1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiThreadState.hpp"
  49 #include "prims/privilegedStack.hpp"
  50 #include "runtime/arguments.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/fprofiler.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/jniPeriodicChecker.hpp"
  61 #include "runtime/memprofiler.hpp"
  62 #include "runtime/mutexLocker.hpp"
  63 #include "runtime/objectMonitor.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/safepoint.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/sweeper.hpp"
  71 #include "runtime/task.hpp"
  72 #include "runtime/thread.inline.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/threadLocalStorage.hpp"
  75 #include "runtime/vframe.hpp"
  76 #include "runtime/vframeArray.hpp"
  77 #include "runtime/vframe_hp.hpp"
  78 #include "runtime/vmThread.hpp"
  79 #include "runtime/vm_operations.hpp"
  80 #include "runtime/vm_version.hpp"
  81 #include "services/attachListener.hpp"
  82 #include "services/management.hpp"
  83 #include "services/memTracker.hpp"
  84 #include "services/threadService.hpp"
  85 #include "trace/tracing.hpp"
  86 #include "trace/traceMacros.hpp"
  87 #include "utilities/defaultStream.hpp"
  88 #include "utilities/dtrace.hpp"
  89 #include "utilities/events.hpp"
  90 #include "utilities/macros.hpp"
  91 #include "utilities/preserveException.hpp"
  92 #include "utilities/workgroup.hpp"
  93 #if INCLUDE_ALL_GCS
  94 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  95 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  96 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  97 #endif // INCLUDE_ALL_GCS
  98 #ifdef COMPILER1
  99 #include "c1/c1_Compiler.hpp"
 100 #endif
 101 #ifdef COMPILER2
 102 #include "opto/c2compiler.hpp"
 103 #include "opto/idealGraphPrinter.hpp"
 104 #endif
 105 #if INCLUDE_RTM_OPT
 106 #include "runtime/rtmLocking.hpp"
 107 #endif
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 116   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 117 
 118   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 119     {                                                                      \
 120       ResourceMark rm(this);                                               \
 121       int len = 0;                                                         \
 122       const char* name = (javathread)->get_thread_name();                  \
 123       len = strlen(name);                                                  \
 124       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 125         (char *) name, len,                                                \
 126         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 127         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 128         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 129     }
 130 
 131 #else //  ndef DTRACE_ENABLED
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)
 134 
 135 #endif // ndef DTRACE_ENABLED
 136 
 137 
 138 // Class hierarchy
 139 // - Thread
 140 //   - VMThread
 141 //   - WatcherThread
 142 //   - ConcurrentMarkSweepThread
 143 //   - JavaThread
 144 //     - CompilerThread
 145 
 146 // ======= Thread ========
 147 // Support for forcing alignment of thread objects for biased locking
 148 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 149   if (UseBiasedLocking) {
 150     const int alignment = markOopDesc::biased_lock_alignment;
 151     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 152     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 153                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 154                                                          AllocFailStrategy::RETURN_NULL);
 155     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 156     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 157            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 158            "JavaThread alignment code overflowed allocated storage");
 159     if (TraceBiasedLocking) {
 160       if (aligned_addr != real_malloc_addr) {
 161         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 162                       real_malloc_addr, aligned_addr);
 163       }
 164     }
 165     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 166     return aligned_addr;
 167   } else {
 168     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 169                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 170   }
 171 }
 172 
 173 void Thread::operator delete(void* p) {
 174   if (UseBiasedLocking) {
 175     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 176     FreeHeap(real_malloc_addr);
 177   } else {
 178     FreeHeap(p);
 179   }
 180 }
 181 
 182 
 183 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 184 // JavaThread
 185 
 186 
 187 Thread::Thread() {
 188   // stack and get_thread
 189   set_stack_base(NULL);
 190   set_stack_size(0);
 191   set_self_raw_id(0);
 192   set_lgrp_id(-1);
 193 
 194   // allocated data structures
 195   set_osthread(NULL);
 196   set_resource_area(new (mtThread)ResourceArea());
 197   DEBUG_ONLY(_current_resource_mark = NULL;)
 198   set_handle_area(new (mtThread) HandleArea(NULL));
 199   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 200   set_active_handles(NULL);
 201   set_free_handle_block(NULL);
 202   set_last_handle_mark(NULL);
 203 
 204   // This initial value ==> never claimed.
 205   _oops_do_parity = 0;
 206 
 207   // the handle mark links itself to last_handle_mark
 208   new HandleMark(this);
 209 
 210   // plain initialization
 211   debug_only(_owned_locks = NULL;)
 212   debug_only(_allow_allocation_count = 0;)
 213   NOT_PRODUCT(_allow_safepoint_count = 0;)
 214   NOT_PRODUCT(_skip_gcalot = false;)
 215   _jvmti_env_iteration_count = 0;
 216   set_allocated_bytes(0);
 217   _vm_operation_started_count = 0;
 218   _vm_operation_completed_count = 0;
 219   _current_pending_monitor = NULL;
 220   _current_pending_monitor_is_from_java = true;
 221   _current_waiting_monitor = NULL;
 222   _num_nested_signal = 0;
 223   omFreeList = NULL;
 224   omFreeCount = 0;
 225   omFreeProvision = 32;
 226   omInUseList = NULL;
 227   omInUseCount = 0;
 228 
 229 #ifdef ASSERT
 230   _visited_for_critical_count = false;
 231 #endif
 232 
 233   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 234                          Monitor::_safepoint_check_sometimes);
 235   _suspend_flags = 0;
 236 
 237   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 238   _hashStateX = os::random();
 239   _hashStateY = 842502087;
 240   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 241   _hashStateW = 273326509;
 242 
 243   _OnTrap   = 0;
 244   _schedctl = NULL;
 245   _Stalled  = 0;
 246   _TypeTag  = 0x2BAD;
 247 
 248   // Many of the following fields are effectively final - immutable
 249   // Note that nascent threads can't use the Native Monitor-Mutex
 250   // construct until the _MutexEvent is initialized ...
 251   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 252   // we might instead use a stack of ParkEvents that we could provision on-demand.
 253   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 254   // and ::Release()
 255   _ParkEvent   = ParkEvent::Allocate(this);
 256   _SleepEvent  = ParkEvent::Allocate(this);
 257   _MutexEvent  = ParkEvent::Allocate(this);
 258   _MuxEvent    = ParkEvent::Allocate(this);
 259 
 260 #ifdef CHECK_UNHANDLED_OOPS
 261   if (CheckUnhandledOops) {
 262     _unhandled_oops = new UnhandledOops(this);
 263   }
 264 #endif // CHECK_UNHANDLED_OOPS
 265 #ifdef ASSERT
 266   if (UseBiasedLocking) {
 267     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 268     assert(this == _real_malloc_address ||
 269            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 270            "bug in forced alignment of thread objects");
 271   }
 272 #endif // ASSERT
 273 }
 274 
 275 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 276 Thread* Thread::current_noinline() {
 277   return Thread::current();
 278 }
 279 
 280 void Thread::initialize_thread_local_storage() {
 281   // Note: Make sure this method only calls
 282   // non-blocking operations. Otherwise, it might not work
 283   // with the thread-startup/safepoint interaction.
 284 
 285   // During Java thread startup, safepoint code should allow this
 286   // method to complete because it may need to allocate memory to
 287   // store information for the new thread.
 288 
 289   // initialize structure dependent on thread local storage
 290   ThreadLocalStorage::set_thread(this);
 291 }
 292 
 293 void Thread::record_stack_base_and_size() {
 294   set_stack_base(os::current_stack_base());
 295   set_stack_size(os::current_stack_size());
 296   if (is_Java_thread()) {
 297     ((JavaThread*) this)->set_stack_overflow_limit();
 298   }
 299   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 300   // in initialize_thread(). Without the adjustment, stack size is
 301   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 302   // So far, only Solaris has real implementation of initialize_thread().
 303   //
 304   // set up any platform-specific state.
 305   os::initialize_thread(this);
 306 
 307 #if INCLUDE_NMT
 308   // record thread's native stack, stack grows downward
 309   address stack_low_addr = stack_base() - stack_size();
 310   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 311 #endif // INCLUDE_NMT
 312 }
 313 
 314 
 315 Thread::~Thread() {
 316   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 317   ObjectSynchronizer::omFlush(this);
 318 
 319   EVENT_THREAD_DESTRUCT(this);
 320 
 321   // stack_base can be NULL if the thread is never started or exited before
 322   // record_stack_base_and_size called. Although, we would like to ensure
 323   // that all started threads do call record_stack_base_and_size(), there is
 324   // not proper way to enforce that.
 325 #if INCLUDE_NMT
 326   if (_stack_base != NULL) {
 327     address low_stack_addr = stack_base() - stack_size();
 328     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 329 #ifdef ASSERT
 330     set_stack_base(NULL);
 331 #endif
 332   }
 333 #endif // INCLUDE_NMT
 334 
 335   // deallocate data structures
 336   delete resource_area();
 337   // since the handle marks are using the handle area, we have to deallocated the root
 338   // handle mark before deallocating the thread's handle area,
 339   assert(last_handle_mark() != NULL, "check we have an element");
 340   delete last_handle_mark();
 341   assert(last_handle_mark() == NULL, "check we have reached the end");
 342 
 343   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 344   // We NULL out the fields for good hygiene.
 345   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 346   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 347   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 348   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 349 
 350   delete handle_area();
 351   delete metadata_handles();
 352 
 353   // osthread() can be NULL, if creation of thread failed.
 354   if (osthread() != NULL) os::free_thread(osthread());
 355 
 356   delete _SR_lock;
 357 
 358   // clear thread local storage if the Thread is deleting itself
 359   if (this == Thread::current()) {
 360     ThreadLocalStorage::set_thread(NULL);
 361   } else {
 362     // In the case where we're not the current thread, invalidate all the
 363     // caches in case some code tries to get the current thread or the
 364     // thread that was destroyed, and gets stale information.
 365     ThreadLocalStorage::invalidate_all();
 366   }
 367   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 368 }
 369 
 370 // NOTE: dummy function for assertion purpose.
 371 void Thread::run() {
 372   ShouldNotReachHere();
 373 }
 374 
 375 #ifdef ASSERT
 376 // Private method to check for dangling thread pointer
 377 void check_for_dangling_thread_pointer(Thread *thread) {
 378   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 379          "possibility of dangling Thread pointer");
 380 }
 381 #endif
 382 
 383 ThreadPriority Thread::get_priority(const Thread* const thread) {
 384   ThreadPriority priority;
 385   // Can return an error!
 386   (void)os::get_priority(thread, priority);
 387   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 388   return priority;
 389 }
 390 
 391 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 392   debug_only(check_for_dangling_thread_pointer(thread);)
 393   // Can return an error!
 394   (void)os::set_priority(thread, priority);
 395 }
 396 
 397 
 398 void Thread::start(Thread* thread) {
 399   // Start is different from resume in that its safety is guaranteed by context or
 400   // being called from a Java method synchronized on the Thread object.
 401   if (!DisableStartThread) {
 402     if (thread->is_Java_thread()) {
 403       // Initialize the thread state to RUNNABLE before starting this thread.
 404       // Can not set it after the thread started because we do not know the
 405       // exact thread state at that time. It could be in MONITOR_WAIT or
 406       // in SLEEPING or some other state.
 407       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 408                                           java_lang_Thread::RUNNABLE);
 409     }
 410     os::start_thread(thread);
 411   }
 412 }
 413 
 414 // Enqueue a VM_Operation to do the job for us - sometime later
 415 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 416   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 417   VMThread::execute(vm_stop);
 418 }
 419 
 420 
 421 // Check if an external suspend request has completed (or has been
 422 // cancelled). Returns true if the thread is externally suspended and
 423 // false otherwise.
 424 //
 425 // The bits parameter returns information about the code path through
 426 // the routine. Useful for debugging:
 427 //
 428 // set in is_ext_suspend_completed():
 429 // 0x00000001 - routine was entered
 430 // 0x00000010 - routine return false at end
 431 // 0x00000100 - thread exited (return false)
 432 // 0x00000200 - suspend request cancelled (return false)
 433 // 0x00000400 - thread suspended (return true)
 434 // 0x00001000 - thread is in a suspend equivalent state (return true)
 435 // 0x00002000 - thread is native and walkable (return true)
 436 // 0x00004000 - thread is native_trans and walkable (needed retry)
 437 //
 438 // set in wait_for_ext_suspend_completion():
 439 // 0x00010000 - routine was entered
 440 // 0x00020000 - suspend request cancelled before loop (return false)
 441 // 0x00040000 - thread suspended before loop (return true)
 442 // 0x00080000 - suspend request cancelled in loop (return false)
 443 // 0x00100000 - thread suspended in loop (return true)
 444 // 0x00200000 - suspend not completed during retry loop (return false)
 445 
 446 // Helper class for tracing suspend wait debug bits.
 447 //
 448 // 0x00000100 indicates that the target thread exited before it could
 449 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 450 // 0x00080000 each indicate a cancelled suspend request so they don't
 451 // count as wait failures either.
 452 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 453 
 454 class TraceSuspendDebugBits : public StackObj {
 455  private:
 456   JavaThread * jt;
 457   bool         is_wait;
 458   bool         called_by_wait;  // meaningful when !is_wait
 459   uint32_t *   bits;
 460 
 461  public:
 462   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 463                         uint32_t *_bits) {
 464     jt             = _jt;
 465     is_wait        = _is_wait;
 466     called_by_wait = _called_by_wait;
 467     bits           = _bits;
 468   }
 469 
 470   ~TraceSuspendDebugBits() {
 471     if (!is_wait) {
 472 #if 1
 473       // By default, don't trace bits for is_ext_suspend_completed() calls.
 474       // That trace is very chatty.
 475       return;
 476 #else
 477       if (!called_by_wait) {
 478         // If tracing for is_ext_suspend_completed() is enabled, then only
 479         // trace calls to it from wait_for_ext_suspend_completion()
 480         return;
 481       }
 482 #endif
 483     }
 484 
 485     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 486       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 487         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 488         ResourceMark rm;
 489 
 490         tty->print_cr(
 491                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 492                       jt->get_thread_name(), *bits);
 493 
 494         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 495       }
 496     }
 497   }
 498 };
 499 #undef DEBUG_FALSE_BITS
 500 
 501 
 502 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 503                                           uint32_t *bits) {
 504   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 505 
 506   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 507   bool do_trans_retry;           // flag to force the retry
 508 
 509   *bits |= 0x00000001;
 510 
 511   do {
 512     do_trans_retry = false;
 513 
 514     if (is_exiting()) {
 515       // Thread is in the process of exiting. This is always checked
 516       // first to reduce the risk of dereferencing a freed JavaThread.
 517       *bits |= 0x00000100;
 518       return false;
 519     }
 520 
 521     if (!is_external_suspend()) {
 522       // Suspend request is cancelled. This is always checked before
 523       // is_ext_suspended() to reduce the risk of a rogue resume
 524       // confusing the thread that made the suspend request.
 525       *bits |= 0x00000200;
 526       return false;
 527     }
 528 
 529     if (is_ext_suspended()) {
 530       // thread is suspended
 531       *bits |= 0x00000400;
 532       return true;
 533     }
 534 
 535     // Now that we no longer do hard suspends of threads running
 536     // native code, the target thread can be changing thread state
 537     // while we are in this routine:
 538     //
 539     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 540     //
 541     // We save a copy of the thread state as observed at this moment
 542     // and make our decision about suspend completeness based on the
 543     // copy. This closes the race where the thread state is seen as
 544     // _thread_in_native_trans in the if-thread_blocked check, but is
 545     // seen as _thread_blocked in if-thread_in_native_trans check.
 546     JavaThreadState save_state = thread_state();
 547 
 548     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 549       // If the thread's state is _thread_blocked and this blocking
 550       // condition is known to be equivalent to a suspend, then we can
 551       // consider the thread to be externally suspended. This means that
 552       // the code that sets _thread_blocked has been modified to do
 553       // self-suspension if the blocking condition releases. We also
 554       // used to check for CONDVAR_WAIT here, but that is now covered by
 555       // the _thread_blocked with self-suspension check.
 556       //
 557       // Return true since we wouldn't be here unless there was still an
 558       // external suspend request.
 559       *bits |= 0x00001000;
 560       return true;
 561     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 562       // Threads running native code will self-suspend on native==>VM/Java
 563       // transitions. If its stack is walkable (should always be the case
 564       // unless this function is called before the actual java_suspend()
 565       // call), then the wait is done.
 566       *bits |= 0x00002000;
 567       return true;
 568     } else if (!called_by_wait && !did_trans_retry &&
 569                save_state == _thread_in_native_trans &&
 570                frame_anchor()->walkable()) {
 571       // The thread is transitioning from thread_in_native to another
 572       // thread state. check_safepoint_and_suspend_for_native_trans()
 573       // will force the thread to self-suspend. If it hasn't gotten
 574       // there yet we may have caught the thread in-between the native
 575       // code check above and the self-suspend. Lucky us. If we were
 576       // called by wait_for_ext_suspend_completion(), then it
 577       // will be doing the retries so we don't have to.
 578       //
 579       // Since we use the saved thread state in the if-statement above,
 580       // there is a chance that the thread has already transitioned to
 581       // _thread_blocked by the time we get here. In that case, we will
 582       // make a single unnecessary pass through the logic below. This
 583       // doesn't hurt anything since we still do the trans retry.
 584 
 585       *bits |= 0x00004000;
 586 
 587       // Once the thread leaves thread_in_native_trans for another
 588       // thread state, we break out of this retry loop. We shouldn't
 589       // need this flag to prevent us from getting back here, but
 590       // sometimes paranoia is good.
 591       did_trans_retry = true;
 592 
 593       // We wait for the thread to transition to a more usable state.
 594       for (int i = 1; i <= SuspendRetryCount; i++) {
 595         // We used to do an "os::yield_all(i)" call here with the intention
 596         // that yielding would increase on each retry. However, the parameter
 597         // is ignored on Linux which means the yield didn't scale up. Waiting
 598         // on the SR_lock below provides a much more predictable scale up for
 599         // the delay. It also provides a simple/direct point to check for any
 600         // safepoint requests from the VMThread
 601 
 602         // temporarily drops SR_lock while doing wait with safepoint check
 603         // (if we're a JavaThread - the WatcherThread can also call this)
 604         // and increase delay with each retry
 605         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 606 
 607         // check the actual thread state instead of what we saved above
 608         if (thread_state() != _thread_in_native_trans) {
 609           // the thread has transitioned to another thread state so
 610           // try all the checks (except this one) one more time.
 611           do_trans_retry = true;
 612           break;
 613         }
 614       } // end retry loop
 615 
 616 
 617     }
 618   } while (do_trans_retry);
 619 
 620   *bits |= 0x00000010;
 621   return false;
 622 }
 623 
 624 // Wait for an external suspend request to complete (or be cancelled).
 625 // Returns true if the thread is externally suspended and false otherwise.
 626 //
 627 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 628                                                  uint32_t *bits) {
 629   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 630                              false /* !called_by_wait */, bits);
 631 
 632   // local flag copies to minimize SR_lock hold time
 633   bool is_suspended;
 634   bool pending;
 635   uint32_t reset_bits;
 636 
 637   // set a marker so is_ext_suspend_completed() knows we are the caller
 638   *bits |= 0x00010000;
 639 
 640   // We use reset_bits to reinitialize the bits value at the top of
 641   // each retry loop. This allows the caller to make use of any
 642   // unused bits for their own marking purposes.
 643   reset_bits = *bits;
 644 
 645   {
 646     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 647     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 648                                             delay, bits);
 649     pending = is_external_suspend();
 650   }
 651   // must release SR_lock to allow suspension to complete
 652 
 653   if (!pending) {
 654     // A cancelled suspend request is the only false return from
 655     // is_ext_suspend_completed() that keeps us from entering the
 656     // retry loop.
 657     *bits |= 0x00020000;
 658     return false;
 659   }
 660 
 661   if (is_suspended) {
 662     *bits |= 0x00040000;
 663     return true;
 664   }
 665 
 666   for (int i = 1; i <= retries; i++) {
 667     *bits = reset_bits;  // reinit to only track last retry
 668 
 669     // We used to do an "os::yield_all(i)" call here with the intention
 670     // that yielding would increase on each retry. However, the parameter
 671     // is ignored on Linux which means the yield didn't scale up. Waiting
 672     // on the SR_lock below provides a much more predictable scale up for
 673     // the delay. It also provides a simple/direct point to check for any
 674     // safepoint requests from the VMThread
 675 
 676     {
 677       MutexLocker ml(SR_lock());
 678       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 679       // can also call this)  and increase delay with each retry
 680       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 681 
 682       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 683                                               delay, bits);
 684 
 685       // It is possible for the external suspend request to be cancelled
 686       // (by a resume) before the actual suspend operation is completed.
 687       // Refresh our local copy to see if we still need to wait.
 688       pending = is_external_suspend();
 689     }
 690 
 691     if (!pending) {
 692       // A cancelled suspend request is the only false return from
 693       // is_ext_suspend_completed() that keeps us from staying in the
 694       // retry loop.
 695       *bits |= 0x00080000;
 696       return false;
 697     }
 698 
 699     if (is_suspended) {
 700       *bits |= 0x00100000;
 701       return true;
 702     }
 703   } // end retry loop
 704 
 705   // thread did not suspend after all our retries
 706   *bits |= 0x00200000;
 707   return false;
 708 }
 709 
 710 #ifndef PRODUCT
 711 void JavaThread::record_jump(address target, address instr, const char* file,
 712                              int line) {
 713 
 714   // This should not need to be atomic as the only way for simultaneous
 715   // updates is via interrupts. Even then this should be rare or non-existent
 716   // and we don't care that much anyway.
 717 
 718   int index = _jmp_ring_index;
 719   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 720   _jmp_ring[index]._target = (intptr_t) target;
 721   _jmp_ring[index]._instruction = (intptr_t) instr;
 722   _jmp_ring[index]._file = file;
 723   _jmp_ring[index]._line = line;
 724 }
 725 #endif // PRODUCT
 726 
 727 // Called by flat profiler
 728 // Callers have already called wait_for_ext_suspend_completion
 729 // The assertion for that is currently too complex to put here:
 730 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 731   bool gotframe = false;
 732   // self suspension saves needed state.
 733   if (has_last_Java_frame() && _anchor.walkable()) {
 734     *_fr = pd_last_frame();
 735     gotframe = true;
 736   }
 737   return gotframe;
 738 }
 739 
 740 void Thread::interrupt(Thread* thread) {
 741   debug_only(check_for_dangling_thread_pointer(thread);)
 742   os::interrupt(thread);
 743 }
 744 
 745 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 746   debug_only(check_for_dangling_thread_pointer(thread);)
 747   // Note:  If clear_interrupted==false, this simply fetches and
 748   // returns the value of the field osthread()->interrupted().
 749   return os::is_interrupted(thread, clear_interrupted);
 750 }
 751 
 752 
 753 // GC Support
 754 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 755   jint thread_parity = _oops_do_parity;
 756   if (thread_parity != strong_roots_parity) {
 757     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 758     if (res == thread_parity) {
 759       return true;
 760     } else {
 761       guarantee(res == strong_roots_parity, "Or else what?");
 762       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 763              "Should only fail when parallel.");
 764       return false;
 765     }
 766   }
 767   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 768          "Should only fail when parallel.");
 769   return false;
 770 }
 771 
 772 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 773   active_handles()->oops_do(f);
 774   // Do oop for ThreadShadow
 775   f->do_oop((oop*)&_pending_exception);
 776   handle_area()->oops_do(f);
 777 }
 778 
 779 void Thread::nmethods_do(CodeBlobClosure* cf) {
 780   // no nmethods in a generic thread...
 781 }
 782 
 783 void Thread::metadata_handles_do(void f(Metadata*)) {
 784   // Only walk the Handles in Thread.
 785   if (metadata_handles() != NULL) {
 786     for (int i = 0; i< metadata_handles()->length(); i++) {
 787       f(metadata_handles()->at(i));
 788     }
 789   }
 790 }
 791 
 792 void Thread::print_on(outputStream* st) const {
 793   // get_priority assumes osthread initialized
 794   if (osthread() != NULL) {
 795     int os_prio;
 796     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 797       st->print("os_prio=%d ", os_prio);
 798     }
 799     st->print("tid=" INTPTR_FORMAT " ", this);
 800     ext().print_on(st);
 801     osthread()->print_on(st);
 802   }
 803   debug_only(if (WizardMode) print_owned_locks_on(st);)
 804 }
 805 
 806 // Thread::print_on_error() is called by fatal error handler. Don't use
 807 // any lock or allocate memory.
 808 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 809   if (is_VM_thread())                 st->print("VMThread");
 810   else if (is_Compiler_thread())      st->print("CompilerThread");
 811   else if (is_Java_thread())          st->print("JavaThread");
 812   else if (is_GC_task_thread())       st->print("GCTaskThread");
 813   else if (is_Watcher_thread())       st->print("WatcherThread");
 814   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 815   else                                st->print("Thread");
 816 
 817   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 818             _stack_base - _stack_size, _stack_base);
 819 
 820   if (osthread()) {
 821     st->print(" [id=%d]", osthread()->thread_id());
 822   }
 823 }
 824 
 825 #ifdef ASSERT
 826 void Thread::print_owned_locks_on(outputStream* st) const {
 827   Monitor *cur = _owned_locks;
 828   if (cur == NULL) {
 829     st->print(" (no locks) ");
 830   } else {
 831     st->print_cr(" Locks owned:");
 832     while (cur) {
 833       cur->print_on(st);
 834       cur = cur->next();
 835     }
 836   }
 837 }
 838 
 839 static int ref_use_count  = 0;
 840 
 841 bool Thread::owns_locks_but_compiled_lock() const {
 842   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 843     if (cur != Compile_lock) return true;
 844   }
 845   return false;
 846 }
 847 
 848 
 849 #endif
 850 
 851 #ifndef PRODUCT
 852 
 853 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 854 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 855 // no threads which allow_vm_block's are held
 856 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 857   // Check if current thread is allowed to block at a safepoint
 858   if (!(_allow_safepoint_count == 0)) {
 859     fatal("Possible safepoint reached by thread that does not allow it");
 860   }
 861   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 862     fatal("LEAF method calling lock?");
 863   }
 864 
 865 #ifdef ASSERT
 866   if (potential_vm_operation && is_Java_thread()
 867       && !Universe::is_bootstrapping()) {
 868     // Make sure we do not hold any locks that the VM thread also uses.
 869     // This could potentially lead to deadlocks
 870     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 871       // Threads_lock is special, since the safepoint synchronization will not start before this is
 872       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 873       // since it is used to transfer control between JavaThreads and the VMThread
 874       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 875       if ((cur->allow_vm_block() &&
 876            cur != Threads_lock &&
 877            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 878            cur != VMOperationRequest_lock &&
 879            cur != VMOperationQueue_lock) ||
 880            cur->rank() == Mutex::special) {
 881         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 882       }
 883     }
 884   }
 885 
 886   if (GCALotAtAllSafepoints) {
 887     // We could enter a safepoint here and thus have a gc
 888     InterfaceSupport::check_gc_alot();
 889   }
 890 #endif
 891 }
 892 #endif
 893 
 894 bool Thread::is_in_stack(address adr) const {
 895   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 896   address end = os::current_stack_pointer();
 897   // Allow non Java threads to call this without stack_base
 898   if (_stack_base == NULL) return true;
 899   if (stack_base() >= adr && adr >= end) return true;
 900 
 901   return false;
 902 }
 903 
 904 
 905 bool Thread::is_in_usable_stack(address adr) const {
 906   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 907   size_t usable_stack_size = _stack_size - stack_guard_size;
 908 
 909   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 910 }
 911 
 912 
 913 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 914 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 915 // used for compilation in the future. If that change is made, the need for these methods
 916 // should be revisited, and they should be removed if possible.
 917 
 918 bool Thread::is_lock_owned(address adr) const {
 919   return on_local_stack(adr);
 920 }
 921 
 922 bool Thread::set_as_starting_thread() {
 923   // NOTE: this must be called inside the main thread.
 924   return os::create_main_thread((JavaThread*)this);
 925 }
 926 
 927 static void initialize_class(Symbol* class_name, TRAPS) {
 928   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 929   InstanceKlass::cast(klass)->initialize(CHECK);
 930 }
 931 
 932 
 933 // Creates the initial ThreadGroup
 934 static Handle create_initial_thread_group(TRAPS) {
 935   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 936   instanceKlassHandle klass (THREAD, k);
 937 
 938   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 939   {
 940     JavaValue result(T_VOID);
 941     JavaCalls::call_special(&result,
 942                             system_instance,
 943                             klass,
 944                             vmSymbols::object_initializer_name(),
 945                             vmSymbols::void_method_signature(),
 946                             CHECK_NH);
 947   }
 948   Universe::set_system_thread_group(system_instance());
 949 
 950   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 951   {
 952     JavaValue result(T_VOID);
 953     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 954     JavaCalls::call_special(&result,
 955                             main_instance,
 956                             klass,
 957                             vmSymbols::object_initializer_name(),
 958                             vmSymbols::threadgroup_string_void_signature(),
 959                             system_instance,
 960                             string,
 961                             CHECK_NH);
 962   }
 963   return main_instance;
 964 }
 965 
 966 // Creates the initial Thread
 967 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 968                                  TRAPS) {
 969   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 970   instanceKlassHandle klass (THREAD, k);
 971   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 972 
 973   java_lang_Thread::set_thread(thread_oop(), thread);
 974   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 975   thread->set_threadObj(thread_oop());
 976 
 977   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 978 
 979   JavaValue result(T_VOID);
 980   JavaCalls::call_special(&result, thread_oop,
 981                           klass,
 982                           vmSymbols::object_initializer_name(),
 983                           vmSymbols::threadgroup_string_void_signature(),
 984                           thread_group,
 985                           string,
 986                           CHECK_NULL);
 987   return thread_oop();
 988 }
 989 
 990 static void call_initializeSystemClass(TRAPS) {
 991   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 992   instanceKlassHandle klass (THREAD, k);
 993 
 994   JavaValue result(T_VOID);
 995   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 996                          vmSymbols::void_method_signature(), CHECK);
 997 }
 998 
 999 char java_runtime_name[128] = "";
1000 char java_runtime_version[128] = "";
1001 
1002 // extract the JRE name from sun.misc.Version.java_runtime_name
1003 static const char* get_java_runtime_name(TRAPS) {
1004   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1005                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1006   fieldDescriptor fd;
1007   bool found = k != NULL &&
1008                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1009                                                         vmSymbols::string_signature(), &fd);
1010   if (found) {
1011     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1012     if (name_oop == NULL) {
1013       return NULL;
1014     }
1015     const char* name = java_lang_String::as_utf8_string(name_oop,
1016                                                         java_runtime_name,
1017                                                         sizeof(java_runtime_name));
1018     return name;
1019   } else {
1020     return NULL;
1021   }
1022 }
1023 
1024 // extract the JRE version from sun.misc.Version.java_runtime_version
1025 static const char* get_java_runtime_version(TRAPS) {
1026   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1027                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1028   fieldDescriptor fd;
1029   bool found = k != NULL &&
1030                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1031                                                         vmSymbols::string_signature(), &fd);
1032   if (found) {
1033     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1034     if (name_oop == NULL) {
1035       return NULL;
1036     }
1037     const char* name = java_lang_String::as_utf8_string(name_oop,
1038                                                         java_runtime_version,
1039                                                         sizeof(java_runtime_version));
1040     return name;
1041   } else {
1042     return NULL;
1043   }
1044 }
1045 
1046 // General purpose hook into Java code, run once when the VM is initialized.
1047 // The Java library method itself may be changed independently from the VM.
1048 static void call_postVMInitHook(TRAPS) {
1049   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1050   instanceKlassHandle klass (THREAD, k);
1051   if (klass.not_null()) {
1052     JavaValue result(T_VOID);
1053     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1054                            vmSymbols::void_method_signature(),
1055                            CHECK);
1056   }
1057 }
1058 
1059 static void reset_vm_info_property(TRAPS) {
1060   // the vm info string
1061   ResourceMark rm(THREAD);
1062   const char *vm_info = VM_Version::vm_info_string();
1063 
1064   // java.lang.System class
1065   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1066   instanceKlassHandle klass (THREAD, k);
1067 
1068   // setProperty arguments
1069   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1070   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1071 
1072   // return value
1073   JavaValue r(T_OBJECT);
1074 
1075   // public static String setProperty(String key, String value);
1076   JavaCalls::call_static(&r,
1077                          klass,
1078                          vmSymbols::setProperty_name(),
1079                          vmSymbols::string_string_string_signature(),
1080                          key_str,
1081                          value_str,
1082                          CHECK);
1083 }
1084 
1085 
1086 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1087                                     bool daemon, TRAPS) {
1088   assert(thread_group.not_null(), "thread group should be specified");
1089   assert(threadObj() == NULL, "should only create Java thread object once");
1090 
1091   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1092   instanceKlassHandle klass (THREAD, k);
1093   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1094 
1095   java_lang_Thread::set_thread(thread_oop(), this);
1096   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1097   set_threadObj(thread_oop());
1098 
1099   JavaValue result(T_VOID);
1100   if (thread_name != NULL) {
1101     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1102     // Thread gets assigned specified name and null target
1103     JavaCalls::call_special(&result,
1104                             thread_oop,
1105                             klass,
1106                             vmSymbols::object_initializer_name(),
1107                             vmSymbols::threadgroup_string_void_signature(),
1108                             thread_group, // Argument 1
1109                             name,         // Argument 2
1110                             THREAD);
1111   } else {
1112     // Thread gets assigned name "Thread-nnn" and null target
1113     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1114     JavaCalls::call_special(&result,
1115                             thread_oop,
1116                             klass,
1117                             vmSymbols::object_initializer_name(),
1118                             vmSymbols::threadgroup_runnable_void_signature(),
1119                             thread_group, // Argument 1
1120                             Handle(),     // Argument 2
1121                             THREAD);
1122   }
1123 
1124 
1125   if (daemon) {
1126     java_lang_Thread::set_daemon(thread_oop());
1127   }
1128 
1129   if (HAS_PENDING_EXCEPTION) {
1130     return;
1131   }
1132 
1133   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1134   Handle threadObj(THREAD, this->threadObj());
1135 
1136   JavaCalls::call_special(&result,
1137                           thread_group,
1138                           group,
1139                           vmSymbols::add_method_name(),
1140                           vmSymbols::thread_void_signature(),
1141                           threadObj,          // Arg 1
1142                           THREAD);
1143 }
1144 
1145 // NamedThread --  non-JavaThread subclasses with multiple
1146 // uniquely named instances should derive from this.
1147 NamedThread::NamedThread() : Thread() {
1148   _name = NULL;
1149   _processed_thread = NULL;
1150 }
1151 
1152 NamedThread::~NamedThread() {
1153   if (_name != NULL) {
1154     FREE_C_HEAP_ARRAY(char, _name);
1155     _name = NULL;
1156   }
1157 }
1158 
1159 void NamedThread::set_name(const char* format, ...) {
1160   guarantee(_name == NULL, "Only get to set name once.");
1161   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1162   guarantee(_name != NULL, "alloc failure");
1163   va_list ap;
1164   va_start(ap, format);
1165   jio_vsnprintf(_name, max_name_len, format, ap);
1166   va_end(ap);
1167 }
1168 
1169 void NamedThread::initialize_named_thread() {
1170   set_native_thread_name(name());
1171 }
1172 
1173 void NamedThread::print_on(outputStream* st) const {
1174   st->print("\"%s\" ", name());
1175   Thread::print_on(st);
1176   st->cr();
1177 }
1178 
1179 
1180 // ======= WatcherThread ========
1181 
1182 // The watcher thread exists to simulate timer interrupts.  It should
1183 // be replaced by an abstraction over whatever native support for
1184 // timer interrupts exists on the platform.
1185 
1186 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1187 bool WatcherThread::_startable = false;
1188 volatile bool  WatcherThread::_should_terminate = false;
1189 
1190 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1191   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1192   if (os::create_thread(this, os::watcher_thread)) {
1193     _watcher_thread = this;
1194 
1195     // Set the watcher thread to the highest OS priority which should not be
1196     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1197     // is created. The only normal thread using this priority is the reference
1198     // handler thread, which runs for very short intervals only.
1199     // If the VMThread's priority is not lower than the WatcherThread profiling
1200     // will be inaccurate.
1201     os::set_priority(this, MaxPriority);
1202     if (!DisableStartThread) {
1203       os::start_thread(this);
1204     }
1205   }
1206 }
1207 
1208 int WatcherThread::sleep() const {
1209   // The WatcherThread does not participate in the safepoint protocol
1210   // for the PeriodicTask_lock because it is not a JavaThread.
1211   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1212 
1213   if (_should_terminate) {
1214     // check for termination before we do any housekeeping or wait
1215     return 0;  // we did not sleep.
1216   }
1217 
1218   // remaining will be zero if there are no tasks,
1219   // causing the WatcherThread to sleep until a task is
1220   // enrolled
1221   int remaining = PeriodicTask::time_to_wait();
1222   int time_slept = 0;
1223 
1224   // we expect this to timeout - we only ever get unparked when
1225   // we should terminate or when a new task has been enrolled
1226   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1227 
1228   jlong time_before_loop = os::javaTimeNanos();
1229 
1230   while (true) {
1231     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1232                                             remaining);
1233     jlong now = os::javaTimeNanos();
1234 
1235     if (remaining == 0) {
1236       // if we didn't have any tasks we could have waited for a long time
1237       // consider the time_slept zero and reset time_before_loop
1238       time_slept = 0;
1239       time_before_loop = now;
1240     } else {
1241       // need to recalculate since we might have new tasks in _tasks
1242       time_slept = (int) ((now - time_before_loop) / 1000000);
1243     }
1244 
1245     // Change to task list or spurious wakeup of some kind
1246     if (timedout || _should_terminate) {
1247       break;
1248     }
1249 
1250     remaining = PeriodicTask::time_to_wait();
1251     if (remaining == 0) {
1252       // Last task was just disenrolled so loop around and wait until
1253       // another task gets enrolled
1254       continue;
1255     }
1256 
1257     remaining -= time_slept;
1258     if (remaining <= 0) {
1259       break;
1260     }
1261   }
1262 
1263   return time_slept;
1264 }
1265 
1266 void WatcherThread::run() {
1267   assert(this == watcher_thread(), "just checking");
1268 
1269   this->record_stack_base_and_size();
1270   this->initialize_thread_local_storage();
1271   this->set_native_thread_name(this->name());
1272   this->set_active_handles(JNIHandleBlock::allocate_block());
1273   while (true) {
1274     assert(watcher_thread() == Thread::current(), "thread consistency check");
1275     assert(watcher_thread() == this, "thread consistency check");
1276 
1277     // Calculate how long it'll be until the next PeriodicTask work
1278     // should be done, and sleep that amount of time.
1279     int time_waited = sleep();
1280 
1281     if (is_error_reported()) {
1282       // A fatal error has happened, the error handler(VMError::report_and_die)
1283       // should abort JVM after creating an error log file. However in some
1284       // rare cases, the error handler itself might deadlock. Here we try to
1285       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1286       //
1287       // This code is in WatcherThread because WatcherThread wakes up
1288       // periodically so the fatal error handler doesn't need to do anything;
1289       // also because the WatcherThread is less likely to crash than other
1290       // threads.
1291 
1292       for (;;) {
1293         if (!ShowMessageBoxOnError
1294             && (OnError == NULL || OnError[0] == '\0')
1295             && Arguments::abort_hook() == NULL) {
1296           os::sleep(this, 2 * 60 * 1000, false);
1297           fdStream err(defaultStream::output_fd());
1298           err.print_raw_cr("# [ timer expired, abort... ]");
1299           // skip atexit/vm_exit/vm_abort hooks
1300           os::die();
1301         }
1302 
1303         // Wake up 5 seconds later, the fatal handler may reset OnError or
1304         // ShowMessageBoxOnError when it is ready to abort.
1305         os::sleep(this, 5 * 1000, false);
1306       }
1307     }
1308 
1309     if (_should_terminate) {
1310       // check for termination before posting the next tick
1311       break;
1312     }
1313 
1314     PeriodicTask::real_time_tick(time_waited);
1315   }
1316 
1317   // Signal that it is terminated
1318   {
1319     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1320     _watcher_thread = NULL;
1321     Terminator_lock->notify();
1322   }
1323 
1324   // Thread destructor usually does this..
1325   ThreadLocalStorage::set_thread(NULL);
1326 }
1327 
1328 void WatcherThread::start() {
1329   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1330 
1331   if (watcher_thread() == NULL && _startable) {
1332     _should_terminate = false;
1333     // Create the single instance of WatcherThread
1334     new WatcherThread();
1335   }
1336 }
1337 
1338 void WatcherThread::make_startable() {
1339   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1340   _startable = true;
1341 }
1342 
1343 void WatcherThread::stop() {
1344   {
1345     // Follow normal safepoint aware lock enter protocol since the
1346     // WatcherThread is stopped by another JavaThread.
1347     MutexLocker ml(PeriodicTask_lock);
1348     _should_terminate = true;
1349 
1350     WatcherThread* watcher = watcher_thread();
1351     if (watcher != NULL) {
1352       // unpark the WatcherThread so it can see that it should terminate
1353       watcher->unpark();
1354     }
1355   }
1356 
1357   MutexLocker mu(Terminator_lock);
1358 
1359   while (watcher_thread() != NULL) {
1360     // This wait should make safepoint checks, wait without a timeout,
1361     // and wait as a suspend-equivalent condition.
1362     //
1363     // Note: If the FlatProfiler is running, then this thread is waiting
1364     // for the WatcherThread to terminate and the WatcherThread, via the
1365     // FlatProfiler task, is waiting for the external suspend request on
1366     // this thread to complete. wait_for_ext_suspend_completion() will
1367     // eventually timeout, but that takes time. Making this wait a
1368     // suspend-equivalent condition solves that timeout problem.
1369     //
1370     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1371                           Mutex::_as_suspend_equivalent_flag);
1372   }
1373 }
1374 
1375 void WatcherThread::unpark() {
1376   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1377   PeriodicTask_lock->notify();
1378 }
1379 
1380 void WatcherThread::print_on(outputStream* st) const {
1381   st->print("\"%s\" ", name());
1382   Thread::print_on(st);
1383   st->cr();
1384 }
1385 
1386 // ======= JavaThread ========
1387 
1388 // A JavaThread is a normal Java thread
1389 
1390 void JavaThread::initialize() {
1391   // Initialize fields
1392 
1393   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1394   set_claimed_par_id(UINT_MAX);
1395 
1396   set_saved_exception_pc(NULL);
1397   set_threadObj(NULL);
1398   _anchor.clear();
1399   set_entry_point(NULL);
1400   set_jni_functions(jni_functions());
1401   set_callee_target(NULL);
1402   set_vm_result(NULL);
1403   set_vm_result_2(NULL);
1404   set_vframe_array_head(NULL);
1405   set_vframe_array_last(NULL);
1406   set_deferred_locals(NULL);
1407   set_deopt_mark(NULL);
1408   set_deopt_nmethod(NULL);
1409   clear_must_deopt_id();
1410   set_monitor_chunks(NULL);
1411   set_next(NULL);
1412   set_thread_state(_thread_new);
1413   _terminated = _not_terminated;
1414   _privileged_stack_top = NULL;
1415   _array_for_gc = NULL;
1416   _suspend_equivalent = false;
1417   _in_deopt_handler = 0;
1418   _doing_unsafe_access = false;
1419   _stack_guard_state = stack_guard_unused;
1420   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1421   _exception_pc  = 0;
1422   _exception_handler_pc = 0;
1423   _is_method_handle_return = 0;
1424   _jvmti_thread_state= NULL;
1425   _should_post_on_exceptions_flag = JNI_FALSE;
1426   _jvmti_get_loaded_classes_closure = NULL;
1427   _interp_only_mode    = 0;
1428   _special_runtime_exit_condition = _no_async_condition;
1429   _pending_async_exception = NULL;
1430   _thread_stat = NULL;
1431   _thread_stat = new ThreadStatistics();
1432   _blocked_on_compilation = false;
1433   _jni_active_critical = 0;
1434   _pending_jni_exception_check_fn = NULL;
1435   _do_not_unlock_if_synchronized = false;
1436   _cached_monitor_info = NULL;
1437   _parker = Parker::Allocate(this);
1438 
1439 #ifndef PRODUCT
1440   _jmp_ring_index = 0;
1441   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1442     record_jump(NULL, NULL, NULL, 0);
1443   }
1444 #endif // PRODUCT
1445 
1446   set_thread_profiler(NULL);
1447   if (FlatProfiler::is_active()) {
1448     // This is where we would decide to either give each thread it's own profiler
1449     // or use one global one from FlatProfiler,
1450     // or up to some count of the number of profiled threads, etc.
1451     ThreadProfiler* pp = new ThreadProfiler();
1452     pp->engage();
1453     set_thread_profiler(pp);
1454   }
1455 
1456   // Setup safepoint state info for this thread
1457   ThreadSafepointState::create(this);
1458 
1459   debug_only(_java_call_counter = 0);
1460 
1461   // JVMTI PopFrame support
1462   _popframe_condition = popframe_inactive;
1463   _popframe_preserved_args = NULL;
1464   _popframe_preserved_args_size = 0;
1465   _frames_to_pop_failed_realloc = 0;
1466 
1467   pd_initialize();
1468 }
1469 
1470 #if INCLUDE_ALL_GCS
1471 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1472 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1473 #endif // INCLUDE_ALL_GCS
1474 
1475 JavaThread::JavaThread(bool is_attaching_via_jni) :
1476                        Thread()
1477 #if INCLUDE_ALL_GCS
1478                        , _satb_mark_queue(&_satb_mark_queue_set),
1479                        _dirty_card_queue(&_dirty_card_queue_set)
1480 #endif // INCLUDE_ALL_GCS
1481 {
1482   initialize();
1483   if (is_attaching_via_jni) {
1484     _jni_attach_state = _attaching_via_jni;
1485   } else {
1486     _jni_attach_state = _not_attaching_via_jni;
1487   }
1488   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1489 }
1490 
1491 bool JavaThread::reguard_stack(address cur_sp) {
1492   if (_stack_guard_state != stack_guard_yellow_disabled) {
1493     return true; // Stack already guarded or guard pages not needed.
1494   }
1495 
1496   if (register_stack_overflow()) {
1497     // For those architectures which have separate register and
1498     // memory stacks, we must check the register stack to see if
1499     // it has overflowed.
1500     return false;
1501   }
1502 
1503   // Java code never executes within the yellow zone: the latter is only
1504   // there to provoke an exception during stack banging.  If java code
1505   // is executing there, either StackShadowPages should be larger, or
1506   // some exception code in c1, c2 or the interpreter isn't unwinding
1507   // when it should.
1508   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1509 
1510   enable_stack_yellow_zone();
1511   return true;
1512 }
1513 
1514 bool JavaThread::reguard_stack(void) {
1515   return reguard_stack(os::current_stack_pointer());
1516 }
1517 
1518 
1519 void JavaThread::block_if_vm_exited() {
1520   if (_terminated == _vm_exited) {
1521     // _vm_exited is set at safepoint, and Threads_lock is never released
1522     // we will block here forever
1523     Threads_lock->lock_without_safepoint_check();
1524     ShouldNotReachHere();
1525   }
1526 }
1527 
1528 
1529 // Remove this ifdef when C1 is ported to the compiler interface.
1530 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1531 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1532 
1533 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1534                        Thread()
1535 #if INCLUDE_ALL_GCS
1536                        , _satb_mark_queue(&_satb_mark_queue_set),
1537                        _dirty_card_queue(&_dirty_card_queue_set)
1538 #endif // INCLUDE_ALL_GCS
1539 {
1540   initialize();
1541   _jni_attach_state = _not_attaching_via_jni;
1542   set_entry_point(entry_point);
1543   // Create the native thread itself.
1544   // %note runtime_23
1545   os::ThreadType thr_type = os::java_thread;
1546   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1547                                                      os::java_thread;
1548   os::create_thread(this, thr_type, stack_sz);
1549   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1550   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1551   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1552   // the exception consists of creating the exception object & initializing it, initialization
1553   // will leave the VM via a JavaCall and then all locks must be unlocked).
1554   //
1555   // The thread is still suspended when we reach here. Thread must be explicit started
1556   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1557   // by calling Threads:add. The reason why this is not done here, is because the thread
1558   // object must be fully initialized (take a look at JVM_Start)
1559 }
1560 
1561 JavaThread::~JavaThread() {
1562 
1563   // JSR166 -- return the parker to the free list
1564   Parker::Release(_parker);
1565   _parker = NULL;
1566 
1567   // Free any remaining  previous UnrollBlock
1568   vframeArray* old_array = vframe_array_last();
1569 
1570   if (old_array != NULL) {
1571     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1572     old_array->set_unroll_block(NULL);
1573     delete old_info;
1574     delete old_array;
1575   }
1576 
1577   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1578   if (deferred != NULL) {
1579     // This can only happen if thread is destroyed before deoptimization occurs.
1580     assert(deferred->length() != 0, "empty array!");
1581     do {
1582       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1583       deferred->remove_at(0);
1584       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1585       delete dlv;
1586     } while (deferred->length() != 0);
1587     delete deferred;
1588   }
1589 
1590   // All Java related clean up happens in exit
1591   ThreadSafepointState::destroy(this);
1592   if (_thread_profiler != NULL) delete _thread_profiler;
1593   if (_thread_stat != NULL) delete _thread_stat;
1594 }
1595 
1596 
1597 // The first routine called by a new Java thread
1598 void JavaThread::run() {
1599   // initialize thread-local alloc buffer related fields
1600   this->initialize_tlab();
1601 
1602   // used to test validity of stack trace backs
1603   this->record_base_of_stack_pointer();
1604 
1605   // Record real stack base and size.
1606   this->record_stack_base_and_size();
1607 
1608   // Initialize thread local storage; set before calling MutexLocker
1609   this->initialize_thread_local_storage();
1610 
1611   this->create_stack_guard_pages();
1612 
1613   this->cache_global_variables();
1614 
1615   // Thread is now sufficient initialized to be handled by the safepoint code as being
1616   // in the VM. Change thread state from _thread_new to _thread_in_vm
1617   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1618 
1619   assert(JavaThread::current() == this, "sanity check");
1620   assert(!Thread::current()->owns_locks(), "sanity check");
1621 
1622   DTRACE_THREAD_PROBE(start, this);
1623 
1624   // This operation might block. We call that after all safepoint checks for a new thread has
1625   // been completed.
1626   this->set_active_handles(JNIHandleBlock::allocate_block());
1627 
1628   if (JvmtiExport::should_post_thread_life()) {
1629     JvmtiExport::post_thread_start(this);
1630   }
1631 
1632   EventThreadStart event;
1633   if (event.should_commit()) {
1634     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1635     event.commit();
1636   }
1637 
1638   // We call another function to do the rest so we are sure that the stack addresses used
1639   // from there will be lower than the stack base just computed
1640   thread_main_inner();
1641 
1642   // Note, thread is no longer valid at this point!
1643 }
1644 
1645 
1646 void JavaThread::thread_main_inner() {
1647   assert(JavaThread::current() == this, "sanity check");
1648   assert(this->threadObj() != NULL, "just checking");
1649 
1650   // Execute thread entry point unless this thread has a pending exception
1651   // or has been stopped before starting.
1652   // Note: Due to JVM_StopThread we can have pending exceptions already!
1653   if (!this->has_pending_exception() &&
1654       !java_lang_Thread::is_stillborn(this->threadObj())) {
1655     {
1656       ResourceMark rm(this);
1657       this->set_native_thread_name(this->get_thread_name());
1658     }
1659     HandleMark hm(this);
1660     this->entry_point()(this, this);
1661   }
1662 
1663   DTRACE_THREAD_PROBE(stop, this);
1664 
1665   this->exit(false);
1666   delete this;
1667 }
1668 
1669 
1670 static void ensure_join(JavaThread* thread) {
1671   // We do not need to grap the Threads_lock, since we are operating on ourself.
1672   Handle threadObj(thread, thread->threadObj());
1673   assert(threadObj.not_null(), "java thread object must exist");
1674   ObjectLocker lock(threadObj, thread);
1675   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1676   thread->clear_pending_exception();
1677   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1678   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1679   // Clear the native thread instance - this makes isAlive return false and allows the join()
1680   // to complete once we've done the notify_all below
1681   java_lang_Thread::set_thread(threadObj(), NULL);
1682   lock.notify_all(thread);
1683   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1684   thread->clear_pending_exception();
1685 }
1686 
1687 
1688 // For any new cleanup additions, please check to see if they need to be applied to
1689 // cleanup_failed_attach_current_thread as well.
1690 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1691   assert(this == JavaThread::current(), "thread consistency check");
1692 
1693   HandleMark hm(this);
1694   Handle uncaught_exception(this, this->pending_exception());
1695   this->clear_pending_exception();
1696   Handle threadObj(this, this->threadObj());
1697   assert(threadObj.not_null(), "Java thread object should be created");
1698 
1699   if (get_thread_profiler() != NULL) {
1700     get_thread_profiler()->disengage();
1701     ResourceMark rm;
1702     get_thread_profiler()->print(get_thread_name());
1703   }
1704 
1705 
1706   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1707   {
1708     EXCEPTION_MARK;
1709 
1710     CLEAR_PENDING_EXCEPTION;
1711   }
1712   if (!destroy_vm) {
1713     if (uncaught_exception.not_null()) {
1714       EXCEPTION_MARK;
1715       // Call method Thread.dispatchUncaughtException().
1716       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1717       JavaValue result(T_VOID);
1718       JavaCalls::call_virtual(&result,
1719                               threadObj, thread_klass,
1720                               vmSymbols::dispatchUncaughtException_name(),
1721                               vmSymbols::throwable_void_signature(),
1722                               uncaught_exception,
1723                               THREAD);
1724       if (HAS_PENDING_EXCEPTION) {
1725         ResourceMark rm(this);
1726         jio_fprintf(defaultStream::error_stream(),
1727                     "\nException: %s thrown from the UncaughtExceptionHandler"
1728                     " in thread \"%s\"\n",
1729                     pending_exception()->klass()->external_name(),
1730                     get_thread_name());
1731         CLEAR_PENDING_EXCEPTION;
1732       }
1733     }
1734 
1735     // Called before the java thread exit since we want to read info
1736     // from java_lang_Thread object
1737     EventThreadEnd event;
1738     if (event.should_commit()) {
1739       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1740       event.commit();
1741     }
1742 
1743     // Call after last event on thread
1744     EVENT_THREAD_EXIT(this);
1745 
1746     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1747     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1748     // is deprecated anyhow.
1749     if (!is_Compiler_thread()) {
1750       int count = 3;
1751       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1752         EXCEPTION_MARK;
1753         JavaValue result(T_VOID);
1754         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1755         JavaCalls::call_virtual(&result,
1756                                 threadObj, thread_klass,
1757                                 vmSymbols::exit_method_name(),
1758                                 vmSymbols::void_method_signature(),
1759                                 THREAD);
1760         CLEAR_PENDING_EXCEPTION;
1761       }
1762     }
1763     // notify JVMTI
1764     if (JvmtiExport::should_post_thread_life()) {
1765       JvmtiExport::post_thread_end(this);
1766     }
1767 
1768     // We have notified the agents that we are exiting, before we go on,
1769     // we must check for a pending external suspend request and honor it
1770     // in order to not surprise the thread that made the suspend request.
1771     while (true) {
1772       {
1773         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1774         if (!is_external_suspend()) {
1775           set_terminated(_thread_exiting);
1776           ThreadService::current_thread_exiting(this);
1777           break;
1778         }
1779         // Implied else:
1780         // Things get a little tricky here. We have a pending external
1781         // suspend request, but we are holding the SR_lock so we
1782         // can't just self-suspend. So we temporarily drop the lock
1783         // and then self-suspend.
1784       }
1785 
1786       ThreadBlockInVM tbivm(this);
1787       java_suspend_self();
1788 
1789       // We're done with this suspend request, but we have to loop around
1790       // and check again. Eventually we will get SR_lock without a pending
1791       // external suspend request and will be able to mark ourselves as
1792       // exiting.
1793     }
1794     // no more external suspends are allowed at this point
1795   } else {
1796     // before_exit() has already posted JVMTI THREAD_END events
1797   }
1798 
1799   // Notify waiters on thread object. This has to be done after exit() is called
1800   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1801   // group should have the destroyed bit set before waiters are notified).
1802   ensure_join(this);
1803   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1804 
1805   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1806   // held by this thread must be released.  A detach operation must only
1807   // get here if there are no Java frames on the stack.  Therefore, any
1808   // owned monitors at this point MUST be JNI-acquired monitors which are
1809   // pre-inflated and in the monitor cache.
1810   //
1811   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1812   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1813     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1814     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1815     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1816   }
1817 
1818   // These things needs to be done while we are still a Java Thread. Make sure that thread
1819   // is in a consistent state, in case GC happens
1820   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1821 
1822   if (active_handles() != NULL) {
1823     JNIHandleBlock* block = active_handles();
1824     set_active_handles(NULL);
1825     JNIHandleBlock::release_block(block);
1826   }
1827 
1828   if (free_handle_block() != NULL) {
1829     JNIHandleBlock* block = free_handle_block();
1830     set_free_handle_block(NULL);
1831     JNIHandleBlock::release_block(block);
1832   }
1833 
1834   // These have to be removed while this is still a valid thread.
1835   remove_stack_guard_pages();
1836 
1837   if (UseTLAB) {
1838     tlab().make_parsable(true);  // retire TLAB
1839   }
1840 
1841   if (JvmtiEnv::environments_might_exist()) {
1842     JvmtiExport::cleanup_thread(this);
1843   }
1844 
1845   // We must flush any deferred card marks before removing a thread from
1846   // the list of active threads.
1847   Universe::heap()->flush_deferred_store_barrier(this);
1848   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1849 
1850 #if INCLUDE_ALL_GCS
1851   // We must flush the G1-related buffers before removing a thread
1852   // from the list of active threads. We must do this after any deferred
1853   // card marks have been flushed (above) so that any entries that are
1854   // added to the thread's dirty card queue as a result are not lost.
1855   if (UseG1GC) {
1856     flush_barrier_queues();
1857   }
1858 #endif // INCLUDE_ALL_GCS
1859 
1860   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1861   Threads::remove(this);
1862 }
1863 
1864 #if INCLUDE_ALL_GCS
1865 // Flush G1-related queues.
1866 void JavaThread::flush_barrier_queues() {
1867   satb_mark_queue().flush();
1868   dirty_card_queue().flush();
1869 }
1870 
1871 void JavaThread::initialize_queues() {
1872   assert(!SafepointSynchronize::is_at_safepoint(),
1873          "we should not be at a safepoint");
1874 
1875   ObjPtrQueue& satb_queue = satb_mark_queue();
1876   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1877   // The SATB queue should have been constructed with its active
1878   // field set to false.
1879   assert(!satb_queue.is_active(), "SATB queue should not be active");
1880   assert(satb_queue.is_empty(), "SATB queue should be empty");
1881   // If we are creating the thread during a marking cycle, we should
1882   // set the active field of the SATB queue to true.
1883   if (satb_queue_set.is_active()) {
1884     satb_queue.set_active(true);
1885   }
1886 
1887   DirtyCardQueue& dirty_queue = dirty_card_queue();
1888   // The dirty card queue should have been constructed with its
1889   // active field set to true.
1890   assert(dirty_queue.is_active(), "dirty card queue should be active");
1891 }
1892 #endif // INCLUDE_ALL_GCS
1893 
1894 void JavaThread::cleanup_failed_attach_current_thread() {
1895   if (get_thread_profiler() != NULL) {
1896     get_thread_profiler()->disengage();
1897     ResourceMark rm;
1898     get_thread_profiler()->print(get_thread_name());
1899   }
1900 
1901   if (active_handles() != NULL) {
1902     JNIHandleBlock* block = active_handles();
1903     set_active_handles(NULL);
1904     JNIHandleBlock::release_block(block);
1905   }
1906 
1907   if (free_handle_block() != NULL) {
1908     JNIHandleBlock* block = free_handle_block();
1909     set_free_handle_block(NULL);
1910     JNIHandleBlock::release_block(block);
1911   }
1912 
1913   // These have to be removed while this is still a valid thread.
1914   remove_stack_guard_pages();
1915 
1916   if (UseTLAB) {
1917     tlab().make_parsable(true);  // retire TLAB, if any
1918   }
1919 
1920 #if INCLUDE_ALL_GCS
1921   if (UseG1GC) {
1922     flush_barrier_queues();
1923   }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926   Threads::remove(this);
1927   delete this;
1928 }
1929 
1930 
1931 
1932 
1933 JavaThread* JavaThread::active() {
1934   Thread* thread = ThreadLocalStorage::thread();
1935   assert(thread != NULL, "just checking");
1936   if (thread->is_Java_thread()) {
1937     return (JavaThread*) thread;
1938   } else {
1939     assert(thread->is_VM_thread(), "this must be a vm thread");
1940     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1941     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1942     assert(ret->is_Java_thread(), "must be a Java thread");
1943     return ret;
1944   }
1945 }
1946 
1947 bool JavaThread::is_lock_owned(address adr) const {
1948   if (Thread::is_lock_owned(adr)) return true;
1949 
1950   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1951     if (chunk->contains(adr)) return true;
1952   }
1953 
1954   return false;
1955 }
1956 
1957 
1958 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1959   chunk->set_next(monitor_chunks());
1960   set_monitor_chunks(chunk);
1961 }
1962 
1963 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1964   guarantee(monitor_chunks() != NULL, "must be non empty");
1965   if (monitor_chunks() == chunk) {
1966     set_monitor_chunks(chunk->next());
1967   } else {
1968     MonitorChunk* prev = monitor_chunks();
1969     while (prev->next() != chunk) prev = prev->next();
1970     prev->set_next(chunk->next());
1971   }
1972 }
1973 
1974 // JVM support.
1975 
1976 // Note: this function shouldn't block if it's called in
1977 // _thread_in_native_trans state (such as from
1978 // check_special_condition_for_native_trans()).
1979 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1980 
1981   if (has_last_Java_frame() && has_async_condition()) {
1982     // If we are at a polling page safepoint (not a poll return)
1983     // then we must defer async exception because live registers
1984     // will be clobbered by the exception path. Poll return is
1985     // ok because the call we a returning from already collides
1986     // with exception handling registers and so there is no issue.
1987     // (The exception handling path kills call result registers but
1988     //  this is ok since the exception kills the result anyway).
1989 
1990     if (is_at_poll_safepoint()) {
1991       // if the code we are returning to has deoptimized we must defer
1992       // the exception otherwise live registers get clobbered on the
1993       // exception path before deoptimization is able to retrieve them.
1994       //
1995       RegisterMap map(this, false);
1996       frame caller_fr = last_frame().sender(&map);
1997       assert(caller_fr.is_compiled_frame(), "what?");
1998       if (caller_fr.is_deoptimized_frame()) {
1999         if (TraceExceptions) {
2000           ResourceMark rm;
2001           tty->print_cr("deferred async exception at compiled safepoint");
2002         }
2003         return;
2004       }
2005     }
2006   }
2007 
2008   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2009   if (condition == _no_async_condition) {
2010     // Conditions have changed since has_special_runtime_exit_condition()
2011     // was called:
2012     // - if we were here only because of an external suspend request,
2013     //   then that was taken care of above (or cancelled) so we are done
2014     // - if we were here because of another async request, then it has
2015     //   been cleared between the has_special_runtime_exit_condition()
2016     //   and now so again we are done
2017     return;
2018   }
2019 
2020   // Check for pending async. exception
2021   if (_pending_async_exception != NULL) {
2022     // Only overwrite an already pending exception, if it is not a threadDeath.
2023     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2024 
2025       // We cannot call Exceptions::_throw(...) here because we cannot block
2026       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2027 
2028       if (TraceExceptions) {
2029         ResourceMark rm;
2030         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2031         if (has_last_Java_frame()) {
2032           frame f = last_frame();
2033           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2034         }
2035         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2036       }
2037       _pending_async_exception = NULL;
2038       clear_has_async_exception();
2039     }
2040   }
2041 
2042   if (check_unsafe_error &&
2043       condition == _async_unsafe_access_error && !has_pending_exception()) {
2044     condition = _no_async_condition;  // done
2045     switch (thread_state()) {
2046     case _thread_in_vm: {
2047       JavaThread* THREAD = this;
2048       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2049     }
2050     case _thread_in_native: {
2051       ThreadInVMfromNative tiv(this);
2052       JavaThread* THREAD = this;
2053       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2054     }
2055     case _thread_in_Java: {
2056       ThreadInVMfromJava tiv(this);
2057       JavaThread* THREAD = this;
2058       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2059     }
2060     default:
2061       ShouldNotReachHere();
2062     }
2063   }
2064 
2065   assert(condition == _no_async_condition || has_pending_exception() ||
2066          (!check_unsafe_error && condition == _async_unsafe_access_error),
2067          "must have handled the async condition, if no exception");
2068 }
2069 
2070 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2071   //
2072   // Check for pending external suspend. Internal suspend requests do
2073   // not use handle_special_runtime_exit_condition().
2074   // If JNIEnv proxies are allowed, don't self-suspend if the target
2075   // thread is not the current thread. In older versions of jdbx, jdbx
2076   // threads could call into the VM with another thread's JNIEnv so we
2077   // can be here operating on behalf of a suspended thread (4432884).
2078   bool do_self_suspend = is_external_suspend_with_lock();
2079   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2080     //
2081     // Because thread is external suspended the safepoint code will count
2082     // thread as at a safepoint. This can be odd because we can be here
2083     // as _thread_in_Java which would normally transition to _thread_blocked
2084     // at a safepoint. We would like to mark the thread as _thread_blocked
2085     // before calling java_suspend_self like all other callers of it but
2086     // we must then observe proper safepoint protocol. (We can't leave
2087     // _thread_blocked with a safepoint in progress). However we can be
2088     // here as _thread_in_native_trans so we can't use a normal transition
2089     // constructor/destructor pair because they assert on that type of
2090     // transition. We could do something like:
2091     //
2092     // JavaThreadState state = thread_state();
2093     // set_thread_state(_thread_in_vm);
2094     // {
2095     //   ThreadBlockInVM tbivm(this);
2096     //   java_suspend_self()
2097     // }
2098     // set_thread_state(_thread_in_vm_trans);
2099     // if (safepoint) block;
2100     // set_thread_state(state);
2101     //
2102     // but that is pretty messy. Instead we just go with the way the
2103     // code has worked before and note that this is the only path to
2104     // java_suspend_self that doesn't put the thread in _thread_blocked
2105     // mode.
2106 
2107     frame_anchor()->make_walkable(this);
2108     java_suspend_self();
2109 
2110     // We might be here for reasons in addition to the self-suspend request
2111     // so check for other async requests.
2112   }
2113 
2114   if (check_asyncs) {
2115     check_and_handle_async_exceptions();
2116   }
2117 }
2118 
2119 void JavaThread::send_thread_stop(oop java_throwable)  {
2120   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2121   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2122   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2123 
2124   // Do not throw asynchronous exceptions against the compiler thread
2125   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2126   if (is_Compiler_thread()) return;
2127 
2128   {
2129     // Actually throw the Throwable against the target Thread - however
2130     // only if there is no thread death exception installed already.
2131     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2132       // If the topmost frame is a runtime stub, then we are calling into
2133       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2134       // must deoptimize the caller before continuing, as the compiled  exception handler table
2135       // may not be valid
2136       if (has_last_Java_frame()) {
2137         frame f = last_frame();
2138         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2139           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2140           RegisterMap reg_map(this, UseBiasedLocking);
2141           frame compiled_frame = f.sender(&reg_map);
2142           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2143             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2144           }
2145         }
2146       }
2147 
2148       // Set async. pending exception in thread.
2149       set_pending_async_exception(java_throwable);
2150 
2151       if (TraceExceptions) {
2152         ResourceMark rm;
2153         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2154       }
2155       // for AbortVMOnException flag
2156       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2157     }
2158   }
2159 
2160 
2161   // Interrupt thread so it will wake up from a potential wait()
2162   Thread::interrupt(this);
2163 }
2164 
2165 // External suspension mechanism.
2166 //
2167 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2168 // to any VM_locks and it is at a transition
2169 // Self-suspension will happen on the transition out of the vm.
2170 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2171 //
2172 // Guarantees on return:
2173 //   + Target thread will not execute any new bytecode (that's why we need to
2174 //     force a safepoint)
2175 //   + Target thread will not enter any new monitors
2176 //
2177 void JavaThread::java_suspend() {
2178   { MutexLocker mu(Threads_lock);
2179     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2180       return;
2181     }
2182   }
2183 
2184   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2185     if (!is_external_suspend()) {
2186       // a racing resume has cancelled us; bail out now
2187       return;
2188     }
2189 
2190     // suspend is done
2191     uint32_t debug_bits = 0;
2192     // Warning: is_ext_suspend_completed() may temporarily drop the
2193     // SR_lock to allow the thread to reach a stable thread state if
2194     // it is currently in a transient thread state.
2195     if (is_ext_suspend_completed(false /* !called_by_wait */,
2196                                  SuspendRetryDelay, &debug_bits)) {
2197       return;
2198     }
2199   }
2200 
2201   VM_ForceSafepoint vm_suspend;
2202   VMThread::execute(&vm_suspend);
2203 }
2204 
2205 // Part II of external suspension.
2206 // A JavaThread self suspends when it detects a pending external suspend
2207 // request. This is usually on transitions. It is also done in places
2208 // where continuing to the next transition would surprise the caller,
2209 // e.g., monitor entry.
2210 //
2211 // Returns the number of times that the thread self-suspended.
2212 //
2213 // Note: DO NOT call java_suspend_self() when you just want to block current
2214 //       thread. java_suspend_self() is the second stage of cooperative
2215 //       suspension for external suspend requests and should only be used
2216 //       to complete an external suspend request.
2217 //
2218 int JavaThread::java_suspend_self() {
2219   int ret = 0;
2220 
2221   // we are in the process of exiting so don't suspend
2222   if (is_exiting()) {
2223     clear_external_suspend();
2224     return ret;
2225   }
2226 
2227   assert(_anchor.walkable() ||
2228          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2229          "must have walkable stack");
2230 
2231   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2232 
2233   assert(!this->is_ext_suspended(),
2234          "a thread trying to self-suspend should not already be suspended");
2235 
2236   if (this->is_suspend_equivalent()) {
2237     // If we are self-suspending as a result of the lifting of a
2238     // suspend equivalent condition, then the suspend_equivalent
2239     // flag is not cleared until we set the ext_suspended flag so
2240     // that wait_for_ext_suspend_completion() returns consistent
2241     // results.
2242     this->clear_suspend_equivalent();
2243   }
2244 
2245   // A racing resume may have cancelled us before we grabbed SR_lock
2246   // above. Or another external suspend request could be waiting for us
2247   // by the time we return from SR_lock()->wait(). The thread
2248   // that requested the suspension may already be trying to walk our
2249   // stack and if we return now, we can change the stack out from under
2250   // it. This would be a "bad thing (TM)" and cause the stack walker
2251   // to crash. We stay self-suspended until there are no more pending
2252   // external suspend requests.
2253   while (is_external_suspend()) {
2254     ret++;
2255     this->set_ext_suspended();
2256 
2257     // _ext_suspended flag is cleared by java_resume()
2258     while (is_ext_suspended()) {
2259       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2260     }
2261   }
2262 
2263   return ret;
2264 }
2265 
2266 #ifdef ASSERT
2267 // verify the JavaThread has not yet been published in the Threads::list, and
2268 // hence doesn't need protection from concurrent access at this stage
2269 void JavaThread::verify_not_published() {
2270   if (!Threads_lock->owned_by_self()) {
2271     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2272     assert(!Threads::includes(this),
2273            "java thread shouldn't have been published yet!");
2274   } else {
2275     assert(!Threads::includes(this),
2276            "java thread shouldn't have been published yet!");
2277   }
2278 }
2279 #endif
2280 
2281 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2282 // progress or when _suspend_flags is non-zero.
2283 // Current thread needs to self-suspend if there is a suspend request and/or
2284 // block if a safepoint is in progress.
2285 // Async exception ISN'T checked.
2286 // Note only the ThreadInVMfromNative transition can call this function
2287 // directly and when thread state is _thread_in_native_trans
2288 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2289   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2290 
2291   JavaThread *curJT = JavaThread::current();
2292   bool do_self_suspend = thread->is_external_suspend();
2293 
2294   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2295 
2296   // If JNIEnv proxies are allowed, don't self-suspend if the target
2297   // thread is not the current thread. In older versions of jdbx, jdbx
2298   // threads could call into the VM with another thread's JNIEnv so we
2299   // can be here operating on behalf of a suspended thread (4432884).
2300   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2301     JavaThreadState state = thread->thread_state();
2302 
2303     // We mark this thread_blocked state as a suspend-equivalent so
2304     // that a caller to is_ext_suspend_completed() won't be confused.
2305     // The suspend-equivalent state is cleared by java_suspend_self().
2306     thread->set_suspend_equivalent();
2307 
2308     // If the safepoint code sees the _thread_in_native_trans state, it will
2309     // wait until the thread changes to other thread state. There is no
2310     // guarantee on how soon we can obtain the SR_lock and complete the
2311     // self-suspend request. It would be a bad idea to let safepoint wait for
2312     // too long. Temporarily change the state to _thread_blocked to
2313     // let the VM thread know that this thread is ready for GC. The problem
2314     // of changing thread state is that safepoint could happen just after
2315     // java_suspend_self() returns after being resumed, and VM thread will
2316     // see the _thread_blocked state. We must check for safepoint
2317     // after restoring the state and make sure we won't leave while a safepoint
2318     // is in progress.
2319     thread->set_thread_state(_thread_blocked);
2320     thread->java_suspend_self();
2321     thread->set_thread_state(state);
2322     // Make sure new state is seen by VM thread
2323     if (os::is_MP()) {
2324       if (UseMembar) {
2325         // Force a fence between the write above and read below
2326         OrderAccess::fence();
2327       } else {
2328         // Must use this rather than serialization page in particular on Windows
2329         InterfaceSupport::serialize_memory(thread);
2330       }
2331     }
2332   }
2333 
2334   if (SafepointSynchronize::do_call_back()) {
2335     // If we are safepointing, then block the caller which may not be
2336     // the same as the target thread (see above).
2337     SafepointSynchronize::block(curJT);
2338   }
2339 
2340   if (thread->is_deopt_suspend()) {
2341     thread->clear_deopt_suspend();
2342     RegisterMap map(thread, false);
2343     frame f = thread->last_frame();
2344     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2345       f = f.sender(&map);
2346     }
2347     if (f.id() == thread->must_deopt_id()) {
2348       thread->clear_must_deopt_id();
2349       f.deoptimize(thread);
2350     } else {
2351       fatal("missed deoptimization!");
2352     }
2353   }
2354 }
2355 
2356 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2357 // progress or when _suspend_flags is non-zero.
2358 // Current thread needs to self-suspend if there is a suspend request and/or
2359 // block if a safepoint is in progress.
2360 // Also check for pending async exception (not including unsafe access error).
2361 // Note only the native==>VM/Java barriers can call this function and when
2362 // thread state is _thread_in_native_trans.
2363 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2364   check_safepoint_and_suspend_for_native_trans(thread);
2365 
2366   if (thread->has_async_exception()) {
2367     // We are in _thread_in_native_trans state, don't handle unsafe
2368     // access error since that may block.
2369     thread->check_and_handle_async_exceptions(false);
2370   }
2371 }
2372 
2373 // This is a variant of the normal
2374 // check_special_condition_for_native_trans with slightly different
2375 // semantics for use by critical native wrappers.  It does all the
2376 // normal checks but also performs the transition back into
2377 // thread_in_Java state.  This is required so that critical natives
2378 // can potentially block and perform a GC if they are the last thread
2379 // exiting the GC_locker.
2380 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2381   check_special_condition_for_native_trans(thread);
2382 
2383   // Finish the transition
2384   thread->set_thread_state(_thread_in_Java);
2385 
2386   if (thread->do_critical_native_unlock()) {
2387     ThreadInVMfromJavaNoAsyncException tiv(thread);
2388     GC_locker::unlock_critical(thread);
2389     thread->clear_critical_native_unlock();
2390   }
2391 }
2392 
2393 // We need to guarantee the Threads_lock here, since resumes are not
2394 // allowed during safepoint synchronization
2395 // Can only resume from an external suspension
2396 void JavaThread::java_resume() {
2397   assert_locked_or_safepoint(Threads_lock);
2398 
2399   // Sanity check: thread is gone, has started exiting or the thread
2400   // was not externally suspended.
2401   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2402     return;
2403   }
2404 
2405   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2406 
2407   clear_external_suspend();
2408 
2409   if (is_ext_suspended()) {
2410     clear_ext_suspended();
2411     SR_lock()->notify_all();
2412   }
2413 }
2414 
2415 void JavaThread::create_stack_guard_pages() {
2416   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2417   address low_addr = stack_base() - stack_size();
2418   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2419 
2420   int allocate = os::allocate_stack_guard_pages();
2421   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2422 
2423   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2424     warning("Attempt to allocate stack guard pages failed.");
2425     return;
2426   }
2427 
2428   if (os::guard_memory((char *) low_addr, len)) {
2429     _stack_guard_state = stack_guard_enabled;
2430   } else {
2431     warning("Attempt to protect stack guard pages failed.");
2432     if (os::uncommit_memory((char *) low_addr, len)) {
2433       warning("Attempt to deallocate stack guard pages failed.");
2434     }
2435   }
2436 }
2437 
2438 void JavaThread::remove_stack_guard_pages() {
2439   assert(Thread::current() == this, "from different thread");
2440   if (_stack_guard_state == stack_guard_unused) return;
2441   address low_addr = stack_base() - stack_size();
2442   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2443 
2444   if (os::allocate_stack_guard_pages()) {
2445     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2446       _stack_guard_state = stack_guard_unused;
2447     } else {
2448       warning("Attempt to deallocate stack guard pages failed.");
2449     }
2450   } else {
2451     if (_stack_guard_state == stack_guard_unused) return;
2452     if (os::unguard_memory((char *) low_addr, len)) {
2453       _stack_guard_state = stack_guard_unused;
2454     } else {
2455       warning("Attempt to unprotect stack guard pages failed.");
2456     }
2457   }
2458 }
2459 
2460 void JavaThread::enable_stack_yellow_zone() {
2461   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2462   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2463 
2464   // The base notation is from the stacks point of view, growing downward.
2465   // We need to adjust it to work correctly with guard_memory()
2466   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2467 
2468   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2469   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2470 
2471   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2472     _stack_guard_state = stack_guard_enabled;
2473   } else {
2474     warning("Attempt to guard stack yellow zone failed.");
2475   }
2476   enable_register_stack_guard();
2477 }
2478 
2479 void JavaThread::disable_stack_yellow_zone() {
2480   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2481   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2482 
2483   // Simply return if called for a thread that does not use guard pages.
2484   if (_stack_guard_state == stack_guard_unused) return;
2485 
2486   // The base notation is from the stacks point of view, growing downward.
2487   // We need to adjust it to work correctly with guard_memory()
2488   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2489 
2490   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2491     _stack_guard_state = stack_guard_yellow_disabled;
2492   } else {
2493     warning("Attempt to unguard stack yellow zone failed.");
2494   }
2495   disable_register_stack_guard();
2496 }
2497 
2498 void JavaThread::enable_stack_red_zone() {
2499   // The base notation is from the stacks point of view, growing downward.
2500   // We need to adjust it to work correctly with guard_memory()
2501   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2502   address base = stack_red_zone_base() - stack_red_zone_size();
2503 
2504   guarantee(base < stack_base(), "Error calculating stack red zone");
2505   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2506 
2507   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2508     warning("Attempt to guard stack red zone failed.");
2509   }
2510 }
2511 
2512 void JavaThread::disable_stack_red_zone() {
2513   // The base notation is from the stacks point of view, growing downward.
2514   // We need to adjust it to work correctly with guard_memory()
2515   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2516   address base = stack_red_zone_base() - stack_red_zone_size();
2517   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2518     warning("Attempt to unguard stack red zone failed.");
2519   }
2520 }
2521 
2522 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2523   // ignore is there is no stack
2524   if (!has_last_Java_frame()) return;
2525   // traverse the stack frames. Starts from top frame.
2526   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2527     frame* fr = fst.current();
2528     f(fr, fst.register_map());
2529   }
2530 }
2531 
2532 
2533 #ifndef PRODUCT
2534 // Deoptimization
2535 // Function for testing deoptimization
2536 void JavaThread::deoptimize() {
2537   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2538   StackFrameStream fst(this, UseBiasedLocking);
2539   bool deopt = false;           // Dump stack only if a deopt actually happens.
2540   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2541   // Iterate over all frames in the thread and deoptimize
2542   for (; !fst.is_done(); fst.next()) {
2543     if (fst.current()->can_be_deoptimized()) {
2544 
2545       if (only_at) {
2546         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2547         // consists of comma or carriage return separated numbers so
2548         // search for the current bci in that string.
2549         address pc = fst.current()->pc();
2550         nmethod* nm =  (nmethod*) fst.current()->cb();
2551         ScopeDesc* sd = nm->scope_desc_at(pc);
2552         char buffer[8];
2553         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2554         size_t len = strlen(buffer);
2555         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2556         while (found != NULL) {
2557           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2558               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2559             // Check that the bci found is bracketed by terminators.
2560             break;
2561           }
2562           found = strstr(found + 1, buffer);
2563         }
2564         if (!found) {
2565           continue;
2566         }
2567       }
2568 
2569       if (DebugDeoptimization && !deopt) {
2570         deopt = true; // One-time only print before deopt
2571         tty->print_cr("[BEFORE Deoptimization]");
2572         trace_frames();
2573         trace_stack();
2574       }
2575       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2576     }
2577   }
2578 
2579   if (DebugDeoptimization && deopt) {
2580     tty->print_cr("[AFTER Deoptimization]");
2581     trace_frames();
2582   }
2583 }
2584 
2585 
2586 // Make zombies
2587 void JavaThread::make_zombies() {
2588   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2589     if (fst.current()->can_be_deoptimized()) {
2590       // it is a Java nmethod
2591       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2592       nm->make_not_entrant();
2593     }
2594   }
2595 }
2596 #endif // PRODUCT
2597 
2598 
2599 void JavaThread::deoptimized_wrt_marked_nmethods() {
2600   if (!has_last_Java_frame()) return;
2601   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2602   StackFrameStream fst(this, UseBiasedLocking);
2603   for (; !fst.is_done(); fst.next()) {
2604     if (fst.current()->should_be_deoptimized()) {
2605       if (LogCompilation && xtty != NULL) {
2606         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2607         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2608                    this->name(), nm != NULL ? nm->compile_id() : -1);
2609       }
2610 
2611       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2612     }
2613   }
2614 }
2615 
2616 
2617 // If the caller is a NamedThread, then remember, in the current scope,
2618 // the given JavaThread in its _processed_thread field.
2619 class RememberProcessedThread: public StackObj {
2620   NamedThread* _cur_thr;
2621  public:
2622   RememberProcessedThread(JavaThread* jthr) {
2623     Thread* thread = Thread::current();
2624     if (thread->is_Named_thread()) {
2625       _cur_thr = (NamedThread *)thread;
2626       _cur_thr->set_processed_thread(jthr);
2627     } else {
2628       _cur_thr = NULL;
2629     }
2630   }
2631 
2632   ~RememberProcessedThread() {
2633     if (_cur_thr) {
2634       _cur_thr->set_processed_thread(NULL);
2635     }
2636   }
2637 };
2638 
2639 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2640   // Verify that the deferred card marks have been flushed.
2641   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2642 
2643   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2644   // since there may be more than one thread using each ThreadProfiler.
2645 
2646   // Traverse the GCHandles
2647   Thread::oops_do(f, cld_f, cf);
2648 
2649   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2650          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2651 
2652   if (has_last_Java_frame()) {
2653     // Record JavaThread to GC thread
2654     RememberProcessedThread rpt(this);
2655 
2656     // Traverse the privileged stack
2657     if (_privileged_stack_top != NULL) {
2658       _privileged_stack_top->oops_do(f);
2659     }
2660 
2661     // traverse the registered growable array
2662     if (_array_for_gc != NULL) {
2663       for (int index = 0; index < _array_for_gc->length(); index++) {
2664         f->do_oop(_array_for_gc->adr_at(index));
2665       }
2666     }
2667 
2668     // Traverse the monitor chunks
2669     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2670       chunk->oops_do(f);
2671     }
2672 
2673     // Traverse the execution stack
2674     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2675       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2676     }
2677   }
2678 
2679   // callee_target is never live across a gc point so NULL it here should
2680   // it still contain a methdOop.
2681 
2682   set_callee_target(NULL);
2683 
2684   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2685   // If we have deferred set_locals there might be oops waiting to be
2686   // written
2687   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2688   if (list != NULL) {
2689     for (int i = 0; i < list->length(); i++) {
2690       list->at(i)->oops_do(f);
2691     }
2692   }
2693 
2694   // Traverse instance variables at the end since the GC may be moving things
2695   // around using this function
2696   f->do_oop((oop*) &_threadObj);
2697   f->do_oop((oop*) &_vm_result);
2698   f->do_oop((oop*) &_exception_oop);
2699   f->do_oop((oop*) &_pending_async_exception);
2700 
2701   if (jvmti_thread_state() != NULL) {
2702     jvmti_thread_state()->oops_do(f);
2703   }
2704 }
2705 
2706 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2707   Thread::nmethods_do(cf);  // (super method is a no-op)
2708 
2709   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2710          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2711 
2712   if (has_last_Java_frame()) {
2713     // Traverse the execution stack
2714     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2715       fst.current()->nmethods_do(cf);
2716     }
2717   }
2718 }
2719 
2720 void JavaThread::metadata_do(void f(Metadata*)) {
2721   if (has_last_Java_frame()) {
2722     // Traverse the execution stack to call f() on the methods in the stack
2723     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2724       fst.current()->metadata_do(f);
2725     }
2726   } else if (is_Compiler_thread()) {
2727     // need to walk ciMetadata in current compile tasks to keep alive.
2728     CompilerThread* ct = (CompilerThread*)this;
2729     if (ct->env() != NULL) {
2730       ct->env()->metadata_do(f);
2731     }
2732   }
2733 }
2734 
2735 // Printing
2736 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2737   switch (_thread_state) {
2738   case _thread_uninitialized:     return "_thread_uninitialized";
2739   case _thread_new:               return "_thread_new";
2740   case _thread_new_trans:         return "_thread_new_trans";
2741   case _thread_in_native:         return "_thread_in_native";
2742   case _thread_in_native_trans:   return "_thread_in_native_trans";
2743   case _thread_in_vm:             return "_thread_in_vm";
2744   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2745   case _thread_in_Java:           return "_thread_in_Java";
2746   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2747   case _thread_blocked:           return "_thread_blocked";
2748   case _thread_blocked_trans:     return "_thread_blocked_trans";
2749   default:                        return "unknown thread state";
2750   }
2751 }
2752 
2753 #ifndef PRODUCT
2754 void JavaThread::print_thread_state_on(outputStream *st) const {
2755   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2756 };
2757 void JavaThread::print_thread_state() const {
2758   print_thread_state_on(tty);
2759 }
2760 #endif // PRODUCT
2761 
2762 // Called by Threads::print() for VM_PrintThreads operation
2763 void JavaThread::print_on(outputStream *st) const {
2764   st->print("\"%s\" ", get_thread_name());
2765   oop thread_oop = threadObj();
2766   if (thread_oop != NULL) {
2767     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2768     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2769     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2770   }
2771   Thread::print_on(st);
2772   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2773   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2774   if (thread_oop != NULL) {
2775     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2776   }
2777 #ifndef PRODUCT
2778   print_thread_state_on(st);
2779   _safepoint_state->print_on(st);
2780 #endif // PRODUCT
2781 }
2782 
2783 // Called by fatal error handler. The difference between this and
2784 // JavaThread::print() is that we can't grab lock or allocate memory.
2785 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2786   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2787   oop thread_obj = threadObj();
2788   if (thread_obj != NULL) {
2789     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2790   }
2791   st->print(" [");
2792   st->print("%s", _get_thread_state_name(_thread_state));
2793   if (osthread()) {
2794     st->print(", id=%d", osthread()->thread_id());
2795   }
2796   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2797             _stack_base - _stack_size, _stack_base);
2798   st->print("]");
2799   return;
2800 }
2801 
2802 // Verification
2803 
2804 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2805 
2806 void JavaThread::verify() {
2807   // Verify oops in the thread.
2808   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2809 
2810   // Verify the stack frames.
2811   frames_do(frame_verify);
2812 }
2813 
2814 // CR 6300358 (sub-CR 2137150)
2815 // Most callers of this method assume that it can't return NULL but a
2816 // thread may not have a name whilst it is in the process of attaching to
2817 // the VM - see CR 6412693, and there are places where a JavaThread can be
2818 // seen prior to having it's threadObj set (eg JNI attaching threads and
2819 // if vm exit occurs during initialization). These cases can all be accounted
2820 // for such that this method never returns NULL.
2821 const char* JavaThread::get_thread_name() const {
2822 #ifdef ASSERT
2823   // early safepoints can hit while current thread does not yet have TLS
2824   if (!SafepointSynchronize::is_at_safepoint()) {
2825     Thread *cur = Thread::current();
2826     if (!(cur->is_Java_thread() && cur == this)) {
2827       // Current JavaThreads are allowed to get their own name without
2828       // the Threads_lock.
2829       assert_locked_or_safepoint(Threads_lock);
2830     }
2831   }
2832 #endif // ASSERT
2833   return get_thread_name_string();
2834 }
2835 
2836 // Returns a non-NULL representation of this thread's name, or a suitable
2837 // descriptive string if there is no set name
2838 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2839   const char* name_str;
2840   oop thread_obj = threadObj();
2841   if (thread_obj != NULL) {
2842     oop name = java_lang_Thread::name(thread_obj);
2843     if (name != NULL) {
2844       if (buf == NULL) {
2845         name_str = java_lang_String::as_utf8_string(name);
2846       } else {
2847         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2848       }
2849     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2850       name_str = "<no-name - thread is attaching>";
2851     } else {
2852       name_str = Thread::name();
2853     }
2854   } else {
2855     name_str = Thread::name();
2856   }
2857   assert(name_str != NULL, "unexpected NULL thread name");
2858   return name_str;
2859 }
2860 
2861 
2862 const char* JavaThread::get_threadgroup_name() const {
2863   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2864   oop thread_obj = threadObj();
2865   if (thread_obj != NULL) {
2866     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2867     if (thread_group != NULL) {
2868       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2869       // ThreadGroup.name can be null
2870       if (name != NULL) {
2871         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2872         return str;
2873       }
2874     }
2875   }
2876   return NULL;
2877 }
2878 
2879 const char* JavaThread::get_parent_name() const {
2880   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2881   oop thread_obj = threadObj();
2882   if (thread_obj != NULL) {
2883     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2884     if (thread_group != NULL) {
2885       oop parent = java_lang_ThreadGroup::parent(thread_group);
2886       if (parent != NULL) {
2887         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2888         // ThreadGroup.name can be null
2889         if (name != NULL) {
2890           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2891           return str;
2892         }
2893       }
2894     }
2895   }
2896   return NULL;
2897 }
2898 
2899 ThreadPriority JavaThread::java_priority() const {
2900   oop thr_oop = threadObj();
2901   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2902   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2903   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2904   return priority;
2905 }
2906 
2907 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2908 
2909   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2910   // Link Java Thread object <-> C++ Thread
2911 
2912   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2913   // and put it into a new Handle.  The Handle "thread_oop" can then
2914   // be used to pass the C++ thread object to other methods.
2915 
2916   // Set the Java level thread object (jthread) field of the
2917   // new thread (a JavaThread *) to C++ thread object using the
2918   // "thread_oop" handle.
2919 
2920   // Set the thread field (a JavaThread *) of the
2921   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2922 
2923   Handle thread_oop(Thread::current(),
2924                     JNIHandles::resolve_non_null(jni_thread));
2925   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2926          "must be initialized");
2927   set_threadObj(thread_oop());
2928   java_lang_Thread::set_thread(thread_oop(), this);
2929 
2930   if (prio == NoPriority) {
2931     prio = java_lang_Thread::priority(thread_oop());
2932     assert(prio != NoPriority, "A valid priority should be present");
2933   }
2934 
2935   // Push the Java priority down to the native thread; needs Threads_lock
2936   Thread::set_priority(this, prio);
2937 
2938   prepare_ext();
2939 
2940   // Add the new thread to the Threads list and set it in motion.
2941   // We must have threads lock in order to call Threads::add.
2942   // It is crucial that we do not block before the thread is
2943   // added to the Threads list for if a GC happens, then the java_thread oop
2944   // will not be visited by GC.
2945   Threads::add(this);
2946 }
2947 
2948 oop JavaThread::current_park_blocker() {
2949   // Support for JSR-166 locks
2950   oop thread_oop = threadObj();
2951   if (thread_oop != NULL &&
2952       JDK_Version::current().supports_thread_park_blocker()) {
2953     return java_lang_Thread::park_blocker(thread_oop);
2954   }
2955   return NULL;
2956 }
2957 
2958 
2959 void JavaThread::print_stack_on(outputStream* st) {
2960   if (!has_last_Java_frame()) return;
2961   ResourceMark rm;
2962   HandleMark   hm;
2963 
2964   RegisterMap reg_map(this);
2965   vframe* start_vf = last_java_vframe(&reg_map);
2966   int count = 0;
2967   for (vframe* f = start_vf; f; f = f->sender()) {
2968     if (f->is_java_frame()) {
2969       javaVFrame* jvf = javaVFrame::cast(f);
2970       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2971 
2972       // Print out lock information
2973       if (JavaMonitorsInStackTrace) {
2974         jvf->print_lock_info_on(st, count);
2975       }
2976     } else {
2977       // Ignore non-Java frames
2978     }
2979 
2980     // Bail-out case for too deep stacks
2981     count++;
2982     if (MaxJavaStackTraceDepth == count) return;
2983   }
2984 }
2985 
2986 
2987 // JVMTI PopFrame support
2988 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2989   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2990   if (in_bytes(size_in_bytes) != 0) {
2991     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2992     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2993     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2994   }
2995 }
2996 
2997 void* JavaThread::popframe_preserved_args() {
2998   return _popframe_preserved_args;
2999 }
3000 
3001 ByteSize JavaThread::popframe_preserved_args_size() {
3002   return in_ByteSize(_popframe_preserved_args_size);
3003 }
3004 
3005 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3006   int sz = in_bytes(popframe_preserved_args_size());
3007   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3008   return in_WordSize(sz / wordSize);
3009 }
3010 
3011 void JavaThread::popframe_free_preserved_args() {
3012   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3013   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3014   _popframe_preserved_args = NULL;
3015   _popframe_preserved_args_size = 0;
3016 }
3017 
3018 #ifndef PRODUCT
3019 
3020 void JavaThread::trace_frames() {
3021   tty->print_cr("[Describe stack]");
3022   int frame_no = 1;
3023   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3024     tty->print("  %d. ", frame_no++);
3025     fst.current()->print_value_on(tty, this);
3026     tty->cr();
3027   }
3028 }
3029 
3030 class PrintAndVerifyOopClosure: public OopClosure {
3031  protected:
3032   template <class T> inline void do_oop_work(T* p) {
3033     oop obj = oopDesc::load_decode_heap_oop(p);
3034     if (obj == NULL) return;
3035     tty->print(INTPTR_FORMAT ": ", p);
3036     if (obj->is_oop_or_null()) {
3037       if (obj->is_objArray()) {
3038         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3039       } else {
3040         obj->print();
3041       }
3042     } else {
3043       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3044     }
3045     tty->cr();
3046   }
3047  public:
3048   virtual void do_oop(oop* p) { do_oop_work(p); }
3049   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3050 };
3051 
3052 
3053 static void oops_print(frame* f, const RegisterMap *map) {
3054   PrintAndVerifyOopClosure print;
3055   f->print_value();
3056   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3057 }
3058 
3059 // Print our all the locations that contain oops and whether they are
3060 // valid or not.  This useful when trying to find the oldest frame
3061 // where an oop has gone bad since the frame walk is from youngest to
3062 // oldest.
3063 void JavaThread::trace_oops() {
3064   tty->print_cr("[Trace oops]");
3065   frames_do(oops_print);
3066 }
3067 
3068 
3069 #ifdef ASSERT
3070 // Print or validate the layout of stack frames
3071 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3072   ResourceMark rm;
3073   PRESERVE_EXCEPTION_MARK;
3074   FrameValues values;
3075   int frame_no = 0;
3076   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3077     fst.current()->describe(values, ++frame_no);
3078     if (depth == frame_no) break;
3079   }
3080   if (validate_only) {
3081     values.validate();
3082   } else {
3083     tty->print_cr("[Describe stack layout]");
3084     values.print(this);
3085   }
3086 }
3087 #endif
3088 
3089 void JavaThread::trace_stack_from(vframe* start_vf) {
3090   ResourceMark rm;
3091   int vframe_no = 1;
3092   for (vframe* f = start_vf; f; f = f->sender()) {
3093     if (f->is_java_frame()) {
3094       javaVFrame::cast(f)->print_activation(vframe_no++);
3095     } else {
3096       f->print();
3097     }
3098     if (vframe_no > StackPrintLimit) {
3099       tty->print_cr("...<more frames>...");
3100       return;
3101     }
3102   }
3103 }
3104 
3105 
3106 void JavaThread::trace_stack() {
3107   if (!has_last_Java_frame()) return;
3108   ResourceMark rm;
3109   HandleMark   hm;
3110   RegisterMap reg_map(this);
3111   trace_stack_from(last_java_vframe(&reg_map));
3112 }
3113 
3114 
3115 #endif // PRODUCT
3116 
3117 
3118 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3119   assert(reg_map != NULL, "a map must be given");
3120   frame f = last_frame();
3121   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3122     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3123   }
3124   return NULL;
3125 }
3126 
3127 
3128 Klass* JavaThread::security_get_caller_class(int depth) {
3129   vframeStream vfst(this);
3130   vfst.security_get_caller_frame(depth);
3131   if (!vfst.at_end()) {
3132     return vfst.method()->method_holder();
3133   }
3134   return NULL;
3135 }
3136 
3137 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3138   assert(thread->is_Compiler_thread(), "must be compiler thread");
3139   CompileBroker::compiler_thread_loop();
3140 }
3141 
3142 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3143   NMethodSweeper::sweeper_loop();
3144 }
3145 
3146 // Create a CompilerThread
3147 CompilerThread::CompilerThread(CompileQueue* queue,
3148                                CompilerCounters* counters)
3149                                : JavaThread(&compiler_thread_entry) {
3150   _env   = NULL;
3151   _log   = NULL;
3152   _task  = NULL;
3153   _queue = queue;
3154   _counters = counters;
3155   _buffer_blob = NULL;
3156   _compiler = NULL;
3157 
3158 #ifndef PRODUCT
3159   _ideal_graph_printer = NULL;
3160 #endif
3161 }
3162 
3163 // Create sweeper thread
3164 CodeCacheSweeperThread::CodeCacheSweeperThread()
3165 : JavaThread(&sweeper_thread_entry) {
3166   _scanned_nmethod = NULL;
3167 }
3168 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3169   JavaThread::oops_do(f, cld_f, cf);
3170   if (_scanned_nmethod != NULL && cf != NULL) {
3171     // Safepoints can occur when the sweeper is scanning an nmethod so
3172     // process it here to make sure it isn't unloaded in the middle of
3173     // a scan.
3174     cf->do_code_blob(_scanned_nmethod);
3175   }
3176 }
3177 
3178 
3179 // ======= Threads ========
3180 
3181 // The Threads class links together all active threads, and provides
3182 // operations over all threads.  It is protected by its own Mutex
3183 // lock, which is also used in other contexts to protect thread
3184 // operations from having the thread being operated on from exiting
3185 // and going away unexpectedly (e.g., safepoint synchronization)
3186 
3187 JavaThread* Threads::_thread_list = NULL;
3188 int         Threads::_number_of_threads = 0;
3189 int         Threads::_number_of_non_daemon_threads = 0;
3190 int         Threads::_return_code = 0;
3191 size_t      JavaThread::_stack_size_at_create = 0;
3192 #ifdef ASSERT
3193 bool        Threads::_vm_complete = false;
3194 #endif
3195 
3196 // All JavaThreads
3197 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3198 
3199 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3200 void Threads::threads_do(ThreadClosure* tc) {
3201   assert_locked_or_safepoint(Threads_lock);
3202   // ALL_JAVA_THREADS iterates through all JavaThreads
3203   ALL_JAVA_THREADS(p) {
3204     tc->do_thread(p);
3205   }
3206   // Someday we could have a table or list of all non-JavaThreads.
3207   // For now, just manually iterate through them.
3208   tc->do_thread(VMThread::vm_thread());
3209   Universe::heap()->gc_threads_do(tc);
3210   WatcherThread *wt = WatcherThread::watcher_thread();
3211   // Strictly speaking, the following NULL check isn't sufficient to make sure
3212   // the data for WatcherThread is still valid upon being examined. However,
3213   // considering that WatchThread terminates when the VM is on the way to
3214   // exit at safepoint, the chance of the above is extremely small. The right
3215   // way to prevent termination of WatcherThread would be to acquire
3216   // Terminator_lock, but we can't do that without violating the lock rank
3217   // checking in some cases.
3218   if (wt != NULL) {
3219     tc->do_thread(wt);
3220   }
3221 
3222   // If CompilerThreads ever become non-JavaThreads, add them here
3223 }
3224 
3225 
3226 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3227   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3228 
3229   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3230     create_vm_init_libraries();
3231   }
3232 
3233   initialize_class(vmSymbols::java_lang_String(), CHECK);
3234 
3235   // Initialize java_lang.System (needed before creating the thread)
3236   initialize_class(vmSymbols::java_lang_System(), CHECK);
3237   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3238   Handle thread_group = create_initial_thread_group(CHECK);
3239   Universe::set_main_thread_group(thread_group());
3240   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3241   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3242   main_thread->set_threadObj(thread_object);
3243   // Set thread status to running since main thread has
3244   // been started and running.
3245   java_lang_Thread::set_thread_status(thread_object,
3246                                       java_lang_Thread::RUNNABLE);
3247 
3248   // The VM creates & returns objects of this class. Make sure it's initialized.
3249   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3250 
3251   // The VM preresolves methods to these classes. Make sure that they get initialized
3252   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3253   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3254   call_initializeSystemClass(CHECK);
3255 
3256   // get the Java runtime name after java.lang.System is initialized
3257   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3258   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3259 
3260   // an instance of OutOfMemory exception has been allocated earlier
3261   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3262   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3263   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3264   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3265   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3266   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3267   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3268   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3269 }
3270 
3271 void Threads::initialize_jsr292_core_classes(TRAPS) {
3272   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3273   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3274   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3275 }
3276 
3277 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3278   extern void JDK_Version_init();
3279 
3280   // Check version
3281   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3282 
3283   // Initialize the output stream module
3284   ostream_init();
3285 
3286   // Process java launcher properties.
3287   Arguments::process_sun_java_launcher_properties(args);
3288 
3289   // Initialize the os module before using TLS
3290   os::init();
3291 
3292   // Initialize system properties.
3293   Arguments::init_system_properties();
3294 
3295   // So that JDK version can be used as a discriminator when parsing arguments
3296   JDK_Version_init();
3297 
3298   // Update/Initialize System properties after JDK version number is known
3299   Arguments::init_version_specific_system_properties();
3300 
3301   // Parse arguments
3302   jint parse_result = Arguments::parse(args);
3303   if (parse_result != JNI_OK) return parse_result;
3304 
3305   os::init_before_ergo();
3306 
3307   jint ergo_result = Arguments::apply_ergo();
3308   if (ergo_result != JNI_OK) return ergo_result;
3309 
3310   if (PauseAtStartup) {
3311     os::pause();
3312   }
3313 
3314   HOTSPOT_VM_INIT_BEGIN();
3315 
3316   // Record VM creation timing statistics
3317   TraceVmCreationTime create_vm_timer;
3318   create_vm_timer.start();
3319 
3320   // Timing (must come after argument parsing)
3321   TraceTime timer("Create VM", TraceStartupTime);
3322 
3323   // Initialize the os module after parsing the args
3324   jint os_init_2_result = os::init_2();
3325   if (os_init_2_result != JNI_OK) return os_init_2_result;
3326 
3327   jint adjust_after_os_result = Arguments::adjust_after_os();
3328   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3329 
3330   // initialize TLS
3331   ThreadLocalStorage::init();
3332 
3333   // Initialize output stream logging
3334   ostream_init_log();
3335 
3336   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3337   // Must be before create_vm_init_agents()
3338   if (Arguments::init_libraries_at_startup()) {
3339     convert_vm_init_libraries_to_agents();
3340   }
3341 
3342   // Launch -agentlib/-agentpath and converted -Xrun agents
3343   if (Arguments::init_agents_at_startup()) {
3344     create_vm_init_agents();
3345   }
3346 
3347   // Initialize Threads state
3348   _thread_list = NULL;
3349   _number_of_threads = 0;
3350   _number_of_non_daemon_threads = 0;
3351 
3352   // Initialize global data structures and create system classes in heap
3353   vm_init_globals();
3354 
3355   // Attach the main thread to this os thread
3356   JavaThread* main_thread = new JavaThread();
3357   main_thread->set_thread_state(_thread_in_vm);
3358   // must do this before set_active_handles and initialize_thread_local_storage
3359   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3360   // change the stack size recorded here to one based on the java thread
3361   // stacksize. This adjusted size is what is used to figure the placement
3362   // of the guard pages.
3363   main_thread->record_stack_base_and_size();
3364   main_thread->initialize_thread_local_storage();
3365 
3366   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3367 
3368   if (!main_thread->set_as_starting_thread()) {
3369     vm_shutdown_during_initialization(
3370                                       "Failed necessary internal allocation. Out of swap space");
3371     delete main_thread;
3372     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3373     return JNI_ENOMEM;
3374   }
3375 
3376   // Enable guard page *after* os::create_main_thread(), otherwise it would
3377   // crash Linux VM, see notes in os_linux.cpp.
3378   main_thread->create_stack_guard_pages();
3379 
3380   // Initialize Java-Level synchronization subsystem
3381   ObjectMonitor::Initialize();
3382 
3383   // Initialize global modules
3384   jint status = init_globals();
3385   if (status != JNI_OK) {
3386     delete main_thread;
3387     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3388     return status;
3389   }
3390 
3391   // Should be done after the heap is fully created
3392   main_thread->cache_global_variables();
3393 
3394   HandleMark hm;
3395 
3396   { MutexLocker mu(Threads_lock);
3397     Threads::add(main_thread);
3398   }
3399 
3400   // Any JVMTI raw monitors entered in onload will transition into
3401   // real raw monitor. VM is setup enough here for raw monitor enter.
3402   JvmtiExport::transition_pending_onload_raw_monitors();
3403 
3404   // Create the VMThread
3405   { TraceTime timer("Start VMThread", TraceStartupTime);
3406     VMThread::create();
3407     Thread* vmthread = VMThread::vm_thread();
3408 
3409     if (!os::create_thread(vmthread, os::vm_thread)) {
3410       vm_exit_during_initialization("Cannot create VM thread. "
3411                                     "Out of system resources.");
3412     }
3413 
3414     // Wait for the VM thread to become ready, and VMThread::run to initialize
3415     // Monitors can have spurious returns, must always check another state flag
3416     {
3417       MutexLocker ml(Notify_lock);
3418       os::start_thread(vmthread);
3419       while (vmthread->active_handles() == NULL) {
3420         Notify_lock->wait();
3421       }
3422     }
3423   }
3424 
3425   assert(Universe::is_fully_initialized(), "not initialized");
3426   if (VerifyDuringStartup) {
3427     // Make sure we're starting with a clean slate.
3428     VM_Verify verify_op;
3429     VMThread::execute(&verify_op);
3430   }
3431 
3432   Thread* THREAD = Thread::current();
3433 
3434   // At this point, the Universe is initialized, but we have not executed
3435   // any byte code.  Now is a good time (the only time) to dump out the
3436   // internal state of the JVM for sharing.
3437   if (DumpSharedSpaces) {
3438     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3439     ShouldNotReachHere();
3440   }
3441 
3442   // Always call even when there are not JVMTI environments yet, since environments
3443   // may be attached late and JVMTI must track phases of VM execution
3444   JvmtiExport::enter_start_phase();
3445 
3446   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3447   JvmtiExport::post_vm_start();
3448 
3449   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3450 
3451   // We need this for ClassDataSharing - the initial vm.info property is set
3452   // with the default value of CDS "sharing" which may be reset through
3453   // command line options.
3454   reset_vm_info_property(CHECK_JNI_ERR);
3455 
3456   quicken_jni_functions();
3457 
3458   // Must be run after init_ft which initializes ft_enabled
3459   if (TRACE_INITIALIZE() != JNI_OK) {
3460     vm_exit_during_initialization("Failed to initialize tracing backend");
3461   }
3462 
3463   // Set flag that basic initialization has completed. Used by exceptions and various
3464   // debug stuff, that does not work until all basic classes have been initialized.
3465   set_init_completed();
3466 
3467   Metaspace::post_initialize();
3468 
3469   HOTSPOT_VM_INIT_END();
3470 
3471   // record VM initialization completion time
3472 #if INCLUDE_MANAGEMENT
3473   Management::record_vm_init_completed();
3474 #endif // INCLUDE_MANAGEMENT
3475 
3476   // Compute system loader. Note that this has to occur after set_init_completed, since
3477   // valid exceptions may be thrown in the process.
3478   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3479   // set_init_completed has just been called, causing exceptions not to be shortcut
3480   // anymore. We call vm_exit_during_initialization directly instead.
3481   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3482 
3483 #if INCLUDE_ALL_GCS
3484   // Support for ConcurrentMarkSweep. This should be cleaned up
3485   // and better encapsulated. The ugly nested if test would go away
3486   // once things are properly refactored. XXX YSR
3487   if (UseConcMarkSweepGC || UseG1GC) {
3488     if (UseConcMarkSweepGC) {
3489       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3490     } else {
3491       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3492     }
3493   }
3494 #endif // INCLUDE_ALL_GCS
3495 
3496   // Always call even when there are not JVMTI environments yet, since environments
3497   // may be attached late and JVMTI must track phases of VM execution
3498   JvmtiExport::enter_live_phase();
3499 
3500   // Signal Dispatcher needs to be started before VMInit event is posted
3501   os::signal_init();
3502 
3503   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3504   if (!DisableAttachMechanism) {
3505     AttachListener::vm_start();
3506     if (StartAttachListener || AttachListener::init_at_startup()) {
3507       AttachListener::init();
3508     }
3509   }
3510 
3511   // Launch -Xrun agents
3512   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3513   // back-end can launch with -Xdebug -Xrunjdwp.
3514   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3515     create_vm_init_libraries();
3516   }
3517 
3518   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3519   JvmtiExport::post_vm_initialized();
3520 
3521   if (TRACE_START() != JNI_OK) {
3522     vm_exit_during_initialization("Failed to start tracing backend.");
3523   }
3524 
3525   if (CleanChunkPoolAsync) {
3526     Chunk::start_chunk_pool_cleaner_task();
3527   }
3528 
3529   // initialize compiler(s)
3530 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3531   CompileBroker::compilation_init();
3532 #endif
3533 
3534   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3535   // It is done after compilers are initialized, because otherwise compilations of
3536   // signature polymorphic MH intrinsics can be missed
3537   // (see SystemDictionary::find_method_handle_intrinsic).
3538   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3539 
3540 #if INCLUDE_MANAGEMENT
3541   Management::initialize(THREAD);
3542 
3543   if (HAS_PENDING_EXCEPTION) {
3544     // management agent fails to start possibly due to
3545     // configuration problem and is responsible for printing
3546     // stack trace if appropriate. Simply exit VM.
3547     vm_exit(1);
3548   }
3549 #endif // INCLUDE_MANAGEMENT
3550 
3551   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3552   if (MemProfiling)                   MemProfiler::engage();
3553   StatSampler::engage();
3554   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3555 
3556   BiasedLocking::init();
3557 
3558 #if INCLUDE_RTM_OPT
3559   RTMLockingCounters::init();
3560 #endif
3561 
3562   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3563     call_postVMInitHook(THREAD);
3564     // The Java side of PostVMInitHook.run must deal with all
3565     // exceptions and provide means of diagnosis.
3566     if (HAS_PENDING_EXCEPTION) {
3567       CLEAR_PENDING_EXCEPTION;
3568     }
3569   }
3570 
3571   {
3572     MutexLocker ml(PeriodicTask_lock);
3573     // Make sure the WatcherThread can be started by WatcherThread::start()
3574     // or by dynamic enrollment.
3575     WatcherThread::make_startable();
3576     // Start up the WatcherThread if there are any periodic tasks
3577     // NOTE:  All PeriodicTasks should be registered by now. If they
3578     //   aren't, late joiners might appear to start slowly (we might
3579     //   take a while to process their first tick).
3580     if (PeriodicTask::num_tasks() > 0) {
3581       WatcherThread::start();
3582     }
3583   }
3584 
3585   create_vm_timer.end();
3586 #ifdef ASSERT
3587   _vm_complete = true;
3588 #endif
3589   return JNI_OK;
3590 }
3591 
3592 // type for the Agent_OnLoad and JVM_OnLoad entry points
3593 extern "C" {
3594   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3595 }
3596 // Find a command line agent library and return its entry point for
3597 //         -agentlib:  -agentpath:   -Xrun
3598 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3599 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3600                                     const char *on_load_symbols[],
3601                                     size_t num_symbol_entries) {
3602   OnLoadEntry_t on_load_entry = NULL;
3603   void *library = NULL;
3604 
3605   if (!agent->valid()) {
3606     char buffer[JVM_MAXPATHLEN];
3607     char ebuf[1024] = "";
3608     const char *name = agent->name();
3609     const char *msg = "Could not find agent library ";
3610 
3611     // First check to see if agent is statically linked into executable
3612     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3613       library = agent->os_lib();
3614     } else if (agent->is_absolute_path()) {
3615       library = os::dll_load(name, ebuf, sizeof ebuf);
3616       if (library == NULL) {
3617         const char *sub_msg = " in absolute path, with error: ";
3618         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3619         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3620         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3621         // If we can't find the agent, exit.
3622         vm_exit_during_initialization(buf, NULL);
3623         FREE_C_HEAP_ARRAY(char, buf);
3624       }
3625     } else {
3626       // Try to load the agent from the standard dll directory
3627       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3628                              name)) {
3629         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3630       }
3631       if (library == NULL) { // Try the local directory
3632         char ns[1] = {0};
3633         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3634           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3635         }
3636         if (library == NULL) {
3637           const char *sub_msg = " on the library path, with error: ";
3638           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3639           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3640           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3641           // If we can't find the agent, exit.
3642           vm_exit_during_initialization(buf, NULL);
3643           FREE_C_HEAP_ARRAY(char, buf);
3644         }
3645       }
3646     }
3647     agent->set_os_lib(library);
3648     agent->set_valid();
3649   }
3650 
3651   // Find the OnLoad function.
3652   on_load_entry =
3653     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3654                                                           false,
3655                                                           on_load_symbols,
3656                                                           num_symbol_entries));
3657   return on_load_entry;
3658 }
3659 
3660 // Find the JVM_OnLoad entry point
3661 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3662   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3663   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3664 }
3665 
3666 // Find the Agent_OnLoad entry point
3667 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3668   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3669   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3670 }
3671 
3672 // For backwards compatibility with -Xrun
3673 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3674 // treated like -agentpath:
3675 // Must be called before agent libraries are created
3676 void Threads::convert_vm_init_libraries_to_agents() {
3677   AgentLibrary* agent;
3678   AgentLibrary* next;
3679 
3680   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3681     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3682     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3683 
3684     // If there is an JVM_OnLoad function it will get called later,
3685     // otherwise see if there is an Agent_OnLoad
3686     if (on_load_entry == NULL) {
3687       on_load_entry = lookup_agent_on_load(agent);
3688       if (on_load_entry != NULL) {
3689         // switch it to the agent list -- so that Agent_OnLoad will be called,
3690         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3691         Arguments::convert_library_to_agent(agent);
3692       } else {
3693         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3694       }
3695     }
3696   }
3697 }
3698 
3699 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3700 // Invokes Agent_OnLoad
3701 // Called very early -- before JavaThreads exist
3702 void Threads::create_vm_init_agents() {
3703   extern struct JavaVM_ main_vm;
3704   AgentLibrary* agent;
3705 
3706   JvmtiExport::enter_onload_phase();
3707 
3708   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3709     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3710 
3711     if (on_load_entry != NULL) {
3712       // Invoke the Agent_OnLoad function
3713       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3714       if (err != JNI_OK) {
3715         vm_exit_during_initialization("agent library failed to init", agent->name());
3716       }
3717     } else {
3718       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3719     }
3720   }
3721   JvmtiExport::enter_primordial_phase();
3722 }
3723 
3724 extern "C" {
3725   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3726 }
3727 
3728 void Threads::shutdown_vm_agents() {
3729   // Send any Agent_OnUnload notifications
3730   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3731   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3732   extern struct JavaVM_ main_vm;
3733   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3734 
3735     // Find the Agent_OnUnload function.
3736     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3737                                                    os::find_agent_function(agent,
3738                                                    false,
3739                                                    on_unload_symbols,
3740                                                    num_symbol_entries));
3741 
3742     // Invoke the Agent_OnUnload function
3743     if (unload_entry != NULL) {
3744       JavaThread* thread = JavaThread::current();
3745       ThreadToNativeFromVM ttn(thread);
3746       HandleMark hm(thread);
3747       (*unload_entry)(&main_vm);
3748     }
3749   }
3750 }
3751 
3752 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3753 // Invokes JVM_OnLoad
3754 void Threads::create_vm_init_libraries() {
3755   extern struct JavaVM_ main_vm;
3756   AgentLibrary* agent;
3757 
3758   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3759     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3760 
3761     if (on_load_entry != NULL) {
3762       // Invoke the JVM_OnLoad function
3763       JavaThread* thread = JavaThread::current();
3764       ThreadToNativeFromVM ttn(thread);
3765       HandleMark hm(thread);
3766       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3767       if (err != JNI_OK) {
3768         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3769       }
3770     } else {
3771       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3772     }
3773   }
3774 }
3775 
3776 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3777   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3778 
3779   JavaThread* java_thread = NULL;
3780   // Sequential search for now.  Need to do better optimization later.
3781   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3782     oop tobj = thread->threadObj();
3783     if (!thread->is_exiting() &&
3784         tobj != NULL &&
3785         java_tid == java_lang_Thread::thread_id(tobj)) {
3786       java_thread = thread;
3787       break;
3788     }
3789   }
3790   return java_thread;
3791 }
3792 
3793 
3794 // Last thread running calls java.lang.Shutdown.shutdown()
3795 void JavaThread::invoke_shutdown_hooks() {
3796   HandleMark hm(this);
3797 
3798   // We could get here with a pending exception, if so clear it now.
3799   if (this->has_pending_exception()) {
3800     this->clear_pending_exception();
3801   }
3802 
3803   EXCEPTION_MARK;
3804   Klass* k =
3805     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3806                                       THREAD);
3807   if (k != NULL) {
3808     // SystemDictionary::resolve_or_null will return null if there was
3809     // an exception.  If we cannot load the Shutdown class, just don't
3810     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3811     // and finalizers (if runFinalizersOnExit is set) won't be run.
3812     // Note that if a shutdown hook was registered or runFinalizersOnExit
3813     // was called, the Shutdown class would have already been loaded
3814     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3815     instanceKlassHandle shutdown_klass (THREAD, k);
3816     JavaValue result(T_VOID);
3817     JavaCalls::call_static(&result,
3818                            shutdown_klass,
3819                            vmSymbols::shutdown_method_name(),
3820                            vmSymbols::void_method_signature(),
3821                            THREAD);
3822   }
3823   CLEAR_PENDING_EXCEPTION;
3824 }
3825 
3826 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3827 // the program falls off the end of main(). Another VM exit path is through
3828 // vm_exit() when the program calls System.exit() to return a value or when
3829 // there is a serious error in VM. The two shutdown paths are not exactly
3830 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3831 // and VM_Exit op at VM level.
3832 //
3833 // Shutdown sequence:
3834 //   + Shutdown native memory tracking if it is on
3835 //   + Wait until we are the last non-daemon thread to execute
3836 //     <-- every thing is still working at this moment -->
3837 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3838 //        shutdown hooks, run finalizers if finalization-on-exit
3839 //   + Call before_exit(), prepare for VM exit
3840 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3841 //        currently the only user of this mechanism is File.deleteOnExit())
3842 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3843 //        post thread end and vm death events to JVMTI,
3844 //        stop signal thread
3845 //   + Call JavaThread::exit(), it will:
3846 //      > release JNI handle blocks, remove stack guard pages
3847 //      > remove this thread from Threads list
3848 //     <-- no more Java code from this thread after this point -->
3849 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3850 //     the compiler threads at safepoint
3851 //     <-- do not use anything that could get blocked by Safepoint -->
3852 //   + Disable tracing at JNI/JVM barriers
3853 //   + Set _vm_exited flag for threads that are still running native code
3854 //   + Delete this thread
3855 //   + Call exit_globals()
3856 //      > deletes tty
3857 //      > deletes PerfMemory resources
3858 //   + Return to caller
3859 
3860 bool Threads::destroy_vm() {
3861   JavaThread* thread = JavaThread::current();
3862 
3863 #ifdef ASSERT
3864   _vm_complete = false;
3865 #endif
3866   // Wait until we are the last non-daemon thread to execute
3867   { MutexLocker nu(Threads_lock);
3868     while (Threads::number_of_non_daemon_threads() > 1)
3869       // This wait should make safepoint checks, wait without a timeout,
3870       // and wait as a suspend-equivalent condition.
3871       //
3872       // Note: If the FlatProfiler is running and this thread is waiting
3873       // for another non-daemon thread to finish, then the FlatProfiler
3874       // is waiting for the external suspend request on this thread to
3875       // complete. wait_for_ext_suspend_completion() will eventually
3876       // timeout, but that takes time. Making this wait a suspend-
3877       // equivalent condition solves that timeout problem.
3878       //
3879       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3880                          Mutex::_as_suspend_equivalent_flag);
3881   }
3882 
3883   // Hang forever on exit if we are reporting an error.
3884   if (ShowMessageBoxOnError && is_error_reported()) {
3885     os::infinite_sleep();
3886   }
3887   os::wait_for_keypress_at_exit();
3888 
3889   // run Java level shutdown hooks
3890   thread->invoke_shutdown_hooks();
3891 
3892   before_exit(thread);
3893 
3894   thread->exit(true);
3895 
3896   // Stop VM thread.
3897   {
3898     // 4945125 The vm thread comes to a safepoint during exit.
3899     // GC vm_operations can get caught at the safepoint, and the
3900     // heap is unparseable if they are caught. Grab the Heap_lock
3901     // to prevent this. The GC vm_operations will not be able to
3902     // queue until after the vm thread is dead. After this point,
3903     // we'll never emerge out of the safepoint before the VM exits.
3904 
3905     MutexLocker ml(Heap_lock);
3906 
3907     VMThread::wait_for_vm_thread_exit();
3908     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3909     VMThread::destroy();
3910   }
3911 
3912   // clean up ideal graph printers
3913 #if defined(COMPILER2) && !defined(PRODUCT)
3914   IdealGraphPrinter::clean_up();
3915 #endif
3916 
3917   // Now, all Java threads are gone except daemon threads. Daemon threads
3918   // running Java code or in VM are stopped by the Safepoint. However,
3919   // daemon threads executing native code are still running.  But they
3920   // will be stopped at native=>Java/VM barriers. Note that we can't
3921   // simply kill or suspend them, as it is inherently deadlock-prone.
3922 
3923 #ifndef PRODUCT
3924   // disable function tracing at JNI/JVM barriers
3925   TraceJNICalls = false;
3926   TraceJVMCalls = false;
3927   TraceRuntimeCalls = false;
3928 #endif
3929 
3930   VM_Exit::set_vm_exited();
3931 
3932   notify_vm_shutdown();
3933 
3934   delete thread;
3935 
3936   // exit_globals() will delete tty
3937   exit_globals();
3938 
3939   return true;
3940 }
3941 
3942 
3943 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3944   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3945   return is_supported_jni_version(version);
3946 }
3947 
3948 
3949 jboolean Threads::is_supported_jni_version(jint version) {
3950   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3951   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3952   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3953   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3954   return JNI_FALSE;
3955 }
3956 
3957 
3958 void Threads::add(JavaThread* p, bool force_daemon) {
3959   // The threads lock must be owned at this point
3960   assert_locked_or_safepoint(Threads_lock);
3961 
3962   // See the comment for this method in thread.hpp for its purpose and
3963   // why it is called here.
3964   p->initialize_queues();
3965   p->set_next(_thread_list);
3966   _thread_list = p;
3967   _number_of_threads++;
3968   oop threadObj = p->threadObj();
3969   bool daemon = true;
3970   // Bootstrapping problem: threadObj can be null for initial
3971   // JavaThread (or for threads attached via JNI)
3972   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3973     _number_of_non_daemon_threads++;
3974     daemon = false;
3975   }
3976 
3977   ThreadService::add_thread(p, daemon);
3978 
3979   // Possible GC point.
3980   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3981 }
3982 
3983 void Threads::remove(JavaThread* p) {
3984   // Extra scope needed for Thread_lock, so we can check
3985   // that we do not remove thread without safepoint code notice
3986   { MutexLocker ml(Threads_lock);
3987 
3988     assert(includes(p), "p must be present");
3989 
3990     JavaThread* current = _thread_list;
3991     JavaThread* prev    = NULL;
3992 
3993     while (current != p) {
3994       prev    = current;
3995       current = current->next();
3996     }
3997 
3998     if (prev) {
3999       prev->set_next(current->next());
4000     } else {
4001       _thread_list = p->next();
4002     }
4003     _number_of_threads--;
4004     oop threadObj = p->threadObj();
4005     bool daemon = true;
4006     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4007       _number_of_non_daemon_threads--;
4008       daemon = false;
4009 
4010       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4011       // on destroy_vm will wake up.
4012       if (number_of_non_daemon_threads() == 1) {
4013         Threads_lock->notify_all();
4014       }
4015     }
4016     ThreadService::remove_thread(p, daemon);
4017 
4018     // Make sure that safepoint code disregard this thread. This is needed since
4019     // the thread might mess around with locks after this point. This can cause it
4020     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4021     // of this thread since it is removed from the queue.
