1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  31 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
  34 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  35 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  36 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  37 #include "gc_implementation/parallelScavenge/psParallelCompact.inline.hpp"
  38 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
  39 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  40 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  41 #include "gc_implementation/shared/gcHeapSummary.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "gc_implementation/shared/spaceDecorator.hpp"
  47 #include "gc_interface/gcCause.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/referencePolicy.hpp"
  50 #include "memory/referenceProcessor.hpp"
  51 #include "oops/instanceKlass.inline.hpp"
  52 #include "oops/instanceMirrorKlass.inline.hpp"
  53 #include "oops/methodData.hpp"
  54 #include "oops/objArrayKlass.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/atomic.inline.hpp"
  57 #include "runtime/fprofiler.hpp"
  58 #include "runtime/safepoint.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "services/management.hpp"
  61 #include "services/memoryService.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/stack.inline.hpp"
  65 
  66 #include <math.h>
  67 
  68 // All sizes are in HeapWords.
  69 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  70 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  71 const size_t ParallelCompactData::RegionSizeBytes =
  72   RegionSize << LogHeapWordSize;
  73 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  74 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  75 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  76 
  77 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  78 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  79 const size_t ParallelCompactData::BlockSizeBytes  =
  80   BlockSize << LogHeapWordSize;
  81 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  82 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  83 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  84 
  85 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  86 const size_t ParallelCompactData::Log2BlocksPerRegion =
  87   Log2RegionSize - Log2BlockSize;
  88 
  89 const ParallelCompactData::RegionData::region_sz_t
  90 ParallelCompactData::RegionData::dc_shift = 27;
  91 
  92 const ParallelCompactData::RegionData::region_sz_t
  93 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  94 
  95 const ParallelCompactData::RegionData::region_sz_t
  96 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  97 
  98 const ParallelCompactData::RegionData::region_sz_t
  99 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 100 
 101 const ParallelCompactData::RegionData::region_sz_t
 102 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 106 
 107 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 108 bool      PSParallelCompact::_print_phases = false;
 109 
 110 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 111 
 112 double PSParallelCompact::_dwl_mean;
 113 double PSParallelCompact::_dwl_std_dev;
 114 double PSParallelCompact::_dwl_first_term;
 115 double PSParallelCompact::_dwl_adjustment;
 116 #ifdef  ASSERT
 117 bool   PSParallelCompact::_dwl_initialized = false;
 118 #endif  // #ifdef ASSERT
 119 
 120 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 121                        HeapWord* destination)
 122 {
 123   assert(src_region_idx != 0, "invalid src_region_idx");
 124   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 125   assert(destination != NULL, "invalid destination argument");
 126 
 127   _src_region_idx = src_region_idx;
 128   _partial_obj_size = partial_obj_size;
 129   _destination = destination;
 130 
 131   // These fields may not be updated below, so make sure they're clear.
 132   assert(_dest_region_addr == NULL, "should have been cleared");
 133   assert(_first_src_addr == NULL, "should have been cleared");
 134 
 135   // Determine the number of destination regions for the partial object.
 136   HeapWord* const last_word = destination + partial_obj_size - 1;
 137   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 138   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 139   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 140 
 141   if (beg_region_addr == end_region_addr) {
 142     // One destination region.
 143     _destination_count = 1;
 144     if (end_region_addr == destination) {
 145       // The destination falls on a region boundary, thus the first word of the
 146       // partial object will be the first word copied to the destination region.
 147       _dest_region_addr = end_region_addr;
 148       _first_src_addr = sd.region_to_addr(src_region_idx);
 149     }
 150   } else {
 151     // Two destination regions.  When copied, the partial object will cross a
 152     // destination region boundary, so a word somewhere within the partial
 153     // object will be the first word copied to the second destination region.
 154     _destination_count = 2;
 155     _dest_region_addr = end_region_addr;
 156     const size_t ofs = pointer_delta(end_region_addr, destination);
 157     assert(ofs < _partial_obj_size, "sanity");
 158     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 159   }
 160 }
 161 
 162 void SplitInfo::clear()
 163 {
 164   _src_region_idx = 0;
 165   _partial_obj_size = 0;
 166   _destination = NULL;
 167   _destination_count = 0;
 168   _dest_region_addr = NULL;
 169   _first_src_addr = NULL;
 170   assert(!is_valid(), "sanity");
 171 }
 172 
 173 #ifdef  ASSERT
 174 void SplitInfo::verify_clear()
 175 {
 176   assert(_src_region_idx == 0, "not clear");
 177   assert(_partial_obj_size == 0, "not clear");
 178   assert(_destination == NULL, "not clear");
 179   assert(_destination_count == 0, "not clear");
 180   assert(_dest_region_addr == NULL, "not clear");
 181   assert(_first_src_addr == NULL, "not clear");
 182 }
 183 #endif  // #ifdef ASSERT
 184 
 185 
 186 void PSParallelCompact::print_on_error(outputStream* st) {
 187   _mark_bitmap.print_on_error(st);
 188 }
 189 
 190 #ifndef PRODUCT
 191 const char* PSParallelCompact::space_names[] = {
 192   "old ", "eden", "from", "to  "
 193 };
 194 
 195 void PSParallelCompact::print_region_ranges()
 196 {
 197   tty->print_cr("space  bottom     top        end        new_top");
 198   tty->print_cr("------ ---------- ---------- ---------- ----------");
 199 
 200   for (unsigned int id = 0; id < last_space_id; ++id) {
 201     const MutableSpace* space = _space_info[id].space();
 202     tty->print_cr("%u %s "
 203                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 204                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 205                   id, space_names[id],
 206                   summary_data().addr_to_region_idx(space->bottom()),
 207                   summary_data().addr_to_region_idx(space->top()),
 208                   summary_data().addr_to_region_idx(space->end()),
 209                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 210   }
 211 }
 212 
 213 void
 214 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 215 {
 216 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 217 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 218 
 219   ParallelCompactData& sd = PSParallelCompact::summary_data();
 220   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 221   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 222                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 223                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 224                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 225                 i, p2i(c->data_location()), dci, p2i(c->destination()),
 226                 c->partial_obj_size(), c->live_obj_size(),
 227                 c->data_size(), c->source_region(), c->destination_count());
 228 
 229 #undef  REGION_IDX_FORMAT
 230 #undef  REGION_DATA_FORMAT
 231 }
 232 
 233 void
 234 print_generic_summary_data(ParallelCompactData& summary_data,
 235                            HeapWord* const beg_addr,
 236                            HeapWord* const end_addr)
 237 {
 238   size_t total_words = 0;
 239   size_t i = summary_data.addr_to_region_idx(beg_addr);
 240   const size_t last = summary_data.addr_to_region_idx(end_addr);
 241   HeapWord* pdest = 0;
 242 
 243   while (i <= last) {
 244     ParallelCompactData::RegionData* c = summary_data.region(i);
 245     if (c->data_size() != 0 || c->destination() != pdest) {
 246       print_generic_summary_region(i, c);
 247       total_words += c->data_size();
 248       pdest = c->destination();
 249     }
 250     ++i;
 251   }
 252 
 253   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 254 }
 255 
 256 void
 257 print_generic_summary_data(ParallelCompactData& summary_data,
 258                            SpaceInfo* space_info)
 259 {
 260   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 261     const MutableSpace* space = space_info[id].space();
 262     print_generic_summary_data(summary_data, space->bottom(),
 263                                MAX2(space->top(), space_info[id].new_top()));
 264   }
 265 }
 266 
 267 void
 268 print_initial_summary_region(size_t i,
 269                              const ParallelCompactData::RegionData* c,
 270                              bool newline = true)
 271 {
 272   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 273              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 274              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 275              i, p2i(c->destination()),
 276              c->partial_obj_size(), c->live_obj_size(),
 277              c->data_size(), c->source_region(), c->destination_count());
 278   if (newline) tty->cr();
 279 }
 280 
 281 void
 282 print_initial_summary_data(ParallelCompactData& summary_data,
 283                            const MutableSpace* space) {
 284   if (space->top() == space->bottom()) {
 285     return;
 286   }
 287 
 288   const size_t region_size = ParallelCompactData::RegionSize;
 289   typedef ParallelCompactData::RegionData RegionData;
 290   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 291   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 292   const RegionData* c = summary_data.region(end_region - 1);
 293   HeapWord* end_addr = c->destination() + c->data_size();
 294   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 295 
 296   // Print (and count) the full regions at the beginning of the space.
 297   size_t full_region_count = 0;
 298   size_t i = summary_data.addr_to_region_idx(space->bottom());
 299   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 300     print_initial_summary_region(i, summary_data.region(i));
 301     ++full_region_count;
 302     ++i;
 303   }
 304 
 305   size_t live_to_right = live_in_space - full_region_count * region_size;
 306 
 307   double max_reclaimed_ratio = 0.0;
 308   size_t max_reclaimed_ratio_region = 0;
 309   size_t max_dead_to_right = 0;
 310   size_t max_live_to_right = 0;
 311 
 312   // Print the 'reclaimed ratio' for regions while there is something live in
 313   // the region or to the right of it.  The remaining regions are empty (and
 314   // uninteresting), and computing the ratio will result in division by 0.
 315   while (i < end_region && live_to_right > 0) {
 316     c = summary_data.region(i);
 317     HeapWord* const region_addr = summary_data.region_to_addr(i);
 318     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 319     const size_t dead_to_right = used_to_right - live_to_right;
 320     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 321 
 322     if (reclaimed_ratio > max_reclaimed_ratio) {
 323             max_reclaimed_ratio = reclaimed_ratio;
 324             max_reclaimed_ratio_region = i;
 325             max_dead_to_right = dead_to_right;
 326             max_live_to_right = live_to_right;
 327     }
 328 
 329     print_initial_summary_region(i, c, false);
 330     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 331                   reclaimed_ratio, dead_to_right, live_to_right);
 332 
 333     live_to_right -= c->data_size();
 334     ++i;
 335   }
 336 
 337   // Any remaining regions are empty.  Print one more if there is one.
 338   if (i < end_region) {
 339     print_initial_summary_region(i, summary_data.region(i));
 340   }
 341 
 342   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 343                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 344                 max_reclaimed_ratio_region, max_dead_to_right,
 345                 max_live_to_right, max_reclaimed_ratio);
 346 }
 347 
 348 void
 349 print_initial_summary_data(ParallelCompactData& summary_data,
 350                            SpaceInfo* space_info) {
 351   unsigned int id = PSParallelCompact::old_space_id;
 352   const MutableSpace* space;
 353   do {
 354     space = space_info[id].space();
 355     print_initial_summary_data(summary_data, space);
 356   } while (++id < PSParallelCompact::eden_space_id);
 357 
 358   do {
 359     space = space_info[id].space();
 360     print_generic_summary_data(summary_data, space->bottom(), space->top());
 361   } while (++id < PSParallelCompact::last_space_id);
 362 }
 363 #endif  // #ifndef PRODUCT
 364 
 365 #ifdef  ASSERT
 366 size_t add_obj_count;
 367 size_t add_obj_size;
 368 size_t mark_bitmap_count;
 369 size_t mark_bitmap_size;
 370 #endif  // #ifdef ASSERT
 371 
 372 ParallelCompactData::ParallelCompactData()
 373 {
 374   _region_start = 0;
 375 
 376   _region_vspace = 0;
 377   _reserved_byte_size = 0;
 378   _region_data = 0;
 379   _region_count = 0;
 380 
 381   _block_vspace = 0;
 382   _block_data = 0;
 383   _block_count = 0;
 384 }
 385 
 386 bool ParallelCompactData::initialize(MemRegion covered_region)
 387 {
 388   _region_start = covered_region.start();
 389   const size_t region_size = covered_region.word_size();
 390   DEBUG_ONLY(_region_end = _region_start + region_size;)
 391 
 392   assert(region_align_down(_region_start) == _region_start,
 393          "region start not aligned");
 394   assert((region_size & RegionSizeOffsetMask) == 0,
 395          "region size not a multiple of RegionSize");
 396 
 397   bool result = initialize_region_data(region_size) && initialize_block_data();
 398   return result;
 399 }
 400 
 401 PSVirtualSpace*
 402 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 403 {
 404   const size_t raw_bytes = count * element_size;
 405   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 406   const size_t granularity = os::vm_allocation_granularity();
 407   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 408 
 409   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 410     MAX2(page_sz, granularity);
 411   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 412   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 413                        rs.size());
 414 
 415   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 416 
 417   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 418   if (vspace != 0) {
 419     if (vspace->expand_by(_reserved_byte_size)) {
 420       return vspace;
 421     }
 422     delete vspace;
 423     // Release memory reserved in the space.
 424     rs.release();
 425   }
 426 
 427   return 0;
 428 }
 429 
 430 bool ParallelCompactData::initialize_region_data(size_t region_size)
 431 {
 432   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 433   _region_vspace = create_vspace(count, sizeof(RegionData));
 434   if (_region_vspace != 0) {
 435     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 436     _region_count = count;
 437     return true;
 438   }
 439   return false;
 440 }
 441 
 442 bool ParallelCompactData::initialize_block_data()
 443 {
 444   assert(_region_count != 0, "region data must be initialized first");
 445   const size_t count = _region_count << Log2BlocksPerRegion;
 446   _block_vspace = create_vspace(count, sizeof(BlockData));
 447   if (_block_vspace != 0) {
 448     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 449     _block_count = count;
 450     return true;
 451   }
 452   return false;
 453 }
 454 
 455 void ParallelCompactData::clear()
 456 {
 457   memset(_region_data, 0, _region_vspace->committed_size());
 458   memset(_block_data, 0, _block_vspace->committed_size());
 459 }
 460 
 461 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 462   assert(beg_region <= _region_count, "beg_region out of range");
 463   assert(end_region <= _region_count, "end_region out of range");
 464   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 465 
 466   const size_t region_cnt = end_region - beg_region;
 467   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 468 
 469   const size_t beg_block = beg_region * BlocksPerRegion;
 470   const size_t block_cnt = region_cnt * BlocksPerRegion;
 471   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 472 }
 473 
 474 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 475 {
 476   const RegionData* cur_cp = region(region_idx);
 477   const RegionData* const end_cp = region(region_count() - 1);
 478 
 479   HeapWord* result = region_to_addr(region_idx);
 480   if (cur_cp < end_cp) {
 481     do {
 482       result += cur_cp->partial_obj_size();
 483     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 484   }
 485   return result;
 486 }
 487 
 488 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 489 {
 490   const size_t obj_ofs = pointer_delta(addr, _region_start);
 491   const size_t beg_region = obj_ofs >> Log2RegionSize;
 492   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 493 
 494   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 495   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 496 
 497   if (beg_region == end_region) {
 498     // All in one region.
 499     _region_data[beg_region].add_live_obj(len);
 500     return;
 501   }
 502 
 503   // First region.
 504   const size_t beg_ofs = region_offset(addr);
 505   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 506 
 507   Klass* klass = ((oop)addr)->klass();
 508   // Middle regions--completely spanned by this object.
 509   for (size_t region = beg_region + 1; region < end_region; ++region) {
 510     _region_data[region].set_partial_obj_size(RegionSize);
 511     _region_data[region].set_partial_obj_addr(addr);
 512   }
 513 
 514   // Last region.
 515   const size_t end_ofs = region_offset(addr + len - 1);
 516   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 517   _region_data[end_region].set_partial_obj_addr(addr);
 518 }
 519 
 520 void
 521 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 522 {
 523   assert(region_offset(beg) == 0, "not RegionSize aligned");
 524   assert(region_offset(end) == 0, "not RegionSize aligned");
 525 
 526   size_t cur_region = addr_to_region_idx(beg);
 527   const size_t end_region = addr_to_region_idx(end);
 528   HeapWord* addr = beg;
 529   while (cur_region < end_region) {
 530     _region_data[cur_region].set_destination(addr);
 531     _region_data[cur_region].set_destination_count(0);
 532     _region_data[cur_region].set_source_region(cur_region);
 533     _region_data[cur_region].set_data_location(addr);
 534 
 535     // Update live_obj_size so the region appears completely full.
 536     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 537     _region_data[cur_region].set_live_obj_size(live_size);
 538 
 539     ++cur_region;
 540     addr += RegionSize;
 541   }
 542 }
 543 
 544 // Find the point at which a space can be split and, if necessary, record the
 545 // split point.
 546 //
 547 // If the current src region (which overflowed the destination space) doesn't
 548 // have a partial object, the split point is at the beginning of the current src
 549 // region (an "easy" split, no extra bookkeeping required).
 550 //
 551 // If the current src region has a partial object, the split point is in the
 552 // region where that partial object starts (call it the split_region).  If
 553 // split_region has a partial object, then the split point is just after that
 554 // partial object (a "hard" split where we have to record the split data and
 555 // zero the partial_obj_size field).  With a "hard" split, we know that the
 556 // partial_obj ends within split_region because the partial object that caused
 557 // the overflow starts in split_region.  If split_region doesn't have a partial
 558 // obj, then the split is at the beginning of split_region (another "easy"
 559 // split).
 560 HeapWord*
 561 ParallelCompactData::summarize_split_space(size_t src_region,
 562                                            SplitInfo& split_info,
 563                                            HeapWord* destination,
 564                                            HeapWord* target_end,
 565                                            HeapWord** target_next)
 566 {
 567   assert(destination <= target_end, "sanity");
 568   assert(destination + _region_data[src_region].data_size() > target_end,
 569     "region should not fit into target space");
 570   assert(is_region_aligned(target_end), "sanity");
 571 
 572   size_t split_region = src_region;
 573   HeapWord* split_destination = destination;
 574   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 575 
 576   if (destination + partial_obj_size > target_end) {
 577     // The split point is just after the partial object (if any) in the
 578     // src_region that contains the start of the object that overflowed the
 579     // destination space.
 580     //
 581     // Find the start of the "overflow" object and set split_region to the
 582     // region containing it.
 583     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 584     split_region = addr_to_region_idx(overflow_obj);
 585 
 586     // Clear the source_region field of all destination regions whose first word
 587     // came from data after the split point (a non-null source_region field
 588     // implies a region must be filled).
 589     //
 590     // An alternative to the simple loop below:  clear during post_compact(),
 591     // which uses memcpy instead of individual stores, and is easy to
 592     // parallelize.  (The downside is that it clears the entire RegionData
 593     // object as opposed to just one field.)
 594     //
 595     // post_compact() would have to clear the summary data up to the highest
 596     // address that was written during the summary phase, which would be
 597     //
 598     //         max(top, max(new_top, clear_top))
 599     //
 600     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 601     // to target_end.
 602     const RegionData* const sr = region(split_region);
 603     const size_t beg_idx =
 604       addr_to_region_idx(region_align_up(sr->destination() +
 605                                          sr->partial_obj_size()));
 606     const size_t end_idx = addr_to_region_idx(target_end);
 607 
 608     if (TraceParallelOldGCSummaryPhase) {
 609         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 610                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 611                                beg_idx, end_idx);
 612     }
 613     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 614       _region_data[idx].set_source_region(0);
 615     }
 616 
 617     // Set split_destination and partial_obj_size to reflect the split region.
 618     split_destination = sr->destination();
 619     partial_obj_size = sr->partial_obj_size();
 620   }
 621 
 622   // The split is recorded only if a partial object extends onto the region.
 623   if (partial_obj_size != 0) {
 624     _region_data[split_region].set_partial_obj_size(0);
 625     split_info.record(split_region, partial_obj_size, split_destination);
 626   }
 627 
 628   // Setup the continuation addresses.
 629   *target_next = split_destination + partial_obj_size;
 630   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 631 
 632   if (TraceParallelOldGCSummaryPhase) {
 633     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 634     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 635                            " pos=" SIZE_FORMAT,
 636                            split_type, p2i(source_next), split_region,
 637                            partial_obj_size);
 638     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 639                            " tn=" PTR_FORMAT,
 640                            split_type, p2i(split_destination),
 641                            addr_to_region_idx(split_destination),
 642                            p2i(*target_next));
 643 
 644     if (partial_obj_size != 0) {
 645       HeapWord* const po_beg = split_info.destination();
 646       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 647       gclog_or_tty->print_cr("%s split:  "
 648                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 649                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 650                              split_type,
 651                              p2i(po_beg), addr_to_region_idx(po_beg),
 652                              p2i(po_end), addr_to_region_idx(po_end));
 653     }
 654   }
 655 
 656   return source_next;
 657 }
 658 
 659 bool ParallelCompactData::summarize(SplitInfo& split_info,
 660                                     HeapWord* source_beg, HeapWord* source_end,
 661                                     HeapWord** source_next,
 662                                     HeapWord* target_beg, HeapWord* target_end,
 663                                     HeapWord** target_next)
 664 {
 665   if (TraceParallelOldGCSummaryPhase) {
 666     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 667     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 668                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 669                   p2i(source_beg), p2i(source_end), p2i(source_next_val),
 670                   p2i(target_beg), p2i(target_end), p2i(*target_next));
 671   }
 672 
 673   size_t cur_region = addr_to_region_idx(source_beg);
 674   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 675 
 676   HeapWord *dest_addr = target_beg;
 677   while (cur_region < end_region) {
 678     // The destination must be set even if the region has no data.
 679     _region_data[cur_region].set_destination(dest_addr);
 680 
 681     size_t words = _region_data[cur_region].data_size();
 682     if (words > 0) {
 683       // If cur_region does not fit entirely into the target space, find a point
 684       // at which the source space can be 'split' so that part is copied to the
 685       // target space and the rest is copied elsewhere.
 686       if (dest_addr + words > target_end) {
 687         assert(source_next != NULL, "source_next is NULL when splitting");
 688         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 689                                              target_end, target_next);
 690         return false;
 691       }
 692 
 693       // Compute the destination_count for cur_region, and if necessary, update
 694       // source_region for a destination region.  The source_region field is
 695       // updated if cur_region is the first (left-most) region to be copied to a
 696       // destination region.
 697       //
 698       // The destination_count calculation is a bit subtle.  A region that has
 699       // data that compacts into itself does not count itself as a destination.
 700       // This maintains the invariant that a zero count means the region is
 701       // available and can be claimed and then filled.
 702       uint destination_count = 0;
 703       if (split_info.is_split(cur_region)) {
 704         // The current region has been split:  the partial object will be copied
 705         // to one destination space and the remaining data will be copied to
 706         // another destination space.  Adjust the initial destination_count and,
 707         // if necessary, set the source_region field if the partial object will
 708         // cross a destination region boundary.
 709         destination_count = split_info.destination_count();
 710         if (destination_count == 2) {
 711           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 712           _region_data[dest_idx].set_source_region(cur_region);
 713         }
 714       }
 715 
 716       HeapWord* const last_addr = dest_addr + words - 1;
 717       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 718       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 719 
 720       // Initially assume that the destination regions will be the same and
 721       // adjust the value below if necessary.  Under this assumption, if
 722       // cur_region == dest_region_2, then cur_region will be compacted
 723       // completely into itself.
 724       destination_count += cur_region == dest_region_2 ? 0 : 1;
 725       if (dest_region_1 != dest_region_2) {
 726         // Destination regions differ; adjust destination_count.
 727         destination_count += 1;
 728         // Data from cur_region will be copied to the start of dest_region_2.
 729         _region_data[dest_region_2].set_source_region(cur_region);
 730       } else if (region_offset(dest_addr) == 0) {
 731         // Data from cur_region will be copied to the start of the destination
 732         // region.
 733         _region_data[dest_region_1].set_source_region(cur_region);
 734       }
 735 
 736       _region_data[cur_region].set_destination_count(destination_count);
 737       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 738       dest_addr += words;
 739     }
 740 
 741     ++cur_region;
 742   }
 743 
 744   *target_next = dest_addr;
 745   return true;
 746 }
 747 
 748 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 749   assert(addr != NULL, "Should detect NULL oop earlier");
 750   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 751   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 752 
 753   // Region covering the object.
 754   RegionData* const region_ptr = addr_to_region_ptr(addr);
 755   HeapWord* result = region_ptr->destination();
 756 
 757   // If the entire Region is live, the new location is region->destination + the
 758   // offset of the object within in the Region.
 759 
 760   // Run some performance tests to determine if this special case pays off.  It
 761   // is worth it for pointers into the dense prefix.  If the optimization to
 762   // avoid pointer updates in regions that only point to the dense prefix is
 763   // ever implemented, this should be revisited.
 764   if (region_ptr->data_size() == RegionSize) {
 765     result += region_offset(addr);
 766     return result;
 767   }
 768 
 769   // Otherwise, the new location is region->destination + block offset + the
 770   // number of live words in the Block that are (a) to the left of addr and (b)
 771   // due to objects that start in the Block.
 772 
 773   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 774   // threads may fill the block table for a region (harmless, since it is
 775   // idempotent).
 776   if (!region_ptr->blocks_filled()) {
 777     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 778     region_ptr->set_blocks_filled();
 779   }
 780 
 781   HeapWord* const search_start = block_align_down(addr);
 782   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 783 
 784   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 785   const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
 786   result += block_offset + live;
 787   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 788   return result;
 789 }
 790 
 791 #ifdef ASSERT
 792 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 793 {
 794   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 795   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 796   for (const size_t* p = beg; p < end; ++p) {
 797     assert(*p == 0, "not zero");
 798   }
 799 }
 800 
 801 void ParallelCompactData::verify_clear()
 802 {
 803   verify_clear(_region_vspace);
 804   verify_clear(_block_vspace);
 805 }
 806 #endif  // #ifdef ASSERT
 807 
 808 STWGCTimer          PSParallelCompact::_gc_timer;
 809 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 810 elapsedTimer        PSParallelCompact::_accumulated_time;
 811 unsigned int        PSParallelCompact::_total_invocations = 0;
 812 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 813 jlong               PSParallelCompact::_time_of_last_gc = 0;
 814 CollectorCounters*  PSParallelCompact::_counters = NULL;
 815 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 816 ParallelCompactData PSParallelCompact::_summary_data;
 817 
 818 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 819 
 820 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 821 
 822 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
 823 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
 824 
 825 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
 826 
 827 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
 828   klass->oops_do(_mark_and_push_closure);
 829 }
 830 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 831   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
 832 }
 833 
 834 void PSParallelCompact::post_initialize() {
 835   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 836   MemRegion mr = heap->reserved_region();
 837   _ref_processor =
 838     new ReferenceProcessor(mr,            // span
 839                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 840                            (int) ParallelGCThreads, // mt processing degree
 841                            true,          // mt discovery
 842                            (int) ParallelGCThreads, // mt discovery degree
 843                            true,          // atomic_discovery
 844                            &_is_alive_closure); // non-header is alive closure
 845   _counters = new CollectorCounters("PSParallelCompact", 1);
 846 
 847   // Initialize static fields in ParCompactionManager.
 848   ParCompactionManager::initialize(mark_bitmap());
 849 }
 850 
 851 bool PSParallelCompact::initialize() {
 852   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 853   MemRegion mr = heap->reserved_region();
 854 
 855   // Was the old gen get allocated successfully?
 856   if (!heap->old_gen()->is_allocated()) {
 857     return false;
 858   }
 859 
 860   initialize_space_info();
 861   initialize_dead_wood_limiter();
 862 
 863   if (!_mark_bitmap.initialize(mr)) {
 864     vm_shutdown_during_initialization(
 865       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 866       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 867       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 868     return false;
 869   }
 870 
 871   if (!_summary_data.initialize(mr)) {
 872     vm_shutdown_during_initialization(
 873       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 874       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 875       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 876     return false;
 877   }
 878 
 879   return true;
 880 }
 881 
 882 void PSParallelCompact::initialize_space_info()
 883 {
 884   memset(&_space_info, 0, sizeof(_space_info));
 885 
 886   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 887   PSYoungGen* young_gen = heap->young_gen();
 888 
 889   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 890   _space_info[eden_space_id].set_space(young_gen->eden_space());
 891   _space_info[from_space_id].set_space(young_gen->from_space());
 892   _space_info[to_space_id].set_space(young_gen->to_space());
 893 
 894   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 895 }
 896 
 897 void PSParallelCompact::initialize_dead_wood_limiter()
 898 {
 899   const size_t max = 100;
 900   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 901   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 902   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 903   DEBUG_ONLY(_dwl_initialized = true;)
 904   _dwl_adjustment = normal_distribution(1.0);
 905 }
 906 
 907 // Simple class for storing info about the heap at the start of GC, to be used
 908 // after GC for comparison/printing.
 909 class PreGCValues {
 910 public:
 911   PreGCValues() { }
 912   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 913 
 914   void fill(ParallelScavengeHeap* heap) {
 915     _heap_used      = heap->used();
 916     _young_gen_used = heap->young_gen()->used_in_bytes();
 917     _old_gen_used   = heap->old_gen()->used_in_bytes();
 918     _metadata_used  = MetaspaceAux::used_bytes();
 919   };
 920 
 921   size_t heap_used() const      { return _heap_used; }
 922   size_t young_gen_used() const { return _young_gen_used; }
 923   size_t old_gen_used() const   { return _old_gen_used; }
 924   size_t metadata_used() const  { return _metadata_used; }
 925 
 926 private:
 927   size_t _heap_used;
 928   size_t _young_gen_used;
 929   size_t _old_gen_used;
 930   size_t _metadata_used;
 931 };
 932 
 933 void
 934 PSParallelCompact::clear_data_covering_space(SpaceId id)
 935 {
 936   // At this point, top is the value before GC, new_top() is the value that will
 937   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 938   // should be marked above top.  The summary data is cleared to the larger of
 939   // top & new_top.
 940   MutableSpace* const space = _space_info[id].space();
 941   HeapWord* const bot = space->bottom();
 942   HeapWord* const top = space->top();
 943   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 944 
 945   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 946   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 947   _mark_bitmap.clear_range(beg_bit, end_bit);
 948 
 949   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 950   const size_t end_region =
 951     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 952   _summary_data.clear_range(beg_region, end_region);
 953 
 954   // Clear the data used to 'split' regions.
 955   SplitInfo& split_info = _space_info[id].split_info();
 956   if (split_info.is_valid()) {
 957     split_info.clear();
 958   }
 959   DEBUG_ONLY(split_info.verify_clear();)
 960 }
 961 
 962 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 963 {
 964   // Update the from & to space pointers in space_info, since they are swapped
 965   // at each young gen gc.  Do the update unconditionally (even though a
 966   // promotion failure does not swap spaces) because an unknown number of minor
 967   // collections will have swapped the spaces an unknown number of times.
 968   GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
 969   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 970   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 971   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 972 
 973   pre_gc_values->fill(heap);
 974 
 975   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 976   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 977 
 978   // Increment the invocation count
 979   heap->increment_total_collections(true);
 980 
 981   // We need to track unique mark sweep invocations as well.
 982   _total_invocations++;
 983 
 984   heap->print_heap_before_gc();
 985   heap->trace_heap_before_gc(&_gc_tracer);
 986 
 987   // Fill in TLABs
 988   heap->accumulate_statistics_all_tlabs();
 989   heap->ensure_parsability(true);  // retire TLABs
 990 
 991   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 992     HandleMark hm;  // Discard invalid handles created during verification
 993     Universe::verify(" VerifyBeforeGC:");
 994   }
 995 
 996   // Verify object start arrays
 997   if (VerifyObjectStartArray &&
 998       VerifyBeforeGC) {
 999     heap->old_gen()->verify_object_start_array();
1000   }
1001 
1002   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1003   DEBUG_ONLY(summary_data().verify_clear();)
1004 
1005   // Have worker threads release resources the next time they run a task.
1006   gc_task_manager()->release_all_resources();
1007 }
1008 
1009 void PSParallelCompact::post_compact()
1010 {
1011   GCTraceTime tm("post compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1012 
1013   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1014     // Clear the marking bitmap, summary data and split info.
1015     clear_data_covering_space(SpaceId(id));
1016     // Update top().  Must be done after clearing the bitmap and summary data.
1017     _space_info[id].publish_new_top();
1018   }
1019 
1020   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1021   MutableSpace* const from_space = _space_info[from_space_id].space();
1022   MutableSpace* const to_space   = _space_info[to_space_id].space();
1023 
1024   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1025   bool eden_empty = eden_space->is_empty();
1026   if (!eden_empty) {
1027     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1028                                             heap->young_gen(), heap->old_gen());
1029   }
1030 
1031   // Update heap occupancy information which is used as input to the soft ref
1032   // clearing policy at the next gc.
1033   Universe::update_heap_info_at_gc();
1034 
1035   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1036     to_space->is_empty();
1037 
1038   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1039   MemRegion old_mr = heap->old_gen()->reserved();
1040   if (young_gen_empty) {
1041     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1042   } else {
1043     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1044   }
1045 
1046   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1047   ClassLoaderDataGraph::purge();
1048   MetaspaceAux::verify_metrics();
1049 
1050   CodeCache::gc_epilogue();
1051   JvmtiExport::gc_epilogue();
1052 
1053   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1054 
1055   ref_processor()->enqueue_discovered_references(NULL);
1056 
1057   if (ZapUnusedHeapArea) {
1058     heap->gen_mangle_unused_area();
1059   }
1060 
1061   // Update time of last GC
1062   reset_millis_since_last_gc();
1063 }
1064 
1065 HeapWord*
1066 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1067                                                     bool maximum_compaction)
1068 {
1069   const size_t region_size = ParallelCompactData::RegionSize;
1070   const ParallelCompactData& sd = summary_data();
1071 
1072   const MutableSpace* const space = _space_info[id].space();
1073   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1074   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1075   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1076 
1077   // Skip full regions at the beginning of the space--they are necessarily part
1078   // of the dense prefix.
1079   size_t full_count = 0;
1080   const RegionData* cp;
1081   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1082     ++full_count;
1083   }
1084 
1085   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1086   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1087   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1088   if (maximum_compaction || cp == end_cp || interval_ended) {
1089     _maximum_compaction_gc_num = total_invocations();
1090     return sd.region_to_addr(cp);
1091   }
1092 
1093   HeapWord* const new_top = _space_info[id].new_top();
1094   const size_t space_live = pointer_delta(new_top, space->bottom());
1095   const size_t space_used = space->used_in_words();
1096   const size_t space_capacity = space->capacity_in_words();
1097 
1098   const double cur_density = double(space_live) / space_capacity;
1099   const double deadwood_density =
1100     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1101   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1102 
1103   if (TraceParallelOldGCDensePrefix) {
1104     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1105                   cur_density, deadwood_density, deadwood_goal);
1106     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1107                   "space_cap=" SIZE_FORMAT,
1108                   space_live, space_used,
1109                   space_capacity);
1110   }
1111 
1112   // XXX - Use binary search?
1113   HeapWord* dense_prefix = sd.region_to_addr(cp);
1114   const RegionData* full_cp = cp;
1115   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1116   while (cp < end_cp) {
1117     HeapWord* region_destination = cp->destination();
1118     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1119     if (TraceParallelOldGCDensePrefix && Verbose) {
1120       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1121                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1122                     sd.region(cp), p2i(region_destination),
1123                     p2i(dense_prefix), cur_deadwood);
1124     }
1125 
1126     if (cur_deadwood >= deadwood_goal) {
1127       // Found the region that has the correct amount of deadwood to the left.
1128       // This typically occurs after crossing a fairly sparse set of regions, so
1129       // iterate backwards over those sparse regions, looking for the region
1130       // that has the lowest density of live objects 'to the right.'
1131       size_t space_to_left = sd.region(cp) * region_size;
1132       size_t live_to_left = space_to_left - cur_deadwood;
1133       size_t space_to_right = space_capacity - space_to_left;
1134       size_t live_to_right = space_live - live_to_left;
1135       double density_to_right = double(live_to_right) / space_to_right;
1136       while (cp > full_cp) {
1137         --cp;
1138         const size_t prev_region_live_to_right = live_to_right -
1139           cp->data_size();
1140         const size_t prev_region_space_to_right = space_to_right + region_size;
1141         double prev_region_density_to_right =
1142           double(prev_region_live_to_right) / prev_region_space_to_right;
1143         if (density_to_right <= prev_region_density_to_right) {
1144           return dense_prefix;
1145         }
1146         if (TraceParallelOldGCDensePrefix && Verbose) {
1147           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1148                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1149                         prev_region_density_to_right);
1150         }
1151         dense_prefix -= region_size;
1152         live_to_right = prev_region_live_to_right;
1153         space_to_right = prev_region_space_to_right;
1154         density_to_right = prev_region_density_to_right;
1155       }
1156       return dense_prefix;
1157     }
1158 
1159     dense_prefix += region_size;
1160     ++cp;
1161   }
1162 
1163   return dense_prefix;
1164 }
1165 
1166 #ifndef PRODUCT
1167 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1168                                                  const SpaceId id,
1169                                                  const bool maximum_compaction,
1170                                                  HeapWord* const addr)
1171 {
1172   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1173   RegionData* const cp = summary_data().region(region_idx);
1174   const MutableSpace* const space = _space_info[id].space();
1175   HeapWord* const new_top = _space_info[id].new_top();
1176 
1177   const size_t space_live = pointer_delta(new_top, space->bottom());
1178   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1179   const size_t space_cap = space->capacity_in_words();
1180   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1181   const size_t live_to_right = new_top - cp->destination();
1182   const size_t dead_to_right = space->top() - addr - live_to_right;
1183 
1184   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1185                 "spl=" SIZE_FORMAT " "
1186                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1187                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1188                 " ratio=%10.8f",
1189                 algorithm, p2i(addr), region_idx,
1190                 space_live,
1191                 dead_to_left, dead_to_left_pct,
1192                 dead_to_right, live_to_right,
1193                 double(dead_to_right) / live_to_right);
1194 }
1195 #endif  // #ifndef PRODUCT
1196 
1197 // Return a fraction indicating how much of the generation can be treated as
1198 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1199 // based on the density of live objects in the generation to determine a limit,
1200 // which is then adjusted so the return value is min_percent when the density is
1201 // 1.
1202 //
1203 // The following table shows some return values for a different values of the
1204 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1205 // min_percent is 1.
1206 //
1207 //                          fraction allowed as dead wood
1208 //         -----------------------------------------------------------------
1209 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1210 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1211 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1212 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1213 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1214 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1215 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1216 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1217 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1218 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1219 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1220 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1221 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1222 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1223 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1224 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1225 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1226 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1227 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1228 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1229 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1230 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1231 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1232 
1233 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1234 {
1235   assert(_dwl_initialized, "uninitialized");
1236 
1237   // The raw limit is the value of the normal distribution at x = density.
1238   const double raw_limit = normal_distribution(density);
1239 
1240   // Adjust the raw limit so it becomes the minimum when the density is 1.
1241   //
1242   // First subtract the adjustment value (which is simply the precomputed value
1243   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1244   // Then add the minimum value, so the minimum is returned when the density is
1245   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1246   const double min = double(min_percent) / 100.0;
1247   const double limit = raw_limit - _dwl_adjustment + min;
1248   return MAX2(limit, 0.0);
1249 }
1250 
1251 ParallelCompactData::RegionData*
1252 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1253                                            const RegionData* end)
1254 {
1255   const size_t region_size = ParallelCompactData::RegionSize;
1256   ParallelCompactData& sd = summary_data();
1257   size_t left = sd.region(beg);
1258   size_t right = end > beg ? sd.region(end) - 1 : left;
1259 
1260   // Binary search.
1261   while (left < right) {
1262     // Equivalent to (left + right) / 2, but does not overflow.
1263     const size_t middle = left + (right - left) / 2;
1264     RegionData* const middle_ptr = sd.region(middle);
1265     HeapWord* const dest = middle_ptr->destination();
1266     HeapWord* const addr = sd.region_to_addr(middle);
1267     assert(dest != NULL, "sanity");
1268     assert(dest <= addr, "must move left");
1269 
1270     if (middle > left && dest < addr) {
1271       right = middle - 1;
1272     } else if (middle < right && middle_ptr->data_size() == region_size) {
1273       left = middle + 1;
1274     } else {
1275       return middle_ptr;
1276     }
1277   }
1278   return sd.region(left);
1279 }
1280 
1281 ParallelCompactData::RegionData*
1282 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1283                                           const RegionData* end,
1284                                           size_t dead_words)
1285 {
1286   ParallelCompactData& sd = summary_data();
1287   size_t left = sd.region(beg);
1288   size_t right = end > beg ? sd.region(end) - 1 : left;
1289 
1290   // Binary search.
1291   while (left < right) {
1292     // Equivalent to (left + right) / 2, but does not overflow.
1293     const size_t middle = left + (right - left) / 2;
1294     RegionData* const middle_ptr = sd.region(middle);
1295     HeapWord* const dest = middle_ptr->destination();
1296     HeapWord* const addr = sd.region_to_addr(middle);
1297     assert(dest != NULL, "sanity");
1298     assert(dest <= addr, "must move left");
1299 
1300     const size_t dead_to_left = pointer_delta(addr, dest);
1301     if (middle > left && dead_to_left > dead_words) {
1302       right = middle - 1;
1303     } else if (middle < right && dead_to_left < dead_words) {
1304       left = middle + 1;
1305     } else {
1306       return middle_ptr;
1307     }
1308   }
1309   return sd.region(left);
1310 }
1311 
1312 // The result is valid during the summary phase, after the initial summarization
1313 // of each space into itself, and before final summarization.
