1 /*
   2  * Copyright (c) 2009, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
  26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
  27 
  28 #include "utilities/stack.hpp"
  29 
  30 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
  31                      size_t max_size):
  32   _seg_size(segment_size),
  33   _max_cache_size(max_cache_size),
  34   _max_size(adjust_max_size(max_size, segment_size))
  35 {
  36   assert(_max_size % _seg_size == 0, "not a multiple");
  37 }
  38 
  39 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
  40 {
  41   assert(seg_size > 0, "cannot be 0");
  42   assert(max_size >= seg_size || max_size == 0, "max_size too small");
  43   const size_t limit = max_uintx - (seg_size - 1);
  44   if (max_size == 0 || max_size > limit) {
  45     max_size = limit;
  46   }
  47   return (max_size + seg_size - 1) / seg_size * seg_size;
  48 }
  49 
  50 template <class E, MEMFLAGS F>
  51 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
  52   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
  53 {
  54   reset(true);
  55 }
  56 
  57 template <class E, MEMFLAGS F>
  58 void Stack<E, F>::push(E item)
  59 {
  60   assert(!is_full(), "pushing onto a full stack");
  61   if (this->_cur_seg_size == this->_seg_size) {
  62     push_segment();
  63   }
  64   this->_cur_seg[this->_cur_seg_size] = item;
  65   ++this->_cur_seg_size;
  66 }
  67 
  68 template <class E, MEMFLAGS F>
  69 E Stack<E, F>::pop()
  70 {
  71   assert(!is_empty(), "popping from an empty stack");
  72   if (this->_cur_seg_size == 1) {
  73     E tmp = _cur_seg[--this->_cur_seg_size];
  74     pop_segment();
  75     return tmp;
  76   }
  77   return this->_cur_seg[--this->_cur_seg_size];
  78 }
  79 
  80 template <class E, MEMFLAGS F>
  81 void Stack<E, F>::clear(bool clear_cache)
  82 {
  83   free_segments(_cur_seg);
  84   if (clear_cache) free_segments(_cache);
  85   reset(clear_cache);
  86 }
  87 
  88 template <class E, MEMFLAGS F>
  89 size_t Stack<E, F>::default_segment_size()
  90 {
  91   // Number of elements that fit in 4K bytes minus the size of two pointers
  92   // (link field and malloc header).
  93   return (4096 - 2 * sizeof(E*)) / sizeof(E);
  94 }
  95 
  96 template <class E, MEMFLAGS F>
  97 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
  98 {
  99   const size_t elem_sz = sizeof(E);
 100   const size_t ptr_sz = sizeof(E*);
 101   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
 102   if (elem_sz < ptr_sz) {
 103     return align_size_up(seg_size * elem_sz, ptr_sz) / elem_sz;
 104   }
 105   return seg_size;
 106 }
 107 
 108 template <class E, MEMFLAGS F>
 109 size_t Stack<E, F>::link_offset() const
 110 {
 111   return align_size_up(this->_seg_size * sizeof(E), sizeof(E*));
 112 }
 113 
 114 template <class E, MEMFLAGS F>
 115 size_t Stack<E, F>::segment_bytes() const
 116 {
 117   return link_offset() + sizeof(E*);
 118 }
 119 
 120 template <class E, MEMFLAGS F>
 121 E** Stack<E, F>::link_addr(E* seg) const
 122 {
 123   return (E**) ((char*)seg + link_offset());
 124 }
 125 
 126 template <class E, MEMFLAGS F>
 127 E* Stack<E, F>::get_link(E* seg) const
 128 {
 129   return *link_addr(seg);
 130 }
 131 
 132 template <class E, MEMFLAGS F>
 133 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
 134 {
 135   *link_addr(new_seg) = old_seg;
 136   return new_seg;
 137 }
 138 
 139 template <class E, MEMFLAGS F>
 140 E* Stack<E, F>::alloc(size_t bytes)
 141 {
 142   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
 143 }
 144 
 145 template <class E, MEMFLAGS F>
 146 void Stack<E, F>::free(E* addr, size_t bytes)
 147 {
 148   FREE_C_HEAP_ARRAY(char, (char*) addr);
 149 }
 150 
 151 template <class E, MEMFLAGS F>
 152 void Stack<E, F>::push_segment()
 153 {
 154   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
 155   E* next;
 156   if (this->_cache_size > 0) {
 157     // Use a cached segment.
