1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/heapRegion.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  41 #include "gc_implementation/shared/vmGCOperations.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/referencePolicy.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/prefetch.inline.hpp"
  54 #include "services/memTracker.hpp"
  55 
  56 // Concurrent marking bit map wrapper
  57 
  58 CMBitMapRO::CMBitMapRO(int shifter) :
  59   _bm(),
  60   _shifter(shifter) {
  61   _bmStartWord = 0;
  62   _bmWordSize = 0;
  63 }
  64 
  65 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  66                                                const HeapWord* limit) const {
  67   // First we must round addr *up* to a possible object boundary.
  68   addr = (HeapWord*)align_size_up((intptr_t)addr,
  69                                   HeapWordSize << _shifter);
  70   size_t addrOffset = heapWordToOffset(addr);
  71   if (limit == NULL) {
  72     limit = _bmStartWord + _bmWordSize;
  73   }
  74   size_t limitOffset = heapWordToOffset(limit);
  75   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  76   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  77   assert(nextAddr >= addr, "get_next_one postcondition");
  78   assert(nextAddr == limit || isMarked(nextAddr),
  79          "get_next_one postcondition");
  80   return nextAddr;
  81 }
  82 
  83 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  84                                                  const HeapWord* limit) const {
  85   size_t addrOffset = heapWordToOffset(addr);
  86   if (limit == NULL) {
  87     limit = _bmStartWord + _bmWordSize;
  88   }
  89   size_t limitOffset = heapWordToOffset(limit);
  90   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  91   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  92   assert(nextAddr >= addr, "get_next_one postcondition");
  93   assert(nextAddr == limit || !isMarked(nextAddr),
  94          "get_next_one postcondition");
  95   return nextAddr;
  96 }
  97 
  98 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  99   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 100   return (int) (diff >> _shifter);
 101 }
 102 
 103 #ifndef PRODUCT
 104 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 105   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 106   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 107          "size inconsistency");
 108   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 109          _bmWordSize  == heap_rs.word_size();
 110 }
 111 #endif
 112 
 113 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 114   _bm.print_on_error(st, prefix);
 115 }
 116 
 117 size_t CMBitMap::compute_size(size_t heap_size) {
 118   return heap_size / mark_distance();
 119 }
 120 
 121 size_t CMBitMap::mark_distance() {
 122   return MinObjAlignmentInBytes * BitsPerByte;
 123 }
 124 
 125 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 126   _bmStartWord = heap.start();
 127   _bmWordSize = heap.word_size();
 128 
 129   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 130   _bm.set_size(_bmWordSize >> _shifter);
 131 
 132   storage->set_mapping_changed_listener(&_listener);
 133 }
 134 
 135 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 136   if (zero_filled) {
 137     return;
 138   }
 139   // We need to clear the bitmap on commit, removing any existing information.
 140   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 141   _bm->clearRange(mr);
 142 }
 143 
 144 // Closure used for clearing the given mark bitmap.
 145 class ClearBitmapHRClosure : public HeapRegionClosure {
 146  private:
 147   ConcurrentMark* _cm;
 148   CMBitMap* _bitmap;
 149   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 150  public:
 151   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 152     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 153   }
 154 
 155   virtual bool doHeapRegion(HeapRegion* r) {
 156     size_t const chunk_size_in_words = M / HeapWordSize;
 157 
 158     HeapWord* cur = r->bottom();
 159     HeapWord* const end = r->end();
 160 
 161     while (cur < end) {
 162       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 163       _bitmap->clearRange(mr);
 164 
 165       cur += chunk_size_in_words;
 166 
 167       // Abort iteration if after yielding the marking has been aborted.
 168       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 169         return true;
 170       }
 171       // Repeat the asserts from before the start of the closure. We will do them
 172       // as asserts here to minimize their overhead on the product. However, we
 173       // will have them as guarantees at the beginning / end of the bitmap
 174       // clearing to get some checking in the product.
 175       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 176       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 177     }
 178 
 179     return false;
 180   }
 181 };
 182 
 183 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 184   ClearBitmapHRClosure* _cl;
 185   HeapRegionClaimer     _hrclaimer;
 186   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 187 
 188 public:
 189   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 190       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 191 
 192   void work(uint worker_id) {
 193     if (_suspendible) {
 194       SuspendibleThreadSet::join();
 195     }
 196     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 197     if (_suspendible) {
 198       SuspendibleThreadSet::leave();
 199     }
 200   }
 201 };
 202 
 203 void CMBitMap::clearAll() {
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 206   uint n_workers = g1h->workers()->active_workers();
 207   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 208   g1h->workers()->run_task(&task);
 209   guarantee(cl.complete(), "Must have completed iteration.");
 210   return;
 211 }
 212 
 213 void CMBitMap::markRange(MemRegion mr) {
 214   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 215   assert(!mr.is_empty(), "unexpected empty region");
 216   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 217           ((HeapWord *) mr.end())),
 218          "markRange memory region end is not card aligned");
 219   // convert address range into offset range
 220   _bm.at_put_range(heapWordToOffset(mr.start()),
 221                    heapWordToOffset(mr.end()), true);
 222 }
 223 
 224 void CMBitMap::clearRange(MemRegion mr) {
 225   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 226   assert(!mr.is_empty(), "unexpected empty region");
 227   // convert address range into offset range
 228   _bm.at_put_range(heapWordToOffset(mr.start()),
 229                    heapWordToOffset(mr.end()), false);
 230 }
 231 
 232 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 233                                             HeapWord* end_addr) {
 234   HeapWord* start = getNextMarkedWordAddress(addr);
 235   start = MIN2(start, end_addr);
 236   HeapWord* end   = getNextUnmarkedWordAddress(start);
 237   end = MIN2(end, end_addr);
 238   assert(start <= end, "Consistency check");
 239   MemRegion mr(start, end);
 240   if (!mr.is_empty()) {
 241     clearRange(mr);
 242   }
 243   return mr;
 244 }
 245 
 246 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 247   _base(NULL), _cm(cm)
 248 #ifdef ASSERT
 249   , _drain_in_progress(false)
 250   , _drain_in_progress_yields(false)
 251 #endif
 252 {}
 253 
 254 bool CMMarkStack::allocate(size_t capacity) {
 255   // allocate a stack of the requisite depth
 256   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 257   if (!rs.is_reserved()) {
 258     warning("ConcurrentMark MarkStack allocation failure");
 259     return false;
 260   }
 261   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 262   if (!_virtual_space.initialize(rs, rs.size())) {
 263     warning("ConcurrentMark MarkStack backing store failure");
 264     // Release the virtual memory reserved for the marking stack
 265     rs.release();
 266     return false;
 267   }
 268   assert(_virtual_space.committed_size() == rs.size(),
 269          "Didn't reserve backing store for all of ConcurrentMark stack?");
 270   _base = (oop*) _virtual_space.low();
 271   setEmpty();
 272   _capacity = (jint) capacity;
 273   _saved_index = -1;
 274   _should_expand = false;
 275   NOT_PRODUCT(_max_depth = 0);
 276   return true;
 277 }
 278 
 279 void CMMarkStack::expand() {
 280   // Called, during remark, if we've overflown the marking stack during marking.
 281   assert(isEmpty(), "stack should been emptied while handling overflow");
 282   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 283   // Clear expansion flag
 284   _should_expand = false;
 285   if (_capacity == (jint) MarkStackSizeMax) {
 286     if (PrintGCDetails && Verbose) {
 287       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 288     }
 289     return;
 290   }
 291   // Double capacity if possible
 292   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 293   // Do not give up existing stack until we have managed to
 294   // get the double capacity that we desired.
 295   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 296                                                            sizeof(oop)));
 297   if (rs.is_reserved()) {
 298     // Release the backing store associated with old stack
 299     _virtual_space.release();
 300     // Reinitialize virtual space for new stack
 301     if (!_virtual_space.initialize(rs, rs.size())) {
 302       fatal("Not enough swap for expanded marking stack capacity");
 303     }
 304     _base = (oop*)(_virtual_space.low());
 305     _index = 0;
 306     _capacity = new_capacity;
 307   } else {
 308     if (PrintGCDetails && Verbose) {
 309       // Failed to double capacity, continue;
 310       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 311                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 312                           _capacity / K, new_capacity / K);
 313     }
 314   }
 315 }
 316 
 317 void CMMarkStack::set_should_expand() {
 318   // If we're resetting the marking state because of an
 319   // marking stack overflow, record that we should, if
 320   // possible, expand the stack.
 321   _should_expand = _cm->has_overflown();
 322 }
 323 
 324 CMMarkStack::~CMMarkStack() {
 325   if (_base != NULL) {
 326     _base = NULL;
 327     _virtual_space.release();
 328   }
 329 }
 330 
 331 void CMMarkStack::par_push(oop ptr) {
 332   while (true) {
 333     if (isFull()) {
 334       _overflow = true;
 335       return;
 336     }
 337     // Otherwise...
 338     jint index = _index;
 339     jint next_index = index+1;
 340     jint res = Atomic::cmpxchg(next_index, &_index, index);
 341     if (res == index) {
 342       _base[index] = ptr;
 343       // Note that we don't maintain this atomically.  We could, but it
 344       // doesn't seem necessary.
 345       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 346       return;
 347     }
 348     // Otherwise, we need to try again.
 349   }
 350 }
 351 
 352 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 353   while (true) {
 354     if (isFull()) {
 355       _overflow = true;
 356       return;
 357     }
 358     // Otherwise...
 359     jint index = _index;
 360     jint next_index = index + n;
 361     if (next_index > _capacity) {
 362       _overflow = true;
 363       return;
 364     }
 365     jint res = Atomic::cmpxchg(next_index, &_index, index);
 366     if (res == index) {
 367       for (int i = 0; i < n; i++) {
 368         int  ind = index + i;
 369         assert(ind < _capacity, "By overflow test above.");
 370         _base[ind] = ptr_arr[i];
 371       }
 372       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 373       return;
 374     }
 375     // Otherwise, we need to try again.
 376   }
 377 }
 378 
 379 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 380   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 381   jint start = _index;
 382   jint next_index = start + n;
 383   if (next_index > _capacity) {
 384     _overflow = true;
 385     return;
 386   }
 387   // Otherwise.
 388   _index = next_index;
 389   for (int i = 0; i < n; i++) {
 390     int ind = start + i;
 391     assert(ind < _capacity, "By overflow test above.");
 392     _base[ind] = ptr_arr[i];
 393   }
 394   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 395 }
 396 
 397 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 398   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 399   jint index = _index;
 400   if (index == 0) {
 401     *n = 0;
 402     return false;
 403   } else {
 404     int k = MIN2(max, index);
 405     jint  new_ind = index - k;
 406     for (int j = 0; j < k; j++) {
 407       ptr_arr[j] = _base[new_ind + j];
 408     }
 409     _index = new_ind;
 410     *n = k;
 411     return true;
 412   }
 413 }
 414 
 415 template<class OopClosureClass>
 416 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 417   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 418          || SafepointSynchronize::is_at_safepoint(),
 419          "Drain recursion must be yield-safe.");
 420   bool res = true;
 421   debug_only(_drain_in_progress = true);
 422   debug_only(_drain_in_progress_yields = yield_after);
 423   while (!isEmpty()) {
 424     oop newOop = pop();
 425     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 426     assert(newOop->is_oop(), "Expected an oop");
 427     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 428            "only grey objects on this stack");
 429     newOop->oop_iterate(cl);
 430     if (yield_after && _cm->do_yield_check()) {
 431       res = false;
 432       break;
 433     }
 434   }
 435   debug_only(_drain_in_progress = false);
 436   return res;
 437 }
 438 
 439 void CMMarkStack::note_start_of_gc() {
 440   assert(_saved_index == -1,
 441          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 442   _saved_index = _index;
 443 }
 444 
 445 void CMMarkStack::note_end_of_gc() {
 446   // This is intentionally a guarantee, instead of an assert. If we
 447   // accidentally add something to the mark stack during GC, it
 448   // will be a correctness issue so it's better if we crash. we'll
 449   // only check this once per GC anyway, so it won't be a performance
 450   // issue in any way.
 451   guarantee(_saved_index == _index,
 452             err_msg("saved index: %d index: %d", _saved_index, _index));
 453   _saved_index = -1;
 454 }
 455 
 456 void CMMarkStack::oops_do(OopClosure* f) {
 457   assert(_saved_index == _index,
 458          err_msg("saved index: %d index: %d", _saved_index, _index));
 459   for (int i = 0; i < _index; i += 1) {
 460     f->do_oop(&_base[i]);
 461   }
 462 }
 463 
 464 CMRootRegions::CMRootRegions() :
 465   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 466   _should_abort(false),  _next_survivor(NULL) { }
 467 
 468 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 469   _young_list = g1h->young_list();
 470   _cm = cm;
 471 }
 472 
 473 void CMRootRegions::prepare_for_scan() {
 474   assert(!scan_in_progress(), "pre-condition");
 475 
 476   // Currently, only survivors can be root regions.
 477   assert(_next_survivor == NULL, "pre-condition");
 478   _next_survivor = _young_list->first_survivor_region();
 479   _scan_in_progress = (_next_survivor != NULL);
 480   _should_abort = false;
 481 }
 482 
 483 HeapRegion* CMRootRegions::claim_next() {
 484   if (_should_abort) {
 485     // If someone has set the should_abort flag, we return NULL to
 486     // force the caller to bail out of their loop.
 487     return NULL;
 488   }
 489 
 490   // Currently, only survivors can be root regions.
 491   HeapRegion* res = _next_survivor;
 492   if (res != NULL) {
 493     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 494     // Read it again in case it changed while we were waiting for the lock.
 495     res = _next_survivor;
 496     if (res != NULL) {
 497       if (res == _young_list->last_survivor_region()) {
 498         // We just claimed the last survivor so store NULL to indicate
 499         // that we're done.
 500         _next_survivor = NULL;
 501       } else {
 502         _next_survivor = res->get_next_young_region();
 503       }
 504     } else {
 505       // Someone else claimed the last survivor while we were trying
 506       // to take the lock so nothing else to do.
 507     }
 508   }
 509   assert(res == NULL || res->is_survivor(), "post-condition");
 510 
 511   return res;
 512 }
 513 
 514 void CMRootRegions::scan_finished() {
 515   assert(scan_in_progress(), "pre-condition");
 516 
 517   // Currently, only survivors can be root regions.
 518   if (!_should_abort) {
 519     assert(_next_survivor == NULL, "we should have claimed all survivors");
 520   }
 521   _next_survivor = NULL;
 522 
 523   {
 524     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 525     _scan_in_progress = false;
 526     RootRegionScan_lock->notify_all();
 527   }
 528 }
 529 
 530 bool CMRootRegions::wait_until_scan_finished() {
 531   if (!scan_in_progress()) return false;
 532 
 533   {
 534     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 535     while (scan_in_progress()) {
 536       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 537     }
 538   }
 539   return true;
 540 }
 541 
 542 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 543 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 544 #endif // _MSC_VER
 545 
 546 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 547   return MAX2((n_par_threads + 2) / 4, 1U);
 548 }
 549 
 550 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 551   _g1h(g1h),
 552   _markBitMap1(),
 553   _markBitMap2(),
 554   _parallel_marking_threads(0),
 555   _max_parallel_marking_threads(0),
 556   _sleep_factor(0.0),
 557   _marking_task_overhead(1.0),
 558   _cleanup_sleep_factor(0.0),
 559   _cleanup_task_overhead(1.0),
 560   _cleanup_list("Cleanup List"),
 561   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 562   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 563             CardTableModRefBS::card_shift,
 564             false /* in_resource_area*/),
 565 
 566   _prevMarkBitMap(&_markBitMap1),
 567   _nextMarkBitMap(&_markBitMap2),
 568 
 569   _markStack(this),
 570   // _finger set in set_non_marking_state
 571 
 572   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 573   // _active_tasks set in set_non_marking_state
 574   // _tasks set inside the constructor
 575   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 576   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 577 
 578   _has_overflown(false),
 579   _concurrent(false),
 580   _has_aborted(false),
 581   _aborted_gc_id(GCId::undefined()),
 582   _restart_for_overflow(false),
 583   _concurrent_marking_in_progress(false),
 584 
 585   // _verbose_level set below
 586 
 587   _init_times(),
 588   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 589   _cleanup_times(),
 590   _total_counting_time(0.0),
 591   _total_rs_scrub_time(0.0),
 592 
 593   _parallel_workers(NULL),
 594 
 595   _count_card_bitmaps(NULL),
 596   _count_marked_bytes(NULL),
 597   _completed_initialization(false) {
 598   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 599   if (verbose_level < no_verbose) {
 600     verbose_level = no_verbose;
 601   }
 602   if (verbose_level > high_verbose) {
 603     verbose_level = high_verbose;
 604   }
 605   _verbose_level = verbose_level;
 606 
 607   if (verbose_low()) {
 608     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 609                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 610   }
 611 
 612   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 613   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 614 
 615   // Create & start a ConcurrentMark thread.
 616   _cmThread = new ConcurrentMarkThread(this);
 617   assert(cmThread() != NULL, "CM Thread should have been created");
 618   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 619   if (_cmThread->osthread() == NULL) {
 620       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 621   }
 622 
 623   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 624   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 625   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 626 
 627   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 628   satb_qs.set_buffer_size(G1SATBBufferSize);
 629 
 630   _root_regions.init(_g1h, this);
 631 
 632   if (ConcGCThreads > ParallelGCThreads) {
 633     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 634             "than ParallelGCThreads (" UINTX_FORMAT ").",
 635             ConcGCThreads, ParallelGCThreads);
 636     return;
 637   }
 638   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 639     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 640     // if both are set
 641     _sleep_factor             = 0.0;
 642     _marking_task_overhead    = 1.0;
 643   } else if (G1MarkingOverheadPercent > 0) {
 644     // We will calculate the number of parallel marking threads based
 645     // on a target overhead with respect to the soft real-time goal
 646     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 647     double overall_cm_overhead =
 648       (double) MaxGCPauseMillis * marking_overhead /
 649       (double) GCPauseIntervalMillis;
 650     double cpu_ratio = 1.0 / (double) os::processor_count();
 651     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 652     double marking_task_overhead =
 653       overall_cm_overhead / marking_thread_num *
 654                                               (double) os::processor_count();
 655     double sleep_factor =
 656                        (1.0 - marking_task_overhead) / marking_task_overhead;
 657 
 658     FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 659     _sleep_factor             = sleep_factor;
 660     _marking_task_overhead    = marking_task_overhead;
 661   } else {
 662     // Calculate the number of parallel marking threads by scaling
 663     // the number of parallel GC threads.
 664     uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 665     FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 666     _sleep_factor             = 0.0;
 667     _marking_task_overhead    = 1.0;
 668   }
 669 
 670   assert(ConcGCThreads > 0, "Should have been set");
 671   _parallel_marking_threads = (uint) ConcGCThreads;
 672   _max_parallel_marking_threads = _parallel_marking_threads;
 673 
 674   if (parallel_marking_threads() > 1) {
 675     _cleanup_task_overhead = 1.0;
 676   } else {
 677     _cleanup_task_overhead = marking_task_overhead();
 678   }
 679   _cleanup_sleep_factor =
 680                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 681 
 682 #if 0
 683   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 684   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 685   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 686   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 687   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 688 #endif
 689 
 690   _parallel_workers = new FlexibleWorkGang("G1 Marker",
 691        _max_parallel_marking_threads, false, true);
 692   if (_parallel_workers == NULL) {
 693     vm_exit_during_initialization("Failed necessary allocation.");
 694   } else {
 695     _parallel_workers->initialize_workers();
 696   }
 697 
 698   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 699     size_t mark_stack_size =
 700       MIN2(MarkStackSizeMax,
 701           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 702     // Verify that the calculated value for MarkStackSize is in range.
 703     // It would be nice to use the private utility routine from Arguments.
 704     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 705       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 706               "must be between 1 and " SIZE_FORMAT,
 707               mark_stack_size, MarkStackSizeMax);
 708       return;
 709     }
 710     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 711   } else {
 712     // Verify MarkStackSize is in range.
 713     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 714       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 715         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 716           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 717                   "must be between 1 and " SIZE_FORMAT,
 718                   MarkStackSize, MarkStackSizeMax);
 719           return;
 720         }
 721       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 722         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 723           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 724                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 725                   MarkStackSize, MarkStackSizeMax);
 726           return;
 727         }
 728       }
 729     }
 730   }
 731 
 732   if (!_markStack.allocate(MarkStackSize)) {
 733     warning("Failed to allocate CM marking stack");
 734     return;
 735   }
 736 
 737   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 738   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 739 
 740   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 741   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 742 
 743   BitMap::idx_t card_bm_size = _card_bm.size();
 744 
 745   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 746   _active_tasks = _max_worker_id;
 747 
 748   uint max_regions = _g1h->max_regions();
 749   for (uint i = 0; i < _max_worker_id; ++i) {
 750     CMTaskQueue* task_queue = new CMTaskQueue();
 751     task_queue->initialize();
 752     _task_queues->register_queue(i, task_queue);
 753 
 754     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 755     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 756 
 757     _tasks[i] = new CMTask(i, this,
 758                            _count_marked_bytes[i],
 759                            &_count_card_bitmaps[i],
 760                            task_queue, _task_queues);
 761 
 762     _accum_task_vtime[i] = 0.0;
 763   }
 764 
 765   // Calculate the card number for the bottom of the heap. Used
 766   // in biasing indexes into the accounting card bitmaps.
 767   _heap_bottom_card_num =
 768     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 769                                 CardTableModRefBS::card_shift);
 770 
 771   // Clear all the liveness counting data
 772   clear_all_count_data();
 773 
 774   // so that the call below can read a sensible value
 775   _heap_start = g1h->reserved_region().start();
 776   set_non_marking_state();
 777   _completed_initialization = true;
 778 }
 779 
 780 void ConcurrentMark::reset() {
 781   // Starting values for these two. This should be called in a STW
 782   // phase.
 783   MemRegion reserved = _g1h->g1_reserved();
 784   _heap_start = reserved.start();
 785   _heap_end   = reserved.end();
 786 
 787   // Separated the asserts so that we know which one fires.
 788   assert(_heap_start != NULL, "heap bounds should look ok");
 789   assert(_heap_end != NULL, "heap bounds should look ok");
 790   assert(_heap_start < _heap_end, "heap bounds should look ok");
 791 
 792   // Reset all the marking data structures and any necessary flags
 793   reset_marking_state();
 794 
 795   if (verbose_low()) {
 796     gclog_or_tty->print_cr("[global] resetting");
 797   }
 798 
 799   // We do reset all of them, since different phases will use
 800   // different number of active threads. So, it's easiest to have all
 801   // of them ready.
 802   for (uint i = 0; i < _max_worker_id; ++i) {
 803     _tasks[i]->reset(_nextMarkBitMap);
 804   }
 805 
 806   // we need this to make sure that the flag is on during the evac
 807   // pause with initial mark piggy-backed
 808   set_concurrent_marking_in_progress();
 809 }
 810 
 811 
 812 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 813   _markStack.set_should_expand();
 814   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 815   if (clear_overflow) {
 816     clear_has_overflown();
 817   } else {
 818     assert(has_overflown(), "pre-condition");
 819   }
 820   _finger = _heap_start;
 821 
 822   for (uint i = 0; i < _max_worker_id; ++i) {
 823     CMTaskQueue* queue = _task_queues->queue(i);
 824     queue->set_empty();
 825   }
 826 }
 827 
 828 void ConcurrentMark::set_concurrency(uint active_tasks) {
 829   assert(active_tasks <= _max_worker_id, "we should not have more");
 830 
 831   _active_tasks = active_tasks;
 832   // Need to update the three data structures below according to the
 833   // number of active threads for this phase.
 834   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 835   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 836   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 837 }
 838 
 839 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 840   set_concurrency(active_tasks);
 841 
 842   _concurrent = concurrent;
 843   // We propagate this to all tasks, not just the active ones.
 844   for (uint i = 0; i < _max_worker_id; ++i)
 845     _tasks[i]->set_concurrent(concurrent);
 846 
 847   if (concurrent) {
 848     set_concurrent_marking_in_progress();
 849   } else {
 850     // We currently assume that the concurrent flag has been set to
 851     // false before we start remark. At this point we should also be
 852     // in a STW phase.
 853     assert(!concurrent_marking_in_progress(), "invariant");
 854     assert(out_of_regions(),
 855            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 856                    p2i(_finger), p2i(_heap_end)));
 857   }
 858 }
 859 
 860 void ConcurrentMark::set_non_marking_state() {
 861   // We set the global marking state to some default values when we're
 862   // not doing marking.
 863   reset_marking_state();
 864   _active_tasks = 0;
 865   clear_concurrent_marking_in_progress();
 866 }
 867 
 868 ConcurrentMark::~ConcurrentMark() {
 869   // The ConcurrentMark instance is never freed.
 870   ShouldNotReachHere();
 871 }
 872 
 873 void ConcurrentMark::clearNextBitmap() {
 874   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 875 
 876   // Make sure that the concurrent mark thread looks to still be in
 877   // the current cycle.
 878   guarantee(cmThread()->during_cycle(), "invariant");
 879 
 880   // We are finishing up the current cycle by clearing the next
 881   // marking bitmap and getting it ready for the next cycle. During
 882   // this time no other cycle can start. So, let's make sure that this
 883   // is the case.
 884   guarantee(!g1h->mark_in_progress(), "invariant");
 885 
 886   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 887   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 888   _parallel_workers->run_task(&task);
 889 
 890   // Clear the liveness counting data. If the marking has been aborted, the abort()
 891   // call already did that.
 892   if (cl.complete()) {
 893     clear_all_count_data();
 894   }
 895 
 896   // Repeat the asserts from above.
 897   guarantee(cmThread()->during_cycle(), "invariant");
 898   guarantee(!g1h->mark_in_progress(), "invariant");
 899 }
 900 
 901 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 902   CMBitMap* _bitmap;
 903   bool _error;
 904  public:
 905   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 906   }
 907 
 908   virtual bool doHeapRegion(HeapRegion* r) {
 909     // This closure can be called concurrently to the mutator, so we must make sure
 910     // that the result of the getNextMarkedWordAddress() call is compared to the
 911     // value passed to it as limit to detect any found bits.
 912     // We can use the region's orig_end() for the limit and the comparison value
 913     // as it always contains the "real" end of the region that never changes and
 914     // has no side effects.
 915     // Due to the latter, there can also be no problem with the compiler generating
 916     // reloads of the orig_end() call.
 917     HeapWord* end = r->orig_end();
 918     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 919   }
 920 };
 921 
 922 bool ConcurrentMark::nextMarkBitmapIsClear() {
 923   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 924   _g1h->heap_region_iterate(&cl);
 925   return cl.complete();
 926 }
 927 
 928 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 929 public:
 930   bool doHeapRegion(HeapRegion* r) {
 931     if (!r->is_continues_humongous()) {
 932       r->note_start_of_marking();
 933     }
 934     return false;
 935   }
 936 };
 937 
 938 void ConcurrentMark::checkpointRootsInitialPre() {
 939   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 940   G1CollectorPolicy* g1p = g1h->g1_policy();
 941 
 942   _has_aborted = false;
 943 
 944 #ifndef PRODUCT
 945   if (G1PrintReachableAtInitialMark) {
 946     print_reachable("at-cycle-start",
 947                     VerifyOption_G1UsePrevMarking, true /* all */);
 948   }
 949 #endif
 950 
 951   // Initialize marking structures. This has to be done in a STW phase.
 952   reset();
 953 
 954   // For each region note start of marking.
 955   NoteStartOfMarkHRClosure startcl;
 956   g1h->heap_region_iterate(&startcl);
 957 }
 958 
 959 
 960 void ConcurrentMark::checkpointRootsInitialPost() {
 961   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 962 
 963   // If we force an overflow during remark, the remark operation will
 964   // actually abort and we'll restart concurrent marking. If we always
 965   // force an overflow during remark we'll never actually complete the
 966   // marking phase. So, we initialize this here, at the start of the
 967   // cycle, so that at the remaining overflow number will decrease at
 968   // every remark and we'll eventually not need to cause one.
 969   force_overflow_stw()->init();
 970 
 971   // Start Concurrent Marking weak-reference discovery.
 972   ReferenceProcessor* rp = g1h->ref_processor_cm();
 973   // enable ("weak") refs discovery
 974   rp->enable_discovery();
 975   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 976 
 977   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 978   // This is the start of  the marking cycle, we're expected all
 979   // threads to have SATB queues with active set to false.
 980   satb_mq_set.set_active_all_threads(true, /* new active value */
 981                                      false /* expected_active */);
 982 
 983   _root_regions.prepare_for_scan();
 984 
 985   // update_g1_committed() will be called at the end of an evac pause
 986   // when marking is on. So, it's also called at the end of the
 987   // initial-mark pause to update the heap end, if the heap expands
 988   // during it. No need to call it here.
 989 }
 990 
 991 /*
 992  * Notice that in the next two methods, we actually leave the STS
 993  * during the barrier sync and join it immediately afterwards. If we
 994  * do not do this, the following deadlock can occur: one thread could
 995  * be in the barrier sync code, waiting for the other thread to also
 996  * sync up, whereas another one could be trying to yield, while also
 997  * waiting for the other threads to sync up too.
 998  *
 999  * Note, however, that this code is also used during remark and in
1000  * this case we should not attempt to leave / enter the STS, otherwise
1001  * we'll either hit an assert (debug / fastdebug) or deadlock
1002  * (product). So we should only leave / enter the STS if we are
1003  * operating concurrently.
1004  *
1005  * Because the thread that does the sync barrier has left the STS, it
1006  * is possible to be suspended for a Full GC or an evacuation pause
1007  * could occur. This is actually safe, since the entering the sync
1008  * barrier is one of the last things do_marking_step() does, and it
1009  * doesn't manipulate any data structures afterwards.
1010  */
1011 
1012 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
1013   if (verbose_low()) {
1014     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1015   }
1016 
1017   if (concurrent()) {
1018     SuspendibleThreadSet::leave();
1019   }
1020 
1021   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1022 
1023   if (concurrent()) {
1024     SuspendibleThreadSet::join();
1025   }
1026   // at this point everyone should have synced up and not be doing any
1027   // more work
1028 
1029   if (verbose_low()) {
1030     if (barrier_aborted) {
1031       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1032     } else {
1033       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1034     }
1035   }
1036 
1037   if (barrier_aborted) {
1038     // If the barrier aborted we ignore the overflow condition and
1039     // just abort the whole marking phase as quickly as possible.
1040     return;
1041   }
1042 
1043   // If we're executing the concurrent phase of marking, reset the marking
1044   // state; otherwise the marking state is reset after reference processing,
1045   // during the remark pause.
1046   // If we reset here as a result of an overflow during the remark we will
1047   // see assertion failures from any subsequent set_concurrency_and_phase()
1048   // calls.
1049   if (concurrent()) {
1050     // let the task associated with with worker 0 do this
1051     if (worker_id == 0) {
1052       // task 0 is responsible for clearing the global data structures
1053       // We should be here because of an overflow. During STW we should
1054       // not clear the overflow flag since we rely on it being true when
1055       // we exit this method to abort the pause and restart concurrent
1056       // marking.
1057       reset_marking_state(true /* clear_overflow */);
1058       force_overflow()->update();
1059 
1060       if (G1Log::fine()) {
1061         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1062         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1063       }
1064     }
1065   }
1066 
1067   // after this, each task should reset its own data structures then
1068   // then go into the second barrier
1069 }
1070 
1071 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1072   if (verbose_low()) {
1073     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1074   }
1075 
1076   if (concurrent()) {
1077     SuspendibleThreadSet::leave();
1078   }
1079 
1080   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1081 
1082   if (concurrent()) {
1083     SuspendibleThreadSet::join();
1084   }
1085   // at this point everything should be re-initialized and ready to go
1086 
1087   if (verbose_low()) {
1088     if (barrier_aborted) {
1089       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1090     } else {
1091       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1092     }
1093   }
1094 }
1095 
1096 #ifndef PRODUCT
1097 void ForceOverflowSettings::init() {
1098   _num_remaining = G1ConcMarkForceOverflow;
1099   _force = false;
1100   update();
1101 }
1102 
1103 void ForceOverflowSettings::update() {
1104   if (_num_remaining > 0) {
1105     _num_remaining -= 1;
1106     _force = true;
1107   } else {
1108     _force = false;
1109   }
1110 }
1111 
1112 bool ForceOverflowSettings::should_force() {
1113   if (_force) {
1114     _force = false;
1115     return true;
1116   } else {
1117     return false;
1118   }
1119 }
1120 #endif // !PRODUCT
1121 
1122 class CMConcurrentMarkingTask: public AbstractGangTask {
1123 private:
1124   ConcurrentMark*       _cm;
1125   ConcurrentMarkThread* _cmt;
1126 
1127 public:
1128   void work(uint worker_id) {
1129     assert(Thread::current()->is_ConcurrentGC_thread(),
1130            "this should only be done by a conc GC thread");
1131     ResourceMark rm;
1132 
1133     double start_vtime = os::elapsedVTime();
1134 
1135     SuspendibleThreadSet::join();
1136 
1137     assert(worker_id < _cm->active_tasks(), "invariant");
1138     CMTask* the_task = _cm->task(worker_id);
1139     the_task->record_start_time();
1140     if (!_cm->has_aborted()) {
1141       do {
1142         double start_vtime_sec = os::elapsedVTime();
1143         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1144 
1145         the_task->do_marking_step(mark_step_duration_ms,
1146                                   true  /* do_termination */,
1147                                   false /* is_serial*/);
1148 
1149         double end_vtime_sec = os::elapsedVTime();
1150         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1151         _cm->clear_has_overflown();
1152 
1153         _cm->do_yield_check(worker_id);
1154 
1155         jlong sleep_time_ms;
1156         if (!_cm->has_aborted() && the_task->has_aborted()) {
1157           sleep_time_ms =
1158             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1159           SuspendibleThreadSet::leave();
1160           os::sleep(Thread::current(), sleep_time_ms, false);
1161           SuspendibleThreadSet::join();
1162         }
1163       } while (!_cm->has_aborted() && the_task->has_aborted());
1164     }
1165     the_task->record_end_time();
1166     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1167 
1168     SuspendibleThreadSet::leave();
1169 
1170     double end_vtime = os::elapsedVTime();
1171     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1172   }
1173 
1174   CMConcurrentMarkingTask(ConcurrentMark* cm,
1175                           ConcurrentMarkThread* cmt) :
1176       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1177 
1178   ~CMConcurrentMarkingTask() { }
1179 };
1180 
1181 // Calculates the number of active workers for a concurrent
1182 // phase.
1183 uint ConcurrentMark::calc_parallel_marking_threads() {
1184   uint n_conc_workers = 0;
1185   if (!UseDynamicNumberOfGCThreads ||
1186       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1187        !ForceDynamicNumberOfGCThreads)) {
1188     n_conc_workers = max_parallel_marking_threads();
1189   } else {
1190     n_conc_workers =
1191       AdaptiveSizePolicy::calc_default_active_workers(
1192                                    max_parallel_marking_threads(),
1193                                    1, /* Minimum workers */
1194                                    parallel_marking_threads(),
1195                                    Threads::number_of_non_daemon_threads());
1196     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1197     // that scaling has already gone into "_max_parallel_marking_threads".
1198   }
1199   assert(n_conc_workers > 0, "Always need at least 1");
1200   return n_conc_workers;
1201 }
1202 
1203 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1204   // Currently, only survivors can be root regions.
1205   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1206   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1207 
1208   const uintx interval = PrefetchScanIntervalInBytes;
1209   HeapWord* curr = hr->bottom();
1210   const HeapWord* end = hr->top();
1211   while (curr < end) {
1212     Prefetch::read(curr, interval);
1213     oop obj = oop(curr);
1214     int size = obj->oop_iterate(&cl);
1215     assert(size == obj->size(), "sanity");
1216     curr += size;
1217   }
1218 }
1219 
1220 class CMRootRegionScanTask : public AbstractGangTask {
1221 private:
1222   ConcurrentMark* _cm;
1223 
1224 public:
1225   CMRootRegionScanTask(ConcurrentMark* cm) :
1226     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1227 
1228   void work(uint worker_id) {
1229     assert(Thread::current()->is_ConcurrentGC_thread(),
1230            "this should only be done by a conc GC thread");
1231 
1232     CMRootRegions* root_regions = _cm->root_regions();
1233     HeapRegion* hr = root_regions->claim_next();
1234     while (hr != NULL) {
1235       _cm->scanRootRegion(hr, worker_id);
1236       hr = root_regions->claim_next();
1237     }
1238   }
1239 };
1240 
1241 void ConcurrentMark::scanRootRegions() {
1242   // Start of concurrent marking.
1243   ClassLoaderDataGraph::clear_claimed_marks();
1244 
1245   // scan_in_progress() will have been set to true only if there was
1246   // at least one root region to scan. So, if it's false, we
1247   // should not attempt to do any further work.
1248   if (root_regions()->scan_in_progress()) {
1249     _parallel_marking_threads = calc_parallel_marking_threads();
1250     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1251            "Maximum number of marking threads exceeded");
1252     uint active_workers = MAX2(1U, parallel_marking_threads());
1253 
1254     CMRootRegionScanTask task(this);
1255     _parallel_workers->set_active_workers(active_workers);
1256     _parallel_workers->run_task(&task);
1257 
1258     // It's possible that has_aborted() is true here without actually
1259     // aborting the survivor scan earlier. This is OK as it's
1260     // mainly used for sanity checking.
1261     root_regions()->scan_finished();
1262   }
1263 }
1264 
1265 void ConcurrentMark::markFromRoots() {
1266   // we might be tempted to assert that:
1267   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1268   //        "inconsistent argument?");
1269   // However that wouldn't be right, because it's possible that
1270   // a safepoint is indeed in progress as a younger generation
1271   // stop-the-world GC happens even as we mark in this generation.
