1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc_implementation/shared/ageTable.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/barrierSet.inline.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generation.hpp"
  34 #include "oops/arrayKlass.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/markOop.inline.hpp"
  38 #include "oops/oop.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 #include "runtime/os.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 // Implementation of all inlined member functions defined in oop.hpp
  45 // We need a separate file to avoid circular references
  46 
  47 inline void oopDesc::release_set_mark(markOop m) {
  48   OrderAccess::release_store_ptr(&_mark, m);
  49 }
  50 
  51 inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  52   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  53 }
  54 
  55 inline Klass* oopDesc::klass() const {
  56   if (UseCompressedClassPointers) {
  57     return Klass::decode_klass_not_null(_metadata._compressed_klass);
  58   } else {
  59     return _metadata._klass;
  60   }
  61 }
  62 
  63 inline Klass* oopDesc::klass_or_null() const volatile {
  64   // can be NULL in CMS
  65   if (UseCompressedClassPointers) {
  66     return Klass::decode_klass(_metadata._compressed_klass);
  67   } else {
  68     return _metadata._klass;
  69   }
  70 }
  71 
  72 inline Klass** oopDesc::klass_addr() {
  73   // Only used internally and with CMS and will not work with
  74   // UseCompressedOops
  75   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
  76   return (Klass**) &_metadata._klass;
  77 }
  78 
  79 inline narrowKlass* oopDesc::compressed_klass_addr() {
  80   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
  81   return &_metadata._compressed_klass;
  82 }
  83 
  84 inline void oopDesc::set_klass(Klass* k) {
  85   // since klasses are promoted no store check is needed
  86   assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
  87   assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
  88   if (UseCompressedClassPointers) {
  89     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
  90   } else {
  91     *klass_addr() = k;
  92   }
  93 }
  94 
  95 inline int oopDesc::klass_gap() const {
  96   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
  97 }
  98 
  99 inline void oopDesc::set_klass_gap(int v) {
 100   if (UseCompressedClassPointers) {
 101     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 102   }
 103 }
 104 
 105 inline void oopDesc::set_klass_to_list_ptr(oop k) {
 106   // This is only to be used during GC, for from-space objects, so no
 107   // barrier is needed.
 108   if (UseCompressedClassPointers) {
 109     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
 110   } else {
 111     _metadata._klass = (Klass*)(address)k;
 112   }
 113 }
 114 
 115 inline oop oopDesc::list_ptr_from_klass() {
 116   // This is only to be used during GC, for from-space objects.
 117   if (UseCompressedClassPointers) {
 118     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
 119   } else {
 120     // Special case for GC
 121     return (oop)(address)_metadata._klass;
 122   }
 123 }
 124 
 125 inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
 126 
 127 inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
 128 
 129 inline bool oopDesc::is_instance()            const { return klass()->oop_is_instance(); }
 130 inline bool oopDesc::is_instanceClassLoader() const { return klass()->oop_is_instanceClassLoader(); }
 131 inline bool oopDesc::is_instanceMirror()      const { return klass()->oop_is_instanceMirror(); }
 132 inline bool oopDesc::is_instanceRef()         const { return klass()->oop_is_instanceRef(); }
 133 inline bool oopDesc::is_array()               const { return klass()->oop_is_array(); }
 134 inline bool oopDesc::is_objArray()            const { return klass()->oop_is_objArray(); }
 135 inline bool oopDesc::is_typeArray()           const { return klass()->oop_is_typeArray(); }
 136 
 137 inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
 138 
 139 template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
 140 inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 141 inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
 142 inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
 143 inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
 144 inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
 145 inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
 146 inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
 147 inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
 148 inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
 149 inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
 150 
 151 
 152 // Functions for getting and setting oops within instance objects.
 153 // If the oops are compressed, the type passed to these overloaded functions
 154 // is narrowOop.  All functions are overloaded so they can be called by
 155 // template functions without conditionals (the compiler instantiates via
 156 // the right type and inlines the appopriate code).