1314 inline double
1315 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1316                                    HeapWord* const bottom,
1317                                    HeapWord* const top,
1318                                    HeapWord* const new_top)
1319 {
1320   ParallelCompactData& sd = summary_data();
1321 
1322   assert(cp != NULL, "sanity");
1323   assert(bottom != NULL, "sanity");
1324   assert(top != NULL, "sanity");
1325   assert(new_top != NULL, "sanity");
1326   assert(top >= new_top, "summary data problem?");
1327   assert(new_top > bottom, "space is empty; should not be here");
1328   assert(new_top >= cp->destination(), "sanity");
1329   assert(top >= sd.region_to_addr(cp), "sanity");
1330 
1331   HeapWord* const destination = cp->destination();
1332   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1333   const size_t compacted_region_live = pointer_delta(new_top, destination);
1334   const size_t compacted_region_used = pointer_delta(top,
1335                                                      sd.region_to_addr(cp));
1336   const size_t reclaimable = compacted_region_used - compacted_region_live;
1337 
1338   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1339   return double(reclaimable) / divisor;
1340 }
1341 
1342 // Return the address of the end of the dense prefix, a.k.a. the start of the
1343 // compacted region.  The address is always on a region boundary.
1344 //
1345 // Completely full regions at the left are skipped, since no compaction can
1346 // occur in those regions.  Then the maximum amount of dead wood to allow is
1347 // computed, based on the density (amount live / capacity) of the generation;
1348 // the region with approximately that amount of dead space to the left is
1349 // identified as the limit region.  Regions between the last completely full
1350 // region and the limit region are scanned and the one that has the best
1351 // (maximum) reclaimed_ratio() is selected.
1352 HeapWord*
1353 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1354                                         bool maximum_compaction)
1355 {
1356   if (ParallelOldGCSplitALot) {
1357     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1358       // The value was chosen to provoke splitting a young gen space; use it.
1359       return _space_info[id].dense_prefix();
1360     }
1361   }
1362 
1363   const size_t region_size = ParallelCompactData::RegionSize;
1364   const ParallelCompactData& sd = summary_data();
1365 
1366   const MutableSpace* const space = _space_info[id].space();
1367   HeapWord* const top = space->top();
1368   HeapWord* const top_aligned_up = sd.region_align_up(top);
1369   HeapWord* const new_top = _space_info[id].new_top();
1370   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1371   HeapWord* const bottom = space->bottom();
1372   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1373   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1374   const RegionData* const new_top_cp =
1375     sd.addr_to_region_ptr(new_top_aligned_up);
1376 
1377   // Skip full regions at the beginning of the space--they are necessarily part
1378   // of the dense prefix.
1379   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1380   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1381          space->is_empty(), "no dead space allowed to the left");
1382   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1383          "region must have dead space");
1384 
1385   // The gc number is saved whenever a maximum compaction is done, and used to
1386   // determine when the maximum compaction interval has expired.  This avoids
1387   // successive max compactions for different reasons.
1388   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1389   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1390   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1391     total_invocations() == HeapFirstMaximumCompactionCount;
1392   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1393     _maximum_compaction_gc_num = total_invocations();
1394     return sd.region_to_addr(full_cp);
1395   }
1396 
1397   const size_t space_live = pointer_delta(new_top, bottom);
1398   const size_t space_used = space->used_in_words();
1399   const size_t space_capacity = space->capacity_in_words();
1400 
1401   const double density = double(space_live) / double(space_capacity);
1402   const size_t min_percent_free = MarkSweepDeadRatio;
1403   const double limiter = dead_wood_limiter(density, min_percent_free);
1404   const size_t dead_wood_max = space_used - space_live;
1405   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1406                                       dead_wood_max);
1407 
1408   if (TraceParallelOldGCDensePrefix) {
1409     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1410                   "space_cap=" SIZE_FORMAT,
1411                   space_live, space_used,
1412                   space_capacity);
1413     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1414                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1415                   density, min_percent_free, limiter,
1416                   dead_wood_max, dead_wood_limit);
1417   }
1418 
1419   // Locate the region with the desired amount of dead space to the left.
1420   const RegionData* const limit_cp =
1421     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1422 
1423   // Scan from the first region with dead space to the limit region and find the
1424   // one with the best (largest) reclaimed ratio.
1425   double best_ratio = 0.0;
1426   const RegionData* best_cp = full_cp;
1427   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1428     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1429     if (tmp_ratio > best_ratio) {
1430       best_cp = cp;
1431       best_ratio = tmp_ratio;
1432     }
1433   }
1434 
1435 #if     0
1436   // Something to consider:  if the region with the best ratio is 'close to' the
1437   // first region w/free space, choose the first region with free space
1438   // ("first-free").  The first-free region is usually near the start of the
1439   // heap, which means we are copying most of the heap already, so copy a bit
1440   // more to get complete compaction.
1441   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1442     _maximum_compaction_gc_num = total_invocations();
1443     best_cp = full_cp;
1444   }
1445 #endif  // #if 0
1446 
1447   return sd.region_to_addr(best_cp);
1448 }
1449 
1450 #ifndef PRODUCT
1451 void
1452 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1453                                           size_t words)
1454 {
1455   if (TraceParallelOldGCSummaryPhase) {
1456     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1457                   SIZE_FORMAT, p2i(start), p2i(start + words), words);
1458   }
1459 
1460   ObjectStartArray* const start_array = _space_info[id].start_array();
1461   CollectedHeap::fill_with_objects(start, words);
1462   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1463     _mark_bitmap.mark_obj(p, words);
1464     _summary_data.add_obj(p, words);
1465     start_array->allocate_block(p);
1466   }
1467 }
1468 
1469 void
1470 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1471 {
1472   ParallelCompactData& sd = summary_data();
1473   MutableSpace* space = _space_info[id].space();
1474 
1475   // Find the source and destination start addresses.
1476   HeapWord* const src_addr = sd.region_align_down(start);
1477   HeapWord* dst_addr;
1478   if (src_addr < start) {
1479     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1480   } else if (src_addr > space->bottom()) {
1481     // The start (the original top() value) is aligned to a region boundary so
1482     // the associated region does not have a destination.  Compute the
1483     // destination from the previous region.
1484     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1485     dst_addr = cp->destination() + cp->data_size();
1486   } else {
1487     // Filling the entire space.
1488     dst_addr = space->bottom();
1489   }
1490   assert(dst_addr != NULL, "sanity");
1491 
1492   // Update the summary data.
1493   bool result = _summary_data.summarize(_space_info[id].split_info(),
1494                                         src_addr, space->top(), NULL,
1495                                         dst_addr, space->end(),
1496                                         _space_info[id].new_top_addr());
1497   assert(result, "should not fail:  bad filler object size");
1498 }
1499 
1500 void
1501 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1502 {
1503   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1504     return;
1505   }
1506 
1507   MutableSpace* const space = _space_info[id].space();
1508   if (space->is_empty()) {
1509     HeapWord* b = space->bottom();
1510     HeapWord* t = b + space->capacity_in_words() / 2;
1511     space->set_top(t);
1512     if (ZapUnusedHeapArea) {
1513       space->set_top_for_allocations();
1514     }
1515 
1516     size_t min_size = CollectedHeap::min_fill_size();
1517     size_t obj_len = min_size;
1518     while (b + obj_len <= t) {
1519       CollectedHeap::fill_with_object(b, obj_len);
1520       mark_bitmap()->mark_obj(b, obj_len);
1521       summary_data().add_obj(b, obj_len);
1522       b += obj_len;
1523       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1524     }
1525     if (b < t) {
1526       // The loop didn't completely fill to t (top); adjust top downward.
1527       space->set_top(b);
1528       if (ZapUnusedHeapArea) {
1529         space->set_top_for_allocations();
1530       }
1531     }
1532 
1533     HeapWord** nta = _space_info[id].new_top_addr();
1534     bool result = summary_data().summarize(_space_info[id].split_info(),
1535                                            space->bottom(), space->top(), NULL,
1536                                            space->bottom(), space->end(), nta);
1537     assert(result, "space must fit into itself");
1538   }
1539 }
1540 
1541 void
1542 PSParallelCompact::provoke_split(bool & max_compaction)
1543 {
1544   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1545     return;
1546   }
1547 
1548   const size_t region_size = ParallelCompactData::RegionSize;
1549   ParallelCompactData& sd = summary_data();
1550 
1551   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1552   MutableSpace* const from_space = _space_info[from_space_id].space();
1553   const size_t eden_live = pointer_delta(eden_space->top(),
1554                                          _space_info[eden_space_id].new_top());
1555   const size_t from_live = pointer_delta(from_space->top(),
1556                                          _space_info[from_space_id].new_top());
1557 
1558   const size_t min_fill_size = CollectedHeap::min_fill_size();
1559   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1560   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1561   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1562   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1563 
1564   // Choose the space to split; need at least 2 regions live (or fillable).
1565   SpaceId id;
1566   MutableSpace* space;
1567   size_t live_words;
1568   size_t fill_words;
1569   if (eden_live + eden_fillable >= region_size * 2) {
1570     id = eden_space_id;
1571     space = eden_space;
1572     live_words = eden_live;
1573     fill_words = eden_fillable;
1574   } else if (from_live + from_fillable >= region_size * 2) {
1575     id = from_space_id;
1576     space = from_space;
1577     live_words = from_live;
1578     fill_words = from_fillable;
1579   } else {
1580     return; // Give up.
1581   }
1582   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1583 
1584   if (live_words < region_size * 2) {
1585     // Fill from top() to end() w/live objects of mixed sizes.
1586     HeapWord* const fill_start = space->top();
1587     live_words += fill_words;
1588 
1589     space->set_top(fill_start + fill_words);
1590     if (ZapUnusedHeapArea) {
1591       space->set_top_for_allocations();
1592     }
1593 
1594     HeapWord* cur_addr = fill_start;
1595     while (fill_words > 0) {
1596       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1597       size_t cur_size = MIN2(align_object_size_(r), fill_words);
1598       if (fill_words - cur_size < min_fill_size) {
1599         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1600       }
1601 
1602       CollectedHeap::fill_with_object(cur_addr, cur_size);
1603       mark_bitmap()->mark_obj(cur_addr, cur_size);
1604       sd.add_obj(cur_addr, cur_size);
1605 
1606       cur_addr += cur_size;
1607       fill_words -= cur_size;
1608     }
1609 
1610     summarize_new_objects(id, fill_start);
1611   }
1612 
1613   max_compaction = false;
1614 
1615   // Manipulate the old gen so that it has room for about half of the live data
1616   // in the target young gen space (live_words / 2).
1617   id = old_space_id;
1618   space = _space_info[id].space();
1619   const size_t free_at_end = space->free_in_words();
1620   const size_t free_target = align_object_size(live_words / 2);
1621   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1622 
1623   if (free_at_end >= free_target + min_fill_size) {
1624     // Fill space above top() and set the dense prefix so everything survives.
1625     HeapWord* const fill_start = space->top();
1626     const size_t fill_size = free_at_end - free_target;
1627     space->set_top(space->top() + fill_size);
1628     if (ZapUnusedHeapArea) {
1629       space->set_top_for_allocations();
1630     }
1631     fill_with_live_objects(id, fill_start, fill_size);
1632     summarize_new_objects(id, fill_start);
1633     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1634   } else if (dead + free_at_end > free_target) {
1635     // Find a dense prefix that makes the right amount of space available.
1636     HeapWord* cur = sd.region_align_down(space->top());
1637     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1638     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1639     while (dead_to_right < free_target) {
1640       cur -= region_size;
1641       cur_destination = sd.addr_to_region_ptr(cur)->destination();
1642       dead_to_right = pointer_delta(space->end(), cur_destination);
1643     }
1644     _space_info[id].set_dense_prefix(cur);
1645   }
1646 }
1647 #endif // #ifndef PRODUCT
1648 
1649 void PSParallelCompact::summarize_spaces_quick()
1650 {
1651   for (unsigned int i = 0; i < last_space_id; ++i) {
1652     const MutableSpace* space = _space_info[i].space();
1653     HeapWord** nta = _space_info[i].new_top_addr();
1654     bool result = _summary_data.summarize(_space_info[i].split_info(),
1655                                           space->bottom(), space->top(), NULL,
1656                                           space->bottom(), space->end(), nta);
1657     assert(result, "space must fit into itself");
1658     _space_info[i].set_dense_prefix(space->bottom());
1659   }
1660 
1661 #ifndef PRODUCT
1662   if (ParallelOldGCSplitALot) {
1663     provoke_split_fill_survivor(to_space_id);
1664   }
1665 #endif // #ifndef PRODUCT
1666 }
1667 
1668 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1669 {
1670   HeapWord* const dense_prefix_end = dense_prefix(id);
1671   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1672   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1673   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1674     // Only enough dead space is filled so that any remaining dead space to the
1675     // left is larger than the minimum filler object.  (The remainder is filled
1676     // during the copy/update phase.)
1677     //
1678     // The size of the dead space to the right of the boundary is not a
1679     // concern, since compaction will be able to use whatever space is
1680     // available.
1681     //
1682     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1683     // surrounds the space to be filled with an object.
1684     //
1685     // In the 32-bit VM, each bit represents two 32-bit words:
1686     //                              +---+
1687     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1688     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1689     //                              +---+
1690     //
1691     // In the 64-bit VM, each bit represents one 64-bit word:
1692     //                              +------------+
1693     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1694     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1695     //                              +------------+
1696     //                          +-------+
1697     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1698     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1699     //                          +-------+
1700     //                      +-----------+
1701     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1702     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1703     //                      +-----------+
1704     //                          +-------+
1705     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1706     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1707     //                          +-------+
1708 
1709     // Initially assume case a, c or e will apply.
1710     size_t obj_len = CollectedHeap::min_fill_size();
1711     HeapWord* obj_beg = dense_prefix_end - obj_len;
1712 
1713 #ifdef  _LP64
1714     if (MinObjAlignment > 1) { // object alignment > heap word size
1715       // Cases a, c or e.
1716     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1717       // Case b above.
1718       obj_beg = dense_prefix_end - 1;
1719     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1720                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1721       // Case d above.