1272 
1273   _restart_for_overflow = false;
1274   force_overflow_conc()->init();
1275 
1276   // _g1h has _n_par_threads
1277   _parallel_marking_threads = calc_parallel_marking_threads();
1278   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1279     "Maximum number of marking threads exceeded");
1280 
1281   uint active_workers = MAX2(1U, parallel_marking_threads());
1282 
1283   // Parallel task terminator is set in "set_concurrency_and_phase()"
1284   set_concurrency_and_phase(active_workers, true /* concurrent */);
1285 
1286   CMConcurrentMarkingTask markingTask(this, cmThread());
1287   _parallel_workers->set_active_workers(active_workers);
1288   // Don't set _n_par_threads because it affects MT in process_roots()
1289   // and the decisions on that MT processing is made elsewhere.
1290   assert(_parallel_workers->active_workers() > 0, "Should have been set");
1291   _parallel_workers->run_task(&markingTask);
1292   print_stats();
1293 }
1294 
1295 // Helper class to get rid of some boilerplate code.
1296 class G1CMTraceTime : public GCTraceTime {
1297   static bool doit_and_prepend(bool doit) {
1298     if (doit) {
1299       gclog_or_tty->put(' ');
1300     }
1301     return doit;
1302   }
1303 
1304  public:
1305   G1CMTraceTime(const char* title, bool doit)
1306     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1307         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1308   }
1309 };
1310 
1311 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1312   // world is stopped at this checkpoint
1313   assert(SafepointSynchronize::is_at_safepoint(),
1314          "world should be stopped");
1315 
1316   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1317 
1318   // If a full collection has happened, we shouldn't do this.
1319   if (has_aborted()) {
1320     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1321     return;
1322   }
1323 
1324   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1325 
1326   if (VerifyDuringGC) {
1327     HandleMark hm;  // handle scope
1328     Universe::heap()->prepare_for_verify();
1329     Universe::verify(VerifyOption_G1UsePrevMarking,
1330                      " VerifyDuringGC:(before)");
1331   }
1332   g1h->check_bitmaps("Remark Start");
1333 
1334   G1CollectorPolicy* g1p = g1h->g1_policy();
1335   g1p->record_concurrent_mark_remark_start();
1336 
1337   double start = os::elapsedTime();
1338 
1339   checkpointRootsFinalWork();
1340 
1341   double mark_work_end = os::elapsedTime();
1342 
1343   weakRefsWork(clear_all_soft_refs);
1344 
1345   if (has_overflown()) {
1346     // Oops.  We overflowed.  Restart concurrent marking.
1347     _restart_for_overflow = true;
1348     if (G1TraceMarkStackOverflow) {
1349       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1350     }
1351 
1352     // Verify the heap w.r.t. the previous marking bitmap.
1353     if (VerifyDuringGC) {
1354       HandleMark hm;  // handle scope
1355       Universe::heap()->prepare_for_verify();
1356       Universe::verify(VerifyOption_G1UsePrevMarking,
1357                        " VerifyDuringGC:(overflow)");
1358     }
1359 
1360     // Clear the marking state because we will be restarting
1361     // marking due to overflowing the global mark stack.
1362     reset_marking_state();
1363   } else {
1364     {
1365       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1366 
1367       // Aggregate the per-task counting data that we have accumulated
1368       // while marking.
1369       aggregate_count_data();
1370     }
1371 
1372     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1373     // We're done with marking.
1374     // This is the end of  the marking cycle, we're expected all
1375     // threads to have SATB queues with active set to true.
1376     satb_mq_set.set_active_all_threads(false, /* new active value */
1377                                        true /* expected_active */);
1378 
1379     if (VerifyDuringGC) {
1380       HandleMark hm;  // handle scope
1381       Universe::heap()->prepare_for_verify();
1382       Universe::verify(VerifyOption_G1UseNextMarking,
1383                        " VerifyDuringGC:(after)");
1384     }
1385     g1h->check_bitmaps("Remark End");
1386     assert(!restart_for_overflow(), "sanity");
1387     // Completely reset the marking state since marking completed
1388     set_non_marking_state();
1389   }
1390 
1391   // Expand the marking stack, if we have to and if we can.
1392   if (_markStack.should_expand()) {
1393     _markStack.expand();
1394   }
1395 
1396   // Statistics
1397   double now = os::elapsedTime();
1398   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1399   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1400   _remark_times.add((now - start) * 1000.0);
1401 
1402   g1p->record_concurrent_mark_remark_end();
1403 
1404   G1CMIsAliveClosure is_alive(g1h);
1405   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1406 }
1407 
1408 // Base class of the closures that finalize and verify the
1409 // liveness counting data.
1410 class CMCountDataClosureBase: public HeapRegionClosure {
1411 protected:
1412   G1CollectedHeap* _g1h;
1413   ConcurrentMark* _cm;
1414   CardTableModRefBS* _ct_bs;
1415 
1416   BitMap* _region_bm;
1417   BitMap* _card_bm;
1418 
1419   // Takes a region that's not empty (i.e., it has at least one
1420   // live object in it and sets its corresponding bit on the region
1421   // bitmap to 1. If the region is "starts humongous" it will also set
1422   // to 1 the bits on the region bitmap that correspond to its
1423   // associated "continues humongous" regions.
1424   void set_bit_for_region(HeapRegion* hr) {
1425     assert(!hr->is_continues_humongous(), "should have filtered those out");
1426 
1427     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1428     if (!hr->is_starts_humongous()) {
1429       // Normal (non-humongous) case: just set the bit.
1430       _region_bm->par_at_put(index, true);
1431     } else {
1432       // Starts humongous case: calculate how many regions are part of
1433       // this humongous region and then set the bit range.
1434       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1435       _region_bm->par_at_put_range(index, end_index, true);
1436     }
1437   }
1438 
1439 public:
1440   CMCountDataClosureBase(G1CollectedHeap* g1h,
1441                          BitMap* region_bm, BitMap* card_bm):
1442     _g1h(g1h), _cm(g1h->concurrent_mark()),
1443     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1444     _region_bm(region_bm), _card_bm(card_bm) { }
1445 };
1446 
1447 // Closure that calculates the # live objects per region. Used
1448 // for verification purposes during the cleanup pause.
1449 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1450   CMBitMapRO* _bm;
1451   size_t _region_marked_bytes;
1452 
1453 public:
1454   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1455                          BitMap* region_bm, BitMap* card_bm) :
1456     CMCountDataClosureBase(g1h, region_bm, card_bm),
1457     _bm(bm), _region_marked_bytes(0) { }
1458 
1459   bool doHeapRegion(HeapRegion* hr) {
1460 
1461     if (hr->is_continues_humongous()) {
1462       // We will ignore these here and process them when their
1463       // associated "starts humongous" region is processed (see
1464       // set_bit_for_heap_region()). Note that we cannot rely on their
1465       // associated "starts humongous" region to have their bit set to
1466       // 1 since, due to the region chunking in the parallel region
1467       // iteration, a "continues humongous" region might be visited
1468       // before its associated "starts humongous".
1469       return false;
1470     }
1471 
1472     HeapWord* ntams = hr->next_top_at_mark_start();
1473     HeapWord* start = hr->bottom();
1474 
1475     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1476            err_msg("Preconditions not met - "
1477                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1478                    p2i(start), p2i(ntams), p2i(hr->end())));
1479 
1480     // Find the first marked object at or after "start".
1481     start = _bm->getNextMarkedWordAddress(start, ntams);
1482 
1483     size_t marked_bytes = 0;
1484 
1485     while (start < ntams) {
1486       oop obj = oop(start);
1487       int obj_sz = obj->size();
1488       HeapWord* obj_end = start + obj_sz;
1489 
1490       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1491       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1492 
1493       // Note: if we're looking at the last region in heap - obj_end
1494       // could be actually just beyond the end of the heap; end_idx
1495       // will then correspond to a (non-existent) card that is also
1496       // just beyond the heap.
1497       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1498         // end of object is not card aligned - increment to cover
1499         // all the cards spanned by the object
1500         end_idx += 1;
1501       }
1502 
1503       // Set the bits in the card BM for the cards spanned by this object.
1504       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1505 
1506       // Add the size of this object to the number of marked bytes.
1507       marked_bytes += (size_t)obj_sz * HeapWordSize;
1508 
1509       // Find the next marked object after this one.
1510       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1511     }
1512 
1513     // Mark the allocated-since-marking portion...
1514     HeapWord* top = hr->top();
1515     if (ntams < top) {
1516       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1517       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1518 
1519       // Note: if we're looking at the last region in heap - top
1520       // could be actually just beyond the end of the heap; end_idx
1521       // will then correspond to a (non-existent) card that is also
1522       // just beyond the heap.
1523       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1524         // end of object is not card aligned - increment to cover
1525         // all the cards spanned by the object
1526         end_idx += 1;
1527       }
1528       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1529 
1530       // This definitely means the region has live objects.
1531       set_bit_for_region(hr);
1532     }
1533 
1534     // Update the live region bitmap.
1535     if (marked_bytes > 0) {
1536       set_bit_for_region(hr);
1537     }
1538 
1539     // Set the marked bytes for the current region so that
1540     // it can be queried by a calling verification routine
1541     _region_marked_bytes = marked_bytes;
1542 
1543     return false;
1544   }
1545 
1546   size_t region_marked_bytes() const { return _region_marked_bytes; }
1547 };
1548 
1549 // Heap region closure used for verifying the counting data
1550 // that was accumulated concurrently and aggregated during
1551 // the remark pause. This closure is applied to the heap
1552 // regions during the STW cleanup pause.
1553 
1554 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1555   G1CollectedHeap* _g1h;
1556   ConcurrentMark* _cm;
1557   CalcLiveObjectsClosure _calc_cl;
1558   BitMap* _region_bm;   // Region BM to be verified
1559   BitMap* _card_bm;     // Card BM to be verified
1560   bool _verbose;        // verbose output?
1561 
1562   BitMap* _exp_region_bm; // Expected Region BM values
1563   BitMap* _exp_card_bm;   // Expected card BM values
1564 
1565   int _failures;
1566 
1567 public:
1568   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1569                                 BitMap* region_bm,
1570                                 BitMap* card_bm,
1571                                 BitMap* exp_region_bm,
1572                                 BitMap* exp_card_bm,
1573                                 bool verbose) :
1574     _g1h(g1h), _cm(g1h->concurrent_mark()),
1575     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1576     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1577     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1578     _failures(0) { }
1579 
1580   int failures() const { return _failures; }
1581 
1582   bool doHeapRegion(HeapRegion* hr) {
1583     if (hr->is_continues_humongous()) {
1584       // We will ignore these here and process them when their
1585       // associated "starts humongous" region is processed (see
1586       // set_bit_for_heap_region()). Note that we cannot rely on their
1587       // associated "starts humongous" region to have their bit set to
1588       // 1 since, due to the region chunking in the parallel region
1589       // iteration, a "continues humongous" region might be visited
1590       // before its associated "starts humongous".
1591       return false;
1592     }
1593 
1594     int failures = 0;
1595 
1596     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1597     // this region and set the corresponding bits in the expected region
1598     // and card bitmaps.
1599     bool res = _calc_cl.doHeapRegion(hr);
1600     assert(res == false, "should be continuing");
1601 
1602     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1603                     Mutex::_no_safepoint_check_flag);
1604 
1605     // Verify the marked bytes for this region.
1606     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1607     size_t act_marked_bytes = hr->next_marked_bytes();
1608 
1609     // We're not OK if expected marked bytes > actual marked bytes. It means
1610     // we have missed accounting some objects during the actual marking.
1611     if (exp_marked_bytes > act_marked_bytes) {
1612       if (_verbose) {
1613         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1614                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1615                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1616       }
1617       failures += 1;
1618     }
1619 
1620     // Verify the bit, for this region, in the actual and expected
1621     // (which was just calculated) region bit maps.
1622     // We're not OK if the bit in the calculated expected region
1623     // bitmap is set and the bit in the actual region bitmap is not.
1624     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1625 
1626     bool expected = _exp_region_bm->at(index);
1627     bool actual = _region_bm->at(index);
1628     if (expected && !actual) {
1629       if (_verbose) {
1630         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1631                                "expected: %s, actual: %s",
1632                                hr->hrm_index(),
1633                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1634       }
1635       failures += 1;
1636     }
1637 
1638     // Verify that the card bit maps for the cards spanned by the current
1639     // region match. We have an error if we have a set bit in the expected
1640     // bit map and the corresponding bit in the actual bitmap is not set.
1641 
1642     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1643     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1644 
1645     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1646       expected = _exp_card_bm->at(i);
1647       actual = _card_bm->at(i);
1648 
1649       if (expected && !actual) {
1650         if (_verbose) {
1651           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1652                                  "expected: %s, actual: %s",
1653                                  hr->hrm_index(), i,
1654                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1655         }
1656         failures += 1;
1657       }
1658     }
1659 
1660     if (failures > 0 && _verbose)  {
1661       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1662                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1663                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1664                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1665     }
1666 
1667     _failures += failures;
1668 
1669     // We could stop iteration over the heap when we
1670     // find the first violating region by returning true.
1671     return false;
1672   }
1673 };
1674 
1675 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1676 protected:
1677   G1CollectedHeap* _g1h;
1678   ConcurrentMark* _cm;
1679   BitMap* _actual_region_bm;
1680   BitMap* _actual_card_bm;
1681 
1682   uint    _n_workers;
1683 
1684   BitMap* _expected_region_bm;
1685   BitMap* _expected_card_bm;
1686 
1687   int  _failures;
1688   bool _verbose;
1689 
1690   HeapRegionClaimer _hrclaimer;
1691 
1692 public:
1693   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1694                             BitMap* region_bm, BitMap* card_bm,
1695                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1696     : AbstractGangTask("G1 verify final counting"),
1697       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1698       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1699       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1700       _failures(0), _verbose(false),
1701       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1702     assert(VerifyDuringGC, "don't call this otherwise");
1703     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1704     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1705 
1706     _verbose = _cm->verbose_medium();
1707   }
1708 
1709   void work(uint worker_id) {
1710     assert(worker_id < _n_workers, "invariant");
1711 
1712     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1713                                             _actual_region_bm, _actual_card_bm,
1714                                             _expected_region_bm,
1715                                             _expected_card_bm,
1716                                             _verbose);
1717 
1718     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1719 
1720     Atomic::add(verify_cl.failures(), &_failures);
1721   }
1722 
1723   int failures() const { return _failures; }
1724 };
1725 
1726 // Closure that finalizes the liveness counting data.
1727 // Used during the cleanup pause.
1728 // Sets the bits corresponding to the interval [NTAMS, top]
1729 // (which contains the implicitly live objects) in the
1730 // card liveness bitmap. Also sets the bit for each region,
1731 // containing live data, in the region liveness bitmap.
1732 
1733 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1734  public:
1735   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1736                               BitMap* region_bm,
1737                               BitMap* card_bm) :
1738     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1739 
1740   bool doHeapRegion(HeapRegion* hr) {
1741 
1742     if (hr->is_continues_humongous()) {
1743       // We will ignore these here and process them when their
1744       // associated "starts humongous" region is processed (see
1745       // set_bit_for_heap_region()). Note that we cannot rely on their
1746       // associated "starts humongous" region to have their bit set to
1747       // 1 since, due to the region chunking in the parallel region
1748       // iteration, a "continues humongous" region might be visited
1749       // before its associated "starts humongous".
1750       return false;
1751     }
1752 
1753     HeapWord* ntams = hr->next_top_at_mark_start();
1754     HeapWord* top   = hr->top();
1755 
1756     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1757 
1758     // Mark the allocated-since-marking portion...
1759     if (ntams < top) {
1760       // This definitely means the region has live objects.
1761       set_bit_for_region(hr);
1762 
1763       // Now set the bits in the card bitmap for [ntams, top)
1764       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1765       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1766 
1767       // Note: if we're looking at the last region in heap - top
1768       // could be actually just beyond the end of the heap; end_idx
1769       // will then correspond to a (non-existent) card that is also
1770       // just beyond the heap.
1771       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1772         // end of object is not card aligned - increment to cover
1773         // all the cards spanned by the object
1774         end_idx += 1;
1775       }
1776 
1777       assert(end_idx <= _card_bm->size(),
1778              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1779                      end_idx, _card_bm->size()));
1780       assert(start_idx < _card_bm->size(),
1781              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1782                      start_idx, _card_bm->size()));
1783 
1784       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1785     }
1786 
1787     // Set the bit for the region if it contains live data
1788     if (hr->next_marked_bytes() > 0) {
1789       set_bit_for_region(hr);
1790     }
1791 
1792     return false;
1793   }
1794 };
1795 
1796 class G1ParFinalCountTask: public AbstractGangTask {
1797 protected:
1798   G1CollectedHeap* _g1h;
1799   ConcurrentMark* _cm;
1800   BitMap* _actual_region_bm;
1801   BitMap* _actual_card_bm;
1802 
1803   uint    _n_workers;
1804   HeapRegionClaimer _hrclaimer;
1805 
1806 public:
1807   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1808     : AbstractGangTask("G1 final counting"),
1809       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1810       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1811       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1812   }
1813 
1814   void work(uint worker_id) {
1815     assert(worker_id < _n_workers, "invariant");
1816 
1817     FinalCountDataUpdateClosure final_update_cl(_g1h,
1818                                                 _actual_region_bm,
1819                                                 _actual_card_bm);
1820 
1821     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1822   }
1823 };
1824 
1825 class G1ParNoteEndTask;
1826 
1827 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1828   G1CollectedHeap* _g1;
1829   size_t _max_live_bytes;
1830   uint _regions_claimed;
1831   size_t _freed_bytes;
1832   FreeRegionList* _local_cleanup_list;
1833   HeapRegionSetCount _old_regions_removed;
1834   HeapRegionSetCount _humongous_regions_removed;
1835   HRRSCleanupTask* _hrrs_cleanup_task;
1836   double _claimed_region_time;
1837   double _max_region_time;
1838 
1839 public:
1840   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1841                              FreeRegionList* local_cleanup_list,
1842                              HRRSCleanupTask* hrrs_cleanup_task) :
1843     _g1(g1),
1844     _max_live_bytes(0), _regions_claimed(0),
1845     _freed_bytes(0),
1846     _claimed_region_time(0.0), _max_region_time(0.0),
1847     _local_cleanup_list(local_cleanup_list),
1848     _old_regions_removed(),
1849     _humongous_regions_removed(),
1850     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1851 
1852   size_t freed_bytes() { return _freed_bytes; }
1853   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1854   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1855 
1856   bool doHeapRegion(HeapRegion *hr) {
1857     if (hr->is_continues_humongous()) {
1858       return false;
1859     }
1860     // We use a claim value of zero here because all regions
1861     // were claimed with value 1 in the FinalCount task.
1862     _g1->reset_gc_time_stamps(hr);
1863     double start = os::elapsedTime();
1864     _regions_claimed++;
1865     hr->note_end_of_marking();
1866     _max_live_bytes += hr->max_live_bytes();
1867 
1868     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1869       _freed_bytes += hr->used();
1870       hr->set_containing_set(NULL);
1871       if (hr->is_humongous()) {
1872         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1873         _humongous_regions_removed.increment(1u, hr->capacity());
1874         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1875       } else {
1876         _old_regions_removed.increment(1u, hr->capacity());
1877         _g1->free_region(hr, _local_cleanup_list, true);
1878       }
1879     } else {
1880       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1881     }
1882 
1883     double region_time = (os::elapsedTime() - start);
1884     _claimed_region_time += region_time;
1885     if (region_time > _max_region_time) {
1886       _max_region_time = region_time;
1887     }
1888     return false;
1889   }
1890 
1891   size_t max_live_bytes() { return _max_live_bytes; }
1892   uint regions_claimed() { return _regions_claimed; }
1893   double claimed_region_time_sec() { return _claimed_region_time; }
1894   double max_region_time_sec() { return _max_region_time; }
1895 };
1896 
1897 class G1ParNoteEndTask: public AbstractGangTask {
1898   friend class G1NoteEndOfConcMarkClosure;
1899 
1900 protected:
1901   G1CollectedHeap* _g1h;
1902   size_t _max_live_bytes;
1903   size_t _freed_bytes;
1904   FreeRegionList* _cleanup_list;
1905   HeapRegionClaimer _hrclaimer;
1906 
1907 public:
1908   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1909       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1910   }
1911 
1912   void work(uint worker_id) {
1913     FreeRegionList local_cleanup_list("Local Cleanup List");
1914     HRRSCleanupTask hrrs_cleanup_task;
1915     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1916                                            &hrrs_cleanup_task);
1917     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1918     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1919 
1920     // Now update the lists
1921     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1922     {
1923       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1924       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1925       _max_live_bytes += g1_note_end.max_live_bytes();
1926       _freed_bytes += g1_note_end.freed_bytes();
1927 
1928       // If we iterate over the global cleanup list at the end of
1929       // cleanup to do this printing we will not guarantee to only
1930       // generate output for the newly-reclaimed regions (the list
1931       // might not be empty at the beginning of cleanup; we might
1932       // still be working on its previous contents). So we do the
1933       // printing here, before we append the new regions to the global
1934       // cleanup list.
1935 
1936       G1HRPrinter* hr_printer = _g1h->hr_printer();
1937       if (hr_printer->is_active()) {
1938         FreeRegionListIterator iter(&local_cleanup_list);
1939         while (iter.more_available()) {
1940           HeapRegion* hr = iter.get_next();
1941           hr_printer->cleanup(hr);
1942         }
1943       }
1944 
1945       _cleanup_list->add_ordered(&local_cleanup_list);
1946       assert(local_cleanup_list.is_empty(), "post-condition");
1947 
1948       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1949     }
1950   }
1951   size_t max_live_bytes() { return _max_live_bytes; }
1952   size_t freed_bytes() { return _freed_bytes; }
1953 };
1954 
1955 class G1ParScrubRemSetTask: public AbstractGangTask {
1956 protected:
1957   G1RemSet* _g1rs;
1958   BitMap* _region_bm;
1959   BitMap* _card_bm;
1960   HeapRegionClaimer _hrclaimer;
1961 
1962 public:
1963   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1964       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1965   }
1966 
1967   void work(uint worker_id) {
1968     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1969   }
1970 
1971 };
1972 
1973 void ConcurrentMark::cleanup() {
1974   // world is stopped at this checkpoint
1975   assert(SafepointSynchronize::is_at_safepoint(),
1976          "world should be stopped");
1977   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1978 
1979   // If a full collection has happened, we shouldn't do this.
1980   if (has_aborted()) {
1981     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1982     return;
1983   }
1984 
1985   g1h->verify_region_sets_optional();
1986 
1987   if (VerifyDuringGC) {
1988     HandleMark hm;  // handle scope
1989     Universe::heap()->prepare_for_verify();
1990     Universe::verify(VerifyOption_G1UsePrevMarking,
1991                      " VerifyDuringGC:(before)");
1992   }
1993   g1h->check_bitmaps("Cleanup Start");
1994 
1995   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1996   g1p->record_concurrent_mark_cleanup_start();
1997 
1998   double start = os::elapsedTime();
1999 
2000   HeapRegionRemSet::reset_for_cleanup_tasks();
2001 
2002   uint n_workers;
2003 
2004   // Do counting once more with the world stopped for good measure.
2005   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2006 
2007   g1h->set_par_threads();
2008   n_workers = g1h->n_par_threads();
2009   assert(g1h->n_par_threads() == n_workers,
2010          "Should not have been reset");
2011   g1h->workers()->run_task(&g1_par_count_task);
2012   // Done with the parallel phase so reset to 0.
2013   g1h->set_par_threads(0);
2014 
2015   if (VerifyDuringGC) {
2016     // Verify that the counting data accumulated during marking matches
2017     // that calculated by walking the marking bitmap.
2018 
2019     // Bitmaps to hold expected values
2020     BitMap expected_region_bm(_region_bm.size(), true);
2021     BitMap expected_card_bm(_card_bm.size(), true);
2022 
2023     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2024                                                  &_region_bm,
2025                                                  &_card_bm,
2026                                                  &expected_region_bm,
2027                                                  &expected_card_bm);
2028 
2029     g1h->set_par_threads((int)n_workers);
2030     g1h->workers()->run_task(&g1_par_verify_task);
2031     // Done with the parallel phase so reset to 0.
2032     g1h->set_par_threads(0);
2033 
2034     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2035   }
2036 
2037   size_t start_used_bytes = g1h->used();
2038   g1h->set_marking_complete();
2039 
2040   double count_end = os::elapsedTime();
2041   double this_final_counting_time = (count_end - start);
2042   _total_counting_time += this_final_counting_time;
2043 
2044   if (G1PrintRegionLivenessInfo) {
2045     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2046     _g1h->heap_region_iterate(&cl);
2047   }
2048 
2049   // Install newly created mark bitMap as "prev".
2050   swapMarkBitMaps();
2051 
2052   g1h->reset_gc_time_stamp();
2053 
2054   // Note end of marking in all heap regions.
2055   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2056   g1h->set_par_threads((int)n_workers);
2057   g1h->workers()->run_task(&g1_par_note_end_task);
2058   g1h->set_par_threads(0);
2059   g1h->check_gc_time_stamps();
2060 
2061   if (!cleanup_list_is_empty()) {
2062     // The cleanup list is not empty, so we'll have to process it
2063     // concurrently. Notify anyone else that might be wanting free
2064     // regions that there will be more free regions coming soon.
2065     g1h->set_free_regions_coming();
2066   }
2067 
2068   // call below, since it affects the metric by which we sort the heap
2069   // regions.
2070   if (G1ScrubRemSets) {
2071     double rs_scrub_start = os::elapsedTime();
2072     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2073     g1h->set_par_threads((int)n_workers);
2074     g1h->workers()->run_task(&g1_par_scrub_rs_task);
2075     g1h->set_par_threads(0);
2076 
2077     double rs_scrub_end = os::elapsedTime();
2078     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2079     _total_rs_scrub_time += this_rs_scrub_time;
2080   }
2081 
2082   // this will also free any regions totally full of garbage objects,
2083   // and sort the regions.
2084   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2085 
2086   // Statistics.
2087   double end = os::elapsedTime();
2088   _cleanup_times.add((end - start) * 1000.0);
2089 
2090   if (G1Log::fine()) {
2091     g1h->g1_policy()->print_heap_transition(start_used_bytes);
2092   }
2093 
2094   // Clean up will have freed any regions completely full of garbage.
2095   // Update the soft reference policy with the new heap occupancy.
2096   Universe::update_heap_info_at_gc();
2097 
2098   if (VerifyDuringGC) {
2099     HandleMark hm;  // handle scope
2100     Universe::heap()->prepare_for_verify();
2101     Universe::verify(VerifyOption_G1UsePrevMarking,
2102                      " VerifyDuringGC:(after)");
2103   }
2104 
2105   g1h->check_bitmaps("Cleanup End");
2106 
2107   g1h->verify_region_sets_optional();
2108 
2109   // We need to make this be a "collection" so any collection pause that
2110   // races with it goes around and waits for completeCleanup to finish.
2111   g1h->increment_total_collections();
2112 
2113   // Clean out dead classes and update Metaspace sizes.
2114   if (ClassUnloadingWithConcurrentMark) {
2115     ClassLoaderDataGraph::purge();
2116   }
2117   MetaspaceGC::compute_new_size();
2118 
2119   // We reclaimed old regions so we should calculate the sizes to make
2120   // sure we update the old gen/space data.
2121   g1h->g1mm()->update_sizes();
2122   g1h->allocation_context_stats().update_after_mark();
2123 
2124   g1h->trace_heap_after_concurrent_cycle();
2125 }
2126 
2127 void ConcurrentMark::completeCleanup() {
2128   if (has_aborted()) return;
2129 
2130   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2131 
2132   _cleanup_list.verify_optional();
2133   FreeRegionList tmp_free_list("Tmp Free List");
2134 
2135   if (G1ConcRegionFreeingVerbose) {
2136     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2137                            "cleanup list has %u entries",
2138                            _cleanup_list.length());
2139   }
2140 
2141   // No one else should be accessing the _cleanup_list at this point,
2142   // so it is not necessary to take any locks
2143   while (!_cleanup_list.is_empty()) {
2144     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2145     assert(hr != NULL, "Got NULL from a non-empty list");
2146     hr->par_clear();
2147     tmp_free_list.add_ordered(hr);
2148 
2149     // Instead of adding one region at a time to the secondary_free_list,
2150     // we accumulate them in the local list and move them a few at a
2151     // time. This also cuts down on the number of notify_all() calls
2152     // we do during this process. We'll also append the local list when
2153     // _cleanup_list is empty (which means we just removed the last
2154     // region from the _cleanup_list).
2155     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2156         _cleanup_list.is_empty()) {
2157       if (G1ConcRegionFreeingVerbose) {
2158         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2159                                "appending %u entries to the secondary_free_list, "
2160                                "cleanup list still has %u entries",
2161                                tmp_free_list.length(),
2162                                _cleanup_list.length());
2163       }
2164 
2165       {
2166         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2167         g1h->secondary_free_list_add(&tmp_free_list);
2168         SecondaryFreeList_lock->notify_all();
2169       }
2170 #ifndef PRODUCT
2171       if (G1StressConcRegionFreeing) {
2172         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2173           os::sleep(Thread::current(), (jlong) 1, false);
2174         }
2175       }
2176 #endif
2177     }
2178   }
2179   assert(tmp_free_list.is_empty(), "post-condition");
2180 }
2181 
2182 // Supporting Object and Oop closures for reference discovery
2183 // and processing in during marking
2184 
2185 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2186   HeapWord* addr = (HeapWord*)obj;
2187   return addr != NULL &&
2188          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2189 }
2190 
2191 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2192 // Uses the CMTask associated with a worker thread (for serial reference
2193 // processing the CMTask for worker 0 is used) to preserve (mark) and
2194 // trace referent objects.
2195 //
2196 // Using the CMTask and embedded local queues avoids having the worker
2197 // threads operating on the global mark stack. This reduces the risk
2198 // of overflowing the stack - which we would rather avoid at this late
2199 // state. Also using the tasks' local queues removes the potential
2200 // of the workers interfering with each other that could occur if
2201 // operating on the global stack.
2202 
2203 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2204   ConcurrentMark* _cm;
2205   CMTask*         _task;
2206   int             _ref_counter_limit;
2207   int             _ref_counter;
2208   bool            _is_serial;
2209  public:
2210   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2211     _cm(cm), _task(task), _is_serial(is_serial),
2212     _ref_counter_limit(G1RefProcDrainInterval) {
2213     assert(_ref_counter_limit > 0, "sanity");
2214     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2215     _ref_counter = _ref_counter_limit;
2216   }
2217 
2218   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2219   virtual void do_oop(      oop* p) { do_oop_work(p); }
2220 
2221   template <class T> void do_oop_work(T* p) {
2222     if (!_cm->has_overflown()) {
2223       oop obj = oopDesc::load_decode_heap_oop(p);
2224       if (_cm->verbose_high()) {
2225         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2226                                "*"PTR_FORMAT" = "PTR_FORMAT,
2227                                _task->worker_id(), p2i(p), p2i((void*) obj));
2228       }
2229 
2230       _task->deal_with_reference(obj);
2231       _ref_counter--;
2232 
2233       if (_ref_counter == 0) {
2234         // We have dealt with _ref_counter_limit references, pushing them
2235         // and objects reachable from them on to the local stack (and
2236         // possibly the global stack). Call CMTask::do_marking_step() to
2237         // process these entries.
2238         //
2239         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2240         // there's nothing more to do (i.e. we're done with the entries that
2241         // were pushed as a result of the CMTask::deal_with_reference() calls
2242         // above) or we overflow.
2243         //
2244         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2245         // flag while there may still be some work to do. (See the comment at
2246         // the beginning of CMTask::do_marking_step() for those conditions -
2247         // one of which is reaching the specified time target.) It is only
2248         // when CMTask::do_marking_step() returns without setting the
2249         // has_aborted() flag that the marking step has completed.
2250         do {
2251           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2252           _task->do_marking_step(mark_step_duration_ms,
2253                                  false      /* do_termination */,
2254                                  _is_serial);
2255         } while (_task->has_aborted() && !_cm->has_overflown());
2256         _ref_counter = _ref_counter_limit;
2257       }
2258     } else {
2259       if (_cm->verbose_high()) {
2260          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2261       }
2262     }
2263   }
2264 };
2265 
2266 // 'Drain' oop closure used by both serial and parallel reference processing.
2267 // Uses the CMTask associated with a given worker thread (for serial
2268 // reference processing the CMtask for worker 0 is used). Calls the
2269 // do_marking_step routine, with an unbelievably large timeout value,
2270 // to drain the marking data structures of the remaining entries
2271 // added by the 'keep alive' oop closure above.
2272 
2273 class G1CMDrainMarkingStackClosure: public VoidClosure {
2274   ConcurrentMark* _cm;
2275   CMTask*         _task;
2276   bool            _is_serial;
2277  public:
2278   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2279     _cm(cm), _task(task), _is_serial(is_serial) {
2280     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2281   }
2282 
2283   void do_void() {
2284     do {
2285       if (_cm->verbose_high()) {
2286         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2287                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2288       }
2289 
2290       // We call CMTask::do_marking_step() to completely drain the local
2291       // and global marking stacks of entries pushed by the 'keep alive'
2292       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2293       //
2294       // CMTask::do_marking_step() is called in a loop, which we'll exit
2295       // if there's nothing more to do (i.e. we've completely drained the
2296       // entries that were pushed as a a result of applying the 'keep alive'
2297       // closure to the entries on the discovered ref lists) or we overflow
2298       // the global marking stack.
2299       //
2300       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2301       // flag while there may still be some work to do. (See the comment at
2302       // the beginning of CMTask::do_marking_step() for those conditions -
2303       // one of which is reaching the specified time target.) It is only
2304       // when CMTask::do_marking_step() returns without setting the
2305       // has_aborted() flag that the marking step has completed.
2306 
2307       _task->do_marking_step(1000000000.0 /* something very large */,
2308                              true         /* do_termination */,
2309                              _is_serial);
2310     } while (_task->has_aborted() && !_cm->has_overflown());
2311   }
2312 };
2313 
2314 // Implementation of AbstractRefProcTaskExecutor for parallel
2315 // reference processing at the end of G1 concurrent marking
2316 
2317 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2318 private:
2319   G1CollectedHeap* _g1h;
2320   ConcurrentMark*  _cm;
2321   WorkGang*        _workers;
2322   int              _active_workers;
2323 
2324 public:
2325   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2326                         ConcurrentMark* cm,
2327                         WorkGang* workers,
2328                         int n_workers) :
2329     _g1h(g1h), _cm(cm),
2330     _workers(workers), _active_workers(n_workers) { }
2331 
2332   // Executes the given task using concurrent marking worker threads.
2333   virtual void execute(ProcessTask& task);
2334   virtual void execute(EnqueueTask& task);
2335 };
2336 
2337 class G1CMRefProcTaskProxy: public AbstractGangTask {
2338   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2339   ProcessTask&     _proc_task;
2340   G1CollectedHeap* _g1h;
2341   ConcurrentMark*  _cm;
2342 
2343 public:
2344   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2345                      G1CollectedHeap* g1h,
2346                      ConcurrentMark* cm) :
2347     AbstractGangTask("Process reference objects in parallel"),
2348     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2349     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2350     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2351   }
2352 
2353   virtual void work(uint worker_id) {
2354     ResourceMark rm;
2355     HandleMark hm;
2356     CMTask* task = _cm->task(worker_id);
2357     G1CMIsAliveClosure g1_is_alive(_g1h);
2358     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2359     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2360 
2361     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2362   }
2363 };
2364 
2365 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2366   assert(_workers != NULL, "Need parallel worker threads.");
2367   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2368 
2369   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2370 
2371   // We need to reset the concurrency level before each
2372   // proxy task execution, so that the termination protocol
2373   // and overflow handling in CMTask::do_marking_step() knows
2374   // how many workers to wait for.
2375   _cm->set_concurrency(_active_workers);
2376   _g1h->set_par_threads(_active_workers);
2377   _workers->run_task(&proc_task_proxy);
2378   _g1h->set_par_threads(0);
2379 }
2380 
2381 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2382   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2383   EnqueueTask& _enq_task;
2384 
2385 public:
2386   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2387     AbstractGangTask("Enqueue reference objects in parallel"),
2388     _enq_task(enq_task) { }
2389 
2390   virtual void work(uint worker_id) {
2391     _enq_task.work(worker_id);
2392   }
2393 };
2394 
2395 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2396   assert(_workers != NULL, "Need parallel worker threads.");
2397   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2398 
2399   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2400 
2401   // Not strictly necessary but...
2402   //
2403   // We need to reset the concurrency level before each
2404   // proxy task execution, so that the termination protocol
2405   // and overflow handling in CMTask::do_marking_step() knows
2406   // how many workers to wait for.
2407   _cm->set_concurrency(_active_workers);
2408   _g1h->set_par_threads(_active_workers);
2409   _workers->run_task(&enq_task_proxy);
2410   _g1h->set_par_threads(0);
2411 }
2412 
2413 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2414   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2415 }
2416 
2417 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2418   if (has_overflown()) {
2419     // Skip processing the discovered references if we have
2420     // overflown the global marking stack. Reference objects
2421     // only get discovered once so it is OK to not
2422     // de-populate the discovered reference lists. We could have,
2423     // but the only benefit would be that, when marking restarts,
2424     // less reference objects are discovered.
2425     return;
2426   }
2427 
2428   ResourceMark rm;
2429   HandleMark   hm;
2430 
2431   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2432 
2433   // Is alive closure.
2434   G1CMIsAliveClosure g1_is_alive(g1h);
2435 
2436   // Inner scope to exclude the cleaning of the string and symbol
2437   // tables from the displayed time.
2438   {
2439     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2440 
2441     ReferenceProcessor* rp = g1h->ref_processor_cm();
2442 
2443     // See the comment in G1CollectedHeap::ref_processing_init()
2444     // about how reference processing currently works in G1.
2445 
2446     // Set the soft reference policy
2447     rp->setup_policy(clear_all_soft_refs);
2448     assert(_markStack.isEmpty(), "mark stack should be empty");
2449 
2450     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2451     // in serial reference processing. Note these closures are also
2452     // used for serially processing (by the the current thread) the
2453     // JNI references during parallel reference processing.
2454     //
2455     // These closures do not need to synchronize with the worker
2456     // threads involved in parallel reference processing as these
2457     // instances are executed serially by the current thread (e.g.
2458     // reference processing is not multi-threaded and is thus
2459     // performed by the current thread instead of a gang worker).
2460     //
2461     // The gang tasks involved in parallel reference processing create
2462     // their own instances of these closures, which do their own
2463     // synchronization among themselves.
2464     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2465     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2466 
2467     // We need at least one active thread. If reference processing
2468     // is not multi-threaded we use the current (VMThread) thread,
2469     // otherwise we use the work gang from the G1CollectedHeap and
2470     // we utilize all the worker threads we can.
2471     bool processing_is_mt = rp->processing_is_mt();
2472     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2473     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2474 
2475     // Parallel processing task executor.
2476     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2477                                               g1h->workers(), active_workers);
2478     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2479 
2480     // Set the concurrency level. The phase was already set prior to
2481     // executing the remark task.
2482     set_concurrency(active_workers);
2483 
2484     // Set the degree of MT processing here.  If the discovery was done MT,
2485     // the number of threads involved during discovery could differ from
2486     // the number of active workers.  This is OK as long as the discovered
2487     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2488     rp->set_active_mt_degree(active_workers);
2489 
2490     // Process the weak references.
2491     const ReferenceProcessorStats& stats =
2492         rp->process_discovered_references(&g1_is_alive,
2493                                           &g1_keep_alive,
2494                                           &g1_drain_mark_stack,
2495                                           executor,
2496                                           g1h->gc_timer_cm(),
2497                                           concurrent_gc_id());
2498     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2499 
2500     // The do_oop work routines of the keep_alive and drain_marking_stack
2501     // oop closures will set the has_overflown flag if we overflow the
2502     // global marking stack.
2503 
2504     assert(_markStack.overflow() || _markStack.isEmpty(),
2505             "mark stack should be empty (unless it overflowed)");
2506 
2507     if (_markStack.overflow()) {
2508       // This should have been done already when we tried to push an
2509       // entry on to the global mark stack. But let's do it again.
2510       set_has_overflown();
2511     }
2512 
2513     assert(rp->num_q() == active_workers, "why not");
2514 
2515     rp->enqueue_discovered_references(executor);
2516 
2517     rp->verify_no_references_recorded();
2518     assert(!rp->discovery_enabled(), "Post condition");
2519   }
2520 
2521   if (has_overflown()) {
2522     // We can not trust g1_is_alive if the marking stack overflowed
2523     return;
2524   }
2525 
2526   assert(_markStack.isEmpty(), "Marking should have completed");
2527 
2528   // Unload Klasses, String, Symbols, Code Cache, etc.
2529   {
2530     G1CMTraceTime trace("Unloading", G1Log::finer());
2531 
2532     if (ClassUnloadingWithConcurrentMark) {
2533       bool purged_classes;
2534 
2535       {
2536         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2537         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2538       }
2539 
2540       {
2541         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2542         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2543       }
2544     }
2545 
2546     if (G1StringDedup::is_enabled()) {
2547       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2548       G1StringDedup::unlink(&g1_is_alive);
2549     }
2550   }
2551 }
2552 
2553 void ConcurrentMark::swapMarkBitMaps() {
2554   CMBitMapRO* temp = _prevMarkBitMap;
2555   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2556   _nextMarkBitMap  = (CMBitMap*)  temp;
2557 }
2558 
2559 class CMObjectClosure;
2560 
2561 // Closure for iterating over objects, currently only used for
2562 // processing SATB buffers.
2563 class CMObjectClosure : public ObjectClosure {
2564 private:
2565   CMTask* _task;
2566 
2567 public:
2568   void do_object(oop obj) {
2569     _task->deal_with_reference(obj);
2570   }
2571 
2572   CMObjectClosure(CMTask* task) : _task(task) { }
2573 };
2574 
2575 class G1RemarkThreadsClosure : public ThreadClosure {
2576   CMObjectClosure _cm_obj;
2577   G1CMOopClosure _cm_cl;
2578   MarkingCodeBlobClosure _code_cl;
2579   int _thread_parity;
2580 
2581  public:
2582   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2583     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2584     _thread_parity(SharedHeap::heap()->strong_roots_parity()) {}
2585 
2586   void do_thread(Thread* thread) {
2587     if (thread->is_Java_thread()) {
2588       if (thread->claim_oops_do(true, _thread_parity)) {
2589         JavaThread* jt = (JavaThread*)thread;
2590 
2591         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2592         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2593         // * Alive if on the stack of an executing method
2594         // * Weakly reachable otherwise
2595         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2596         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2597         jt->nmethods_do(&_code_cl);
2598 
2599         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2600       }
2601     } else if (thread->is_VM_thread()) {
2602       if (thread->claim_oops_do(true, _thread_parity)) {
2603         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2604       }
2605     }
2606   }
2607 };
2608 
2609 class CMRemarkTask: public AbstractGangTask {
2610 private:
2611   ConcurrentMark* _cm;
2612 public:
2613   void work(uint worker_id) {
2614     // Since all available tasks are actually started, we should
2615     // only proceed if we're supposed to be active.
2616     if (worker_id < _cm->active_tasks()) {
2617       CMTask* task = _cm->task(worker_id);
2618       task->record_start_time();
2619       {
2620         ResourceMark rm;
2621         HandleMark hm;
2622 
2623         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2624         Threads::threads_do(&threads_f);
2625       }
2626 
2627       do {
2628         task->do_marking_step(1000000000.0 /* something very large */,
2629                               true         /* do_termination       */,
2630                               false        /* is_serial            */);
2631       } while (task->has_aborted() && !_cm->has_overflown());
2632       // If we overflow, then we do not want to restart. We instead
2633       // want to abort remark and do concurrent marking again.
2634       task->record_end_time();
2635     }
2636   }
2637 
2638   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2639     AbstractGangTask("Par Remark"), _cm(cm) {
2640     _cm->terminator()->reset_for_reuse(active_workers);
2641   }
2642 };
2643 
2644 void ConcurrentMark::checkpointRootsFinalWork() {
2645   ResourceMark rm;
2646   HandleMark   hm;
2647   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2648 
2649   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2650 
2651   g1h->ensure_parsability(false);
2652 
2653   G1CollectedHeap::StrongRootsScope srs(g1h);
2654   // this is remark, so we'll use up all active threads
2655   uint active_workers = g1h->workers()->active_workers();
2656   if (active_workers == 0) {
2657     assert(active_workers > 0, "Should have been set earlier");
2658     active_workers = (uint) ParallelGCThreads;
2659     g1h->workers()->set_active_workers(active_workers);
2660   }
2661   set_concurrency_and_phase(active_workers, false /* concurrent */);
2662   // Leave _parallel_marking_threads at it's
2663   // value originally calculated in the ConcurrentMark
2664   // constructor and pass values of the active workers
2665   // through the gang in the task.
2666 
2667   CMRemarkTask remarkTask(this, active_workers);
2668   // We will start all available threads, even if we decide that the
2669   // active_workers will be fewer. The extra ones will just bail out
2670   // immediately.
2671   g1h->set_par_threads(active_workers);
2672   g1h->workers()->run_task(&remarkTask);
2673   g1h->set_par_threads(0);
2674 
2675   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2676   guarantee(has_overflown() ||
2677             satb_mq_set.completed_buffers_num() == 0,
2678             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2679                     BOOL_TO_STR(has_overflown()),
2680                     satb_mq_set.completed_buffers_num()));
2681 
2682   print_stats();
2683 }
2684 
2685 #ifndef PRODUCT
2686 
2687 class PrintReachableOopClosure: public OopClosure {
2688 private:
2689   G1CollectedHeap* _g1h;
2690   outputStream*    _out;
2691   VerifyOption     _vo;
2692   bool             _all;
2693 
2694 public:
2695   PrintReachableOopClosure(outputStream* out,
2696                            VerifyOption  vo,
2697                            bool          all) :
2698     _g1h(G1CollectedHeap::heap()),
2699     _out(out), _vo(vo), _all(all) { }
2700 
2701   void do_oop(narrowOop* p) { do_oop_work(p); }
2702   void do_oop(      oop* p) { do_oop_work(p); }
2703 
2704   template <class T> void do_oop_work(T* p) {
2705     oop         obj = oopDesc::load_decode_heap_oop(p);
2706     const char* str = NULL;
2707     const char* str2 = "";
2708 
2709     if (obj == NULL) {
2710       str = "";
2711     } else if (!_g1h->is_in_g1_reserved(obj)) {
2712       str = " O";
2713     } else {
2714       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2715       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2716       bool marked = _g1h->is_marked(obj, _vo);
2717 
2718       if (over_tams) {
2719         str = " >";
2720         if (marked) {
2721           str2 = " AND MARKED";
2722         }
2723       } else if (marked) {
2724         str = " M";
2725       } else {
2726         str = " NOT";
2727       }
2728     }
2729 
2730     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2731                    p2i(p), p2i((void*) obj), str, str2);
2732   }
2733 };
2734 
2735 class PrintReachableObjectClosure : public ObjectClosure {
2736 private:
2737   G1CollectedHeap* _g1h;
2738   outputStream*    _out;
2739   VerifyOption     _vo;
2740   bool             _all;
2741   HeapRegion*      _hr;
2742 
2743 public:
2744   PrintReachableObjectClosure(outputStream* out,
2745                               VerifyOption  vo,
2746                               bool          all,
2747                               HeapRegion*   hr) :
2748     _g1h(G1CollectedHeap::heap()),
2749     _out(out), _vo(vo), _all(all), _hr(hr) { }
2750 
2751   void do_object(oop o) {
2752     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2753     bool marked = _g1h->is_marked(o, _vo);
2754     bool print_it = _all || over_tams || marked;
2755 
2756     if (print_it) {
2757       _out->print_cr(" "PTR_FORMAT"%s",
2758                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2759       PrintReachableOopClosure oopCl(_out, _vo, _all);
2760       o->oop_iterate_no_header(&oopCl);
2761     }
2762   }
2763 };
2764 
2765 class PrintReachableRegionClosure : public HeapRegionClosure {
2766 private:
2767   G1CollectedHeap* _g1h;
2768   outputStream*    _out;
2769   VerifyOption     _vo;
2770   bool             _all;
2771 
2772 public:
2773   bool doHeapRegion(HeapRegion* hr) {
2774     HeapWord* b = hr->bottom();
2775     HeapWord* e = hr->end();
2776     HeapWord* t = hr->top();
2777     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2778     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2779                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2780     _out->cr();
2781 
2782     HeapWord* from = b;
2783     HeapWord* to   = t;
2784 
2785     if (to > from) {
2786       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2787       _out->cr();
2788       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2789       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2790       _out->cr();
2791     }
2792 
2793     return false;
2794   }
2795 
2796   PrintReachableRegionClosure(outputStream* out,
2797                               VerifyOption  vo,
2798                               bool          all) :
2799     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2800 };
2801 
2802 void ConcurrentMark::print_reachable(const char* str,
2803                                      VerifyOption vo,
2804                                      bool all) {
2805   gclog_or_tty->cr();
2806   gclog_or_tty->print_cr("== Doing heap dump... ");
2807 
2808   if (G1PrintReachableBaseFile == NULL) {
2809     gclog_or_tty->print_cr("  #### error: no base file defined");
2810     return;
2811   }
2812 
2813   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2814       (JVM_MAXPATHLEN - 1)) {
2815     gclog_or_tty->print_cr("  #### error: file name too long");
2816     return;
2817   }
2818 
2819   char file_name[JVM_MAXPATHLEN];
2820   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2821   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2822 
2823   fileStream fout(file_name);
2824   if (!fout.is_open()) {
2825     gclog_or_tty->print_cr("  #### error: could not open file");
2826     return;
2827   }
2828 
2829   outputStream* out = &fout;
2830   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2831   out->cr();
2832 
2833   out->print_cr("--- ITERATING OVER REGIONS");
2834   out->cr();
2835   PrintReachableRegionClosure rcl(out, vo, all);
2836   _g1h->heap_region_iterate(&rcl);
2837   out->cr();
2838 
2839   gclog_or_tty->print_cr("  done");
2840   gclog_or_tty->flush();
2841 }
2842 
2843 #endif // PRODUCT
2844 
2845 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2846   // Note we are overriding the read-only view of the prev map here, via
2847   // the cast.
2848   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2849 }
2850 
2851 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2852   _nextMarkBitMap->clearRange(mr);
2853 }
2854 
2855 HeapRegion*
2856 ConcurrentMark::claim_region(uint worker_id) {
2857   // "checkpoint" the finger
2858   HeapWord* finger = _finger;
2859 
2860   // _heap_end will not change underneath our feet; it only changes at
2861   // yield points.
2862   while (finger < _heap_end) {
2863     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2864 
2865     // Note on how this code handles humongous regions. In the
2866     // normal case the finger will reach the start of a "starts
2867     // humongous" (SH) region. Its end will either be the end of the
2868     // last "continues humongous" (CH) region in the sequence, or the
2869     // standard end of the SH region (if the SH is the only region in
2870     // the sequence). That way claim_region() will skip over the CH
2871     // regions. However, there is a subtle race between a CM thread
2872     // executing this method and a mutator thread doing a humongous
2873     // object allocation. The two are not mutually exclusive as the CM
2874     // thread does not need to hold the Heap_lock when it gets
2875     // here. So there is a chance that claim_region() will come across
2876     // a free region that's in the progress of becoming a SH or a CH
2877     // region. In the former case, it will either
2878     //   a) Miss the update to the region's end, in which case it will
2879     //      visit every subsequent CH region, will find their bitmaps
2880     //      empty, and do nothing, or
2881     //   b) Will observe the update of the region's end (in which case
2882     //      it will skip the subsequent CH regions).
2883     // If it comes across a region that suddenly becomes CH, the
2884     // scenario will be similar to b). So, the race between
2885     // claim_region() and a humongous object allocation might force us
2886     // to do a bit of unnecessary work (due to some unnecessary bitmap
2887     // iterations) but it should not introduce and correctness issues.
2888     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2889 
2890     // Above heap_region_containing_raw may return NULL as we always scan claim
2891     // until the end of the heap. In this case, just jump to the next region.
2892     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2893 
2894     // Is the gap between reading the finger and doing the CAS too long?
2895     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2896     if (res == finger && curr_region != NULL) {
2897       // we succeeded
2898       HeapWord*   bottom        = curr_region->bottom();
2899       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2900 
2901       if (verbose_low()) {
2902         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2903                                "["PTR_FORMAT", "PTR_FORMAT"), "
2904                                "limit = "PTR_FORMAT,
2905                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2906       }
2907 
2908       // notice that _finger == end cannot be guaranteed here since,
2909       // someone else might have moved the finger even further
2910       assert(_finger >= end, "the finger should have moved forward");
2911 
2912       if (verbose_low()) {
2913         gclog_or_tty->print_cr("[%u] we were successful with region = "
2914                                PTR_FORMAT, worker_id, p2i(curr_region));
2915       }
2916 
2917       if (limit > bottom) {
2918         if (verbose_low()) {
2919           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2920                                  "returning it ", worker_id, p2i(curr_region));
2921         }
2922         return curr_region;
2923       } else {
2924         assert(limit == bottom,
2925                "the region limit should be at bottom");
2926         if (verbose_low()) {
2927           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2928                                  "returning NULL", worker_id, p2i(curr_region));
2929         }
2930         // we return NULL and the caller should try calling
2931         // claim_region() again.
2932         return NULL;
2933       }
2934     } else {
2935       assert(_finger > finger, "the finger should have moved forward");
2936       if (verbose_low()) {
2937         if (curr_region == NULL) {
2938           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2939                                  "global finger = "PTR_FORMAT", "
2940                                  "our finger = "PTR_FORMAT,
2941                                  worker_id, p2i(_finger), p2i(finger));
2942         } else {
2943           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2944                                  "global finger = "PTR_FORMAT", "
2945                                  "our finger = "PTR_FORMAT,
2946                                  worker_id, p2i(_finger), p2i(finger));
2947         }
2948       }
2949 
2950       // read it again
2951       finger = _finger;
2952     }
2953   }
2954 
2955   return NULL;
2956 }
2957 
2958 #ifndef PRODUCT
2959 enum VerifyNoCSetOopsPhase {
2960   VerifyNoCSetOopsStack,
2961   VerifyNoCSetOopsQueues,
2962   VerifyNoCSetOopsSATBCompleted,
2963   VerifyNoCSetOopsSATBThread
2964 };
2965 
2966 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2967 private:
2968   G1CollectedHeap* _g1h;
2969   VerifyNoCSetOopsPhase _phase;
2970   int _info;
2971 
2972   const char* phase_str() {
2973     switch (_phase) {
2974     case VerifyNoCSetOopsStack:         return "Stack";
2975     case VerifyNoCSetOopsQueues:        return "Queue";
2976     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2977     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2978     default:                            ShouldNotReachHere();
2979     }
2980     return NULL;
2981   }
2982 
2983   void do_object_work(oop obj) {
2984     guarantee(!_g1h->obj_in_cs(obj),
2985               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2986                       p2i((void*) obj), phase_str(), _info));
2987   }
2988 
2989 public:
2990   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2991 
2992   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2993     _phase = phase;
2994     _info = info;
2995   }
2996 
2997   virtual void do_oop(oop* p) {
2998     oop obj = oopDesc::load_decode_heap_oop(p);
2999     do_object_work(obj);
3000   }
3001 
3002   virtual void do_oop(narrowOop* p) {
3003     // We should not come across narrow oops while scanning marking
3004     // stacks and SATB buffers.
3005     ShouldNotReachHere();
3006   }
3007 
3008   virtual void do_object(oop obj) {
3009     do_object_work(obj);
3010   }
3011 };
3012 
3013 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3014                                          bool verify_enqueued_buffers,
3015                                          bool verify_thread_buffers,
3016                                          bool verify_fingers) {
3017   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3018   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3019     return;
3020   }
3021 
3022   VerifyNoCSetOopsClosure cl;
3023 
3024   if (verify_stacks) {
3025     // Verify entries on the global mark stack
3026     cl.set_phase(VerifyNoCSetOopsStack);
3027     _markStack.oops_do(&cl);
3028 
3029     // Verify entries on the task queues
3030     for (uint i = 0; i < _max_worker_id; i += 1) {
3031       cl.set_phase(VerifyNoCSetOopsQueues, i);
3032       CMTaskQueue* queue = _task_queues->queue(i);
3033       queue->oops_do(&cl);
3034     }
3035   }
3036 
3037   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3038 
3039   // Verify entries on the enqueued SATB buffers
3040   if (verify_enqueued_buffers) {
3041     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3042     satb_qs.iterate_completed_buffers_read_only(&cl);
3043   }
3044 
3045   // Verify entries on the per-thread SATB buffers
3046   if (verify_thread_buffers) {
3047     cl.set_phase(VerifyNoCSetOopsSATBThread);
3048     satb_qs.iterate_thread_buffers_read_only(&cl);
3049   }
3050 
3051   if (verify_fingers) {
3052     // Verify the global finger
3053     HeapWord* global_finger = finger();
3054     if (global_finger != NULL && global_finger < _heap_end) {
3055       // The global finger always points to a heap region boundary. We
3056       // use heap_region_containing_raw() to get the containing region
3057       // given that the global finger could be pointing to a free region
3058       // which subsequently becomes continues humongous. If that
3059       // happens, heap_region_containing() will return the bottom of the
3060       // corresponding starts humongous region and the check below will
3061       // not hold any more.
3062       // Since we always iterate over all regions, we might get a NULL HeapRegion
3063       // here.
3064       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3065       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3066                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3067                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3068     }
3069 
3070     // Verify the task fingers
3071     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3072     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3073       CMTask* task = _tasks[i];
3074       HeapWord* task_finger = task->finger();
3075       if (task_finger != NULL && task_finger < _heap_end) {
3076         // See above note on the global finger verification.
3077         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3078         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3079                   !task_hr->in_collection_set(),
3080                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3081                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3082       }
3083     }
3084   }
3085 }
3086 #endif // PRODUCT
3087 
3088 // Aggregate the counting data that was constructed concurrently
3089 // with marking.
3090 class AggregateCountDataHRClosure: public HeapRegionClosure {
3091   G1CollectedHeap* _g1h;
3092   ConcurrentMark* _cm;
3093   CardTableModRefBS* _ct_bs;
3094   BitMap* _cm_card_bm;
3095   uint _max_worker_id;
3096 
3097  public:
3098   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3099                               BitMap* cm_card_bm,
3100                               uint max_worker_id) :
3101     _g1h(g1h), _cm(g1h->concurrent_mark()),
3102     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
3103     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3104 
3105   bool doHeapRegion(HeapRegion* hr) {
3106     if (hr->is_continues_humongous()) {
3107       // We will ignore these here and process them when their
3108       // associated "starts humongous" region is processed.
3109       // Note that we cannot rely on their associated
3110       // "starts humongous" region to have their bit set to 1
3111       // since, due to the region chunking in the parallel region
3112       // iteration, a "continues humongous" region might be visited
3113       // before its associated "starts humongous".
3114       return false;
3115     }
3116 
3117     HeapWord* start = hr->bottom();
3118     HeapWord* limit = hr->next_top_at_mark_start();
3119     HeapWord* end = hr->end();
3120 
3121     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3122            err_msg("Preconditions not met - "
3123                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3124                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3125                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3126 
3127     assert(hr->next_marked_bytes() == 0, "Precondition");
3128 
3129     if (start == limit) {
3130       // NTAMS of this region has not been set so nothing to do.
3131       return false;
3132     }
3133 
3134     // 'start' should be in the heap.
3135     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3136     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3137     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3138 
3139     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3140     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3141     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3142 
3143     // If ntams is not card aligned then we bump card bitmap index
3144     // for limit so that we get the all the cards spanned by
3145     // the object ending at ntams.
3146     // Note: if this is the last region in the heap then ntams
3147     // could be actually just beyond the end of the the heap;
3148     // limit_idx will then  correspond to a (non-existent) card
3149     // that is also outside the heap.
3150     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3151       limit_idx += 1;
3152     }
3153 
3154     assert(limit_idx <= end_idx, "or else use atomics");
3155 
3156     // Aggregate the "stripe" in the count data associated with hr.
3157     uint hrm_index = hr->hrm_index();
3158     size_t marked_bytes = 0;
3159 
3160     for (uint i = 0; i < _max_worker_id; i += 1) {
3161       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3162       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3163 
3164       // Fetch the marked_bytes in this region for task i and
3165       // add it to the running total for this region.
3166       marked_bytes += marked_bytes_array[hrm_index];
3167 
3168       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3169       // into the global card bitmap.
3170       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3171 
3172       while (scan_idx < limit_idx) {
3173         assert(task_card_bm->at(scan_idx) == true, "should be");
3174         _cm_card_bm->set_bit(scan_idx);
3175         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3176 
3177         // BitMap::get_next_one_offset() can handle the case when
3178         // its left_offset parameter is greater than its right_offset
3179         // parameter. It does, however, have an early exit if
3180         // left_offset == right_offset. So let's limit the value
3181         // passed in for left offset here.
3182         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3183         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3184       }
3185     }
3186 
3187     // Update the marked bytes for this region.
3188     hr->add_to_marked_bytes(marked_bytes);
3189 
3190     // Next heap region
3191     return false;
3192   }
3193 };
3194 
3195 class G1AggregateCountDataTask: public AbstractGangTask {
3196 protected:
3197   G1CollectedHeap* _g1h;
3198   ConcurrentMark* _cm;
3199   BitMap* _cm_card_bm;
3200   uint _max_worker_id;
3201   int _active_workers;
3202   HeapRegionClaimer _hrclaimer;
3203 
3204 public:
3205   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3206                            ConcurrentMark* cm,
3207                            BitMap* cm_card_bm,
3208                            uint max_worker_id,
3209                            int n_workers) :
3210       AbstractGangTask("Count Aggregation"),
3211       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3212       _max_worker_id(max_worker_id),
3213       _active_workers(n_workers),
3214       _hrclaimer(_active_workers) {
3215   }
3216 
3217   void work(uint worker_id) {
3218     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3219 
3220     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3221   }
3222 };
3223 
3224 
3225 void ConcurrentMark::aggregate_count_data() {
3226   int n_workers = _g1h->workers()->active_workers();
3227 
3228   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3229                                            _max_worker_id, n_workers);
3230 
3231   _g1h->set_par_threads(n_workers);
3232   _g1h->workers()->run_task(&g1_par_agg_task);
3233   _g1h->set_par_threads(0);
3234 }
3235 
3236 // Clear the per-worker arrays used to store the per-region counting data
3237 void ConcurrentMark::clear_all_count_data() {
3238   // Clear the global card bitmap - it will be filled during
3239   // liveness count aggregation (during remark) and the
3240   // final counting task.
3241   _card_bm.clear();
3242 
3243   // Clear the global region bitmap - it will be filled as part
3244   // of the final counting task.
3245   _region_bm.clear();
3246 
3247   uint max_regions = _g1h->max_regions();
3248   assert(_max_worker_id > 0, "uninitialized");
3249 
3250   for (uint i = 0; i < _max_worker_id; i += 1) {
3251     BitMap* task_card_bm = count_card_bitmap_for(i);
3252     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3253 
3254     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3255     assert(marked_bytes_array != NULL, "uninitialized");
3256 
3257     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3258     task_card_bm->clear();
3259   }
3260 }
3261 
3262 void ConcurrentMark::print_stats() {
3263   if (verbose_stats()) {
3264     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3265     for (size_t i = 0; i < _active_tasks; ++i) {
3266       _tasks[i]->print_stats();
3267       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3268     }
3269   }
3270 }
3271 
3272 // abandon current marking iteration due to a Full GC
3273 void ConcurrentMark::abort() {
3274   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3275   // concurrent bitmap clearing.
3276   _nextMarkBitMap->clearAll();
3277 
3278   // Note we cannot clear the previous marking bitmap here
3279   // since VerifyDuringGC verifies the objects marked during
3280   // a full GC against the previous bitmap.
3281 
3282   // Clear the liveness counting data
3283   clear_all_count_data();
3284   // Empty mark stack
3285   reset_marking_state();
3286   for (uint i = 0; i < _max_worker_id; ++i) {
3287     _tasks[i]->clear_region_fields();
3288   }
3289   _first_overflow_barrier_sync.abort();
3290   _second_overflow_barrier_sync.abort();
3291   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3292   if (!gc_id.is_undefined()) {
3293     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3294     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3295     _aborted_gc_id = gc_id;
3296    }
3297   _has_aborted = true;
3298 
3299   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3300   satb_mq_set.abandon_partial_marking();
3301   // This can be called either during or outside marking, we'll read
3302   // the expected_active value from the SATB queue set.
3303   satb_mq_set.set_active_all_threads(
3304                                  false, /* new active value */
3305                                  satb_mq_set.is_active() /* expected_active */);
3306 
3307   _g1h->trace_heap_after_concurrent_cycle();
3308   _g1h->register_concurrent_cycle_end();
3309 }
3310 
3311 const GCId& ConcurrentMark::concurrent_gc_id() {
3312   if (has_aborted()) {
3313     return _aborted_gc_id;
3314   }
3315   return _g1h->gc_tracer_cm()->gc_id();
3316 }
3317 
3318 static void print_ms_time_info(const char* prefix, const char* name,
3319                                NumberSeq& ns) {
3320   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3321                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3322   if (ns.num() > 0) {
3323     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3324                            prefix, ns.sd(), ns.maximum());
3325   }
3326 }
3327 
3328 void ConcurrentMark::print_summary_info() {
3329   gclog_or_tty->print_cr(" Concurrent marking:");
3330   print_ms_time_info("  ", "init marks", _init_times);
3331   print_ms_time_info("  ", "remarks", _remark_times);
3332   {
3333     print_ms_time_info("     ", "final marks", _remark_mark_times);
3334     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3335 
3336   }
3337   print_ms_time_info("  ", "cleanups", _cleanup_times);
3338   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3339                          _total_counting_time,
3340                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3341                           (double)_cleanup_times.num()
3342                          : 0.0));
3343   if (G1ScrubRemSets) {
3344     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3345                            _total_rs_scrub_time,
3346                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3347                             (double)_cleanup_times.num()
3348                            : 0.0));
3349   }
3350   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3351                          (_init_times.sum() + _remark_times.sum() +
3352                           _cleanup_times.sum())/1000.0);
3353   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3354                 "(%8.2f s marking).",
3355                 cmThread()->vtime_accum(),
3356                 cmThread()->vtime_mark_accum());
3357 }
3358 
3359 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3360   _parallel_workers->print_worker_threads_on(st);
3361 }
3362 
3363 void ConcurrentMark::print_on_error(outputStream* st) const {
3364   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3365       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3366   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3367   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3368 }
3369 
3370 // We take a break if someone is trying to stop the world.
3371 bool ConcurrentMark::do_yield_check(uint worker_id) {
3372   if (SuspendibleThreadSet::should_yield()) {
3373     if (worker_id == 0) {
3374       _g1h->g1_policy()->record_concurrent_pause();
3375     }
3376     SuspendibleThreadSet::yield();
3377     return true;
3378   } else {
3379     return false;
3380   }
3381 }
3382 
3383 #ifndef PRODUCT
3384 // for debugging purposes
3385 void ConcurrentMark::print_finger() {
3386   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3387                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3388   for (uint i = 0; i < _max_worker_id; ++i) {
3389     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3390   }
3391   gclog_or_tty->cr();
3392 }
3393 #endif
3394 
3395 void CMTask::scan_object(oop obj) {
3396   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3397 
3398   if (_cm->verbose_high()) {
3399     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3400                            _worker_id, p2i((void*) obj));
3401   }
3402 
3403   size_t obj_size = obj->size();
3404   _words_scanned += obj_size;
3405 
3406   obj->oop_iterate(_cm_oop_closure);
3407   statsOnly( ++_objs_scanned );
3408   check_limits();
3409 }
3410 
3411 // Closure for iteration over bitmaps
3412 class CMBitMapClosure : public BitMapClosure {
3413 private:
3414   // the bitmap that is being iterated over
3415   CMBitMap*                   _nextMarkBitMap;
3416   ConcurrentMark*             _cm;
3417   CMTask*                     _task;
3418 
3419 public:
3420   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3421     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3422 
3423   bool do_bit(size_t offset) {
3424     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3425     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3426     assert( addr < _cm->finger(), "invariant");
3427 
3428     statsOnly( _task->increase_objs_found_on_bitmap() );
3429     assert(addr >= _task->finger(), "invariant");
3430 
3431     // We move that task's local finger along.
3432     _task->move_finger_to(addr);
3433 
3434     _task->scan_object(oop(addr));
3435     // we only partially drain the local queue and global stack
3436     _task->drain_local_queue(true);
3437     _task->drain_global_stack(true);
3438 
3439     // if the has_aborted flag has been raised, we need to bail out of
3440     // the iteration
3441     return !_task->has_aborted();
3442   }
3443 };
3444 
3445 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3446                                ConcurrentMark* cm,
3447                                CMTask* task)
3448   : _g1h(g1h), _cm(cm), _task(task) {
3449   assert(_ref_processor == NULL, "should be initialized to NULL");
3450 
3451   if (G1UseConcMarkReferenceProcessing) {
3452     _ref_processor = g1h->ref_processor_cm();
3453     assert(_ref_processor != NULL, "should not be NULL");
3454   }
3455 }
3456 
3457 void CMTask::setup_for_region(HeapRegion* hr) {
3458   assert(hr != NULL,
3459         "claim_region() should have filtered out NULL regions");
3460   assert(!hr->is_continues_humongous(),
3461         "claim_region() should have filtered out continues humongous regions");
3462 
3463   if (_cm->verbose_low()) {
3464     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3465                            _worker_id, p2i(hr));
3466   }
3467 
3468   _curr_region  = hr;
3469   _finger       = hr->bottom();
3470   update_region_limit();
3471 }
3472 
3473 void CMTask::update_region_limit() {
3474   HeapRegion* hr            = _curr_region;
3475   HeapWord* bottom          = hr->bottom();
3476   HeapWord* limit           = hr->next_top_at_mark_start();
3477 
3478   if (limit == bottom) {
3479     if (_cm->verbose_low()) {
3480       gclog_or_tty->print_cr("[%u] found an empty region "
3481                              "["PTR_FORMAT", "PTR_FORMAT")",
3482                              _worker_id, p2i(bottom), p2i(limit));
3483     }
3484     // The region was collected underneath our feet.
3485     // We set the finger to bottom to ensure that the bitmap
3486     // iteration that will follow this will not do anything.
3487     // (this is not a condition that holds when we set the region up,
3488     // as the region is not supposed to be empty in the first place)
3489     _finger = bottom;
3490   } else if (limit >= _region_limit) {
3491     assert(limit >= _finger, "peace of mind");
3492   } else {
3493     assert(limit < _region_limit, "only way to get here");
3494     // This can happen under some pretty unusual circumstances.  An
3495     // evacuation pause empties the region underneath our feet (NTAMS
3496     // at bottom). We then do some allocation in the region (NTAMS
3497     // stays at bottom), followed by the region being used as a GC
3498     // alloc region (NTAMS will move to top() and the objects
3499     // originally below it will be grayed). All objects now marked in
3500     // the region are explicitly grayed, if below the global finger,
3501     // and we do not need in fact to scan anything else. So, we simply
3502     // set _finger to be limit to ensure that the bitmap iteration
3503     // doesn't do anything.
3504     _finger = limit;
3505   }
3506 
3507   _region_limit = limit;
3508 }
3509 
3510 void CMTask::giveup_current_region() {
3511   assert(_curr_region != NULL, "invariant");
3512   if (_cm->verbose_low()) {
3513     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3514                            _worker_id, p2i(_curr_region));
3515   }
3516   clear_region_fields();
3517 }
3518 
3519 void CMTask::clear_region_fields() {
3520   // Values for these three fields that indicate that we're not
3521   // holding on to a region.
3522   _curr_region   = NULL;
3523   _finger        = NULL;
3524   _region_limit  = NULL;
3525 }
3526 
3527 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3528   if (cm_oop_closure == NULL) {
3529     assert(_cm_oop_closure != NULL, "invariant");
3530   } else {
3531     assert(_cm_oop_closure == NULL, "invariant");
3532   }
3533   _cm_oop_closure = cm_oop_closure;
3534 }
3535 
3536 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3537   guarantee(nextMarkBitMap != NULL, "invariant");
3538 
3539   if (_cm->verbose_low()) {
3540     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3541   }
3542 
3543   _nextMarkBitMap                = nextMarkBitMap;
3544   clear_region_fields();
3545 
3546   _calls                         = 0;
3547   _elapsed_time_ms               = 0.0;
3548   _termination_time_ms           = 0.0;
3549   _termination_start_time_ms     = 0.0;
3550 
3551 #if _MARKING_STATS_
3552   _aborted                       = 0;
3553   _aborted_overflow              = 0;
3554   _aborted_cm_aborted            = 0;
3555   _aborted_yield                 = 0;
3556   _aborted_timed_out             = 0;
3557   _aborted_satb                  = 0;
3558   _aborted_termination           = 0;
3559   _steal_attempts                = 0;
3560   _steals                        = 0;
3561   _local_pushes                  = 0;
3562   _local_pops                    = 0;
3563   _local_max_size                = 0;
3564   _objs_scanned                  = 0;
3565   _global_pushes                 = 0;
3566   _global_pops                   = 0;
3567   _global_max_size               = 0;
3568   _global_transfers_to           = 0;
3569   _global_transfers_from         = 0;
3570   _regions_claimed               = 0;
3571   _objs_found_on_bitmap          = 0;
3572   _satb_buffers_processed        = 0;
3573 #endif // _MARKING_STATS_
3574 }
3575 
3576 bool CMTask::should_exit_termination() {
3577   regular_clock_call();
3578   // This is called when we are in the termination protocol. We should
3579   // quit if, for some reason, this task wants to abort or the global
3580   // stack is not empty (this means that we can get work from it).
3581   return !_cm->mark_stack_empty() || has_aborted();
3582 }
3583 
3584 void CMTask::reached_limit() {
3585   assert(_words_scanned >= _words_scanned_limit ||
3586          _refs_reached >= _refs_reached_limit ,
3587          "shouldn't have been called otherwise");
3588   regular_clock_call();
3589 }
3590 
3591 void CMTask::regular_clock_call() {
3592   if (has_aborted()) return;
3593 
3594   // First, we need to recalculate the words scanned and refs reached
3595   // limits for the next clock call.
3596   recalculate_limits();
3597 
3598   // During the regular clock call we do the following
3599 
3600   // (1) If an overflow has been flagged, then we abort.
3601   if (_cm->has_overflown()) {
3602     set_has_aborted();
3603     return;
3604   }
3605 
3606   // If we are not concurrent (i.e. we're doing remark) we don't need
3607   // to check anything else. The other steps are only needed during
3608   // the concurrent marking phase.
3609   if (!concurrent()) return;
3610 
3611   // (2) If marking has been aborted for Full GC, then we also abort.
3612   if (_cm->has_aborted()) {
3613     set_has_aborted();
3614     statsOnly( ++_aborted_cm_aborted );
3615     return;
3616   }
3617 
3618   double curr_time_ms = os::elapsedVTime() * 1000.0;
3619 
3620   // (3) If marking stats are enabled, then we update the step history.
3621 #if _MARKING_STATS_
3622   if (_words_scanned >= _words_scanned_limit) {
3623     ++_clock_due_to_scanning;
3624   }
3625   if (_refs_reached >= _refs_reached_limit) {
3626     ++_clock_due_to_marking;
3627   }
3628 
3629   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3630   _interval_start_time_ms = curr_time_ms;
3631   _all_clock_intervals_ms.add(last_interval_ms);
3632 
3633   if (_cm->verbose_medium()) {
3634       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3635                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3636                         _worker_id, last_interval_ms,
3637                         _words_scanned,
3638                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3639                         _refs_reached,
3640                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3641   }
3642 #endif // _MARKING_STATS_
3643 
3644   // (4) We check whether we should yield. If we have to, then we abort.
3645   if (SuspendibleThreadSet::should_yield()) {
3646     // We should yield. To do this we abort the task. The caller is
3647     // responsible for yielding.
3648     set_has_aborted();
3649     statsOnly( ++_aborted_yield );
3650     return;
3651   }
3652 
3653   // (5) We check whether we've reached our time quota. If we have,
3654   // then we abort.
3655   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3656   if (elapsed_time_ms > _time_target_ms) {
3657     set_has_aborted();
3658     _has_timed_out = true;
3659     statsOnly( ++_aborted_timed_out );
3660     return;
3661   }
3662 
3663   // (6) Finally, we check whether there are enough completed STAB
3664   // buffers available for processing. If there are, we abort.
3665   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3666   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3667     if (_cm->verbose_low()) {
3668       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3669                              _worker_id);
3670     }
3671     // we do need to process SATB buffers, we'll abort and restart
3672     // the marking task to do so
3673     set_has_aborted();
3674     statsOnly( ++_aborted_satb );
3675     return;
3676   }
3677 }
3678 
3679 void CMTask::recalculate_limits() {
3680   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3681   _words_scanned_limit      = _real_words_scanned_limit;
3682 
3683   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3684   _refs_reached_limit       = _real_refs_reached_limit;
3685 }
3686 
3687 void CMTask::decrease_limits() {
3688   // This is called when we believe that we're going to do an infrequent
3689   // operation which will increase the per byte scanned cost (i.e. move
3690   // entries to/from the global stack). It basically tries to decrease the
3691   // scanning limit so that the clock is called earlier.
3692 
3693   if (_cm->verbose_medium()) {
3694     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3695   }
3696 
3697   _words_scanned_limit = _real_words_scanned_limit -
3698     3 * words_scanned_period / 4;
3699   _refs_reached_limit  = _real_refs_reached_limit -
3700     3 * refs_reached_period / 4;
3701 }
3702 
3703 void CMTask::move_entries_to_global_stack() {
3704   // local array where we'll store the entries that will be popped
3705   // from the local queue
3706   oop buffer[global_stack_transfer_size];
3707 
3708   int n = 0;
3709   oop obj;
3710   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3711     buffer[n] = obj;
3712     ++n;
3713   }
3714 
3715   if (n > 0) {
3716     // we popped at least one entry from the local queue
3717 
3718     statsOnly( ++_global_transfers_to; _local_pops += n );
3719 
3720     if (!_cm->mark_stack_push(buffer, n)) {
3721       if (_cm->verbose_low()) {
3722         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3723                                _worker_id);
3724       }
3725       set_has_aborted();
3726     } else {
3727       // the transfer was successful
3728 
3729       if (_cm->verbose_medium()) {
3730         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3731                                _worker_id, n);
3732       }
3733       statsOnly( size_t tmp_size = _cm->mark_stack_size();
3734                  if (tmp_size > _global_max_size) {
3735                    _global_max_size = tmp_size;
3736                  }
3737                  _global_pushes += n );
3738     }
3739   }
3740 
3741   // this operation was quite expensive, so decrease the limits
3742   decrease_limits();
3743 }
3744 
3745 void CMTask::get_entries_from_global_stack() {
3746   // local array where we'll store the entries that will be popped
3747   // from the global stack.
3748   oop buffer[global_stack_transfer_size];
3749   int n;
3750   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3751   assert(n <= global_stack_transfer_size,
3752          "we should not pop more than the given limit");
3753   if (n > 0) {
3754     // yes, we did actually pop at least one entry
3755 
3756     statsOnly( ++_global_transfers_from; _global_pops += n );
3757     if (_cm->verbose_medium()) {
3758       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3759                              _worker_id, n);
3760     }
3761     for (int i = 0; i < n; ++i) {
3762       bool success = _task_queue->push(buffer[i]);
3763       // We only call this when the local queue is empty or under a
3764       // given target limit. So, we do not expect this push to fail.
3765       assert(success, "invariant");
3766     }
3767 
3768     statsOnly( size_t tmp_size = (size_t)_task_queue->size();
3769                if (tmp_size > _local_max_size) {
3770                  _local_max_size = tmp_size;
3771                }
3772                _local_pushes += n );
3773   }
3774 
3775   // this operation was quite expensive, so decrease the limits
3776   decrease_limits();
3777 }
3778 
3779 void CMTask::drain_local_queue(bool partially) {
3780   if (has_aborted()) return;
3781 
3782   // Decide what the target size is, depending whether we're going to
3783   // drain it partially (so that other tasks can steal if they run out
3784   // of things to do) or totally (at the very end).
3785   size_t target_size;
3786   if (partially) {
3787     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3788   } else {
3789     target_size = 0;
3790   }
3791 
3792   if (_task_queue->size() > target_size) {
3793     if (_cm->verbose_high()) {
3794       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3795                              _worker_id, target_size);
3796     }
3797 
3798     oop obj;
3799     bool ret = _task_queue->pop_local(obj);
3800     while (ret) {
3801       statsOnly( ++_local_pops );
3802 
3803       if (_cm->verbose_high()) {
3804         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3805                                p2i((void*) obj));
3806       }
3807 
3808       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3809       assert(!_g1h->is_on_master_free_list(
3810                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3811 
3812       scan_object(obj);
3813 
3814       if (_task_queue->size() <= target_size || has_aborted()) {
3815         ret = false;
3816       } else {
3817         ret = _task_queue->pop_local(obj);
3818       }
3819     }
3820 
3821     if (_cm->verbose_high()) {
3822       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3823                              _worker_id, _task_queue->size());
3824     }
3825   }
3826 }
3827 
3828 void CMTask::drain_global_stack(bool partially) {
3829   if (has_aborted()) return;
3830 
3831   // We have a policy to drain the local queue before we attempt to
3832   // drain the global stack.
3833   assert(partially || _task_queue->size() == 0, "invariant");
3834 
3835   // Decide what the target size is, depending whether we're going to
3836   // drain it partially (so that other tasks can steal if they run out
3837   // of things to do) or totally (at the very end).  Notice that,
3838   // because we move entries from the global stack in chunks or
3839   // because another task might be doing the same, we might in fact
3840   // drop below the target. But, this is not a problem.
3841   size_t target_size;
3842   if (partially) {
3843     target_size = _cm->partial_mark_stack_size_target();
3844   } else {
3845     target_size = 0;
3846   }
3847 
3848   if (_cm->mark_stack_size() > target_size) {
3849     if (_cm->verbose_low()) {
3850       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3851                              _worker_id, target_size);
3852     }
3853 
3854     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3855       get_entries_from_global_stack();
3856       drain_local_queue(partially);
3857     }
3858 
3859     if (_cm->verbose_low()) {
3860       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3861                              _worker_id, _cm->mark_stack_size());
3862     }
3863   }
3864 }
3865 
3866 // SATB Queue has several assumptions on whether to call the par or
3867 // non-par versions of the methods. this is why some of the code is
3868 // replicated. We should really get rid of the single-threaded version
3869 // of the code to simplify things.
3870 void CMTask::drain_satb_buffers() {
3871   if (has_aborted()) return;
3872 
3873   // We set this so that the regular clock knows that we're in the
3874   // middle of draining buffers and doesn't set the abort flag when it
3875   // notices that SATB buffers are available for draining. It'd be
3876   // very counter productive if it did that. :-)
3877   _draining_satb_buffers = true;
3878 
3879   CMObjectClosure oc(this);
3880   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3881   satb_mq_set.set_closure(_worker_id, &oc);
3882 
3883   // This keeps claiming and applying the closure to completed buffers
3884   // until we run out of buffers or we need to abort.
3885   while (!has_aborted() &&
3886          satb_mq_set.apply_closure_to_completed_buffer(_worker_id)) {
3887     if (_cm->verbose_medium()) {
3888       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3889     }
3890     statsOnly( ++_satb_buffers_processed );
3891     regular_clock_call();
3892   }
3893 
3894   _draining_satb_buffers = false;
3895 
3896   assert(has_aborted() ||
3897          concurrent() ||
3898          satb_mq_set.completed_buffers_num() == 0, "invariant");
3899 
3900   satb_mq_set.set_closure(_worker_id, NULL);
3901 
3902   // again, this was a potentially expensive operation, decrease the
3903   // limits to get the regular clock call early
3904   decrease_limits();
3905 }
3906 
3907 void CMTask::print_stats() {
3908   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3909                          _worker_id, _calls);
3910   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3911                          _elapsed_time_ms, _termination_time_ms);
3912   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3913                          _step_times_ms.num(), _step_times_ms.avg(),
3914                          _step_times_ms.sd());
3915   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3916                          _step_times_ms.maximum(), _step_times_ms.sum());
3917 
3918 #if _MARKING_STATS_
3919   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3920                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3921                          _all_clock_intervals_ms.sd());
3922   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3923                          _all_clock_intervals_ms.maximum(),
3924                          _all_clock_intervals_ms.sum());
3925   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = " SIZE_FORMAT ", marking = " SIZE_FORMAT,
3926                          _clock_due_to_scanning, _clock_due_to_marking);
3927   gclog_or_tty->print_cr("  Objects: scanned = " SIZE_FORMAT ", found on the bitmap = " SIZE_FORMAT,
3928                          _objs_scanned, _objs_found_on_bitmap);
3929   gclog_or_tty->print_cr("  Local Queue:  pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3930                          _local_pushes, _local_pops, _local_max_size);
3931   gclog_or_tty->print_cr("  Global Stack: pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3932                          _global_pushes, _global_pops, _global_max_size);
3933   gclog_or_tty->print_cr("                transfers to = " SIZE_FORMAT ", transfers from = " SIZE_FORMAT,
3934                          _global_transfers_to,_global_transfers_from);
3935   gclog_or_tty->print_cr("  Regions: claimed = " SIZE_FORMAT, _regions_claimed);
3936   gclog_or_tty->print_cr("  SATB buffers: processed = " SIZE_FORMAT, _satb_buffers_processed);
3937   gclog_or_tty->print_cr("  Steals: attempts = " SIZE_FORMAT ", successes = " SIZE_FORMAT,
3938                          _steal_attempts, _steals);
3939   gclog_or_tty->print_cr("  Aborted: " SIZE_FORMAT ", due to", _aborted);
3940   gclog_or_tty->print_cr("    overflow: " SIZE_FORMAT ", global abort: " SIZE_FORMAT ", yield: " SIZE_FORMAT,
3941                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3942   gclog_or_tty->print_cr("    time out: " SIZE_FORMAT ", SATB: " SIZE_FORMAT ", termination: " SIZE_FORMAT,
3943                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3944 #endif // _MARKING_STATS_
3945 }
3946 
3947 /*****************************************************************************
3948 
3949     The do_marking_step(time_target_ms, ...) method is the building
3950     block of the parallel marking framework. It can be called in parallel
3951     with other invocations of do_marking_step() on different tasks
3952     (but only one per task, obviously) and concurrently with the
3953     mutator threads, or during remark, hence it eliminates the need
3954     for two versions of the code. When called during remark, it will
3955     pick up from where the task left off during the concurrent marking
3956     phase. Interestingly, tasks are also claimable during evacuation
3957     pauses too, since do_marking_step() ensures that it aborts before
3958     it needs to yield.
3959 
3960     The data structures that it uses to do marking work are the
3961     following:
3962 
3963       (1) Marking Bitmap. If there are gray objects that appear only
3964       on the bitmap (this happens either when dealing with an overflow
3965       or when the initial marking phase has simply marked the roots
3966       and didn't push them on the stack), then tasks claim heap
3967       regions whose bitmap they then scan to find gray objects. A
3968       global finger indicates where the end of the last claimed region
3969       is. A local finger indicates how far into the region a task has
3970       scanned. The two fingers are used to determine how to gray an
3971       object (i.e. whether simply marking it is OK, as it will be
3972       visited by a task in the future, or whether it needs to be also
3973       pushed on a stack).
3974 
3975       (2) Local Queue. The local queue of the task which is accessed
3976       reasonably efficiently by the task. Other tasks can steal from
3977       it when they run out of work. Throughout the marking phase, a
3978       task attempts to keep its local queue short but not totally
3979       empty, so that entries are available for stealing by other
3980       tasks. Only when there is no more work, a task will totally
3981       drain its local queue.
3982 
3983       (3) Global Mark Stack. This handles local queue overflow. During
3984       marking only sets of entries are moved between it and the local
3985       queues, as access to it requires a mutex and more fine-grain
3986       interaction with it which might cause contention. If it
3987       overflows, then the marking phase should restart and iterate
3988       over the bitmap to identify gray objects. Throughout the marking
3989       phase, tasks attempt to keep the global mark stack at a small
3990       length but not totally empty, so that entries are available for
3991       popping by other tasks. Only when there is no more work, tasks
3992       will totally drain the global mark stack.
3993 
3994       (4) SATB Buffer Queue. This is where completed SATB buffers are
3995       made available. Buffers are regularly removed from this queue
3996       and scanned for roots, so that the queue doesn't get too
3997       long. During remark, all completed buffers are processed, as
3998       well as the filled in parts of any uncompleted buffers.
3999 
4000     The do_marking_step() method tries to abort when the time target
4001     has been reached. There are a few other cases when the
4002     do_marking_step() method also aborts:
4003 
4004       (1) When the marking phase has been aborted (after a Full GC).
4005 
4006       (2) When a global overflow (on the global stack) has been
4007       triggered. Before the task aborts, it will actually sync up with
4008       the other tasks to ensure that all the marking data structures
4009       (local queues, stacks, fingers etc.)  are re-initialized so that
4010       when do_marking_step() completes, the marking phase can
4011       immediately restart.
4012 
4013       (3) When enough completed SATB buffers are available. The
4014       do_marking_step() method only tries to drain SATB buffers right
4015       at the beginning. So, if enough buffers are available, the
4016       marking step aborts and the SATB buffers are processed at
4017       the beginning of the next invocation.
4018 
4019       (4) To yield. when we have to yield then we abort and yield
4020       right at the end of do_marking_step(). This saves us from a lot
4021       of hassle as, by yielding we might allow a Full GC. If this
4022       happens then objects will be compacted underneath our feet, the
4023       heap might shrink, etc. We save checking for this by just
4024       aborting and doing the yield right at the end.
4025 
4026     From the above it follows that the do_marking_step() method should
4027     be called in a loop (or, otherwise, regularly) until it completes.
4028 
4029     If a marking step completes without its has_aborted() flag being
4030     true, it means it has completed the current marking phase (and
4031     also all other marking tasks have done so and have all synced up).
4032 
4033     A method called regular_clock_call() is invoked "regularly" (in
4034     sub ms intervals) throughout marking. It is this clock method that
4035     checks all the abort conditions which were mentioned above and
4036     decides when the task should abort. A work-based scheme is used to
4037     trigger this clock method: when the number of object words the
4038     marking phase has scanned or the number of references the marking
4039     phase has visited reach a given limit. Additional invocations to
4040     the method clock have been planted in a few other strategic places
4041     too. The initial reason for the clock method was to avoid calling
4042     vtime too regularly, as it is quite expensive. So, once it was in
4043     place, it was natural to piggy-back all the other conditions on it
4044     too and not constantly check them throughout the code.
4045 
4046     If do_termination is true then do_marking_step will enter its
4047     termination protocol.
4048 
4049     The value of is_serial must be true when do_marking_step is being
4050     called serially (i.e. by the VMThread) and do_marking_step should
4051     skip any synchronization in the termination and overflow code.
4052     Examples include the serial remark code and the serial reference
4053     processing closures.
4054 
4055     The value of is_serial must be false when do_marking_step is
4056     being called by any of the worker threads in a work gang.
4057     Examples include the concurrent marking code (CMMarkingTask),
4058     the MT remark code, and the MT reference processing closures.
4059 
4060  *****************************************************************************/
4061 
4062 void CMTask::do_marking_step(double time_target_ms,
4063                              bool do_termination,
4064                              bool is_serial) {
4065   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4066   assert(concurrent() == _cm->concurrent(), "they should be the same");
4067 
4068   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4069   assert(_task_queues != NULL, "invariant");
4070   assert(_task_queue != NULL, "invariant");
4071   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4072 
4073   assert(!_claimed,
4074          "only one thread should claim this task at any one time");
4075 
4076   // OK, this doesn't safeguard again all possible scenarios, as it is
4077   // possible for two threads to set the _claimed flag at the same
4078   // time. But it is only for debugging purposes anyway and it will
4079   // catch most problems.
4080   _claimed = true;
4081 
4082   _start_time_ms = os::elapsedVTime() * 1000.0;
4083   statsOnly( _interval_start_time_ms = _start_time_ms );
4084 
4085   // If do_stealing is true then do_marking_step will attempt to
4086   // steal work from the other CMTasks. It only makes sense to
4087   // enable stealing when the termination protocol is enabled
4088   // and do_marking_step() is not being called serially.
4089   bool do_stealing = do_termination && !is_serial;
4090 
4091   double diff_prediction_ms =
4092     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4093   _time_target_ms = time_target_ms - diff_prediction_ms;
4094 
4095   // set up the variables that are used in the work-based scheme to
4096   // call the regular clock method
4097   _words_scanned = 0;
4098   _refs_reached  = 0;
4099   recalculate_limits();
4100 
4101   // clear all flags
4102   clear_has_aborted();
4103   _has_timed_out = false;
4104   _draining_satb_buffers = false;
4105 
4106   ++_calls;
4107 
4108   if (_cm->verbose_low()) {
4109     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4110                            "target = %1.2lfms >>>>>>>>>>",
4111                            _worker_id, _calls, _time_target_ms);
4112   }
4113 
4114   // Set up the bitmap and oop closures. Anything that uses them is
4115   // eventually called from this method, so it is OK to allocate these
4116   // statically.
4117   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4118   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4119   set_cm_oop_closure(&cm_oop_closure);
4120 
4121   if (_cm->has_overflown()) {
4122     // This can happen if the mark stack overflows during a GC pause
4123     // and this task, after a yield point, restarts. We have to abort
4124     // as we need to get into the overflow protocol which happens
4125     // right at the end of this task.
4126     set_has_aborted();
4127   }
4128 
4129   // First drain any available SATB buffers. After this, we will not
4130   // look at SATB buffers before the next invocation of this method.
4131   // If enough completed SATB buffers are queued up, the regular clock
4132   // will abort this task so that it restarts.
4133   drain_satb_buffers();
4134   // ...then partially drain the local queue and the global stack
4135   drain_local_queue(true);
4136   drain_global_stack(true);
4137 
4138   do {
4139     if (!has_aborted() && _curr_region != NULL) {
4140       // This means that we're already holding on to a region.
4141       assert(_finger != NULL, "if region is not NULL, then the finger "
4142              "should not be NULL either");
4143 
4144       // We might have restarted this task after an evacuation pause
4145       // which might have evacuated the region we're holding on to
4146       // underneath our feet. Let's read its limit again to make sure
4147       // that we do not iterate over a region of the heap that
4148       // contains garbage (update_region_limit() will also move
4149       // _finger to the start of the region if it is found empty).
4150       update_region_limit();
4151       // We will start from _finger not from the start of the region,
4152       // as we might be restarting this task after aborting half-way
4153       // through scanning this region. In this case, _finger points to
4154       // the address where we last found a marked object. If this is a
4155       // fresh region, _finger points to start().