 158     next = _cache;
 159     _cache = get_link(_cache);
 160     --this->_cache_size;
 161   } else {
 162     next = alloc(segment_bytes());
 163     DEBUG_ONLY(zap_segment(next, true);)
 164   }
 165   const bool at_empty_transition = is_empty();
 166   this->_cur_seg = set_link(next, _cur_seg);
 167   this->_cur_seg_size = 0;
 168   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
 169   DEBUG_ONLY(verify(at_empty_transition);)
 170 }
 171 
 172 template <class E, MEMFLAGS F>
 173 void Stack<E, F>::pop_segment()
 174 {
 175   assert(this->_cur_seg_size == 0, "current segment is not empty");
 176   E* const prev = get_link(_cur_seg);
 177   if (this->_cache_size < this->_max_cache_size) {
 178     // Add the current segment to the cache.
 179     DEBUG_ONLY(zap_segment(_cur_seg, false);)
 180     _cache = set_link(_cur_seg, _cache);
 181     ++this->_cache_size;
 182   } else {
 183     DEBUG_ONLY(zap_segment(_cur_seg, true);)
 184     free(_cur_seg, segment_bytes());
 185   }
 186   const bool at_empty_transition = prev == NULL;
 187   this->_cur_seg = prev;
 188   this->_cur_seg_size = this->_seg_size;
 189   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
 190   DEBUG_ONLY(verify(at_empty_transition);)
 191 }
 192 
 193 template <class E, MEMFLAGS F>
 194 void Stack<E, F>::free_segments(E* seg)
 195 {
 196   const size_t bytes = segment_bytes();
 197   while (seg != NULL) {
 198     E* const prev = get_link(seg);
 199     free(seg, bytes);
 200     seg = prev;
 201   }
 202 }
 203 
 204 template <class E, MEMFLAGS F>
 205 void Stack<E, F>::reset(bool reset_cache)
 206 {
 207   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
 208   this->_full_seg_size = 0;
 209   _cur_seg = NULL;
 210   if (reset_cache) {
 211     this->_cache_size = 0;
 212     _cache = NULL;
 213   }
 214 }
 215 
 216 #ifdef ASSERT
 217 template <class E, MEMFLAGS F>
 218 void Stack<E, F>::verify(bool at_empty_transition) const
 219 {
 220   assert(size() <= this->max_size(), "stack exceeded bounds");
 221   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
 222   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
 223 
 224   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
 225   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
 226   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
 227 
 228   if (is_empty()) {
 229     assert(this->_cur_seg_size == this->segment_size(), "sanity");
 230   }
 231 }
 232 
 233 template <class E, MEMFLAGS F>
 234 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
 235 {
 236   if (!ZapStackSegments) return;
 237   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
 238   uint32_t* cur = (uint32_t*)seg;
 239   const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
 240   while (cur < end) {
 241     *cur++ = 0xfadfaded;
 242   }
 243 }
 244 #endif
 245 
 246 template <class E, MEMFLAGS F>
 247 E* ResourceStack<E, F>::alloc(size_t bytes)
 248 {
 249   return (E*) resource_allocate_bytes(bytes);
 250 }
 251 
 252 template <class E, MEMFLAGS F>
 253 void ResourceStack<E, F>::free(E* addr, size_t bytes)
 254 {
 255   resource_free_bytes((char*) addr, bytes);
 256 }
 257 
 258 template <class E, MEMFLAGS F>
 259 void StackIterator<E, F>::sync()
 260 {
 261   _full_seg_size = _stack._full_seg_size;
 262   _cur_seg_size = _stack._cur_seg_size;
 263   _cur_seg = _stack._cur_seg;
 264 }
 265 
 266 template <class E, MEMFLAGS F>
 267 E* StackIterator<E, F>::next_addr()
 268 {
 269   assert(!is_empty(), "no items left");
 270   if (_cur_seg_size == 1) {
 271     E* addr = _cur_seg;
 272     _cur_seg = _stack.get_link(_cur_seg);
 273     _cur_seg_size = _stack.segment_size();
 274     _full_seg_size -= _stack.segment_size();
 275     return addr;
 276   }
 277   return _cur_seg + --_cur_seg_size;
 278 }
 279 
 280 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP