1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardGeneration.inline.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/strongRootsScope.hpp"
  57 #include "memory/tenuredGeneration.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/globals_extension.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/stack.inline.hpp"
  69 #include "utilities/taskqueue.inline.hpp"
  70 
  71 // statics
  72 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  73 bool CMSCollector::_full_gc_requested = false;
  74 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  75 
  76 //////////////////////////////////////////////////////////////////
  77 // In support of CMS/VM thread synchronization
  78 //////////////////////////////////////////////////////////////////
  79 // We split use of the CGC_lock into 2 "levels".
  80 // The low-level locking is of the usual CGC_lock monitor. We introduce
  81 // a higher level "token" (hereafter "CMS token") built on top of the
  82 // low level monitor (hereafter "CGC lock").
  83 // The token-passing protocol gives priority to the VM thread. The
  84 // CMS-lock doesn't provide any fairness guarantees, but clients
  85 // should ensure that it is only held for very short, bounded
  86 // durations.
  87 //
  88 // When either of the CMS thread or the VM thread is involved in
  89 // collection operations during which it does not want the other
  90 // thread to interfere, it obtains the CMS token.
  91 //
  92 // If either thread tries to get the token while the other has
  93 // it, that thread waits. However, if the VM thread and CMS thread
  94 // both want the token, then the VM thread gets priority while the
  95 // CMS thread waits. This ensures, for instance, that the "concurrent"
  96 // phases of the CMS thread's work do not block out the VM thread
  97 // for long periods of time as the CMS thread continues to hog
  98 // the token. (See bug 4616232).
  99 //
 100 // The baton-passing functions are, however, controlled by the
 101 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 102 // and here the low-level CMS lock, not the high level token,
 103 // ensures mutual exclusion.
 104 //
 105 // Two important conditions that we have to satisfy:
 106 // 1. if a thread does a low-level wait on the CMS lock, then it
 107 //    relinquishes the CMS token if it were holding that token
 108 //    when it acquired the low-level CMS lock.
 109 // 2. any low-level notifications on the low-level lock
 110 //    should only be sent when a thread has relinquished the token.
 111 //
 112 // In the absence of either property, we'd have potential deadlock.
 113 //
 114 // We protect each of the CMS (concurrent and sequential) phases
 115 // with the CMS _token_, not the CMS _lock_.
 116 //
 117 // The only code protected by CMS lock is the token acquisition code
 118 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 119 // baton-passing code.
 120 //
 121 // Unfortunately, i couldn't come up with a good abstraction to factor and
 122 // hide the naked CGC_lock manipulation in the baton-passing code
 123 // further below. That's something we should try to do. Also, the proof
 124 // of correctness of this 2-level locking scheme is far from obvious,
 125 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 126 // that there may be a theoretical possibility of delay/starvation in the
 127 // low-level lock/wait/notify scheme used for the baton-passing because of
 128 // potential interference with the priority scheme embodied in the
 129 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 130 // invocation further below and marked with "XXX 20011219YSR".
 131 // Indeed, as we note elsewhere, this may become yet more slippery
 132 // in the presence of multiple CMS and/or multiple VM threads. XXX
 133 
 134 class CMSTokenSync: public StackObj {
 135  private:
 136   bool _is_cms_thread;
 137  public:
 138   CMSTokenSync(bool is_cms_thread):
 139     _is_cms_thread(is_cms_thread) {
 140     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 141            "Incorrect argument to constructor");
 142     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 143   }
 144 
 145   ~CMSTokenSync() {
 146     assert(_is_cms_thread ?
 147              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 148              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 149           "Incorrect state");
 150     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 151   }
 152 };
 153 
 154 // Convenience class that does a CMSTokenSync, and then acquires
 155 // upto three locks.
 156 class CMSTokenSyncWithLocks: public CMSTokenSync {
 157  private:
 158   // Note: locks are acquired in textual declaration order
 159   // and released in the opposite order
 160   MutexLockerEx _locker1, _locker2, _locker3;
 161  public:
 162   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 163                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 164     CMSTokenSync(is_cms_thread),
 165     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 166     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 167     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 168   { }
 169 };
 170 
 171 
 172 //////////////////////////////////////////////////////////////////
 173 //  Concurrent Mark-Sweep Generation /////////////////////////////
 174 //////////////////////////////////////////////////////////////////
 175 
 176 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 177 
 178 // This struct contains per-thread things necessary to support parallel
 179 // young-gen collection.
 180 class CMSParGCThreadState: public CHeapObj<mtGC> {
 181  public:
 182   CFLS_LAB lab;
 183   PromotionInfo promo;
 184 
 185   // Constructor.
 186   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 187     promo.setSpace(cfls);
 188   }
 189 };
 190 
 191 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 192      ReservedSpace rs, size_t initial_byte_size, int level,
 193      CardTableRS* ct, bool use_adaptive_freelists,
 194      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 195   CardGeneration(rs, initial_byte_size, level, ct),
 196   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 197   _did_compact(false)
 198 {
 199   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 200   HeapWord* end    = (HeapWord*) _virtual_space.high();
 201 
 202   _direct_allocated_words = 0;
 203   NOT_PRODUCT(
 204     _numObjectsPromoted = 0;
 205     _numWordsPromoted = 0;
 206     _numObjectsAllocated = 0;
 207     _numWordsAllocated = 0;
 208   )
 209 
 210   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 211                                            use_adaptive_freelists,
 212                                            dictionaryChoice);
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              (int) ParallelGCThreads,             // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 308 
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next minor collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosure(&_modUnionTable),
 461   _modUnionClosurePar(&_modUnionTable),
 462   // Adjust my span to cover old (cms) gen
 463   _span(cmsGen->reserved()),
 464   // Construct the is_alive_closure with _span & markBitMap
 465   _is_alive_closure(_span, &_markBitMap),
 466   _restart_addr(NULL),
 467   _overflow_list(NULL),
 468   _stats(cmsGen),
 469   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 470                              //verify that this lock should be acquired with safepoint check.
 471                              Monitor::_safepoint_check_sometimes)),
 472   _eden_chunk_array(NULL),     // may be set in ctor body
 473   _eden_chunk_capacity(0),     // -- ditto --
 474   _eden_chunk_index(0),        // -- ditto --
 475   _survivor_plab_array(NULL),  // -- ditto --
 476   _survivor_chunk_array(NULL), // -- ditto --
 477   _survivor_chunk_capacity(0), // -- ditto --
 478   _survivor_chunk_index(0),    // -- ditto --
 479   _ser_pmc_preclean_ovflw(0),
 480   _ser_kac_preclean_ovflw(0),
 481   _ser_pmc_remark_ovflw(0),
 482   _par_pmc_remark_ovflw(0),
 483   _ser_kac_ovflw(0),
 484   _par_kac_ovflw(0),
 485 #ifndef PRODUCT
 486   _num_par_pushes(0),
 487 #endif
 488   _collection_count_start(0),
 489   _verifying(false),
 490   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 491   _completed_initialization(false),
 492   _collector_policy(cp),
 493   _should_unload_classes(CMSClassUnloadingEnabled),
 494   _concurrent_cycles_since_last_unload(0),
 495   _roots_scanning_options(GenCollectedHeap::SO_None),
 496   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 498   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 499   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 500   _cms_start_registered(false)
 501 {
 502   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 503     ExplicitGCInvokesConcurrent = true;
 504   }
 505   // Now expand the span and allocate the collection support structures
 506   // (MUT, marking bit map etc.) to cover both generations subject to
 507   // collection.
 508 
 509   // For use by dirty card to oop closures.
 510   _cmsGen->cmsSpace()->set_collector(this);
 511 
 512   // Allocate MUT and marking bit map
 513   {
 514     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 515     if (!_markBitMap.allocate(_span)) {
 516       warning("Failed to allocate CMS Bit Map");
 517       return;
 518     }
 519     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 520   }
 521   {
 522     _modUnionTable.allocate(_span);
 523     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 524   }
 525 
 526   if (!_markStack.allocate(MarkStackSize)) {
 527     warning("Failed to allocate CMS Marking Stack");
 528     return;
 529   }
 530 
 531   // Support for multi-threaded concurrent phases
 532   if (CMSConcurrentMTEnabled) {
 533     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 534       // just for now
 535       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 536     }
 537     if (ConcGCThreads > 1) {
 538       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 539                                  ConcGCThreads, true);
 540       if (_conc_workers == NULL) {
 541         warning("GC/CMS: _conc_workers allocation failure: "
 542               "forcing -CMSConcurrentMTEnabled");
 543         CMSConcurrentMTEnabled = false;
 544       } else {
 545         _conc_workers->initialize_workers();
 546       }
 547     } else {
 548       CMSConcurrentMTEnabled = false;
 549     }
 550   }
 551   if (!CMSConcurrentMTEnabled) {
 552     ConcGCThreads = 0;
 553   } else {
 554     // Turn off CMSCleanOnEnter optimization temporarily for
 555     // the MT case where it's not fixed yet; see 6178663.
 556     CMSCleanOnEnter = false;
 557   }
 558   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 559          "Inconsistency");
 560 
 561   // Parallel task queues; these are shared for the
 562   // concurrent and stop-world phases of CMS, but
 563   // are not shared with parallel scavenge (ParNew).
 564   {
 565     uint i;
 566     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 567 
 568     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 569          || ParallelRefProcEnabled)
 570         && num_queues > 0) {
 571       _task_queues = new OopTaskQueueSet(num_queues);
 572       if (_task_queues == NULL) {
 573         warning("task_queues allocation failure.");
 574         return;
 575       }
 576       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 577       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 578       for (i = 0; i < num_queues; i++) {
 579         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 580         if (q == NULL) {
 581           warning("work_queue allocation failure.");
 582           return;
 583         }
 584         _task_queues->register_queue(i, q);
 585       }
 586       for (i = 0; i < num_queues; i++) {
 587         _task_queues->queue(i)->initialize();
 588         _hash_seed[i] = 17;  // copied from ParNew
 589       }
 590     }
 591   }
 592 
 593   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 594 
 595   // Clip CMSBootstrapOccupancy between 0 and 100.
 596   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 597 
 598   // Now tell CMS generations the identity of their collector
 599   ConcurrentMarkSweepGeneration::set_collector(this);
 600 
 601   // Create & start a CMS thread for this CMS collector
 602   _cmsThread = ConcurrentMarkSweepThread::start(this);
 603   assert(cmsThread() != NULL, "CMS Thread should have been created");
 604   assert(cmsThread()->collector() == this,
 605          "CMS Thread should refer to this gen");
 606   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 607 
 608   // Support for parallelizing young gen rescan
 609   GenCollectedHeap* gch = GenCollectedHeap::heap();
 610   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 611   _young_gen = (ParNewGeneration*)gch->young_gen();
 612   if (gch->supports_inline_contig_alloc()) {
 613     _top_addr = gch->top_addr();
 614     _end_addr = gch->end_addr();
 615     assert(_young_gen != NULL, "no _young_gen");
 616     _eden_chunk_index = 0;
 617     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 618     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 619   }
 620 
 621   // Support for parallelizing survivor space rescan
 622   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 623     const size_t max_plab_samples =
 624       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 625 
 626     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 627     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 628     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 629     _survivor_chunk_capacity = 2*max_plab_samples;
 630     for (uint i = 0; i < ParallelGCThreads; i++) {
 631       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 632       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 633       assert(cur->end() == 0, "Should be 0");
 634       assert(cur->array() == vec, "Should be vec");
 635       assert(cur->capacity() == max_plab_samples, "Error");
 636     }
 637   }
 638 
 639   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 640   _gc_counters = new CollectorCounters("CMS", 1);
 641   _completed_initialization = true;
 642   _inter_sweep_timer.start();  // start of time
 643 }
 644 
 645 size_t CMSCollector::plab_sample_minimum_size() {
 646   // The default value of MinTLABSize is 2k, but there is
 647   // no way to get the default value if the flag has been overridden.
 648   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 649 }
 650 
 651 const char* ConcurrentMarkSweepGeneration::name() const {
 652   return "concurrent mark-sweep generation";
 653 }
 654 void ConcurrentMarkSweepGeneration::update_counters() {
 655   if (UsePerfData) {
 656     _space_counters->update_all();
 657     _gen_counters->update_all();
 658   }
 659 }
 660 
 661 // this is an optimized version of update_counters(). it takes the
 662 // used value as a parameter rather than computing it.
 663 //
 664 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 665   if (UsePerfData) {
 666     _space_counters->update_used(used);
 667     _space_counters->update_capacity();
 668     _gen_counters->update_all();
 669   }
 670 }
 671 
 672 void ConcurrentMarkSweepGeneration::print() const {
 673   Generation::print();
 674   cmsSpace()->print();
 675 }
 676 
 677 #ifndef PRODUCT
 678 void ConcurrentMarkSweepGeneration::print_statistics() {
 679   cmsSpace()->printFLCensus(0);
 680 }
 681 #endif
 682 
 683 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 684   GenCollectedHeap* gch = GenCollectedHeap::heap();
 685   if (PrintGCDetails) {
 686     if (Verbose) {
 687       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 688         level(), short_name(), s, used(), capacity());
 689     } else {
 690       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 691         level(), short_name(), s, used() / K, capacity() / K);
 692     }
 693   }
 694   if (Verbose) {
 695     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 696               gch->used(), gch->capacity());
 697   } else {
 698     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 699               gch->used() / K, gch->capacity() / K);
 700   }
 701 }
 702 
 703 size_t
 704 ConcurrentMarkSweepGeneration::contiguous_available() const {
 705   // dld proposes an improvement in precision here. If the committed
 706   // part of the space ends in a free block we should add that to
 707   // uncommitted size in the calculation below. Will make this
 708   // change later, staying with the approximation below for the
 709   // time being. -- ysr.
 710   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 711 }
 712 
 713 size_t
 714 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 715   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 716 }
 717 
 718 size_t ConcurrentMarkSweepGeneration::max_available() const {
 719   return free() + _virtual_space.uncommitted_size();
 720 }
 721 
 722 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 723   size_t available = max_available();
 724   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 725   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 726   if (Verbose && PrintGCDetails) {
 727     gclog_or_tty->print_cr(
 728       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 729       "max_promo("SIZE_FORMAT")",
 730       res? "":" not", available, res? ">=":"<",
 731       av_promo, max_promotion_in_bytes);
 732   }
 733   return res;
 734 }
 735 
 736 // At a promotion failure dump information on block layout in heap
 737 // (cms old generation).
 738 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 739   if (CMSDumpAtPromotionFailure) {
 740     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 741   }
 742 }
 743 
 744 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 745   // Clear the promotion information.  These pointers can be adjusted
 746   // along with all the other pointers into the heap but
 747   // compaction is expected to be a rare event with
 748   // a heap using cms so don't do it without seeing the need.
 749   for (uint i = 0; i < ParallelGCThreads; i++) {
 750     _par_gc_thread_states[i]->promo.reset();
 751   }
 752 }
 753 
 754 void ConcurrentMarkSweepGeneration::compute_new_size() {
 755   assert_locked_or_safepoint(Heap_lock);
 756 
 757   // If incremental collection failed, we just want to expand
 758   // to the limit.
 759   if (incremental_collection_failed()) {
 760     clear_incremental_collection_failed();
 761     grow_to_reserved();
 762     return;
 763   }
 764 
 765   // The heap has been compacted but not reset yet.
 766   // Any metric such as free() or used() will be incorrect.
 767 
 768   CardGeneration::compute_new_size();
 769 
 770   // Reset again after a possible resizing
 771   if (did_compact()) {
 772     cmsSpace()->reset_after_compaction();
 773   }
 774 }
 775 
 776 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 777   assert_locked_or_safepoint(Heap_lock);
 778 
 779   // If incremental collection failed, we just want to expand
 780   // to the limit.
 781   if (incremental_collection_failed()) {
 782     clear_incremental_collection_failed();
 783     grow_to_reserved();
 784     return;
 785   }
 786 
 787   double free_percentage = ((double) free()) / capacity();
 788   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 789   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 790 
 791   // compute expansion delta needed for reaching desired free percentage
 792   if (free_percentage < desired_free_percentage) {
 793     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 794     assert(desired_capacity >= capacity(), "invalid expansion size");
 795     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 796     if (PrintGCDetails && Verbose) {
 797       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 798       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 799       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 800       gclog_or_tty->print_cr("  Desired free fraction %f",
 801         desired_free_percentage);
 802       gclog_or_tty->print_cr("  Maximum free fraction %f",
 803         maximum_free_percentage);
 804       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 805       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 806         desired_capacity/1000);
 807       int prev_level = level() - 1;
 808       if (prev_level >= 0) {
 809         size_t prev_size = 0;
 810         GenCollectedHeap* gch = GenCollectedHeap::heap();
 811         Generation* prev_gen = gch->young_gen();
 812         prev_size = prev_gen->capacity();
 813           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 814                                  prev_size/1000);
 815       }
 816       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 817         unsafe_max_alloc_nogc()/1000);
 818       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 819         contiguous_available()/1000);
 820       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 821         expand_bytes);
 822     }
 823     // safe if expansion fails
 824     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 825     if (PrintGCDetails && Verbose) {
 826       gclog_or_tty->print_cr("  Expanded free fraction %f",
 827         ((double) free()) / capacity());
 828     }
 829   } else {
 830     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 831     assert(desired_capacity <= capacity(), "invalid expansion size");
 832     size_t shrink_bytes = capacity() - desired_capacity;
 833     // Don't shrink unless the delta is greater than the minimum shrink we want
 834     if (shrink_bytes >= MinHeapDeltaBytes) {
 835       shrink_free_list_by(shrink_bytes);
 836     }
 837   }
 838 }
 839 
 840 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 841   return cmsSpace()->freelistLock();
 842 }
 843 
 844 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 845                                                   bool   tlab) {
 846   CMSSynchronousYieldRequest yr;
 847   MutexLockerEx x(freelistLock(),
 848                   Mutex::_no_safepoint_check_flag);
 849   return have_lock_and_allocate(size, tlab);
 850 }
 851 
 852 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 853                                                   bool   tlab /* ignored */) {
 854   assert_lock_strong(freelistLock());
 855   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 856   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 857   // Allocate the object live (grey) if the background collector has
 858   // started marking. This is necessary because the marker may
 859   // have passed this address and consequently this object will
 860   // not otherwise be greyed and would be incorrectly swept up.
 861   // Note that if this object contains references, the writing
 862   // of those references will dirty the card containing this object
 863   // allowing the object to be blackened (and its references scanned)
 864   // either during a preclean phase or at the final checkpoint.
 865   if (res != NULL) {
 866     // We may block here with an uninitialized object with
 867     // its mark-bit or P-bits not yet set. Such objects need
 868     // to be safely navigable by block_start().
 869     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 870     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 871     collector()->direct_allocated(res, adjustedSize);
 872     _direct_allocated_words += adjustedSize;
 873     // allocation counters
 874     NOT_PRODUCT(
 875       _numObjectsAllocated++;
 876       _numWordsAllocated += (int)adjustedSize;
 877     )
 878   }
 879   return res;
 880 }
 881 
 882 // In the case of direct allocation by mutators in a generation that
 883 // is being concurrently collected, the object must be allocated
 884 // live (grey) if the background collector has started marking.
 885 // This is necessary because the marker may
 886 // have passed this address and consequently this object will
 887 // not otherwise be greyed and would be incorrectly swept up.
 888 // Note that if this object contains references, the writing
 889 // of those references will dirty the card containing this object
 890 // allowing the object to be blackened (and its references scanned)
 891 // either during a preclean phase or at the final checkpoint.
 892 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 893   assert(_markBitMap.covers(start, size), "Out of bounds");
 894   if (_collectorState >= Marking) {
 895     MutexLockerEx y(_markBitMap.lock(),
 896                     Mutex::_no_safepoint_check_flag);
 897     // [see comments preceding SweepClosure::do_blk() below for details]
 898     //
 899     // Can the P-bits be deleted now?  JJJ
 900     //
 901     // 1. need to mark the object as live so it isn't collected
 902     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 903     // 3. need to mark the end of the object so marking, precleaning or sweeping
 904     //    can skip over uninitialized or unparsable objects. An allocated
 905     //    object is considered uninitialized for our purposes as long as
 906     //    its klass word is NULL.  All old gen objects are parsable
 907     //    as soon as they are initialized.)
 908     _markBitMap.mark(start);          // object is live
 909     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 910     _markBitMap.mark(start + size - 1);
 911                                       // mark end of object
 912   }
 913   // check that oop looks uninitialized
 914   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 915 }
 916 
 917 void CMSCollector::promoted(bool par, HeapWord* start,
 918                             bool is_obj_array, size_t obj_size) {
 919   assert(_markBitMap.covers(start), "Out of bounds");
 920   // See comment in direct_allocated() about when objects should
 921   // be allocated live.
 922   if (_collectorState >= Marking) {
 923     // we already hold the marking bit map lock, taken in
 924     // the prologue
 925     if (par) {
 926       _markBitMap.par_mark(start);
 927     } else {
 928       _markBitMap.mark(start);
 929     }
 930     // We don't need to mark the object as uninitialized (as
 931     // in direct_allocated above) because this is being done with the
 932     // world stopped and the object will be initialized by the
 933     // time the marking, precleaning or sweeping get to look at it.
 934     // But see the code for copying objects into the CMS generation,
 935     // where we need to ensure that concurrent readers of the
 936     // block offset table are able to safely navigate a block that
 937     // is in flux from being free to being allocated (and in
 938     // transition while being copied into) and subsequently
 939     // becoming a bona-fide object when the copy/promotion is complete.
 940     assert(SafepointSynchronize::is_at_safepoint(),
 941            "expect promotion only at safepoints");
 942 
 943     if (_collectorState < Sweeping) {
 944       // Mark the appropriate cards in the modUnionTable, so that
 945       // this object gets scanned before the sweep. If this is
 946       // not done, CMS generation references in the object might
 947       // not get marked.
 948       // For the case of arrays, which are otherwise precisely
 949       // marked, we need to dirty the entire array, not just its head.
 950       if (is_obj_array) {
 951         // The [par_]mark_range() method expects mr.end() below to
 952         // be aligned to the granularity of a bit's representation
 953         // in the heap. In the case of the MUT below, that's a
 954         // card size.
 955         MemRegion mr(start,
 956                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 957                         CardTableModRefBS::card_size /* bytes */));
 958         if (par) {
 959           _modUnionTable.par_mark_range(mr);
 960         } else {
 961           _modUnionTable.mark_range(mr);
 962         }
 963       } else {  // not an obj array; we can just mark the head
 964         if (par) {
 965           _modUnionTable.par_mark(start);
 966         } else {
 967           _modUnionTable.mark(start);
 968         }
 969       }
 970     }
 971   }
 972 }
 973 
 974 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 975   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 976   // allocate, copy and if necessary update promoinfo --
 977   // delegate to underlying space.
 978   assert_lock_strong(freelistLock());
 979 
 980 #ifndef PRODUCT
 981   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 982     return NULL;
 983   }
 984 #endif  // #ifndef PRODUCT
 985 
 986   oop res = _cmsSpace->promote(obj, obj_size);
 987   if (res == NULL) {
 988     // expand and retry
 989     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 990     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 991     // Since this is the old generation, we don't try to promote
 992     // into a more senior generation.
 993     res = _cmsSpace->promote(obj, obj_size);
 994   }
 995   if (res != NULL) {
 996     // See comment in allocate() about when objects should
 997     // be allocated live.
 998     assert(obj->is_oop(), "Will dereference klass pointer below");
 999     collector()->promoted(false,           // Not parallel
1000                           (HeapWord*)res, obj->is_objArray(), obj_size);
1001     // promotion counters
1002     NOT_PRODUCT(
1003       _numObjectsPromoted++;
1004       _numWordsPromoted +=
1005         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1006     )
1007   }
1008   return res;
1009 }
1010 
1011 
1012 // IMPORTANT: Notes on object size recognition in CMS.
1013 // ---------------------------------------------------
1014 // A block of storage in the CMS generation is always in
1015 // one of three states. A free block (FREE), an allocated
1016 // object (OBJECT) whose size() method reports the correct size,
1017 // and an intermediate state (TRANSIENT) in which its size cannot
1018 // be accurately determined.
1019 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1020 // -----------------------------------------------------
1021 // FREE:      klass_word & 1 == 1; mark_word holds block size
1022 //
1023 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1024 //            obj->size() computes correct size
1025 //
1026 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1027 //
1028 // STATE IDENTIFICATION: (64 bit+COOPS)
1029 // ------------------------------------
1030 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1031 //
1032 // OBJECT:    klass_word installed; klass_word != 0;
1033 //            obj->size() computes correct size
1034 //
1035 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1036 //
1037 //
1038 // STATE TRANSITION DIAGRAM
1039 //
1040 //        mut / parnew                     mut  /  parnew
1041 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1042 //  ^                                                                   |
1043 //  |------------------------ DEAD <------------------------------------|
1044 //         sweep                            mut
1045 //
1046 // While a block is in TRANSIENT state its size cannot be determined
1047 // so readers will either need to come back later or stall until
1048 // the size can be determined. Note that for the case of direct
1049 // allocation, P-bits, when available, may be used to determine the
1050 // size of an object that may not yet have been initialized.
1051 
1052 // Things to support parallel young-gen collection.
1053 oop
1054 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1055                                            oop old, markOop m,
1056                                            size_t word_sz) {
1057 #ifndef PRODUCT
1058   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1059     return NULL;
1060   }
1061 #endif  // #ifndef PRODUCT
1062 
1063   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1064   PromotionInfo* promoInfo = &ps->promo;
1065   // if we are tracking promotions, then first ensure space for
1066   // promotion (including spooling space for saving header if necessary).
1067   // then allocate and copy, then track promoted info if needed.
1068   // When tracking (see PromotionInfo::track()), the mark word may
1069   // be displaced and in this case restoration of the mark word
1070   // occurs in the (oop_since_save_marks_)iterate phase.
1071   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1072     // Out of space for allocating spooling buffers;
1073     // try expanding and allocating spooling buffers.
1074     if (!expand_and_ensure_spooling_space(promoInfo)) {
1075       return NULL;
1076     }
1077   }
1078   assert(promoInfo->has_spooling_space(), "Control point invariant");
1079   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1080   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1081   if (obj_ptr == NULL) {
1082      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1083      if (obj_ptr == NULL) {
1084        return NULL;
1085      }
1086   }
1087   oop obj = oop(obj_ptr);
1088   OrderAccess::storestore();
1089   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1090   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1091   // IMPORTANT: See note on object initialization for CMS above.
1092   // Otherwise, copy the object.  Here we must be careful to insert the
1093   // klass pointer last, since this marks the block as an allocated object.
1094   // Except with compressed oops it's the mark word.
1095   HeapWord* old_ptr = (HeapWord*)old;
1096   // Restore the mark word copied above.
1097   obj->set_mark(m);
1098   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1099   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1100   OrderAccess::storestore();
1101 
1102   if (UseCompressedClassPointers) {
1103     // Copy gap missed by (aligned) header size calculation below
1104     obj->set_klass_gap(old->klass_gap());
1105   }
1106   if (word_sz > (size_t)oopDesc::header_size()) {
1107     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1108                                  obj_ptr + oopDesc::header_size(),
1109                                  word_sz - oopDesc::header_size());
1110   }
1111 
1112   // Now we can track the promoted object, if necessary.  We take care
1113   // to delay the transition from uninitialized to full object
1114   // (i.e., insertion of klass pointer) until after, so that it
1115   // atomically becomes a promoted object.
1116   if (promoInfo->tracking()) {
1117     promoInfo->track((PromotedObject*)obj, old->klass());
1118   }
1119   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1120   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1121   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1122 
1123   // Finally, install the klass pointer (this should be volatile).
1124   OrderAccess::storestore();
1125   obj->set_klass(old->klass());
1126   // We should now be able to calculate the right size for this object
1127   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1128 
1129   collector()->promoted(true,          // parallel
1130                         obj_ptr, old->is_objArray(), word_sz);
1131 
1132   NOT_PRODUCT(
1133     Atomic::inc_ptr(&_numObjectsPromoted);
1134     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1135   )
1136 
1137   return obj;
1138 }
1139 
1140 void
1141 ConcurrentMarkSweepGeneration::
1142 par_promote_alloc_done(int thread_num) {
1143   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1144   ps->lab.retire(thread_num);
1145 }
1146 
1147 void
1148 ConcurrentMarkSweepGeneration::
1149 par_oop_since_save_marks_iterate_done(int thread_num) {
1150   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1151   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1152   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1153 }
1154 
1155 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1156                                                    size_t size,
1157                                                    bool   tlab)
1158 {
1159   // We allow a STW collection only if a full
1160   // collection was requested.
1161   return full || should_allocate(size, tlab); // FIX ME !!!
1162   // This and promotion failure handling are connected at the
1163   // hip and should be fixed by untying them.
1164 }
1165 
1166 bool CMSCollector::shouldConcurrentCollect() {
1167   if (_full_gc_requested) {
1168     if (Verbose && PrintGCDetails) {
1169       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1170                              " gc request (or gc_locker)");
1171     }
1172     return true;
1173   }
1174 
1175   FreelistLocker x(this);
1176   // ------------------------------------------------------------------
1177   // Print out lots of information which affects the initiation of
1178   // a collection.
1179   if (PrintCMSInitiationStatistics && stats().valid()) {
1180     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1181     gclog_or_tty->stamp();
1182     gclog_or_tty->cr();
1183     stats().print_on(gclog_or_tty);
1184     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1185       stats().time_until_cms_gen_full());
1186     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1187     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1188                            _cmsGen->contiguous_available());
1189     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1190     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1191     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1192     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1193     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1194     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1195     gclog_or_tty->print_cr("metadata initialized %d",
1196       MetaspaceGC::should_concurrent_collect());
1197   }
1198   // ------------------------------------------------------------------
1199 
1200   // If the estimated time to complete a cms collection (cms_duration())
1201   // is less than the estimated time remaining until the cms generation
1202   // is full, start a collection.
1203   if (!UseCMSInitiatingOccupancyOnly) {
1204     if (stats().valid()) {
1205       if (stats().time_until_cms_start() == 0.0) {
1206         return true;
1207       }
1208     } else {
1209       // We want to conservatively collect somewhat early in order
1210       // to try and "bootstrap" our CMS/promotion statistics;
1211       // this branch will not fire after the first successful CMS
1212       // collection because the stats should then be valid.
1213       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1214         if (Verbose && PrintGCDetails) {
1215           gclog_or_tty->print_cr(
1216             " CMSCollector: collect for bootstrapping statistics:"
1217             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1218             _bootstrap_occupancy);
1219         }
1220         return true;
1221       }
1222     }
1223   }
1224 
1225   // Otherwise, we start a collection cycle if
1226   // old gen want a collection cycle started. Each may use
1227   // an appropriate criterion for making this decision.
1228   // XXX We need to make sure that the gen expansion
1229   // criterion dovetails well with this. XXX NEED TO FIX THIS
1230   if (_cmsGen->should_concurrent_collect()) {
1231     if (Verbose && PrintGCDetails) {
1232       gclog_or_tty->print_cr("CMS old gen initiated");
1233     }
1234     return true;
1235   }
1236 
1237   // We start a collection if we believe an incremental collection may fail;
1238   // this is not likely to be productive in practice because it's probably too
1239   // late anyway.
1240   GenCollectedHeap* gch = GenCollectedHeap::heap();
1241   assert(gch->collector_policy()->is_generation_policy(),
1242          "You may want to check the correctness of the following");
1243   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1244     if (Verbose && PrintGCDetails) {
1245       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1246     }
1247     return true;
1248   }
1249 
1250   if (MetaspaceGC::should_concurrent_collect()) {
1251     if (Verbose && PrintGCDetails) {
1252       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1253     }
1254     return true;
1255   }
1256 
1257   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1258   if (CMSTriggerInterval >= 0) {
1259     if (CMSTriggerInterval == 0) {
1260       // Trigger always
1261       return true;
1262     }
1263 
1264     // Check the CMS time since begin (we do not check the stats validity
1265     // as we want to be able to trigger the first CMS cycle as well)
1266     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1267       if (Verbose && PrintGCDetails) {
1268         if (stats().valid()) {
1269           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1270                                  stats().cms_time_since_begin());
1271         } else {
1272           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1273         }
1274       }
1275       return true;
1276     }
1277   }
1278 
1279   return false;
1280 }
1281 
1282 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1283 
1284 // Clear _expansion_cause fields of constituent generations
1285 void CMSCollector::clear_expansion_cause() {
1286   _cmsGen->clear_expansion_cause();
1287 }
1288 
1289 // We should be conservative in starting a collection cycle.  To
1290 // start too eagerly runs the risk of collecting too often in the
1291 // extreme.  To collect too rarely falls back on full collections,
1292 // which works, even if not optimum in terms of concurrent work.
1293 // As a work around for too eagerly collecting, use the flag
1294 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1295 // giving the user an easily understandable way of controlling the
1296 // collections.
1297 // We want to start a new collection cycle if any of the following
1298 // conditions hold:
1299 // . our current occupancy exceeds the configured initiating occupancy
1300 //   for this generation, or
1301 // . we recently needed to expand this space and have not, since that
1302 //   expansion, done a collection of this generation, or
1303 // . the underlying space believes that it may be a good idea to initiate
1304 //   a concurrent collection (this may be based on criteria such as the
1305 //   following: the space uses linear allocation and linear allocation is
1306 //   going to fail, or there is believed to be excessive fragmentation in
1307 //   the generation, etc... or ...
1308 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1309 //   the case of the old generation; see CR 6543076):
1310 //   we may be approaching a point at which allocation requests may fail because
1311 //   we will be out of sufficient free space given allocation rate estimates.]
1312 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1313 
1314   assert_lock_strong(freelistLock());
1315   if (occupancy() > initiating_occupancy()) {
1316     if (PrintGCDetails && Verbose) {
1317       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1318         short_name(), occupancy(), initiating_occupancy());
1319     }
1320     return true;
1321   }
1322   if (UseCMSInitiatingOccupancyOnly) {
1323     return false;
1324   }
1325   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1326     if (PrintGCDetails && Verbose) {
1327       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1328         short_name());
1329     }
1330     return true;
1331   }
1332   if (_cmsSpace->should_concurrent_collect()) {
1333     if (PrintGCDetails && Verbose) {
1334       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1335         short_name());
1336     }
1337     return true;
1338   }
1339   return false;
1340 }
1341 
1342 void ConcurrentMarkSweepGeneration::collect(bool   full,
1343                                             bool   clear_all_soft_refs,
1344                                             size_t size,
1345                                             bool   tlab)
1346 {
1347   collector()->collect(full, clear_all_soft_refs, size, tlab);
1348 }
1349 
1350 void CMSCollector::collect(bool   full,
1351                            bool   clear_all_soft_refs,
1352                            size_t size,
1353                            bool   tlab)
1354 {
1355   // The following "if" branch is present for defensive reasons.
1356   // In the current uses of this interface, it can be replaced with:
1357   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1358   // But I am not placing that assert here to allow future
1359   // generality in invoking this interface.
1360   if (GC_locker::is_active()) {
1361     // A consistency test for GC_locker
1362     assert(GC_locker::needs_gc(), "Should have been set already");
1363     // Skip this foreground collection, instead
1364     // expanding the heap if necessary.
1365     // Need the free list locks for the call to free() in compute_new_size()
1366     compute_new_size();
1367     return;
1368   }
1369   acquire_control_and_collect(full, clear_all_soft_refs);
1370 }
1371 
1372 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1373   GenCollectedHeap* gch = GenCollectedHeap::heap();
1374   unsigned int gc_count = gch->total_full_collections();
1375   if (gc_count == full_gc_count) {
1376     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1377     _full_gc_requested = true;
1378     _full_gc_cause = cause;
1379     CGC_lock->notify();   // nudge CMS thread
1380   } else {
1381     assert(gc_count > full_gc_count, "Error: causal loop");
1382   }
1383 }
1384 
1385 bool CMSCollector::is_external_interruption() {
1386   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1387   return GCCause::is_user_requested_gc(cause) ||
1388          GCCause::is_serviceability_requested_gc(cause);
1389 }
1390 
1391 void CMSCollector::report_concurrent_mode_interruption() {
1392   if (is_external_interruption()) {
1393     if (PrintGCDetails) {
1394       gclog_or_tty->print(" (concurrent mode interrupted)");
1395     }
1396   } else {
1397     if (PrintGCDetails) {
1398       gclog_or_tty->print(" (concurrent mode failure)");
1399     }
1400     _gc_tracer_cm->report_concurrent_mode_failure();
1401   }
1402 }
1403 
1404 
1405 // The foreground and background collectors need to coordinate in order
1406 // to make sure that they do not mutually interfere with CMS collections.
1407 // When a background collection is active,
1408 // the foreground collector may need to take over (preempt) and
1409 // synchronously complete an ongoing collection. Depending on the
1410 // frequency of the background collections and the heap usage
1411 // of the application, this preemption can be seldom or frequent.
1412 // There are only certain
1413 // points in the background collection that the "collection-baton"
1414 // can be passed to the foreground collector.
1415 //
1416 // The foreground collector will wait for the baton before
1417 // starting any part of the collection.  The foreground collector
1418 // will only wait at one location.
1419 //
1420 // The background collector will yield the baton before starting a new
1421 // phase of the collection (e.g., before initial marking, marking from roots,
1422 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1423 // of the loop which switches the phases. The background collector does some
1424 // of the phases (initial mark, final re-mark) with the world stopped.
1425 // Because of locking involved in stopping the world,
1426 // the foreground collector should not block waiting for the background
1427 // collector when it is doing a stop-the-world phase.  The background
1428 // collector will yield the baton at an additional point just before
1429 // it enters a stop-the-world phase.  Once the world is stopped, the
1430 // background collector checks the phase of the collection.  If the
1431 // phase has not changed, it proceeds with the collection.  If the
1432 // phase has changed, it skips that phase of the collection.  See
1433 // the comments on the use of the Heap_lock in collect_in_background().
1434 //
1435 // Variable used in baton passing.
1436 //   _foregroundGCIsActive - Set to true by the foreground collector when
1437 //      it wants the baton.  The foreground clears it when it has finished
1438 //      the collection.
1439 //   _foregroundGCShouldWait - Set to true by the background collector
1440 //        when it is running.  The foreground collector waits while
1441 //      _foregroundGCShouldWait is true.
1442 //  CGC_lock - monitor used to protect access to the above variables
1443 //      and to notify the foreground and background collectors.
1444 //  _collectorState - current state of the CMS collection.
1445 //
1446 // The foreground collector
1447 //   acquires the CGC_lock
1448 //   sets _foregroundGCIsActive
1449 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1450 //     various locks acquired in preparation for the collection
1451 //     are released so as not to block the background collector
1452 //     that is in the midst of a collection
1453 //   proceeds with the collection
1454 //   clears _foregroundGCIsActive
1455 //   returns
1456 //
1457 // The background collector in a loop iterating on the phases of the
1458 //      collection
1459 //   acquires the CGC_lock
1460 //   sets _foregroundGCShouldWait
1461 //   if _foregroundGCIsActive is set
1462 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1463 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1464 //     and exits the loop.
1465 //   otherwise
1466 //     proceed with that phase of the collection
1467 //     if the phase is a stop-the-world phase,
1468 //       yield the baton once more just before enqueueing
1469 //       the stop-world CMS operation (executed by the VM thread).
1470 //   returns after all phases of the collection are done
1471 //
1472 
1473 void CMSCollector::acquire_control_and_collect(bool full,
1474         bool clear_all_soft_refs) {
1475   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1476   assert(!Thread::current()->is_ConcurrentGC_thread(),
1477          "shouldn't try to acquire control from self!");
1478 
1479   // Start the protocol for acquiring control of the
1480   // collection from the background collector (aka CMS thread).
1481   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1482          "VM thread should have CMS token");
1483   // Remember the possibly interrupted state of an ongoing
1484   // concurrent collection
1485   CollectorState first_state = _collectorState;
1486 
1487   // Signal to a possibly ongoing concurrent collection that
1488   // we want to do a foreground collection.
1489   _foregroundGCIsActive = true;
1490 
1491   // release locks and wait for a notify from the background collector
1492   // releasing the locks in only necessary for phases which
1493   // do yields to improve the granularity of the collection.
1494   assert_lock_strong(bitMapLock());
1495   // We need to lock the Free list lock for the space that we are
1496   // currently collecting.
1497   assert(haveFreelistLocks(), "Must be holding free list locks");
1498   bitMapLock()->unlock();
1499   releaseFreelistLocks();
1500   {
1501     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1502     if (_foregroundGCShouldWait) {
1503       // We are going to be waiting for action for the CMS thread;
1504       // it had better not be gone (for instance at shutdown)!
1505       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1506              "CMS thread must be running");
1507       // Wait here until the background collector gives us the go-ahead
1508       ConcurrentMarkSweepThread::clear_CMS_flag(
1509         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1510       // Get a possibly blocked CMS thread going:
1511       //   Note that we set _foregroundGCIsActive true above,
1512       //   without protection of the CGC_lock.
1513       CGC_lock->notify();
1514       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1515              "Possible deadlock");
1516       while (_foregroundGCShouldWait) {
1517         // wait for notification
1518         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1519         // Possibility of delay/starvation here, since CMS token does
1520         // not know to give priority to VM thread? Actually, i think
1521         // there wouldn't be any delay/starvation, but the proof of
1522         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1523       }
1524       ConcurrentMarkSweepThread::set_CMS_flag(
1525         ConcurrentMarkSweepThread::CMS_vm_has_token);
1526     }
1527   }
1528   // The CMS_token is already held.  Get back the other locks.
1529   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1530          "VM thread should have CMS token");
1531   getFreelistLocks();
1532   bitMapLock()->lock_without_safepoint_check();
1533   if (TraceCMSState) {
1534     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1535       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1536     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1537   }
1538 
1539   // Inform cms gen if this was due to partial collection failing.
1540   // The CMS gen may use this fact to determine its expansion policy.
1541   GenCollectedHeap* gch = GenCollectedHeap::heap();
1542   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1543     assert(!_cmsGen->incremental_collection_failed(),
1544            "Should have been noticed, reacted to and cleared");
1545     _cmsGen->set_incremental_collection_failed();
1546   }
1547 
1548   if (first_state > Idling) {
1549     report_concurrent_mode_interruption();
1550   }
1551 
1552   set_did_compact(true);
1553 
1554   // If the collection is being acquired from the background
1555   // collector, there may be references on the discovered
1556   // references lists.  Abandon those references, since some
1557   // of them may have become unreachable after concurrent
1558   // discovery; the STW compacting collector will redo discovery
1559   // more precisely, without being subject to floating garbage.
1560   // Leaving otherwise unreachable references in the discovered
1561   // lists would require special handling.
1562   ref_processor()->disable_discovery();
1563   ref_processor()->abandon_partial_discovery();
1564   ref_processor()->verify_no_references_recorded();
1565 
1566   if (first_state > Idling) {
1567     save_heap_summary();
1568   }
1569 
1570   do_compaction_work(clear_all_soft_refs);
1571 
1572   // Has the GC time limit been exceeded?
1573   size_t max_eden_size = _young_gen->max_capacity() -
1574                          _young_gen->to()->capacity() -
1575                          _young_gen->from()->capacity();
1576   GCCause::Cause gc_cause = gch->gc_cause();
1577   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1578                                          _young_gen->eden()->used(),
1579                                          _cmsGen->max_capacity(),
1580                                          max_eden_size,
1581                                          full,
1582                                          gc_cause,
1583                                          gch->collector_policy());
1584 
1585   // Reset the expansion cause, now that we just completed
1586   // a collection cycle.
1587   clear_expansion_cause();
1588   _foregroundGCIsActive = false;
1589   return;
1590 }
1591 
1592 // Resize the tenured generation
1593 // after obtaining the free list locks for the
1594 // two generations.
1595 void CMSCollector::compute_new_size() {
1596   assert_locked_or_safepoint(Heap_lock);
1597   FreelistLocker z(this);
1598   MetaspaceGC::compute_new_size();
1599   _cmsGen->compute_new_size_free_list();
1600 }
1601 
1602 // A work method used by the foreground collector to do
1603 // a mark-sweep-compact.
1604 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1605   GenCollectedHeap* gch = GenCollectedHeap::heap();
1606 
1607   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1608   gc_timer->register_gc_start();
1609 
1610   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1611   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1612 
1613   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1614 
1615   // Temporarily widen the span of the weak reference processing to
1616   // the entire heap.
1617   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1618   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1619   // Temporarily, clear the "is_alive_non_header" field of the
1620   // reference processor.
1621   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1622   // Temporarily make reference _processing_ single threaded (non-MT).
1623   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1624   // Temporarily make refs discovery atomic
1625   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1626   // Temporarily make reference _discovery_ single threaded (non-MT)
1627   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1628 
1629   ref_processor()->set_enqueuing_is_done(false);
1630   ref_processor()->enable_discovery();
1631   ref_processor()->setup_policy(clear_all_soft_refs);
1632   // If an asynchronous collection finishes, the _modUnionTable is
1633   // all clear.  If we are assuming the collection from an asynchronous
1634   // collection, clear the _modUnionTable.
1635   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1636     "_modUnionTable should be clear if the baton was not passed");
1637   _modUnionTable.clear_all();
1638   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1639     "mod union for klasses should be clear if the baton was passed");
1640   _ct->klass_rem_set()->clear_mod_union();
1641 
1642   // We must adjust the allocation statistics being maintained
1643   // in the free list space. We do so by reading and clearing
1644   // the sweep timer and updating the block flux rate estimates below.
1645   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1646   if (_inter_sweep_timer.is_active()) {
1647     _inter_sweep_timer.stop();
1648     // Note that we do not use this sample to update the _inter_sweep_estimate.
1649     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1650                                             _inter_sweep_estimate.padded_average(),
1651                                             _intra_sweep_estimate.padded_average());
1652   }
1653 
1654   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1655     ref_processor(), clear_all_soft_refs);
1656   #ifdef ASSERT
1657     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1658     size_t free_size = cms_space->free();
1659     assert(free_size ==
1660            pointer_delta(cms_space->end(), cms_space->compaction_top())
1661            * HeapWordSize,
1662       "All the free space should be compacted into one chunk at top");
1663     assert(cms_space->dictionary()->total_chunk_size(
1664                                       debug_only(cms_space->freelistLock())) == 0 ||
1665            cms_space->totalSizeInIndexedFreeLists() == 0,
1666       "All the free space should be in a single chunk");
1667     size_t num = cms_space->totalCount();
1668     assert((free_size == 0 && num == 0) ||
1669            (free_size > 0  && (num == 1 || num == 2)),
1670          "There should be at most 2 free chunks after compaction");
1671   #endif // ASSERT
1672   _collectorState = Resetting;
1673   assert(_restart_addr == NULL,
1674          "Should have been NULL'd before baton was passed");
1675   reset(false /* == !concurrent */);
1676   _cmsGen->reset_after_compaction();
1677   _concurrent_cycles_since_last_unload = 0;
1678 
1679   // Clear any data recorded in the PLAB chunk arrays.
1680   if (_survivor_plab_array != NULL) {
1681     reset_survivor_plab_arrays();
1682   }
1683 
1684   // Adjust the per-size allocation stats for the next epoch.
1685   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1686   // Restart the "inter sweep timer" for the next epoch.
1687   _inter_sweep_timer.reset();
1688   _inter_sweep_timer.start();
1689 
1690   gc_timer->register_gc_end();
1691 
1692   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1693 
1694   // For a mark-sweep-compact, compute_new_size() will be called
1695   // in the heap's do_collection() method.
1696 }
1697 
1698 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1699   ContiguousSpace* eden_space = _young_gen->eden();
1700   ContiguousSpace* from_space = _young_gen->from();
1701   ContiguousSpace* to_space   = _young_gen->to();
1702   // Eden
1703   if (_eden_chunk_array != NULL) {
1704     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1705                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1706                            p2i(eden_space->end()), eden_space->capacity());
1707     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1708                            "_eden_chunk_capacity=" SIZE_FORMAT,
1709                            _eden_chunk_index, _eden_chunk_capacity);
1710     for (size_t i = 0; i < _eden_chunk_index; i++) {
1711       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1712                              i, p2i(_eden_chunk_array[i]));
1713     }
1714   }
1715   // Survivor
1716   if (_survivor_chunk_array != NULL) {
1717     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1718                            p2i(from_space->bottom()), p2i(from_space->top()),
1719                            p2i(from_space->end()), from_space->capacity());
1720     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1721                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1722                            _survivor_chunk_index, _survivor_chunk_capacity);
1723     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1724       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1725                              i, p2i(_survivor_chunk_array[i]));
1726     }
1727   }
1728 }
1729 
1730 void CMSCollector::getFreelistLocks() const {
1731   // Get locks for all free lists in all generations that this
1732   // collector is responsible for
1733   _cmsGen->freelistLock()->lock_without_safepoint_check();
1734 }
1735 
1736 void CMSCollector::releaseFreelistLocks() const {
1737   // Release locks for all free lists in all generations that this
1738   // collector is responsible for
1739   _cmsGen->freelistLock()->unlock();
1740 }
1741 
1742 bool CMSCollector::haveFreelistLocks() const {
1743   // Check locks for all free lists in all generations that this
1744   // collector is responsible for
1745   assert_lock_strong(_cmsGen->freelistLock());
1746   PRODUCT_ONLY(ShouldNotReachHere());
1747   return true;
1748 }
1749 
1750 // A utility class that is used by the CMS collector to
1751 // temporarily "release" the foreground collector from its
1752 // usual obligation to wait for the background collector to
1753 // complete an ongoing phase before proceeding.
1754 class ReleaseForegroundGC: public StackObj {
1755  private:
1756   CMSCollector* _c;
1757  public:
1758   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1759     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1760     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1761     // allow a potentially blocked foreground collector to proceed
1762     _c->_foregroundGCShouldWait = false;
1763     if (_c->_foregroundGCIsActive) {
1764       CGC_lock->notify();
1765     }
1766     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1767            "Possible deadlock");
1768   }
1769 
1770   ~ReleaseForegroundGC() {
1771     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1772     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1773     _c->_foregroundGCShouldWait = true;
1774   }
1775 };
1776 
1777 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1778   assert(Thread::current()->is_ConcurrentGC_thread(),
1779     "A CMS asynchronous collection is only allowed on a CMS thread.");
1780 
1781   GenCollectedHeap* gch = GenCollectedHeap::heap();
1782   {
1783     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1784     MutexLockerEx hl(Heap_lock, safepoint_check);
1785     FreelistLocker fll(this);
1786     MutexLockerEx x(CGC_lock, safepoint_check);
1787     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1788       // The foreground collector is active or we're
1789       // not using asynchronous collections.  Skip this
1790       // background collection.
1791       assert(!_foregroundGCShouldWait, "Should be clear");
1792       return;
1793     } else {
1794       assert(_collectorState == Idling, "Should be idling before start.");
1795       _collectorState = InitialMarking;
1796       register_gc_start(cause);
1797       // Reset the expansion cause, now that we are about to begin
1798       // a new cycle.
1799       clear_expansion_cause();
1800 
1801       // Clear the MetaspaceGC flag since a concurrent collection
1802       // is starting but also clear it after the collection.
1803       MetaspaceGC::set_should_concurrent_collect(false);
1804     }
1805     // Decide if we want to enable class unloading as part of the
1806     // ensuing concurrent GC cycle.
1807     update_should_unload_classes();
1808     _full_gc_requested = false;           // acks all outstanding full gc requests
1809     _full_gc_cause = GCCause::_no_gc;
1810     // Signal that we are about to start a collection
1811     gch->increment_total_full_collections();  // ... starting a collection cycle
1812     _collection_count_start = gch->total_full_collections();
1813   }
1814 
1815   // Used for PrintGC
1816   size_t prev_used;
1817   if (PrintGC && Verbose) {
1818     prev_used = _cmsGen->used();
1819   }
1820 
1821   // The change of the collection state is normally done at this level;
1822   // the exceptions are phases that are executed while the world is
1823   // stopped.  For those phases the change of state is done while the
1824   // world is stopped.  For baton passing purposes this allows the
1825   // background collector to finish the phase and change state atomically.
1826   // The foreground collector cannot wait on a phase that is done
1827   // while the world is stopped because the foreground collector already
1828   // has the world stopped and would deadlock.
1829   while (_collectorState != Idling) {
1830     if (TraceCMSState) {
1831       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1832         p2i(Thread::current()), _collectorState);
1833     }
1834     // The foreground collector
1835     //   holds the Heap_lock throughout its collection.
1836     //   holds the CMS token (but not the lock)
1837     //     except while it is waiting for the background collector to yield.
1838     //
1839     // The foreground collector should be blocked (not for long)
1840     //   if the background collector is about to start a phase
1841     //   executed with world stopped.  If the background
1842     //   collector has already started such a phase, the
1843     //   foreground collector is blocked waiting for the
1844     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1845     //   are executed in the VM thread.
1846     //
1847     // The locking order is
1848     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1849     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1850     //   CMS token  (claimed in
1851     //                stop_world_and_do() -->
1852     //                  safepoint_synchronize() -->
1853     //                    CMSThread::synchronize())
1854 
1855     {
1856       // Check if the FG collector wants us to yield.
1857       CMSTokenSync x(true); // is cms thread
1858       if (waitForForegroundGC()) {
1859         // We yielded to a foreground GC, nothing more to be
1860         // done this round.
1861         assert(_foregroundGCShouldWait == false, "We set it to false in "
1862                "waitForForegroundGC()");
1863         if (TraceCMSState) {
1864           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1865             " exiting collection CMS state %d",
1866             p2i(Thread::current()), _collectorState);
1867         }
1868         return;
1869       } else {
1870         // The background collector can run but check to see if the
1871         // foreground collector has done a collection while the
1872         // background collector was waiting to get the CGC_lock
1873         // above.  If yes, break so that _foregroundGCShouldWait
1874         // is cleared before returning.
1875         if (_collectorState == Idling) {
1876           break;
1877         }
1878       }
1879     }
1880 
1881     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1882       "should be waiting");
1883 
1884     switch (_collectorState) {
1885       case InitialMarking:
1886         {
1887           ReleaseForegroundGC x(this);
1888           stats().record_cms_begin();
1889           VM_CMS_Initial_Mark initial_mark_op(this);
1890           VMThread::execute(&initial_mark_op);
1891         }
1892         // The collector state may be any legal state at this point
1893         // since the background collector may have yielded to the
1894         // foreground collector.
1895         break;
1896       case Marking:
1897         // initial marking in checkpointRootsInitialWork has been completed
1898         if (markFromRoots()) { // we were successful
1899           assert(_collectorState == Precleaning, "Collector state should "
1900             "have changed");
1901         } else {
1902           assert(_foregroundGCIsActive, "Internal state inconsistency");
1903         }
1904         break;
1905       case Precleaning:
1906         // marking from roots in markFromRoots has been completed
1907         preclean();
1908         assert(_collectorState == AbortablePreclean ||
1909                _collectorState == FinalMarking,
1910                "Collector state should have changed");
1911         break;
1912       case AbortablePreclean:
1913         abortable_preclean();
1914         assert(_collectorState == FinalMarking, "Collector state should "
1915           "have changed");
1916         break;
1917       case FinalMarking:
1918         {
1919           ReleaseForegroundGC x(this);
1920 
1921           VM_CMS_Final_Remark final_remark_op(this);
1922           VMThread::execute(&final_remark_op);
1923         }
1924         assert(_foregroundGCShouldWait, "block post-condition");
1925         break;
1926       case Sweeping:
1927         // final marking in checkpointRootsFinal has been completed
1928         sweep();
1929         assert(_collectorState == Resizing, "Collector state change "
1930           "to Resizing must be done under the free_list_lock");
1931 
1932       case Resizing: {
1933         // Sweeping has been completed...
1934         // At this point the background collection has completed.
1935         // Don't move the call to compute_new_size() down
1936         // into code that might be executed if the background
1937         // collection was preempted.
1938         {
1939           ReleaseForegroundGC x(this);   // unblock FG collection
1940           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1941           CMSTokenSync        z(true);   // not strictly needed.
1942           if (_collectorState == Resizing) {
1943             compute_new_size();
1944             save_heap_summary();
1945             _collectorState = Resetting;
1946           } else {
1947             assert(_collectorState == Idling, "The state should only change"
1948                    " because the foreground collector has finished the collection");
1949           }
1950         }
1951         break;
1952       }
1953       case Resetting:
1954         // CMS heap resizing has been completed
1955         reset(true);
1956         assert(_collectorState == Idling, "Collector state should "
1957           "have changed");
1958 
1959         MetaspaceGC::set_should_concurrent_collect(false);
1960 
1961         stats().record_cms_end();
1962         // Don't move the concurrent_phases_end() and compute_new_size()
1963         // calls to here because a preempted background collection
1964         // has it's state set to "Resetting".
1965         break;
1966       case Idling:
1967       default:
1968         ShouldNotReachHere();
1969         break;
1970     }
1971     if (TraceCMSState) {
1972       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1973         p2i(Thread::current()), _collectorState);
1974     }
1975     assert(_foregroundGCShouldWait, "block post-condition");
1976   }
1977 
1978   // Should this be in gc_epilogue?
1979   collector_policy()->counters()->update_counters();
1980 
1981   {
1982     // Clear _foregroundGCShouldWait and, in the event that the
1983     // foreground collector is waiting, notify it, before
1984     // returning.
1985     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1986     _foregroundGCShouldWait = false;
1987     if (_foregroundGCIsActive) {
1988       CGC_lock->notify();
1989     }
1990     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1991            "Possible deadlock");
1992   }
1993   if (TraceCMSState) {
1994     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1995       " exiting collection CMS state %d",
1996       p2i(Thread::current()), _collectorState);
1997   }
1998   if (PrintGC && Verbose) {
1999     _cmsGen->print_heap_change(prev_used);
2000   }
2001 }
2002 
2003 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2004   _cms_start_registered = true;
2005   _gc_timer_cm->register_gc_start();
2006   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2007 }
2008 
2009 void CMSCollector::register_gc_end() {
2010   if (_cms_start_registered) {
2011     report_heap_summary(GCWhen::AfterGC);
2012 
2013     _gc_timer_cm->register_gc_end();
2014     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2015     _cms_start_registered = false;
2016   }
2017 }
2018 
2019 void CMSCollector::save_heap_summary() {
2020   GenCollectedHeap* gch = GenCollectedHeap::heap();
2021   _last_heap_summary = gch->create_heap_summary();
2022   _last_metaspace_summary = gch->create_metaspace_summary();
2023 }
2024 
2025 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2026   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2027   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2028 }
2029 
2030 bool CMSCollector::waitForForegroundGC() {
2031   bool res = false;
2032   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2033          "CMS thread should have CMS token");
2034   // Block the foreground collector until the
2035   // background collectors decides whether to
2036   // yield.
2037   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2038   _foregroundGCShouldWait = true;
2039   if (_foregroundGCIsActive) {
2040     // The background collector yields to the
2041     // foreground collector and returns a value
2042     // indicating that it has yielded.  The foreground
2043     // collector can proceed.
2044     res = true;
2045     _foregroundGCShouldWait = false;
2046     ConcurrentMarkSweepThread::clear_CMS_flag(
2047       ConcurrentMarkSweepThread::CMS_cms_has_token);
2048     ConcurrentMarkSweepThread::set_CMS_flag(
2049       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2050     // Get a possibly blocked foreground thread going
2051     CGC_lock->notify();
2052     if (TraceCMSState) {
2053       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2054         p2i(Thread::current()), _collectorState);
2055     }
2056     while (_foregroundGCIsActive) {
2057       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2058     }
2059     ConcurrentMarkSweepThread::set_CMS_flag(
2060       ConcurrentMarkSweepThread::CMS_cms_has_token);
2061     ConcurrentMarkSweepThread::clear_CMS_flag(
2062       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2063   }
2064   if (TraceCMSState) {
2065     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2066       p2i(Thread::current()), _collectorState);
2067   }
2068   return res;
2069 }
2070 
2071 // Because of the need to lock the free lists and other structures in
2072 // the collector, common to all the generations that the collector is
2073 // collecting, we need the gc_prologues of individual CMS generations
2074 // delegate to their collector. It may have been simpler had the
2075 // current infrastructure allowed one to call a prologue on a
2076 // collector. In the absence of that we have the generation's
2077 // prologue delegate to the collector, which delegates back
2078 // some "local" work to a worker method in the individual generations
2079 // that it's responsible for collecting, while itself doing any
2080 // work common to all generations it's responsible for. A similar
2081 // comment applies to the  gc_epilogue()'s.
2082 // The role of the variable _between_prologue_and_epilogue is to
2083 // enforce the invocation protocol.
2084 void CMSCollector::gc_prologue(bool full) {
2085   // Call gc_prologue_work() for the CMSGen
2086   // we are responsible for.
2087 
2088   // The following locking discipline assumes that we are only called
2089   // when the world is stopped.
2090   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2091 
2092   // The CMSCollector prologue must call the gc_prologues for the
2093   // "generations" that it's responsible
2094   // for.
2095 
2096   assert(   Thread::current()->is_VM_thread()
2097          || (   CMSScavengeBeforeRemark
2098              && Thread::current()->is_ConcurrentGC_thread()),
2099          "Incorrect thread type for prologue execution");
2100 
2101   if (_between_prologue_and_epilogue) {
2102     // We have already been invoked; this is a gc_prologue delegation
2103     // from yet another CMS generation that we are responsible for, just
2104     // ignore it since all relevant work has already been done.
2105     return;
2106   }
2107 
2108   // set a bit saying prologue has been called; cleared in epilogue
2109   _between_prologue_and_epilogue = true;
2110   // Claim locks for common data structures, then call gc_prologue_work()
2111   // for each CMSGen.
2112 
2113   getFreelistLocks();   // gets free list locks on constituent spaces
2114   bitMapLock()->lock_without_safepoint_check();
2115 
2116   // Should call gc_prologue_work() for all cms gens we are responsible for
2117   bool duringMarking =    _collectorState >= Marking
2118                          && _collectorState < Sweeping;
2119 
2120   // The young collections clear the modified oops state, which tells if
2121   // there are any modified oops in the class. The remark phase also needs
2122   // that information. Tell the young collection to save the union of all
2123   // modified klasses.
2124   if (duringMarking) {
2125     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2126   }
2127 
2128   bool registerClosure = duringMarking;
2129 
2130   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2131 
2132   if (!full) {
2133     stats().record_gc0_begin();
2134   }
2135 }
2136 
2137 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2138 
2139   _capacity_at_prologue = capacity();
2140   _used_at_prologue = used();
2141 
2142   // Delegate to CMScollector which knows how to coordinate between
2143   // this and any other CMS generations that it is responsible for
2144   // collecting.
2145   collector()->gc_prologue(full);
2146 }
2147 
2148 // This is a "private" interface for use by this generation's CMSCollector.
2149 // Not to be called directly by any other entity (for instance,
2150 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2151 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2152   bool registerClosure, ModUnionClosure* modUnionClosure) {
2153   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2154   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2155     "Should be NULL");
2156   if (registerClosure) {
2157     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2158   }
2159   cmsSpace()->gc_prologue();
2160   // Clear stat counters
2161   NOT_PRODUCT(
2162     assert(_numObjectsPromoted == 0, "check");
2163     assert(_numWordsPromoted   == 0, "check");
2164     if (Verbose && PrintGC) {
2165       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2166                           SIZE_FORMAT" bytes concurrently",
2167       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2168     }
2169     _numObjectsAllocated = 0;
2170     _numWordsAllocated   = 0;
2171   )
2172 }
2173 
2174 void CMSCollector::gc_epilogue(bool full) {
2175   // The following locking discipline assumes that we are only called
2176   // when the world is stopped.
2177   assert(SafepointSynchronize::is_at_safepoint(),
2178          "world is stopped assumption");
2179 
2180   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2181   // if linear allocation blocks need to be appropriately marked to allow the
2182   // the blocks to be parsable. We also check here whether we need to nudge the
2183   // CMS collector thread to start a new cycle (if it's not already active).
2184   assert(   Thread::current()->is_VM_thread()
2185          || (   CMSScavengeBeforeRemark
2186              && Thread::current()->is_ConcurrentGC_thread()),
2187          "Incorrect thread type for epilogue execution");
2188 
2189   if (!_between_prologue_and_epilogue) {
2190     // We have already been invoked; this is a gc_epilogue delegation
2191     // from yet another CMS generation that we are responsible for, just
2192     // ignore it since all relevant work has already been done.
2193     return;
2194   }
2195   assert(haveFreelistLocks(), "must have freelist locks");
2196   assert_lock_strong(bitMapLock());
2197 
2198   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2199 
2200   _cmsGen->gc_epilogue_work(full);
2201 
2202   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2203     // in case sampling was not already enabled, enable it
2204     _start_sampling = true;
2205   }
2206   // reset _eden_chunk_array so sampling starts afresh
2207   _eden_chunk_index = 0;
2208 
2209   size_t cms_used   = _cmsGen->cmsSpace()->used();
2210 
2211   // update performance counters - this uses a special version of
2212   // update_counters() that allows the utilization to be passed as a
2213   // parameter, avoiding multiple calls to used().
2214   //
2215   _cmsGen->update_counters(cms_used);
2216 
2217   bitMapLock()->unlock();
2218   releaseFreelistLocks();
2219 
2220   if (!CleanChunkPoolAsync) {
2221     Chunk::clean_chunk_pool();
2222   }
2223 
2224   set_did_compact(false);
2225   _between_prologue_and_epilogue = false;  // ready for next cycle
2226 }
2227 
2228 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2229   collector()->gc_epilogue(full);
2230 
2231   // Also reset promotion tracking in par gc thread states.
2232   for (uint i = 0; i < ParallelGCThreads; i++) {
2233     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2234   }
2235 }
2236 
2237 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2238   assert(!incremental_collection_failed(), "Should have been cleared");
2239   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2240   cmsSpace()->gc_epilogue();
2241     // Print stat counters
2242   NOT_PRODUCT(
2243     assert(_numObjectsAllocated == 0, "check");
2244     assert(_numWordsAllocated == 0, "check");
2245     if (Verbose && PrintGC) {
2246       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2247                           SIZE_FORMAT" bytes",
2248                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2249     }
2250     _numObjectsPromoted = 0;
2251     _numWordsPromoted   = 0;
2252   )
2253 
2254   if (PrintGC && Verbose) {
2255     // Call down the chain in contiguous_available needs the freelistLock
2256     // so print this out before releasing the freeListLock.
2257     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2258                         contiguous_available());
2259   }
2260 }
2261 
2262 #ifndef PRODUCT
2263 bool CMSCollector::have_cms_token() {
2264   Thread* thr = Thread::current();
2265   if (thr->is_VM_thread()) {
2266     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2267   } else if (thr->is_ConcurrentGC_thread()) {
2268     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2269   } else if (thr->is_GC_task_thread()) {
2270     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2271            ParGCRareEvent_lock->owned_by_self();
2272   }
2273   return false;
2274 }
2275 #endif
2276 
2277 // Check reachability of the given heap address in CMS generation,
2278 // treating all other generations as roots.
2279 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2280   // We could "guarantee" below, rather than assert, but I'll
2281   // leave these as "asserts" so that an adventurous debugger
2282   // could try this in the product build provided some subset of
2283   // the conditions were met, provided they were interested in the
2284   // results and knew that the computation below wouldn't interfere
2285   // with other concurrent computations mutating the structures
2286   // being read or written.
2287   assert(SafepointSynchronize::is_at_safepoint(),
2288          "Else mutations in object graph will make answer suspect");
2289   assert(have_cms_token(), "Should hold cms token");
2290   assert(haveFreelistLocks(), "must hold free list locks");
2291   assert_lock_strong(bitMapLock());
2292 
2293   // Clear the marking bit map array before starting, but, just
2294   // for kicks, first report if the given address is already marked
2295   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2296                 _markBitMap.isMarked(addr) ? "" : " not");
2297 
2298   if (verify_after_remark()) {
2299     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2300     bool result = verification_mark_bm()->isMarked(addr);
2301     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2302                            result ? "IS" : "is NOT");
2303     return result;
2304   } else {
2305     gclog_or_tty->print_cr("Could not compute result");
2306     return false;
2307   }
2308 }
2309 
2310 
2311 void
2312 CMSCollector::print_on_error(outputStream* st) {
2313   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2314   if (collector != NULL) {
2315     CMSBitMap* bitmap = &collector->_markBitMap;
2316     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2317     bitmap->print_on_error(st, " Bits: ");
2318 
2319     st->cr();
2320 
2321     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2322     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2323     mut_bitmap->print_on_error(st, " Bits: ");
2324   }
2325 }
2326 
2327 ////////////////////////////////////////////////////////
2328 // CMS Verification Support
2329 ////////////////////////////////////////////////////////
2330 // Following the remark phase, the following invariant
2331 // should hold -- each object in the CMS heap which is
2332 // marked in markBitMap() should be marked in the verification_mark_bm().
2333 
2334 class VerifyMarkedClosure: public BitMapClosure {
2335   CMSBitMap* _marks;
2336   bool       _failed;
2337 
2338  public:
2339   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2340 
2341   bool do_bit(size_t offset) {
2342     HeapWord* addr = _marks->offsetToHeapWord(offset);
2343     if (!_marks->isMarked(addr)) {
2344       oop(addr)->print_on(gclog_or_tty);
2345       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2346       _failed = true;
2347     }
2348     return true;
2349   }
2350 
2351   bool failed() { return _failed; }
2352 };
2353 
2354 bool CMSCollector::verify_after_remark(bool silent) {
2355   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2356   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2357   static bool init = false;
2358 
2359   assert(SafepointSynchronize::is_at_safepoint(),
2360          "Else mutations in object graph will make answer suspect");
2361   assert(have_cms_token(),
2362          "Else there may be mutual interference in use of "
2363          " verification data structures");
2364   assert(_collectorState > Marking && _collectorState <= Sweeping,
2365          "Else marking info checked here may be obsolete");
2366   assert(haveFreelistLocks(), "must hold free list locks");
2367   assert_lock_strong(bitMapLock());
2368 
2369 
2370   // Allocate marking bit map if not already allocated
2371   if (!init) { // first time
2372     if (!verification_mark_bm()->allocate(_span)) {
2373       return false;
2374     }
2375     init = true;
2376   }
2377 
2378   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2379 
2380   // Turn off refs discovery -- so we will be tracing through refs.
2381   // This is as intended, because by this time
2382   // GC must already have cleared any refs that need to be cleared,
2383   // and traced those that need to be marked; moreover,
2384   // the marking done here is not going to interfere in any
2385   // way with the marking information used by GC.
2386   NoRefDiscovery no_discovery(ref_processor());
2387 
2388   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2389 
2390   // Clear any marks from a previous round
2391   verification_mark_bm()->clear_all();
2392   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2393   verify_work_stacks_empty();
2394 
2395   GenCollectedHeap* gch = GenCollectedHeap::heap();
2396   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2397   // Update the saved marks which may affect the root scans.
2398   gch->save_marks();
2399 
2400   if (CMSRemarkVerifyVariant == 1) {
2401     // In this first variant of verification, we complete
2402     // all marking, then check if the new marks-vector is
2403     // a subset of the CMS marks-vector.
