1 /*
   2  * Copyright (c) 2009, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
  26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
  27 
  28 #include "utilities/stack.hpp"
  29 
  30 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
  31                      size_t max_size):
  32   _seg_size(segment_size),
  33   _max_cache_size(max_cache_size),
  34   _max_size(adjust_max_size(max_size, segment_size))
  35 {
  36   assert(_max_size % _seg_size == 0, "not a multiple");
  37 }
  38 
  39 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
  40 {
  41   assert(seg_size > 0, "cannot be 0");
  42   assert(max_size >= seg_size || max_size == 0, "max_size too small");
  43   const size_t limit = max_uintx - (seg_size - 1);
  44   if (max_size == 0 || max_size > limit) {
  45     max_size = limit;
  46   }
  47   return (max_size + seg_size - 1) / seg_size * seg_size;
  48 }
  49 
  50 template <class E, MEMFLAGS F>
  51 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
  52   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
  53 {
  54   reset(true);
  55 }
  56 
  57 template <class E, MEMFLAGS F>
  58 void Stack<E, F>::push(E item)
  59 {
  60   assert(!is_full(), "pushing onto a full stack");
  61   if (this->_cur_seg_size == this->_seg_size) {
  62     push_segment();
  63   }
  64   this->_cur_seg[this->_cur_seg_size] = item;
  65   ++this->_cur_seg_size;
  66 }
  67 
  68 template <class E, MEMFLAGS F>
  69 E Stack<E, F>::pop()
  70 {
  71   assert(!is_empty(), "popping from an empty stack");
  72   if (this->_cur_seg_size == 1) {
  73     E tmp = _cur_seg[--this->_cur_seg_size];
  74     pop_segment();
  75     return tmp;
  76   }
  77   return this->_cur_seg[--this->_cur_seg_size];
  78 }
  79 
  80 template <class E, MEMFLAGS F>
  81 void Stack<E, F>::clear(bool clear_cache)
  82 {
  83   free_segments(_cur_seg);
  84   if (clear_cache) free_segments(_cache);
  85   reset(clear_cache);
  86 }
  87 
  88 template <class E, MEMFLAGS F>
  89 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
  90 {
  91   const size_t elem_sz = sizeof(E);
  92   const size_t ptr_sz = sizeof(E*);
  93   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
  94   if (elem_sz < ptr_sz) {
  95     return align_size_up(seg_size * elem_sz, ptr_sz) / elem_sz;
  96   }
  97   return seg_size;
  98 }
  99 
 100 template <class E, MEMFLAGS F>
 101 size_t Stack<E, F>::link_offset() const
 102 {
 103   return align_size_up(this->_seg_size * sizeof(E), sizeof(E*));
 104 }
 105 
 106 template <class E, MEMFLAGS F>
 107 size_t Stack<E, F>::segment_bytes() const
 108 {
 109   return link_offset() + sizeof(E*);
 110 }
 111 
 112 template <class E, MEMFLAGS F>
 113 E** Stack<E, F>::link_addr(E* seg) const
 114 {
 115   return (E**) ((char*)seg + link_offset());
 116 }
 117 
 118 template <class E, MEMFLAGS F>
 119 E* Stack<E, F>::get_link(E* seg) const
 120 {
 121   return *link_addr(seg);
 122 }
 123 
 124 template <class E, MEMFLAGS F>
 125 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
 126 {
 127   *link_addr(new_seg) = old_seg;
 128   return new_seg;
 129 }
 130 
 131 template <class E, MEMFLAGS F>
 132 E* Stack<E, F>::alloc(size_t bytes)
 133 {
 134   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
 135 }
 136 
 137 template <class E, MEMFLAGS F>
 138 void Stack<E, F>::free(E* addr, size_t bytes)
 139 {
 140   FREE_C_HEAP_ARRAY(char, (char*) addr);
 141 }
 142 
 143 template <class E, MEMFLAGS F>
 144 void Stack<E, F>::push_segment()
 145 {
 146   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
 147   E* next;
 148   if (this->_cache_size > 0) {
 149     // Use a cached segment.
 150     next = _cache;
 151     _cache = get_link(_cache);
 152     --this->_cache_size;
 153   } else {
 154     next = alloc(segment_bytes());
 155     DEBUG_ONLY(zap_segment(next, true);)
 156   }
 157   const bool at_empty_transition = is_empty();
 158   this->_cur_seg = set_link(next, _cur_seg);
 159   this->_cur_seg_size = 0;
 160   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
 161   DEBUG_ONLY(verify(at_empty_transition);)
 162 }
 163 
 164 template <class E, MEMFLAGS F>
 165 void Stack<E, F>::pop_segment()
 166 {
 167   assert(this->_cur_seg_size == 0, "current segment is not empty");
 168   E* const prev = get_link(_cur_seg);
 169   if (this->_cache_size < this->_max_cache_size) {
 170     // Add the current segment to the cache.
 171     DEBUG_ONLY(zap_segment(_cur_seg, false);)
 172     _cache = set_link(_cur_seg, _cache);
 173     ++this->_cache_size;
 174   } else {
 175     DEBUG_ONLY(zap_segment(_cur_seg, true);)
 176     free(_cur_seg, segment_bytes());
 177   }
 178   const bool at_empty_transition = prev == NULL;
 179   this->_cur_seg = prev;
 180   this->_cur_seg_size = this->_seg_size;
 181   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
 182   DEBUG_ONLY(verify(at_empty_transition);)
 183 }
 184 
 185 template <class E, MEMFLAGS F>
 186 void Stack<E, F>::free_segments(E* seg)
 187 {
 188   const size_t bytes = segment_bytes();
 189   while (seg != NULL) {
 190     E* const prev = get_link(seg);
 191     free(seg, bytes);
 192     seg = prev;
 193   }
 194 }
 195 
 196 template <class E, MEMFLAGS F>
 197 void Stack<E, F>::reset(bool reset_cache)
 198 {
 199   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
 200   this->_full_seg_size = 0;
 201   _cur_seg = NULL;
 202   if (reset_cache) {
 203     this->_cache_size = 0;
 204     _cache = NULL;
 205   }
 206 }
 207 
 208 #ifdef ASSERT
 209 template <class E, MEMFLAGS F>
 210 void Stack<E, F>::verify(bool at_empty_transition) const
 211 {
 212   assert(size() <= this->max_size(), "stack exceeded bounds");
 213   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
 214   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
 215 
 216   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
 217   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
 218   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
 219 
 220   if (is_empty()) {
 221     assert(this->_cur_seg_size == this->segment_size(), "sanity");
 222   }
 223 }
 224 
 225 template <class E, MEMFLAGS F>
 226 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
 227 {
 228   if (!ZapStackSegments) return;
 229   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
 230   uint32_t* cur = (uint32_t*)seg;
 231   const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
 232   while (cur < end) {
 233     *cur++ = 0xfadfaded;
 234   }
 235 }
 236 #endif
 237 
 238 template <class E, MEMFLAGS F>
 239 E* ResourceStack<E, F>::alloc(size_t bytes)
 240 {
 241   return (E*) resource_allocate_bytes(bytes);
 242 }
 243 
 244 template <class E, MEMFLAGS F>
 245 void ResourceStack<E, F>::free(E* addr, size_t bytes)
 246 {
 247   resource_free_bytes((char*) addr, bytes);
 248 }
 249 
 250 template <class E, MEMFLAGS F>
 251 void StackIterator<E, F>::sync()
 252 {
 253   _full_seg_size = _stack._full_seg_size;
 254   _cur_seg_size = _stack._cur_seg_size;
 255   _cur_seg = _stack._cur_seg;
 256 }
 257 
 258 template <class E, MEMFLAGS F>
 259 E* StackIterator<E, F>::next_addr()
 260 {
 261   assert(!is_empty(), "no items left");
 262   if (_cur_seg_size == 1) {
 263     E* addr = _cur_seg;
 264     _cur_seg = _stack.get_link(_cur_seg);
 265     _cur_seg_size = _stack.segment_size();
 266     _full_seg_size -= _stack.segment_size();
 267     return addr;
 268   }
 269   return _cur_seg + --_cur_seg_size;
 270 }
 271 
 272 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP