1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  28 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/prefetch.inline.hpp"
  31 
  32 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  33   : _g1h(g1h),
  34     _refs(g1h->task_queue(queue_num)),
  35     _dcq(&g1h->dirty_card_queue_set()),
  36     _ct_bs(g1h->g1_barrier_set()),
  37     _g1_rem(g1h->g1_rem_set()),
  38     _hash_seed(17), _queue_num(queue_num),
  39     _term_attempts(0),
  40     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  41     _age_table(false), _scanner(g1h, rp),
  42     _strong_roots_time(0), _term_time(0) {
  43   _scanner.set_par_scan_thread_state(this);
  44   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  45   // we "sacrifice" entry 0 to keep track of surviving bytes for
  46   // non-young regions (where the age is -1)
  47   // We also add a few elements at the beginning and at the end in
  48   // an attempt to eliminate cache contention
  49   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  50   uint array_length = PADDING_ELEM_NUM +
  51                       real_length +
  52                       PADDING_ELEM_NUM;
  53   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  54   if (_surviving_young_words_base == NULL)
  55     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  56                           "Not enough space for young surv histo.");
  57   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  58   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  59 
  60   _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
  61 
  62   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  63   // The dest for Young is used when the objects are aged enough to
  64   // need to be moved to the next space.
  65   _dest[InCSetState::Young]        = InCSetState::Old;
  66   _dest[InCSetState::Old]          = InCSetState::Old;
  67 
  68   _start = os::elapsedTime();
  69 }
  70 
  71 G1ParScanThreadState::~G1ParScanThreadState() {
  72   _g1_par_allocator->retire_alloc_buffers();
  73   delete _g1_par_allocator;
  74   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  75 }
  76 
  77 void
  78 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  79 {
  80   st->print_raw_cr("GC Termination Stats");
  81   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  82                    " ------waste (KiB)------");
  83   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  84                    "  total   alloc    undo");
  85   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  86                    " ------- ------- -------");
  87 }
  88 
  89 void
  90 G1ParScanThreadState::print_termination_stats(int i,
  91                                               outputStream* const st) const
  92 {
  93   const double elapsed_ms = elapsed_time() * 1000.0;
  94   const double s_roots_ms = strong_roots_time() * 1000.0;
  95   const double term_ms    = term_time() * 1000.0;
  96   const size_t alloc_buffer_waste = _g1_par_allocator->alloc_buffer_waste();
  97   const size_t undo_waste         = _g1_par_allocator->undo_waste();
  98   st->print_cr("%3d %9.2f %9.2f %6.2f "
  99                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
 100                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
 101                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 102                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
 103                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
 104                alloc_buffer_waste * HeapWordSize / K,
 105                undo_waste * HeapWordSize / K);
 106 }
 107 
 108 #ifdef ASSERT
 109 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 110   assert(ref != NULL, "invariant");
 111   assert(UseCompressedOops, "sanity");
 112   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
 113   oop p = oopDesc::load_decode_heap_oop(ref);
 114   assert(_g1h->is_in_g1_reserved(p),
 115          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 116   return true;
 117 }
 118 
 119 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 120   assert(ref != NULL, "invariant");
 121   if (has_partial_array_mask(ref)) {
 122     // Must be in the collection set--it's already been copied.
 123     oop p = clear_partial_array_mask(ref);
 124     assert(_g1h->obj_in_cs(p),
 125            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 126   } else {
 127     oop p = oopDesc::load_decode_heap_oop(ref);
 128     assert(_g1h->is_in_g1_reserved(p),
 129            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 130   }
 131   return true;
 132 }
 133 
 134 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 135   if (ref.is_narrow()) {
 136     return verify_ref((narrowOop*) ref);
 137   } else {
 138     return verify_ref((oop*) ref);
 139   }
 140 }
 141 #endif // ASSERT
 142 
 143 void G1ParScanThreadState::trim_queue() {
 144   assert(_evac_failure_cl != NULL, "not set");
 145 
 146   StarTask ref;
 147   do {
 148     // Drain the overflow stack first, so other threads can steal.
 149     while (_refs->pop_overflow(ref)) {
 150       dispatch_reference(ref);
 151     }
 152 
 153     while (_refs->pop_local(ref)) {
 154       dispatch_reference(ref);
 155     }
 156   } while (!_refs->is_empty());
 157 }
 158 
 159 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 160                                                       InCSetState* dest,
 161                                                       size_t word_sz,
 162                                                       AllocationContext_t const context) {
 163   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
 164   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 165 
 166   // Right now we only have two types of regions (young / old) so
 167   // let's keep the logic here simple. We can generalize it when necessary.
