1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcTimer.hpp"
  47 #include "gc/shared/gcTrace.hpp"
  48 #include "gc/shared/gcTraceTime.hpp"
  49 #include "gc/shared/genCollectedHeap.hpp"
  50 #include "gc/shared/genOopClosures.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/strongRootsScope.hpp"
  54 #include "gc/shared/taskqueue.inline.hpp"
  55 #include "memory/allocation.hpp"
  56 #include "memory/iterator.inline.hpp"
  57 #include "memory/padded.hpp"
  58 #include "memory/resourceArea.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "runtime/atomic.inline.hpp"
  62 #include "runtime/globals_extension.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/orderAccess.inline.hpp"
  66 #include "runtime/vmThread.hpp"
  67 #include "services/memoryService.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/stack.inline.hpp"
  70 
  71 // statics
  72 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  73 bool CMSCollector::_full_gc_requested = false;
  74 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  75 
  76 //////////////////////////////////////////////////////////////////
  77 // In support of CMS/VM thread synchronization
  78 //////////////////////////////////////////////////////////////////
  79 // We split use of the CGC_lock into 2 "levels".
  80 // The low-level locking is of the usual CGC_lock monitor. We introduce
  81 // a higher level "token" (hereafter "CMS token") built on top of the
  82 // low level monitor (hereafter "CGC lock").
  83 // The token-passing protocol gives priority to the VM thread. The
  84 // CMS-lock doesn't provide any fairness guarantees, but clients
  85 // should ensure that it is only held for very short, bounded
  86 // durations.
  87 //
  88 // When either of the CMS thread or the VM thread is involved in
  89 // collection operations during which it does not want the other
  90 // thread to interfere, it obtains the CMS token.
  91 //
  92 // If either thread tries to get the token while the other has
  93 // it, that thread waits. However, if the VM thread and CMS thread
  94 // both want the token, then the VM thread gets priority while the
  95 // CMS thread waits. This ensures, for instance, that the "concurrent"
  96 // phases of the CMS thread's work do not block out the VM thread
  97 // for long periods of time as the CMS thread continues to hog
  98 // the token. (See bug 4616232).
  99 //
 100 // The baton-passing functions are, however, controlled by the
 101 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 102 // and here the low-level CMS lock, not the high level token,
 103 // ensures mutual exclusion.
 104 //
 105 // Two important conditions that we have to satisfy:
 106 // 1. if a thread does a low-level wait on the CMS lock, then it
 107 //    relinquishes the CMS token if it were holding that token
 108 //    when it acquired the low-level CMS lock.
 109 // 2. any low-level notifications on the low-level lock
 110 //    should only be sent when a thread has relinquished the token.
 111 //
 112 // In the absence of either property, we'd have potential deadlock.
 113 //
 114 // We protect each of the CMS (concurrent and sequential) phases
 115 // with the CMS _token_, not the CMS _lock_.
 116 //
 117 // The only code protected by CMS lock is the token acquisition code
 118 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 119 // baton-passing code.
 120 //
 121 // Unfortunately, i couldn't come up with a good abstraction to factor and
 122 // hide the naked CGC_lock manipulation in the baton-passing code
 123 // further below. That's something we should try to do. Also, the proof
 124 // of correctness of this 2-level locking scheme is far from obvious,
 125 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 126 // that there may be a theoretical possibility of delay/starvation in the
 127 // low-level lock/wait/notify scheme used for the baton-passing because of
 128 // potential interference with the priority scheme embodied in the
 129 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 130 // invocation further below and marked with "XXX 20011219YSR".
 131 // Indeed, as we note elsewhere, this may become yet more slippery
 132 // in the presence of multiple CMS and/or multiple VM threads. XXX
 133 
 134 class CMSTokenSync: public StackObj {
 135  private:
 136   bool _is_cms_thread;
 137  public:
 138   CMSTokenSync(bool is_cms_thread):
 139     _is_cms_thread(is_cms_thread) {
 140     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 141            "Incorrect argument to constructor");
 142     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 143   }
 144 
 145   ~CMSTokenSync() {
 146     assert(_is_cms_thread ?
 147              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 148              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 149           "Incorrect state");
 150     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 151   }
 152 };
 153 
 154 // Convenience class that does a CMSTokenSync, and then acquires
 155 // upto three locks.
 156 class CMSTokenSyncWithLocks: public CMSTokenSync {
 157  private:
 158   // Note: locks are acquired in textual declaration order
 159   // and released in the opposite order
 160   MutexLockerEx _locker1, _locker2, _locker3;
 161  public:
 162   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 163                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 164     CMSTokenSync(is_cms_thread),
 165     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 166     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 167     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 168   { }
 169 };
 170 
 171 
 172 //////////////////////////////////////////////////////////////////
 173 //  Concurrent Mark-Sweep Generation /////////////////////////////
 174 //////////////////////////////////////////////////////////////////
 175 
 176 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 177 
 178 // This struct contains per-thread things necessary to support parallel
 179 // young-gen collection.
 180 class CMSParGCThreadState: public CHeapObj<mtGC> {
 181  public:
 182   CFLS_LAB lab;
 183   PromotionInfo promo;
 184 
 185   // Constructor.
 186   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 187     promo.setSpace(cfls);
 188   }
 189 };
 190 
 191 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 192      ReservedSpace rs, size_t initial_byte_size, int level,
 193      CardTableRS* ct, bool use_adaptive_freelists,
 194      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 195   CardGeneration(rs, initial_byte_size, level, ct),
 196   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 197   _did_compact(false)
 198 {
 199   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 200   HeapWord* end    = (HeapWord*) _virtual_space.high();
 201 
 202   _direct_allocated_words = 0;
 203   NOT_PRODUCT(
 204     _numObjectsPromoted = 0;
 205     _numWordsPromoted = 0;
 206     _numObjectsAllocated = 0;
 207     _numWordsAllocated = 0;
 208   )
 209 
 210   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 211                                            use_adaptive_freelists,
 212                                            dictionaryChoice);
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              (int) ParallelGCThreads,             // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 307 
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next minor collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = 2*max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 size_t CMSCollector::plab_sample_minimum_size() {
 644   // The default value of MinTLABSize is 2k, but there is
 645   // no way to get the default value if the flag has been overridden.
 646   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 647 }
 648 
 649 const char* ConcurrentMarkSweepGeneration::name() const {
 650   return "concurrent mark-sweep generation";
 651 }
 652 void ConcurrentMarkSweepGeneration::update_counters() {
 653   if (UsePerfData) {
 654     _space_counters->update_all();
 655     _gen_counters->update_all();
 656   }
 657 }
 658 
 659 // this is an optimized version of update_counters(). it takes the
 660 // used value as a parameter rather than computing it.
 661 //
 662 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 663   if (UsePerfData) {
 664     _space_counters->update_used(used);
 665     _space_counters->update_capacity();
 666     _gen_counters->update_all();
 667   }
 668 }
 669 
 670 void ConcurrentMarkSweepGeneration::print() const {
 671   Generation::print();
 672   cmsSpace()->print();
 673 }
 674 
 675 #ifndef PRODUCT
 676 void ConcurrentMarkSweepGeneration::print_statistics() {
 677   cmsSpace()->printFLCensus(0);
 678 }
 679 #endif
 680 
 681 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 682   GenCollectedHeap* gch = GenCollectedHeap::heap();
 683   if (PrintGCDetails) {
 684     if (Verbose) {
 685       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 686         level(), short_name(), s, used(), capacity());
 687     } else {
 688       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 689         level(), short_name(), s, used() / K, capacity() / K);
 690     }
 691   }
 692   if (Verbose) {
 693     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 694               gch->used(), gch->capacity());
 695   } else {
 696     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 697               gch->used() / K, gch->capacity() / K);
 698   }
 699 }
 700 
 701 size_t
 702 ConcurrentMarkSweepGeneration::contiguous_available() const {
 703   // dld proposes an improvement in precision here. If the committed
 704   // part of the space ends in a free block we should add that to
 705   // uncommitted size in the calculation below. Will make this
 706   // change later, staying with the approximation below for the
 707   // time being. -- ysr.
 708   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 709 }
 710 
 711 size_t
 712 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 713   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 714 }
 715 
 716 size_t ConcurrentMarkSweepGeneration::max_available() const {
 717   return free() + _virtual_space.uncommitted_size();
 718 }
 719 
 720 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 721   size_t available = max_available();
 722   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 723   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 724   if (Verbose && PrintGCDetails) {
 725     gclog_or_tty->print_cr(
 726       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 727       "max_promo("SIZE_FORMAT")",
 728       res? "":" not", available, res? ">=":"<",
 729       av_promo, max_promotion_in_bytes);
 730   }
 731   return res;
 732 }
 733 
 734 // At a promotion failure dump information on block layout in heap
 735 // (cms old generation).
 736 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 737   if (CMSDumpAtPromotionFailure) {
 738     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 739   }
 740 }
 741 
 742 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 743   // Clear the promotion information.  These pointers can be adjusted
 744   // along with all the other pointers into the heap but
 745   // compaction is expected to be a rare event with
 746   // a heap using cms so don't do it without seeing the need.
 747   for (uint i = 0; i < ParallelGCThreads; i++) {
 748     _par_gc_thread_states[i]->promo.reset();
 749   }
 750 }
 751 
 752 void ConcurrentMarkSweepGeneration::compute_new_size() {
 753   assert_locked_or_safepoint(Heap_lock);
 754 
 755   // If incremental collection failed, we just want to expand
 756   // to the limit.
 757   if (incremental_collection_failed()) {
 758     clear_incremental_collection_failed();
 759     grow_to_reserved();
 760     return;
 761   }
 762 
 763   // The heap has been compacted but not reset yet.
 764   // Any metric such as free() or used() will be incorrect.
 765 
 766   CardGeneration::compute_new_size();
 767 
 768   // Reset again after a possible resizing
 769   if (did_compact()) {
 770     cmsSpace()->reset_after_compaction();
 771   }
 772 }
 773 
 774 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 775   assert_locked_or_safepoint(Heap_lock);
 776 
 777   // If incremental collection failed, we just want to expand
 778   // to the limit.
 779   if (incremental_collection_failed()) {
 780     clear_incremental_collection_failed();
 781     grow_to_reserved();
 782     return;
 783   }
 784 
 785   double free_percentage = ((double) free()) / capacity();
 786   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 787   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 788 
 789   // compute expansion delta needed for reaching desired free percentage
 790   if (free_percentage < desired_free_percentage) {
 791     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 792     assert(desired_capacity >= capacity(), "invalid expansion size");
 793     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 794     if (PrintGCDetails && Verbose) {
 795       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 796       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 797       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 798       gclog_or_tty->print_cr("  Desired free fraction %f",
 799         desired_free_percentage);
 800       gclog_or_tty->print_cr("  Maximum free fraction %f",
 801         maximum_free_percentage);
 802       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 803       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 804         desired_capacity/1000);
 805       int prev_level = level() - 1;
 806       if (prev_level >= 0) {
 807         size_t prev_size = 0;
 808         GenCollectedHeap* gch = GenCollectedHeap::heap();
 809         Generation* prev_gen = gch->young_gen();
 810         prev_size = prev_gen->capacity();
 811           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 812                                  prev_size/1000);
 813       }
 814       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 815         unsafe_max_alloc_nogc()/1000);
 816       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 817         contiguous_available()/1000);
 818       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 819         expand_bytes);
 820     }
 821     // safe if expansion fails
 822     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 823     if (PrintGCDetails && Verbose) {
 824       gclog_or_tty->print_cr("  Expanded free fraction %f",
 825         ((double) free()) / capacity());
 826     }
 827   } else {
 828     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 829     assert(desired_capacity <= capacity(), "invalid expansion size");
 830     size_t shrink_bytes = capacity() - desired_capacity;
 831     // Don't shrink unless the delta is greater than the minimum shrink we want
 832     if (shrink_bytes >= MinHeapDeltaBytes) {
 833       shrink_free_list_by(shrink_bytes);
 834     }
 835   }
 836 }
 837 
 838 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 839   return cmsSpace()->freelistLock();
 840 }
 841 
 842 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 843                                                   bool   tlab) {
 844   CMSSynchronousYieldRequest yr;
 845   MutexLockerEx x(freelistLock(),
 846                   Mutex::_no_safepoint_check_flag);
 847   return have_lock_and_allocate(size, tlab);
 848 }
 849 
 850 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 851                                                   bool   tlab /* ignored */) {
 852   assert_lock_strong(freelistLock());
 853   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 854   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 855   // Allocate the object live (grey) if the background collector has
 856   // started marking. This is necessary because the marker may
 857   // have passed this address and consequently this object will
 858   // not otherwise be greyed and would be incorrectly swept up.
 859   // Note that if this object contains references, the writing
 860   // of those references will dirty the card containing this object
 861   // allowing the object to be blackened (and its references scanned)
 862   // either during a preclean phase or at the final checkpoint.
 863   if (res != NULL) {
 864     // We may block here with an uninitialized object with
 865     // its mark-bit or P-bits not yet set. Such objects need
 866     // to be safely navigable by block_start().
 867     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 868     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 869     collector()->direct_allocated(res, adjustedSize);
 870     _direct_allocated_words += adjustedSize;
 871     // allocation counters
 872     NOT_PRODUCT(
 873       _numObjectsAllocated++;
 874       _numWordsAllocated += (int)adjustedSize;
 875     )
 876   }
 877   return res;
 878 }
 879 
 880 // In the case of direct allocation by mutators in a generation that
 881 // is being concurrently collected, the object must be allocated
 882 // live (grey) if the background collector has started marking.
 883 // This is necessary because the marker may
 884 // have passed this address and consequently this object will
 885 // not otherwise be greyed and would be incorrectly swept up.
 886 // Note that if this object contains references, the writing
 887 // of those references will dirty the card containing this object
 888 // allowing the object to be blackened (and its references scanned)
 889 // either during a preclean phase or at the final checkpoint.
 890 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 891   assert(_markBitMap.covers(start, size), "Out of bounds");
 892   if (_collectorState >= Marking) {
 893     MutexLockerEx y(_markBitMap.lock(),
 894                     Mutex::_no_safepoint_check_flag);
 895     // [see comments preceding SweepClosure::do_blk() below for details]
 896     //
 897     // Can the P-bits be deleted now?  JJJ
 898     //
 899     // 1. need to mark the object as live so it isn't collected
 900     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 901     // 3. need to mark the end of the object so marking, precleaning or sweeping
 902     //    can skip over uninitialized or unparsable objects. An allocated
 903     //    object is considered uninitialized for our purposes as long as
 904     //    its klass word is NULL.  All old gen objects are parsable
 905     //    as soon as they are initialized.)
 906     _markBitMap.mark(start);          // object is live
 907     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 908     _markBitMap.mark(start + size - 1);
 909                                       // mark end of object
 910   }
 911   // check that oop looks uninitialized
 912   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 913 }
 914 
 915 void CMSCollector::promoted(bool par, HeapWord* start,
 916                             bool is_obj_array, size_t obj_size) {
 917   assert(_markBitMap.covers(start), "Out of bounds");
 918   // See comment in direct_allocated() about when objects should
 919   // be allocated live.
 920   if (_collectorState >= Marking) {
 921     // we already hold the marking bit map lock, taken in
 922     // the prologue
 923     if (par) {
 924       _markBitMap.par_mark(start);
 925     } else {
 926       _markBitMap.mark(start);
 927     }
 928     // We don't need to mark the object as uninitialized (as
 929     // in direct_allocated above) because this is being done with the
 930     // world stopped and the object will be initialized by the
 931     // time the marking, precleaning or sweeping get to look at it.
 932     // But see the code for copying objects into the CMS generation,
 933     // where we need to ensure that concurrent readers of the
 934     // block offset table are able to safely navigate a block that
 935     // is in flux from being free to being allocated (and in
 936     // transition while being copied into) and subsequently
 937     // becoming a bona-fide object when the copy/promotion is complete.
 938     assert(SafepointSynchronize::is_at_safepoint(),
 939            "expect promotion only at safepoints");
 940 
 941     if (_collectorState < Sweeping) {
 942       // Mark the appropriate cards in the modUnionTable, so that
 943       // this object gets scanned before the sweep. If this is
 944       // not done, CMS generation references in the object might
 945       // not get marked.
 946       // For the case of arrays, which are otherwise precisely
 947       // marked, we need to dirty the entire array, not just its head.
 948       if (is_obj_array) {
 949         // The [par_]mark_range() method expects mr.end() below to
 950         // be aligned to the granularity of a bit's representation
 951         // in the heap. In the case of the MUT below, that's a
 952         // card size.
 953         MemRegion mr(start,
 954                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 955                         CardTableModRefBS::card_size /* bytes */));
 956         if (par) {
 957           _modUnionTable.par_mark_range(mr);
 958         } else {
 959           _modUnionTable.mark_range(mr);
 960         }
 961       } else {  // not an obj array; we can just mark the head
 962         if (par) {
 963           _modUnionTable.par_mark(start);
 964         } else {
 965           _modUnionTable.mark(start);
 966         }
 967       }
 968     }
 969   }
 970 }
 971 
 972 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 973   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 974   // allocate, copy and if necessary update promoinfo --
 975   // delegate to underlying space.
 976   assert_lock_strong(freelistLock());
 977 
 978 #ifndef PRODUCT
 979   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 980     return NULL;
 981   }
 982 #endif  // #ifndef PRODUCT
 983 
 984   oop res = _cmsSpace->promote(obj, obj_size);
 985   if (res == NULL) {
 986     // expand and retry
 987     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 988     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 989     // Since this is the old generation, we don't try to promote
 990     // into a more senior generation.
 991     res = _cmsSpace->promote(obj, obj_size);
 992   }
 993   if (res != NULL) {
 994     // See comment in allocate() about when objects should
 995     // be allocated live.
 996     assert(obj->is_oop(), "Will dereference klass pointer below");
 997     collector()->promoted(false,           // Not parallel
 998                           (HeapWord*)res, obj->is_objArray(), obj_size);
 999     // promotion counters
1000     NOT_PRODUCT(
1001       _numObjectsPromoted++;
1002       _numWordsPromoted +=
1003         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1004     )
1005   }
1006   return res;
1007 }
1008 
1009 
1010 // IMPORTANT: Notes on object size recognition in CMS.
1011 // ---------------------------------------------------
1012 // A block of storage in the CMS generation is always in
1013 // one of three states. A free block (FREE), an allocated
1014 // object (OBJECT) whose size() method reports the correct size,
1015 // and an intermediate state (TRANSIENT) in which its size cannot
1016 // be accurately determined.
1017 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1018 // -----------------------------------------------------
1019 // FREE:      klass_word & 1 == 1; mark_word holds block size
1020 //
1021 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1022 //            obj->size() computes correct size
1023 //
1024 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1025 //
1026 // STATE IDENTIFICATION: (64 bit+COOPS)
1027 // ------------------------------------
1028 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1029 //
1030 // OBJECT:    klass_word installed; klass_word != 0;
1031 //            obj->size() computes correct size
1032 //
1033 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1034 //
1035 //
1036 // STATE TRANSITION DIAGRAM
1037 //
1038 //        mut / parnew                     mut  /  parnew
1039 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1040 //  ^                                                                   |
1041 //  |------------------------ DEAD <------------------------------------|
1042 //         sweep                            mut
1043 //
1044 // While a block is in TRANSIENT state its size cannot be determined
1045 // so readers will either need to come back later or stall until
1046 // the size can be determined. Note that for the case of direct
1047 // allocation, P-bits, when available, may be used to determine the
1048 // size of an object that may not yet have been initialized.
1049 
1050 // Things to support parallel young-gen collection.
1051 oop
1052 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1053                                            oop old, markOop m,
1054                                            size_t word_sz) {
1055 #ifndef PRODUCT
1056   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1057     return NULL;
1058   }
1059 #endif  // #ifndef PRODUCT
1060 
1061   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1062   PromotionInfo* promoInfo = &ps->promo;
1063   // if we are tracking promotions, then first ensure space for
1064   // promotion (including spooling space for saving header if necessary).
1065   // then allocate and copy, then track promoted info if needed.
1066   // When tracking (see PromotionInfo::track()), the mark word may
1067   // be displaced and in this case restoration of the mark word
1068   // occurs in the (oop_since_save_marks_)iterate phase.
1069   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1070     // Out of space for allocating spooling buffers;
1071     // try expanding and allocating spooling buffers.
1072     if (!expand_and_ensure_spooling_space(promoInfo)) {
1073       return NULL;
1074     }
1075   }
1076   assert(promoInfo->has_spooling_space(), "Control point invariant");
1077   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1078   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1079   if (obj_ptr == NULL) {
1080      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1081      if (obj_ptr == NULL) {
1082        return NULL;
1083      }
1084   }
1085   oop obj = oop(obj_ptr);
1086   OrderAccess::storestore();
1087   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1088   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1089   // IMPORTANT: See note on object initialization for CMS above.
1090   // Otherwise, copy the object.  Here we must be careful to insert the
1091   // klass pointer last, since this marks the block as an allocated object.
1092   // Except with compressed oops it's the mark word.
1093   HeapWord* old_ptr = (HeapWord*)old;
1094   // Restore the mark word copied above.
1095   obj->set_mark(m);
1096   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1097   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1098   OrderAccess::storestore();
1099 
1100   if (UseCompressedClassPointers) {
1101     // Copy gap missed by (aligned) header size calculation below
1102     obj->set_klass_gap(old->klass_gap());
1103   }
1104   if (word_sz > (size_t)oopDesc::header_size()) {
1105     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1106                                  obj_ptr + oopDesc::header_size(),
1107                                  word_sz - oopDesc::header_size());
1108   }
1109 
1110   // Now we can track the promoted object, if necessary.  We take care
1111   // to delay the transition from uninitialized to full object
1112   // (i.e., insertion of klass pointer) until after, so that it
1113   // atomically becomes a promoted object.