1722       obj_beg = dense_prefix_end - 3;
1723       obj_len = 3;
1724     }
1725 #endif  // #ifdef _LP64
1726 
1727     CollectedHeap::fill_with_object(obj_beg, obj_len);
1728     _mark_bitmap.mark_obj(obj_beg, obj_len);
1729     _summary_data.add_obj(obj_beg, obj_len);
1730     assert(start_array(id) != NULL, "sanity");
1731     start_array(id)->allocate_block(obj_beg);
1732   }
1733 }
1734 
1735 void
1736 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1737 {
1738   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1739   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1740   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1741   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1742     cur->set_source_region(0);
1743   }
1744 }
1745 
1746 void
1747 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1748 {
1749   assert(id < last_space_id, "id out of range");
1750   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1751          ParallelOldGCSplitALot && id == old_space_id,
1752          "should have been reset in summarize_spaces_quick()");
1753 
1754   const MutableSpace* space = _space_info[id].space();
1755   if (_space_info[id].new_top() != space->bottom()) {
1756     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1757     _space_info[id].set_dense_prefix(dense_prefix_end);
1758 
1759 #ifndef PRODUCT
1760     if (TraceParallelOldGCDensePrefix) {
1761       print_dense_prefix_stats("ratio", id, maximum_compaction,
1762                                dense_prefix_end);
1763       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1764       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1765     }
1766 #endif  // #ifndef PRODUCT
1767 
1768     // Recompute the summary data, taking into account the dense prefix.  If
1769     // every last byte will be reclaimed, then the existing summary data which
1770     // compacts everything can be left in place.
1771     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1772       // If dead space crosses the dense prefix boundary, it is (at least
1773       // partially) filled with a dummy object, marked live and added to the
1774       // summary data.  This simplifies the copy/update phase and must be done
1775       // before the final locations of objects are determined, to prevent
1776       // leaving a fragment of dead space that is too small to fill.
1777       fill_dense_prefix_end(id);
1778 
1779       // Compute the destination of each Region, and thus each object.
1780       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1781       _summary_data.summarize(_space_info[id].split_info(),
1782                               dense_prefix_end, space->top(), NULL,
1783                               dense_prefix_end, space->end(),
1784                               _space_info[id].new_top_addr());
1785     }
1786   }
1787 
1788   if (TraceParallelOldGCSummaryPhase) {
1789     const size_t region_size = ParallelCompactData::RegionSize;
1790     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1791     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1792     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1793     HeapWord* const new_top = _space_info[id].new_top();
1794     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1795     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1796     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1797                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1798                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1799                   id, space->capacity_in_words(), p2i(dense_prefix_end),
1800                   dp_region, dp_words / region_size,
1801                   cr_words / region_size, p2i(new_top));
1802   }
1803 }
1804 
1805 #ifndef PRODUCT
1806 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1807                                           HeapWord* dst_beg, HeapWord* dst_end,
1808                                           SpaceId src_space_id,
1809                                           HeapWord* src_beg, HeapWord* src_end)
1810 {
1811   if (TraceParallelOldGCSummaryPhase) {
1812     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1813                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1814                   SIZE_FORMAT "-" SIZE_FORMAT " "
1815                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1816                   SIZE_FORMAT "-" SIZE_FORMAT,
1817                   src_space_id, space_names[src_space_id],
1818                   dst_space_id, space_names[dst_space_id],
1819                   p2i(src_beg), p2i(src_end),
1820                   _summary_data.addr_to_region_idx(src_beg),
1821                   _summary_data.addr_to_region_idx(src_end),
1822                   p2i(dst_beg), p2i(dst_end),
1823                   _summary_data.addr_to_region_idx(dst_beg),
1824                   _summary_data.addr_to_region_idx(dst_end));
1825   }
1826 }
1827 #endif  // #ifndef PRODUCT
1828 
1829 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1830                                       bool maximum_compaction)
1831 {
1832   GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1833   // trace("2");
1834 
1835 #ifdef  ASSERT
1836   if (TraceParallelOldGCMarkingPhase) {
1837     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1838                   "add_obj_bytes=" SIZE_FORMAT,
1839                   add_obj_count, add_obj_size * HeapWordSize);
1840     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1841                   "mark_bitmap_bytes=" SIZE_FORMAT,
1842                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1843   }
1844 #endif  // #ifdef ASSERT
1845 
1846   // Quick summarization of each space into itself, to see how much is live.
1847   summarize_spaces_quick();
1848 
1849   if (TraceParallelOldGCSummaryPhase) {
1850     tty->print_cr("summary_phase:  after summarizing each space to self");
1851     Universe::print();
1852     NOT_PRODUCT(print_region_ranges());
1853     if (Verbose) {
1854       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1855     }
1856   }
1857 
1858   // The amount of live data that will end up in old space (assuming it fits).
1859   size_t old_space_total_live = 0;
1860   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1861     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1862                                           _space_info[id].space()->bottom());
1863   }
1864 
1865   MutableSpace* const old_space = _space_info[old_space_id].space();
1866   const size_t old_capacity = old_space->capacity_in_words();
1867   if (old_space_total_live > old_capacity) {
1868     // XXX - should also try to expand
1869     maximum_compaction = true;
1870   }
1871 #ifndef PRODUCT
1872   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1873     provoke_split(maximum_compaction);
1874   }
1875 #endif // #ifndef PRODUCT
1876 
1877   // Old generations.
1878   summarize_space(old_space_id, maximum_compaction);
1879 
1880   // Summarize the remaining spaces in the young gen.  The initial target space
1881   // is the old gen.  If a space does not fit entirely into the target, then the
1882   // remainder is compacted into the space itself and that space becomes the new
1883   // target.
1884   SpaceId dst_space_id = old_space_id;
1885   HeapWord* dst_space_end = old_space->end();
1886   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1887   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1888     const MutableSpace* space = _space_info[id].space();
1889     const size_t live = pointer_delta(_space_info[id].new_top(),
1890                                       space->bottom());
1891     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1892 
1893     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1894                                   SpaceId(id), space->bottom(), space->top());)
1895     if (live > 0 && live <= available) {
1896       // All the live data will fit.
1897       bool done = _summary_data.summarize(_space_info[id].split_info(),
1898                                           space->bottom(), space->top(),
1899                                           NULL,
1900                                           *new_top_addr, dst_space_end,
1901                                           new_top_addr);
1902       assert(done, "space must fit into old gen");
1903 
1904       // Reset the new_top value for the space.
1905       _space_info[id].set_new_top(space->bottom());
1906     } else if (live > 0) {
1907       // Attempt to fit part of the source space into the target space.
1908       HeapWord* next_src_addr = NULL;
1909       bool done = _summary_data.summarize(_space_info[id].split_info(),
1910                                           space->bottom(), space->top(),
1911                                           &next_src_addr,
1912                                           *new_top_addr, dst_space_end,
1913                                           new_top_addr);
1914       assert(!done, "space should not fit into old gen");
1915       assert(next_src_addr != NULL, "sanity");
1916 
1917       // The source space becomes the new target, so the remainder is compacted
1918       // within the space itself.
1919       dst_space_id = SpaceId(id);
1920       dst_space_end = space->end();
1921       new_top_addr = _space_info[id].new_top_addr();
1922       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1923                                     space->bottom(), dst_space_end,
1924                                     SpaceId(id), next_src_addr, space->top());)
1925       done = _summary_data.summarize(_space_info[id].split_info(),
1926                                      next_src_addr, space->top(),
1927                                      NULL,
1928                                      space->bottom(), dst_space_end,
1929                                      new_top_addr);
1930       assert(done, "space must fit when compacted into itself");
1931       assert(*new_top_addr <= space->top(), "usage should not grow");
1932     }
1933   }
1934 
1935   if (TraceParallelOldGCSummaryPhase) {
1936     tty->print_cr("summary_phase:  after final summarization");
1937     Universe::print();
1938     NOT_PRODUCT(print_region_ranges());
1939     if (Verbose) {
1940       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1941     }
1942   }
1943 }
1944 
1945 // This method should contain all heap-specific policy for invoking a full
1946 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1947 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1948 // before full gc, or any other specialized behavior, it needs to be added here.
1949 //
1950 // Note that this method should only be called from the vm_thread while at a
1951 // safepoint.
1952 //
1953 // Note that the all_soft_refs_clear flag in the collector policy
1954 // may be true because this method can be called without intervening
1955 // activity.  For example when the heap space is tight and full measure
1956 // are being taken to free space.
1957 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1958   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1959   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1960          "should be in vm thread");
1961 
1962   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1963   GCCause::Cause gc_cause = heap->gc_cause();
1964   assert(!heap->is_gc_active(), "not reentrant");
1965 
1966   PSAdaptiveSizePolicy* policy = heap->size_policy();
1967   IsGCActiveMark mark;
1968 
1969   if (ScavengeBeforeFullGC) {
1970     PSScavenge::invoke_no_policy();
1971   }
1972 
1973   const bool clear_all_soft_refs =
1974     heap->collector_policy()->should_clear_all_soft_refs();
1975 
1976   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1977                                       maximum_heap_compaction);
1978 }
1979 
1980 // This method contains no policy. You should probably
1981 // be calling invoke() instead.
1982 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1983   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1984   assert(ref_processor() != NULL, "Sanity");
1985 
1986   if (GC_locker::check_active_before_gc()) {
1987     return false;
1988   }
1989 
1990   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1991 
1992   _gc_timer.register_gc_start();
1993   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1994 
1995   TimeStamp marking_start;
1996   TimeStamp compaction_start;
1997   TimeStamp collection_exit;
1998 
1999   GCCause::Cause gc_cause = heap->gc_cause();
2000   PSYoungGen* young_gen = heap->young_gen();
2001   PSOldGen* old_gen = heap->old_gen();
2002   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
2003 
2004   // The scope of casr should end after code that can change
2005   // CollectorPolicy::_should_clear_all_soft_refs.
2006   ClearedAllSoftRefs casr(maximum_heap_compaction,
2007                           heap->collector_policy());
2008 
2009   if (ZapUnusedHeapArea) {
2010     // Save information needed to minimize mangling
2011     heap->record_gen_tops_before_GC();
2012   }
2013 
2014   heap->pre_full_gc_dump(&_gc_timer);
2015 
2016   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2017 
2018   // Make sure data structures are sane, make the heap parsable, and do other
2019   // miscellaneous bookkeeping.
2020   PreGCValues pre_gc_values;
2021   pre_compact(&pre_gc_values);
2022 
2023   // Get the compaction manager reserved for the VM thread.
2024   ParCompactionManager* const vmthread_cm =
2025     ParCompactionManager::manager_array(gc_task_manager()->workers());
2026 
2027   // Place after pre_compact() where the number of invocations is incremented.
2028   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2029 
2030   {
2031     ResourceMark rm;
2032     HandleMark hm;
2033 
2034     // Set the number of GC threads to be used in this collection
2035     gc_task_manager()->set_active_gang();
2036     gc_task_manager()->task_idle_workers();
2037     heap->set_par_threads(gc_task_manager()->active_workers());
2038 
2039     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2040     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
2041     TraceCollectorStats tcs(counters());
2042     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
2043 
2044     if (TraceOldGenTime) accumulated_time()->start();
2045 
2046     // Let the size policy know we're starting
2047     size_policy->major_collection_begin();
2048 
2049     CodeCache::gc_prologue();
2050 
2051     COMPILER2_PRESENT(DerivedPointerTable::clear());
2052 
2053     ref_processor()->enable_discovery();
2054     ref_processor()->setup_policy(maximum_heap_compaction);
2055 
2056     bool marked_for_unloading = false;
2057 
2058     marking_start.update();
2059     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
2060 
2061     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
2062       && gc_cause == GCCause::_java_lang_system_gc;
2063     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2064 
2065     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2066     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2067 
2068     // adjust_roots() updates Universe::_intArrayKlassObj which is
2069     // needed by the compaction for filling holes in the dense prefix.
2070     adjust_roots();
2071 
2072     compaction_start.update();
2073     compact();
2074 
2075     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2076     // done before resizing.
2077     post_compact();
2078 
2079     // Let the size policy know we're done
2080     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2081 
2082     if (UseAdaptiveSizePolicy) {
2083       if (PrintAdaptiveSizePolicy) {
2084         gclog_or_tty->print("AdaptiveSizeStart: ");
2085         gclog_or_tty->stamp();
2086         gclog_or_tty->print_cr(" collection: %d ",
2087                        heap->total_collections());
2088         if (Verbose) {
2089           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
2090             " young_gen_capacity: " SIZE_FORMAT,
2091             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
2092         }
2093       }
2094 
2095       // Don't check if the size_policy is ready here.  Let
2096       // the size_policy check that internally.
2097       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2098           ((gc_cause != GCCause::_java_lang_system_gc) ||
2099             UseAdaptiveSizePolicyWithSystemGC)) {
2100         // Swap the survivor spaces if from_space is empty. The
2101         // resize_young_gen() called below is normally used after
2102         // a successful young GC and swapping of survivor spaces;
2103         // otherwise, it will fail to resize the young gen with
2104         // the current implementation.
2105         if (young_gen->from_space()->is_empty()) {
2106           young_gen->from_space()->clear(SpaceDecorator::Mangle);
2107           young_gen->swap_spaces();
2108         }
2109 
2110         // Calculate optimal free space amounts
2111         assert(young_gen->max_size() >
2112           young_gen->from_space()->capacity_in_bytes() +
2113           young_gen->to_space()->capacity_in_bytes(),
2114           "Sizes of space in young gen are out-of-bounds");
2115 
2116         size_t young_live = young_gen->used_in_bytes();
2117         size_t eden_live = young_gen->eden_space()->used_in_bytes();
2118         size_t old_live = old_gen->used_in_bytes();
2119         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
2120         size_t max_old_gen_size = old_gen->max_gen_size();
2121         size_t max_eden_size = young_gen->max_size() -
2122           young_gen->from_space()->capacity_in_bytes() -
2123           young_gen->to_space()->capacity_in_bytes();
2124 
2125         // Used for diagnostics
2126         size_policy->clear_generation_free_space_flags();
2127 
2128         size_policy->compute_generations_free_space(young_live,
2129                                                     eden_live,
2130                                                     old_live,
2131                                                     cur_eden,
2132                                                     max_old_gen_size,
2133                                                     max_eden_size,
2134                                                     true /* full gc*/);
2135 
2136         size_policy->check_gc_overhead_limit(young_live,
2137                                              eden_live,
2138                                              max_old_gen_size,
2139                                              max_eden_size,
2140                                              true /* full gc*/,
2141                                              gc_cause,
2142                                              heap->collector_policy());
2143 
2144         size_policy->decay_supplemental_growth(true /* full gc*/);
2145 
2146         heap->resize_old_gen(
2147           size_policy->calculated_old_free_size_in_bytes());
2148 
2149         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
2150                                size_policy->calculated_survivor_size_in_bytes());
2151       }
2152       if (PrintAdaptiveSizePolicy) {
2153         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2154                        heap->total_collections());
2155       }
2156     }
2157 
2158     if (UsePerfData) {
2159       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2160       counters->update_counters();
2161       counters->update_old_capacity(old_gen->capacity_in_bytes());
2162       counters->update_young_capacity(young_gen->capacity_in_bytes());
2163     }
2164 
2165     heap->resize_all_tlabs();
2166 
2167     // Resize the metaspace capacity after a collection
2168     MetaspaceGC::compute_new_size();
2169 
2170     if (TraceOldGenTime) accumulated_time()->stop();
2171 
2172     if (PrintGC) {
2173       if (PrintGCDetails) {
2174         // No GC timestamp here.  This is after GC so it would be confusing.
2175         young_gen->print_used_change(pre_gc_values.young_gen_used());
2176         old_gen->print_used_change(pre_gc_values.old_gen_used());
2177         heap->print_heap_change(pre_gc_values.heap_used());
2178         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
2179       } else {
2180         heap->print_heap_change(pre_gc_values.heap_used());
2181       }
2182     }
2183 
2184     // Track memory usage and detect low memory
2185     MemoryService::track_memory_usage();
2186     heap->update_counters();
2187     gc_task_manager()->release_idle_workers();
2188   }
2189 
2190 #ifdef ASSERT
2191   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2192     ParCompactionManager* const cm =
2193       ParCompactionManager::manager_array(int(i));
2194     assert(cm->marking_stack()->is_empty(),       "should be empty");
2195     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2196   }
2197 #endif // ASSERT
2198 
2199   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2200     HandleMark hm;  // Discard invalid handles created during verification
2201     Universe::verify(" VerifyAfterGC:");
2202   }
2203 
2204   // Re-verify object start arrays
2205   if (VerifyObjectStartArray &&
2206       VerifyAfterGC) {
2207     old_gen->verify_object_start_array();
2208   }
2209 
2210   if (ZapUnusedHeapArea) {
2211     old_gen->object_space()->check_mangled_unused_area_complete();
2212   }
2213 
2214   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2215 
2216   collection_exit.update();
2217 
2218   heap->print_heap_after_gc();
2219   heap->trace_heap_after_gc(&_gc_tracer);
2220 
2221   if (PrintGCTaskTimeStamps) {
2222     gclog_or_tty->print_cr("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " "
2223                            JLONG_FORMAT,
2224                            marking_start.ticks(), compaction_start.ticks(),
2225                            collection_exit.ticks());
2226     gc_task_manager()->print_task_time_stamps();
2227   }
2228 
2229   heap->post_full_gc_dump(&_gc_timer);
2230 
2231 #ifdef TRACESPINNING
2232   ParallelTaskTerminator::print_termination_counts();
2233 #endif
2234 
2235   _gc_timer.register_gc_end();
2236 
2237   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2238   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2239 
2240   return true;
2241 }
2242 
2243 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2244                                              PSYoungGen* young_gen,
2245                                              PSOldGen* old_gen) {
2246   MutableSpace* const eden_space = young_gen->eden_space();
2247   assert(!eden_space->is_empty(), "eden must be non-empty");
2248   assert(young_gen->virtual_space()->alignment() ==
2249          old_gen->virtual_space()->alignment(), "alignments do not match");
2250 
2251   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2252     return false;
2253   }
2254 
2255   // Both generations must be completely committed.
2256   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2257     return false;
2258   }
2259   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2260     return false;
2261   }
2262 
2263   // Figure out how much to take from eden.  Include the average amount promoted
2264   // in the total; otherwise the next young gen GC will simply bail out to a
2265   // full GC.
2266   const size_t alignment = old_gen->virtual_space()->alignment();
2267   const size_t eden_used = eden_space->used_in_bytes();
2268   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2269   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2270   const size_t eden_capacity = eden_space->capacity_in_bytes();
2271 
2272   if (absorb_size >= eden_capacity) {
2273     return false; // Must leave some space in eden.
2274   }
2275 
2276   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2277   if (new_young_size < young_gen->min_gen_size()) {
2278     return false; // Respect young gen minimum size.
2279   }
2280 
2281   if (TraceAdaptiveGCBoundary && Verbose) {
2282     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2283                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2284                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2285                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2286                         absorb_size / K,
2287                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2288                         young_gen->from_space()->used_in_bytes() / K,
2289                         young_gen->to_space()->used_in_bytes() / K,
2290                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2291   }
2292 
2293   // Fill the unused part of the old gen.
2294   MutableSpace* const old_space = old_gen->object_space();
2295   HeapWord* const unused_start = old_space->top();
2296   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2297 
2298   if (unused_words > 0) {
2299     if (unused_words < CollectedHeap::min_fill_size()) {
2300       return false;  // If the old gen cannot be filled, must give up.
2301     }
2302     CollectedHeap::fill_with_objects(unused_start, unused_words);
2303   }
2304 
2305   // Take the live data from eden and set both top and end in the old gen to
2306   // eden top.  (Need to set end because reset_after_change() mangles the region
2307   // from end to virtual_space->high() in debug builds).
2308   HeapWord* const new_top = eden_space->top();
2309   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2310                                         absorb_size);
2311   young_gen->reset_after_change();
2312   old_space->set_top(new_top);
2313   old_space->set_end(new_top);
2314   old_gen->reset_after_change();
2315 
2316   // Update the object start array for the filler object and the data from eden.
2317   ObjectStartArray* const start_array = old_gen->start_array();
2318   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2319     start_array->allocate_block(p);
2320   }
2321 
2322   // Could update the promoted average here, but it is not typically updated at
2323   // full GCs and the value to use is unclear.  Something like
2324   //
2325   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2326 
2327   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2328   return true;
2329 }
2330 
2331 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2332   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2333     "shouldn't return NULL");
2334   return ParallelScavengeHeap::gc_task_manager();
2335 }
2336 
2337 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2338                                       bool maximum_heap_compaction,
2339                                       ParallelOldTracer *gc_tracer) {
2340   // Recursively traverse all live objects and mark them
2341   GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2342 
2343   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2344   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2345   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2346   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2347   ParallelTaskTerminator terminator(active_gc_threads, qset);
2348 
2349   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2350   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
2351 
2352   // Need new claim bits before marking starts.
2353   ClassLoaderDataGraph::clear_claimed_marks();
2354 
2355   {
2356     GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2357 
2358     ParallelScavengeHeap::ParStrongRootsScope psrs;
2359 
2360     GCTaskQueue* q = GCTaskQueue::create();
2361 
2362     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2363     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2364     // We scan the thread roots in parallel
2365     Threads::create_thread_roots_marking_tasks(q);
2366     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2367     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2368     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2369     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2370     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2371     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2372     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2373 
2374     if (active_gc_threads > 1) {
2375       for (uint j = 0; j < active_gc_threads; j++) {
2376         q->enqueue(new StealMarkingTask(&terminator));
2377       }
2378     }
2379 
2380     gc_task_manager()->execute_and_wait(q);
2381   }
2382 
2383   // Process reference objects found during marking
2384   {
2385     GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2386 
2387     ReferenceProcessorStats stats;
2388     if (ref_processor()->processing_is_mt()) {
2389       RefProcTaskExecutor task_executor;
2390       stats = ref_processor()->process_discovered_references(
2391         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2392         &task_executor, &_gc_timer, _gc_tracer.gc_id());
2393     } else {
2394       stats = ref_processor()->process_discovered_references(
2395         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2396         &_gc_timer, _gc_tracer.gc_id());
2397     }
2398 
2399     gc_tracer->report_gc_reference_stats(stats);
2400   }
2401 
2402   GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2403 
2404   // This is the point where the entire marking should have completed.
2405   assert(cm->marking_stacks_empty(), "Marking should have completed");
2406 
2407   // Follow system dictionary roots and unload classes.
2408   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2409 
2410   // Unload nmethods.
2411   CodeCache::do_unloading(is_alive_closure(), purged_class);
2412 
2413   // Prune dead klasses from subklass/sibling/implementor lists.
2414   Klass::clean_weak_klass_links(is_alive_closure());
2415 
2416   // Delete entries for dead interned strings.
2417   StringTable::unlink(is_alive_closure());
2418 
2419   // Clean up unreferenced symbols in symbol table.
2420   SymbolTable::unlink();
2421   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2422 }
2423 
2424 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
2425                                             ClassLoaderData* cld) {
2426   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2427   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
2428 
2429   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
2430 }
2431 
2432 // This should be moved to the shared markSweep code!
2433 class PSAlwaysTrueClosure: public BoolObjectClosure {
2434 public:
2435   bool do_object_b(oop p) { return true; }
2436 };
2437 static PSAlwaysTrueClosure always_true;
2438 
2439 void PSParallelCompact::adjust_roots() {
2440   // Adjust the pointers to reflect the new locations
2441   GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2442 
2443   // Need new claim bits when tracing through and adjusting pointers.
2444   ClassLoaderDataGraph::clear_claimed_marks();
2445 
2446   // General strong roots.
2447   Universe::oops_do(adjust_pointer_closure());
2448   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2449   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2450   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2451   ObjectSynchronizer::oops_do(adjust_pointer_closure());
2452   FlatProfiler::oops_do(adjust_pointer_closure());
2453   Management::oops_do(adjust_pointer_closure());
2454   JvmtiExport::oops_do(adjust_pointer_closure());
2455   SystemDictionary::oops_do(adjust_pointer_closure());
2456   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2457 
2458   // Now adjust pointers in remaining weak roots.  (All of which should
2459   // have been cleared if they pointed to non-surviving objects.)
2460   // Global (weak) JNI handles
2461   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2462 
2463   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2464   CodeCache::blobs_do(&adjust_from_blobs);
2465   StringTable::oops_do(adjust_pointer_closure());
2466   ref_processor()->weak_oops_do(adjust_pointer_closure());
2467   // Roots were visited so references into the young gen in roots
2468   // may have been scanned.  Process them also.
2469   // Should the reference processor have a span that excludes
2470   // young gen objects?
2471   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2472 }
2473 
2474 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2475                                                       uint parallel_gc_threads)
2476 {
2477   GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2478 
2479   // Find the threads that are active
2480   unsigned int which = 0;
2481 
2482   const uint task_count = MAX2(parallel_gc_threads, 1U);
2483   for (uint j = 0; j < task_count; j++) {
2484     q->enqueue(new DrainStacksCompactionTask(j));
2485     ParCompactionManager::verify_region_list_empty(j);
2486     // Set the region stacks variables to "no" region stack values
2487     // so that they will be recognized and needing a region stack
2488     // in the stealing tasks if they do not get one by executing
2489     // a draining stack.
2490     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2491     cm->set_region_stack(NULL);
2492     cm->set_region_stack_index((uint)max_uintx);
2493   }
2494   ParCompactionManager::reset_recycled_stack_index();
2495 
2496   // Find all regions that are available (can be filled immediately) and
2497   // distribute them to the thread stacks.  The iteration is done in reverse
2498   // order (high to low) so the regions will be removed in ascending order.
2499 
2500   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2501 
2502   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2503   // A region index which corresponds to the tasks created above.
2504   // "which" must be 0 <= which < task_count
2505 
2506   which = 0;
2507   // id + 1 is used to test termination so unsigned  can
2508   // be used with an old_space_id == 0.
2509   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2510     SpaceInfo* const space_info = _space_info + id;
2511     MutableSpace* const space = space_info->space();
2512     HeapWord* const new_top = space_info->new_top();
2513 
2514     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2515     const size_t end_region =
2516       sd.addr_to_region_idx(sd.region_align_up(new_top));
2517 
2518     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2519       if (sd.region(cur)->claim_unsafe()) {
2520         ParCompactionManager::region_list_push(which, cur);
2521 
2522         if (TraceParallelOldGCCompactionPhase && Verbose) {
2523           const size_t count_mod_8 = fillable_regions & 7;
2524           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2525           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2526           if (count_mod_8 == 7) gclog_or_tty->cr();
2527         }
2528 
2529         NOT_PRODUCT(++fillable_regions;)
2530 
2531         // Assign regions to tasks in round-robin fashion.
2532         if (++which == task_count) {
2533           assert(which <= parallel_gc_threads,
2534             "Inconsistent number of workers");
2535           which = 0;
2536         }
2537       }
2538     }
2539   }
2540 
2541   if (TraceParallelOldGCCompactionPhase) {
2542     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2543     gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions);
2544   }
2545 }
2546 
2547 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2548 
2549 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2550                                                     uint parallel_gc_threads) {
2551   GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2552 
2553   ParallelCompactData& sd = PSParallelCompact::summary_data();
2554 
2555   // Iterate over all the spaces adding tasks for updating
2556   // regions in the dense prefix.  Assume that 1 gc thread
2557   // will work on opening the gaps and the remaining gc threads
2558   // will work on the dense prefix.
2559   unsigned int space_id;
2560   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2561     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2562     const MutableSpace* const space = _space_info[space_id].space();
2563 
2564     if (dense_prefix_end == space->bottom()) {
2565       // There is no dense prefix for this space.
2566       continue;
2567     }
2568 
2569     // The dense prefix is before this region.
2570     size_t region_index_end_dense_prefix =
2571         sd.addr_to_region_idx(dense_prefix_end);
2572     RegionData* const dense_prefix_cp =
2573       sd.region(region_index_end_dense_prefix);
2574     assert(dense_prefix_end == space->end() ||
2575            dense_prefix_cp->available() ||
2576            dense_prefix_cp->claimed(),
2577            "The region after the dense prefix should always be ready to fill");
2578 
2579     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2580 
2581     // Is there dense prefix work?
2582     size_t total_dense_prefix_regions =
2583       region_index_end_dense_prefix - region_index_start;
2584     // How many regions of the dense prefix should be given to
2585     // each thread?
2586     if (total_dense_prefix_regions > 0) {
2587       uint tasks_for_dense_prefix = 1;
2588       if (total_dense_prefix_regions <=
2589           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2590         // Don't over partition.  This assumes that
2591         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2592         // so there are not many regions to process.
2593         tasks_for_dense_prefix = parallel_gc_threads;
2594       } else {
2595         // Over partition
2596         tasks_for_dense_prefix = parallel_gc_threads *
2597           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2598       }
2599       size_t regions_per_thread = total_dense_prefix_regions /
2600         tasks_for_dense_prefix;
2601       // Give each thread at least 1 region.
2602       if (regions_per_thread == 0) {
2603         regions_per_thread = 1;
2604       }
2605 
2606       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2607         if (region_index_start >= region_index_end_dense_prefix) {
2608           break;
2609         }
2610         // region_index_end is not processed
2611         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2612                                        region_index_end_dense_prefix);
2613         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2614                                              region_index_start,
2615                                              region_index_end));
2616         region_index_start = region_index_end;
2617       }
2618     }
2619     // This gets any part of the dense prefix that did not
2620     // fit evenly.
2621     if (region_index_start < region_index_end_dense_prefix) {
2622       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2623                                            region_index_start,
2624                                            region_index_end_dense_prefix));
2625     }
2626   }
2627 }
2628 
2629 void PSParallelCompact::enqueue_region_stealing_tasks(
2630                                      GCTaskQueue* q,
2631                                      ParallelTaskTerminator* terminator_ptr,
2632                                      uint parallel_gc_threads) {
2633   GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2634 
2635   // Once a thread has drained it's stack, it should try to steal regions from
2636   // other threads.
2637   if (parallel_gc_threads > 1) {
2638     for (uint j = 0; j < parallel_gc_threads; j++) {
2639       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2640     }
2641   }
2642 }
2643 
2644 #ifdef ASSERT
2645 // Write a histogram of the number of times the block table was filled for a
2646 // region.
2647 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2648 {
2649   if (!TraceParallelOldGCCompactionPhase) return;
2650 
2651   typedef ParallelCompactData::RegionData rd_t;
2652   ParallelCompactData& sd = summary_data();
2653 
2654   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2655     MutableSpace* const spc = _space_info[id].space();
2656     if (spc->bottom() != spc->top()) {
2657       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2658       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2659       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2660 
2661       size_t histo[5] = { 0, 0, 0, 0, 0 };
2662       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2663       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2664 
2665       for (const rd_t* cur = beg; cur < end; ++cur) {
2666         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2667       }
2668       out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2669       for (size_t i = 0; i < histo_len; ++i) {
2670         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2671                    histo[i], 100.0 * histo[i] / region_cnt);
2672       }
2673       out->cr();
2674     }
2675   }
2676 }
2677 #endif // #ifdef ASSERT
2678 
2679 void PSParallelCompact::compact() {
2680   // trace("5");
2681   GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2682 
2683   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2684   PSOldGen* old_gen = heap->old_gen();
2685   old_gen->start_array()->reset();
2686   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2687   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2688   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2689   ParallelTaskTerminator terminator(active_gc_threads, qset);
2690 
2691   GCTaskQueue* q = GCTaskQueue::create();
2692   enqueue_region_draining_tasks(q, active_gc_threads);
2693   enqueue_dense_prefix_tasks(q, active_gc_threads);
2694   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2695 
2696   {
2697     GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2698 
2699     gc_task_manager()->execute_and_wait(q);
2700 
2701 #ifdef  ASSERT
2702     // Verify that all regions have been processed before the deferred updates.
2703     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2704       verify_complete(SpaceId(id));
2705     }
2706 #endif
2707   }
2708 
2709   {
2710     // Update the deferred objects, if any.  Any compaction manager can be used.
2711     GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2712     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2713     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2714       update_deferred_objects(cm, SpaceId(id));
2715     }
2716   }
2717 
2718   DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2719 }
2720 
2721 #ifdef  ASSERT
2722 void PSParallelCompact::verify_complete(SpaceId space_id) {
2723   // All Regions between space bottom() to new_top() should be marked as filled
2724   // and all Regions between new_top() and top() should be available (i.e.,
2725   // should have been emptied).
2726   ParallelCompactData& sd = summary_data();
2727   SpaceInfo si = _space_info[space_id];
2728   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2729   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2730   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2731   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2732   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2733 
2734   bool issued_a_warning = false;
2735 
2736   size_t cur_region;
2737   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2738     const RegionData* const c = sd.region(cur_region);
2739     if (!c->completed()) {
2740       warning("region " SIZE_FORMAT " not filled:  "
2741               "destination_count=%u",
2742               cur_region, c->destination_count());
2743       issued_a_warning = true;
2744     }
2745   }
2746 
2747   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2748     const RegionData* const c = sd.region(cur_region);
2749     if (!c->available()) {
2750       warning("region " SIZE_FORMAT " not empty:   "
2751               "destination_count=%u",
2752               cur_region, c->destination_count());
2753       issued_a_warning = true;
2754     }
2755   }
2756 
2757   if (issued_a_warning) {
2758     print_region_ranges();
2759   }
2760 }
2761 #endif  // #ifdef ASSERT
2762 
2763 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2764   _start_array->allocate_block(addr);
2765   compaction_manager()->update_contents(oop(addr));
2766 }
2767 
2768 // Update interior oops in the ranges of regions [beg_region, end_region).
2769 void
2770 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2771                                                        SpaceId space_id,
2772                                                        size_t beg_region,
2773                                                        size_t end_region) {
2774   ParallelCompactData& sd = summary_data();
2775   ParMarkBitMap* const mbm = mark_bitmap();
2776 
2777   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2778   HeapWord* const end_addr = sd.region_to_addr(end_region);
2779   assert(beg_region <= end_region, "bad region range");
2780   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2781 
2782 #ifdef  ASSERT
2783   // Claim the regions to avoid triggering an assert when they are marked as
2784   // filled.
2785   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2786     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2787   }
2788 #endif  // #ifdef ASSERT
2789 
2790   if (beg_addr != space(space_id)->bottom()) {
2791     // Find the first live object or block of dead space that *starts* in this
2792     // range of regions.  If a partial object crosses onto the region, skip it;
2793     // it will be marked for 'deferred update' when the object head is
2794     // processed.  If dead space crosses onto the region, it is also skipped; it
2795     // will be filled when the prior region is processed.  If neither of those
2796     // apply, the first word in the region is the start of a live object or dead
2797     // space.
2798     assert(beg_addr > space(space_id)->bottom(), "sanity");
2799     const RegionData* const cp = sd.region(beg_region);
2800     if (cp->partial_obj_size() != 0) {
2801       beg_addr = sd.partial_obj_end(beg_region);
2802     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2803       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2804     }
2805   }
2806 
2807   if (beg_addr < end_addr) {
2808     // A live object or block of dead space starts in this range of Regions.
2809      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2810 
2811     // Create closures and iterate.
2812     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2813     FillClosure fill_closure(cm, space_id);
2814     ParMarkBitMap::IterationStatus status;
2815     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2816                           dense_prefix_end);
2817     if (status == ParMarkBitMap::incomplete) {
2818       update_closure.do_addr(update_closure.source());
2819     }
2820   }
2821 
2822   // Mark the regions as filled.
2823   RegionData* const beg_cp = sd.region(beg_region);
2824   RegionData* const end_cp = sd.region(end_region);
2825   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2826     cp->set_completed();
2827   }
2828 }
2829 
2830 // Return the SpaceId for the space containing addr.  If addr is not in the
2831 // heap, last_space_id is returned.  In debug mode it expects the address to be
2832 // in the heap and asserts such.
2833 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2834   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2835 
2836   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2837     if (_space_info[id].space()->contains(addr)) {
2838       return SpaceId(id);
2839     }
2840   }
2841 
2842   assert(false, "no space contains the addr");
2843   return last_space_id;
2844 }
2845 
2846 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2847                                                 SpaceId id) {
2848   assert(id < last_space_id, "bad space id");
2849 
2850   ParallelCompactData& sd = summary_data();
2851   const SpaceInfo* const space_info = _space_info + id;
2852   ObjectStartArray* const start_array = space_info->start_array();
2853 
2854   const MutableSpace* const space = space_info->space();
2855   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2856   HeapWord* const beg_addr = space_info->dense_prefix();
2857   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2858 
2859   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2860   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2861   const RegionData* cur_region;
2862   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2863     HeapWord* const addr = cur_region->deferred_obj_addr();
2864     if (addr != NULL) {
2865       if (start_array != NULL) {
2866         start_array->allocate_block(addr);
2867       }
2868       cm->update_contents(oop(addr));
2869       assert(oop(addr)->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr))));
2870     }
2871   }
2872 }
2873 
2874 // Skip over count live words starting from beg, and return the address of the
2875 // next live word.  Unless marked, the word corresponding to beg is assumed to
2876 // be dead.  Callers must either ensure beg does not correspond to the middle of
2877 // an object, or account for those live words in some other way.  Callers must
2878 // also ensure that there are enough live words in the range [beg, end) to skip.
2879 HeapWord*
2880 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2881 {
2882   assert(count > 0, "sanity");
2883 
2884   ParMarkBitMap* m = mark_bitmap();
2885   idx_t bits_to_skip = m->words_to_bits(count);
2886   idx_t cur_beg = m->addr_to_bit(beg);
2887   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2888 
2889   do {
2890     cur_beg = m->find_obj_beg(cur_beg, search_end);
2891     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2892     const size_t obj_bits = cur_end - cur_beg + 1;
2893     if (obj_bits > bits_to_skip) {
2894       return m->bit_to_addr(cur_beg + bits_to_skip);
2895     }
2896     bits_to_skip -= obj_bits;
2897     cur_beg = cur_end + 1;
2898   } while (bits_to_skip > 0);
2899 
2900   // Skipping the desired number of words landed just past the end of an object.
2901   // Find the start of the next object.
2902   cur_beg = m->find_obj_beg(cur_beg, search_end);
2903   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2904   return m->bit_to_addr(cur_beg);
2905 }
2906 
2907 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2908                                             SpaceId src_space_id,
2909                                             size_t src_region_idx)
2910 {
2911   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2912 
2913   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2914   if (split_info.dest_region_addr() == dest_addr) {
2915     // The partial object ending at the split point contains the first word to
2916     // be copied to dest_addr.
2917     return split_info.first_src_addr();
2918   }
2919 
2920   const ParallelCompactData& sd = summary_data();
2921   ParMarkBitMap* const bitmap = mark_bitmap();
2922   const size_t RegionSize = ParallelCompactData::RegionSize;
2923 
2924   assert(sd.is_region_aligned(dest_addr), "not aligned");
2925   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2926   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2927   HeapWord* const src_region_destination = src_region_ptr->destination();
2928 
2929   assert(dest_addr >= src_region_destination, "wrong src region");
2930   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2931 
2932   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2933   HeapWord* const src_region_end = src_region_beg + RegionSize;
2934 
2935   HeapWord* addr = src_region_beg;
2936   if (dest_addr == src_region_destination) {
2937     // Return the first live word in the source region.
2938     if (partial_obj_size == 0) {
2939       addr = bitmap->find_obj_beg(addr, src_region_end);
2940       assert(addr < src_region_end, "no objects start in src region");
2941     }
2942     return addr;
2943   }
2944 
2945   // Must skip some live data.
2946   size_t words_to_skip = dest_addr - src_region_destination;
2947   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2948 
2949   if (partial_obj_size >= words_to_skip) {
2950     // All the live words to skip are part of the partial object.
2951     addr += words_to_skip;
2952     if (partial_obj_size == words_to_skip) {
2953       // Find the first live word past the partial object.
2954       addr = bitmap->find_obj_beg(addr, src_region_end);
2955       assert(addr < src_region_end, "wrong src region");
2956     }
2957     return addr;
2958   }
2959 
2960   // Skip over the partial object (if any).
2961   if (partial_obj_size != 0) {
2962     words_to_skip -= partial_obj_size;
2963     addr += partial_obj_size;
2964   }
2965 
2966   // Skip over live words due to objects that start in the region.
2967   addr = skip_live_words(addr, src_region_end, words_to_skip);
2968   assert(addr < src_region_end, "wrong src region");
2969   return addr;
2970 }
2971 
2972 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2973                                                      SpaceId src_space_id,
2974                                                      size_t beg_region,
2975                                                      HeapWord* end_addr)
2976 {
2977   ParallelCompactData& sd = summary_data();
2978 
2979 #ifdef ASSERT
2980   MutableSpace* const src_space = _space_info[src_space_id].space();
2981   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2982   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2983          "src_space_id does not match beg_addr");
2984   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2985          "src_space_id does not match end_addr");
2986 #endif // #ifdef ASSERT
2987 
2988   RegionData* const beg = sd.region(beg_region);
2989   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2990 
2991   // Regions up to new_top() are enqueued if they become available.
2992   HeapWord* const new_top = _space_info[src_space_id].new_top();
2993   RegionData* const enqueue_end =
2994     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2995 
2996   for (RegionData* cur = beg; cur < end; ++cur) {
2997     assert(cur->data_size() > 0, "region must have live data");
2998     cur->decrement_destination_count();
2999     if (cur < enqueue_end && cur->available() && cur->claim()) {
3000       cm->push_region(sd.region(cur));
3001     }
3002   }
3003 }
3004 
3005 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
3006                                           SpaceId& src_space_id,
3007                                           HeapWord*& src_space_top,
3008                                           HeapWord* end_addr)
3009 {
3010   typedef ParallelCompactData::RegionData RegionData;
3011 
3012   ParallelCompactData& sd = PSParallelCompact::summary_data();
3013   const size_t region_size = ParallelCompactData::RegionSize;
3014 
3015   size_t src_region_idx = 0;
3016 
3017   // Skip empty regions (if any) up to the top of the space.
3018   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3019   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3020   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3021   const RegionData* const top_region_ptr =
3022     sd.addr_to_region_ptr(top_aligned_up);
3023   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3024     ++src_region_ptr;
3025   }
3026 
3027   if (src_region_ptr < top_region_ptr) {
3028     // The next source region is in the current space.  Update src_region_idx
3029     // and the source address to match src_region_ptr.
3030     src_region_idx = sd.region(src_region_ptr);
3031     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3032     if (src_region_addr > closure.source()) {
3033       closure.set_source(src_region_addr);
3034     }
3035     return src_region_idx;
3036   }
3037 
3038   // Switch to a new source space and find the first non-empty region.
3039   unsigned int space_id = src_space_id + 1;
3040   assert(space_id < last_space_id, "not enough spaces");
3041 
3042   HeapWord* const destination = closure.destination();
3043 
3044   do {
3045     MutableSpace* space = _space_info[space_id].space();
3046     HeapWord* const bottom = space->bottom();
3047     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3048 
3049     // Iterate over the spaces that do not compact into themselves.
3050     if (bottom_cp->destination() != bottom) {
3051       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3052       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3053 
3054       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3055         if (src_cp->live_obj_size() > 0) {
3056           // Found it.
3057           assert(src_cp->destination() == destination,
3058                  "first live obj in the space must match the destination");
3059           assert(src_cp->partial_obj_size() == 0,
3060                  "a space cannot begin with a partial obj");
3061 
3062           src_space_id = SpaceId(space_id);
3063           src_space_top = space->top();
3064           const size_t src_region_idx = sd.region(src_cp);
3065           closure.set_source(sd.region_to_addr(src_region_idx));
3066           return src_region_idx;
3067         } else {
3068           assert(src_cp->data_size() == 0, "sanity");
3069         }
3070       }
3071     }
3072   } while (++space_id < last_space_id);
3073 
3074   assert(false, "no source region was found");
3075   return 0;
3076 }
3077 
3078 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3079 {
3080   typedef ParMarkBitMap::IterationStatus IterationStatus;
3081   const size_t RegionSize = ParallelCompactData::RegionSize;
3082   ParMarkBitMap* const bitmap = mark_bitmap();
3083   ParallelCompactData& sd = summary_data();
3084   RegionData* const region_ptr = sd.region(region_idx);
3085 
3086   // Get the items needed to construct the closure.
3087   HeapWord* dest_addr = sd.region_to_addr(region_idx);
3088   SpaceId dest_space_id = space_id(dest_addr);
3089   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3090   HeapWord* new_top = _space_info[dest_space_id].new_top();
3091   assert(dest_addr < new_top, "sanity");
3092   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3093 
3094   // Get the source region and related info.
3095   size_t src_region_idx = region_ptr->source_region();
3096   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3097   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3098 
3099   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3100   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3101 
3102   // Adjust src_region_idx to prepare for decrementing destination counts (the
3103   // destination count is not decremented when a region is copied to itself).
3104   if (src_region_idx == region_idx) {
3105     src_region_idx += 1;
3106   }
3107 
3108   if (bitmap->is_unmarked(closure.source())) {
3109     // The first source word is in the middle of an object; copy the remainder
3110     // of the object or as much as will fit.  The fact that pointer updates were
3111     // deferred will be noted when the object header is processed.
3112     HeapWord* const old_src_addr = closure.source();
3113     closure.copy_partial_obj();
3114     if (closure.is_full()) {
3115       decrement_destination_counts(cm, src_space_id, src_region_idx,
3116                                    closure.source());
3117       region_ptr->set_deferred_obj_addr(NULL);
3118       region_ptr->set_completed();
3119       return;
3120     }
3121 
3122     HeapWord* const end_addr = sd.region_align_down(closure.source());
3123     if (sd.region_align_down(old_src_addr) != end_addr) {
3124       // The partial object was copied from more than one source region.
3125       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3126 
3127       // Move to the next source region, possibly switching spaces as well.  All
3128       // args except end_addr may be modified.
3129       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3130                                        end_addr);
3131     }
3132   }
3133 
3134   do {
3135     HeapWord* const cur_addr = closure.source();
3136     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3137                                     src_space_top);
3138     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3139 
3140     if (status == ParMarkBitMap::incomplete) {
3141       // The last obj that starts in the source region does not end in the
3142       // region.
3143       assert(closure.source() < end_addr, "sanity");
3144       HeapWord* const obj_beg = closure.source();
3145       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3146                                        src_space_top);
3147       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3148       if (obj_end < range_end) {
3149         // The end was found; the entire object will fit.
3150         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3151         assert(status != ParMarkBitMap::would_overflow, "sanity");
3152       } else {
3153         // The end was not found; the object will not fit.
3154         assert(range_end < src_space_top, "obj cannot cross space boundary");
3155         status = ParMarkBitMap::would_overflow;
3156       }
3157     }
3158 
3159     if (status == ParMarkBitMap::would_overflow) {
3160       // The last object did not fit.  Note that interior oop updates were
3161       // deferred, then copy enough of the object to fill the region.
3162       region_ptr->set_deferred_obj_addr(closure.destination());
3163       status = closure.copy_until_full(); // copies from closure.source()
3164 
3165       decrement_destination_counts(cm, src_space_id, src_region_idx,
3166                                    closure.source());
3167       region_ptr->set_completed();
3168       return;
3169     }
3170 
3171     if (status == ParMarkBitMap::full) {
3172       decrement_destination_counts(cm, src_space_id, src_region_idx,
3173                                    closure.source());
3174       region_ptr->set_deferred_obj_addr(NULL);
3175       region_ptr->set_completed();
3176       return;
3177     }
3178 
3179     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3180 
3181     // Move to the next source region, possibly switching spaces as well.  All
3182     // args except end_addr may be modified.
3183     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3184                                      end_addr);
3185   } while (true);
3186 }
3187 
3188 void PSParallelCompact::fill_blocks(size_t region_idx)
3189 {
3190   // Fill in the block table elements for the specified region.  Each block
3191   // table element holds the number of live words in the region that are to the
3192   // left of the first object that starts in the block.  Thus only blocks in
3193   // which an object starts need to be filled.
3194   //
3195   // The algorithm scans the section of the bitmap that corresponds to the
3196   // region, keeping a running total of the live words.  When an object start is
3197   // found, if it's the first to start in the block that contains it, the
3198   // current total is written to the block table element.
3199   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3200   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3201   const size_t RegionSize = ParallelCompactData::RegionSize;
3202 
3203   ParallelCompactData& sd = summary_data();
3204   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3205   if (partial_obj_size >= RegionSize) {
3206     return; // No objects start in this region.
3207   }
3208 
3209   // Ensure the first loop iteration decides that the block has changed.
3210   size_t cur_block = sd.block_count();
3211 
3212   const ParMarkBitMap* const bitmap = mark_bitmap();
3213 
3214   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3215   assert((size_t)1 << Log2BitsPerBlock ==
3216          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3217 
3218   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3219   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3220   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3221   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3222   while (beg_bit < range_end) {
3223     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3224     if (new_block != cur_block) {
3225       cur_block = new_block;
3226       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3227     }
3228 
3229     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3230     if (end_bit < range_end - 1) {
3231       live_bits += end_bit - beg_bit + 1;
3232       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3233     } else {
3234       return;
3235     }
3236   }
3237 }
3238 
3239 void
3240 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3241   const MutableSpace* sp = space(space_id);
3242   if (sp->is_empty()) {
3243     return;
3244   }
3245 
3246   ParallelCompactData& sd = PSParallelCompact::summary_data();
3247   ParMarkBitMap* const bitmap = mark_bitmap();
3248   HeapWord* const dp_addr = dense_prefix(space_id);
3249   HeapWord* beg_addr = sp->bottom();
3250   HeapWord* end_addr = sp->top();
3251 
3252   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3253 
3254   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3255   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3256   if (beg_region < dp_region) {
3257     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3258   }
3259 
3260   // The destination of the first live object that starts in the region is one
3261   // past the end of the partial object entering the region (if any).
3262   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3263   HeapWord* const new_top = _space_info[space_id].new_top();
3264   assert(new_top >= dest_addr, "bad new_top value");
3265   const size_t words = pointer_delta(new_top, dest_addr);
3266 
3267   if (words > 0) {
3268     ObjectStartArray* start_array = _space_info[space_id].start_array();
3269     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3270 
3271     ParMarkBitMap::IterationStatus status;
3272     status = bitmap->iterate(&closure, dest_addr, end_addr);
3273     assert(status == ParMarkBitMap::full, "iteration not complete");
3274     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3275            "live objects skipped because closure is full");
3276   }
3277 }
3278 
3279 jlong PSParallelCompact::millis_since_last_gc() {
3280   // We need a monotonically non-decreasing time in ms but
3281   // os::javaTimeMillis() does not guarantee monotonicity.
3282   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3283   jlong ret_val = now - _time_of_last_gc;
3284   // XXX See note in genCollectedHeap::millis_since_last_gc().
3285   if (ret_val < 0) {
3286     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
3287     return 0;
3288   }
3289   return ret_val;
3290 }
3291 
3292 void PSParallelCompact::reset_millis_since_last_gc() {
3293   // We need a monotonically non-decreasing time in ms but
3294   // os::javaTimeMillis() does not guarantee monotonicity.
3295   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3296 }
3297 
3298 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3299 {
3300   if (source() != destination()) {
3301     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3302     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3303   }
3304   update_state(words_remaining());
3305   assert(is_full(), "sanity");
3306   return ParMarkBitMap::full;
3307 }
3308 
3309 void MoveAndUpdateClosure::copy_partial_obj()
3310 {
3311   size_t words = words_remaining();
3312 
3313   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3314   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3315   if (end_addr < range_end) {
3316     words = bitmap()->obj_size(source(), end_addr);
3317   }
3318 
3319   // This test is necessary; if omitted, the pointer updates to a partial object
3320   // that crosses the dense prefix boundary could be overwritten.
3321   if (source() != destination()) {
3322     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3323     Copy::aligned_conjoint_words(source(), destination(), words);
3324   }
3325   update_state(words);
3326 }
3327 
3328 void InstanceKlass::oop_pc_update_pointers(oop obj) {
3329   oop_oop_iterate_oop_maps<true>(obj, PSParallelCompact::adjust_pointer_closure());
3330 }
3331 
3332 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj) {
3333   InstanceKlass::oop_pc_update_pointers(obj);
3334 
3335   oop_oop_iterate_statics<true>(obj, PSParallelCompact::adjust_pointer_closure());
3336 }
3337 
3338 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj) {
3339   InstanceKlass::oop_pc_update_pointers(obj);
3340 }
3341 
3342 #ifdef ASSERT
3343 template <class T> static void trace_reference_gc(const char *s, oop obj,
3344                                                   T* referent_addr,
3345                                                   T* next_addr,
3346                                                   T* discovered_addr) {
3347   if(TraceReferenceGC && PrintGCDetails) {
3348     gclog_or_tty->print_cr("%s obj " PTR_FORMAT, s, p2i(obj));
3349     gclog_or_tty->print_cr("     referent_addr/* " PTR_FORMAT " / "
3350                            PTR_FORMAT, p2i(referent_addr),
3351                            referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3352     gclog_or_tty->print_cr("     next_addr/* " PTR_FORMAT " / "
3353                            PTR_FORMAT, p2i(next_addr),
3354                            next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3355     gclog_or_tty->print_cr("     discovered_addr/* " PTR_FORMAT " / "
3356                            PTR_FORMAT, p2i(discovered_addr),
3357                            discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3358   }
3359 }
3360 #endif
3361 
3362 template <class T>
3363 static void oop_pc_update_pointers_specialized(oop obj) {
3364   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3365   PSParallelCompact::adjust_pointer(referent_addr);
3366   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3367   PSParallelCompact::adjust_pointer(next_addr);
3368   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3369   PSParallelCompact::adjust_pointer(discovered_addr);
3370   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3371                                 referent_addr, next_addr, discovered_addr);)
3372 }
3373 
3374 void InstanceRefKlass::oop_pc_update_pointers(oop obj) {
3375   InstanceKlass::oop_pc_update_pointers(obj);
3376 
3377   if (UseCompressedOops) {
3378     oop_pc_update_pointers_specialized<narrowOop>(obj);
3379   } else {
3380     oop_pc_update_pointers_specialized<oop>(obj);
3381   }
3382 }
3383 
3384 void ObjArrayKlass::oop_pc_update_pointers(oop obj) {
3385   assert(obj->is_objArray(), "obj must be obj array");
3386   oop_oop_iterate_elements<true>(objArrayOop(obj), PSParallelCompact::adjust_pointer_closure());
3387 }
3388 
3389 void TypeArrayKlass::oop_pc_update_pointers(oop obj) {
3390   assert(obj->is_typeArray(),"must be a type array");
3391 }
3392 
3393 ParMarkBitMapClosure::IterationStatus
3394 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3395   assert(destination() != NULL, "sanity");
3396   assert(bitmap()->obj_size(addr) == words, "bad size");
3397 
3398   _source = addr;
3399   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3400          destination(), "wrong destination");
3401 
3402   if (words > words_remaining()) {
3403     return ParMarkBitMap::would_overflow;
3404   }
3405 
3406   // The start_array must be updated even if the object is not moving.
3407   if (_start_array != NULL) {
3408     _start_array->allocate_block(destination());
3409   }
3410 
3411   if (destination() != source()) {
3412     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3413     Copy::aligned_conjoint_words(source(), destination(), words);
3414   }
3415 
3416   oop moved_oop = (oop) destination();
3417   compaction_manager()->update_contents(moved_oop);
3418   assert(moved_oop->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop)));
3419 
3420   update_state(words);
3421   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3422   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3423 }
3424 
3425 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3426                                      ParCompactionManager* cm,
3427                                      PSParallelCompact::SpaceId space_id) :
3428   ParMarkBitMapClosure(mbm, cm),
3429   _space_id(space_id),
3430   _start_array(PSParallelCompact::start_array(space_id))
3431 {
3432 }
3433 
3434 // Updates the references in the object to their new values.
3435 ParMarkBitMapClosure::IterationStatus
3436 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3437   do_addr(addr);
3438   return ParMarkBitMap::incomplete;
3439 }