 168   if (dest->is_young()) {
 169     HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
 170                                                           word_sz, context);
 171     if (obj_ptr == NULL) {
 172       return NULL;
 173     }
 174     // Make sure that we won't attempt to copy any other objects out
 175     // of a survivor region (given that apparently we cannot allocate
 176     // any new ones) to avoid coming into this slow path.
 177     _tenuring_threshold = 0;
 178     dest->set_old();
 179     return obj_ptr;
 180   } else {
 181     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 182     // no other space to try.
 183     return NULL;
 184   }
 185 }
 186 
 187 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 188   if (state.is_young()) {
 189     age = !m->has_displaced_mark_helper() ? m->age()
 190                                           : m->displaced_mark_helper()->age();
 191     if (age < _tenuring_threshold) {
 192       return state;
 193     }
 194   }
 195   return dest(state);
 196 }
 197 
 198 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 199                                                  oop const old,
 200                                                  markOop const old_mark) {
 201   const size_t word_sz = old->size();
 202   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 203   // +1 to make the -1 indexes valid...
 204   const int young_index = from_region->young_index_in_cset()+1;
 205   assert( (from_region->is_young() && young_index >  0) ||
 206          (!from_region->is_young() && young_index == 0), "invariant" );
 207   const AllocationContext_t context = from_region->allocation_context();
 208 
 209   uint age = 0;
 210   InCSetState dest_state = next_state(state, old_mark, age);
 211   HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);
 212 
 213   // PLAB allocations should succeed most of the time, so we'll
 214   // normally check against NULL once and that's it.
 215   if (obj_ptr == NULL) {
 216     obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
 217     if (obj_ptr == NULL) {
 218       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
 219       if (obj_ptr == NULL) {
 220         // This will either forward-to-self, or detect that someone else has
 221         // installed a forwarding pointer.
 222         return _g1h->handle_evacuation_failure_par(this, old);
 223       }
 224     }
 225   }
 226 
 227   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 228   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 229 
 230 #ifndef PRODUCT
 231   // Should this evacuation fail?
 232   if (_g1h->evacuation_should_fail()) {
 233     // Doing this after all the allocation attempts also tests the
 234     // undo_allocation() method too.
 235     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 236     return _g1h->handle_evacuation_failure_par(this, old);
 237   }
 238 #endif // !PRODUCT
 239 
 240   // We're going to allocate linearly, so might as well prefetch ahead.
 241   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 242 
 243   const oop obj = oop(obj_ptr);
 244   const oop forward_ptr = old->forward_to_atomic(obj);
 245   if (forward_ptr == NULL) {
 246     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 247 
 248     if (dest_state.is_young()) {
 249       if (age < markOopDesc::max_age) {
 250         age++;
 251       }
 252       if (old_mark->has_displaced_mark_helper()) {
 253         // In this case, we have to install the mark word first,
 254         // otherwise obj looks to be forwarded (the old mark word,
 255         // which contains the forward pointer, was copied)
 256         obj->set_mark(old_mark);
 257         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 258         old_mark->set_displaced_mark_helper(new_mark);
 259       } else {
 260         obj->set_mark(old_mark->set_age(age));
 261       }
 262       age_table()->add(age, word_sz);
 263     } else {
 264       obj->set_mark(old_mark);
 265     }
 266 
 267     if (G1StringDedup::is_enabled()) {
 268       const bool is_from_young = state.is_young();
 269       const bool is_to_young = dest_state.is_young();
 270       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 271              "sanity");
 272       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 273              "sanity");
 274       G1StringDedup::enqueue_from_evacuation(is_from_young,
 275                                              is_to_young,
 276                                              queue_num(),
 277                                              obj);
 278     }
 279 
 280     size_t* const surv_young_words = surviving_young_words();
 281     surv_young_words[young_index] += word_sz;
 282 
 283     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 284       // We keep track of the next start index in the length field of
 285       // the to-space object. The actual length can be found in the
 286       // length field of the from-space object.
 287       arrayOop(obj)->set_length(0);
 288       oop* old_p = set_partial_array_mask(old);
 289       push_on_queue(old_p);
 290     } else {
 291       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 292       _scanner.set_region(to_region);
 293       obj->oop_iterate_backwards(&_scanner);
 294     }
 295     return obj;
 296   } else {
 297     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 298     return forward_ptr;
 299   }
 300 }