2404     verify_after_remark_work_1();
2405   } else if (CMSRemarkVerifyVariant == 2) {
2406     // In this second variant of verification, we flag an error
2407     // (i.e. an object reachable in the new marks-vector not reachable
2408     // in the CMS marks-vector) immediately, also indicating the
2409     // identify of an object (A) that references the unmarked object (B) --
2410     // presumably, a mutation to A failed to be picked up by preclean/remark?
2411     verify_after_remark_work_2();
2412   } else {
2413     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2414             CMSRemarkVerifyVariant);
2415   }
2416   if (!silent) gclog_or_tty->print(" done] ");
2417   return true;
2418 }
2419 
2420 void CMSCollector::verify_after_remark_work_1() {
2421   ResourceMark rm;
2422   HandleMark  hm;
2423   GenCollectedHeap* gch = GenCollectedHeap::heap();
2424 
2425   // Get a clear set of claim bits for the roots processing to work with.
2426   ClassLoaderDataGraph::clear_claimed_marks();
2427 
2428   // Mark from roots one level into CMS
2429   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2430   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2431 
2432   gch->gen_process_roots(_cmsGen->level(),
2433                          true,   // younger gens are roots
2434                          true,   // activate StrongRootsScope
2435                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2436                          should_unload_classes(),
2437                          &notOlder,
2438                          NULL,
2439                          NULL);  // SSS: Provide correct closure
2440 
2441   // Now mark from the roots
2442   MarkFromRootsClosure markFromRootsClosure(this, _span,
2443     verification_mark_bm(), verification_mark_stack(),
2444     false /* don't yield */, true /* verifying */);
2445   assert(_restart_addr == NULL, "Expected pre-condition");
2446   verification_mark_bm()->iterate(&markFromRootsClosure);
2447   while (_restart_addr != NULL) {
2448     // Deal with stack overflow: by restarting at the indicated
2449     // address.
2450     HeapWord* ra = _restart_addr;
2451     markFromRootsClosure.reset(ra);
2452     _restart_addr = NULL;
2453     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2454   }
2455   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2456   verify_work_stacks_empty();
2457 
2458   // Marking completed -- now verify that each bit marked in
2459   // verification_mark_bm() is also marked in markBitMap(); flag all
2460   // errors by printing corresponding objects.
2461   VerifyMarkedClosure vcl(markBitMap());
2462   verification_mark_bm()->iterate(&vcl);
2463   if (vcl.failed()) {
2464     gclog_or_tty->print("Verification failed");
2465     gch->print_on(gclog_or_tty);
2466     fatal("CMS: failed marking verification after remark");
2467   }
2468 }
2469 
2470 class VerifyKlassOopsKlassClosure : public KlassClosure {
2471   class VerifyKlassOopsClosure : public OopClosure {
2472     CMSBitMap* _bitmap;
2473    public:
2474     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2475     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2476     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2477   } _oop_closure;
2478  public:
2479   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2480   void do_klass(Klass* k) {
2481     k->oops_do(&_oop_closure);
2482   }
2483 };
2484 
2485 void CMSCollector::verify_after_remark_work_2() {
2486   ResourceMark rm;
2487   HandleMark  hm;
2488   GenCollectedHeap* gch = GenCollectedHeap::heap();
2489 
2490   // Get a clear set of claim bits for the roots processing to work with.
2491   ClassLoaderDataGraph::clear_claimed_marks();
2492 
2493   // Mark from roots one level into CMS
2494   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2495                                      markBitMap());
2496   CLDToOopClosure cld_closure(&notOlder, true);
2497 
2498   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2499 
2500   gch->gen_process_roots(_cmsGen->level(),
2501                          true,   // younger gens are roots
2502                          true,   // activate StrongRootsScope
2503                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2504                          should_unload_classes(),
2505                          &notOlder,
2506                          NULL,
2507                          &cld_closure);
2508 
2509   // Now mark from the roots
2510   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2511     verification_mark_bm(), markBitMap(), verification_mark_stack());
2512   assert(_restart_addr == NULL, "Expected pre-condition");
2513   verification_mark_bm()->iterate(&markFromRootsClosure);
2514   while (_restart_addr != NULL) {
2515     // Deal with stack overflow: by restarting at the indicated
2516     // address.
2517     HeapWord* ra = _restart_addr;
2518     markFromRootsClosure.reset(ra);
2519     _restart_addr = NULL;
2520     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2521   }
2522   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2523   verify_work_stacks_empty();
2524 
2525   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2526   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2527 
2528   // Marking completed -- now verify that each bit marked in
2529   // verification_mark_bm() is also marked in markBitMap(); flag all
2530   // errors by printing corresponding objects.
2531   VerifyMarkedClosure vcl(markBitMap());
2532   verification_mark_bm()->iterate(&vcl);
2533   assert(!vcl.failed(), "Else verification above should not have succeeded");
2534 }
2535 
2536 void ConcurrentMarkSweepGeneration::save_marks() {
2537   // delegate to CMS space
2538   cmsSpace()->save_marks();
2539   for (uint i = 0; i < ParallelGCThreads; i++) {
2540     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2541   }
2542 }
2543 
2544 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2545   return cmsSpace()->no_allocs_since_save_marks();
2546 }
2547 
2548 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2549                                                                 \
2550 void ConcurrentMarkSweepGeneration::                            \
2551 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2552   cl->set_generation(this);                                     \
2553   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2554   cl->reset_generation();                                       \
2555   save_marks();                                                 \
2556 }
2557 
2558 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2559 
2560 void
2561 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2562   if (freelistLock()->owned_by_self()) {
2563     Generation::oop_iterate(cl);
2564   } else {
2565     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2566     Generation::oop_iterate(cl);
2567   }
2568 }
2569 
2570 void
2571 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2572   if (freelistLock()->owned_by_self()) {
2573     Generation::object_iterate(cl);
2574   } else {
2575     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2576     Generation::object_iterate(cl);
2577   }
2578 }
2579 
2580 void
2581 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2582   if (freelistLock()->owned_by_self()) {
2583     Generation::safe_object_iterate(cl);
2584   } else {
2585     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2586     Generation::safe_object_iterate(cl);
2587   }
2588 }
2589 
2590 void
2591 ConcurrentMarkSweepGeneration::post_compact() {
2592 }
2593 
2594 void
2595 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2596   // Fix the linear allocation blocks to look like free blocks.
2597 
2598   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2599   // are not called when the heap is verified during universe initialization and
2600   // at vm shutdown.
2601   if (freelistLock()->owned_by_self()) {
2602     cmsSpace()->prepare_for_verify();
2603   } else {
2604     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2605     cmsSpace()->prepare_for_verify();
2606   }
2607 }
2608 
2609 void
2610 ConcurrentMarkSweepGeneration::verify() {
2611   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2612   // are not called when the heap is verified during universe initialization and
2613   // at vm shutdown.
2614   if (freelistLock()->owned_by_self()) {
2615     cmsSpace()->verify();
2616   } else {
2617     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2618     cmsSpace()->verify();
2619   }
2620 }
2621 
2622 void CMSCollector::verify() {
2623   _cmsGen->verify();
2624 }
2625 
2626 #ifndef PRODUCT
2627 bool CMSCollector::overflow_list_is_empty() const {
2628   assert(_num_par_pushes >= 0, "Inconsistency");
2629   if (_overflow_list == NULL) {
2630     assert(_num_par_pushes == 0, "Inconsistency");
2631   }
2632   return _overflow_list == NULL;
2633 }
2634 
2635 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2636 // merely consolidate assertion checks that appear to occur together frequently.
2637 void CMSCollector::verify_work_stacks_empty() const {
2638   assert(_markStack.isEmpty(), "Marking stack should be empty");
2639   assert(overflow_list_is_empty(), "Overflow list should be empty");
2640 }
2641 
2642 void CMSCollector::verify_overflow_empty() const {
2643   assert(overflow_list_is_empty(), "Overflow list should be empty");
2644   assert(no_preserved_marks(), "No preserved marks");
2645 }
2646 #endif // PRODUCT
2647 
2648 // Decide if we want to enable class unloading as part of the
2649 // ensuing concurrent GC cycle. We will collect and
2650 // unload classes if it's the case that:
2651 // (1) an explicit gc request has been made and the flag
2652 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2653 // (2) (a) class unloading is enabled at the command line, and
2654 //     (b) old gen is getting really full
2655 // NOTE: Provided there is no change in the state of the heap between
2656 // calls to this method, it should have idempotent results. Moreover,
2657 // its results should be monotonically increasing (i.e. going from 0 to 1,
2658 // but not 1 to 0) between successive calls between which the heap was
2659 // not collected. For the implementation below, it must thus rely on
2660 // the property that concurrent_cycles_since_last_unload()
2661 // will not decrease unless a collection cycle happened and that
2662 // _cmsGen->is_too_full() are
2663 // themselves also monotonic in that sense. See check_monotonicity()
2664 // below.
2665 void CMSCollector::update_should_unload_classes() {
2666   _should_unload_classes = false;
2667   // Condition 1 above
2668   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2669     _should_unload_classes = true;
2670   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2671     // Disjuncts 2.b.(i,ii,iii) above
2672     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2673                               CMSClassUnloadingMaxInterval)
2674                            || _cmsGen->is_too_full();
2675   }
2676 }
2677 
2678 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2679   bool res = should_concurrent_collect();
2680   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2681   return res;
2682 }
2683 
2684 void CMSCollector::setup_cms_unloading_and_verification_state() {
2685   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2686                              || VerifyBeforeExit;
2687   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2688 
2689   // We set the proper root for this CMS cycle here.
2690   if (should_unload_classes()) {   // Should unload classes this cycle
2691     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2692     set_verifying(should_verify);    // Set verification state for this cycle
2693     return;                            // Nothing else needs to be done at this time
2694   }
2695 
2696   // Not unloading classes this cycle
2697   assert(!should_unload_classes(), "Inconsistency!");
2698 
2699   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2700     // Include symbols, strings and code cache elements to prevent their resurrection.
2701     add_root_scanning_option(rso);
2702     set_verifying(true);
2703   } else if (verifying() && !should_verify) {
2704     // We were verifying, but some verification flags got disabled.
2705     set_verifying(false);
2706     // Exclude symbols, strings and code cache elements from root scanning to
2707     // reduce IM and RM pauses.
2708     remove_root_scanning_option(rso);
2709   }
2710 }
2711 
2712 
2713 #ifndef PRODUCT
2714 HeapWord* CMSCollector::block_start(const void* p) const {
2715   const HeapWord* addr = (HeapWord*)p;
2716   if (_span.contains(p)) {
2717     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2718       return _cmsGen->cmsSpace()->block_start(p);
2719     }
2720   }
2721   return NULL;
2722 }
2723 #endif
2724 
2725 HeapWord*
2726 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2727                                                    bool   tlab,
2728                                                    bool   parallel) {
2729   CMSSynchronousYieldRequest yr;
2730   assert(!tlab, "Can't deal with TLAB allocation");
2731   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2732   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2733   if (GCExpandToAllocateDelayMillis > 0) {
2734     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2735   }
2736   return have_lock_and_allocate(word_size, tlab);
2737 }
2738 
2739 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2740     size_t bytes,
2741     size_t expand_bytes,
2742     CMSExpansionCause::Cause cause)
2743 {
2744 
2745   bool success = expand(bytes, expand_bytes);
2746 
2747   // remember why we expanded; this information is used
2748   // by shouldConcurrentCollect() when making decisions on whether to start
2749   // a new CMS cycle.
2750   if (success) {
2751     set_expansion_cause(cause);
2752     if (PrintGCDetails && Verbose) {
2753       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2754         CMSExpansionCause::to_string(cause));
2755     }
2756   }
2757 }
2758 
2759 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2760   HeapWord* res = NULL;
2761   MutexLocker x(ParGCRareEvent_lock);
2762   while (true) {
2763     // Expansion by some other thread might make alloc OK now:
2764     res = ps->lab.alloc(word_sz);
2765     if (res != NULL) return res;
2766     // If there's not enough expansion space available, give up.
2767     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2768       return NULL;
2769     }
2770     // Otherwise, we try expansion.
2771     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2772     // Now go around the loop and try alloc again;
2773     // A competing par_promote might beat us to the expansion space,
2774     // so we may go around the loop again if promotion fails again.
2775     if (GCExpandToAllocateDelayMillis > 0) {
2776       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2777     }
2778   }
2779 }
2780 
2781 
2782 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2783   PromotionInfo* promo) {
2784   MutexLocker x(ParGCRareEvent_lock);
2785   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2786   while (true) {
2787     // Expansion by some other thread might make alloc OK now:
2788     if (promo->ensure_spooling_space()) {
2789       assert(promo->has_spooling_space(),
2790              "Post-condition of successful ensure_spooling_space()");
2791       return true;
2792     }
2793     // If there's not enough expansion space available, give up.
2794     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2795       return false;
2796     }
2797     // Otherwise, we try expansion.
2798     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2799     // Now go around the loop and try alloc again;
2800     // A competing allocation might beat us to the expansion space,
2801     // so we may go around the loop again if allocation fails again.
2802     if (GCExpandToAllocateDelayMillis > 0) {
2803       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2804     }
2805   }
2806 }
2807 
2808 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2809   // Only shrink if a compaction was done so that all the free space
2810   // in the generation is in a contiguous block at the end.
2811   if (did_compact()) {
2812     CardGeneration::shrink(bytes);
2813   }
2814 }
2815 
2816 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2817   assert_locked_or_safepoint(Heap_lock);
2818 }
2819 
2820 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2821   assert_locked_or_safepoint(Heap_lock);
2822   assert_lock_strong(freelistLock());
2823   if (PrintGCDetails && Verbose) {
2824     warning("Shrinking of CMS not yet implemented");
2825   }
2826   return;
2827 }
2828 
2829 
2830 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2831 // phases.
2832 class CMSPhaseAccounting: public StackObj {
2833  public:
2834   CMSPhaseAccounting(CMSCollector *collector,
2835                      const char *phase,
2836                      const GCId gc_id,
2837                      bool print_cr = true);
2838   ~CMSPhaseAccounting();
2839 
2840  private:
2841   CMSCollector *_collector;
2842   const char *_phase;
2843   elapsedTimer _wallclock;
2844   bool _print_cr;
2845   const GCId _gc_id;
2846 
2847  public:
2848   // Not MT-safe; so do not pass around these StackObj's
2849   // where they may be accessed by other threads.
2850   jlong wallclock_millis() {
2851     assert(_wallclock.is_active(), "Wall clock should not stop");
2852     _wallclock.stop();  // to record time
2853     jlong ret = _wallclock.milliseconds();
2854     _wallclock.start(); // restart
2855     return ret;
2856   }
2857 };
2858 
2859 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2860                                        const char *phase,
2861                                        const GCId gc_id,
2862                                        bool print_cr) :
2863   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2864 
2865   if (PrintCMSStatistics != 0) {
2866     _collector->resetYields();
2867   }
2868   if (PrintGCDetails) {
2869     gclog_or_tty->gclog_stamp(_gc_id);
2870     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2871       _collector->cmsGen()->short_name(), _phase);
2872   }
2873   _collector->resetTimer();
2874   _wallclock.start();
2875   _collector->startTimer();
2876 }
2877 
2878 CMSPhaseAccounting::~CMSPhaseAccounting() {
2879   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2880   _collector->stopTimer();
2881   _wallclock.stop();
2882   if (PrintGCDetails) {
2883     gclog_or_tty->gclog_stamp(_gc_id);
2884     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2885                  _collector->cmsGen()->short_name(),
2886                  _phase, _collector->timerValue(), _wallclock.seconds());
2887     if (_print_cr) {
2888       gclog_or_tty->cr();
2889     }
2890     if (PrintCMSStatistics != 0) {
2891       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2892                     _collector->yields());
2893     }
2894   }
2895 }
2896 
2897 // CMS work
2898 
2899 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2900 class CMSParMarkTask : public AbstractGangTask {
2901  protected:
2902   CMSCollector*     _collector;
2903   int               _n_workers;
2904   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
2905       AbstractGangTask(name),
2906       _collector(collector),
2907       _n_workers(n_workers) {}
2908   // Work method in support of parallel rescan ... of young gen spaces
2909   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2910                              ContiguousSpace* space,
2911                              HeapWord** chunk_array, size_t chunk_top);
2912   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2913 };
2914 
2915 // Parallel initial mark task
2916 class CMSParInitialMarkTask: public CMSParMarkTask {
2917  public:
2918   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
2919       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2920                      collector, n_workers) {}
2921   void work(uint worker_id);
2922 };
2923 
2924 // Checkpoint the roots into this generation from outside
2925 // this generation. [Note this initial checkpoint need only
2926 // be approximate -- we'll do a catch up phase subsequently.]
2927 void CMSCollector::checkpointRootsInitial() {
2928   assert(_collectorState == InitialMarking, "Wrong collector state");
2929   check_correct_thread_executing();
2930   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2931 
2932   save_heap_summary();
2933   report_heap_summary(GCWhen::BeforeGC);
2934 
2935   ReferenceProcessor* rp = ref_processor();
2936   assert(_restart_addr == NULL, "Control point invariant");
2937   {
2938     // acquire locks for subsequent manipulations
2939     MutexLockerEx x(bitMapLock(),
2940                     Mutex::_no_safepoint_check_flag);
2941     checkpointRootsInitialWork();
2942     // enable ("weak") refs discovery
2943     rp->enable_discovery();
2944     _collectorState = Marking;
2945   }
2946 }
2947 
2948 void CMSCollector::checkpointRootsInitialWork() {
2949   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2950   assert(_collectorState == InitialMarking, "just checking");
2951 
2952   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2953   // precede our marking with a collection of all
2954   // younger generations to keep floating garbage to a minimum.
2955   // XXX: we won't do this for now -- it's an optimization to be done later.
2956 
2957   // already have locks
2958   assert_lock_strong(bitMapLock());
2959   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2960 
2961   // Setup the verification and class unloading state for this
2962   // CMS collection cycle.
2963   setup_cms_unloading_and_verification_state();
2964 
2965   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2966     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2967 
2968   // Reset all the PLAB chunk arrays if necessary.
2969   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2970     reset_survivor_plab_arrays();
2971   }
2972 
2973   ResourceMark rm;
2974   HandleMark  hm;
2975 
2976   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2977   GenCollectedHeap* gch = GenCollectedHeap::heap();
2978 
2979   verify_work_stacks_empty();
2980   verify_overflow_empty();
2981 
2982   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2983   // Update the saved marks which may affect the root scans.
2984   gch->save_marks();
2985 
2986   // weak reference processing has not started yet.
2987   ref_processor()->set_enqueuing_is_done(false);
2988 
2989   // Need to remember all newly created CLDs,
2990   // so that we can guarantee that the remark finds them.
2991   ClassLoaderDataGraph::remember_new_clds(true);
2992 
2993   // Whenever a CLD is found, it will be claimed before proceeding to mark
2994   // the klasses. The claimed marks need to be cleared before marking starts.
2995   ClassLoaderDataGraph::clear_claimed_marks();
2996 
2997   if (CMSPrintEdenSurvivorChunks) {
2998     print_eden_and_survivor_chunk_arrays();
2999   }
3000 
3001   {
3002     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3003     if (CMSParallelInitialMarkEnabled) {
3004       // The parallel version.
3005       FlexibleWorkGang* workers = gch->workers();
3006       assert(workers != NULL, "Need parallel worker threads.");
3007       int n_workers = workers->active_workers();
3008       CMSParInitialMarkTask tsk(this, n_workers);
3009       gch->set_par_threads(n_workers);
3010       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3011       if (n_workers > 1) {
3012         StrongRootsScope srs;
3013         workers->run_task(&tsk);
3014       } else {
3015         StrongRootsScope srs;
3016         tsk.work(0);
3017       }
3018       gch->set_par_threads(0);
3019     } else {
3020       // The serial version.
3021       CLDToOopClosure cld_closure(&notOlder, true);
3022       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3023       gch->gen_process_roots(_cmsGen->level(),
3024                              true,   // younger gens are roots
3025                              true,   // activate StrongRootsScope
3026                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3027                              should_unload_classes(),
3028                              &notOlder,
3029                              NULL,
3030                              &cld_closure);
3031     }
3032   }
3033 
3034   // Clear mod-union table; it will be dirtied in the prologue of
3035   // CMS generation per each younger generation collection.
3036 
3037   assert(_modUnionTable.isAllClear(),
3038        "Was cleared in most recent final checkpoint phase"
3039        " or no bits are set in the gc_prologue before the start of the next "
3040        "subsequent marking phase.");
3041 
3042   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3043 
3044   // Save the end of the used_region of the constituent generations
3045   // to be used to limit the extent of sweep in each generation.
3046   save_sweep_limits();
3047   verify_overflow_empty();
3048 }
3049 
3050 bool CMSCollector::markFromRoots() {
3051   // we might be tempted to assert that:
3052   // assert(!SafepointSynchronize::is_at_safepoint(),
3053   //        "inconsistent argument?");
3054   // However that wouldn't be right, because it's possible that
3055   // a safepoint is indeed in progress as a younger generation
3056   // stop-the-world GC happens even as we mark in this generation.
3057   assert(_collectorState == Marking, "inconsistent state?");
3058   check_correct_thread_executing();
3059   verify_overflow_empty();
3060 
3061   // Weak ref discovery note: We may be discovering weak
3062   // refs in this generation concurrent (but interleaved) with
3063   // weak ref discovery by a younger generation collector.
3064 
3065   CMSTokenSyncWithLocks ts(true, bitMapLock());
3066   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3067   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3068   bool res = markFromRootsWork();
3069   if (res) {
3070     _collectorState = Precleaning;
3071   } else { // We failed and a foreground collection wants to take over
3072     assert(_foregroundGCIsActive, "internal state inconsistency");
3073     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3074     if (PrintGCDetails) {
3075       gclog_or_tty->print_cr("bailing out to foreground collection");
3076     }
3077   }
3078   verify_overflow_empty();
3079   return res;
3080 }
3081 
3082 bool CMSCollector::markFromRootsWork() {
3083   // iterate over marked bits in bit map, doing a full scan and mark
3084   // from these roots using the following algorithm:
3085   // . if oop is to the right of the current scan pointer,
3086   //   mark corresponding bit (we'll process it later)
3087   // . else (oop is to left of current scan pointer)
3088   //   push oop on marking stack
3089   // . drain the marking stack
3090 
3091   // Note that when we do a marking step we need to hold the
3092   // bit map lock -- recall that direct allocation (by mutators)
3093   // and promotion (by younger generation collectors) is also
3094   // marking the bit map. [the so-called allocate live policy.]
3095   // Because the implementation of bit map marking is not
3096   // robust wrt simultaneous marking of bits in the same word,
3097   // we need to make sure that there is no such interference
3098   // between concurrent such updates.
3099 
3100   // already have locks
3101   assert_lock_strong(bitMapLock());
3102 
3103   verify_work_stacks_empty();
3104   verify_overflow_empty();
3105   bool result = false;
3106   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3107     result = do_marking_mt();
3108   } else {
3109     result = do_marking_st();
3110   }
3111   return result;
3112 }
3113 
3114 // Forward decl
3115 class CMSConcMarkingTask;
3116 
3117 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3118   CMSCollector*       _collector;
3119   CMSConcMarkingTask* _task;
3120  public:
3121   virtual void yield();
3122 
3123   // "n_threads" is the number of threads to be terminated.
3124   // "queue_set" is a set of work queues of other threads.
3125   // "collector" is the CMS collector associated with this task terminator.
3126   // "yield" indicates whether we need the gang as a whole to yield.
3127   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3128     ParallelTaskTerminator(n_threads, queue_set),
3129     _collector(collector) { }
3130 
3131   void set_task(CMSConcMarkingTask* task) {
3132     _task = task;
3133   }
3134 };
3135 
3136 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3137   CMSConcMarkingTask* _task;
3138  public:
3139   bool should_exit_termination();
3140   void set_task(CMSConcMarkingTask* task) {
3141     _task = task;
3142   }
3143 };
3144 
3145 // MT Concurrent Marking Task
3146 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3147   CMSCollector* _collector;
3148   int           _n_workers;                  // requested/desired # workers
3149   bool          _result;
3150   CompactibleFreeListSpace*  _cms_space;
3151   char          _pad_front[64];   // padding to ...
3152   HeapWord*     _global_finger;   // ... avoid sharing cache line
3153   char          _pad_back[64];
3154   HeapWord*     _restart_addr;
3155 
3156   //  Exposed here for yielding support
3157   Mutex* const _bit_map_lock;
3158 
3159   // The per thread work queues, available here for stealing
3160   OopTaskQueueSet*  _task_queues;
3161 
3162   // Termination (and yielding) support
3163   CMSConcMarkingTerminator _term;
3164   CMSConcMarkingTerminatorTerminator _term_term;
3165 
3166  public:
3167   CMSConcMarkingTask(CMSCollector* collector,
3168                  CompactibleFreeListSpace* cms_space,
3169                  YieldingFlexibleWorkGang* workers,
3170                  OopTaskQueueSet* task_queues):
3171     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3172     _collector(collector),
3173     _cms_space(cms_space),
3174     _n_workers(0), _result(true),
3175     _task_queues(task_queues),
3176     _term(_n_workers, task_queues, _collector),
3177     _bit_map_lock(collector->bitMapLock())
3178   {
3179     _requested_size = _n_workers;
3180     _term.set_task(this);
3181     _term_term.set_task(this);
3182     _restart_addr = _global_finger = _cms_space->bottom();
3183   }
3184 
3185 
3186   OopTaskQueueSet* task_queues()  { return _task_queues; }
3187 
3188   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3189 
3190   HeapWord** global_finger_addr() { return &_global_finger; }
3191 
3192   CMSConcMarkingTerminator* terminator() { return &_term; }
3193 
3194   virtual void set_for_termination(int active_workers) {
3195     terminator()->reset_for_reuse(active_workers);
3196   }
3197 
3198   void work(uint worker_id);
3199   bool should_yield() {
3200     return    ConcurrentMarkSweepThread::should_yield()
3201            && !_collector->foregroundGCIsActive();
3202   }
3203 
3204   virtual void coordinator_yield();  // stuff done by coordinator
3205   bool result() { return _result; }
3206 
3207   void reset(HeapWord* ra) {
3208     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3209     _restart_addr = _global_finger = ra;
3210     _term.reset_for_reuse();
3211   }
3212 
3213   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3214                                            OopTaskQueue* work_q);
3215 
3216  private:
3217   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3218   void do_work_steal(int i);
3219   void bump_global_finger(HeapWord* f);
3220 };
3221 
3222 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3223   assert(_task != NULL, "Error");
3224   return _task->yielding();
3225   // Note that we do not need the disjunct || _task->should_yield() above
3226   // because we want terminating threads to yield only if the task
3227   // is already in the midst of yielding, which happens only after at least one
3228   // thread has yielded.
3229 }
3230 
3231 void CMSConcMarkingTerminator::yield() {
3232   if (_task->should_yield()) {
3233     _task->yield();
3234   } else {
3235     ParallelTaskTerminator::yield();
3236   }
3237 }
3238 
3239 ////////////////////////////////////////////////////////////////
3240 // Concurrent Marking Algorithm Sketch
3241 ////////////////////////////////////////////////////////////////
3242 // Until all tasks exhausted (both spaces):
3243 // -- claim next available chunk
3244 // -- bump global finger via CAS
3245 // -- find first object that starts in this chunk
3246 //    and start scanning bitmap from that position
3247 // -- scan marked objects for oops
3248 // -- CAS-mark target, and if successful:
3249 //    . if target oop is above global finger (volatile read)
3250 //      nothing to do
3251 //    . if target oop is in chunk and above local finger
3252 //        then nothing to do
3253 //    . else push on work-queue
3254 // -- Deal with possible overflow issues:
3255 //    . local work-queue overflow causes stuff to be pushed on
3256 //      global (common) overflow queue
3257 //    . always first empty local work queue
3258 //    . then get a batch of oops from global work queue if any
3259 //    . then do work stealing
3260 // -- When all tasks claimed (both spaces)
3261 //    and local work queue empty,
3262 //    then in a loop do:
3263 //    . check global overflow stack; steal a batch of oops and trace
3264 //    . try to steal from other threads oif GOS is empty
3265 //    . if neither is available, offer termination
3266 // -- Terminate and return result
3267 //
3268 void CMSConcMarkingTask::work(uint worker_id) {
3269   elapsedTimer _timer;
3270   ResourceMark rm;
3271   HandleMark hm;
3272 
3273   DEBUG_ONLY(_collector->verify_overflow_empty();)
3274 
3275   // Before we begin work, our work queue should be empty
3276   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3277   // Scan the bitmap covering _cms_space, tracing through grey objects.
3278   _timer.start();
3279   do_scan_and_mark(worker_id, _cms_space);
3280   _timer.stop();
3281   if (PrintCMSStatistics != 0) {
3282     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3283       worker_id, _timer.seconds());
3284       // XXX: need xxx/xxx type of notation, two timers
3285   }
3286 
3287   // ... do work stealing
3288   _timer.reset();
3289   _timer.start();
3290   do_work_steal(worker_id);
3291   _timer.stop();
3292   if (PrintCMSStatistics != 0) {
3293     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3294       worker_id, _timer.seconds());
3295       // XXX: need xxx/xxx type of notation, two timers
3296   }
3297   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3298   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3299   // Note that under the current task protocol, the
3300   // following assertion is true even of the spaces
3301   // expanded since the completion of the concurrent
3302   // marking. XXX This will likely change under a strict
3303   // ABORT semantics.
3304   // After perm removal the comparison was changed to
3305   // greater than or equal to from strictly greater than.
3306   // Before perm removal the highest address sweep would
3307   // have been at the end of perm gen but now is at the
3308   // end of the tenured gen.
3309   assert(_global_finger >=  _cms_space->end(),
3310          "All tasks have been completed");
3311   DEBUG_ONLY(_collector->verify_overflow_empty();)
3312 }
3313 
3314 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3315   HeapWord* read = _global_finger;
3316   HeapWord* cur  = read;
3317   while (f > read) {
3318     cur = read;
3319     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3320     if (cur == read) {
3321       // our cas succeeded
3322       assert(_global_finger >= f, "protocol consistency");
3323       break;
3324     }
3325   }
3326 }
3327 
3328 // This is really inefficient, and should be redone by
3329 // using (not yet available) block-read and -write interfaces to the
3330 // stack and the work_queue. XXX FIX ME !!!
3331 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3332                                                       OopTaskQueue* work_q) {
3333   // Fast lock-free check
3334   if (ovflw_stk->length() == 0) {
3335     return false;
3336   }
3337   assert(work_q->size() == 0, "Shouldn't steal");
3338   MutexLockerEx ml(ovflw_stk->par_lock(),
3339                    Mutex::_no_safepoint_check_flag);
3340   // Grab up to 1/4 the size of the work queue
3341   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3342                     (size_t)ParGCDesiredObjsFromOverflowList);
3343   num = MIN2(num, ovflw_stk->length());
3344   for (int i = (int) num; i > 0; i--) {
3345     oop cur = ovflw_stk->pop();
3346     assert(cur != NULL, "Counted wrong?");
3347     work_q->push(cur);
3348   }
3349   return num > 0;
3350 }
3351 
3352 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3353   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3354   int n_tasks = pst->n_tasks();
3355   // We allow that there may be no tasks to do here because
3356   // we are restarting after a stack overflow.
3357   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3358   uint nth_task = 0;
3359 
3360   HeapWord* aligned_start = sp->bottom();
3361   if (sp->used_region().contains(_restart_addr)) {
3362     // Align down to a card boundary for the start of 0th task
3363     // for this space.
3364     aligned_start =
3365       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3366                                  CardTableModRefBS::card_size);
3367   }
3368 
3369   size_t chunk_size = sp->marking_task_size();
3370   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3371     // Having claimed the nth task in this space,
3372     // compute the chunk that it corresponds to:
3373     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3374                                aligned_start + (nth_task+1)*chunk_size);
3375     // Try and bump the global finger via a CAS;
3376     // note that we need to do the global finger bump
3377     // _before_ taking the intersection below, because
3378     // the task corresponding to that region will be
3379     // deemed done even if the used_region() expands
3380     // because of allocation -- as it almost certainly will
3381     // during start-up while the threads yield in the
3382     // closure below.
3383     HeapWord* finger = span.end();
3384     bump_global_finger(finger);   // atomically
3385     // There are null tasks here corresponding to chunks
3386     // beyond the "top" address of the space.
3387     span = span.intersection(sp->used_region());
3388     if (!span.is_empty()) {  // Non-null task
3389       HeapWord* prev_obj;
3390       assert(!span.contains(_restart_addr) || nth_task == 0,
3391              "Inconsistency");
3392       if (nth_task == 0) {
3393         // For the 0th task, we'll not need to compute a block_start.
3394         if (span.contains(_restart_addr)) {
3395           // In the case of a restart because of stack overflow,
3396           // we might additionally skip a chunk prefix.
3397           prev_obj = _restart_addr;
3398         } else {
3399           prev_obj = span.start();
3400         }
3401       } else {
3402         // We want to skip the first object because
3403         // the protocol is to scan any object in its entirety
3404         // that _starts_ in this span; a fortiori, any
3405         // object starting in an earlier span is scanned
3406         // as part of an earlier claimed task.
3407         // Below we use the "careful" version of block_start
3408         // so we do not try to navigate uninitialized objects.
3409         prev_obj = sp->block_start_careful(span.start());
3410         // Below we use a variant of block_size that uses the
3411         // Printezis bits to avoid waiting for allocated
3412         // objects to become initialized/parsable.
3413         while (prev_obj < span.start()) {
3414           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3415           if (sz > 0) {
3416             prev_obj += sz;
3417           } else {
3418             // In this case we may end up doing a bit of redundant
3419             // scanning, but that appears unavoidable, short of
3420             // locking the free list locks; see bug 6324141.
3421             break;
3422           }
3423         }
3424       }
3425       if (prev_obj < span.end()) {
3426         MemRegion my_span = MemRegion(prev_obj, span.end());
3427         // Do the marking work within a non-empty span --
3428         // the last argument to the constructor indicates whether the
3429         // iteration should be incremental with periodic yields.
3430         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3431                                     &_collector->_markBitMap,
3432                                     work_queue(i),
3433                                     &_collector->_markStack);
3434         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3435       } // else nothing to do for this task
3436     }   // else nothing to do for this task
3437   }
3438   // We'd be tempted to assert here that since there are no
3439   // more tasks left to claim in this space, the global_finger
3440   // must exceed space->top() and a fortiori space->end(). However,
3441   // that would not quite be correct because the bumping of
3442   // global_finger occurs strictly after the claiming of a task,
3443   // so by the time we reach here the global finger may not yet
3444   // have been bumped up by the thread that claimed the last
3445   // task.
3446   pst->all_tasks_completed();
3447 }
3448 
3449 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3450  private:
3451   CMSCollector* _collector;
3452   CMSConcMarkingTask* _task;
3453   MemRegion     _span;
3454   CMSBitMap*    _bit_map;
3455   CMSMarkStack* _overflow_stack;
3456   OopTaskQueue* _work_queue;
3457  protected:
3458   DO_OOP_WORK_DEFN
3459  public:
3460   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3461                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3462     MetadataAwareOopClosure(collector->ref_processor()),
3463     _collector(collector),
3464     _task(task),
3465     _span(collector->_span),
3466     _work_queue(work_queue),
3467     _bit_map(bit_map),
3468     _overflow_stack(overflow_stack)
3469   { }
3470   virtual void do_oop(oop* p);
3471   virtual void do_oop(narrowOop* p);
3472 
3473   void trim_queue(size_t max);
3474   void handle_stack_overflow(HeapWord* lost);
3475   void do_yield_check() {
3476     if (_task->should_yield()) {
3477       _task->yield();
3478     }
3479   }
3480 };
3481 
3482 // Grey object scanning during work stealing phase --
3483 // the salient assumption here is that any references
3484 // that are in these stolen objects being scanned must
3485 // already have been initialized (else they would not have
3486 // been published), so we do not need to check for
3487 // uninitialized objects before pushing here.
3488 void Par_ConcMarkingClosure::do_oop(oop obj) {
3489   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3490   HeapWord* addr = (HeapWord*)obj;
3491   // Check if oop points into the CMS generation
3492   // and is not marked
3493   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3494     // a white object ...
3495     // If we manage to "claim" the object, by being the
3496     // first thread to mark it, then we push it on our
3497     // marking stack
3498     if (_bit_map->par_mark(addr)) {     // ... now grey
3499       // push on work queue (grey set)
3500       bool simulate_overflow = false;
3501       NOT_PRODUCT(
3502         if (CMSMarkStackOverflowALot &&
3503             _collector->simulate_overflow()) {
3504           // simulate a stack overflow
3505           simulate_overflow = true;
3506         }
3507       )
3508       if (simulate_overflow ||
3509           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3510         // stack overflow
3511         if (PrintCMSStatistics != 0) {
3512           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3513                                  SIZE_FORMAT, _overflow_stack->capacity());
3514         }
3515         // We cannot assert that the overflow stack is full because
3516         // it may have been emptied since.
3517         assert(simulate_overflow ||
3518                _work_queue->size() == _work_queue->max_elems(),
3519               "Else push should have succeeded");
3520         handle_stack_overflow(addr);
3521       }
3522     } // Else, some other thread got there first
3523     do_yield_check();
3524   }
3525 }
3526 
3527 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3528 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3529 
3530 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3531   while (_work_queue->size() > max) {
3532     oop new_oop;
3533     if (_work_queue->pop_local(new_oop)) {
3534       assert(new_oop->is_oop(), "Should be an oop");
3535       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3536       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3537       new_oop->oop_iterate(this);  // do_oop() above
3538       do_yield_check();
3539     }
3540   }
3541 }
3542 
3543 // Upon stack overflow, we discard (part of) the stack,
3544 // remembering the least address amongst those discarded
3545 // in CMSCollector's _restart_address.
3546 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3547   // We need to do this under a mutex to prevent other
3548   // workers from interfering with the work done below.
3549   MutexLockerEx ml(_overflow_stack->par_lock(),
3550                    Mutex::_no_safepoint_check_flag);
3551   // Remember the least grey address discarded
3552   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3553   _collector->lower_restart_addr(ra);
3554   _overflow_stack->reset();  // discard stack contents
3555   _overflow_stack->expand(); // expand the stack if possible
3556 }
3557 
3558 
3559 void CMSConcMarkingTask::do_work_steal(int i) {
3560   OopTaskQueue* work_q = work_queue(i);
3561   oop obj_to_scan;
3562   CMSBitMap* bm = &(_collector->_markBitMap);
3563   CMSMarkStack* ovflw = &(_collector->_markStack);
3564   int* seed = _collector->hash_seed(i);
3565   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3566   while (true) {
3567     cl.trim_queue(0);
3568     assert(work_q->size() == 0, "Should have been emptied above");
3569     if (get_work_from_overflow_stack(ovflw, work_q)) {
3570       // Can't assert below because the work obtained from the
3571       // overflow stack may already have been stolen from us.
3572       // assert(work_q->size() > 0, "Work from overflow stack");
3573       continue;
3574     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3575       assert(obj_to_scan->is_oop(), "Should be an oop");
3576       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3577       obj_to_scan->oop_iterate(&cl);
3578     } else if (terminator()->offer_termination(&_term_term)) {
3579       assert(work_q->size() == 0, "Impossible!");
3580       break;
3581     } else if (yielding() || should_yield()) {
3582       yield();
3583     }
3584   }
3585 }
3586 
3587 // This is run by the CMS (coordinator) thread.
3588 void CMSConcMarkingTask::coordinator_yield() {
3589   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3590          "CMS thread should hold CMS token");
3591   // First give up the locks, then yield, then re-lock
3592   // We should probably use a constructor/destructor idiom to
3593   // do this unlock/lock or modify the MutexUnlocker class to
3594   // serve our purpose. XXX
3595   assert_lock_strong(_bit_map_lock);
3596   _bit_map_lock->unlock();
3597   ConcurrentMarkSweepThread::desynchronize(true);
3598   _collector->stopTimer();
3599   if (PrintCMSStatistics != 0) {
3600     _collector->incrementYields();
3601   }
3602 
3603   // It is possible for whichever thread initiated the yield request
3604   // not to get a chance to wake up and take the bitmap lock between
3605   // this thread releasing it and reacquiring it. So, while the
3606   // should_yield() flag is on, let's sleep for a bit to give the
3607   // other thread a chance to wake up. The limit imposed on the number
3608   // of iterations is defensive, to avoid any unforseen circumstances
3609   // putting us into an infinite loop. Since it's always been this
3610   // (coordinator_yield()) method that was observed to cause the
3611   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3612   // which is by default non-zero. For the other seven methods that
3613   // also perform the yield operation, as are using a different
3614   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3615   // can enable the sleeping for those methods too, if necessary.
3616   // See 6442774.
3617   //
3618   // We really need to reconsider the synchronization between the GC
3619   // thread and the yield-requesting threads in the future and we
3620   // should really use wait/notify, which is the recommended
3621   // way of doing this type of interaction. Additionally, we should
3622   // consolidate the eight methods that do the yield operation and they
3623   // are almost identical into one for better maintainability and
3624   // readability. See 6445193.
3625   //
3626   // Tony 2006.06.29
3627   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3628                    ConcurrentMarkSweepThread::should_yield() &&
3629                    !CMSCollector::foregroundGCIsActive(); ++i) {
3630     os::sleep(Thread::current(), 1, false);
3631   }
3632 
3633   ConcurrentMarkSweepThread::synchronize(true);
3634   _bit_map_lock->lock_without_safepoint_check();
3635   _collector->startTimer();
3636 }
3637 
3638 bool CMSCollector::do_marking_mt() {
3639   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3640   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
3641                                        conc_workers()->total_workers(),
3642                                        conc_workers()->active_workers(),
3643                                        Threads::number_of_non_daemon_threads());
3644   conc_workers()->set_active_workers(num_workers);
3645 
3646   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3647 
3648   CMSConcMarkingTask tsk(this,
3649                          cms_space,
3650                          conc_workers(),
3651                          task_queues());
3652 
3653   // Since the actual number of workers we get may be different
3654   // from the number we requested above, do we need to do anything different
3655   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3656   // class?? XXX
3657   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3658 
3659   // Refs discovery is already non-atomic.
3660   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3661   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3662   conc_workers()->start_task(&tsk);
3663   while (tsk.yielded()) {
3664     tsk.coordinator_yield();
3665     conc_workers()->continue_task(&tsk);
3666   }
3667   // If the task was aborted, _restart_addr will be non-NULL
3668   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3669   while (_restart_addr != NULL) {
3670     // XXX For now we do not make use of ABORTED state and have not
3671     // yet implemented the right abort semantics (even in the original
3672     // single-threaded CMS case). That needs some more investigation
3673     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3674     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3675     // If _restart_addr is non-NULL, a marking stack overflow
3676     // occurred; we need to do a fresh marking iteration from the
3677     // indicated restart address.
3678     if (_foregroundGCIsActive) {
3679       // We may be running into repeated stack overflows, having
3680       // reached the limit of the stack size, while making very
3681       // slow forward progress. It may be best to bail out and
3682       // let the foreground collector do its job.
3683       // Clear _restart_addr, so that foreground GC
3684       // works from scratch. This avoids the headache of
3685       // a "rescan" which would otherwise be needed because
3686       // of the dirty mod union table & card table.
3687       _restart_addr = NULL;
3688       return false;
3689     }
3690     // Adjust the task to restart from _restart_addr
3691     tsk.reset(_restart_addr);
3692     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3693                   _restart_addr);
3694     _restart_addr = NULL;
3695     // Get the workers going again
3696     conc_workers()->start_task(&tsk);
3697     while (tsk.yielded()) {
3698       tsk.coordinator_yield();
3699       conc_workers()->continue_task(&tsk);
3700     }
3701   }
3702   assert(tsk.completed(), "Inconsistency");
3703   assert(tsk.result() == true, "Inconsistency");
3704   return true;
3705 }
3706 
3707 bool CMSCollector::do_marking_st() {
3708   ResourceMark rm;
3709   HandleMark   hm;
3710 
3711   // Temporarily make refs discovery single threaded (non-MT)
3712   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3713   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3714     &_markStack, CMSYield);
3715   // the last argument to iterate indicates whether the iteration
3716   // should be incremental with periodic yields.
3717   _markBitMap.iterate(&markFromRootsClosure);
3718   // If _restart_addr is non-NULL, a marking stack overflow
3719   // occurred; we need to do a fresh iteration from the
3720   // indicated restart address.
3721   while (_restart_addr != NULL) {
3722     if (_foregroundGCIsActive) {
3723       // We may be running into repeated stack overflows, having
3724       // reached the limit of the stack size, while making very
3725       // slow forward progress. It may be best to bail out and
3726       // let the foreground collector do its job.
3727       // Clear _restart_addr, so that foreground GC
3728       // works from scratch. This avoids the headache of
3729       // a "rescan" which would otherwise be needed because
3730       // of the dirty mod union table & card table.
3731       _restart_addr = NULL;
3732       return false;  // indicating failure to complete marking
3733     }
3734     // Deal with stack overflow:
3735     // we restart marking from _restart_addr
3736     HeapWord* ra = _restart_addr;
3737     markFromRootsClosure.reset(ra);
3738     _restart_addr = NULL;
3739     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3740   }
3741   return true;
3742 }
3743 
3744 void CMSCollector::preclean() {
3745   check_correct_thread_executing();
3746   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3747   verify_work_stacks_empty();
3748   verify_overflow_empty();
3749   _abort_preclean = false;
3750   if (CMSPrecleaningEnabled) {
3751     if (!CMSEdenChunksRecordAlways) {
3752       _eden_chunk_index = 0;
3753     }
3754     size_t used = get_eden_used();
3755     size_t capacity = get_eden_capacity();
3756     // Don't start sampling unless we will get sufficiently
3757     // many samples.
3758     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3759                 * CMSScheduleRemarkEdenPenetration)) {
3760       _start_sampling = true;
3761     } else {
3762       _start_sampling = false;
3763     }
3764     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3765     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3766     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3767   }
3768   CMSTokenSync x(true); // is cms thread
3769   if (CMSPrecleaningEnabled) {
3770     sample_eden();
3771     _collectorState = AbortablePreclean;
3772   } else {
3773     _collectorState = FinalMarking;
3774   }
3775   verify_work_stacks_empty();
3776   verify_overflow_empty();
3777 }
3778 
3779 // Try and schedule the remark such that young gen
3780 // occupancy is CMSScheduleRemarkEdenPenetration %.
3781 void CMSCollector::abortable_preclean() {
3782   check_correct_thread_executing();
3783   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3784   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3785 
3786   // If Eden's current occupancy is below this threshold,
3787   // immediately schedule the remark; else preclean
3788   // past the next scavenge in an effort to
3789   // schedule the pause as described above. By choosing
3790   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3791   // we will never do an actual abortable preclean cycle.
3792   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3793     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3794     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3795     // We need more smarts in the abortable preclean
3796     // loop below to deal with cases where allocation
3797     // in young gen is very very slow, and our precleaning
3798     // is running a losing race against a horde of
3799     // mutators intent on flooding us with CMS updates
3800     // (dirty cards).
3801     // One, admittedly dumb, strategy is to give up
3802     // after a certain number of abortable precleaning loops
3803     // or after a certain maximum time. We want to make
3804     // this smarter in the next iteration.
3805     // XXX FIX ME!!! YSR
3806     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3807     while (!(should_abort_preclean() ||
3808              ConcurrentMarkSweepThread::should_terminate())) {
3809       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3810       cumworkdone += workdone;
3811       loops++;
3812       // Voluntarily terminate abortable preclean phase if we have
3813       // been at it for too long.
3814       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3815           loops >= CMSMaxAbortablePrecleanLoops) {
3816         if (PrintGCDetails) {
3817           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3818         }
3819         break;
3820       }
3821       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3822         if (PrintGCDetails) {
3823           gclog_or_tty->print(" CMS: abort preclean due to time ");
3824         }
3825         break;
3826       }
3827       // If we are doing little work each iteration, we should
3828       // take a short break.
3829       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3830         // Sleep for some time, waiting for work to accumulate
3831         stopTimer();
3832         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3833         startTimer();
3834         waited++;
3835       }
3836     }
3837     if (PrintCMSStatistics > 0) {
3838       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3839                           loops, waited, cumworkdone);
3840     }
3841   }
3842   CMSTokenSync x(true); // is cms thread
3843   if (_collectorState != Idling) {
3844     assert(_collectorState == AbortablePreclean,
3845            "Spontaneous state transition?");
3846     _collectorState = FinalMarking;
3847   } // Else, a foreground collection completed this CMS cycle.
3848   return;
3849 }
3850 
3851 // Respond to an Eden sampling opportunity
3852 void CMSCollector::sample_eden() {
3853   // Make sure a young gc cannot sneak in between our
3854   // reading and recording of a sample.
3855   assert(Thread::current()->is_ConcurrentGC_thread(),
3856          "Only the cms thread may collect Eden samples");
3857   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3858          "Should collect samples while holding CMS token");
3859   if (!_start_sampling) {
3860     return;
3861   }
3862   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3863   // is populated by the young generation.
3864   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3865     if (_eden_chunk_index < _eden_chunk_capacity) {
3866       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3867       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3868              "Unexpected state of Eden");
3869       // We'd like to check that what we just sampled is an oop-start address;
3870       // however, we cannot do that here since the object may not yet have been
3871       // initialized. So we'll instead do the check when we _use_ this sample
3872       // later.
3873       if (_eden_chunk_index == 0 ||
3874           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3875                          _eden_chunk_array[_eden_chunk_index-1])
3876            >= CMSSamplingGrain)) {
3877         _eden_chunk_index++;  // commit sample
3878       }
3879     }
3880   }
3881   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3882     size_t used = get_eden_used();
3883     size_t capacity = get_eden_capacity();
3884     assert(used <= capacity, "Unexpected state of Eden");
3885     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3886       _abort_preclean = true;
3887     }
3888   }
3889 }
3890 
3891 
3892 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3893   assert(_collectorState == Precleaning ||
3894          _collectorState == AbortablePreclean, "incorrect state");
3895   ResourceMark rm;
3896   HandleMark   hm;
3897 
3898   // Precleaning is currently not MT but the reference processor
3899   // may be set for MT.  Disable it temporarily here.
3900   ReferenceProcessor* rp = ref_processor();
3901   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3902 
3903   // Do one pass of scrubbing the discovered reference lists
3904   // to remove any reference objects with strongly-reachable
3905   // referents.
3906   if (clean_refs) {
3907     CMSPrecleanRefsYieldClosure yield_cl(this);
3908     assert(rp->span().equals(_span), "Spans should be equal");
3909     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3910                                    &_markStack, true /* preclean */);
3911     CMSDrainMarkingStackClosure complete_trace(this,
3912                                    _span, &_markBitMap, &_markStack,
3913                                    &keep_alive, true /* preclean */);
3914 
3915     // We don't want this step to interfere with a young
3916     // collection because we don't want to take CPU
3917     // or memory bandwidth away from the young GC threads
3918     // (which may be as many as there are CPUs).
3919     // Note that we don't need to protect ourselves from
3920     // interference with mutators because they can't
3921     // manipulate the discovered reference lists nor affect
3922     // the computed reachability of the referents, the
3923     // only properties manipulated by the precleaning
3924     // of these reference lists.
3925     stopTimer();
3926     CMSTokenSyncWithLocks x(true /* is cms thread */,
3927                             bitMapLock());
3928     startTimer();
3929     sample_eden();
3930 
3931     // The following will yield to allow foreground
3932     // collection to proceed promptly. XXX YSR:
3933     // The code in this method may need further
3934     // tweaking for better performance and some restructuring
3935     // for cleaner interfaces.
3936     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3937     rp->preclean_discovered_references(
3938           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3939           gc_timer, _gc_tracer_cm->gc_id());
3940   }
3941 
3942   if (clean_survivor) {  // preclean the active survivor space(s)
3943     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3944                              &_markBitMap, &_modUnionTable,
3945                              &_markStack, true /* precleaning phase */);
3946     stopTimer();
3947     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3948                              bitMapLock());
3949     startTimer();
3950     unsigned int before_count =
3951       GenCollectedHeap::heap()->total_collections();
3952     SurvivorSpacePrecleanClosure
3953       sss_cl(this, _span, &_markBitMap, &_markStack,
3954              &pam_cl, before_count, CMSYield);
3955     _young_gen->from()->object_iterate_careful(&sss_cl);
3956     _young_gen->to()->object_iterate_careful(&sss_cl);
3957   }
3958   MarkRefsIntoAndScanClosure
3959     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3960              &_markStack, this, CMSYield,
3961              true /* precleaning phase */);
3962   // CAUTION: The following closure has persistent state that may need to
3963   // be reset upon a decrease in the sequence of addresses it
3964   // processes.
3965   ScanMarkedObjectsAgainCarefullyClosure
3966     smoac_cl(this, _span,
3967       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3968 
3969   // Preclean dirty cards in ModUnionTable and CardTable using
3970   // appropriate convergence criterion;
3971   // repeat CMSPrecleanIter times unless we find that
3972   // we are losing.
3973   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3974   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3975          "Bad convergence multiplier");
3976   assert(CMSPrecleanThreshold >= 100,
3977          "Unreasonably low CMSPrecleanThreshold");
3978 
3979   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3980   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3981        numIter < CMSPrecleanIter;
3982        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3983     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3984     if (Verbose && PrintGCDetails) {
3985       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3986     }
3987     // Either there are very few dirty cards, so re-mark
3988     // pause will be small anyway, or our pre-cleaning isn't
3989     // that much faster than the rate at which cards are being
3990     // dirtied, so we might as well stop and re-mark since
3991     // precleaning won't improve our re-mark time by much.
3992     if (curNumCards <= CMSPrecleanThreshold ||
3993         (numIter > 0 &&
3994          (curNumCards * CMSPrecleanDenominator >
3995          lastNumCards * CMSPrecleanNumerator))) {
3996       numIter++;
3997       cumNumCards += curNumCards;
3998       break;
3999     }
4000   }
4001 
4002   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4003 
4004   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4005   cumNumCards += curNumCards;
4006   if (PrintGCDetails && PrintCMSStatistics != 0) {
4007     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4008                   curNumCards, cumNumCards, numIter);
4009   }
4010   return cumNumCards;   // as a measure of useful work done
4011 }
4012 
4013 // PRECLEANING NOTES:
4014 // Precleaning involves:
4015 // . reading the bits of the modUnionTable and clearing the set bits.
4016 // . For the cards corresponding to the set bits, we scan the
4017 //   objects on those cards. This means we need the free_list_lock
4018 //   so that we can safely iterate over the CMS space when scanning
4019 //   for oops.
4020 // . When we scan the objects, we'll be both reading and setting
4021 //   marks in the marking bit map, so we'll need the marking bit map.
4022 // . For protecting _collector_state transitions, we take the CGC_lock.
4023 //   Note that any races in the reading of of card table entries by the
4024 //   CMS thread on the one hand and the clearing of those entries by the
4025 //   VM thread or the setting of those entries by the mutator threads on the
4026 //   other are quite benign. However, for efficiency it makes sense to keep
4027 //   the VM thread from racing with the CMS thread while the latter is
4028 //   dirty card info to the modUnionTable. We therefore also use the
4029 //   CGC_lock to protect the reading of the card table and the mod union
4030 //   table by the CM thread.
4031 // . We run concurrently with mutator updates, so scanning
4032 //   needs to be done carefully  -- we should not try to scan
4033 //   potentially uninitialized objects.
4034 //
4035 // Locking strategy: While holding the CGC_lock, we scan over and
4036 // reset a maximal dirty range of the mod union / card tables, then lock
4037 // the free_list_lock and bitmap lock to do a full marking, then
4038 // release these locks; and repeat the cycle. This allows for a
4039 // certain amount of fairness in the sharing of these locks between
4040 // the CMS collector on the one hand, and the VM thread and the
4041 // mutators on the other.
4042 
4043 // NOTE: preclean_mod_union_table() and preclean_card_table()
4044 // further below are largely identical; if you need to modify
4045 // one of these methods, please check the other method too.
4046 
4047 size_t CMSCollector::preclean_mod_union_table(
4048   ConcurrentMarkSweepGeneration* gen,
4049   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4050   verify_work_stacks_empty();
4051   verify_overflow_empty();
4052 
4053   // strategy: starting with the first card, accumulate contiguous
4054   // ranges of dirty cards; clear these cards, then scan the region
4055   // covered by these cards.
4056 
4057   // Since all of the MUT is committed ahead, we can just use
4058   // that, in case the generations expand while we are precleaning.
4059   // It might also be fine to just use the committed part of the
4060   // generation, but we might potentially miss cards when the
4061   // generation is rapidly expanding while we are in the midst
4062   // of precleaning.
4063   HeapWord* startAddr = gen->reserved().start();
4064   HeapWord* endAddr   = gen->reserved().end();
4065 
4066   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4067 
4068   size_t numDirtyCards, cumNumDirtyCards;
4069   HeapWord *nextAddr, *lastAddr;
4070   for (cumNumDirtyCards = numDirtyCards = 0,
4071        nextAddr = lastAddr = startAddr;
4072        nextAddr < endAddr;
4073        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4074 
4075     ResourceMark rm;
4076     HandleMark   hm;
4077 
4078     MemRegion dirtyRegion;
4079     {
4080       stopTimer();
4081       // Potential yield point
4082       CMSTokenSync ts(true);
4083       startTimer();
4084       sample_eden();
4085       // Get dirty region starting at nextOffset (inclusive),
4086       // simultaneously clearing it.
4087       dirtyRegion =
4088         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4089       assert(dirtyRegion.start() >= nextAddr,
4090              "returned region inconsistent?");
4091     }
4092     // Remember where the next search should begin.
4093     // The returned region (if non-empty) is a right open interval,
4094     // so lastOffset is obtained from the right end of that
4095     // interval.
4096     lastAddr = dirtyRegion.end();
4097     // Should do something more transparent and less hacky XXX
4098     numDirtyCards =
4099       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4100 
4101     // We'll scan the cards in the dirty region (with periodic
4102     // yields for foreground GC as needed).
4103     if (!dirtyRegion.is_empty()) {
4104       assert(numDirtyCards > 0, "consistency check");
4105       HeapWord* stop_point = NULL;
4106       stopTimer();
4107       // Potential yield point
4108       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4109                                bitMapLock());
4110       startTimer();
4111       {
4112         verify_work_stacks_empty();
4113         verify_overflow_empty();
4114         sample_eden();
4115         stop_point =
4116           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4117       }
4118       if (stop_point != NULL) {
4119         // The careful iteration stopped early either because it found an
4120         // uninitialized object, or because we were in the midst of an
4121         // "abortable preclean", which should now be aborted. Redirty
4122         // the bits corresponding to the partially-scanned or unscanned
4123         // cards. We'll either restart at the next block boundary or
4124         // abort the preclean.
4125         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4126                "Should only be AbortablePreclean.");
4127         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4128         if (should_abort_preclean()) {
4129           break; // out of preclean loop
4130         } else {
4131           // Compute the next address at which preclean should pick up;
4132           // might need bitMapLock in order to read P-bits.
4133           lastAddr = next_card_start_after_block(stop_point);
4134         }
4135       }
4136     } else {
4137       assert(lastAddr == endAddr, "consistency check");
4138       assert(numDirtyCards == 0, "consistency check");
4139       break;
4140     }
4141   }
4142   verify_work_stacks_empty();
4143   verify_overflow_empty();
4144   return cumNumDirtyCards;
4145 }
4146 
4147 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4148 // below are largely identical; if you need to modify
4149 // one of these methods, please check the other method too.
4150 
4151 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4152   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4153   // strategy: it's similar to precleamModUnionTable above, in that
4154   // we accumulate contiguous ranges of dirty cards, mark these cards
4155   // precleaned, then scan the region covered by these cards.
4156   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4157   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4158 
4159   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4160 
4161   size_t numDirtyCards, cumNumDirtyCards;
4162   HeapWord *lastAddr, *nextAddr;
4163 
4164   for (cumNumDirtyCards = numDirtyCards = 0,
4165        nextAddr = lastAddr = startAddr;
4166        nextAddr < endAddr;
4167        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4168 
4169     ResourceMark rm;
4170     HandleMark   hm;
4171 
4172     MemRegion dirtyRegion;
4173     {
4174       // See comments in "Precleaning notes" above on why we
4175       // do this locking. XXX Could the locking overheads be
4176       // too high when dirty cards are sparse? [I don't think so.]
4177       stopTimer();
4178       CMSTokenSync x(true); // is cms thread
4179       startTimer();
4180       sample_eden();
4181       // Get and clear dirty region from card table
4182       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4183                                     MemRegion(nextAddr, endAddr),
4184                                     true,
4185                                     CardTableModRefBS::precleaned_card_val());
4186 
4187       assert(dirtyRegion.start() >= nextAddr,
4188              "returned region inconsistent?");
4189     }
4190     lastAddr = dirtyRegion.end();
4191     numDirtyCards =
4192       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4193 
4194     if (!dirtyRegion.is_empty()) {
4195       stopTimer();
4196       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4197       startTimer();
4198       sample_eden();
4199       verify_work_stacks_empty();
4200       verify_overflow_empty();
4201       HeapWord* stop_point =
4202         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4203       if (stop_point != NULL) {
4204         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4205                "Should only be AbortablePreclean.");
4206         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4207         if (should_abort_preclean()) {
4208           break; // out of preclean loop
4209         } else {
4210           // Compute the next address at which preclean should pick up.
4211           lastAddr = next_card_start_after_block(stop_point);
4212         }
4213       }
4214     } else {
4215       break;
4216     }
4217   }
4218   verify_work_stacks_empty();
4219   verify_overflow_empty();
4220   return cumNumDirtyCards;
4221 }
4222 
4223 class PrecleanKlassClosure : public KlassClosure {
4224   KlassToOopClosure _cm_klass_closure;
4225  public:
4226   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4227   void do_klass(Klass* k) {
4228     if (k->has_accumulated_modified_oops()) {
4229       k->clear_accumulated_modified_oops();
4230 
4231       _cm_klass_closure.do_klass(k);
4232     }
4233   }
4234 };
4235 
4236 // The freelist lock is needed to prevent asserts, is it really needed?
4237 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4238 
4239   cl->set_freelistLock(freelistLock);
4240 
4241   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4242 
4243   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4244   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4245   PrecleanKlassClosure preclean_klass_closure(cl);
4246   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4247 
4248   verify_work_stacks_empty();
4249   verify_overflow_empty();
4250 }
4251 
4252 void CMSCollector::checkpointRootsFinal() {
4253   assert(_collectorState == FinalMarking, "incorrect state transition?");
4254   check_correct_thread_executing();
4255   // world is stopped at this checkpoint
4256   assert(SafepointSynchronize::is_at_safepoint(),
4257          "world should be stopped");
4258   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4259 
4260   verify_work_stacks_empty();
4261   verify_overflow_empty();
4262 
4263   if (PrintGCDetails) {
4264     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4265                         _young_gen->used() / K,
4266                         _young_gen->capacity() / K);
4267   }
4268   {
4269     if (CMSScavengeBeforeRemark) {
4270       GenCollectedHeap* gch = GenCollectedHeap::heap();
4271       // Temporarily set flag to false, GCH->do_collection will
4272       // expect it to be false and set to true
4273       FlagSetting fl(gch->_is_gc_active, false);
4274       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4275         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4276       int level = _cmsGen->level() - 1;
4277       if (level >= 0) {
4278         gch->do_collection(true,        // full (i.e. force, see below)
4279                            false,       // !clear_all_soft_refs
4280                            0,           // size
4281                            false,       // is_tlab
4282                            level        // max_level
4283                           );
4284       }
4285     }
4286     FreelistLocker x(this);
4287     MutexLockerEx y(bitMapLock(),
4288                     Mutex::_no_safepoint_check_flag);
4289     checkpointRootsFinalWork();
4290   }
4291   verify_work_stacks_empty();
4292   verify_overflow_empty();
4293 }
4294 
4295 void CMSCollector::checkpointRootsFinalWork() {
4296   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4297 
4298   assert(haveFreelistLocks(), "must have free list locks");
4299   assert_lock_strong(bitMapLock());
4300 
4301   ResourceMark rm;
4302   HandleMark   hm;
4303 
4304   GenCollectedHeap* gch = GenCollectedHeap::heap();
4305 
4306   if (should_unload_classes()) {
4307     CodeCache::gc_prologue();
4308   }
4309   assert(haveFreelistLocks(), "must have free list locks");
4310   assert_lock_strong(bitMapLock());
4311 
4312   // We might assume that we need not fill TLAB's when
4313   // CMSScavengeBeforeRemark is set, because we may have just done
4314   // a scavenge which would have filled all TLAB's -- and besides
4315   // Eden would be empty. This however may not always be the case --
4316   // for instance although we asked for a scavenge, it may not have
4317   // happened because of a JNI critical section. We probably need
4318   // a policy for deciding whether we can in that case wait until
4319   // the critical section releases and then do the remark following
4320   // the scavenge, and skip it here. In the absence of that policy,
4321   // or of an indication of whether the scavenge did indeed occur,
4322   // we cannot rely on TLAB's having been filled and must do
4323   // so here just in case a scavenge did not happen.
4324   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4325   // Update the saved marks which may affect the root scans.
4326   gch->save_marks();
4327 
4328   if (CMSPrintEdenSurvivorChunks) {
4329     print_eden_and_survivor_chunk_arrays();
4330   }
4331 
4332   {
4333     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4334 
4335     // Note on the role of the mod union table:
4336     // Since the marker in "markFromRoots" marks concurrently with
4337     // mutators, it is possible for some reachable objects not to have been
4338     // scanned. For instance, an only reference to an object A was
4339     // placed in object B after the marker scanned B. Unless B is rescanned,
4340     // A would be collected. Such updates to references in marked objects
4341     // are detected via the mod union table which is the set of all cards
4342     // dirtied since the first checkpoint in this GC cycle and prior to
4343     // the most recent young generation GC, minus those cleaned up by the
4344     // concurrent precleaning.
4345     if (CMSParallelRemarkEnabled) {
4346       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4347       do_remark_parallel();
4348     } else {
4349       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4350                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4351       do_remark_non_parallel();
4352     }
4353   }
4354   verify_work_stacks_empty();
4355   verify_overflow_empty();
4356 
4357   {
4358     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4359     refProcessingWork();
4360   }
4361   verify_work_stacks_empty();
4362   verify_overflow_empty();
4363 
4364   if (should_unload_classes()) {
4365     CodeCache::gc_epilogue();
4366   }
4367   JvmtiExport::gc_epilogue();
4368 
4369   // If we encountered any (marking stack / work queue) overflow
4370   // events during the current CMS cycle, take appropriate
4371   // remedial measures, where possible, so as to try and avoid
4372   // recurrence of that condition.
4373   assert(_markStack.isEmpty(), "No grey objects");
4374   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4375                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4376   if (ser_ovflw > 0) {
4377     if (PrintCMSStatistics != 0) {
4378       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4379         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4380         ", kac_preclean="SIZE_FORMAT")",
4381         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4382         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4383     }
4384     _markStack.expand();
4385     _ser_pmc_remark_ovflw = 0;
4386     _ser_pmc_preclean_ovflw = 0;
4387     _ser_kac_preclean_ovflw = 0;
4388     _ser_kac_ovflw = 0;
4389   }
4390   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4391     if (PrintCMSStatistics != 0) {
4392       gclog_or_tty->print_cr("Work queue overflow (benign) "
4393         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4394         _par_pmc_remark_ovflw, _par_kac_ovflw);
4395     }
4396     _par_pmc_remark_ovflw = 0;
4397     _par_kac_ovflw = 0;
4398   }
4399   if (PrintCMSStatistics != 0) {
4400      if (_markStack._hit_limit > 0) {
4401        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4402                               _markStack._hit_limit);
4403      }
4404      if (_markStack._failed_double > 0) {
4405        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4406                               " current capacity "SIZE_FORMAT,
4407                               _markStack._failed_double,
4408                               _markStack.capacity());
4409      }
4410   }
4411   _markStack._hit_limit = 0;
4412   _markStack._failed_double = 0;
4413 
4414   if ((VerifyAfterGC || VerifyDuringGC) &&
4415       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4416     verify_after_remark();
4417   }
4418 
4419   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4420 
4421   // Change under the freelistLocks.
4422   _collectorState = Sweeping;
4423   // Call isAllClear() under bitMapLock
4424   assert(_modUnionTable.isAllClear(),
4425       "Should be clear by end of the final marking");
4426   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4427       "Should be clear by end of the final marking");
4428 }
4429 
4430 void CMSParInitialMarkTask::work(uint worker_id) {
4431   elapsedTimer _timer;
4432   ResourceMark rm;
4433   HandleMark   hm;
4434 
4435   // ---------- scan from roots --------------
4436   _timer.start();
4437   GenCollectedHeap* gch = GenCollectedHeap::heap();
4438   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4439 
4440   // ---------- young gen roots --------------
4441   {
4442     work_on_young_gen_roots(worker_id, &par_mri_cl);
4443     _timer.stop();
4444     if (PrintCMSStatistics != 0) {
4445       gclog_or_tty->print_cr(
4446         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4447         worker_id, _timer.seconds());
4448     }
4449   }
4450 
4451   // ---------- remaining roots --------------
4452   _timer.reset();
4453   _timer.start();
4454 
4455   CLDToOopClosure cld_closure(&par_mri_cl, true);
4456 
4457   gch->gen_process_roots(_collector->_cmsGen->level(),
4458                          false,     // yg was scanned above
4459                          false,     // this is parallel code
4460                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4461                          _collector->should_unload_classes(),
4462                          &par_mri_cl,
4463                          NULL,
4464                          &cld_closure);
4465   assert(_collector->should_unload_classes()
4466          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4467          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4468   _timer.stop();
4469   if (PrintCMSStatistics != 0) {
4470     gclog_or_tty->print_cr(
4471       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4472       worker_id, _timer.seconds());
4473   }
4474 }
4475 
4476 // Parallel remark task
4477 class CMSParRemarkTask: public CMSParMarkTask {
4478   CompactibleFreeListSpace* _cms_space;
4479 
4480   // The per-thread work queues, available here for stealing.
4481   OopTaskQueueSet*       _task_queues;
4482   ParallelTaskTerminator _term;
4483 
4484  public:
4485   // A value of 0 passed to n_workers will cause the number of
4486   // workers to be taken from the active workers in the work gang.
4487   CMSParRemarkTask(CMSCollector* collector,
4488                    CompactibleFreeListSpace* cms_space,
4489                    int n_workers, FlexibleWorkGang* workers,
4490                    OopTaskQueueSet* task_queues):
4491     CMSParMarkTask("Rescan roots and grey objects in parallel",
4492                    collector, n_workers),
4493     _cms_space(cms_space),
4494     _task_queues(task_queues),
4495     _term(n_workers, task_queues) { }
4496 
4497   OopTaskQueueSet* task_queues() { return _task_queues; }
4498 
4499   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4500 
4501   ParallelTaskTerminator* terminator() { return &_term; }
4502   int n_workers() { return _n_workers; }
4503 
4504   void work(uint worker_id);
4505 
4506  private:
4507   // ... of  dirty cards in old space
4508   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4509                                   Par_MarkRefsIntoAndScanClosure* cl);
4510 
4511   // ... work stealing for the above
4512   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4513 };
4514 
4515 class RemarkKlassClosure : public KlassClosure {
4516   KlassToOopClosure _cm_klass_closure;
4517  public:
4518   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4519   void do_klass(Klass* k) {
4520     // Check if we have modified any oops in the Klass during the concurrent marking.
4521     if (k->has_accumulated_modified_oops()) {
4522       k->clear_accumulated_modified_oops();
4523 
4524       // We could have transfered the current modified marks to the accumulated marks,
4525       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4526     } else if (k->has_modified_oops()) {
4527       // Don't clear anything, this info is needed by the next young collection.
4528     } else {
4529       // No modified oops in the Klass.
4530       return;
4531     }
4532 
4533     // The klass has modified fields, need to scan the klass.
4534     _cm_klass_closure.do_klass(k);
4535   }
4536 };
4537 
4538 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4539   ParNewGeneration* young_gen = _collector->_young_gen;
4540   ContiguousSpace* eden_space = young_gen->eden();
4541   ContiguousSpace* from_space = young_gen->from();
4542   ContiguousSpace* to_space   = young_gen->to();
4543 
4544   HeapWord** eca = _collector->_eden_chunk_array;
4545   size_t     ect = _collector->_eden_chunk_index;
4546   HeapWord** sca = _collector->_survivor_chunk_array;
4547   size_t     sct = _collector->_survivor_chunk_index;
4548 
4549   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4550   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4551 
4552   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4553   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4554   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4555 }
4556 
4557 // work_queue(i) is passed to the closure
4558 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4559 // also is passed to do_dirty_card_rescan_tasks() and to
4560 // do_work_steal() to select the i-th task_queue.
4561 
4562 void CMSParRemarkTask::work(uint worker_id) {
4563   elapsedTimer _timer;
4564   ResourceMark rm;
4565   HandleMark   hm;
4566 
4567   // ---------- rescan from roots --------------
4568   _timer.start();
4569   GenCollectedHeap* gch = GenCollectedHeap::heap();
4570   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4571     _collector->_span, _collector->ref_processor(),
4572     &(_collector->_markBitMap),
4573     work_queue(worker_id));
4574 
4575   // Rescan young gen roots first since these are likely
4576   // coarsely partitioned and may, on that account, constitute
4577   // the critical path; thus, it's best to start off that
4578   // work first.
4579   // ---------- young gen roots --------------
4580   {
4581     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4582     _timer.stop();
4583     if (PrintCMSStatistics != 0) {
4584       gclog_or_tty->print_cr(
4585         "Finished young gen rescan work in %dth thread: %3.3f sec",
4586         worker_id, _timer.seconds());
4587     }
4588   }
4589 
4590   // ---------- remaining roots --------------
4591   _timer.reset();
4592   _timer.start();
4593   gch->gen_process_roots(_collector->_cmsGen->level(),
4594                          false,     // yg was scanned above
4595                          false,     // this is parallel code
4596                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4597                          _collector->should_unload_classes(),
4598                          &par_mrias_cl,
4599                          NULL,
4600                          NULL);     // The dirty klasses will be handled below
4601 
4602   assert(_collector->should_unload_classes()
4603          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4604          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4605   _timer.stop();
4606   if (PrintCMSStatistics != 0) {
4607     gclog_or_tty->print_cr(
4608       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4609       worker_id, _timer.seconds());
4610   }
4611 
4612   // ---------- unhandled CLD scanning ----------
4613   if (worker_id == 0) { // Single threaded at the moment.
4614     _timer.reset();
4615     _timer.start();
4616 
4617     // Scan all new class loader data objects and new dependencies that were
4618     // introduced during concurrent marking.
4619     ResourceMark rm;
4620     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4621     for (int i = 0; i < array->length(); i++) {
4622       par_mrias_cl.do_class_loader_data(array->at(i));
4623     }
4624 
4625     // We don't need to keep track of new CLDs anymore.
4626     ClassLoaderDataGraph::remember_new_clds(false);
4627 
4628     _timer.stop();
4629     if (PrintCMSStatistics != 0) {
4630       gclog_or_tty->print_cr(
4631           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4632           worker_id, _timer.seconds());
4633     }
4634   }
4635 
4636   // ---------- dirty klass scanning ----------
4637   if (worker_id == 0) { // Single threaded at the moment.
4638     _timer.reset();
4639     _timer.start();
4640 
4641     // Scan all classes that was dirtied during the concurrent marking phase.
4642     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4643     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4644 
4645     _timer.stop();
4646     if (PrintCMSStatistics != 0) {
4647       gclog_or_tty->print_cr(
4648           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4649           worker_id, _timer.seconds());
4650     }
4651   }
4652 
4653   // We might have added oops to ClassLoaderData::_handles during the
4654   // concurrent marking phase. These oops point to newly allocated objects
4655   // that are guaranteed to be kept alive. Either by the direct allocation
4656   // code, or when the young collector processes the roots. Hence,
4657   // we don't have to revisit the _handles block during the remark phase.
4658 
4659   // ---------- rescan dirty cards ------------
4660   _timer.reset();
4661   _timer.start();
4662 
4663   // Do the rescan tasks for each of the two spaces
4664   // (cms_space) in turn.
4665   // "worker_id" is passed to select the task_queue for "worker_id"
4666   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4667   _timer.stop();
4668   if (PrintCMSStatistics != 0) {
4669     gclog_or_tty->print_cr(
4670       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4671       worker_id, _timer.seconds());
4672   }
4673 
4674   // ---------- steal work from other threads ...
4675   // ---------- ... and drain overflow list.
4676   _timer.reset();
4677   _timer.start();
4678   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4679   _timer.stop();
4680   if (PrintCMSStatistics != 0) {
4681     gclog_or_tty->print_cr(
4682       "Finished work stealing in %dth thread: %3.3f sec",
4683       worker_id, _timer.seconds());
4684   }
4685 }
4686 
4687 // Note that parameter "i" is not used.
4688 void
4689 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4690   OopsInGenClosure* cl, ContiguousSpace* space,
4691   HeapWord** chunk_array, size_t chunk_top) {
4692   // Until all tasks completed:
4693   // . claim an unclaimed task
4694   // . compute region boundaries corresponding to task claimed
4695   //   using chunk_array
4696   // . par_oop_iterate(cl) over that region
4697 
4698   ResourceMark rm;
4699   HandleMark   hm;
4700 
4701   SequentialSubTasksDone* pst = space->par_seq_tasks();
4702 
4703   uint nth_task = 0;
4704   uint n_tasks  = pst->n_tasks();
4705 
4706   if (n_tasks > 0) {
4707     assert(pst->valid(), "Uninitialized use?");
4708     HeapWord *start, *end;
4709     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4710       // We claimed task # nth_task; compute its boundaries.
4711       if (chunk_top == 0) {  // no samples were taken
4712         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4713         start = space->bottom();
4714         end   = space->top();
4715       } else if (nth_task == 0) {
4716         start = space->bottom();
4717         end   = chunk_array[nth_task];
4718       } else if (nth_task < (uint)chunk_top) {
4719         assert(nth_task >= 1, "Control point invariant");
4720         start = chunk_array[nth_task - 1];
4721         end   = chunk_array[nth_task];
4722       } else {
4723         assert(nth_task == (uint)chunk_top, "Control point invariant");
4724         start = chunk_array[chunk_top - 1];
4725         end   = space->top();
4726       }
4727       MemRegion mr(start, end);
4728       // Verify that mr is in space
4729       assert(mr.is_empty() || space->used_region().contains(mr),
4730              "Should be in space");
4731       // Verify that "start" is an object boundary
4732       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4733              "Should be an oop");
4734       space->par_oop_iterate(mr, cl);
4735     }
4736     pst->all_tasks_completed();
4737   }
4738 }
4739 
4740 void
4741 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4742   CompactibleFreeListSpace* sp, int i,
4743   Par_MarkRefsIntoAndScanClosure* cl) {
4744   // Until all tasks completed:
4745   // . claim an unclaimed task
4746   // . compute region boundaries corresponding to task claimed
4747   // . transfer dirty bits ct->mut for that region
4748   // . apply rescanclosure to dirty mut bits for that region
4749 
4750   ResourceMark rm;
4751   HandleMark   hm;
4752 
4753   OopTaskQueue* work_q = work_queue(i);
4754   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4755   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4756   // CAUTION: This closure has state that persists across calls to
4757   // the work method dirty_range_iterate_clear() in that it has
4758   // embedded in it a (subtype of) UpwardsObjectClosure. The
4759   // use of that state in the embedded UpwardsObjectClosure instance
4760   // assumes that the cards are always iterated (even if in parallel
4761   // by several threads) in monotonically increasing order per each
4762   // thread. This is true of the implementation below which picks
4763   // card ranges (chunks) in monotonically increasing order globally
4764   // and, a-fortiori, in monotonically increasing order per thread
4765   // (the latter order being a subsequence of the former).
4766   // If the work code below is ever reorganized into a more chaotic
4767   // work-partitioning form than the current "sequential tasks"
4768   // paradigm, the use of that persistent state will have to be
4769   // revisited and modified appropriately. See also related
4770   // bug 4756801 work on which should examine this code to make
4771   // sure that the changes there do not run counter to the
4772   // assumptions made here and necessary for correctness and
4773   // efficiency. Note also that this code might yield inefficient
4774   // behavior in the case of very large objects that span one or
4775   // more work chunks. Such objects would potentially be scanned
4776   // several times redundantly. Work on 4756801 should try and
4777   // address that performance anomaly if at all possible. XXX
4778   MemRegion  full_span  = _collector->_span;
4779   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4780   MarkFromDirtyCardsClosure
4781     greyRescanClosure(_collector, full_span, // entire span of interest
4782                       sp, bm, work_q, cl);
4783 
4784   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4785   assert(pst->valid(), "Uninitialized use?");
4786   uint nth_task = 0;
4787   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4788   MemRegion span = sp->used_region();
4789   HeapWord* start_addr = span.start();
4790   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4791                                            alignment);
4792   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4793   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4794          start_addr, "Check alignment");
4795   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4796          chunk_size, "Check alignment");
4797 
4798   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4799     // Having claimed the nth_task, compute corresponding mem-region,
4800     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4801     // The alignment restriction ensures that we do not need any
4802     // synchronization with other gang-workers while setting or
4803     // clearing bits in thus chunk of the MUT.
4804     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4805                                     start_addr + (nth_task+1)*chunk_size);
4806     // The last chunk's end might be way beyond end of the
4807     // used region. In that case pull back appropriately.
4808     if (this_span.end() > end_addr) {
4809       this_span.set_end(end_addr);
4810       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4811     }
4812     // Iterate over the dirty cards covering this chunk, marking them
4813     // precleaned, and setting the corresponding bits in the mod union
4814     // table. Since we have been careful to partition at Card and MUT-word
4815     // boundaries no synchronization is needed between parallel threads.
4816     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4817                                                  &modUnionClosure);
4818 
4819     // Having transferred these marks into the modUnionTable,
4820     // rescan the marked objects on the dirty cards in the modUnionTable.
4821     // Even if this is at a synchronous collection, the initial marking
4822     // may have been done during an asynchronous collection so there
4823     // may be dirty bits in the mod-union table.
4824     _collector->_modUnionTable.dirty_range_iterate_clear(
4825                   this_span, &greyRescanClosure);
4826     _collector->_modUnionTable.verifyNoOneBitsInRange(
4827                                  this_span.start(),
4828                                  this_span.end());
4829   }
4830   pst->all_tasks_completed();  // declare that i am done
4831 }
4832 
4833 // . see if we can share work_queues with ParNew? XXX
4834 void
4835 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4836                                 int* seed) {
4837   OopTaskQueue* work_q = work_queue(i);
4838   NOT_PRODUCT(int num_steals = 0;)
4839   oop obj_to_scan;
4840   CMSBitMap* bm = &(_collector->_markBitMap);
4841 
4842   while (true) {
4843     // Completely finish any left over work from (an) earlier round(s)
4844     cl->trim_queue(0);
4845     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4846                                          (size_t)ParGCDesiredObjsFromOverflowList);
4847     // Now check if there's any work in the overflow list
4848     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4849     // only affects the number of attempts made to get work from the
4850     // overflow list and does not affect the number of workers.  Just
4851     // pass ParallelGCThreads so this behavior is unchanged.
4852     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4853                                                 work_q,
4854                                                 ParallelGCThreads)) {
4855       // found something in global overflow list;
4856       // not yet ready to go stealing work from others.
4857       // We'd like to assert(work_q->size() != 0, ...)
4858       // because we just took work from the overflow list,
4859       // but of course we can't since all of that could have
4860       // been already stolen from us.
4861       // "He giveth and He taketh away."
4862       continue;
4863     }
4864     // Verify that we have no work before we resort to stealing
4865     assert(work_q->size() == 0, "Have work, shouldn't steal");
4866     // Try to steal from other queues that have work
4867     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4868       NOT_PRODUCT(num_steals++;)
4869       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4870       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4871       // Do scanning work
4872       obj_to_scan->oop_iterate(cl);
4873       // Loop around, finish this work, and try to steal some more
4874     } else if (terminator()->offer_termination()) {
4875         break;  // nirvana from the infinite cycle
4876     }
4877   }
4878   NOT_PRODUCT(
4879     if (PrintCMSStatistics != 0) {
4880       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4881     }
4882   )
4883   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4884          "Else our work is not yet done");
4885 }
4886 
4887 // Record object boundaries in _eden_chunk_array by sampling the eden
4888 // top in the slow-path eden object allocation code path and record
4889 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4890 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4891 // sampling in sample_eden() that activates during the part of the
4892 // preclean phase.
4893 void CMSCollector::sample_eden_chunk() {
4894   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4895     if (_eden_chunk_lock->try_lock()) {
4896       // Record a sample. This is the critical section. The contents
4897       // of the _eden_chunk_array have to be non-decreasing in the
4898       // address order.
4899       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4900       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4901              "Unexpected state of Eden");
4902       if (_eden_chunk_index == 0 ||
4903           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4904            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4905                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4906         _eden_chunk_index++;  // commit sample
4907       }
4908       _eden_chunk_lock->unlock();
4909     }
4910   }
4911 }
4912 
4913 // Return a thread-local PLAB recording array, as appropriate.
4914 void* CMSCollector::get_data_recorder(int thr_num) {
4915   if (_survivor_plab_array != NULL &&
4916       (CMSPLABRecordAlways ||
4917        (_collectorState > Marking && _collectorState < FinalMarking))) {
4918     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4919     ChunkArray* ca = &_survivor_plab_array[thr_num];
4920     ca->reset();   // clear it so that fresh data is recorded
4921     return (void*) ca;
4922   } else {
4923     return NULL;
4924   }
4925 }
4926 
4927 // Reset all the thread-local PLAB recording arrays
4928 void CMSCollector::reset_survivor_plab_arrays() {
4929   for (uint i = 0; i < ParallelGCThreads; i++) {
4930     _survivor_plab_array[i].reset();
4931   }
4932 }
4933 
4934 // Merge the per-thread plab arrays into the global survivor chunk
4935 // array which will provide the partitioning of the survivor space
4936 // for CMS initial scan and rescan.
4937 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4938                                               int no_of_gc_threads) {
4939   assert(_survivor_plab_array  != NULL, "Error");
4940   assert(_survivor_chunk_array != NULL, "Error");
4941   assert(_collectorState == FinalMarking ||
4942          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4943   for (int j = 0; j < no_of_gc_threads; j++) {
4944     _cursor[j] = 0;
4945   }
4946   HeapWord* top = surv->top();
4947   size_t i;
4948   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4949     HeapWord* min_val = top;          // Higher than any PLAB address
4950     uint      min_tid = 0;            // position of min_val this round
4951     for (int j = 0; j < no_of_gc_threads; j++) {
4952       ChunkArray* cur_sca = &_survivor_plab_array[j];
4953       if (_cursor[j] == cur_sca->end()) {
4954         continue;
4955       }
4956       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4957       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4958       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4959       if (cur_val < min_val) {
4960         min_tid = j;
4961         min_val = cur_val;
4962       } else {
4963         assert(cur_val < top, "All recorded addresses should be less");
4964       }
4965     }
4966     // At this point min_val and min_tid are respectively
4967     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4968     // and the thread (j) that witnesses that address.
4969     // We record this address in the _survivor_chunk_array[i]
4970     // and increment _cursor[min_tid] prior to the next round i.
4971     if (min_val == top) {
4972       break;
4973     }
4974     _survivor_chunk_array[i] = min_val;
4975     _cursor[min_tid]++;
4976   }
4977   // We are all done; record the size of the _survivor_chunk_array
4978   _survivor_chunk_index = i; // exclusive: [0, i)
4979   if (PrintCMSStatistics > 0) {
4980     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4981   }
4982   // Verify that we used up all the recorded entries
4983   #ifdef ASSERT
4984     size_t total = 0;
4985     for (int j = 0; j < no_of_gc_threads; j++) {
4986       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4987       total += _cursor[j];
4988     }
4989     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4990     // Check that the merged array is in sorted order
4991     if (total > 0) {
4992       for (size_t i = 0; i < total - 1; i++) {
4993         if (PrintCMSStatistics > 0) {
4994           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4995                               i, p2i(_survivor_chunk_array[i]));
4996         }
4997         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4998                "Not sorted");
4999       }
5000     }
5001   #endif // ASSERT
5002 }
5003 
5004 // Set up the space's par_seq_tasks structure for work claiming
5005 // for parallel initial scan and rescan of young gen.
5006 // See ParRescanTask where this is currently used.
5007 void
5008 CMSCollector::
5009 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5010   assert(n_threads > 0, "Unexpected n_threads argument");
5011 
5012   // Eden space
5013   if (!_young_gen->eden()->is_empty()) {
5014     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5015     assert(!pst->valid(), "Clobbering existing data?");
5016     // Each valid entry in [0, _eden_chunk_index) represents a task.
5017     size_t n_tasks = _eden_chunk_index + 1;
5018     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5019     // Sets the condition for completion of the subtask (how many threads
5020     // need to finish in order to be done).
5021     pst->set_n_threads(n_threads);
5022     pst->set_n_tasks((int)n_tasks);
5023   }
5024 
5025   // Merge the survivor plab arrays into _survivor_chunk_array
5026   if (_survivor_plab_array != NULL) {
5027     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5028   } else {
5029     assert(_survivor_chunk_index == 0, "Error");
5030   }
5031 
5032   // To space
5033   {
5034     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5035     assert(!pst->valid(), "Clobbering existing data?");
5036     // Sets the condition for completion of the subtask (how many threads
5037     // need to finish in order to be done).
5038     pst->set_n_threads(n_threads);
5039     pst->set_n_tasks(1);
5040     assert(pst->valid(), "Error");
5041   }
5042 
5043   // From space
5044   {
5045     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5046     assert(!pst->valid(), "Clobbering existing data?");
5047     size_t n_tasks = _survivor_chunk_index + 1;
5048     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5049     // Sets the condition for completion of the subtask (how many threads
5050     // need to finish in order to be done).
5051     pst->set_n_threads(n_threads);
5052     pst->set_n_tasks((int)n_tasks);
5053     assert(pst->valid(), "Error");
5054   }
5055 }
5056 
5057 // Parallel version of remark
5058 void CMSCollector::do_remark_parallel() {
5059   GenCollectedHeap* gch = GenCollectedHeap::heap();
5060   FlexibleWorkGang* workers = gch->workers();
5061   assert(workers != NULL, "Need parallel worker threads.");
5062   // Choose to use the number of GC workers most recently set
5063   // into "active_workers".  If active_workers is not set, set it
5064   // to ParallelGCThreads.
5065   int n_workers = workers->active_workers();
5066   if (n_workers == 0) {
5067     assert(n_workers > 0, "Should have been set during scavenge");
5068     n_workers = ParallelGCThreads;
5069     workers->set_active_workers(n_workers);
5070   }
5071   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5072 
5073   CMSParRemarkTask tsk(this,
5074     cms_space,
5075     n_workers, workers, task_queues());
5076 
5077   // Set up for parallel process_roots work.
5078   gch->set_par_threads(n_workers);
5079   // We won't be iterating over the cards in the card table updating
5080   // the younger_gen cards, so we shouldn't call the following else
5081   // the verification code as well as subsequent younger_refs_iterate
5082   // code would get confused. XXX
5083   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5084 
5085   // The young gen rescan work will not be done as part of
5086   // process_roots (which currently doesn't know how to
5087   // parallelize such a scan), but rather will be broken up into
5088   // a set of parallel tasks (via the sampling that the [abortable]
5089   // preclean phase did of eden, plus the [two] tasks of
5090   // scanning the [two] survivor spaces. Further fine-grain
5091   // parallelization of the scanning of the survivor spaces
5092   // themselves, and of precleaning of the younger gen itself
5093   // is deferred to the future.
5094   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5095 
5096   // The dirty card rescan work is broken up into a "sequence"
5097   // of parallel tasks (per constituent space) that are dynamically
5098   // claimed by the parallel threads.
5099   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5100 
5101   // It turns out that even when we're using 1 thread, doing the work in a
5102   // separate thread causes wide variance in run times.  We can't help this
5103   // in the multi-threaded case, but we special-case n=1 here to get
5104   // repeatable measurements of the 1-thread overhead of the parallel code.
5105   if (n_workers > 1) {
5106     // Make refs discovery MT-safe, if it isn't already: it may not
5107     // necessarily be so, since it's possible that we are doing
5108     // ST marking.
5109     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5110     StrongRootsScope srs;
5111     workers->run_task(&tsk);
5112   } else {
5113     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5114     StrongRootsScope srs;
5115     tsk.work(0);
5116   }
5117 
5118   gch->set_par_threads(0);  // 0 ==> non-parallel.
5119   // restore, single-threaded for now, any preserved marks
5120   // as a result of work_q overflow
5121   restore_preserved_marks_if_any();
5122 }
5123 
5124 // Non-parallel version of remark
5125 void CMSCollector::do_remark_non_parallel() {
5126   ResourceMark rm;
5127   HandleMark   hm;
5128   GenCollectedHeap* gch = GenCollectedHeap::heap();
5129   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5130 
5131   MarkRefsIntoAndScanClosure
5132     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5133              &_markStack, this,
5134              false /* should_yield */, false /* not precleaning */);
5135   MarkFromDirtyCardsClosure
5136     markFromDirtyCardsClosure(this, _span,
5137                               NULL,  // space is set further below
5138                               &_markBitMap, &_markStack, &mrias_cl);
5139   {
5140     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5141     // Iterate over the dirty cards, setting the corresponding bits in the
5142     // mod union table.
5143     {
5144       ModUnionClosure modUnionClosure(&_modUnionTable);
5145       _ct->ct_bs()->dirty_card_iterate(
5146                       _cmsGen->used_region(),
5147                       &modUnionClosure);
5148     }
5149     // Having transferred these marks into the modUnionTable, we just need
5150     // to rescan the marked objects on the dirty cards in the modUnionTable.
5151     // The initial marking may have been done during an asynchronous
5152     // collection so there may be dirty bits in the mod-union table.
5153     const int alignment =
5154       CardTableModRefBS::card_size * BitsPerWord;
5155     {
5156       // ... First handle dirty cards in CMS gen
5157       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5158       MemRegion ur = _cmsGen->used_region();
5159       HeapWord* lb = ur.start();
5160       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5161       MemRegion cms_span(lb, ub);
5162       _modUnionTable.dirty_range_iterate_clear(cms_span,
5163                                                &markFromDirtyCardsClosure);
5164       verify_work_stacks_empty();
5165       if (PrintCMSStatistics != 0) {
5166         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5167           markFromDirtyCardsClosure.num_dirty_cards());
5168       }
5169     }
5170   }
5171   if (VerifyDuringGC &&
5172       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5173     HandleMark hm;  // Discard invalid handles created during verification
5174     Universe::verify();
5175   }
5176   {
5177     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5178 
5179     verify_work_stacks_empty();
5180 
5181     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5182     StrongRootsScope srs;
5183 
5184     gch->gen_process_roots(_cmsGen->level(),
5185                            true,  // younger gens as roots
5186                            false, // use the local StrongRootsScope
5187                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5188                            should_unload_classes(),
5189                            &mrias_cl,
5190                            NULL,
5191                            NULL); // The dirty klasses will be handled below
5192 
5193     assert(should_unload_classes()
5194            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5195            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5196   }
5197 
5198   {
5199     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5200 
5201     verify_work_stacks_empty();
5202 
5203     // Scan all class loader data objects that might have been introduced
5204     // during concurrent marking.
5205     ResourceMark rm;
5206     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5207     for (int i = 0; i < array->length(); i++) {
5208       mrias_cl.do_class_loader_data(array->at(i));
5209     }
5210 
5211     // We don't need to keep track of new CLDs anymore.
5212     ClassLoaderDataGraph::remember_new_clds(false);
5213 
5214     verify_work_stacks_empty();
5215   }
5216 
5217   {
5218     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5219 
5220     verify_work_stacks_empty();
5221 
5222     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5223     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5224 
5225     verify_work_stacks_empty();
5226   }
5227 
5228   // We might have added oops to ClassLoaderData::_handles during the
5229   // concurrent marking phase. These oops point to newly allocated objects
5230   // that are guaranteed to be kept alive. Either by the direct allocation
5231   // code, or when the young collector processes the roots. Hence,
5232   // we don't have to revisit the _handles block during the remark phase.
5233 
5234   verify_work_stacks_empty();
5235   // Restore evacuated mark words, if any, used for overflow list links
5236   if (!CMSOverflowEarlyRestoration) {
5237     restore_preserved_marks_if_any();
5238   }
5239   verify_overflow_empty();
5240 }
5241 
5242 ////////////////////////////////////////////////////////
5243 // Parallel Reference Processing Task Proxy Class
5244 ////////////////////////////////////////////////////////
5245 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5246   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5247   CMSCollector*          _collector;
5248   CMSBitMap*             _mark_bit_map;
5249   const MemRegion        _span;
5250   ProcessTask&           _task;
5251 
5252 public:
5253   CMSRefProcTaskProxy(ProcessTask&     task,
5254                       CMSCollector*    collector,
5255                       const MemRegion& span,
5256                       CMSBitMap*       mark_bit_map,
5257                       AbstractWorkGang* workers,
5258                       OopTaskQueueSet* task_queues):
5259     // XXX Should superclass AGTWOQ also know about AWG since it knows
5260     // about the task_queues used by the AWG? Then it could initialize
5261     // the terminator() object. See 6984287. The set_for_termination()
5262     // below is a temporary band-aid for the regression in 6984287.
5263     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5264       task_queues),
5265     _task(task),
5266     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5267   {
5268     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5269            "Inconsistency in _span");
5270     set_for_termination(workers->active_workers());
5271   }
5272 
5273   OopTaskQueueSet* task_queues() { return queues(); }
5274 
5275   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5276 
5277   void do_work_steal(int i,
5278                      CMSParDrainMarkingStackClosure* drain,
5279                      CMSParKeepAliveClosure* keep_alive,
5280                      int* seed);
5281 
5282   virtual void work(uint worker_id);
5283 };
5284 
5285 void CMSRefProcTaskProxy::work(uint worker_id) {
5286   ResourceMark rm;
5287   HandleMark hm;
5288   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5289   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5290                                         _mark_bit_map,
5291                                         work_queue(worker_id));
5292   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5293                                                  _mark_bit_map,
5294                                                  work_queue(worker_id));
5295   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5296   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5297   if (_task.marks_oops_alive()) {
5298     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5299                   _collector->hash_seed(worker_id));
5300   }
5301   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5302   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5303 }
5304 
5305 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5306   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5307   EnqueueTask& _task;
5308 
5309 public:
5310   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5311     : AbstractGangTask("Enqueue reference objects in parallel"),
5312       _task(task)
5313   { }
5314 
5315   virtual void work(uint worker_id)
5316   {
5317     _task.work(worker_id);
5318   }
5319 };
5320 
5321 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5322   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5323    _span(span),
5324    _bit_map(bit_map),
5325    _work_queue(work_queue),
5326    _mark_and_push(collector, span, bit_map, work_queue),
5327    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5328                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5329 { }
5330 
5331 // . see if we can share work_queues with ParNew? XXX
5332 void CMSRefProcTaskProxy::do_work_steal(int i,
5333   CMSParDrainMarkingStackClosure* drain,
5334   CMSParKeepAliveClosure* keep_alive,
5335   int* seed) {
5336   OopTaskQueue* work_q = work_queue(i);
5337   NOT_PRODUCT(int num_steals = 0;)
5338   oop obj_to_scan;
5339 
5340   while (true) {
5341     // Completely finish any left over work from (an) earlier round(s)
5342     drain->trim_queue(0);
5343     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5344                                          (size_t)ParGCDesiredObjsFromOverflowList);
5345     // Now check if there's any work in the overflow list
5346     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5347     // only affects the number of attempts made to get work from the
5348     // overflow list and does not affect the number of workers.  Just
5349     // pass ParallelGCThreads so this behavior is unchanged.
5350     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5351                                                 work_q,
5352                                                 ParallelGCThreads)) {
5353       // Found something in global overflow list;
5354       // not yet ready to go stealing work from others.
5355       // We'd like to assert(work_q->size() != 0, ...)
5356       // because we just took work from the overflow list,
5357       // but of course we can't, since all of that might have
5358       // been already stolen from us.
5359       continue;
5360     }
5361     // Verify that we have no work before we resort to stealing
5362     assert(work_q->size() == 0, "Have work, shouldn't steal");
5363     // Try to steal from other queues that have work
5364     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5365       NOT_PRODUCT(num_steals++;)
5366       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5367       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5368       // Do scanning work
5369       obj_to_scan->oop_iterate(keep_alive);
5370       // Loop around, finish this work, and try to steal some more
5371     } else if (terminator()->offer_termination()) {
5372       break;  // nirvana from the infinite cycle
5373     }
5374   }
5375   NOT_PRODUCT(
5376     if (PrintCMSStatistics != 0) {
5377       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5378     }
5379   )
5380 }
5381 
5382 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5383 {
5384   GenCollectedHeap* gch = GenCollectedHeap::heap();
5385   FlexibleWorkGang* workers = gch->workers();
5386   assert(workers != NULL, "Need parallel worker threads.");
5387   CMSRefProcTaskProxy rp_task(task, &_collector,
5388                               _collector.ref_processor()->span(),
5389                               _collector.markBitMap(),
5390                               workers, _collector.task_queues());
5391   workers->run_task(&rp_task);
5392 }
5393 
5394 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5395 {
5396 
5397   GenCollectedHeap* gch = GenCollectedHeap::heap();
5398   FlexibleWorkGang* workers = gch->workers();
5399   assert(workers != NULL, "Need parallel worker threads.");
5400   CMSRefEnqueueTaskProxy enq_task(task);
5401   workers->run_task(&enq_task);
5402 }
5403 
5404 void CMSCollector::refProcessingWork() {
5405   ResourceMark rm;
5406   HandleMark   hm;
5407 
5408   ReferenceProcessor* rp = ref_processor();
5409   assert(rp->span().equals(_span), "Spans should be equal");
5410   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5411   // Process weak references.
5412   rp->setup_policy(false);
5413   verify_work_stacks_empty();
5414 
5415   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5416                                           &_markStack, false /* !preclean */);
5417   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5418                                 _span, &_markBitMap, &_markStack,
5419                                 &cmsKeepAliveClosure, false /* !preclean */);
5420   {
5421     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5422 
5423     ReferenceProcessorStats stats;
5424     if (rp->processing_is_mt()) {
5425       // Set the degree of MT here.  If the discovery is done MT, there
5426       // may have been a different number of threads doing the discovery
5427       // and a different number of discovered lists may have Ref objects.
5428       // That is OK as long as the Reference lists are balanced (see
5429       // balance_all_queues() and balance_queues()).
5430       GenCollectedHeap* gch = GenCollectedHeap::heap();
5431       int active_workers = ParallelGCThreads;
5432       FlexibleWorkGang* workers = gch->workers();
5433       if (workers != NULL) {
5434         active_workers = workers->active_workers();
5435         // The expectation is that active_workers will have already
5436         // been set to a reasonable value.  If it has not been set,
5437         // investigate.
5438         assert(active_workers > 0, "Should have been set during scavenge");
5439       }
5440       rp->set_active_mt_degree(active_workers);
5441       CMSRefProcTaskExecutor task_executor(*this);
5442       stats = rp->process_discovered_references(&_is_alive_closure,
5443                                         &cmsKeepAliveClosure,
5444                                         &cmsDrainMarkingStackClosure,
5445                                         &task_executor,
5446                                         _gc_timer_cm,
5447                                         _gc_tracer_cm->gc_id());
5448     } else {
5449       stats = rp->process_discovered_references(&_is_alive_closure,
5450                                         &cmsKeepAliveClosure,
5451                                         &cmsDrainMarkingStackClosure,
5452                                         NULL,
5453                                         _gc_timer_cm,
5454                                         _gc_tracer_cm->gc_id());
5455     }
5456     _gc_tracer_cm->report_gc_reference_stats(stats);
5457 
5458   }
5459 
5460   // This is the point where the entire marking should have completed.
5461   verify_work_stacks_empty();
5462 
5463   if (should_unload_classes()) {
5464     {
5465       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5466 
5467       // Unload classes and purge the SystemDictionary.
5468       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5469 
5470       // Unload nmethods.
5471       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5472 
5473       // Prune dead klasses from subklass/sibling/implementor lists.
5474       Klass::clean_weak_klass_links(&_is_alive_closure);
5475     }
5476 
5477     {
5478       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5479       // Clean up unreferenced symbols in symbol table.
5480       SymbolTable::unlink();
5481     }
5482 
5483     {
5484       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5485       // Delete entries for dead interned strings.
5486       StringTable::unlink(&_is_alive_closure);
5487     }
5488   }
5489 
5490 
5491   // Restore any preserved marks as a result of mark stack or
5492   // work queue overflow
5493   restore_preserved_marks_if_any();  // done single-threaded for now
5494 
5495   rp->set_enqueuing_is_done(true);
5496   if (rp->processing_is_mt()) {
5497     rp->balance_all_queues();
5498     CMSRefProcTaskExecutor task_executor(*this);
5499     rp->enqueue_discovered_references(&task_executor);
5500   } else {
5501     rp->enqueue_discovered_references(NULL);
5502   }
5503   rp->verify_no_references_recorded();
5504   assert(!rp->discovery_enabled(), "should have been disabled");
5505 }
5506 
5507 #ifndef PRODUCT
5508 void CMSCollector::check_correct_thread_executing() {
5509   Thread* t = Thread::current();
5510   // Only the VM thread or the CMS thread should be here.
5511   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5512          "Unexpected thread type");
5513   // If this is the vm thread, the foreground process
5514   // should not be waiting.  Note that _foregroundGCIsActive is
5515   // true while the foreground collector is waiting.
5516   if (_foregroundGCShouldWait) {
5517     // We cannot be the VM thread
5518     assert(t->is_ConcurrentGC_thread(),
5519            "Should be CMS thread");
5520   } else {
5521     // We can be the CMS thread only if we are in a stop-world
5522     // phase of CMS collection.
5523     if (t->is_ConcurrentGC_thread()) {
5524       assert(_collectorState == InitialMarking ||
5525              _collectorState == FinalMarking,
5526              "Should be a stop-world phase");
5527       // The CMS thread should be holding the CMS_token.
5528       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5529              "Potential interference with concurrently "
5530              "executing VM thread");
5531     }
5532   }
5533 }
5534 #endif
5535 
5536 void CMSCollector::sweep() {
5537   assert(_collectorState == Sweeping, "just checking");
5538   check_correct_thread_executing();
5539   verify_work_stacks_empty();
5540   verify_overflow_empty();
5541   increment_sweep_count();
5542   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5543 
5544   _inter_sweep_timer.stop();
5545   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5546 
5547   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5548   _intra_sweep_timer.reset();
5549   _intra_sweep_timer.start();
5550   {
5551     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5552     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5553     // First sweep the old gen
5554     {
5555       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5556                                bitMapLock());
5557       sweepWork(_cmsGen);
5558     }
5559 
5560     // Update Universe::_heap_*_at_gc figures.
5561     // We need all the free list locks to make the abstract state
5562     // transition from Sweeping to Resetting. See detailed note
5563     // further below.
5564     {
5565       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5566       // Update heap occupancy information which is used as
5567       // input to soft ref clearing policy at the next gc.
5568       Universe::update_heap_info_at_gc();
5569       _collectorState = Resizing;
5570     }
5571   }
5572   verify_work_stacks_empty();
5573   verify_overflow_empty();
5574 
5575   if (should_unload_classes()) {
5576     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5577     // requires that the virtual spaces are stable and not deleted.
5578     ClassLoaderDataGraph::set_should_purge(true);
5579   }
5580 
5581   _intra_sweep_timer.stop();
5582   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5583 
5584   _inter_sweep_timer.reset();
5585   _inter_sweep_timer.start();
5586 
5587   // We need to use a monotonically non-decreasing time in ms
5588   // or we will see time-warp warnings and os::javaTimeMillis()
5589   // does not guarantee monotonicity.
5590   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5591   update_time_of_last_gc(now);
5592 
5593   // NOTE on abstract state transitions:
5594   // Mutators allocate-live and/or mark the mod-union table dirty
5595   // based on the state of the collection.  The former is done in
5596   // the interval [Marking, Sweeping] and the latter in the interval
5597   // [Marking, Sweeping).  Thus the transitions into the Marking state
5598   // and out of the Sweeping state must be synchronously visible
5599   // globally to the mutators.
5600   // The transition into the Marking state happens with the world
5601   // stopped so the mutators will globally see it.  Sweeping is
5602   // done asynchronously by the background collector so the transition
5603   // from the Sweeping state to the Resizing state must be done
5604   // under the freelistLock (as is the check for whether to
5605   // allocate-live and whether to dirty the mod-union table).
5606   assert(_collectorState == Resizing, "Change of collector state to"
5607     " Resizing must be done under the freelistLocks (plural)");
5608 
5609   // Now that sweeping has been completed, we clear
5610   // the incremental_collection_failed flag,
5611   // thus inviting a younger gen collection to promote into
5612   // this generation. If such a promotion may still fail,
5613   // the flag will be set again when a young collection is
5614   // attempted.
5615   GenCollectedHeap* gch = GenCollectedHeap::heap();
5616   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5617   gch->update_full_collections_completed(_collection_count_start);
5618 }
5619 
5620 // FIX ME!!! Looks like this belongs in CFLSpace, with
5621 // CMSGen merely delegating to it.
5622 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5623   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5624   HeapWord*  minAddr        = _cmsSpace->bottom();
5625   HeapWord*  largestAddr    =
5626     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5627   if (largestAddr == NULL) {
5628     // The dictionary appears to be empty.  In this case
5629     // try to coalesce at the end of the heap.
5630     largestAddr = _cmsSpace->end();
5631   }
5632   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5633   size_t nearLargestOffset =
5634     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5635   if (PrintFLSStatistics != 0) {
5636     gclog_or_tty->print_cr(
5637       "CMS: Large Block: " PTR_FORMAT ";"
5638       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5639       p2i(largestAddr),
5640       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5641   }
5642   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5643 }
5644 
5645 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5646   return addr >= _cmsSpace->nearLargestChunk();
5647 }
5648 
5649 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5650   return _cmsSpace->find_chunk_at_end();
5651 }
5652 
5653 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5654                                                     bool full) {
5655   // The next lower level has been collected.  Gather any statistics
5656   // that are of interest at this point.
5657   if (!full && (current_level + 1) == level()) {
5658     // Gather statistics on the young generation collection.
5659     collector()->stats().record_gc0_end(used());
5660   }
5661 }
5662 
5663 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5664   // We iterate over the space(s) underlying this generation,
5665   // checking the mark bit map to see if the bits corresponding
5666   // to specific blocks are marked or not. Blocks that are
5667   // marked are live and are not swept up. All remaining blocks
5668   // are swept up, with coalescing on-the-fly as we sweep up
5669   // contiguous free and/or garbage blocks:
5670   // We need to ensure that the sweeper synchronizes with allocators
5671   // and stop-the-world collectors. In particular, the following
5672   // locks are used:
5673   // . CMS token: if this is held, a stop the world collection cannot occur
5674   // . freelistLock: if this is held no allocation can occur from this
5675   //                 generation by another thread
5676   // . bitMapLock: if this is held, no other thread can access or update
5677   //
5678 
5679   // Note that we need to hold the freelistLock if we use
5680   // block iterate below; else the iterator might go awry if
5681   // a mutator (or promotion) causes block contents to change
5682   // (for instance if the allocator divvies up a block).
5683   // If we hold the free list lock, for all practical purposes
5684   // young generation GC's can't occur (they'll usually need to
5685   // promote), so we might as well prevent all young generation
5686   // GC's while we do a sweeping step. For the same reason, we might
5687   // as well take the bit map lock for the entire duration
5688 
5689   // check that we hold the requisite locks
5690   assert(have_cms_token(), "Should hold cms token");
5691   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5692   assert_lock_strong(gen->freelistLock());
5693   assert_lock_strong(bitMapLock());
5694 
5695   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5696   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5697   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5698                                       _inter_sweep_estimate.padded_average(),
5699                                       _intra_sweep_estimate.padded_average());
5700   gen->setNearLargestChunk();
5701 
5702   {
5703     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5704     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5705     // We need to free-up/coalesce garbage/blocks from a
5706     // co-terminal free run. This is done in the SweepClosure
5707     // destructor; so, do not remove this scope, else the
5708     // end-of-sweep-census below will be off by a little bit.
5709   }
5710   gen->cmsSpace()->sweep_completed();
5711   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5712   if (should_unload_classes()) {                // unloaded classes this cycle,
5713     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5714   } else {                                      // did not unload classes,
5715     _concurrent_cycles_since_last_unload++;     // ... increment count
5716   }
5717 }
5718 
5719 // Reset CMS data structures (for now just the marking bit map)
5720 // preparatory for the next cycle.
5721 void CMSCollector::reset(bool concurrent) {
5722   if (concurrent) {
5723     CMSTokenSyncWithLocks ts(true, bitMapLock());
5724 
5725     // If the state is not "Resetting", the foreground  thread
5726     // has done a collection and the resetting.
5727     if (_collectorState != Resetting) {
5728       assert(_collectorState == Idling, "The state should only change"
5729         " because the foreground collector has finished the collection");
5730       return;
5731     }
5732 
5733     // Clear the mark bitmap (no grey objects to start with)
5734     // for the next cycle.
5735     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5736     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5737 
5738     HeapWord* curAddr = _markBitMap.startWord();
5739     while (curAddr < _markBitMap.endWord()) {
5740       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5741       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5742       _markBitMap.clear_large_range(chunk);
5743       if (ConcurrentMarkSweepThread::should_yield() &&
5744           !foregroundGCIsActive() &&
5745           CMSYield) {
5746         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5747                "CMS thread should hold CMS token");
5748         assert_lock_strong(bitMapLock());
5749         bitMapLock()->unlock();
5750         ConcurrentMarkSweepThread::desynchronize(true);
5751         stopTimer();
5752         if (PrintCMSStatistics != 0) {
5753           incrementYields();
5754         }
5755 
5756         // See the comment in coordinator_yield()
5757         for (unsigned i = 0; i < CMSYieldSleepCount &&
5758                          ConcurrentMarkSweepThread::should_yield() &&
5759                          !CMSCollector::foregroundGCIsActive(); ++i) {
5760           os::sleep(Thread::current(), 1, false);
5761         }
5762 
5763         ConcurrentMarkSweepThread::synchronize(true);
5764         bitMapLock()->lock_without_safepoint_check();
5765         startTimer();
5766       }
5767       curAddr = chunk.end();
5768     }
5769     // A successful mostly concurrent collection has been done.
5770     // Because only the full (i.e., concurrent mode failure) collections
5771     // are being measured for gc overhead limits, clean the "near" flag
5772     // and count.
5773     size_policy()->reset_gc_overhead_limit_count();
5774     _collectorState = Idling;
5775   } else {
5776     // already have the lock
5777     assert(_collectorState == Resetting, "just checking");
5778     assert_lock_strong(bitMapLock());
5779     _markBitMap.clear_all();
5780     _collectorState = Idling;
5781   }
5782 
5783   register_gc_end();
5784 }
5785 
5786 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5787   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5788   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5789   TraceCollectorStats tcs(counters());
5790 
5791   switch (op) {
5792     case CMS_op_checkpointRootsInitial: {
5793       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5794       checkpointRootsInitial();
5795       if (PrintGC) {
5796         _cmsGen->printOccupancy("initial-mark");
5797       }
5798       break;
5799     }
5800     case CMS_op_checkpointRootsFinal: {
5801       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5802       checkpointRootsFinal();
5803       if (PrintGC) {
5804         _cmsGen->printOccupancy("remark");
5805       }
5806       break;
5807     }
5808     default:
5809       fatal("No such CMS_op");
5810   }
5811 }
5812 
5813 #ifndef PRODUCT
5814 size_t const CMSCollector::skip_header_HeapWords() {
5815   return FreeChunk::header_size();
5816 }
5817 
5818 // Try and collect here conditions that should hold when
5819 // CMS thread is exiting. The idea is that the foreground GC
5820 // thread should not be blocked if it wants to terminate
5821 // the CMS thread and yet continue to run the VM for a while
5822 // after that.
5823 void CMSCollector::verify_ok_to_terminate() const {
5824   assert(Thread::current()->is_ConcurrentGC_thread(),
5825          "should be called by CMS thread");
5826   assert(!_foregroundGCShouldWait, "should be false");
5827   // We could check here that all the various low-level locks
5828   // are not held by the CMS thread, but that is overkill; see
5829   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5830   // is checked.
5831 }
5832 #endif
5833 
5834 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5835    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5836           "missing Printezis mark?");
5837   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5838   size_t size = pointer_delta(nextOneAddr + 1, addr);
5839   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5840          "alignment problem");
5841   assert(size >= 3, "Necessary for Printezis marks to work");
5842   return size;
5843 }
5844 
5845 // A variant of the above (block_size_using_printezis_bits()) except
5846 // that we return 0 if the P-bits are not yet set.
5847 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5848   if (_markBitMap.isMarked(addr + 1)) {
5849     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5850     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5851     size_t size = pointer_delta(nextOneAddr + 1, addr);
5852     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5853            "alignment problem");
5854     assert(size >= 3, "Necessary for Printezis marks to work");
5855     return size;
5856   }
5857   return 0;
5858 }
5859 
5860 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5861   size_t sz = 0;
5862   oop p = (oop)addr;
5863   if (p->klass_or_null() != NULL) {
5864     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5865   } else {
5866     sz = block_size_using_printezis_bits(addr);
5867   }
5868   assert(sz > 0, "size must be nonzero");
5869   HeapWord* next_block = addr + sz;
5870   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5871                                              CardTableModRefBS::card_size);
5872   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5873          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5874          "must be different cards");
5875   return next_card;
5876 }
5877 
5878 
5879 // CMS Bit Map Wrapper /////////////////////////////////////////
5880 
5881 // Construct a CMS bit map infrastructure, but don't create the
5882 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5883 // further below.
5884 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5885   _bm(),
5886   _shifter(shifter),
5887   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5888                                     Monitor::_safepoint_check_sometimes) : NULL)
5889 {
5890   _bmStartWord = 0;
5891   _bmWordSize  = 0;
5892 }
5893 
5894 bool CMSBitMap::allocate(MemRegion mr) {
5895   _bmStartWord = mr.start();
5896   _bmWordSize  = mr.word_size();
5897   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5898                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5899   if (!brs.is_reserved()) {
5900     warning("CMS bit map allocation failure");
5901     return false;
5902   }
5903   // For now we'll just commit all of the bit map up front.
5904   // Later on we'll try to be more parsimonious with swap.
5905   if (!_virtual_space.initialize(brs, brs.size())) {
5906     warning("CMS bit map backing store failure");
5907     return false;
5908   }
5909   assert(_virtual_space.committed_size() == brs.size(),
5910          "didn't reserve backing store for all of CMS bit map?");
5911   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5912   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5913          _bmWordSize, "inconsistency in bit map sizing");
5914   _bm.set_size(_bmWordSize >> _shifter);
5915 
5916   // bm.clear(); // can we rely on getting zero'd memory? verify below
5917   assert(isAllClear(),
5918          "Expected zero'd memory from ReservedSpace constructor");
5919   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5920          "consistency check");
5921   return true;
5922 }
5923 
5924 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5925   HeapWord *next_addr, *end_addr, *last_addr;
5926   assert_locked();
5927   assert(covers(mr), "out-of-range error");
5928   // XXX assert that start and end are appropriately aligned
5929   for (next_addr = mr.start(), end_addr = mr.end();
5930        next_addr < end_addr; next_addr = last_addr) {
5931     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5932     last_addr = dirty_region.end();
5933     if (!dirty_region.is_empty()) {
5934       cl->do_MemRegion(dirty_region);
5935     } else {
5936       assert(last_addr == end_addr, "program logic");
5937       return;
5938     }
5939   }
5940 }
5941 
5942 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5943   _bm.print_on_error(st, prefix);
5944 }
5945 
5946 #ifndef PRODUCT
5947 void CMSBitMap::assert_locked() const {
5948   CMSLockVerifier::assert_locked(lock());
5949 }
5950 
5951 bool CMSBitMap::covers(MemRegion mr) const {
5952   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5953   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5954          "size inconsistency");
5955   return (mr.start() >= _bmStartWord) &&
5956          (mr.end()   <= endWord());
5957 }
5958 
5959 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5960     return (start >= _bmStartWord && (start + size) <= endWord());
5961 }
5962 
5963 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5964   // verify that there are no 1 bits in the interval [left, right)
5965   FalseBitMapClosure falseBitMapClosure;
5966   iterate(&falseBitMapClosure, left, right);
5967 }
5968 
5969 void CMSBitMap::region_invariant(MemRegion mr)
5970 {
5971   assert_locked();
5972   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5973   assert(!mr.is_empty(), "unexpected empty region");
5974   assert(covers(mr), "mr should be covered by bit map");
5975   // convert address range into offset range
5976   size_t start_ofs = heapWordToOffset(mr.start());
5977   // Make sure that end() is appropriately aligned
5978   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5979                         (1 << (_shifter+LogHeapWordSize))),
5980          "Misaligned mr.end()");
5981   size_t end_ofs   = heapWordToOffset(mr.end());
5982   assert(end_ofs > start_ofs, "Should mark at least one bit");
5983 }
5984 
5985 #endif
5986 
5987 bool CMSMarkStack::allocate(size_t size) {
5988   // allocate a stack of the requisite depth
5989   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5990                    size * sizeof(oop)));
5991   if (!rs.is_reserved()) {
5992     warning("CMSMarkStack allocation failure");
5993     return false;
5994   }
5995   if (!_virtual_space.initialize(rs, rs.size())) {
5996     warning("CMSMarkStack backing store failure");
5997     return false;
5998   }
5999   assert(_virtual_space.committed_size() == rs.size(),
6000          "didn't reserve backing store for all of CMS stack?");
6001   _base = (oop*)(_virtual_space.low());
6002   _index = 0;
6003   _capacity = size;
6004   NOT_PRODUCT(_max_depth = 0);
6005   return true;
6006 }
6007 
6008 // XXX FIX ME !!! In the MT case we come in here holding a
6009 // leaf lock. For printing we need to take a further lock
6010 // which has lower rank. We need to recalibrate the two
6011 // lock-ranks involved in order to be able to print the
6012 // messages below. (Or defer the printing to the caller.
6013 // For now we take the expedient path of just disabling the
6014 // messages for the problematic case.)
6015 void CMSMarkStack::expand() {
6016   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6017   if (_capacity == MarkStackSizeMax) {
6018     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6019       // We print a warning message only once per CMS cycle.
6020       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6021     }
6022     return;
6023   }
6024   // Double capacity if possible
6025   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6026   // Do not give up existing stack until we have managed to
6027   // get the double capacity that we desired.
6028   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6029                    new_capacity * sizeof(oop)));
6030   if (rs.is_reserved()) {
6031     // Release the backing store associated with old stack
6032     _virtual_space.release();
6033     // Reinitialize virtual space for new stack
6034     if (!_virtual_space.initialize(rs, rs.size())) {
6035       fatal("Not enough swap for expanded marking stack");
6036     }
6037     _base = (oop*)(_virtual_space.low());
6038     _index = 0;
6039     _capacity = new_capacity;
6040   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6041     // Failed to double capacity, continue;
6042     // we print a detail message only once per CMS cycle.
6043     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6044             SIZE_FORMAT"K",
6045             _capacity / K, new_capacity / K);
6046   }
6047 }
6048 
6049 
6050 // Closures
6051 // XXX: there seems to be a lot of code  duplication here;
6052 // should refactor and consolidate common code.
6053 
6054 // This closure is used to mark refs into the CMS generation in
6055 // the CMS bit map. Called at the first checkpoint. This closure
6056 // assumes that we do not need to re-mark dirty cards; if the CMS
6057 // generation on which this is used is not an oldest
6058 // generation then this will lose younger_gen cards!
6059 
6060 MarkRefsIntoClosure::MarkRefsIntoClosure(
6061   MemRegion span, CMSBitMap* bitMap):
6062     _span(span),
6063     _bitMap(bitMap)
6064 {
6065     assert(_ref_processor == NULL, "deliberately left NULL");
6066     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6067 }
6068 
6069 void MarkRefsIntoClosure::do_oop(oop obj) {
6070   // if p points into _span, then mark corresponding bit in _markBitMap
6071   assert(obj->is_oop(), "expected an oop");
6072   HeapWord* addr = (HeapWord*)obj;
6073   if (_span.contains(addr)) {
6074     // this should be made more efficient
6075     _bitMap->mark(addr);
6076   }
6077 }
6078 
6079 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6080 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6081 
6082 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6083   MemRegion span, CMSBitMap* bitMap):
6084     _span(span),
6085     _bitMap(bitMap)
6086 {
6087     assert(_ref_processor == NULL, "deliberately left NULL");
6088     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6089 }
6090 
6091 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6092   // if p points into _span, then mark corresponding bit in _markBitMap
6093   assert(obj->is_oop(), "expected an oop");
6094   HeapWord* addr = (HeapWord*)obj;
6095   if (_span.contains(addr)) {
6096     // this should be made more efficient
6097     _bitMap->par_mark(addr);
6098   }
6099 }
6100 
6101 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6102 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6103 
6104 // A variant of the above, used for CMS marking verification.
6105 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6106   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6107     _span(span),
6108     _verification_bm(verification_bm),
6109     _cms_bm(cms_bm)
6110 {
6111     assert(_ref_processor == NULL, "deliberately left NULL");
6112     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6113 }
6114 
6115 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6116   // if p points into _span, then mark corresponding bit in _markBitMap
6117   assert(obj->is_oop(), "expected an oop");
6118   HeapWord* addr = (HeapWord*)obj;
6119   if (_span.contains(addr)) {
6120     _verification_bm->mark(addr);
6121     if (!_cms_bm->isMarked(addr)) {
6122       oop(addr)->print();
6123       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6124       fatal("... aborting");
6125     }
6126   }
6127 }
6128 
6129 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6130 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6131 
6132 //////////////////////////////////////////////////
6133 // MarkRefsIntoAndScanClosure
6134 //////////////////////////////////////////////////
6135 
6136 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6137                                                        ReferenceProcessor* rp,
6138                                                        CMSBitMap* bit_map,
6139                                                        CMSBitMap* mod_union_table,
6140                                                        CMSMarkStack*  mark_stack,
6141                                                        CMSCollector* collector,
6142                                                        bool should_yield,
6143                                                        bool concurrent_precleaning):
6144   _collector(collector),
6145   _span(span),
6146   _bit_map(bit_map),
6147   _mark_stack(mark_stack),
6148   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6149                       mark_stack, concurrent_precleaning),
6150   _yield(should_yield),
6151   _concurrent_precleaning(concurrent_precleaning),
6152   _freelistLock(NULL)
6153 {
6154   _ref_processor = rp;
6155   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6156 }
6157 
6158 // This closure is used to mark refs into the CMS generation at the
6159 // second (final) checkpoint, and to scan and transitively follow
6160 // the unmarked oops. It is also used during the concurrent precleaning
6161 // phase while scanning objects on dirty cards in the CMS generation.
6162 // The marks are made in the marking bit map and the marking stack is
6163 // used for keeping the (newly) grey objects during the scan.
6164 // The parallel version (Par_...) appears further below.
6165 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6166   if (obj != NULL) {
6167     assert(obj->is_oop(), "expected an oop");
6168     HeapWord* addr = (HeapWord*)obj;
6169     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6170     assert(_collector->overflow_list_is_empty(),
6171            "overflow list should be empty");
6172     if (_span.contains(addr) &&
6173         !_bit_map->isMarked(addr)) {
6174       // mark bit map (object is now grey)
6175       _bit_map->mark(addr);
6176       // push on marking stack (stack should be empty), and drain the
6177       // stack by applying this closure to the oops in the oops popped
6178       // from the stack (i.e. blacken the grey objects)
6179       bool res = _mark_stack->push(obj);
6180       assert(res, "Should have space to push on empty stack");
6181       do {
6182         oop new_oop = _mark_stack->pop();
6183         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6184         assert(_bit_map->isMarked((HeapWord*)new_oop),
6185                "only grey objects on this stack");
6186         // iterate over the oops in this oop, marking and pushing
6187         // the ones in CMS heap (i.e. in _span).
6188         new_oop->oop_iterate(&_pushAndMarkClosure);
6189         // check if it's time to yield
6190         do_yield_check();
6191       } while (!_mark_stack->isEmpty() ||
6192                (!_concurrent_precleaning && take_from_overflow_list()));
6193         // if marking stack is empty, and we are not doing this
6194         // during precleaning, then check the overflow list
6195     }
6196     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6197     assert(_collector->overflow_list_is_empty(),
6198            "overflow list was drained above");
6199     // We could restore evacuated mark words, if any, used for
6200     // overflow list links here because the overflow list is
6201     // provably empty here. That would reduce the maximum
6202     // size requirements for preserved_{oop,mark}_stack.
6203     // But we'll just postpone it until we are all done
6204     // so we can just stream through.
6205     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6206       _collector->restore_preserved_marks_if_any();
6207       assert(_collector->no_preserved_marks(), "No preserved marks");
6208     }
6209     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6210            "All preserved marks should have been restored above");
6211   }
6212 }
6213 
6214 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6215 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6216 
6217 void MarkRefsIntoAndScanClosure::do_yield_work() {
6218   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6219          "CMS thread should hold CMS token");
6220   assert_lock_strong(_freelistLock);
6221   assert_lock_strong(_bit_map->lock());
6222   // relinquish the free_list_lock and bitMaplock()
6223   _bit_map->lock()->unlock();
6224   _freelistLock->unlock();
6225   ConcurrentMarkSweepThread::desynchronize(true);
6226   _collector->stopTimer();
6227   if (PrintCMSStatistics != 0) {
6228     _collector->incrementYields();
6229   }
6230 
6231   // See the comment in coordinator_yield()
6232   for (unsigned i = 0;
6233        i < CMSYieldSleepCount &&
6234        ConcurrentMarkSweepThread::should_yield() &&
6235        !CMSCollector::foregroundGCIsActive();
6236        ++i) {
6237     os::sleep(Thread::current(), 1, false);
6238   }
6239 
6240   ConcurrentMarkSweepThread::synchronize(true);
6241   _freelistLock->lock_without_safepoint_check();
6242   _bit_map->lock()->lock_without_safepoint_check();
6243   _collector->startTimer();
6244 }
6245 
6246 ///////////////////////////////////////////////////////////
6247 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6248 //                                 MarkRefsIntoAndScanClosure
6249 ///////////////////////////////////////////////////////////
6250 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6251   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6252   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6253   _span(span),
6254   _bit_map(bit_map),
6255   _work_queue(work_queue),
6256   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6257                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6258   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6259 {
6260   _ref_processor = rp;
6261   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6262 }
6263 
6264 // This closure is used to mark refs into the CMS generation at the
6265 // second (final) checkpoint, and to scan and transitively follow
6266 // the unmarked oops. The marks are made in the marking bit map and
6267 // the work_queue is used for keeping the (newly) grey objects during
6268 // the scan phase whence they are also available for stealing by parallel
6269 // threads. Since the marking bit map is shared, updates are
6270 // synchronized (via CAS).
6271 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6272   if (obj != NULL) {
6273     // Ignore mark word because this could be an already marked oop
6274     // that may be chained at the end of the overflow list.
6275     assert(obj->is_oop(true), "expected an oop");
6276     HeapWord* addr = (HeapWord*)obj;
6277     if (_span.contains(addr) &&
6278         !_bit_map->isMarked(addr)) {
6279       // mark bit map (object will become grey):
6280       // It is possible for several threads to be
6281       // trying to "claim" this object concurrently;
6282       // the unique thread that succeeds in marking the
6283       // object first will do the subsequent push on
6284       // to the work queue (or overflow list).
6285       if (_bit_map->par_mark(addr)) {
6286         // push on work_queue (which may not be empty), and trim the
6287         // queue to an appropriate length by applying this closure to
6288         // the oops in the oops popped from the stack (i.e. blacken the
6289         // grey objects)
6290         bool res = _work_queue->push(obj);
6291         assert(res, "Low water mark should be less than capacity?");
6292         trim_queue(_low_water_mark);
6293       } // Else, another thread claimed the object
6294     }
6295   }
6296 }
6297 
6298 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6299 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6300 
6301 // This closure is used to rescan the marked objects on the dirty cards
6302 // in the mod union table and the card table proper.
6303 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6304   oop p, MemRegion mr) {
6305 
6306   size_t size = 0;
6307   HeapWord* addr = (HeapWord*)p;
6308   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6309   assert(_span.contains(addr), "we are scanning the CMS generation");
6310   // check if it's time to yield
6311   if (do_yield_check()) {
6312     // We yielded for some foreground stop-world work,
6313     // and we have been asked to abort this ongoing preclean cycle.
6314     return 0;
6315   }
6316   if (_bitMap->isMarked(addr)) {
6317     // it's marked; is it potentially uninitialized?
6318     if (p->klass_or_null() != NULL) {
6319         // an initialized object; ignore mark word in verification below
6320         // since we are running concurrent with mutators
6321         assert(p->is_oop(true), "should be an oop");
6322         if (p->is_objArray()) {
6323           // objArrays are precisely marked; restrict scanning
6324           // to dirty cards only.
6325           size = CompactibleFreeListSpace::adjustObjectSize(
6326                    p->oop_iterate(_scanningClosure, mr));
6327         } else {
6328           // A non-array may have been imprecisely marked; we need
6329           // to scan object in its entirety.
6330           size = CompactibleFreeListSpace::adjustObjectSize(
6331                    p->oop_iterate(_scanningClosure));
6332         }
6333         #ifdef ASSERT
6334           size_t direct_size =
6335             CompactibleFreeListSpace::adjustObjectSize(p->size());
6336           assert(size == direct_size, "Inconsistency in size");
6337           assert(size >= 3, "Necessary for Printezis marks to work");
6338           if (!_bitMap->isMarked(addr+1)) {
6339             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6340           } else {
6341             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6342             assert(_bitMap->isMarked(addr+size-1),
6343                    "inconsistent Printezis mark");
6344           }
6345         #endif // ASSERT
6346     } else {
6347       // An uninitialized object.
6348       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6349       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6350       size = pointer_delta(nextOneAddr + 1, addr);
6351       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6352              "alignment problem");
6353       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6354       // will dirty the card when the klass pointer is installed in the
6355       // object (signaling the completion of initialization).
6356     }
6357   } else {
6358     // Either a not yet marked object or an uninitialized object
6359     if (p->klass_or_null() == NULL) {
6360       // An uninitialized object, skip to the next card, since
6361       // we may not be able to read its P-bits yet.
6362       assert(size == 0, "Initial value");
6363     } else {
6364       // An object not (yet) reached by marking: we merely need to
6365       // compute its size so as to go look at the next block.
6366       assert(p->is_oop(true), "should be an oop");
6367       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6368     }
6369   }
6370   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6371   return size;
6372 }
6373 
6374 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6375   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6376          "CMS thread should hold CMS token");
6377   assert_lock_strong(_freelistLock);
6378   assert_lock_strong(_bitMap->lock());
6379   // relinquish the free_list_lock and bitMaplock()
6380   _bitMap->lock()->unlock();
6381   _freelistLock->unlock();
6382   ConcurrentMarkSweepThread::desynchronize(true);
6383   _collector->stopTimer();
6384   if (PrintCMSStatistics != 0) {
6385     _collector->incrementYields();
6386   }
6387 
6388   // See the comment in coordinator_yield()
6389   for (unsigned i = 0; i < CMSYieldSleepCount &&
6390                    ConcurrentMarkSweepThread::should_yield() &&
6391                    !CMSCollector::foregroundGCIsActive(); ++i) {
6392     os::sleep(Thread::current(), 1, false);
6393   }
6394 
6395   ConcurrentMarkSweepThread::synchronize(true);
6396   _freelistLock->lock_without_safepoint_check();
6397   _bitMap->lock()->lock_without_safepoint_check();
6398   _collector->startTimer();
6399 }
6400 
6401 
6402 //////////////////////////////////////////////////////////////////
6403 // SurvivorSpacePrecleanClosure
6404 //////////////////////////////////////////////////////////////////
6405 // This (single-threaded) closure is used to preclean the oops in
6406 // the survivor spaces.
6407 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6408 
6409   HeapWord* addr = (HeapWord*)p;
6410   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6411   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6412   assert(p->klass_or_null() != NULL, "object should be initialized");
6413   // an initialized object; ignore mark word in verification below
6414   // since we are running concurrent with mutators
6415   assert(p->is_oop(true), "should be an oop");
6416   // Note that we do not yield while we iterate over
6417   // the interior oops of p, pushing the relevant ones
6418   // on our marking stack.
6419   size_t size = p->oop_iterate(_scanning_closure);
6420   do_yield_check();
6421   // Observe that below, we do not abandon the preclean
6422   // phase as soon as we should; rather we empty the
6423   // marking stack before returning. This is to satisfy
6424   // some existing assertions. In general, it may be a
6425   // good idea to abort immediately and complete the marking
6426   // from the grey objects at a later time.
6427   while (!_mark_stack->isEmpty()) {
6428     oop new_oop = _mark_stack->pop();
6429     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6430     assert(_bit_map->isMarked((HeapWord*)new_oop),
6431            "only grey objects on this stack");
6432     // iterate over the oops in this oop, marking and pushing
6433     // the ones in CMS heap (i.e. in _span).
6434     new_oop->oop_iterate(_scanning_closure);
6435     // check if it's time to yield
6436     do_yield_check();
6437   }
6438   unsigned int after_count =
6439     GenCollectedHeap::heap()->total_collections();
6440   bool abort = (_before_count != after_count) ||
6441                _collector->should_abort_preclean();
6442   return abort ? 0 : size;
6443 }
6444 
6445 void SurvivorSpacePrecleanClosure::do_yield_work() {
6446   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6447          "CMS thread should hold CMS token");
6448   assert_lock_strong(_bit_map->lock());
6449   // Relinquish the bit map lock
6450   _bit_map->lock()->unlock();
6451   ConcurrentMarkSweepThread::desynchronize(true);
6452   _collector->stopTimer();
6453   if (PrintCMSStatistics != 0) {
6454     _collector->incrementYields();
6455   }
6456 
6457   // See the comment in coordinator_yield()
6458   for (unsigned i = 0; i < CMSYieldSleepCount &&
6459                        ConcurrentMarkSweepThread::should_yield() &&
6460                        !CMSCollector::foregroundGCIsActive(); ++i) {
6461     os::sleep(Thread::current(), 1, false);
6462   }
6463 
6464   ConcurrentMarkSweepThread::synchronize(true);
6465   _bit_map->lock()->lock_without_safepoint_check();
6466   _collector->startTimer();
6467 }
6468 
6469 // This closure is used to rescan the marked objects on the dirty cards
6470 // in the mod union table and the card table proper. In the parallel
6471 // case, although the bitMap is shared, we do a single read so the
6472 // isMarked() query is "safe".
6473 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6474   // Ignore mark word because we are running concurrent with mutators
6475   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6476   HeapWord* addr = (HeapWord*)p;
6477   assert(_span.contains(addr), "we are scanning the CMS generation");
6478   bool is_obj_array = false;
6479   #ifdef ASSERT
6480     if (!_parallel) {
6481       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6482       assert(_collector->overflow_list_is_empty(),
6483              "overflow list should be empty");
6484 
6485     }
6486   #endif // ASSERT
6487   if (_bit_map->isMarked(addr)) {
6488     // Obj arrays are precisely marked, non-arrays are not;
6489     // so we scan objArrays precisely and non-arrays in their
6490     // entirety.
6491     if (p->is_objArray()) {
6492       is_obj_array = true;
6493       if (_parallel) {
6494         p->oop_iterate(_par_scan_closure, mr);
6495       } else {
6496         p->oop_iterate(_scan_closure, mr);
6497       }
6498     } else {
6499       if (_parallel) {
6500         p->oop_iterate(_par_scan_closure);
6501       } else {
6502         p->oop_iterate(_scan_closure);
6503       }
6504     }
6505   }
6506   #ifdef ASSERT
6507     if (!_parallel) {
6508       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6509       assert(_collector->overflow_list_is_empty(),
6510              "overflow list should be empty");
6511 
6512     }
6513   #endif // ASSERT
6514   return is_obj_array;
6515 }
6516 
6517 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6518                         MemRegion span,
6519                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6520                         bool should_yield, bool verifying):
6521   _collector(collector),
6522   _span(span),
6523   _bitMap(bitMap),
6524   _mut(&collector->_modUnionTable),
6525   _markStack(markStack),
6526   _yield(should_yield),
6527   _skipBits(0)
6528 {
6529   assert(_markStack->isEmpty(), "stack should be empty");
6530   _finger = _bitMap->startWord();
6531   _threshold = _finger;
6532   assert(_collector->_restart_addr == NULL, "Sanity check");
6533   assert(_span.contains(_finger), "Out of bounds _finger?");
6534   DEBUG_ONLY(_verifying = verifying;)
6535 }
6536 
6537 void MarkFromRootsClosure::reset(HeapWord* addr) {
6538   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6539   assert(_span.contains(addr), "Out of bounds _finger?");
6540   _finger = addr;
6541   _threshold = (HeapWord*)round_to(
6542                  (intptr_t)_finger, CardTableModRefBS::card_size);
6543 }
6544 
6545 // Should revisit to see if this should be restructured for
6546 // greater efficiency.
6547 bool MarkFromRootsClosure::do_bit(size_t offset) {
6548   if (_skipBits > 0) {
6549     _skipBits--;
6550     return true;
6551   }
6552   // convert offset into a HeapWord*
6553   HeapWord* addr = _bitMap->startWord() + offset;
6554   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6555          "address out of range");
6556   assert(_bitMap->isMarked(addr), "tautology");
6557   if (_bitMap->isMarked(addr+1)) {
6558     // this is an allocated but not yet initialized object
6559     assert(_skipBits == 0, "tautology");
6560     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6561     oop p = oop(addr);
6562     if (p->klass_or_null() == NULL) {
6563       DEBUG_ONLY(if (!_verifying) {)
6564         // We re-dirty the cards on which this object lies and increase
6565         // the _threshold so that we'll come back to scan this object
6566         // during the preclean or remark phase. (CMSCleanOnEnter)
6567         if (CMSCleanOnEnter) {
6568           size_t sz = _collector->block_size_using_printezis_bits(addr);
6569           HeapWord* end_card_addr   = (HeapWord*)round_to(
6570                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6571           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6572           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6573           // Bump _threshold to end_card_addr; note that
6574           // _threshold cannot possibly exceed end_card_addr, anyhow.
6575           // This prevents future clearing of the card as the scan proceeds
6576           // to the right.
6577           assert(_threshold <= end_card_addr,
6578                  "Because we are just scanning into this object");
6579           if (_threshold < end_card_addr) {
6580             _threshold = end_card_addr;
6581           }
6582           if (p->klass_or_null() != NULL) {
6583             // Redirty the range of cards...
6584             _mut->mark_range(redirty_range);
6585           } // ...else the setting of klass will dirty the card anyway.
6586         }
6587       DEBUG_ONLY(})
6588       return true;
6589     }
6590   }
6591   scanOopsInOop(addr);
6592   return true;
6593 }
6594 
6595 // We take a break if we've been at this for a while,
6596 // so as to avoid monopolizing the locks involved.
6597 void MarkFromRootsClosure::do_yield_work() {
6598   // First give up the locks, then yield, then re-lock
6599   // We should probably use a constructor/destructor idiom to
6600   // do this unlock/lock or modify the MutexUnlocker class to
6601   // serve our purpose. XXX
6602   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6603          "CMS thread should hold CMS token");
6604   assert_lock_strong(_bitMap->lock());
6605   _bitMap->lock()->unlock();
6606   ConcurrentMarkSweepThread::desynchronize(true);
6607   _collector->stopTimer();
6608   if (PrintCMSStatistics != 0) {
6609     _collector->incrementYields();
6610   }
6611 
6612   // See the comment in coordinator_yield()
6613   for (unsigned i = 0; i < CMSYieldSleepCount &&
6614                        ConcurrentMarkSweepThread::should_yield() &&
6615                        !CMSCollector::foregroundGCIsActive(); ++i) {
6616     os::sleep(Thread::current(), 1, false);
6617   }
6618 
6619   ConcurrentMarkSweepThread::synchronize(true);
6620   _bitMap->lock()->lock_without_safepoint_check();
6621   _collector->startTimer();
6622 }
6623 
6624 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6625   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6626   assert(_markStack->isEmpty(),
6627          "should drain stack to limit stack usage");
6628   // convert ptr to an oop preparatory to scanning
6629   oop obj = oop(ptr);
6630   // Ignore mark word in verification below, since we
6631   // may be running concurrent with mutators.
6632   assert(obj->is_oop(true), "should be an oop");
6633   assert(_finger <= ptr, "_finger runneth ahead");
6634   // advance the finger to right end of this object
6635   _finger = ptr + obj->size();
6636   assert(_finger > ptr, "we just incremented it above");
6637   // On large heaps, it may take us some time to get through
6638   // the marking phase. During
6639   // this time it's possible that a lot of mutations have
6640   // accumulated in the card table and the mod union table --
6641   // these mutation records are redundant until we have
6642   // actually traced into the corresponding card.
6643   // Here, we check whether advancing the finger would make
6644   // us cross into a new card, and if so clear corresponding
6645   // cards in the MUT (preclean them in the card-table in the
6646   // future).
6647 
6648   DEBUG_ONLY(if (!_verifying) {)
6649     // The clean-on-enter optimization is disabled by default,
6650     // until we fix 6178663.
6651     if (CMSCleanOnEnter && (_finger > _threshold)) {
6652       // [_threshold, _finger) represents the interval
6653       // of cards to be cleared  in MUT (or precleaned in card table).
6654       // The set of cards to be cleared is all those that overlap
6655       // with the interval [_threshold, _finger); note that
6656       // _threshold is always kept card-aligned but _finger isn't
6657       // always card-aligned.
6658       HeapWord* old_threshold = _threshold;
6659       assert(old_threshold == (HeapWord*)round_to(
6660               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6661              "_threshold should always be card-aligned");
6662       _threshold = (HeapWord*)round_to(
6663                      (intptr_t)_finger, CardTableModRefBS::card_size);
6664       MemRegion mr(old_threshold, _threshold);
6665       assert(!mr.is_empty(), "Control point invariant");
6666       assert(_span.contains(mr), "Should clear within span");
6667       _mut->clear_range(mr);
6668     }
6669   DEBUG_ONLY(})
6670   // Note: the finger doesn't advance while we drain
6671   // the stack below.
6672   PushOrMarkClosure pushOrMarkClosure(_collector,
6673                                       _span, _bitMap, _markStack,
6674                                       _finger, this);
6675   bool res = _markStack->push(obj);
6676   assert(res, "Empty non-zero size stack should have space for single push");
6677   while (!_markStack->isEmpty()) {
6678     oop new_oop = _markStack->pop();
6679     // Skip verifying header mark word below because we are
6680     // running concurrent with mutators.
6681     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6682     // now scan this oop's oops
6683     new_oop->oop_iterate(&pushOrMarkClosure);
6684     do_yield_check();
6685   }
6686   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6687 }
6688 
6689 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6690                        CMSCollector* collector, MemRegion span,
6691                        CMSBitMap* bit_map,
6692                        OopTaskQueue* work_queue,
6693                        CMSMarkStack*  overflow_stack):
6694   _collector(collector),
6695   _whole_span(collector->_span),
6696   _span(span),
6697   _bit_map(bit_map),
6698   _mut(&collector->_modUnionTable),
6699   _work_queue(work_queue),
6700   _overflow_stack(overflow_stack),
6701   _skip_bits(0),
6702   _task(task)
6703 {
6704   assert(_work_queue->size() == 0, "work_queue should be empty");
6705   _finger = span.start();
6706   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6707   assert(_span.contains(_finger), "Out of bounds _finger?");
6708 }
6709 
6710 // Should revisit to see if this should be restructured for
6711 // greater efficiency.
6712 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6713   if (_skip_bits > 0) {
6714     _skip_bits--;
6715     return true;
6716   }
6717   // convert offset into a HeapWord*
6718   HeapWord* addr = _bit_map->startWord() + offset;
6719   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6720          "address out of range");
6721   assert(_bit_map->isMarked(addr), "tautology");
6722   if (_bit_map->isMarked(addr+1)) {
6723     // this is an allocated object that might not yet be initialized
6724     assert(_skip_bits == 0, "tautology");
6725     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6726     oop p = oop(addr);
6727     if (p->klass_or_null() == NULL) {
6728       // in the case of Clean-on-Enter optimization, redirty card
6729       // and avoid clearing card by increasing  the threshold.
6730       return true;
6731     }
6732   }
6733   scan_oops_in_oop(addr);
6734   return true;
6735 }
6736 
6737 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6738   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6739   // Should we assert that our work queue is empty or
6740   // below some drain limit?
6741   assert(_work_queue->size() == 0,
6742          "should drain stack to limit stack usage");
6743   // convert ptr to an oop preparatory to scanning
6744   oop obj = oop(ptr);
6745   // Ignore mark word in verification below, since we
6746   // may be running concurrent with mutators.
6747   assert(obj->is_oop(true), "should be an oop");
6748   assert(_finger <= ptr, "_finger runneth ahead");
6749   // advance the finger to right end of this object
6750   _finger = ptr + obj->size();
6751   assert(_finger > ptr, "we just incremented it above");
6752   // On large heaps, it may take us some time to get through
6753   // the marking phase. During
6754   // this time it's possible that a lot of mutations have
6755   // accumulated in the card table and the mod union table --
6756   // these mutation records are redundant until we have
6757   // actually traced into the corresponding card.
6758   // Here, we check whether advancing the finger would make
6759   // us cross into a new card, and if so clear corresponding
6760   // cards in the MUT (preclean them in the card-table in the
6761   // future).
6762 
6763   // The clean-on-enter optimization is disabled by default,
6764   // until we fix 6178663.
6765   if (CMSCleanOnEnter && (_finger > _threshold)) {
6766     // [_threshold, _finger) represents the interval
6767     // of cards to be cleared  in MUT (or precleaned in card table).
6768     // The set of cards to be cleared is all those that overlap
6769     // with the interval [_threshold, _finger); note that
6770     // _threshold is always kept card-aligned but _finger isn't
6771     // always card-aligned.
6772     HeapWord* old_threshold = _threshold;
6773     assert(old_threshold == (HeapWord*)round_to(
6774             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6775            "_threshold should always be card-aligned");
6776     _threshold = (HeapWord*)round_to(
6777                    (intptr_t)_finger, CardTableModRefBS::card_size);
6778     MemRegion mr(old_threshold, _threshold);
6779     assert(!mr.is_empty(), "Control point invariant");
6780     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6781     _mut->clear_range(mr);
6782   }
6783 
6784   // Note: the local finger doesn't advance while we drain
6785   // the stack below, but the global finger sure can and will.
6786   HeapWord** gfa = _task->global_finger_addr();
6787   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6788                                       _span, _bit_map,
6789                                       _work_queue,
6790                                       _overflow_stack,
6791                                       _finger,
6792                                       gfa, this);
6793   bool res = _work_queue->push(obj);   // overflow could occur here
6794   assert(res, "Will hold once we use workqueues");
6795   while (true) {
6796     oop new_oop;
6797     if (!_work_queue->pop_local(new_oop)) {
6798       // We emptied our work_queue; check if there's stuff that can
6799       // be gotten from the overflow stack.
6800       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6801             _overflow_stack, _work_queue)) {
6802         do_yield_check();
6803         continue;
6804       } else {  // done
6805         break;
6806       }
6807     }
6808     // Skip verifying header mark word below because we are
6809     // running concurrent with mutators.
6810     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6811     // now scan this oop's oops
6812     new_oop->oop_iterate(&pushOrMarkClosure);
6813     do_yield_check();
6814   }
6815   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6816 }
6817 
6818 // Yield in response to a request from VM Thread or
6819 // from mutators.
6820 void Par_MarkFromRootsClosure::do_yield_work() {
6821   assert(_task != NULL, "sanity");
6822   _task->yield();
6823 }
6824 
6825 // A variant of the above used for verifying CMS marking work.
6826 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6827                         MemRegion span,
6828                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6829                         CMSMarkStack*  mark_stack):
6830   _collector(collector),
6831   _span(span),
6832   _verification_bm(verification_bm),
6833   _cms_bm(cms_bm),
6834   _mark_stack(mark_stack),
6835   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6836                       mark_stack)
6837 {
6838   assert(_mark_stack->isEmpty(), "stack should be empty");
6839   _finger = _verification_bm->startWord();
6840   assert(_collector->_restart_addr == NULL, "Sanity check");
6841   assert(_span.contains(_finger), "Out of bounds _finger?");
6842 }
6843 
6844 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6845   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6846   assert(_span.contains(addr), "Out of bounds _finger?");
6847   _finger = addr;
6848 }
6849 
6850 // Should revisit to see if this should be restructured for
6851 // greater efficiency.
6852 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6853   // convert offset into a HeapWord*
6854   HeapWord* addr = _verification_bm->startWord() + offset;
6855   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6856          "address out of range");
6857   assert(_verification_bm->isMarked(addr), "tautology");
6858   assert(_cms_bm->isMarked(addr), "tautology");
6859 
6860   assert(_mark_stack->isEmpty(),
6861          "should drain stack to limit stack usage");
6862   // convert addr to an oop preparatory to scanning
6863   oop obj = oop(addr);
6864   assert(obj->is_oop(), "should be an oop");
6865   assert(_finger <= addr, "_finger runneth ahead");
6866   // advance the finger to right end of this object
6867   _finger = addr + obj->size();
6868   assert(_finger > addr, "we just incremented it above");
6869   // Note: the finger doesn't advance while we drain
6870   // the stack below.
6871   bool res = _mark_stack->push(obj);
6872   assert(res, "Empty non-zero size stack should have space for single push");
6873   while (!_mark_stack->isEmpty()) {
6874     oop new_oop = _mark_stack->pop();
6875     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6876     // now scan this oop's oops
6877     new_oop->oop_iterate(&_pam_verify_closure);
6878   }
6879   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6880   return true;
6881 }
6882 
6883 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6884   CMSCollector* collector, MemRegion span,
6885   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6886   CMSMarkStack*  mark_stack):
6887   MetadataAwareOopClosure(collector->ref_processor()),
6888   _collector(collector),
6889   _span(span),
6890   _verification_bm(verification_bm),
6891   _cms_bm(cms_bm),
6892   _mark_stack(mark_stack)
6893 { }
6894 
6895 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6896 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6897 
6898 // Upon stack overflow, we discard (part of) the stack,
6899 // remembering the least address amongst those discarded
6900 // in CMSCollector's _restart_address.
6901 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6902   // Remember the least grey address discarded
6903   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6904   _collector->lower_restart_addr(ra);
6905   _mark_stack->reset();  // discard stack contents
6906   _mark_stack->expand(); // expand the stack if possible
6907 }
6908 
6909 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6910   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6911   HeapWord* addr = (HeapWord*)obj;
6912   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6913     // Oop lies in _span and isn't yet grey or black
6914     _verification_bm->mark(addr);            // now grey
6915     if (!_cms_bm->isMarked(addr)) {
6916       oop(addr)->print();
6917       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6918                              p2i(addr));
6919       fatal("... aborting");
6920     }
6921 
6922     if (!_mark_stack->push(obj)) { // stack overflow
6923       if (PrintCMSStatistics != 0) {
6924         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6925                                SIZE_FORMAT, _mark_stack->capacity());
6926       }
6927       assert(_mark_stack->isFull(), "Else push should have succeeded");
6928       handle_stack_overflow(addr);
6929     }
6930     // anything including and to the right of _finger
6931     // will be scanned as we iterate over the remainder of the
6932     // bit map
6933   }
6934 }
6935 
6936 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6937                      MemRegion span,
6938                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6939                      HeapWord* finger, MarkFromRootsClosure* parent) :
6940   MetadataAwareOopClosure(collector->ref_processor()),
6941   _collector(collector),
6942   _span(span),
6943   _bitMap(bitMap),
6944   _markStack(markStack),
6945   _finger(finger),
6946   _parent(parent)
6947 { }
6948 
6949 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6950                      MemRegion span,
6951                      CMSBitMap* bit_map,
6952                      OopTaskQueue* work_queue,
6953                      CMSMarkStack*  overflow_stack,
6954                      HeapWord* finger,
6955                      HeapWord** global_finger_addr,
6956                      Par_MarkFromRootsClosure* parent) :
6957   MetadataAwareOopClosure(collector->ref_processor()),
6958   _collector(collector),
6959   _whole_span(collector->_span),
6960   _span(span),
6961   _bit_map(bit_map),
6962   _work_queue(work_queue),
6963   _overflow_stack(overflow_stack),
6964   _finger(finger),
6965   _global_finger_addr(global_finger_addr),
6966   _parent(parent)
6967 { }
6968 
6969 // Assumes thread-safe access by callers, who are
6970 // responsible for mutual exclusion.
6971 void CMSCollector::lower_restart_addr(HeapWord* low) {
6972   assert(_span.contains(low), "Out of bounds addr");
6973   if (_restart_addr == NULL) {
6974     _restart_addr = low;
6975   } else {
6976     _restart_addr = MIN2(_restart_addr, low);
6977   }
6978 }
6979 
6980 // Upon stack overflow, we discard (part of) the stack,
6981 // remembering the least address amongst those discarded
6982 // in CMSCollector's _restart_address.
6983 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6984   // Remember the least grey address discarded
6985   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6986   _collector->lower_restart_addr(ra);
6987   _markStack->reset();  // discard stack contents
6988   _markStack->expand(); // expand the stack if possible
6989 }
6990 
6991 // Upon stack overflow, we discard (part of) the stack,
6992 // remembering the least address amongst those discarded
6993 // in CMSCollector's _restart_address.
6994 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6995   // We need to do this under a mutex to prevent other
6996   // workers from interfering with the work done below.
6997   MutexLockerEx ml(_overflow_stack->par_lock(),
6998                    Mutex::_no_safepoint_check_flag);
6999   // Remember the least grey address discarded
7000   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7001   _collector->lower_restart_addr(ra);
7002   _overflow_stack->reset();  // discard stack contents
7003   _overflow_stack->expand(); // expand the stack if possible
7004 }
7005 
7006 void PushOrMarkClosure::do_oop(oop obj) {
7007   // Ignore mark word because we are running concurrent with mutators.
7008   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7009   HeapWord* addr = (HeapWord*)obj;
7010   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7011     // Oop lies in _span and isn't yet grey or black
7012     _bitMap->mark(addr);            // now grey
7013     if (addr < _finger) {
7014       // the bit map iteration has already either passed, or
7015       // sampled, this bit in the bit map; we'll need to
7016       // use the marking stack to scan this oop's oops.
7017       bool simulate_overflow = false;
7018       NOT_PRODUCT(
7019         if (CMSMarkStackOverflowALot &&
7020             _collector->simulate_overflow()) {
7021           // simulate a stack overflow
7022           simulate_overflow = true;
7023         }
7024       )
7025       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7026         if (PrintCMSStatistics != 0) {
7027           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7028                                  SIZE_FORMAT, _markStack->capacity());
7029         }
7030         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7031         handle_stack_overflow(addr);
7032       }
7033     }
7034     // anything including and to the right of _finger
7035     // will be scanned as we iterate over the remainder of the
7036     // bit map
7037     do_yield_check();
7038   }
7039 }
7040 
7041 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7042 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7043 
7044 void Par_PushOrMarkClosure::do_oop(oop obj) {
7045   // Ignore mark word because we are running concurrent with mutators.
7046   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7047   HeapWord* addr = (HeapWord*)obj;
7048   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7049     // Oop lies in _span and isn't yet grey or black
7050     // We read the global_finger (volatile read) strictly after marking oop
7051     bool res = _bit_map->par_mark(addr);    // now grey
7052     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7053     // Should we push this marked oop on our stack?
7054     // -- if someone else marked it, nothing to do
7055     // -- if target oop is above global finger nothing to do
7056     // -- if target oop is in chunk and above local finger
7057     //      then nothing to do
7058     // -- else push on work queue
7059     if (   !res       // someone else marked it, they will deal with it
7060         || (addr >= *gfa)  // will be scanned in a later task
7061         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7062       return;
7063     }
7064     // the bit map iteration has already either passed, or
7065     // sampled, this bit in the bit map; we'll need to
7066     // use the marking stack to scan this oop's oops.
7067     bool simulate_overflow = false;
7068     NOT_PRODUCT(
7069       if (CMSMarkStackOverflowALot &&
7070           _collector->simulate_overflow()) {
7071         // simulate a stack overflow
7072         simulate_overflow = true;
7073       }
7074     )
7075     if (simulate_overflow ||
7076         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7077       // stack overflow
7078       if (PrintCMSStatistics != 0) {
7079         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7080                                SIZE_FORMAT, _overflow_stack->capacity());
7081       }
7082       // We cannot assert that the overflow stack is full because
7083       // it may have been emptied since.
7084       assert(simulate_overflow ||
7085              _work_queue->size() == _work_queue->max_elems(),
7086             "Else push should have succeeded");
7087       handle_stack_overflow(addr);
7088     }
7089     do_yield_check();
7090   }
7091 }
7092 
7093 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7094 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7095 
7096 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7097                                        MemRegion span,
7098                                        ReferenceProcessor* rp,
7099                                        CMSBitMap* bit_map,
7100                                        CMSBitMap* mod_union_table,
7101                                        CMSMarkStack*  mark_stack,
7102                                        bool           concurrent_precleaning):
7103   MetadataAwareOopClosure(rp),
7104   _collector(collector),
7105   _span(span),
7106   _bit_map(bit_map),
7107   _mod_union_table(mod_union_table),
7108   _mark_stack(mark_stack),
7109   _concurrent_precleaning(concurrent_precleaning)
7110 {
7111   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7112 }
7113 
7114 // Grey object rescan during pre-cleaning and second checkpoint phases --
7115 // the non-parallel version (the parallel version appears further below.)
7116 void PushAndMarkClosure::do_oop(oop obj) {
7117   // Ignore mark word verification. If during concurrent precleaning,
7118   // the object monitor may be locked. If during the checkpoint
7119   // phases, the object may already have been reached by a  different
7120   // path and may be at the end of the global overflow list (so
7121   // the mark word may be NULL).
7122   assert(obj->is_oop_or_null(true /* ignore mark word */),
7123          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7124   HeapWord* addr = (HeapWord*)obj;
7125   // Check if oop points into the CMS generation
7126   // and is not marked
7127   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7128     // a white object ...
7129     _bit_map->mark(addr);         // ... now grey
7130     // push on the marking stack (grey set)
7131     bool simulate_overflow = false;
7132     NOT_PRODUCT(
7133       if (CMSMarkStackOverflowALot &&
7134           _collector->simulate_overflow()) {
7135         // simulate a stack overflow
7136         simulate_overflow = true;
7137       }
7138     )
7139     if (simulate_overflow || !_mark_stack->push(obj)) {
7140       if (_concurrent_precleaning) {
7141          // During precleaning we can just dirty the appropriate card(s)
7142          // in the mod union table, thus ensuring that the object remains
7143          // in the grey set  and continue. In the case of object arrays
7144          // we need to dirty all of the cards that the object spans,
7145          // since the rescan of object arrays will be limited to the
7146          // dirty cards.
7147          // Note that no one can be interfering with us in this action
7148          // of dirtying the mod union table, so no locking or atomics
7149          // are required.
7150          if (obj->is_objArray()) {
7151            size_t sz = obj->size();
7152            HeapWord* end_card_addr = (HeapWord*)round_to(
7153                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7154            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7155            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7156            _mod_union_table->mark_range(redirty_range);
7157          } else {
7158            _mod_union_table->mark(addr);
7159          }
7160          _collector->_ser_pmc_preclean_ovflw++;
7161       } else {
7162          // During the remark phase, we need to remember this oop
7163          // in the overflow list.
7164          _collector->push_on_overflow_list(obj);
7165          _collector->_ser_pmc_remark_ovflw++;
7166       }
7167     }
7168   }
7169 }
7170 
7171 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7172                                                MemRegion span,
7173                                                ReferenceProcessor* rp,
7174                                                CMSBitMap* bit_map,
7175                                                OopTaskQueue* work_queue):
7176   MetadataAwareOopClosure(rp),
7177   _collector(collector),
7178   _span(span),
7179   _bit_map(bit_map),
7180   _work_queue(work_queue)
7181 {
7182   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7183 }
7184 
7185 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7186 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7187 
7188 // Grey object rescan during second checkpoint phase --
7189 // the parallel version.
7190 void Par_PushAndMarkClosure::do_oop(oop obj) {
7191   // In the assert below, we ignore the mark word because
7192   // this oop may point to an already visited object that is
7193   // on the overflow stack (in which case the mark word has
7194   // been hijacked for chaining into the overflow stack --
7195   // if this is the last object in the overflow stack then
7196   // its mark word will be NULL). Because this object may
7197   // have been subsequently popped off the global overflow
7198   // stack, and the mark word possibly restored to the prototypical
7199   // value, by the time we get to examined this failing assert in
7200   // the debugger, is_oop_or_null(false) may subsequently start
7201   // to hold.
7202   assert(obj->is_oop_or_null(true),
7203          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7204   HeapWord* addr = (HeapWord*)obj;
7205   // Check if oop points into the CMS generation
7206   // and is not marked
7207   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7208     // a white object ...
7209     // If we manage to "claim" the object, by being the
7210     // first thread to mark it, then we push it on our
7211     // marking stack
7212     if (_bit_map->par_mark(addr)) {     // ... now grey
7213       // push on work queue (grey set)
7214       bool simulate_overflow = false;
7215       NOT_PRODUCT(
7216         if (CMSMarkStackOverflowALot &&
7217             _collector->par_simulate_overflow()) {
7218           // simulate a stack overflow
7219           simulate_overflow = true;
7220         }
7221       )
7222       if (simulate_overflow || !_work_queue->push(obj)) {
7223         _collector->par_push_on_overflow_list(obj);
7224         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7225       }
7226     } // Else, some other thread got there first
7227   }
7228 }
7229 
7230 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7231 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7232 
7233 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7234   Mutex* bml = _collector->bitMapLock();
7235   assert_lock_strong(bml);
7236   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7237          "CMS thread should hold CMS token");
7238 
7239   bml->unlock();
7240   ConcurrentMarkSweepThread::desynchronize(true);
7241 
7242   _collector->stopTimer();
7243   if (PrintCMSStatistics != 0) {
7244     _collector->incrementYields();
7245   }
7246 
7247   // See the comment in coordinator_yield()
7248   for (unsigned i = 0; i < CMSYieldSleepCount &&
7249                        ConcurrentMarkSweepThread::should_yield() &&
7250                        !CMSCollector::foregroundGCIsActive(); ++i) {
7251     os::sleep(Thread::current(), 1, false);
7252   }
7253 
7254   ConcurrentMarkSweepThread::synchronize(true);
7255   bml->lock();
7256 
7257   _collector->startTimer();
7258 }
7259 
7260 bool CMSPrecleanRefsYieldClosure::should_return() {
7261   if (ConcurrentMarkSweepThread::should_yield()) {
7262     do_yield_work();
7263   }
7264   return _collector->foregroundGCIsActive();
7265 }
7266 
7267 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7268   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7269          "mr should be aligned to start at a card boundary");
7270   // We'd like to assert:
7271   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7272   //        "mr should be a range of cards");
7273   // However, that would be too strong in one case -- the last
7274   // partition ends at _unallocated_block which, in general, can be
7275   // an arbitrary boundary, not necessarily card aligned.
7276   if (PrintCMSStatistics != 0) {
7277     _num_dirty_cards +=
7278          mr.word_size()/CardTableModRefBS::card_size_in_words;
7279   }
7280   _space->object_iterate_mem(mr, &_scan_cl);
7281 }
7282 
7283 SweepClosure::SweepClosure(CMSCollector* collector,
7284                            ConcurrentMarkSweepGeneration* g,
7285                            CMSBitMap* bitMap, bool should_yield) :
7286   _collector(collector),
7287   _g(g),
7288   _sp(g->cmsSpace()),
7289   _limit(_sp->sweep_limit()),
7290   _freelistLock(_sp->freelistLock()),
7291   _bitMap(bitMap),
7292   _yield(should_yield),
7293   _inFreeRange(false),           // No free range at beginning of sweep
7294   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7295   _lastFreeRangeCoalesced(false),
7296   _freeFinger(g->used_region().start())
7297 {
7298   NOT_PRODUCT(
7299     _numObjectsFreed = 0;
7300     _numWordsFreed   = 0;
7301     _numObjectsLive = 0;
7302     _numWordsLive = 0;
7303     _numObjectsAlreadyFree = 0;
7304     _numWordsAlreadyFree = 0;
7305     _last_fc = NULL;
7306 
7307     _sp->initializeIndexedFreeListArrayReturnedBytes();
7308     _sp->dictionary()->initialize_dict_returned_bytes();
7309   )
7310   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7311          "sweep _limit out of bounds");
7312   if (CMSTraceSweeper) {
7313     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7314                         p2i(_limit));
7315   }
7316 }
7317 
7318 void SweepClosure::print_on(outputStream* st) const {
7319   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7320                 p2i(_sp->bottom()), p2i(_sp->end()));
7321   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7322   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7323   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7324   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7325                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7326 }
7327 
7328 #ifndef PRODUCT
7329 // Assertion checking only:  no useful work in product mode --
7330 // however, if any of the flags below become product flags,
7331 // you may need to review this code to see if it needs to be
7332 // enabled in product mode.
7333 SweepClosure::~SweepClosure() {
7334   assert_lock_strong(_freelistLock);
7335   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7336          "sweep _limit out of bounds");
7337   if (inFreeRange()) {
7338     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7339     print();
7340     ShouldNotReachHere();
7341   }
7342   if (Verbose && PrintGC) {
7343     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7344                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7345     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7346                            SIZE_FORMAT" bytes  "
7347       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7348       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7349       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7350     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7351                         * sizeof(HeapWord);
7352     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7353 
7354     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7355       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7356       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7357       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7358       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7359       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7360         indexListReturnedBytes);
7361       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7362         dict_returned_bytes);
7363     }
7364   }
7365   if (CMSTraceSweeper) {
7366     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7367                            p2i(_limit));
7368   }
7369 }
7370 #endif  // PRODUCT
7371 
7372 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7373     bool freeRangeInFreeLists) {
7374   if (CMSTraceSweeper) {
7375     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7376                p2i(freeFinger), freeRangeInFreeLists);
7377   }
7378   assert(!inFreeRange(), "Trampling existing free range");
7379   set_inFreeRange(true);
7380   set_lastFreeRangeCoalesced(false);
7381 
7382   set_freeFinger(freeFinger);
7383   set_freeRangeInFreeLists(freeRangeInFreeLists);
7384   if (CMSTestInFreeList) {
7385     if (freeRangeInFreeLists) {
7386       FreeChunk* fc = (FreeChunk*) freeFinger;
7387       assert(fc->is_free(), "A chunk on the free list should be free.");
7388       assert(fc->size() > 0, "Free range should have a size");
7389       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7390     }
7391   }
7392 }
7393 
7394 // Note that the sweeper runs concurrently with mutators. Thus,
7395 // it is possible for direct allocation in this generation to happen
7396 // in the middle of the sweep. Note that the sweeper also coalesces
7397 // contiguous free blocks. Thus, unless the sweeper and the allocator
7398 // synchronize appropriately freshly allocated blocks may get swept up.
7399 // This is accomplished by the sweeper locking the free lists while
7400 // it is sweeping. Thus blocks that are determined to be free are
7401 // indeed free. There is however one additional complication:
7402 // blocks that have been allocated since the final checkpoint and
7403 // mark, will not have been marked and so would be treated as
7404 // unreachable and swept up. To prevent this, the allocator marks
7405 // the bit map when allocating during the sweep phase. This leads,
7406 // however, to a further complication -- objects may have been allocated
7407 // but not yet initialized -- in the sense that the header isn't yet
7408 // installed. The sweeper can not then determine the size of the block
7409 // in order to skip over it. To deal with this case, we use a technique
7410 // (due to Printezis) to encode such uninitialized block sizes in the
7411 // bit map. Since the bit map uses a bit per every HeapWord, but the
7412 // CMS generation has a minimum object size of 3 HeapWords, it follows
7413 // that "normal marks" won't be adjacent in the bit map (there will
7414 // always be at least two 0 bits between successive 1 bits). We make use
7415 // of these "unused" bits to represent uninitialized blocks -- the bit
7416 // corresponding to the start of the uninitialized object and the next
7417 // bit are both set. Finally, a 1 bit marks the end of the object that
7418 // started with the two consecutive 1 bits to indicate its potentially
7419 // uninitialized state.
7420 
7421 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7422   FreeChunk* fc = (FreeChunk*)addr;
7423   size_t res;
7424 
7425   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7426   // than "addr == _limit" because although _limit was a block boundary when
7427   // we started the sweep, it may no longer be one because heap expansion
7428   // may have caused us to coalesce the block ending at the address _limit
7429   // with a newly expanded chunk (this happens when _limit was set to the
7430   // previous _end of the space), so we may have stepped past _limit:
7431   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7432   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7433     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7434            "sweep _limit out of bounds");
7435     assert(addr < _sp->end(), "addr out of bounds");
7436     // Flush any free range we might be holding as a single
7437     // coalesced chunk to the appropriate free list.
7438     if (inFreeRange()) {
7439       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7440              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7441       flush_cur_free_chunk(freeFinger(),
7442                            pointer_delta(addr, freeFinger()));
7443       if (CMSTraceSweeper) {
7444         gclog_or_tty->print("Sweep: last chunk: ");
7445         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7446                    "[coalesced:%d]\n",
7447                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7448                    lastFreeRangeCoalesced() ? 1 : 0);
7449       }
7450     }
7451 
7452     // help the iterator loop finish
7453     return pointer_delta(_sp->end(), addr);
7454   }
7455 
7456   assert(addr < _limit, "sweep invariant");
7457   // check if we should yield
7458   do_yield_check(addr);
7459   if (fc->is_free()) {
7460     // Chunk that is already free
7461     res = fc->size();
7462     do_already_free_chunk(fc);
7463     debug_only(_sp->verifyFreeLists());
7464     // If we flush the chunk at hand in lookahead_and_flush()
7465     // and it's coalesced with a preceding chunk, then the
7466     // process of "mangling" the payload of the coalesced block
7467     // will cause erasure of the size information from the
7468     // (erstwhile) header of all the coalesced blocks but the
7469     // first, so the first disjunct in the assert will not hold
7470     // in that specific case (in which case the second disjunct
7471     // will hold).
7472     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7473            "Otherwise the size info doesn't change at this step");
7474     NOT_PRODUCT(
7475       _numObjectsAlreadyFree++;
7476       _numWordsAlreadyFree += res;
7477     )
7478     NOT_PRODUCT(_last_fc = fc;)
7479   } else if (!_bitMap->isMarked(addr)) {
7480     // Chunk is fresh garbage
7481     res = do_garbage_chunk(fc);
7482     debug_only(_sp->verifyFreeLists());
7483     NOT_PRODUCT(
7484       _numObjectsFreed++;
7485       _numWordsFreed += res;
7486     )
7487   } else {
7488     // Chunk that is alive.
7489     res = do_live_chunk(fc);
7490     debug_only(_sp->verifyFreeLists());
7491     NOT_PRODUCT(
7492         _numObjectsLive++;
7493         _numWordsLive += res;
7494     )
7495   }
7496   return res;
7497 }
7498 
7499 // For the smart allocation, record following
7500 //  split deaths - a free chunk is removed from its free list because
7501 //      it is being split into two or more chunks.
7502 //  split birth - a free chunk is being added to its free list because
7503 //      a larger free chunk has been split and resulted in this free chunk.
7504 //  coal death - a free chunk is being removed from its free list because
7505 //      it is being coalesced into a large free chunk.
7506 //  coal birth - a free chunk is being added to its free list because
7507 //      it was created when two or more free chunks where coalesced into
7508 //      this free chunk.
7509 //
7510 // These statistics are used to determine the desired number of free
7511 // chunks of a given size.  The desired number is chosen to be relative
7512 // to the end of a CMS sweep.  The desired number at the end of a sweep
7513 // is the
7514 //      count-at-end-of-previous-sweep (an amount that was enough)
7515 //              - count-at-beginning-of-current-sweep  (the excess)
7516 //              + split-births  (gains in this size during interval)
7517 //              - split-deaths  (demands on this size during interval)
7518 // where the interval is from the end of one sweep to the end of the
7519 // next.
7520 //
7521 // When sweeping the sweeper maintains an accumulated chunk which is
7522 // the chunk that is made up of chunks that have been coalesced.  That
7523 // will be termed the left-hand chunk.  A new chunk of garbage that
7524 // is being considered for coalescing will be referred to as the
7525 // right-hand chunk.
7526 //
7527 // When making a decision on whether to coalesce a right-hand chunk with
7528 // the current left-hand chunk, the current count vs. the desired count
7529 // of the left-hand chunk is considered.  Also if the right-hand chunk
7530 // is near the large chunk at the end of the heap (see
7531 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7532 // left-hand chunk is coalesced.
7533 //
7534 // When making a decision about whether to split a chunk, the desired count
7535 // vs. the current count of the candidate to be split is also considered.
7536 // If the candidate is underpopulated (currently fewer chunks than desired)
7537 // a chunk of an overpopulated (currently more chunks than desired) size may
7538 // be chosen.  The "hint" associated with a free list, if non-null, points
7539 // to a free list which may be overpopulated.
7540 //
7541 
7542 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7543   const size_t size = fc->size();
7544   // Chunks that cannot be coalesced are not in the
7545   // free lists.
7546   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7547     assert(_sp->verify_chunk_in_free_list(fc),
7548       "free chunk should be in free lists");
7549   }
7550   // a chunk that is already free, should not have been
7551   // marked in the bit map
7552   HeapWord* const addr = (HeapWord*) fc;
7553   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7554   // Verify that the bit map has no bits marked between
7555   // addr and purported end of this block.
7556   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7557 
7558   // Some chunks cannot be coalesced under any circumstances.
7559   // See the definition of cantCoalesce().
7560   if (!fc->cantCoalesce()) {
7561     // This chunk can potentially be coalesced.
7562     if (_sp->adaptive_freelists()) {
7563       // All the work is done in
7564       do_post_free_or_garbage_chunk(fc, size);
7565     } else {  // Not adaptive free lists
7566       // this is a free chunk that can potentially be coalesced by the sweeper;
7567       if (!inFreeRange()) {
7568         // if the next chunk is a free block that can't be coalesced
7569         // it doesn't make sense to remove this chunk from the free lists
7570         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7571         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7572         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7573             nextChunk->is_free()               &&     // ... which is free...
7574             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7575           // nothing to do
7576         } else {
7577           // Potentially the start of a new free range:
7578           // Don't eagerly remove it from the free lists.
7579           // No need to remove it if it will just be put
7580           // back again.  (Also from a pragmatic point of view
7581           // if it is a free block in a region that is beyond
7582           // any allocated blocks, an assertion will fail)
7583           // Remember the start of a free run.
7584           initialize_free_range(addr, true);
7585           // end - can coalesce with next chunk
7586         }
7587       } else {
7588         // the midst of a free range, we are coalescing
7589         print_free_block_coalesced(fc);
7590         if (CMSTraceSweeper) {
7591           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7592         }
7593         // remove it from the free lists
7594         _sp->removeFreeChunkFromFreeLists(fc);
7595         set_lastFreeRangeCoalesced(true);
7596         // If the chunk is being coalesced and the current free range is
7597         // in the free lists, remove the current free range so that it
7598         // will be returned to the free lists in its entirety - all
7599         // the coalesced pieces included.
7600         if (freeRangeInFreeLists()) {
7601           FreeChunk* ffc = (FreeChunk*) freeFinger();
7602           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7603             "Size of free range is inconsistent with chunk size.");
7604           if (CMSTestInFreeList) {
7605             assert(_sp->verify_chunk_in_free_list(ffc),
7606               "free range is not in free lists");
7607           }
7608           _sp->removeFreeChunkFromFreeLists(ffc);
7609           set_freeRangeInFreeLists(false);
7610         }
7611       }
7612     }
7613     // Note that if the chunk is not coalescable (the else arm
7614     // below), we unconditionally flush, without needing to do
7615     // a "lookahead," as we do below.
7616     if (inFreeRange()) lookahead_and_flush(fc, size);
7617   } else {
7618     // Code path common to both original and adaptive free lists.
7619 
7620     // cant coalesce with previous block; this should be treated
7621     // as the end of a free run if any
7622     if (inFreeRange()) {
7623       // we kicked some butt; time to pick up the garbage
7624       assert(freeFinger() < addr, "freeFinger points too high");
7625       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7626     }
7627     // else, nothing to do, just continue
7628   }
7629 }
7630 
7631 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7632   // This is a chunk of garbage.  It is not in any free list.
7633   // Add it to a free list or let it possibly be coalesced into
7634   // a larger chunk.
7635   HeapWord* const addr = (HeapWord*) fc;
7636   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7637 
7638   if (_sp->adaptive_freelists()) {
7639     // Verify that the bit map has no bits marked between
7640     // addr and purported end of just dead object.
7641     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7642 
7643     do_post_free_or_garbage_chunk(fc, size);
7644   } else {
7645     if (!inFreeRange()) {
7646       // start of a new free range
7647       assert(size > 0, "A free range should have a size");
7648       initialize_free_range(addr, false);
7649     } else {
7650       // this will be swept up when we hit the end of the
7651       // free range
7652       if (CMSTraceSweeper) {
7653         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7654       }
7655       // If the chunk is being coalesced and the current free range is
7656       // in the free lists, remove the current free range so that it
7657       // will be returned to the free lists in its entirety - all
7658       // the coalesced pieces included.
7659       if (freeRangeInFreeLists()) {
7660         FreeChunk* ffc = (FreeChunk*)freeFinger();
7661         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7662           "Size of free range is inconsistent with chunk size.");
7663         if (CMSTestInFreeList) {
7664           assert(_sp->verify_chunk_in_free_list(ffc),
7665             "free range is not in free lists");
7666         }
7667         _sp->removeFreeChunkFromFreeLists(ffc);
7668         set_freeRangeInFreeLists(false);
7669       }
7670       set_lastFreeRangeCoalesced(true);
7671     }
7672     // this will be swept up when we hit the end of the free range
7673 
7674     // Verify that the bit map has no bits marked between
7675     // addr and purported end of just dead object.
7676     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7677   }
7678   assert(_limit >= addr + size,
7679          "A freshly garbage chunk can't possibly straddle over _limit");
7680   if (inFreeRange()) lookahead_and_flush(fc, size);
7681   return size;
7682 }
7683 
7684 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7685   HeapWord* addr = (HeapWord*) fc;
7686   // The sweeper has just found a live object. Return any accumulated
7687   // left hand chunk to the free lists.
7688   if (inFreeRange()) {
7689     assert(freeFinger() < addr, "freeFinger points too high");
7690     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7691   }
7692 
7693   // This object is live: we'd normally expect this to be
7694   // an oop, and like to assert the following:
7695   // assert(oop(addr)->is_oop(), "live block should be an oop");
7696   // However, as we commented above, this may be an object whose
7697   // header hasn't yet been initialized.
7698   size_t size;
7699   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7700   if (_bitMap->isMarked(addr + 1)) {
7701     // Determine the size from the bit map, rather than trying to
7702     // compute it from the object header.
7703     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7704     size = pointer_delta(nextOneAddr + 1, addr);
7705     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7706            "alignment problem");
7707 
7708 #ifdef ASSERT
7709       if (oop(addr)->klass_or_null() != NULL) {
7710         // Ignore mark word because we are running concurrent with mutators
7711         assert(oop(addr)->is_oop(true), "live block should be an oop");
7712         assert(size ==
7713                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7714                "P-mark and computed size do not agree");
7715       }
7716 #endif
7717 
7718   } else {
7719     // This should be an initialized object that's alive.
7720     assert(oop(addr)->klass_or_null() != NULL,
7721            "Should be an initialized object");
7722     // Ignore mark word because we are running concurrent with mutators
7723     assert(oop(addr)->is_oop(true), "live block should be an oop");
7724     // Verify that the bit map has no bits marked between
7725     // addr and purported end of this block.
7726     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7727     assert(size >= 3, "Necessary for Printezis marks to work");
7728     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7729     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7730   }
7731   return size;
7732 }
7733 
7734 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7735                                                  size_t chunkSize) {
7736   // do_post_free_or_garbage_chunk() should only be called in the case
7737   // of the adaptive free list allocator.
7738   const bool fcInFreeLists = fc->is_free();
7739   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7740   assert((HeapWord*)fc <= _limit, "sweep invariant");
7741   if (CMSTestInFreeList && fcInFreeLists) {
7742     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7743   }
7744 
7745   if (CMSTraceSweeper) {
7746     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7747   }
7748 
7749   HeapWord* const fc_addr = (HeapWord*) fc;
7750 
7751   bool coalesce;
7752   const size_t left  = pointer_delta(fc_addr, freeFinger());
7753   const size_t right = chunkSize;
7754   switch (FLSCoalescePolicy) {
7755     // numeric value forms a coalition aggressiveness metric
7756     case 0:  { // never coalesce
7757       coalesce = false;
7758       break;
7759     }
7760     case 1: { // coalesce if left & right chunks on overpopulated lists
7761       coalesce = _sp->coalOverPopulated(left) &&
7762                  _sp->coalOverPopulated(right);
7763       break;
7764     }
7765     case 2: { // coalesce if left chunk on overpopulated list (default)
7766       coalesce = _sp->coalOverPopulated(left);
7767       break;
7768     }
7769     case 3: { // coalesce if left OR right chunk on overpopulated list
7770       coalesce = _sp->coalOverPopulated(left) ||
7771                  _sp->coalOverPopulated(right);
7772       break;
7773     }
7774     case 4: { // always coalesce
7775       coalesce = true;
7776       break;
7777     }
7778     default:
7779      ShouldNotReachHere();
7780   }
7781 
7782   // Should the current free range be coalesced?
7783   // If the chunk is in a free range and either we decided to coalesce above
7784   // or the chunk is near the large block at the end of the heap
7785   // (isNearLargestChunk() returns true), then coalesce this chunk.
7786   const bool doCoalesce = inFreeRange()
7787                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7788   if (doCoalesce) {
7789     // Coalesce the current free range on the left with the new
7790     // chunk on the right.  If either is on a free list,
7791     // it must be removed from the list and stashed in the closure.
7792     if (freeRangeInFreeLists()) {
7793       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7794       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7795         "Size of free range is inconsistent with chunk size.");
7796       if (CMSTestInFreeList) {
7797         assert(_sp->verify_chunk_in_free_list(ffc),
7798           "Chunk is not in free lists");
7799       }
7800       _sp->coalDeath(ffc->size());
7801       _sp->removeFreeChunkFromFreeLists(ffc);
7802       set_freeRangeInFreeLists(false);
7803     }
7804     if (fcInFreeLists) {
7805       _sp->coalDeath(chunkSize);
7806       assert(fc->size() == chunkSize,
7807         "The chunk has the wrong size or is not in the free lists");
7808       _sp->removeFreeChunkFromFreeLists(fc);
7809     }
7810     set_lastFreeRangeCoalesced(true);
7811     print_free_block_coalesced(fc);
7812   } else {  // not in a free range and/or should not coalesce
7813     // Return the current free range and start a new one.
7814     if (inFreeRange()) {
7815       // In a free range but cannot coalesce with the right hand chunk.
7816       // Put the current free range into the free lists.
7817       flush_cur_free_chunk(freeFinger(),
7818                            pointer_delta(fc_addr, freeFinger()));
7819     }
7820     // Set up for new free range.  Pass along whether the right hand
7821     // chunk is in the free lists.
7822     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7823   }
7824 }
7825 
7826 // Lookahead flush:
7827 // If we are tracking a free range, and this is the last chunk that
7828 // we'll look at because its end crosses past _limit, we'll preemptively
7829 // flush it along with any free range we may be holding on to. Note that
7830 // this can be the case only for an already free or freshly garbage
7831 // chunk. If this block is an object, it can never straddle
7832 // over _limit. The "straddling" occurs when _limit is set at
7833 // the previous end of the space when this cycle started, and
7834 // a subsequent heap expansion caused the previously co-terminal
7835 // free block to be coalesced with the newly expanded portion,
7836 // thus rendering _limit a non-block-boundary making it dangerous
7837 // for the sweeper to step over and examine.
7838 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7839   assert(inFreeRange(), "Should only be called if currently in a free range.");
7840   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7841   assert(_sp->used_region().contains(eob - 1),
7842          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7843                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7844                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7845                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7846   if (eob >= _limit) {
7847     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7848     if (CMSTraceSweeper) {
7849       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7850                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7851                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7852                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7853     }
7854     // Return the storage we are tracking back into the free lists.
7855     if (CMSTraceSweeper) {
7856       gclog_or_tty->print_cr("Flushing ... ");
7857     }
7858     assert(freeFinger() < eob, "Error");
7859     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7860   }
7861 }
7862 
7863 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7864   assert(inFreeRange(), "Should only be called if currently in a free range.");
7865   assert(size > 0,
7866     "A zero sized chunk cannot be added to the free lists.");
7867   if (!freeRangeInFreeLists()) {
7868     if (CMSTestInFreeList) {
7869       FreeChunk* fc = (FreeChunk*) chunk;
7870       fc->set_size(size);
7871       assert(!_sp->verify_chunk_in_free_list(fc),
7872         "chunk should not be in free lists yet");
7873     }
7874     if (CMSTraceSweeper) {
7875       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7876                     p2i(chunk), size);
7877     }
7878     // A new free range is going to be starting.  The current
7879     // free range has not been added to the free lists yet or
7880     // was removed so add it back.
7881     // If the current free range was coalesced, then the death
7882     // of the free range was recorded.  Record a birth now.
7883     if (lastFreeRangeCoalesced()) {
7884       _sp->coalBirth(size);
7885     }
7886     _sp->addChunkAndRepairOffsetTable(chunk, size,
7887             lastFreeRangeCoalesced());
7888   } else if (CMSTraceSweeper) {
7889     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7890   }
7891   set_inFreeRange(false);
7892   set_freeRangeInFreeLists(false);
7893 }
7894 
7895 // We take a break if we've been at this for a while,
7896 // so as to avoid monopolizing the locks involved.
7897 void SweepClosure::do_yield_work(HeapWord* addr) {
7898   // Return current free chunk being used for coalescing (if any)
7899   // to the appropriate freelist.  After yielding, the next
7900   // free block encountered will start a coalescing range of
7901   // free blocks.  If the next free block is adjacent to the
7902   // chunk just flushed, they will need to wait for the next
7903   // sweep to be coalesced.
7904   if (inFreeRange()) {
7905     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7906   }
7907 
7908   // First give up the locks, then yield, then re-lock.
7909   // We should probably use a constructor/destructor idiom to
7910   // do this unlock/lock or modify the MutexUnlocker class to
7911   // serve our purpose. XXX
7912   assert_lock_strong(_bitMap->lock());
7913   assert_lock_strong(_freelistLock);
7914   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7915          "CMS thread should hold CMS token");
7916   _bitMap->lock()->unlock();
7917   _freelistLock->unlock();
7918   ConcurrentMarkSweepThread::desynchronize(true);
7919   _collector->stopTimer();
7920   if (PrintCMSStatistics != 0) {
7921     _collector->incrementYields();
7922   }
7923 
7924   // See the comment in coordinator_yield()
7925   for (unsigned i = 0; i < CMSYieldSleepCount &&
7926                        ConcurrentMarkSweepThread::should_yield() &&
7927                        !CMSCollector::foregroundGCIsActive(); ++i) {
7928     os::sleep(Thread::current(), 1, false);
7929   }
7930 
7931   ConcurrentMarkSweepThread::synchronize(true);
7932   _freelistLock->lock();
7933   _bitMap->lock()->lock_without_safepoint_check();
7934   _collector->startTimer();
7935 }
7936 
7937 #ifndef PRODUCT
7938 // This is actually very useful in a product build if it can
7939 // be called from the debugger.  Compile it into the product
7940 // as needed.
7941 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7942   return debug_cms_space->verify_chunk_in_free_list(fc);
7943 }
7944 #endif
7945 
7946 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7947   if (CMSTraceSweeper) {
7948     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7949                            p2i(fc), fc->size());
7950   }
7951 }
7952 
7953 // CMSIsAliveClosure
7954 bool CMSIsAliveClosure::do_object_b(oop obj) {
7955   HeapWord* addr = (HeapWord*)obj;
7956   return addr != NULL &&
7957          (!_span.contains(addr) || _bit_map->isMarked(addr));
7958 }
7959 
7960 
7961 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7962                       MemRegion span,
7963                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7964                       bool cpc):
7965   _collector(collector),
7966   _span(span),
7967   _bit_map(bit_map),
7968   _mark_stack(mark_stack),
7969   _concurrent_precleaning(cpc) {
7970   assert(!_span.is_empty(), "Empty span could spell trouble");
7971 }
7972 
7973 
7974 // CMSKeepAliveClosure: the serial version
7975 void CMSKeepAliveClosure::do_oop(oop obj) {
7976   HeapWord* addr = (HeapWord*)obj;
7977   if (_span.contains(addr) &&
7978       !_bit_map->isMarked(addr)) {
7979     _bit_map->mark(addr);
7980     bool simulate_overflow = false;
7981     NOT_PRODUCT(
7982       if (CMSMarkStackOverflowALot &&
7983           _collector->simulate_overflow()) {
7984         // simulate a stack overflow
7985         simulate_overflow = true;
7986       }
7987     )
7988     if (simulate_overflow || !_mark_stack->push(obj)) {
7989       if (_concurrent_precleaning) {
7990         // We dirty the overflown object and let the remark
7991         // phase deal with it.
7992         assert(_collector->overflow_list_is_empty(), "Error");
7993         // In the case of object arrays, we need to dirty all of
7994         // the cards that the object spans. No locking or atomics
7995         // are needed since no one else can be mutating the mod union
7996         // table.
7997         if (obj->is_objArray()) {
7998           size_t sz = obj->size();
7999           HeapWord* end_card_addr =
8000             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8001           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8002           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8003           _collector->_modUnionTable.mark_range(redirty_range);
8004         } else {
8005           _collector->_modUnionTable.mark(addr);
8006         }
8007         _collector->_ser_kac_preclean_ovflw++;
8008       } else {
8009         _collector->push_on_overflow_list(obj);
8010         _collector->_ser_kac_ovflw++;
8011       }
8012     }
8013   }
8014 }
8015 
8016 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8017 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8018 
8019 // CMSParKeepAliveClosure: a parallel version of the above.
8020 // The work queues are private to each closure (thread),
8021 // but (may be) available for stealing by other threads.
8022 void CMSParKeepAliveClosure::do_oop(oop obj) {
8023   HeapWord* addr = (HeapWord*)obj;
8024   if (_span.contains(addr) &&
8025       !_bit_map->isMarked(addr)) {
8026     // In general, during recursive tracing, several threads
8027     // may be concurrently getting here; the first one to
8028     // "tag" it, claims it.
8029     if (_bit_map->par_mark(addr)) {
8030       bool res = _work_queue->push(obj);
8031       assert(res, "Low water mark should be much less than capacity");
8032       // Do a recursive trim in the hope that this will keep
8033       // stack usage lower, but leave some oops for potential stealers
8034       trim_queue(_low_water_mark);
8035     } // Else, another thread got there first
8036   }
8037 }
8038 
8039 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8040 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8041 
8042 void CMSParKeepAliveClosure::trim_queue(uint max) {
8043   while (_work_queue->size() > max) {
8044     oop new_oop;
8045     if (_work_queue->pop_local(new_oop)) {
8046       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8047       assert(_bit_map->isMarked((HeapWord*)new_oop),
8048              "no white objects on this stack!");
8049       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8050       // iterate over the oops in this oop, marking and pushing
8051       // the ones in CMS heap (i.e. in _span).
8052       new_oop->oop_iterate(&_mark_and_push);
8053     }
8054   }
8055 }
8056 
8057 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8058                                 CMSCollector* collector,
8059                                 MemRegion span, CMSBitMap* bit_map,
8060                                 OopTaskQueue* work_queue):
8061   _collector(collector),
8062   _span(span),
8063   _bit_map(bit_map),
8064   _work_queue(work_queue) { }
8065 
8066 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8067   HeapWord* addr = (HeapWord*)obj;
8068   if (_span.contains(addr) &&
8069       !_bit_map->isMarked(addr)) {
8070     if (_bit_map->par_mark(addr)) {
8071       bool simulate_overflow = false;
8072       NOT_PRODUCT(
8073         if (CMSMarkStackOverflowALot &&
8074             _collector->par_simulate_overflow()) {
8075           // simulate a stack overflow
8076           simulate_overflow = true;
8077         }
8078       )
8079       if (simulate_overflow || !_work_queue->push(obj)) {
8080         _collector->par_push_on_overflow_list(obj);
8081         _collector->_par_kac_ovflw++;
8082       }
8083     } // Else another thread got there already
8084   }
8085 }
8086 
8087 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8088 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8089 
8090 //////////////////////////////////////////////////////////////////
8091 //  CMSExpansionCause                /////////////////////////////
8092 //////////////////////////////////////////////////////////////////
8093 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8094   switch (cause) {
8095     case _no_expansion:
8096       return "No expansion";
8097     case _satisfy_free_ratio:
8098       return "Free ratio";
8099     case _satisfy_promotion:
8100       return "Satisfy promotion";
8101     case _satisfy_allocation:
8102       return "allocation";
8103     case _allocate_par_lab:
8104       return "Par LAB";
8105     case _allocate_par_spooling_space:
8106       return "Par Spooling Space";
8107     case _adaptive_size_policy:
8108       return "Ergonomics";
8109     default:
8110       return "unknown";
8111   }
8112 }
8113 
8114 void CMSDrainMarkingStackClosure::do_void() {
8115   // the max number to take from overflow list at a time
8116   const size_t num = _mark_stack->capacity()/4;
8117   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8118          "Overflow list should be NULL during concurrent phases");
8119   while (!_mark_stack->isEmpty() ||
8120          // if stack is empty, check the overflow list
8121          _collector->take_from_overflow_list(num, _mark_stack)) {
8122     oop obj = _mark_stack->pop();
8123     HeapWord* addr = (HeapWord*)obj;
8124     assert(_span.contains(addr), "Should be within span");
8125     assert(_bit_map->isMarked(addr), "Should be marked");
8126     assert(obj->is_oop(), "Should be an oop");
8127     obj->oop_iterate(_keep_alive);
8128   }
8129 }
8130 
8131 void CMSParDrainMarkingStackClosure::do_void() {
8132   // drain queue
8133   trim_queue(0);
8134 }
8135 
8136 // Trim our work_queue so its length is below max at return
8137 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8138   while (_work_queue->size() > max) {
8139     oop new_oop;
8140     if (_work_queue->pop_local(new_oop)) {
8141       assert(new_oop->is_oop(), "Expected an oop");
8142       assert(_bit_map->isMarked((HeapWord*)new_oop),
8143              "no white objects on this stack!");
8144       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8145       // iterate over the oops in this oop, marking and pushing
8146       // the ones in CMS heap (i.e. in _span).
8147       new_oop->oop_iterate(&_mark_and_push);
8148     }
8149   }
8150 }
8151 
8152 ////////////////////////////////////////////////////////////////////
8153 // Support for Marking Stack Overflow list handling and related code
8154 ////////////////////////////////////////////////////////////////////
8155 // Much of the following code is similar in shape and spirit to the
8156 // code used in ParNewGC. We should try and share that code
8157 // as much as possible in the future.
8158 
8159 #ifndef PRODUCT
8160 // Debugging support for CMSStackOverflowALot
8161 
8162 // It's OK to call this multi-threaded;  the worst thing
8163 // that can happen is that we'll get a bunch of closely
8164 // spaced simulated overflows, but that's OK, in fact
8165 // probably good as it would exercise the overflow code
8166 // under contention.
8167 bool CMSCollector::simulate_overflow() {
8168   if (_overflow_counter-- <= 0) { // just being defensive
8169     _overflow_counter = CMSMarkStackOverflowInterval;
8170     return true;
8171   } else {
8172     return false;
8173   }
8174 }
8175 
8176 bool CMSCollector::par_simulate_overflow() {
8177   return simulate_overflow();
8178 }
8179 #endif
8180 
8181 // Single-threaded
8182 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8183   assert(stack->isEmpty(), "Expected precondition");
8184   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8185   size_t i = num;
8186   oop  cur = _overflow_list;
8187   const markOop proto = markOopDesc::prototype();
8188   NOT_PRODUCT(ssize_t n = 0;)
8189   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8190     next = oop(cur->mark());
8191     cur->set_mark(proto);   // until proven otherwise
8192     assert(cur->is_oop(), "Should be an oop");
8193     bool res = stack->push(cur);
8194     assert(res, "Bit off more than can chew?");
8195     NOT_PRODUCT(n++;)
8196   }
8197   _overflow_list = cur;
8198 #ifndef PRODUCT
8199   assert(_num_par_pushes >= n, "Too many pops?");
8200   _num_par_pushes -=n;
8201 #endif
8202   return !stack->isEmpty();
8203 }
8204 
8205 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8206 // (MT-safe) Get a prefix of at most "num" from the list.
8207 // The overflow list is chained through the mark word of
8208 // each object in the list. We fetch the entire list,
8209 // break off a prefix of the right size and return the
8210 // remainder. If other threads try to take objects from
8211 // the overflow list at that time, they will wait for
8212 // some time to see if data becomes available. If (and
8213 // only if) another thread places one or more object(s)
8214 // on the global list before we have returned the suffix
8215 // to the global list, we will walk down our local list
8216 // to find its end and append the global list to
8217 // our suffix before returning it. This suffix walk can
8218 // prove to be expensive (quadratic in the amount of traffic)
8219 // when there are many objects in the overflow list and
8220 // there is much producer-consumer contention on the list.
8221 // *NOTE*: The overflow list manipulation code here and
8222 // in ParNewGeneration:: are very similar in shape,
8223 // except that in the ParNew case we use the old (from/eden)
8224 // copy of the object to thread the list via its klass word.
8225 // Because of the common code, if you make any changes in
8226 // the code below, please check the ParNew version to see if
8227 // similar changes might be needed.
8228 // CR 6797058 has been filed to consolidate the common code.
8229 bool CMSCollector::par_take_from_overflow_list(size_t num,
8230                                                OopTaskQueue* work_q,
8231                                                int no_of_gc_threads) {
8232   assert(work_q->size() == 0, "First empty local work queue");
8233   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8234   if (_overflow_list == NULL) {
8235     return false;
8236   }
8237   // Grab the entire list; we'll put back a suffix
8238   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8239   Thread* tid = Thread::current();
8240   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8241   // set to ParallelGCThreads.
8242   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8243   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8244   // If the list is busy, we spin for a short while,
8245   // sleeping between attempts to get the list.
8246   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8247     os::sleep(tid, sleep_time_millis, false);
8248     if (_overflow_list == NULL) {
8249       // Nothing left to take
8250       return false;
8251     } else if (_overflow_list != BUSY) {
8252       // Try and grab the prefix
8253       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8254     }
8255   }
8256   // If the list was found to be empty, or we spun long
8257   // enough, we give up and return empty-handed. If we leave
8258   // the list in the BUSY state below, it must be the case that
8259   // some other thread holds the overflow list and will set it
8260   // to a non-BUSY state in the future.
8261   if (prefix == NULL || prefix == BUSY) {
8262      // Nothing to take or waited long enough
8263      if (prefix == NULL) {
8264        // Write back the NULL in case we overwrote it with BUSY above
8265        // and it is still the same value.
8266        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8267      }
8268      return false;
8269   }
8270   assert(prefix != NULL && prefix != BUSY, "Error");
8271   size_t i = num;
8272   oop cur = prefix;
8273   // Walk down the first "num" objects, unless we reach the end.
8274   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8275   if (cur->mark() == NULL) {
8276     // We have "num" or fewer elements in the list, so there
8277     // is nothing to return to the global list.
8278     // Write back the NULL in lieu of the BUSY we wrote
8279     // above, if it is still the same value.
8280     if (_overflow_list == BUSY) {
8281       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8282     }
8283   } else {
8284     // Chop off the suffix and return it to the global list.
8285     assert(cur->mark() != BUSY, "Error");
8286     oop suffix_head = cur->mark(); // suffix will be put back on global list
8287     cur->set_mark(NULL);           // break off suffix
8288     // It's possible that the list is still in the empty(busy) state
8289     // we left it in a short while ago; in that case we may be
8290     // able to place back the suffix without incurring the cost
8291     // of a walk down the list.
8292     oop observed_overflow_list = _overflow_list;
8293     oop cur_overflow_list = observed_overflow_list;
8294     bool attached = false;
8295     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8296       observed_overflow_list =
8297         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8298       if (cur_overflow_list == observed_overflow_list) {
8299         attached = true;
8300         break;
8301       } else cur_overflow_list = observed_overflow_list;
8302     }
8303     if (!attached) {
8304       // Too bad, someone else sneaked in (at least) an element; we'll need
8305       // to do a splice. Find tail of suffix so we can prepend suffix to global
8306       // list.
8307       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8308       oop suffix_tail = cur;
8309       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8310              "Tautology");
8311       observed_overflow_list = _overflow_list;
8312       do {
8313         cur_overflow_list = observed_overflow_list;
8314         if (cur_overflow_list != BUSY) {
8315           // Do the splice ...
8316           suffix_tail->set_mark(markOop(cur_overflow_list));
8317         } else { // cur_overflow_list == BUSY
8318           suffix_tail->set_mark(NULL);
8319         }
8320         // ... and try to place spliced list back on overflow_list ...
8321         observed_overflow_list =
8322           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8323       } while (cur_overflow_list != observed_overflow_list);
8324       // ... until we have succeeded in doing so.
8325     }
8326   }
8327 
8328   // Push the prefix elements on work_q
8329   assert(prefix != NULL, "control point invariant");
8330   const markOop proto = markOopDesc::prototype();
8331   oop next;
8332   NOT_PRODUCT(ssize_t n = 0;)
8333   for (cur = prefix; cur != NULL; cur = next) {
8334     next = oop(cur->mark());
8335     cur->set_mark(proto);   // until proven otherwise
8336     assert(cur->is_oop(), "Should be an oop");
8337     bool res = work_q->push(cur);
8338     assert(res, "Bit off more than we can chew?");
8339     NOT_PRODUCT(n++;)
8340   }
8341 #ifndef PRODUCT
8342   assert(_num_par_pushes >= n, "Too many pops?");
8343   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8344 #endif
8345   return true;
8346 }
8347 
8348 // Single-threaded
8349 void CMSCollector::push_on_overflow_list(oop p) {
8350   NOT_PRODUCT(_num_par_pushes++;)
8351   assert(p->is_oop(), "Not an oop");
8352   preserve_mark_if_necessary(p);
8353   p->set_mark((markOop)_overflow_list);
8354   _overflow_list = p;
8355 }
8356 
8357 // Multi-threaded; use CAS to prepend to overflow list
8358 void CMSCollector::par_push_on_overflow_list(oop p) {
8359   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8360   assert(p->is_oop(), "Not an oop");
8361   par_preserve_mark_if_necessary(p);
8362   oop observed_overflow_list = _overflow_list;
8363   oop cur_overflow_list;
8364   do {
8365     cur_overflow_list = observed_overflow_list;
8366     if (cur_overflow_list != BUSY) {
8367       p->set_mark(markOop(cur_overflow_list));
8368     } else {
8369       p->set_mark(NULL);
8370     }
8371     observed_overflow_list =
8372       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8373   } while (cur_overflow_list != observed_overflow_list);
8374 }
8375 #undef BUSY
8376 
8377 // Single threaded
8378 // General Note on GrowableArray: pushes may silently fail
8379 // because we are (temporarily) out of C-heap for expanding
8380 // the stack. The problem is quite ubiquitous and affects
8381 // a lot of code in the JVM. The prudent thing for GrowableArray
8382 // to do (for now) is to exit with an error. However, that may
8383 // be too draconian in some cases because the caller may be
8384 // able to recover without much harm. For such cases, we
8385 // should probably introduce a "soft_push" method which returns
8386 // an indication of success or failure with the assumption that
8387 // the caller may be able to recover from a failure; code in
8388 // the VM can then be changed, incrementally, to deal with such
8389 // failures where possible, thus, incrementally hardening the VM
8390 // in such low resource situations.
8391 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8392   _preserved_oop_stack.push(p);
8393   _preserved_mark_stack.push(m);
8394   assert(m == p->mark(), "Mark word changed");
8395   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8396          "bijection");
8397 }
8398 
8399 // Single threaded
8400 void CMSCollector::preserve_mark_if_necessary(oop p) {
8401   markOop m = p->mark();
8402   if (m->must_be_preserved(p)) {
8403     preserve_mark_work(p, m);
8404   }
8405 }
8406 
8407 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8408   markOop m = p->mark();
8409   if (m->must_be_preserved(p)) {
8410     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8411     // Even though we read the mark word without holding
8412     // the lock, we are assured that it will not change
8413     // because we "own" this oop, so no other thread can
8414     // be trying to push it on the overflow list; see
8415     // the assertion in preserve_mark_work() that checks
8416     // that m == p->mark().
8417     preserve_mark_work(p, m);
8418   }
8419 }
8420 
8421 // We should be able to do this multi-threaded,
8422 // a chunk of stack being a task (this is
8423 // correct because each oop only ever appears
8424 // once in the overflow list. However, it's
8425 // not very easy to completely overlap this with
8426 // other operations, so will generally not be done
8427 // until all work's been completed. Because we
8428 // expect the preserved oop stack (set) to be small,
8429 // it's probably fine to do this single-threaded.
8430 // We can explore cleverer concurrent/overlapped/parallel
8431 // processing of preserved marks if we feel the
8432 // need for this in the future. Stack overflow should
8433 // be so rare in practice and, when it happens, its
8434 // effect on performance so great that this will
8435 // likely just be in the noise anyway.
8436 void CMSCollector::restore_preserved_marks_if_any() {
8437   assert(SafepointSynchronize::is_at_safepoint(),
8438          "world should be stopped");
8439   assert(Thread::current()->is_ConcurrentGC_thread() ||
8440          Thread::current()->is_VM_thread(),
8441          "should be single-threaded");
8442   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8443          "bijection");
8444 
8445   while (!_preserved_oop_stack.is_empty()) {
8446     oop p = _preserved_oop_stack.pop();
8447     assert(p->is_oop(), "Should be an oop");
8448     assert(_span.contains(p), "oop should be in _span");
8449     assert(p->mark() == markOopDesc::prototype(),
8450            "Set when taken from overflow list");
8451     markOop m = _preserved_mark_stack.pop();
8452     p->set_mark(m);
8453   }
8454   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8455          "stacks were cleared above");
8456 }
8457 
8458 #ifndef PRODUCT
8459 bool CMSCollector::no_preserved_marks() const {
8460   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8461 }
8462 #endif
8463 
8464 // Transfer some number of overflown objects to usual marking
8465 // stack. Return true if some objects were transferred.
8466 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8467   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8468                     (size_t)ParGCDesiredObjsFromOverflowList);
8469 
8470   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8471   assert(_collector->overflow_list_is_empty() || res,
8472          "If list is not empty, we should have taken something");
8473   assert(!res || !_mark_stack->isEmpty(),
8474          "If we took something, it should now be on our stack");
8475   return res;
8476 }
8477 
8478 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8479   size_t res = _sp->block_size_no_stall(addr, _collector);
8480   if (_sp->block_is_obj(addr)) {
8481     if (_live_bit_map->isMarked(addr)) {
8482       // It can't have been dead in a previous cycle
8483       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8484     } else {
8485       _dead_bit_map->mark(addr);      // mark the dead object
8486     }
8487   }
8488   // Could be 0, if the block size could not be computed without stalling.
8489   return res;
8490 }
8491 
8492 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8493 
8494   switch (phase) {
8495     case CMSCollector::InitialMarking:
8496       initialize(true  /* fullGC */ ,
8497                  cause /* cause of the GC */,
8498                  true  /* recordGCBeginTime */,
8499                  true  /* recordPreGCUsage */,
8500                  false /* recordPeakUsage */,
8501                  false /* recordPostGCusage */,
8502                  true  /* recordAccumulatedGCTime */,
8503                  false /* recordGCEndTime */,
8504                  false /* countCollection */  );
8505       break;
8506 
8507     case CMSCollector::FinalMarking:
8508       initialize(true  /* fullGC */ ,
8509                  cause /* cause of the GC */,
8510                  false /* recordGCBeginTime */,
8511                  false /* recordPreGCUsage */,
8512                  false /* recordPeakUsage */,
8513                  false /* recordPostGCusage */,
8514                  true  /* recordAccumulatedGCTime */,
8515                  false /* recordGCEndTime */,
8516                  false /* countCollection */  );
8517       break;
8518 
8519     case CMSCollector::Sweeping:
8520       initialize(true  /* fullGC */ ,
8521                  cause /* cause of the GC */,
8522                  false /* recordGCBeginTime */,
8523                  false /* recordPreGCUsage */,
8524                  true  /* recordPeakUsage */,
8525                  true  /* recordPostGCusage */,
8526                  false /* recordAccumulatedGCTime */,
8527                  true  /* recordGCEndTime */,
8528                  true  /* countCollection */  );
8529       break;
8530 
8531     default:
8532       ShouldNotReachHere();
8533   }
8534 }