 157 
 158 inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
 159 inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
 160 
 161 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 162 // offset from the heap base.  Saving the check for null can save instructions
 163 // in inner GC loops so these are separated.
 164 
 165 inline bool check_obj_alignment(oop obj) {
 166   return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
 167 }
 168 
 169 inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 170   assert(!is_null(v), "oop value can never be zero");
 171   assert(check_obj_alignment(v), "Address not aligned");
 172   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 173   address base = Universe::narrow_oop_base();
 174   int    shift = Universe::narrow_oop_shift();
 175   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 176   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 177   uint64_t result = pd >> shift;
 178   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 179   assert(decode_heap_oop(result) == v, "reversibility");
 180   return (narrowOop)result;
 181 }
 182 
 183 inline narrowOop oopDesc::encode_heap_oop(oop v) {
 184   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 185 }
 186 
 187 inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 188   assert(!is_null(v), "narrow oop value can never be zero");
 189   address base = Universe::narrow_oop_base();
 190   int    shift = Universe::narrow_oop_shift();
 191   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 192   assert(check_obj_alignment(result), err_msg("address not aligned: " INTPTR_FORMAT, p2i((void*) result)));
 193   return result;
 194 }
 195 
 196 inline oop oopDesc::decode_heap_oop(narrowOop v) {
 197   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 198 }
 199 
 200 inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
 201 inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
 202 
 203 // Load an oop out of the Java heap as is without decoding.
 204 // Called by GC to check for null before decoding.
 205 inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
 206 inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
 207 
 208 // Load and decode an oop out of the Java heap into a wide oop.
 209 inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
 210 inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 211   return decode_heap_oop_not_null(*p);
 212 }
 213 
 214 // Load and decode an oop out of the heap accepting null
 215 inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
 216 inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 217   return decode_heap_oop(*p);
 218 }
 219 
 220 // Store already encoded heap oop into the heap.
 221 inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
 222 inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
 223 
 224 // Encode and store a heap oop.
 225 inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 226   *p = encode_heap_oop_not_null(v);
 227 }
 228 inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 229 
 230 // Encode and store a heap oop allowing for null.
 231 inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 232   *p = encode_heap_oop(v);
 233 }
 234 inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 235 
 236 // Store heap oop as is for volatile fields.
 237 inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 238   OrderAccess::release_store_ptr(p, v);
 239 }
 240 inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
 241                                             narrowOop v) {
 242   OrderAccess::release_store(p, v);
 243 }
 244 
 245 inline void oopDesc::release_encode_store_heap_oop_not_null(
 246                                                 volatile narrowOop* p, oop v) {
 247   // heap oop is not pointer sized.
 248   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 249 }
 250 
 251 inline void oopDesc::release_encode_store_heap_oop_not_null(
 252                                                       volatile oop* p, oop v) {
 253   OrderAccess::release_store_ptr(p, v);
 254 }
 255 
 256 inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
 257                                                            oop v) {
 258   OrderAccess::release_store_ptr(p, v);
 259 }
 260 inline void oopDesc::release_encode_store_heap_oop(
 261                                                 volatile narrowOop* p, oop v) {
 262   OrderAccess::release_store(p, encode_heap_oop(v));
 263 }
 264 
 265 
 266 // These functions are only used to exchange oop fields in instances,
 267 // not headers.
 268 inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 269   if (UseCompressedOops) {
 270     // encode exchange value from oop to T
 271     narrowOop val = encode_heap_oop(exchange_value);
 272     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 273     // decode old from T to oop
 274     return decode_heap_oop(old);
 275   } else {
 276     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 277   }
 278 }
 279 
 280 // In order to put or get a field out of an instance, must first check
 281 // if the field has been compressed and uncompress it.
 282 inline oop oopDesc::obj_field(int offset) const {
 283   return UseCompressedOops ?