4156       MemRegion mr = MemRegion(_finger, _region_limit);
4157 
4158       if (_cm->verbose_low()) {
4159         gclog_or_tty->print_cr("[%u] we're scanning part "
4160                                "["PTR_FORMAT", "PTR_FORMAT") "
4161                                "of region "HR_FORMAT,
4162                                _worker_id, p2i(_finger), p2i(_region_limit),
4163                                HR_FORMAT_PARAMS(_curr_region));
4164       }
4165 
4166       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4167              "humongous regions should go around loop once only");
4168 
4169       // Some special cases:
4170       // If the memory region is empty, we can just give up the region.
4171       // If the current region is humongous then we only need to check
4172       // the bitmap for the bit associated with the start of the object,
4173       // scan the object if it's live, and give up the region.
4174       // Otherwise, let's iterate over the bitmap of the part of the region
4175       // that is left.
4176       // If the iteration is successful, give up the region.
4177       if (mr.is_empty()) {
4178         giveup_current_region();
4179         regular_clock_call();
4180       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4181         if (_nextMarkBitMap->isMarked(mr.start())) {
4182           // The object is marked - apply the closure
4183           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4184           bitmap_closure.do_bit(offset);
4185         }
4186         // Even if this task aborted while scanning the humongous object
4187         // we can (and should) give up the current region.
4188         giveup_current_region();
4189         regular_clock_call();
4190       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4191         giveup_current_region();
4192         regular_clock_call();
4193       } else {
4194         assert(has_aborted(), "currently the only way to do so");
4195         // The only way to abort the bitmap iteration is to return
4196         // false from the do_bit() method. However, inside the
4197         // do_bit() method we move the _finger to point to the
4198         // object currently being looked at. So, if we bail out, we
4199         // have definitely set _finger to something non-null.
4200         assert(_finger != NULL, "invariant");
4201 
4202         // Region iteration was actually aborted. So now _finger
4203         // points to the address of the object we last scanned. If we
4204         // leave it there, when we restart this task, we will rescan
4205         // the object. It is easy to avoid this. We move the finger by
4206         // enough to point to the next possible object header (the
4207         // bitmap knows by how much we need to move it as it knows its
4208         // granularity).
4209         assert(_finger < _region_limit, "invariant");
4210         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4211         // Check if bitmap iteration was aborted while scanning the last object
4212         if (new_finger >= _region_limit) {
4213           giveup_current_region();
4214         } else {
4215           move_finger_to(new_finger);
4216         }
4217       }
4218     }
4219     // At this point we have either completed iterating over the
4220     // region we were holding on to, or we have aborted.
4221 
4222     // We then partially drain the local queue and the global stack.
4223     // (Do we really need this?)
4224     drain_local_queue(true);
4225     drain_global_stack(true);
4226 
4227     // Read the note on the claim_region() method on why it might
4228     // return NULL with potentially more regions available for
4229     // claiming and why we have to check out_of_regions() to determine
4230     // whether we're done or not.
4231     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4232       // We are going to try to claim a new region. We should have
4233       // given up on the previous one.
4234       // Separated the asserts so that we know which one fires.
4235       assert(_curr_region  == NULL, "invariant");
4236       assert(_finger       == NULL, "invariant");
4237       assert(_region_limit == NULL, "invariant");
4238       if (_cm->verbose_low()) {
4239         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4240       }
4241       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4242       if (claimed_region != NULL) {
4243         // Yes, we managed to claim one
4244         statsOnly( ++_regions_claimed );
4245 
4246         if (_cm->verbose_low()) {
4247           gclog_or_tty->print_cr("[%u] we successfully claimed "
4248                                  "region "PTR_FORMAT,
4249                                  _worker_id, p2i(claimed_region));
4250         }
4251 
4252         setup_for_region(claimed_region);
4253         assert(_curr_region == claimed_region, "invariant");
4254       }
4255       // It is important to call the regular clock here. It might take
4256       // a while to claim a region if, for example, we hit a large
4257       // block of empty regions. So we need to call the regular clock
4258       // method once round the loop to make sure it's called
4259       // frequently enough.
4260       regular_clock_call();
4261     }
4262 
4263     if (!has_aborted() && _curr_region == NULL) {
4264       assert(_cm->out_of_regions(),
4265              "at this point we should be out of regions");
4266     }
4267   } while ( _curr_region != NULL && !has_aborted());
4268 
4269   if (!has_aborted()) {
4270     // We cannot check whether the global stack is empty, since other
4271     // tasks might be pushing objects to it concurrently.
4272     assert(_cm->out_of_regions(),
4273            "at this point we should be out of regions");
4274 
4275     if (_cm->verbose_low()) {
4276       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4277     }
4278 
4279     // Try to reduce the number of available SATB buffers so that
4280     // remark has less work to do.
4281     drain_satb_buffers();
4282   }
4283 
4284   // Since we've done everything else, we can now totally drain the
4285   // local queue and global stack.
4286   drain_local_queue(false);
4287   drain_global_stack(false);
4288 
4289   // Attempt at work stealing from other task's queues.
4290   if (do_stealing && !has_aborted()) {
4291     // We have not aborted. This means that we have finished all that
4292     // we could. Let's try to do some stealing...
4293 
4294     // We cannot check whether the global stack is empty, since other
4295     // tasks might be pushing objects to it concurrently.
4296     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4297            "only way to reach here");
4298 
4299     if (_cm->verbose_low()) {
4300       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4301     }
4302 
4303     while (!has_aborted()) {
4304       oop obj;
4305       statsOnly( ++_steal_attempts );
4306 
4307       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4308         if (_cm->verbose_medium()) {
4309           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4310                                  _worker_id, p2i((void*) obj));
4311         }
4312 
4313         statsOnly( ++_steals );
4314 
4315         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4316                "any stolen object should be marked");
4317         scan_object(obj);
4318 
4319         // And since we're towards the end, let's totally drain the
4320         // local queue and global stack.
4321         drain_local_queue(false);
4322         drain_global_stack(false);
4323       } else {
4324         break;
4325       }
4326     }
4327   }
4328 
4329   // If we are about to wrap up and go into termination, check if we
4330   // should raise the overflow flag.
4331   if (do_termination && !has_aborted()) {
4332     if (_cm->force_overflow()->should_force()) {
4333       _cm->set_has_overflown();
4334       regular_clock_call();
4335     }
4336   }
4337 
4338   // We still haven't aborted. Now, let's try to get into the
4339   // termination protocol.
4340   if (do_termination && !has_aborted()) {
4341     // We cannot check whether the global stack is empty, since other
4342     // tasks might be concurrently pushing objects on it.
4343     // Separated the asserts so that we know which one fires.
4344     assert(_cm->out_of_regions(), "only way to reach here");
4345     assert(_task_queue->size() == 0, "only way to reach here");
4346 
4347     if (_cm->verbose_low()) {
4348       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4349     }
4350 
4351     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4352 
4353     // The CMTask class also extends the TerminatorTerminator class,
4354     // hence its should_exit_termination() method will also decide
4355     // whether to exit the termination protocol or not.
4356     bool finished = (is_serial ||
4357                      _cm->terminator()->offer_termination(this));
4358     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4359     _termination_time_ms +=
4360       termination_end_time_ms - _termination_start_time_ms;
4361 
4362     if (finished) {
4363       // We're all done.
4364 
4365       if (_worker_id == 0) {
4366         // let's allow task 0 to do this
4367         if (concurrent()) {
4368           assert(_cm->concurrent_marking_in_progress(), "invariant");
4369           // we need to set this to false before the next
4370           // safepoint. This way we ensure that the marking phase
4371           // doesn't observe any more heap expansions.
4372           _cm->clear_concurrent_marking_in_progress();
4373         }
4374       }
4375 
4376       // We can now guarantee that the global stack is empty, since
4377       // all other tasks have finished. We separated the guarantees so
4378       // that, if a condition is false, we can immediately find out
4379       // which one.
4380       guarantee(_cm->out_of_regions(), "only way to reach here");
4381       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4382       guarantee(_task_queue->size() == 0, "only way to reach here");
4383       guarantee(!_cm->has_overflown(), "only way to reach here");
4384       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4385 
4386       if (_cm->verbose_low()) {
4387         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4388       }
4389     } else {
4390       // Apparently there's more work to do. Let's abort this task. It
4391       // will restart it and we can hopefully find more things to do.
4392 
4393       if (_cm->verbose_low()) {
4394         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4395                                _worker_id);
4396       }
4397 
4398       set_has_aborted();
4399       statsOnly( ++_aborted_termination );
4400     }
4401   }
4402 
4403   // Mainly for debugging purposes to make sure that a pointer to the
4404   // closure which was statically allocated in this frame doesn't
4405   // escape it by accident.
4406   set_cm_oop_closure(NULL);
4407   double end_time_ms = os::elapsedVTime() * 1000.0;
4408   double elapsed_time_ms = end_time_ms - _start_time_ms;
4409   // Update the step history.
4410   _step_times_ms.add(elapsed_time_ms);
4411 
4412   if (has_aborted()) {
4413     // The task was aborted for some reason.
4414 
4415     statsOnly( ++_aborted );
4416 
4417     if (_has_timed_out) {
4418       double diff_ms = elapsed_time_ms - _time_target_ms;
4419       // Keep statistics of how well we did with respect to hitting
4420       // our target only if we actually timed out (if we aborted for
4421       // other reasons, then the results might get skewed).
4422       _marking_step_diffs_ms.add(diff_ms);
4423     }
4424 
4425     if (_cm->has_overflown()) {
4426       // This is the interesting one. We aborted because a global
4427       // overflow was raised. This means we have to restart the
4428       // marking phase and start iterating over regions. However, in
4429       // order to do this we have to make sure that all tasks stop
4430       // what they are doing and re-initialize in a safe manner. We
4431       // will achieve this with the use of two barrier sync points.
4432 
4433       if (_cm->verbose_low()) {
4434         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4435       }
4436 
4437       if (!is_serial) {
4438         // We only need to enter the sync barrier if being called
4439         // from a parallel context
4440         _cm->enter_first_sync_barrier(_worker_id);
4441 
4442         // When we exit this sync barrier we know that all tasks have
4443         // stopped doing marking work. So, it's now safe to
4444         // re-initialize our data structures. At the end of this method,
4445         // task 0 will clear the global data structures.
4446       }
4447 
4448       statsOnly( ++_aborted_overflow );
4449 
4450       // We clear the local state of this task...
4451       clear_region_fields();
4452 
4453       if (!is_serial) {
4454         // ...and enter the second barrier.
4455         _cm->enter_second_sync_barrier(_worker_id);
4456       }
4457       // At this point, if we're during the concurrent phase of
4458       // marking, everything has been re-initialized and we're
4459       // ready to restart.
4460     }
4461 
4462     if (_cm->verbose_low()) {
4463       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4464                              "elapsed = %1.2lfms <<<<<<<<<<",
4465                              _worker_id, _time_target_ms, elapsed_time_ms);
4466       if (_cm->has_aborted()) {
4467         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4468                                _worker_id);
4469       }
4470     }
4471   } else {
4472     if (_cm->verbose_low()) {
4473       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4474                              "elapsed = %1.2lfms <<<<<<<<<<",
4475                              _worker_id, _time_target_ms, elapsed_time_ms);
4476     }
4477   }
4478 
4479   _claimed = false;
4480 }
4481 
4482 CMTask::CMTask(uint worker_id,
4483                ConcurrentMark* cm,
4484                size_t* marked_bytes,
4485                BitMap* card_bm,
4486                CMTaskQueue* task_queue,
4487                CMTaskQueueSet* task_queues)
4488   : _g1h(G1CollectedHeap::heap()),
4489     _worker_id(worker_id), _cm(cm),
4490     _claimed(false),
4491     _nextMarkBitMap(NULL), _hash_seed(17),
4492     _task_queue(task_queue),
4493     _task_queues(task_queues),
4494     _cm_oop_closure(NULL),
4495     _marked_bytes_array(marked_bytes),
4496     _card_bm(card_bm) {
4497   guarantee(task_queue != NULL, "invariant");
4498   guarantee(task_queues != NULL, "invariant");
4499 
4500   statsOnly( _clock_due_to_scanning = 0;
4501              _clock_due_to_marking  = 0 );
4502 
4503   _marking_step_diffs_ms.add(0.5);
4504 }
4505 
4506 // These are formatting macros that are used below to ensure
4507 // consistent formatting. The *_H_* versions are used to format the
4508 // header for a particular value and they should be kept consistent
4509 // with the corresponding macro. Also note that most of the macros add
4510 // the necessary white space (as a prefix) which makes them a bit
4511 // easier to compose.
4512 
4513 // All the output lines are prefixed with this string to be able to
4514 // identify them easily in a large log file.
4515 #define G1PPRL_LINE_PREFIX            "###"
4516 
4517 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4518 #ifdef _LP64
4519 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4520 #else // _LP64
4521 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4522 #endif // _LP64
4523 
4524 // For per-region info
4525 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4526 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4527 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4528 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4529 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4530 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4531 
4532 // For summary info
4533 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4534 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4535 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4536 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4537 
4538 G1PrintRegionLivenessInfoClosure::
4539 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4540   : _out(out),
4541     _total_used_bytes(0), _total_capacity_bytes(0),
4542     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4543     _hum_used_bytes(0), _hum_capacity_bytes(0),
4544     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4545     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4546   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4547   MemRegion g1_reserved = g1h->g1_reserved();
4548   double now = os::elapsedTime();
4549 
4550   // Print the header of the output.
4551   _out->cr();
4552   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4553   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4554                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4555                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4556                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4557                  HeapRegion::GrainBytes);
4558   _out->print_cr(G1PPRL_LINE_PREFIX);
4559   _out->print_cr(G1PPRL_LINE_PREFIX
4560                 G1PPRL_TYPE_H_FORMAT
4561                 G1PPRL_ADDR_BASE_H_FORMAT
4562                 G1PPRL_BYTE_H_FORMAT
4563                 G1PPRL_BYTE_H_FORMAT
4564                 G1PPRL_BYTE_H_FORMAT
4565                 G1PPRL_DOUBLE_H_FORMAT
4566                 G1PPRL_BYTE_H_FORMAT
4567                 G1PPRL_BYTE_H_FORMAT,
4568                 "type", "address-range",
4569                 "used", "prev-live", "next-live", "gc-eff",
4570                 "remset", "code-roots");
4571   _out->print_cr(G1PPRL_LINE_PREFIX
4572                 G1PPRL_TYPE_H_FORMAT
4573                 G1PPRL_ADDR_BASE_H_FORMAT
4574                 G1PPRL_BYTE_H_FORMAT
4575                 G1PPRL_BYTE_H_FORMAT
4576                 G1PPRL_BYTE_H_FORMAT
4577                 G1PPRL_DOUBLE_H_FORMAT
4578                 G1PPRL_BYTE_H_FORMAT
4579                 G1PPRL_BYTE_H_FORMAT,
4580                 "", "",
4581                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4582                 "(bytes)", "(bytes)");
4583 }
4584 
4585 // It takes as a parameter a reference to one of the _hum_* fields, it
4586 // deduces the corresponding value for a region in a humongous region
4587 // series (either the region size, or what's left if the _hum_* field
4588 // is < the region size), and updates the _hum_* field accordingly.
4589 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4590   size_t bytes = 0;
4591   // The > 0 check is to deal with the prev and next live bytes which
4592   // could be 0.
4593   if (*hum_bytes > 0) {
4594     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4595     *hum_bytes -= bytes;
4596   }
4597   return bytes;
4598 }
4599 
4600 // It deduces the values for a region in a humongous region series
4601 // from the _hum_* fields and updates those accordingly. It assumes
4602 // that that _hum_* fields have already been set up from the "starts
4603 // humongous" region and we visit the regions in address order.
4604 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4605                                                      size_t* capacity_bytes,
4606                                                      size_t* prev_live_bytes,
4607                                                      size_t* next_live_bytes) {
4608   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4609   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4610   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4611   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4612   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4613 }
4614 
4615 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4616   const char* type       = r->get_type_str();
4617   HeapWord* bottom       = r->bottom();
4618   HeapWord* end          = r->end();
4619   size_t capacity_bytes  = r->capacity();
4620   size_t used_bytes      = r->used();
4621   size_t prev_live_bytes = r->live_bytes();
4622   size_t next_live_bytes = r->next_live_bytes();
4623   double gc_eff          = r->gc_efficiency();
4624   size_t remset_bytes    = r->rem_set()->mem_size();
4625   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4626 
4627   if (r->is_starts_humongous()) {
4628     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4629            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4630            "they should have been zeroed after the last time we used them");
4631     // Set up the _hum_* fields.
4632     _hum_capacity_bytes  = capacity_bytes;
4633     _hum_used_bytes      = used_bytes;
4634     _hum_prev_live_bytes = prev_live_bytes;
4635     _hum_next_live_bytes = next_live_bytes;
4636     get_hum_bytes(&used_bytes, &capacity_bytes,
4637                   &prev_live_bytes, &next_live_bytes);
4638     end = bottom + HeapRegion::GrainWords;
4639   } else if (r->is_continues_humongous()) {
4640     get_hum_bytes(&used_bytes, &capacity_bytes,
4641                   &prev_live_bytes, &next_live_bytes);
4642     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4643   }
4644 
4645   _total_used_bytes      += used_bytes;
4646   _total_capacity_bytes  += capacity_bytes;
4647   _total_prev_live_bytes += prev_live_bytes;
4648   _total_next_live_bytes += next_live_bytes;
4649   _total_remset_bytes    += remset_bytes;
4650   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4651 
4652   // Print a line for this particular region.
4653   _out->print_cr(G1PPRL_LINE_PREFIX
4654                  G1PPRL_TYPE_FORMAT
4655                  G1PPRL_ADDR_BASE_FORMAT
4656                  G1PPRL_BYTE_FORMAT
4657                  G1PPRL_BYTE_FORMAT
4658                  G1PPRL_BYTE_FORMAT
4659                  G1PPRL_DOUBLE_FORMAT
4660                  G1PPRL_BYTE_FORMAT
4661                  G1PPRL_BYTE_FORMAT,
4662                  type, p2i(bottom), p2i(end),
4663                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4664                  remset_bytes, strong_code_roots_bytes);
4665 
4666   return false;
4667 }
4668 
4669 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4670   // add static memory usages to remembered set sizes
4671   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4672   // Print the footer of the output.
4673   _out->print_cr(G1PPRL_LINE_PREFIX);
4674   _out->print_cr(G1PPRL_LINE_PREFIX
4675                  " SUMMARY"
4676                  G1PPRL_SUM_MB_FORMAT("capacity")
4677                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4678                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4679                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4680                  G1PPRL_SUM_MB_FORMAT("remset")
4681                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4682                  bytes_to_mb(_total_capacity_bytes),
4683                  bytes_to_mb(_total_used_bytes),
4684                  perc(_total_used_bytes, _total_capacity_bytes),
4685                  bytes_to_mb(_total_prev_live_bytes),
4686                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4687                  bytes_to_mb(_total_next_live_bytes),
4688                  perc(_total_next_live_bytes, _total_capacity_bytes),
4689                  bytes_to_mb(_total_remset_bytes),
4690                  bytes_to_mb(_total_strong_code_roots_bytes));
4691   _out->cr();
4692 }