4022     p->set_terminated_value();
4023   } // unlock Threads_lock
4024 
4025   // Since Events::log uses a lock, we grab it outside the Threads_lock
4026   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4027 }
4028 
4029 // Threads_lock must be held when this is called (or must be called during a safepoint)
4030 bool Threads::includes(JavaThread* p) {
4031   assert(Threads_lock->is_locked(), "sanity check");
4032   ALL_JAVA_THREADS(q) {
4033     if (q == p) {
4034       return true;
4035     }
4036   }
4037   return false;
4038 }
4039 
4040 // Operations on the Threads list for GC.  These are not explicitly locked,
4041 // but the garbage collector must provide a safe context for them to run.
4042 // In particular, these things should never be called when the Threads_lock
4043 // is held by some other thread. (Note: the Safepoint abstraction also
4044 // uses the Threads_lock to guarantee this property. It also makes sure that
4045 // all threads gets blocked when exiting or starting).
4046 
4047 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4048   ALL_JAVA_THREADS(p) {
4049     p->oops_do(f, cld_f, cf);
4050   }
4051   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4052 }
4053 
4054 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4055   // Introduce a mechanism allowing parallel threads to claim threads as
4056   // root groups.  Overhead should be small enough to use all the time,
4057   // even in sequential code.
4058   SharedHeap* sh = SharedHeap::heap();
4059   // Cannot yet substitute active_workers for n_par_threads
4060   // because of G1CollectedHeap::verify() use of
4061   // SharedHeap::process_roots().  n_par_threads == 0 will
4062   // turn off parallelism in process_roots while active_workers
4063   // is being used for parallelism elsewhere.
4064   bool is_par = sh->n_par_threads() > 0;
4065   assert(!is_par ||
4066          (SharedHeap::heap()->n_par_threads() ==
4067          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4068   int cp = SharedHeap::heap()->strong_roots_parity();
4069   ALL_JAVA_THREADS(p) {
4070     if (p->claim_oops_do(is_par, cp)) {
4071       p->oops_do(f, cld_f, cf);
4072     }
4073   }
4074   VMThread* vmt = VMThread::vm_thread();
4075   if (vmt->claim_oops_do(is_par, cp)) {
4076     vmt->oops_do(f, cld_f, cf);
4077   }
4078 }
4079 
4080 #if INCLUDE_ALL_GCS
4081 // Used by ParallelScavenge
4082 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4083   ALL_JAVA_THREADS(p) {
4084     q->enqueue(new ThreadRootsTask(p));
4085   }
4086   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4087 }
4088 
4089 // Used by Parallel Old
4090 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4091   ALL_JAVA_THREADS(p) {
4092     q->enqueue(new ThreadRootsMarkingTask(p));
4093   }
4094   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4095 }
4096 #endif // INCLUDE_ALL_GCS
4097 
4098 void Threads::nmethods_do(CodeBlobClosure* cf) {
4099   ALL_JAVA_THREADS(p) {
4100     p->nmethods_do(cf);
4101   }
4102   VMThread::vm_thread()->nmethods_do(cf);
4103 }
4104 
4105 void Threads::metadata_do(void f(Metadata*)) {
4106   ALL_JAVA_THREADS(p) {
4107     p->metadata_do(f);
4108   }
4109 }
4110 
4111 class ThreadHandlesClosure : public ThreadClosure {
4112   void (*_f)(Metadata*);
4113  public:
4114   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4115   virtual void do_thread(Thread* thread) {
4116     thread->metadata_handles_do(_f);
4117   }
4118 };
4119 
4120 void Threads::metadata_handles_do(void f(Metadata*)) {
4121   // Only walk the Handles in Thread.
4122   ThreadHandlesClosure handles_closure(f);
4123   threads_do(&handles_closure);
4124 }
4125 
4126 void Threads::deoptimized_wrt_marked_nmethods() {
4127   ALL_JAVA_THREADS(p) {
4128     p->deoptimized_wrt_marked_nmethods();
4129   }
4130 }
4131 
4132 
4133 // Get count Java threads that are waiting to enter the specified monitor.
4134 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4135                                                          address monitor,
4136                                                          bool doLock) {
4137   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4138          "must grab Threads_lock or be at safepoint");
4139   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4140 
4141   int i = 0;
4142   {
4143     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4144     ALL_JAVA_THREADS(p) {
4145       if (p->is_Compiler_thread()) continue;
4146 
4147       address pending = (address)p->current_pending_monitor();
4148       if (pending == monitor) {             // found a match
4149         if (i < count) result->append(p);   // save the first count matches
4150         i++;
4151       }
4152     }
4153   }
4154   return result;
4155 }
4156 
4157 
4158 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4159                                                       bool doLock) {
4160   assert(doLock ||
4161          Threads_lock->owned_by_self() ||
4162          SafepointSynchronize::is_at_safepoint(),
4163          "must grab Threads_lock or be at safepoint");
4164 
4165   // NULL owner means not locked so we can skip the search
4166   if (owner == NULL) return NULL;
4167 
4168   {
4169     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4170     ALL_JAVA_THREADS(p) {
4171       // first, see if owner is the address of a Java thread
4172       if (owner == (address)p) return p;
4173     }
4174   }
4175   // Cannot assert on lack of success here since this function may be
4176   // used by code that is trying to report useful problem information
4177   // like deadlock detection.
4178   if (UseHeavyMonitors) return NULL;
4179 
4180   // If we didn't find a matching Java thread and we didn't force use of
4181   // heavyweight monitors, then the owner is the stack address of the
4182   // Lock Word in the owning Java thread's stack.
4183   //
4184   JavaThread* the_owner = NULL;
4185   {
4186     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4187     ALL_JAVA_THREADS(q) {
4188       if (q->is_lock_owned(owner)) {
4189         the_owner = q;
4190         break;
4191       }
4192     }
4193   }
4194   // cannot assert on lack of success here; see above comment
4195   return the_owner;
4196 }
4197 
4198 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4199 void Threads::print_on(outputStream* st, bool print_stacks,
4200                        bool internal_format, bool print_concurrent_locks) {
4201   char buf[32];
4202   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4203 
4204   st->print_cr("Full thread dump %s (%s %s):",
4205                Abstract_VM_Version::vm_name(),
4206                Abstract_VM_Version::vm_release(),
4207                Abstract_VM_Version::vm_info_string());
4208   st->cr();
4209 
4210 #if INCLUDE_ALL_GCS
4211   // Dump concurrent locks
4212   ConcurrentLocksDump concurrent_locks;
4213   if (print_concurrent_locks) {
4214     concurrent_locks.dump_at_safepoint();
4215   }
4216 #endif // INCLUDE_ALL_GCS
4217 
4218   ALL_JAVA_THREADS(p) {
4219     ResourceMark rm;
4220     p->print_on(st);
4221     if (print_stacks) {
4222       if (internal_format) {
4223         p->trace_stack();
4224       } else {
4225         p->print_stack_on(st);
4226       }
4227     }
4228     st->cr();
4229 #if INCLUDE_ALL_GCS
4230     if (print_concurrent_locks) {
4231       concurrent_locks.print_locks_on(p, st);
4232     }
4233 #endif // INCLUDE_ALL_GCS
4234   }
4235 
4236   VMThread::vm_thread()->print_on(st);
4237   st->cr();
4238   Universe::heap()->print_gc_threads_on(st);
4239   WatcherThread* wt = WatcherThread::watcher_thread();
4240   if (wt != NULL) {
4241     wt->print_on(st);
4242     st->cr();
4243   }
4244   CompileBroker::print_compiler_threads_on(st);
4245   st->flush();
4246 }
4247 
4248 // Threads::print_on_error() is called by fatal error handler. It's possible
4249 // that VM is not at safepoint and/or current thread is inside signal handler.
4250 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4251 // memory (even in resource area), it might deadlock the error handler.
4252 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4253                              int buflen) {
4254   bool found_current = false;
4255   st->print_cr("Java Threads: ( => current thread )");
4256   ALL_JAVA_THREADS(thread) {
4257     bool is_current = (current == thread);
4258     found_current = found_current || is_current;
4259 
4260     st->print("%s", is_current ? "=>" : "  ");
4261 
4262     st->print(PTR_FORMAT, thread);
4263     st->print(" ");
4264     thread->print_on_error(st, buf, buflen);
4265     st->cr();
4266   }
4267   st->cr();
4268 
4269   st->print_cr("Other Threads:");
4270   if (VMThread::vm_thread()) {
4271     bool is_current = (current == VMThread::vm_thread());
4272     found_current = found_current || is_current;
4273     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4274 
4275     st->print(PTR_FORMAT, VMThread::vm_thread());
4276     st->print(" ");
4277     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4278     st->cr();
4279   }
4280   WatcherThread* wt = WatcherThread::watcher_thread();
4281   if (wt != NULL) {
4282     bool is_current = (current == wt);
4283     found_current = found_current || is_current;
4284     st->print("%s", is_current ? "=>" : "  ");
4285 
4286     st->print(PTR_FORMAT, wt);
4287     st->print(" ");
4288     wt->print_on_error(st, buf, buflen);
4289     st->cr();
4290   }
4291   if (!found_current) {
4292     st->cr();
4293     st->print("=>" PTR_FORMAT " (exited) ", current);
4294     current->print_on_error(st, buf, buflen);
4295     st->cr();
4296   }
4297 }
4298 
4299 // Internal SpinLock and Mutex
4300 // Based on ParkEvent
4301 
4302 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4303 //
4304 // We employ SpinLocks _only for low-contention, fixed-length
4305 // short-duration critical sections where we're concerned
4306 // about native mutex_t or HotSpot Mutex:: latency.
4307 // The mux construct provides a spin-then-block mutual exclusion
4308 // mechanism.
4309 //
4310 // Testing has shown that contention on the ListLock guarding gFreeList
4311 // is common.  If we implement ListLock as a simple SpinLock it's common
4312 // for the JVM to devolve to yielding with little progress.  This is true
4313 // despite the fact that the critical sections protected by ListLock are
4314 // extremely short.
4315 //
4316 // TODO-FIXME: ListLock should be of type SpinLock.
4317 // We should make this a 1st-class type, integrated into the lock
4318 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4319 // should have sufficient padding to avoid false-sharing and excessive
4320 // cache-coherency traffic.
4321 
4322 
4323 typedef volatile int SpinLockT;
4324 
4325 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4326   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4327     return;   // normal fast-path return
4328   }
4329 
4330   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4331   TEVENT(SpinAcquire - ctx);
4332   int ctr = 0;
4333   int Yields = 0;
4334   for (;;) {
4335     while (*adr != 0) {
4336       ++ctr;
4337       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4338         if (Yields > 5) {
4339           os::naked_short_sleep(1);
4340         } else {
4341           os::naked_yield();
4342           ++Yields;
4343         }
4344       } else {
4345         SpinPause();
4346       }
4347     }
4348     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4349   }
4350 }
4351 
4352 void Thread::SpinRelease(volatile int * adr) {
4353   assert(*adr != 0, "invariant");
4354   OrderAccess::fence();      // guarantee at least release consistency.
4355   // Roach-motel semantics.
4356   // It's safe if subsequent LDs and STs float "up" into the critical section,
4357   // but prior LDs and STs within the critical section can't be allowed
4358   // to reorder or float past the ST that releases the lock.
4359   // Loads and stores in the critical section - which appear in program
4360   // order before the store that releases the lock - must also appear
4361   // before the store that releases the lock in memory visibility order.
4362   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4363   // the ST of 0 into the lock-word which releases the lock, so fence
4364   // more than covers this on all platforms.
4365   *adr = 0;
4366 }
4367 
4368 // muxAcquire and muxRelease:
4369 //
4370 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4371 //    The LSB of the word is set IFF the lock is held.
4372 //    The remainder of the word points to the head of a singly-linked list
4373 //    of threads blocked on the lock.
4374 //
4375 // *  The current implementation of muxAcquire-muxRelease uses its own
4376 //    dedicated Thread._MuxEvent instance.  If we're interested in
4377 //    minimizing the peak number of extant ParkEvent instances then
4378 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4379 //    as certain invariants were satisfied.  Specifically, care would need
4380 //    to be taken with regards to consuming unpark() "permits".
4381 //    A safe rule of thumb is that a thread would never call muxAcquire()
4382 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4383 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4384 //    consume an unpark() permit intended for monitorenter, for instance.
4385 //    One way around this would be to widen the restricted-range semaphore
4386 //    implemented in park().  Another alternative would be to provide
4387 //    multiple instances of the PlatformEvent() for each thread.  One
4388 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4389 //
4390 // *  Usage:
4391 //    -- Only as leaf locks
4392 //    -- for short-term locking only as muxAcquire does not perform
4393 //       thread state transitions.
4394 //
4395 // Alternatives:
4396 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4397 //    but with parking or spin-then-park instead of pure spinning.
4398 // *  Use Taura-Oyama-Yonenzawa locks.
4399 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4400 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4401 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4402 //    acquiring threads use timers (ParkTimed) to detect and recover from
4403 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4404 //    boundaries by using placement-new.
4405 // *  Augment MCS with advisory back-link fields maintained with CAS().
4406 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4407 //    The validity of the backlinks must be ratified before we trust the value.
4408 //    If the backlinks are invalid the exiting thread must back-track through the
4409 //    the forward links, which are always trustworthy.
4410 // *  Add a successor indication.  The LockWord is currently encoded as
4411 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4412 //    to provide the usual futile-wakeup optimization.
4413 //    See RTStt for details.
4414 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4415 //
4416 
4417 
4418 typedef volatile intptr_t MutexT;      // Mux Lock-word
4419 enum MuxBits { LOCKBIT = 1 };
4420 
4421 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4422   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4423   if (w == 0) return;
4424   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4425     return;
4426   }
4427 
4428   TEVENT(muxAcquire - Contention);
4429   ParkEvent * const Self = Thread::current()->_MuxEvent;
4430   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4431   for (;;) {
4432     int its = (os::is_MP() ? 100 : 0) + 1;
4433 
4434     // Optional spin phase: spin-then-park strategy
4435     while (--its >= 0) {
4436       w = *Lock;
4437       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4438         return;
4439       }
4440     }
4441 
4442     Self->reset();
4443     Self->OnList = intptr_t(Lock);
4444     // The following fence() isn't _strictly necessary as the subsequent
4445     // CAS() both serializes execution and ratifies the fetched *Lock value.
4446     OrderAccess::fence();
4447     for (;;) {
4448       w = *Lock;
4449       if ((w & LOCKBIT) == 0) {
4450         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4451           Self->OnList = 0;   // hygiene - allows stronger asserts
4452           return;
4453         }
4454         continue;      // Interference -- *Lock changed -- Just retry
4455       }
4456       assert(w & LOCKBIT, "invariant");
4457       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4458       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4459     }
4460 
4461     while (Self->OnList != 0) {
4462       Self->park();
4463     }
4464   }
4465 }
4466 
4467 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4468   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4469   if (w == 0) return;
4470   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4471     return;
4472   }
4473 
4474   TEVENT(muxAcquire - Contention);
4475   ParkEvent * ReleaseAfter = NULL;
4476   if (ev == NULL) {
4477     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4478   }
4479   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4480   for (;;) {
4481     guarantee(ev->OnList == 0, "invariant");
4482     int its = (os::is_MP() ? 100 : 0) + 1;
4483 
4484     // Optional spin phase: spin-then-park strategy
4485     while (--its >= 0) {
4486       w = *Lock;
4487       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4488         if (ReleaseAfter != NULL) {
4489           ParkEvent::Release(ReleaseAfter);
4490         }
4491         return;
4492       }
4493     }
4494 
4495     ev->reset();
4496     ev->OnList = intptr_t(Lock);
4497     // The following fence() isn't _strictly necessary as the subsequent
4498     // CAS() both serializes execution and ratifies the fetched *Lock value.
4499     OrderAccess::fence();
4500     for (;;) {
4501       w = *Lock;
4502       if ((w & LOCKBIT) == 0) {
4503         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4504           ev->OnList = 0;
4505           // We call ::Release while holding the outer lock, thus
4506           // artificially lengthening the critical section.
4507           // Consider deferring the ::Release() until the subsequent unlock(),
4508           // after we've dropped the outer lock.
4509           if (ReleaseAfter != NULL) {
4510             ParkEvent::Release(ReleaseAfter);
4511           }
4512           return;
4513         }
4514         continue;      // Interference -- *Lock changed -- Just retry
4515       }
4516       assert(w & LOCKBIT, "invariant");
4517       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4518       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4519     }
4520 
4521     while (ev->OnList != 0) {
4522       ev->park();
4523     }
4524   }
4525 }
4526 
4527 // Release() must extract a successor from the list and then wake that thread.
4528 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4529 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4530 // Release() would :
4531 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4532 // (B) Extract a successor from the private list "in-hand"
4533 // (C) attempt to CAS() the residual back into *Lock over null.
4534 //     If there were any newly arrived threads and the CAS() would fail.
4535 //     In that case Release() would detach the RATs, re-merge the list in-hand
4536 //     with the RATs and repeat as needed.  Alternately, Release() might
4537 //     detach and extract a successor, but then pass the residual list to the wakee.
4538 //     The wakee would be responsible for reattaching and remerging before it
4539 //     competed for the lock.
4540 //
4541 // Both "pop" and DMR are immune from ABA corruption -- there can be
4542 // multiple concurrent pushers, but only one popper or detacher.
4543 // This implementation pops from the head of the list.  This is unfair,
4544 // but tends to provide excellent throughput as hot threads remain hot.
4545 // (We wake recently run threads first).
4546 //
4547 // All paths through muxRelease() will execute a CAS.
4548 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4549 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4550 // executed within the critical section are complete and globally visible before the
4551 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4552 void Thread::muxRelease(volatile intptr_t * Lock)  {
4553   for (;;) {
4554     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4555     assert(w & LOCKBIT, "invariant");
4556     if (w == LOCKBIT) return;
4557     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4558     assert(List != NULL, "invariant");
4559     assert(List->OnList == intptr_t(Lock), "invariant");
4560     ParkEvent * const nxt = List->ListNext;
4561     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4562 
4563     // The following CAS() releases the lock and pops the head element.
4564     // The CAS() also ratifies the previously fetched lock-word value.
4565     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4566       continue;
4567     }
4568     List->OnList = 0;
4569     OrderAccess::fence();
4570     List->unpark();
4571     return;
4572   }
4573 }
4574 
4575 
4576 void Threads::verify() {
4577   ALL_JAVA_THREADS(p) {
4578     p->verify();
4579   }
4580   VMThread* thread = VMThread::vm_thread();
4581   if (thread != NULL) thread->verify();
4582 }