 284     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 285     load_decode_heap_oop(obj_field_addr<oop>(offset));
 286 }
 287 inline void oopDesc::obj_field_put(int offset, oop value) {
 288   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 289                       oop_store(obj_field_addr<oop>(offset),       value);
 290 }
 291 
 292 inline Metadata* oopDesc::metadata_field(int offset) const {
 293   return *metadata_field_addr(offset);
 294 }
 295 
 296 inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
 297   *metadata_field_addr(offset) = value;
 298 }
 299 
 300 inline void oopDesc::obj_field_put_raw(int offset, oop value) {
 301   UseCompressedOops ?
 302     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 303     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 304 }
 305 inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
 306   OrderAccess::release();
 307   obj_field_put(offset, value);
 308   OrderAccess::fence();
 309 }
 310 
 311 inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
 312 inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
 313 
 314 inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
 315 inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
 316 
 317 inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
 318 inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
 319 
 320 inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
 321 inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
 322 
 323 inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
 324 inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
 325 
 326 inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
 327 inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
 328 
 329 inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
 330 inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
 331 
 332 inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
 333 inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
 334 
 335 inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 336 inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 337 
 338 inline oop oopDesc::obj_field_acquire(int offset) const {
 339   return UseCompressedOops ?
 340              decode_heap_oop((narrowOop)
 341                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 342            : decode_heap_oop((oop)
 343                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 344 }
 345 inline void oopDesc::release_obj_field_put(int offset, oop value) {
 346   UseCompressedOops ?
 347     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 348     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 349 }
 350 
 351 inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 352 inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
 353 
 354 inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 355 inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
 356 
 357 inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
 358 inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
 359 
 360 inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
 361 inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
 362 
 363 inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 364 inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
 365 
 366 inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
 367 inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
 368 
 369 inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
 370 inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
 371 
 372 inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
 373 inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
 374 
 375 inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 376 inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 377 
 378 inline int oopDesc::size_given_klass(Klass* klass)  {
 379   int lh = klass->layout_helper();
 380   int s;
 381 
 382   // lh is now a value computed at class initialization that may hint
 383   // at the size.  For instances, this is positive and equal to the
 384   // size.  For arrays, this is negative and provides log2 of the
 385   // array element size.  For other oops, it is zero and thus requires
 386   // a virtual call.
 387   //
 388   // We go to all this trouble because the size computation is at the
 389   // heart of phase 2 of mark-compaction, and called for every object,
 390   // alive or dead.  So the speed here is equal in importance to the
 391   // speed of allocation.
 392 
 393   if (lh > Klass::_lh_neutral_value) {
 394     if (!Klass::layout_helper_needs_slow_path(lh)) {
 395       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 396     } else {
 397       s = klass->oop_size(this);
 398     }
 399   } else if (lh <= Klass::_lh_neutral_value) {
 400     // The most common case is instances; fall through if so.
 401     if (lh < Klass::_lh_neutral_value) {
 402       // Second most common case is arrays.  We have to fetch the
 403       // length of the array, shift (multiply) it appropriately,
 404       // up to wordSize, add the header, and align to object size.
 405       size_t size_in_bytes;
 406 #ifdef _M_IA64
 407       // The Windows Itanium Aug 2002 SDK hoists this load above
 408       // the check for s < 0.  An oop at the end of the heap will
 409       // cause an access violation if this load is performed on a non
 410       // array oop.  Making the reference volatile prohibits this.
 411       // (%%% please explain by what magic the length is actually fetched!)
 412       volatile int *array_length;
 413       array_length = (volatile int *)( (intptr_t)this +
 414                           arrayOopDesc::length_offset_in_bytes() );
 415       assert(array_length > 0, "Integer arithmetic problem somewhere");
 416       // Put into size_t to avoid overflow.
 417       size_in_bytes = (size_t) array_length;
 418       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 419 #else
 420       size_t array_length = (size_t) ((arrayOop)this)->length();
 421       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 422 #endif
 423       size_in_bytes += Klass::layout_helper_header_size(lh);
 424 
 425       // This code could be simplified, but by keeping array_header_in_bytes
 426       // in units of bytes and doing it this way we can round up just once,
 427       // skipping the intermediate round to HeapWordSize.  Cast the result
 428       // of round_to to size_t to guarantee unsigned division == right shift.
 429       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 430         HeapWordSize);
 431 
 432       // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
 433       // of an "old copy" of an object array in the young gen so it indicates
 434       // the grey portion of an already copied array. This will cause the first
 435       // disjunct below to fail if the two comparands are computed across such
 436       // a concurrent change.
 437       // ParNew also runs with promotion labs (which look like int
 438       // filler arrays) which are subject to changing their declared size
 439       // when finally retiring a PLAB; this also can cause the first disjunct
 440       // to fail for another worker thread that is concurrently walking the block
 441       // offset table. Both these invariant failures are benign for their
 442       // current uses; we relax the assertion checking to cover these two cases below:
 443       //     is_objArray() && is_forwarded()   // covers first scenario above
 444       //  || is_typeArray()                    // covers second scenario above
 445       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 446       // technique, we will need to suitably modify the assertion.
 447       assert((s == klass->oop_size(this)) ||
 448              (Universe::heap()->is_gc_active() &&
 449               ((is_typeArray() && UseConcMarkSweepGC) ||
 450                (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
 451              "wrong array object size");
 452     } else {
 453       // Must be zero, so bite the bullet and take the virtual call.
 454       s = klass->oop_size(this);
 455     }
 456   }
 457 
 458   assert(s % MinObjAlignment == 0, "alignment check");
 459   assert(s > 0, "Bad size calculated");
 460   return s;
 461 }
 462 
 463 
 464 inline int oopDesc::size()  {
 465   return size_given_klass(klass());
 466 }
 467 
 468 inline void update_barrier_set(void* p, oop v, bool release = false) {
 469   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
 470   oopDesc::bs()->write_ref_field(p, v, release);
 471 }
 472 
 473 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
 474   oopDesc::bs()->write_ref_field_pre(p, v);
 475 }
 476 
 477 template <class T> inline void oop_store(T* p, oop v) {
 478   if (always_do_update_barrier) {
 479     oop_store((volatile T*)p, v);
 480   } else {
 481     update_barrier_set_pre(p, v);
 482     oopDesc::encode_store_heap_oop(p, v);
 483     // always_do_update_barrier == false =>
 484     // Either we are at a safepoint (in GC) or CMS is not used. In both
 485     // cases it's unnecessary to mark the card as dirty with release sematics.
 486     update_barrier_set((void*)p, v, false /* release */);  // cast away type
 487   }
 488 }
 489 
 490 template <class T> inline void oop_store(volatile T* p, oop v) {
 491   update_barrier_set_pre((T*)p, v);   // cast away volatile
 492   // Used by release_obj_field_put, so use release_store_ptr.
 493   oopDesc::release_encode_store_heap_oop(p, v);
 494   // When using CMS we must mark the card corresponding to p as dirty
 495   // with release sematics to prevent that CMS sees the dirty card but
 496   // not the new value v at p due to reordering of the two
 497   // stores. Note that CMS has a concurrent precleaning phase, where
 498   // it reads the card table while the Java threads are running.
 499   update_barrier_set((void*)p, v, true /* release */);    // cast away type
 500 }
 501 
 502 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
 503 // (without having to remember the function name this calls).
 504 inline void oop_store_raw(HeapWord* addr, oop value) {
 505   if (UseCompressedOops) {
 506     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
 507   } else {
 508     oopDesc::encode_store_heap_oop((oop*)addr, value);
 509   }
 510 }
 511 
 512 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 513                                                 volatile HeapWord *dest,
 514                                                 oop compare_value,
 515                                                 bool prebarrier) {
 516   if (UseCompressedOops) {
 517     if (prebarrier) {
 518       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 519     }
 520     // encode exchange and compare value from oop to T
 521     narrowOop val = encode_heap_oop(exchange_value);
 522     narrowOop cmp = encode_heap_oop(compare_value);
 523 
 524     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 525     // decode old from T to oop
 526     return decode_heap_oop(old);
 527   } else {
 528     if (prebarrier) {
 529       update_barrier_set_pre((oop*)dest, exchange_value);
 530     }
 531     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 532   }
 533 }
 534 
 535 // Used only for markSweep, scavenging
 536 inline bool oopDesc::is_gc_marked() const {
 537   return mark()->is_marked();
 538 }
 539 
 540 inline bool oopDesc::is_locked() const {
 541   return mark()->is_locked();
 542 }
 543 
 544 inline bool oopDesc::is_unlocked() const {
 545   return mark()->is_unlocked();
 546 }
 547 
 548 inline bool oopDesc::has_bias_pattern() const {
 549   return mark()->has_bias_pattern();
 550 }
 551 
 552 
 553 // used only for asserts
 554 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
 555   oop obj = (oop) this;
 556   if (!check_obj_alignment(obj)) return false;
 557   if (!Universe::heap()->is_in_reserved(obj)) return false;
 558   // obj is aligned and accessible in heap
 559   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 560 
 561   // Header verification: the mark is typically non-NULL. If we're
 562   // at a safepoint, it must not be null.
 563   // Outside of a safepoint, the header could be changing (for example,
 564   // another thread could be inflating a lock on this object).
 565   if (ignore_mark_word) {
 566     return true;
 567   }
 568   if (mark() != NULL) {
 569     return true;
 570   }
 571   return !SafepointSynchronize::is_at_safepoint();
 572 }
 573 
 574 
 575 // used only for asserts
 576 inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 577   return this == NULL ? true : is_oop(ignore_mark_word);
 578 }
 579 
 580 #ifndef PRODUCT
 581 // used only for asserts
 582 inline bool oopDesc::is_unlocked_oop() const {
 583   if (!Universe::heap()->is_in_reserved(this)) return false;
 584   return mark()->is_unlocked();
 585 }
 586 #endif // PRODUCT
 587 
 588 inline bool oopDesc::is_scavengable() const {
 589   return Universe::heap()->is_scavengable(this);
 590 }
 591 
 592 // Used by scavengers
 593 inline bool oopDesc::is_forwarded() const {
 594   // The extra heap check is needed since the obj might be locked, in which case the
 595   // mark would point to a stack location and have the sentinel bit cleared
 596   return mark()->is_marked();
 597 }
 598 
 599 // Used by scavengers
 600 inline void oopDesc::forward_to(oop p) {
 601   assert(check_obj_alignment(p),
 602          "forwarding to something not aligned");
 603   assert(Universe::heap()->is_in_reserved(p),
 604          "forwarding to something not in heap");
 605   markOop m = markOopDesc::encode_pointer_as_mark(p);
 606   assert(m->decode_pointer() == p, "encoding must be reversable");
 607   set_mark(m);
 608 }
 609 
 610 // Used by parallel scavengers
 611 inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
 612   assert(check_obj_alignment(p),
 613          "forwarding to something not aligned");
 614   assert(Universe::heap()->is_in_reserved(p),
 615          "forwarding to something not in heap");
 616   markOop m = markOopDesc::encode_pointer_as_mark(p);
 617   assert(m->decode_pointer() == p, "encoding must be reversable");
 618   return cas_set_mark(m, compare) == compare;
 619 }
 620 
 621 #if INCLUDE_ALL_GCS
 622 inline oop oopDesc::forward_to_atomic(oop p) {
 623   markOop oldMark = mark();
 624   markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
 625   markOop curMark;
 626 
 627   assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
 628   assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
 629 
 630   while (!oldMark->is_marked()) {
 631     curMark = (markOop)Atomic::cmpxchg_ptr(forwardPtrMark, &_mark, oldMark);
 632     assert(is_forwarded(), "object should have been forwarded");
 633     if (curMark == oldMark) {
 634       return NULL;
 635     }
 636     // If the CAS was unsuccessful then curMark->is_marked()
 637     // should return true as another thread has CAS'd in another
 638     // forwarding pointer.
 639     oldMark = curMark;
 640   }
 641   return forwardee();
 642 }
 643 #endif
 644 
 645 // Note that the forwardee is not the same thing as the displaced_mark.
 646 // The forwardee is used when copying during scavenge and mark-sweep.
 647 // It does need to clear the low two locking- and GC-related bits.
 648 inline oop oopDesc::forwardee() const {
 649   return (oop) mark()->decode_pointer();
 650 }
 651 
 652 inline bool oopDesc::has_displaced_mark() const {
 653   return mark()->has_displaced_mark_helper();
 654 }
 655 
 656 inline markOop oopDesc::displaced_mark() const {
 657   return mark()->displaced_mark_helper();
 658 }
 659 
 660 inline void oopDesc::set_displaced_mark(markOop m) {
 661   mark()->set_displaced_mark_helper(m);
 662 }
 663 
 664 // The following method needs to be MT safe.
 665 inline uint oopDesc::age() const {
 666   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 667   if (has_displaced_mark()) {
 668     return displaced_mark()->age();
 669   } else {
 670     return mark()->age();
 671   }
 672 }
 673 
 674 inline void oopDesc::incr_age() {
 675   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 676   if (has_displaced_mark()) {
 677     set_displaced_mark(displaced_mark()->incr_age());
 678   } else {
 679     set_mark(mark()->incr_age());
 680   }
 681 }
 682 
 683 
 684 inline intptr_t oopDesc::identity_hash() {
 685   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 686   // Note: The mark must be read into local variable to avoid concurrent updates.
 687   markOop mrk = mark();
 688   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 689     return mrk->hash();
 690   } else if (mrk->is_marked()) {
 691     return mrk->hash();
 692   } else {
 693     return slow_identity_hash();
 694   }
 695 }
 696 
 697 inline void oopDesc::ms_follow_contents() {
 698   klass()->oop_ms_follow_contents(this);
 699 }
 700 
 701 inline int oopDesc::ms_adjust_pointers() {
 702   debug_only(int check_size = size());
 703   int s = klass()->oop_ms_adjust_pointers(this);
 704   assert(s == check_size, "should be the same");
 705   return s;
 706 }
 707 
 708 #if INCLUDE_ALL_GCS
 709 inline void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
 710   klass()->oop_pc_follow_contents(this, cm);
 711 }
 712 
 713 inline void oopDesc::pc_update_contents() {
 714   Klass* k = klass();
 715   if (!k->oop_is_typeArray()) {
 716     // It might contain oops beyond the header, so take the virtual call.
 717     k->oop_pc_update_pointers(this);
 718   }
 719   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 720 }
 721 
 722 inline void oopDesc::ps_push_contents(PSPromotionManager* pm) {
 723   Klass* k = klass();
 724   if (!k->oop_is_typeArray()) {
 725     // It might contain oops beyond the header, so take the virtual call.
 726     k->oop_ps_push_contents(this, pm);
 727   }
 728   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 729 }
 730 #endif
 731 
 732 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                   \
 733                                                                       \
 734 inline int oopDesc::oop_iterate(OopClosureType* blk) {                \
 735   return klass()->oop_oop_iterate##nv_suffix(this, blk);              \
 736 }                                                                     \
 737                                                                       \
 738 inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {  \
 739   return klass()->oop_oop_iterate##nv_suffix##_m(this, blk, mr);      \
 740 }
 741 
 742 
 743 inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 744   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 745   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 746   NoHeaderExtendedOopClosure cl(blk);
 747   return oop_iterate(&cl);
 748 }
 749 
 750 inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 751   NoHeaderExtendedOopClosure cl(blk);
 752   return oop_iterate(&cl, mr);
 753 }
 754 
 755 #if INCLUDE_ALL_GCS
 756 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
 757                                                                     \
 758 inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) {    \
 759   return klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);  \
 760 }
 761 #else
 762 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 763 #endif
 764 
 765 #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
 766   OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
 767   OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 768 
 769 ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
 770 ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
 771 
 772 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP