1 /*
   2  * Copyright (c) 2009, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_STACK_HPP
  26 #define SHARE_VM_UTILITIES_STACK_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 
  31 // Class Stack (below) grows and shrinks by linking together "segments" which
  32 // are allocated on demand.  Segments are arrays of the element type (E) plus an
  33 // extra pointer-sized field to store the segment link.  Recently emptied
  34 // segments are kept in a cache and reused.
  35 //
  36 // Notes/caveats:
  37 //
  38 // The size of an element must either evenly divide the size of a pointer or be
  39 // a multiple of the size of a pointer.
  40 //
  41 // Destructors are not called for elements popped off the stack, so element
  42 // types which rely on destructors for things like reference counting will not
  43 // work properly.
  44 //
  45 // Class Stack allocates segments from the C heap.  However, two protected
  46 // virtual methods are used to alloc/free memory which subclasses can override:
  47 //
  48 //      virtual void* alloc(size_t bytes);
  49 //      virtual void  free(void* addr, size_t bytes);
  50 //
  51 // The alloc() method must return storage aligned for any use.  The
  52 // implementation in class Stack assumes that alloc() will terminate the process
  53 // if the allocation fails.
  54 
  55 template <class E, MEMFLAGS F> class StackIterator;
  56 
  57 // StackBase holds common data/methods that don't depend on the element type,
  58 // factored out to reduce template code duplication.
  59 template <MEMFLAGS F> class StackBase
  60 {
  61 public:
  62   size_t segment_size()   const { return _seg_size; } // Elements per segment.
  63   size_t max_size()       const { return _max_size; } // Max elements allowed.
  64   size_t max_cache_size() const { return _max_cache_size; } // Max segments
  65                                                             // allowed in cache.
  66 
  67   size_t cache_size() const { return _cache_size; }   // Segments in the cache.
  68 
  69 protected:
  70   // The ctor arguments correspond to the like-named functions above.
  71   // segment_size:    number of items per segment
  72   // max_cache_size:  maxmium number of *segments* to cache
  73   // max_size:        maximum number of items allowed, rounded to a multiple of
  74   //                  the segment size (0 == unlimited)
  75   inline StackBase(size_t segment_size, size_t max_cache_size, size_t max_size);
  76 
  77   // Round max_size to a multiple of the segment size.  Treat 0 as unlimited.
  78   static inline size_t adjust_max_size(size_t max_size, size_t seg_size);
  79 
  80 protected:
  81   const size_t _seg_size;       // Number of items per segment.
  82   const size_t _max_size;       // Maximum number of items allowed in the stack.
  83   const size_t _max_cache_size; // Maximum number of segments to cache.
  84   size_t       _cur_seg_size;   // Number of items in the current segment.
  85   size_t       _full_seg_size;  // Number of items in already-filled segments.
  86   size_t       _cache_size;     // Number of segments in the cache.
  87 };
  88 
  89 #ifdef __GNUC__
  90 #define inline
  91 #endif // __GNUC__
  92 
  93 template <class E, MEMFLAGS F>
  94 class Stack:  public StackBase<F>
  95 {
  96 public:
  97   friend class StackIterator<E, F>;
  98 
  99   // segment_size:    number of items per segment
 100   // max_cache_size:  maxmium number of *segments* to cache
 101   // max_size:        maximum number of items allowed, rounded to a multiple of
 102   //                  the segment size (0 == unlimited)
 103   inline Stack(size_t segment_size = default_segment_size(),
 104                size_t max_cache_size = 4, size_t max_size = 0);
 105   inline ~Stack() { clear(true); }
 106 
 107   inline bool is_empty() const { return this->_cur_seg == NULL; }
 108   inline bool is_full()  const { return this->_full_seg_size >= this->max_size(); }
 109 
 110   // Performance sensitive code should use is_empty() instead of size() == 0 and
 111   // is_full() instead of size() == max_size().  Using a conditional here allows
 112   // just one var to be updated when pushing/popping elements instead of two;
 113   // _full_seg_size is updated only when pushing/popping segments.
 114   inline size_t size() const {
 115     return is_empty() ? 0 : this->_full_seg_size + this->_cur_seg_size;
 116   }
 117 
 118   inline void push(E elem);
 119   inline E    pop();
 120 
 121   // Clear everything from the stack, releasing the associated memory.  If
 122   // clear_cache is true, also release any cached segments.
 123   void clear(bool clear_cache = false);
 124 
 125   static inline size_t default_segment_size();
 126 
 127 protected:
 128   // Each segment includes space for _seg_size elements followed by a link
 129   // (pointer) to the previous segment; the space is allocated as a single block
 130   // of size segment_bytes().  _seg_size is rounded up if necessary so the link
 131   // is properly aligned.  The C struct for the layout would be:
 132   //
 133   // struct segment {
 134   //   E     elements[_seg_size];
 135   //   E*    link;
 136   // };
 137 
 138   // Round up seg_size to keep the link field aligned.
 139   static inline size_t adjust_segment_size(size_t seg_size);
 140 
 141   // Methods for allocation size and getting/setting the link.
 142   inline size_t link_offset() const;              // Byte offset of link field.
 143   inline size_t segment_bytes() const;            // Segment size in bytes.
 144   inline E**    link_addr(E* seg) const;          // Address of the link field.
 145   inline E*     get_link(E* seg) const;           // Extract the link from seg.
 146   inline E*     set_link(E* new_seg, E* old_seg); // new_seg.link = old_seg.
 147 
 148   virtual E*    alloc(size_t bytes);
 149   virtual void  free(E* addr, size_t bytes);
 150 
 151   void push_segment();
 152   void pop_segment();
 153 
 154   void free_segments(E* seg);          // Free all segments in the list.
 155   inline void reset(bool reset_cache); // Reset all data fields.
 156 
 157   DEBUG_ONLY(void verify(bool at_empty_transition) const;)
 158   DEBUG_ONLY(void zap_segment(E* seg, bool zap_link_field) const;)
 159 
 160 private:
 161   E* _cur_seg;    // Current segment.
 162   E* _cache;      // Segment cache to avoid ping-ponging.
 163 };
 164 
 165 template <class E, MEMFLAGS F> class ResourceStack:  public Stack<E, F>, public ResourceObj
 166 {
 167 public:
 168   // If this class becomes widely used, it may make sense to save the Thread
 169   // and use it when allocating segments.
 170 //  ResourceStack(size_t segment_size = Stack<E, F>::default_segment_size()):
 171   ResourceStack(size_t segment_size): Stack<E, F>(segment_size, max_uintx)
 172     { }
 173 
 174   // Set the segment pointers to NULL so the parent dtor does not free them;
 175   // that must be done by the ResourceMark code.
 176   ~ResourceStack() { Stack<E, F>::reset(true); }
 177 
 178 protected:
 179   virtual E*   alloc(size_t bytes);
 180   virtual void free(E* addr, size_t bytes);
 181 
 182 private:
 183   void clear(bool clear_cache = false);
 184 };
 185 
 186 template <class E, MEMFLAGS F>
 187 class StackIterator: public StackObj
 188 {
 189 public:
 190   StackIterator(Stack<E, F>& stack): _stack(stack) { sync(); }
 191 
 192   Stack<E, F>& stack() const { return _stack; }
 193 
 194   bool is_empty() const { return _cur_seg == NULL; }
 195 
 196   E  next() { return *next_addr(); }
 197   E* next_addr();
 198 
 199   void sync(); // Sync the iterator's state to the stack's current state.
 200 
 201 private:
 202   Stack<E, F>& _stack;
 203   size_t    _cur_seg_size;
 204   E*        _cur_seg;
 205   size_t    _full_seg_size;
 206 };
 207 
 208 #ifdef __GNUC__
 209 #undef inline
 210 #endif // __GNUC__
 211 
 212 #endif // SHARE_VM_UTILITIES_STACK_HPP