 };
 333 
 334 
 335 ParScanThreadStateSet::ParScanThreadStateSet(
 336   int num_threads, Space& to_space, ParNewGeneration& gen,
 337   Generation& old_gen, ObjToScanQueueSet& queue_set,
 338   Stack<oop, mtGC>* overflow_stacks,
 339   size_t desired_plab_sz, ParallelTaskTerminator& term)
 340   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 341     _gen(gen), _old_gen(old_gen), _term(term)
 342 {
 343   assert(num_threads > 0, "sanity check!");
 344   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 345          "overflow_stack allocation mismatch");
 346   // Initialize states.
 347   for (int i = 0; i < num_threads; ++i) {
 348     new ((ParScanThreadState*)_data + i)
 349         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 350                            overflow_stacks, desired_plab_sz, term);
 351   }
 352 }
 353 
 354 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 355 {
 356   assert(i >= 0 && i < length(), "sanity check!");
 357   return ((ParScanThreadState*)_data)[i];
 358 }
 359 
 360 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
 361   for (int i = 0; i < length(); ++i) {
 362     if (thread_state(i).promotion_failed()) {
 363       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
 364       thread_state(i).promotion_failed_info().reset();
 365     }
 366   }
 367 }
 368 
 369 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
 370 {
 371   _term.reset_for_reuse(active_threads);
 372   if (promotion_failed) {
 373     for (int i = 0; i < length(); ++i) {
 374       thread_state(i).print_promotion_failure_size();
 375     }
 376   }
 377 }
 378 
 379 #if TASKQUEUE_STATS
 380 void
 381 ParScanThreadState::reset_stats()
 382 {
 383   taskqueue_stats().reset();
 384   _term_attempts = 0;
 385   _overflow_refills = 0;
 386   _overflow_refill_objs = 0;
 387 }
 388 
 389 void ParScanThreadStateSet::reset_stats()
 390 {
 391   for (int i = 0; i < length(); ++i) {
 392     thread_state(i).reset_stats();
 393   }
 394 }
 395 
 396 void
 397 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 398 {
 399   st->print_raw_cr("GC Termination Stats");
 400   st->print_raw_cr("     elapsed  --strong roots-- "
 401                    "-------termination-------");
 402   st->print_raw_cr("thr     ms        ms       %   "
 403                    "    ms       %   attempts");
 404   st->print_raw_cr("--- --------- --------- ------ "
 405                    "--------- ------ --------");
 406 }
 407 
 408 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 409 {
 410   print_termination_stats_hdr(st);
 411 
 412   for (int i = 0; i < length(); ++i) {
 413     const ParScanThreadState & pss = thread_state(i);
 414     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 415     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 416     const double term_ms = pss.term_time() * 1000.0;
 417     st->print_cr("%3d %9.2f %9.2f %6.2f "
 418                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 419                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 420                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 421   }
 422 }
 423 
 424 // Print stats related to work queue activity.
 425 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 426 {
 427   st->print_raw_cr("GC Task Stats");
 428   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 429   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 430 }
 431 
 432 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 433 {
 434   print_taskqueue_stats_hdr(st);
 435 
 436   TaskQueueStats totals;
 437   for (int i = 0; i < length(); ++i) {
 438     const ParScanThreadState & pss = thread_state(i);
 439     const TaskQueueStats & stats = pss.taskqueue_stats();
 440     st->print("%3d ", i); stats.print(st); st->cr();
 441     totals += stats;
 442 
 443     if (pss.overflow_refills() > 0) {
 444       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 445                    SIZE_FORMAT_W(10) " overflow objects",
 446                    pss.overflow_refills(), pss.overflow_refill_objs());
 447     }
 448   }
 449   st->print("tot "); totals.print(st); st->cr();
 450 
 451   DEBUG_ONLY(totals.verify());
 452 }
 453 #endif // TASKQUEUE_STATS
 454 
 455 void ParScanThreadStateSet::flush()
 456 {
 457   // Work in this loop should be kept as lightweight as
 458   // possible since this might otherwise become a bottleneck
 459   // to scaling. Should we add heavy-weight work into this
 460   // loop, consider parallelizing the loop into the worker threads.
 461   for (int i = 0; i < length(); ++i) {
 462     ParScanThreadState& par_scan_state = thread_state(i);
 463 
 464     // Flush stats related to To-space PLAB activity and
 465     // retire the last buffer.
 466     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_gen.plab_stats());
 467 
 468     // Every thread has its own age table.  We need to merge
 469     // them all into one.
 470     ageTable *local_table = par_scan_state.age_table();
 471     _gen.age_table()->merge(local_table);
 472 
 473     // Inform old gen that we're done.
 474     _old_gen.par_promote_alloc_done(i);
 475     _old_gen.par_oop_since_save_marks_iterate_done(i);
 476   }
 477 
 478   if (UseConcMarkSweepGC) {
 479     // We need to call this even when ResizeOldPLAB is disabled
 480     // so as to avoid breaking some asserts. While we may be able
 481     // to avoid this by reorganizing the code a bit, I am loathe
 482     // to do that unless we find cases where ergo leads to bad
 483     // performance.
 484     CFLS_LAB::compute_desired_plab_size();
 485   }
 486 }
 487 
 488 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 489                                ParScanThreadState* par_scan_state) :
 490   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 491 {
 492   assert(_g->level() == 0, "Optimized for youngest generation");
 493   _boundary = _g->reserved().end();
 494 }
 495 
 496 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 497 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 498 
 499 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 500 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 501 
 502 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 503 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 504 
 505 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 506 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 507 
 508 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 509                                              ParScanThreadState* par_scan_state)
 510   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 511 {}
 512 
 513 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 514 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 515 
 516 #ifdef WIN32
 517 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 518 #endif
 519 
 520 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 521     ParScanThreadState* par_scan_state_,
 522     ParScanWithoutBarrierClosure* to_space_closure_,
 523     ParScanWithBarrierClosure* old_gen_closure_,
 524     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 525     ParNewGeneration* par_gen_,
 526     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 527     ObjToScanQueueSet* task_queues_,
 528     ParallelTaskTerminator* terminator_) :
 529 
 530     _par_scan_state(par_scan_state_),
 531     _to_space_closure(to_space_closure_),
 532     _old_gen_closure(old_gen_closure_),
 533     _to_space_root_closure(to_space_root_closure_),
 534     _old_gen_root_closure(old_gen_root_closure_),
 535     _par_gen(par_gen_),
 536     _task_queues(task_queues_),
 537     _terminator(terminator_)
 538 {}
 539 
 540 void ParEvacuateFollowersClosure::do_void() {
 541   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 542 
 543   while (true) {
 544 
 545     // Scan to-space and old-gen objs until we run out of both.
 546     oop obj_to_scan;
 547     par_scan_state()->trim_queues(0);
 548 
 549     // We have no local work, attempt to steal from other threads.
 550 
 551     // attempt to steal work from promoted.
 552     if (task_queues()->steal(par_scan_state()->thread_num(),
 553                              par_scan_state()->hash_seed(),
 554                              obj_to_scan)) {
 555       bool res = work_q->push(obj_to_scan);
 556       assert(res, "Empty queue should have room for a push.");
 557 
 558       //   if successful, goto Start.
 559       continue;
 560 
 561       // try global overflow list.
 562     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 563       continue;
 564     }
 565 
 566     // Otherwise, offer termination.
 567     par_scan_state()->start_term_time();
 568     if (terminator()->offer_termination()) break;
 569     par_scan_state()->end_term_time();
 570   }
 571   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 572          "Broken overflow list?");
 573   // Finish the last termination pause.
 574   par_scan_state()->end_term_time();
 575 }
 576 
 577 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* old_gen,
 578                              HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 579     AbstractGangTask("ParNewGeneration collection"),
 580     _gen(gen), _old_gen(old_gen),
 581     _young_old_boundary(young_old_boundary),
 582     _state_set(state_set)
 583   {}
 584 
 585 // Reset the terminator for the given number of
 586 // active threads.
 587 void ParNewGenTask::set_for_termination(int active_workers) {
 588   _state_set->reset(active_workers, _gen->promotion_failed());
 589   // Should the heap be passed in?  There's only 1 for now so
 590   // grab it instead.
 591   GenCollectedHeap* gch = GenCollectedHeap::heap();
 592   gch->set_n_termination(active_workers);
 593 }
 594 
 595 void ParNewGenTask::work(uint worker_id) {
 596   GenCollectedHeap* gch = GenCollectedHeap::heap();
 597   // Since this is being done in a separate thread, need new resource
 598   // and handle marks.
 599   ResourceMark rm;
 600   HandleMark hm;
 601 
 602   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 603   assert(_state_set->is_valid(worker_id), "Should not have been called");
 604 
 605   par_scan_state.set_young_old_boundary(_young_old_boundary);
 606 
 607   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 608                                       gch->rem_set()->klass_rem_set());
 609   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 610                                            &par_scan_state.to_space_root_closure(),
 611                                            false);
 612 
 613   par_scan_state.start_strong_roots();
 614   gch->gen_process_roots(_gen->level(),
 615                          true,  // Process younger gens, if any,
 616                                 // as strong roots.
 617                          false, // no scope; this is parallel code
 618                          GenCollectedHeap::SO_ScavengeCodeCache,
 619                          GenCollectedHeap::StrongAndWeakRoots,
 620                          &par_scan_state.to_space_root_closure(),
 621                          &par_scan_state.older_gen_closure(),
 622                          &cld_scan_closure);
 623 
 624   par_scan_state.end_strong_roots();
 625 
 626   // "evacuate followers".
 627   par_scan_state.evacuate_followers_closure().do_void();
 628 }
 629 
 630 #ifdef _MSC_VER
 631 #pragma warning( push )
 632 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 633 #endif
 634 ParNewGeneration::
 635 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 636   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 637   _overflow_list(NULL),
 638   _is_alive_closure(this),
 639   _plab_stats(YoungPLABSize, PLABWeight)
 640 {
 641   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 642   NOT_PRODUCT(_num_par_pushes = 0;)
 643   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 644   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 645 
 646   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 647     ObjToScanQueue *q = new ObjToScanQueue();
 648     guarantee(q != NULL, "work_queue Allocation failure.");
 649     _task_queues->register_queue(i1, q);
 650   }
 651 
 652   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 653     _task_queues->queue(i2)->initialize();
 654 
 655   _overflow_stacks = NULL;
 656   if (ParGCUseLocalOverflow) {
 657 
 658     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 659     // with ','
 660     typedef Stack<oop, mtGC> GCOopStack;
 661 
 662     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 663     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 664       new (_overflow_stacks + i) Stack<oop, mtGC>();
 665     }
 666   }
 667 
 668   if (UsePerfData) {
 669     EXCEPTION_MARK;
 670     ResourceMark rm;
 671 
 672     const char* cname =
 673          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 674     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 675                                      ParallelGCThreads, CHECK);
 676   }
 677 }
 678 #ifdef _MSC_VER
 679 #pragma warning( pop )
 680 #endif
 681 
 682 // ParNewGeneration::
 683 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 684   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 685 
 686 template <class T>
 687 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 688 #ifdef ASSERT
 689   {
 690     assert(!oopDesc::is_null(*p), "expected non-null ref");
 691     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 692     // We never expect to see a null reference being processed
 693     // as a weak reference.
 694     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 695   }
 696 #endif // ASSERT
 697 
 698   _par_cl->do_oop_nv(p);
 699 
 700   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 701     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 702     _rs->write_ref_field_gc_par(p, obj);
 703   }
 704 }
 705 
 706 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 707 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 708 
 709 // ParNewGeneration::
 710 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 711   DefNewGeneration::KeepAliveClosure(cl) {}
 712 
 713 template <class T>
 714 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 715 #ifdef ASSERT
 716   {
 717     assert(!oopDesc::is_null(*p), "expected non-null ref");
 718     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 719     // We never expect to see a null reference being processed
 720     // as a weak reference.
 721     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 722   }
 723 #endif // ASSERT
 724 
 725   _cl->do_oop_nv(p);
 726 
 727   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 728     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 729     _rs->write_ref_field_gc_par(p, obj);
 730   }
 731 }
 732 
 733 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 734 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 735 
 736 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 737   T heap_oop = oopDesc::load_heap_oop(p);
 738   if (!oopDesc::is_null(heap_oop)) {
 739     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 740     if ((HeapWord*)obj < _boundary) {
 741       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 742       oop new_obj = obj->is_forwarded()
 743                       ? obj->forwardee()
 744                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 745       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 746     }
 747     if (_gc_barrier) {
 748       // If p points to a younger generation, mark the card.
 749       if ((HeapWord*)obj < _gen_boundary) {
 750         _rs->write_ref_field_gc_par(p, obj);
 751       }
 752     }
 753   }
 754 }
 755 
 756 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 757 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 758 
 759 class ParNewRefProcTaskProxy: public AbstractGangTask {
 760   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 761 public:
 762   ParNewRefProcTaskProxy(ProcessTask& task,
 763                          ParNewGeneration& gen,
 764                          Generation& old_gen,
 765                          HeapWord* young_old_boundary,
 766                          ParScanThreadStateSet& state_set);
 767 
 768 private:
 769   virtual void work(uint worker_id);
 770   virtual void set_for_termination(int active_workers) {
 771     _state_set.terminator()->reset_for_reuse(active_workers);
 772   }
 773 private:
 774   ParNewGeneration&      _gen;
 775   ProcessTask&           _task;
 776   Generation&            _old_gen;
 777   HeapWord*              _young_old_boundary;
 778   ParScanThreadStateSet& _state_set;
 779 };
 780 
 781 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 782                                                ParNewGeneration& gen,
 783                                                Generation& old_gen,
 784                                                HeapWord* young_old_boundary,
 785                                                ParScanThreadStateSet& state_set)
 786   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 787     _gen(gen),
 788     _task(task),
 789     _old_gen(old_gen),
 790     _young_old_boundary(young_old_boundary),
 791     _state_set(state_set)
 792 {
 793 }
 794 
 795 void ParNewRefProcTaskProxy::work(uint worker_id)
 796 {
 797   ResourceMark rm;
 798   HandleMark hm;
 799   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 800   par_scan_state.set_young_old_boundary(_young_old_boundary);
 801   _task.work(worker_id, par_scan_state.is_alive_closure(),
 802              par_scan_state.keep_alive_closure(),
 803              par_scan_state.evacuate_followers_closure());
 804 }
 805 
 806 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 807   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 808   EnqueueTask& _task;
 809 
 810 public:
 811   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 812     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 813       _task(task)
 814   { }
 815 
 816   virtual void work(uint worker_id)
 817   {
 818     _task.work(worker_id);
 819   }
 820 };
 821 
 822 
 823 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 824 {
 825   GenCollectedHeap* gch = GenCollectedHeap::heap();
 826   FlexibleWorkGang* workers = gch->workers();
 827   assert(workers != NULL, "Need parallel worker threads.");
 828   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 829   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 830                                  _generation.reserved().end(), _state_set);
 831   workers->run_task(&rp_task);
 832   _state_set.reset(0 /* bad value in debug if not reset */,
 833                    _generation.promotion_failed());
 834 }
 835 
 836 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 837 {
 838   GenCollectedHeap* gch = GenCollectedHeap::heap();
 839   FlexibleWorkGang* workers = gch->workers();
 840   assert(workers != NULL, "Need parallel worker threads.");
 841   ParNewRefEnqueueTaskProxy enq_task(task);
 842   workers->run_task(&enq_task);
 843 }
 844 
 845 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 846 {
 847   _state_set.flush();
 848   GenCollectedHeap* gch = GenCollectedHeap::heap();
 849   gch->set_par_threads(0);  // 0 ==> non-parallel.
 850   gch->save_marks();
 851 }
 852 
 853 ScanClosureWithParBarrier::
 854 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 855   ScanClosure(g, gc_barrier) {}
 856 
 857 EvacuateFollowersClosureGeneral::
 858 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 859                                 OopsInGenClosure* cur,
 860                                 OopsInGenClosure* older) :
 861   _gch(gch), _level(level),
 862   _scan_cur_or_nonheap(cur), _scan_older(older)
 863 {}
 864 
 865 void EvacuateFollowersClosureGeneral::do_void() {
 866   do {
 867     // Beware: this call will lead to closure applications via virtual
 868     // calls.
 869     _gch->oop_since_save_marks_iterate(_level,
 870                                        _scan_cur_or_nonheap,
 871                                        _scan_older);
 872   } while (!_gch->no_allocs_since_save_marks(_level));
 873 }
 874 
 875 
 876 // A Generation that does parallel young-gen collection.
 877 
 878 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
 879   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 880   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 881 
 882   remove_forwarding_pointers();
 883   if (PrintGCDetails) {
 884     gclog_or_tty->print(" (promotion failed)");
 885   }
 886   // All the spaces are in play for mark-sweep.
 887   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 888   from()->set_next_compaction_space(to());
 889   gch->set_incremental_collection_failed();
 890   // Inform the next generation that a promotion failure occurred.
 891   _old_gen->promotion_failure_occurred();
 892 
 893   // Trace promotion failure in the parallel GC threads
 894   thread_state_set.trace_promotion_failed(gc_tracer());
 895   // Single threaded code may have reported promotion failure to the global state
 896   if (_promotion_failed_info.has_failed()) {
 897     _gc_tracer.report_promotion_failed(_promotion_failed_info);
 898   }
 899   // Reset the PromotionFailureALot counters.
 900   NOT_PRODUCT(gch->reset_promotion_should_fail();)
 901 }
 902 
 903 void ParNewGeneration::collect(bool   full,
 904                                bool   clear_all_soft_refs,
 905                                size_t size,
 906                                bool   is_tlab) {
 907   assert(full || size > 0, "otherwise we don't want to collect");
 908 
 909   GenCollectedHeap* gch = GenCollectedHeap::heap();
 910 
 911   _gc_timer->register_gc_start();
 912 
 913   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 914   FlexibleWorkGang* workers = gch->workers();
 915   assert(workers != NULL, "Need workgang for parallel work");
 916   int active_workers =
 917       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 918                                    workers->active_workers(),
 919                                    Threads::number_of_non_daemon_threads());
 920   workers->set_active_workers(active_workers);
 921   _old_gen = gch->old_gen();
 922 
 923   // If the next generation is too full to accommodate worst-case promotion
 924   // from this generation, pass on collection; let the next generation
 925   // do it.
 926   if (!collection_attempt_is_safe()) {
 927     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 928     return;
 929   }
 930   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 931 
 932   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 933   gch->trace_heap_before_gc(gc_tracer());
 934 
 935   init_assuming_no_promotion_failure();
 936 
 937   if (UseAdaptiveSizePolicy) {
 938     set_survivor_overflow(false);
 939     size_policy->minor_collection_begin();
 940   }
 941 
 942   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer.gc_id());
 943   // Capture heap used before collection (for printing).
 944   size_t gch_prev_used = gch->used();
 945 
 946   age_table()->clear();
 947   to()->clear(SpaceDecorator::Mangle);
 948 
 949   gch->save_marks();
 950   assert(workers != NULL, "Need parallel worker threads.");
 951   int n_workers = active_workers;
 952 
 953   // Set the correct parallelism (number of queues) in the reference processor
 954   ref_processor()->set_active_mt_degree(n_workers);
 955 
 956   // Always set the terminator for the active number of workers
 957   // because only those workers go through the termination protocol.
 958   ParallelTaskTerminator _term(n_workers, task_queues());
 959   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 960                                          *to(), *this, *_old_gen, *task_queues(),
 961                                          _overflow_stacks, desired_plab_sz(), _term);
 962 
 963   ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set);
 964   gch->set_par_threads(n_workers);
 965   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 966   // It turns out that even when we're using 1 thread, doing the work in a
 967   // separate thread causes wide variance in run times.  We can't help this
 968   // in the multi-threaded case, but we special-case n=1 here to get
 969   // repeatable measurements of the 1-thread overhead of the parallel code.
 970   if (n_workers > 1) {
 971     StrongRootsScope srs;
 972     workers->run_task(&tsk);
 973   } else {
 974     StrongRootsScope srs;
 975     tsk.work(0);
 976   }
 977   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 978                          promotion_failed());
 979 
 980   // Trace and reset failed promotion info.
 981   if (promotion_failed()) {
 982     thread_state_set.trace_promotion_failed(gc_tracer());
 983   }
 984 
 985   // Process (weak) reference objects found during scavenge.
 986   ReferenceProcessor* rp = ref_processor();
 987   IsAliveClosure is_alive(this);
 988   ScanWeakRefClosure scan_weak_ref(this);
 989   KeepAliveClosure keep_alive(&scan_weak_ref);
 990   ScanClosure               scan_without_gc_barrier(this, false);
 991   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 992   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 993   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
 994     &scan_without_gc_barrier, &scan_with_gc_barrier);
 995   rp->setup_policy(clear_all_soft_refs);
 996   // Can  the mt_degree be set later (at run_task() time would be best)?
 997   rp->set_active_mt_degree(active_workers);
 998   ReferenceProcessorStats stats;
 999   if (rp->processing_is_mt()) {
1000     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1001     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1002                                               &evacuate_followers, &task_executor,
1003                                               _gc_timer, _gc_tracer.gc_id());
1004   } else {
1005     thread_state_set.flush();
1006     gch->set_par_threads(0);  // 0 ==> non-parallel.
1007     gch->save_marks();
1008     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1009                                               &evacuate_followers, NULL,
1010                                               _gc_timer, _gc_tracer.gc_id());
1011   }
1012   _gc_tracer.report_gc_reference_stats(stats);
1013   if (!promotion_failed()) {
1014     // Swap the survivor spaces.
1015     eden()->clear(SpaceDecorator::Mangle);
1016     from()->clear(SpaceDecorator::Mangle);
1017     if (ZapUnusedHeapArea) {
1018       // This is now done here because of the piece-meal mangling which
1019       // can check for valid mangling at intermediate points in the
1020       // collection(s).  When a minor collection fails to collect
1021       // sufficient space resizing of the young generation can occur
1022       // an redistribute the spaces in the young generation.  Mangle
1023       // here so that unzapped regions don't get distributed to
1024       // other spaces.
1025       to()->mangle_unused_area();
1026     }
1027     swap_spaces();
1028 
1029     // A successful scavenge should restart the GC time limit count which is
1030     // for full GC's.
1031     size_policy->reset_gc_overhead_limit_count();
1032 
1033     assert(to()->is_empty(), "to space should be empty now");
1034 
1035     adjust_desired_tenuring_threshold();
1036   } else {
1037     handle_promotion_failed(gch, thread_state_set);
1038   }
1039   // set new iteration safe limit for the survivor spaces
1040   from()->set_concurrent_iteration_safe_limit(from()->top());
1041   to()->set_concurrent_iteration_safe_limit(to()->top());
1042 
1043   if (ResizePLAB) {
1044     plab_stats()->adjust_desired_plab_sz(n_workers);
1045   }
1046 
1047   if (PrintGC && !PrintGCDetails) {
1048     gch->print_heap_change(gch_prev_used);
1049   }
1050 
1051   TASKQUEUE_STATS_ONLY(if (PrintTerminationStats) thread_state_set.print_termination_stats());
1052   TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) thread_state_set.print_taskqueue_stats());
1053 
1054   if (UseAdaptiveSizePolicy) {
1055     size_policy->minor_collection_end(gch->gc_cause());
1056     size_policy->avg_survived()->sample(from()->used());
1057   }
1058 
1059   // We need to use a monotonically non-decreasing time in ms
1060   // or we will see time-warp warnings and os::javaTimeMillis()
1061   // does not guarantee monotonicity.
1062   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1063   update_time_of_last_gc(now);
1064 
1065   rp->set_enqueuing_is_done(true);
1066   if (rp->processing_is_mt()) {
1067     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1068     rp->enqueue_discovered_references(&task_executor);
1069   } else {
1070     rp->enqueue_discovered_references(NULL);
1071   }
1072   rp->verify_no_references_recorded();
1073 
1074   gch->trace_heap_after_gc(gc_tracer());
1075   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
1076 
1077   _gc_timer->register_gc_end();
1078 
1079   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1080 }
1081 
1082 static int sum;
1083 void ParNewGeneration::waste_some_time() {
1084   for (int i = 0; i < 100; i++) {
1085     sum += i;
1086   }
1087 }
1088 
1089 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1090 
1091 // Because of concurrency, there are times where an object for which
1092 // "is_forwarded()" is true contains an "interim" forwarding pointer
1093 // value.  Such a value will soon be overwritten with a real value.
1094 // This method requires "obj" to have a forwarding pointer, and waits, if
1095 // necessary for a real one to be inserted, and returns it.
1096 
1097 oop ParNewGeneration::real_forwardee(oop obj) {
1098   oop forward_ptr = obj->forwardee();
1099   if (forward_ptr != ClaimedForwardPtr) {
1100     return forward_ptr;
1101   } else {
1102     return real_forwardee_slow(obj);
1103   }
1104 }
1105 
1106 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1107   // Spin-read if it is claimed but not yet written by another thread.
1108   oop forward_ptr = obj->forwardee();
1109   while (forward_ptr == ClaimedForwardPtr) {
1110     waste_some_time();
1111     assert(obj->is_forwarded(), "precondition");
1112     forward_ptr = obj->forwardee();
1113   }
1114   return forward_ptr;
1115 }
1116 
1117 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1118   if (m->must_be_preserved_for_promotion_failure(obj)) {
1119     // We should really have separate per-worker stacks, rather
1120     // than use locking of a common pair of stacks.
1121     MutexLocker ml(ParGCRareEvent_lock);
1122     preserve_mark(obj, m);
1123   }
1124 }
1125 
1126 // Multiple GC threads may try to promote an object.  If the object
1127 // is successfully promoted, a forwarding pointer will be installed in
1128 // the object in the young generation.  This method claims the right
1129 // to install the forwarding pointer before it copies the object,
1130 // thus avoiding the need to undo the copy as in
1131 // copy_to_survivor_space_avoiding_with_undo.
1132 
1133 oop ParNewGeneration::copy_to_survivor_space(
1134         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1135   // In the sequential version, this assert also says that the object is
1136   // not forwarded.  That might not be the case here.  It is the case that
1137   // the caller observed it to be not forwarded at some time in the past.
1138   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1139 
1140   // The sequential code read "old->age()" below.  That doesn't work here,
1141   // since the age is in the mark word, and that might be overwritten with
1142   // a forwarding pointer by a parallel thread.  So we must save the mark
1143   // word in a local and then analyze it.
1144   oopDesc dummyOld;
1145   dummyOld.set_mark(m);
1146   assert(!dummyOld.is_forwarded(),
1147          "should not be called with forwarding pointer mark word.");
1148 
1149   oop new_obj = NULL;
1150   oop forward_ptr;
1151 
1152   // Try allocating obj in to-space (unless too old)
1153   if (dummyOld.age() < tenuring_threshold()) {
1154     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1155     if (new_obj == NULL) {
1156       set_survivor_overflow(true);
1157     }
1158   }
1159 
1160   if (new_obj == NULL) {
1161     // Either to-space is full or we decided to promote
1162     // try allocating obj tenured
1163 
1164     // Attempt to install a null forwarding pointer (atomically),
1165     // to claim the right to install the real forwarding pointer.
1166     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1167     if (forward_ptr != NULL) {
1168       // someone else beat us to it.
1169         return real_forwardee(old);
1170     }
1171 
1172     if (!_promotion_failed) {
1173       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1174                                       old, m, sz);
1175     }
1176 
1177     if (new_obj == NULL) {
1178       // promotion failed, forward to self
1179       _promotion_failed = true;
1180       new_obj = old;
1181 
1182       preserve_mark_if_necessary(old, m);
1183       par_scan_state->register_promotion_failure(sz);
1184     }
1185 
1186     old->forward_to(new_obj);
1187     forward_ptr = NULL;
1188   } else {
1189     // Is in to-space; do copying ourselves.
1190     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1191     assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1192     forward_ptr = old->forward_to_atomic(new_obj);
1193     // Restore the mark word copied above.
1194     new_obj->set_mark(m);
1195     // Increment age if obj still in new generation
1196     new_obj->incr_age();
1197     par_scan_state->age_table()->add(new_obj, sz);
1198   }
1199   assert(new_obj != NULL, "just checking");
1200 
1201 #ifndef PRODUCT
1202   // This code must come after the CAS test, or it will print incorrect
1203   // information.
1204   if (TraceScavenge) {
1205     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1206        is_in_reserved(new_obj) ? "copying" : "tenuring",
1207        new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1208   }
1209 #endif
1210 
1211   if (forward_ptr == NULL) {
1212     oop obj_to_push = new_obj;
1213     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1214       // Length field used as index of next element to be scanned.
1215       // Real length can be obtained from real_forwardee()
1216       arrayOop(old)->set_length(0);
1217       obj_to_push = old;
1218       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1219              "push forwarded object");
1220     }
1221     // Push it on one of the queues of to-be-scanned objects.
1222     bool simulate_overflow = false;
1223     NOT_PRODUCT(
1224       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1225         // simulate a stack overflow
1226         simulate_overflow = true;
1227       }
1228     )
1229     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1230       // Add stats for overflow pushes.
1231       if (Verbose && PrintGCDetails) {
1232         gclog_or_tty->print("queue overflow!\n");
1233       }
1234       push_on_overflow_list(old, par_scan_state);
1235       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1236     }
1237 
1238     return new_obj;
1239   }
1240 
1241   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1242   // allocate it?
1243   if (is_in_reserved(new_obj)) {
1244     // Must be in to_space.
1245     assert(to()->is_in_reserved(new_obj), "Checking");
1246     if (forward_ptr == ClaimedForwardPtr) {
1247       // Wait to get the real forwarding pointer value.
1248       forward_ptr = real_forwardee(old);
1249     }
1250     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1251   }
1252 
1253   return forward_ptr;
1254 }
1255 
1256 #ifndef PRODUCT
1257 // It's OK to call this multi-threaded;  the worst thing
1258 // that can happen is that we'll get a bunch of closely
1259 // spaced simulated overflows, but that's OK, in fact
1260 // probably good as it would exercise the overflow code
1261 // under contention.
1262 bool ParNewGeneration::should_simulate_overflow() {
1263   if (_overflow_counter-- <= 0) { // just being defensive
1264     _overflow_counter = ParGCWorkQueueOverflowInterval;
1265     return true;
1266   } else {
1267     return false;
1268   }
1269 }
1270 #endif
1271 
1272 // In case we are using compressed oops, we need to be careful.
1273 // If the object being pushed is an object array, then its length
1274 // field keeps track of the "grey boundary" at which the next
1275 // incremental scan will be done (see ParGCArrayScanChunk).
1276 // When using compressed oops, this length field is kept in the
1277 // lower 32 bits of the erstwhile klass word and cannot be used
1278 // for the overflow chaining pointer (OCP below). As such the OCP
1279 // would itself need to be compressed into the top 32-bits in this
1280 // case. Unfortunately, see below, in the event that we have a
1281 // promotion failure, the node to be pushed on the list can be
1282 // outside of the Java heap, so the heap-based pointer compression
1283 // would not work (we would have potential aliasing between C-heap
1284 // and Java-heap pointers). For this reason, when using compressed
1285 // oops, we simply use a worker-thread-local, non-shared overflow
1286 // list in the form of a growable array, with a slightly different
1287 // overflow stack draining strategy. If/when we start using fat
1288 // stacks here, we can go back to using (fat) pointer chains
1289 // (although some performance comparisons would be useful since
1290 // single global lists have their own performance disadvantages
1291 // as we were made painfully aware not long ago, see 6786503).
1292 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1293 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1294   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1295   if (ParGCUseLocalOverflow) {
1296     // In the case of compressed oops, we use a private, not-shared
1297     // overflow stack.
1298     par_scan_state->push_on_overflow_stack(from_space_obj);
1299   } else {
1300     assert(!UseCompressedOops, "Error");
1301     // if the object has been forwarded to itself, then we cannot
1302     // use the klass pointer for the linked list.  Instead we have
1303     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1304     // XXX This is horribly inefficient when a promotion failure occurs
1305     // and should be fixed. XXX FIX ME !!!
1306 #ifndef PRODUCT
1307     Atomic::inc_ptr(&_num_par_pushes);
1308     assert(_num_par_pushes > 0, "Tautology");
1309 #endif
1310     if (from_space_obj->forwardee() == from_space_obj) {
1311       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1312       listhead->forward_to(from_space_obj);
1313       from_space_obj = listhead;
1314     }
1315     oop observed_overflow_list = _overflow_list;
1316     oop cur_overflow_list;
1317     do {
1318       cur_overflow_list = observed_overflow_list;
1319       if (cur_overflow_list != BUSY) {
1320         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1321       } else {
1322         from_space_obj->set_klass_to_list_ptr(NULL);
1323       }
1324       observed_overflow_list =
1325         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1326     } while (cur_overflow_list != observed_overflow_list);
1327   }
1328 }
1329 
1330 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1331   bool res;
1332 
1333   if (ParGCUseLocalOverflow) {
1334     res = par_scan_state->take_from_overflow_stack();
1335   } else {
1336     assert(!UseCompressedOops, "Error");
1337     res = take_from_overflow_list_work(par_scan_state);
1338   }
1339   return res;
1340 }
1341 
1342 
1343 // *NOTE*: The overflow list manipulation code here and
1344 // in CMSCollector:: are very similar in shape,
1345 // except that in the CMS case we thread the objects
1346 // directly into the list via their mark word, and do
1347 // not need to deal with special cases below related
1348 // to chunking of object arrays and promotion failure
1349 // handling.
1350 // CR 6797058 has been filed to attempt consolidation of
1351 // the common code.
1352 // Because of the common code, if you make any changes in
1353 // the code below, please check the CMS version to see if
1354 // similar changes might be needed.
1355 // See CMSCollector::par_take_from_overflow_list() for
1356 // more extensive documentation comments.
1357 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1358   ObjToScanQueue* work_q = par_scan_state->work_queue();
1359   // How many to take?
1360   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1361                                  (size_t)ParGCDesiredObjsFromOverflowList);
1362 
1363   assert(!UseCompressedOops, "Error");
1364   assert(par_scan_state->overflow_stack() == NULL, "Error");
1365   if (_overflow_list == NULL) return false;
1366 
1367   // Otherwise, there was something there; try claiming the list.
1368   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1369   // Trim off a prefix of at most objsFromOverflow items
1370   Thread* tid = Thread::current();
1371   size_t spin_count = (size_t)ParallelGCThreads;
1372   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1373   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1374     // someone grabbed it before we did ...
1375     // ... we spin for a short while...
1376     os::sleep(tid, sleep_time_millis, false);
1377     if (_overflow_list == NULL) {
1378       // nothing left to take
1379       return false;
1380     } else if (_overflow_list != BUSY) {
1381      // try and grab the prefix
1382      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1383     }
1384   }
1385   if (prefix == NULL || prefix == BUSY) {
1386      // Nothing to take or waited long enough
1387      if (prefix == NULL) {
1388        // Write back the NULL in case we overwrote it with BUSY above
1389        // and it is still the same value.
1390        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1391      }
1392      return false;
1393   }
1394   assert(prefix != NULL && prefix != BUSY, "Error");
1395   size_t i = 1;
1396   oop cur = prefix;
1397   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1398     i++; cur = cur->list_ptr_from_klass();
1399   }
1400 
1401   // Reattach remaining (suffix) to overflow list
1402   if (cur->klass_or_null() == NULL) {
1403     // Write back the NULL in lieu of the BUSY we wrote
1404     // above and it is still the same value.
1405     if (_overflow_list == BUSY) {
1406       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1407     }
1408   } else {
1409     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1410     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1411     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1412     // It's possible that the list is still in the empty(busy) state
1413     // we left it in a short while ago; in that case we may be
1414     // able to place back the suffix.
1415     oop observed_overflow_list = _overflow_list;
1416     oop cur_overflow_list = observed_overflow_list;
1417     bool attached = false;
1418     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1419       observed_overflow_list =
1420         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1421       if (cur_overflow_list == observed_overflow_list) {
1422         attached = true;
1423         break;
1424       } else cur_overflow_list = observed_overflow_list;
1425     }
1426     if (!attached) {
1427       // Too bad, someone else got in in between; we'll need to do a splice.
1428       // Find the last item of suffix list
1429       oop last = suffix;
1430       while (last->klass_or_null() != NULL) {
1431         last = last->list_ptr_from_klass();
1432       }
1433       // Atomically prepend suffix to current overflow list
1434       observed_overflow_list = _overflow_list;
1435       do {
1436         cur_overflow_list = observed_overflow_list;
1437         if (cur_overflow_list != BUSY) {
1438           // Do the splice ...
1439           last->set_klass_to_list_ptr(cur_overflow_list);
1440         } else { // cur_overflow_list == BUSY
1441           last->set_klass_to_list_ptr(NULL);
1442         }
1443         observed_overflow_list =
1444           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1445       } while (cur_overflow_list != observed_overflow_list);
1446     }
1447   }
1448 
1449   // Push objects on prefix list onto this thread's work queue
1450   assert(prefix != NULL && prefix != BUSY, "program logic");
1451   cur = prefix;
1452   ssize_t n = 0;
1453   while (cur != NULL) {
1454     oop obj_to_push = cur->forwardee();
1455     oop next        = cur->list_ptr_from_klass();
1456     cur->set_klass(obj_to_push->klass());
1457     // This may be an array object that is self-forwarded. In that case, the list pointer
1458     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1459     if (!is_in_reserved(cur)) {
1460       // This can become a scaling bottleneck when there is work queue overflow coincident
1461       // with promotion failure.
1462       oopDesc* f = cur;
1463       FREE_C_HEAP_ARRAY(oopDesc, f);
1464     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1465       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1466       obj_to_push = cur;
1467     }
1468     bool ok = work_q->push(obj_to_push);
1469     assert(ok, "Should have succeeded");
1470     cur = next;
1471     n++;
1472   }
1473   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1474 #ifndef PRODUCT
1475   assert(_num_par_pushes >= n, "Too many pops?");
1476   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1477 #endif
1478   return true;
1479 }
1480 #undef BUSY
1481 
1482 void ParNewGeneration::ref_processor_init() {
1483   if (_ref_processor == NULL) {
1484     // Allocate and initialize a reference processor
1485     _ref_processor =
1486       new ReferenceProcessor(_reserved,                  // span
1487                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1488                              (int) ParallelGCThreads,    // mt processing degree
1489                              refs_discovery_is_mt(),     // mt discovery
1490                              (int) ParallelGCThreads,    // mt discovery degree
1491                              refs_discovery_is_atomic(), // atomic_discovery
1492                              NULL);                      // is_alive_non_header
1493   }
1494 }
1495 
1496 const char* ParNewGeneration::name() const {
1497   return "par new generation";
1498 }