1114   if (promoInfo->tracking()) {
1115     promoInfo->track((PromotedObject*)obj, old->klass());
1116   }
1117   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1118   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1119   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1120 
1121   // Finally, install the klass pointer (this should be volatile).
1122   OrderAccess::storestore();
1123   obj->set_klass(old->klass());
1124   // We should now be able to calculate the right size for this object
1125   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1126 
1127   collector()->promoted(true,          // parallel
1128                         obj_ptr, old->is_objArray(), word_sz);
1129 
1130   NOT_PRODUCT(
1131     Atomic::inc_ptr(&_numObjectsPromoted);
1132     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1133   )
1134 
1135   return obj;
1136 }
1137 
1138 void
1139 ConcurrentMarkSweepGeneration::
1140 par_promote_alloc_done(int thread_num) {
1141   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1142   ps->lab.retire(thread_num);
1143 }
1144 
1145 void
1146 ConcurrentMarkSweepGeneration::
1147 par_oop_since_save_marks_iterate_done(int thread_num) {
1148   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1149   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1150   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1151 }
1152 
1153 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1154                                                    size_t size,
1155                                                    bool   tlab)
1156 {
1157   // We allow a STW collection only if a full
1158   // collection was requested.
1159   return full || should_allocate(size, tlab); // FIX ME !!!
1160   // This and promotion failure handling are connected at the
1161   // hip and should be fixed by untying them.
1162 }
1163 
1164 bool CMSCollector::shouldConcurrentCollect() {
1165   if (_full_gc_requested) {
1166     if (Verbose && PrintGCDetails) {
1167       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1168                              " gc request (or gc_locker)");
1169     }
1170     return true;
1171   }
1172 
1173   FreelistLocker x(this);
1174   // ------------------------------------------------------------------
1175   // Print out lots of information which affects the initiation of
1176   // a collection.
1177   if (PrintCMSInitiationStatistics && stats().valid()) {
1178     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1179     gclog_or_tty->stamp();
1180     gclog_or_tty->cr();
1181     stats().print_on(gclog_or_tty);
1182     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1183       stats().time_until_cms_gen_full());
1184     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1185     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1186                            _cmsGen->contiguous_available());
1187     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1188     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1189     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1190     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1191     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1192     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1193     gclog_or_tty->print_cr("metadata initialized %d",
1194       MetaspaceGC::should_concurrent_collect());
1195   }
1196   // ------------------------------------------------------------------
1197 
1198   // If the estimated time to complete a cms collection (cms_duration())
1199   // is less than the estimated time remaining until the cms generation
1200   // is full, start a collection.
1201   if (!UseCMSInitiatingOccupancyOnly) {
1202     if (stats().valid()) {
1203       if (stats().time_until_cms_start() == 0.0) {
1204         return true;
1205       }
1206     } else {
1207       // We want to conservatively collect somewhat early in order
1208       // to try and "bootstrap" our CMS/promotion statistics;
1209       // this branch will not fire after the first successful CMS
1210       // collection because the stats should then be valid.
1211       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1212         if (Verbose && PrintGCDetails) {
1213           gclog_or_tty->print_cr(
1214             " CMSCollector: collect for bootstrapping statistics:"
1215             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1216             _bootstrap_occupancy);
1217         }
1218         return true;
1219       }
1220     }
1221   }
1222 
1223   // Otherwise, we start a collection cycle if
1224   // old gen want a collection cycle started. Each may use
1225   // an appropriate criterion for making this decision.
1226   // XXX We need to make sure that the gen expansion
1227   // criterion dovetails well with this. XXX NEED TO FIX THIS
1228   if (_cmsGen->should_concurrent_collect()) {
1229     if (Verbose && PrintGCDetails) {
1230       gclog_or_tty->print_cr("CMS old gen initiated");
1231     }
1232     return true;
1233   }
1234 
1235   // We start a collection if we believe an incremental collection may fail;
1236   // this is not likely to be productive in practice because it's probably too
1237   // late anyway.
1238   GenCollectedHeap* gch = GenCollectedHeap::heap();
1239   assert(gch->collector_policy()->is_generation_policy(),
1240          "You may want to check the correctness of the following");
1241   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1242     if (Verbose && PrintGCDetails) {
1243       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1244     }
1245     return true;
1246   }
1247 
1248   if (MetaspaceGC::should_concurrent_collect()) {
1249     if (Verbose && PrintGCDetails) {
1250       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1251     }
1252     return true;
1253   }
1254 
1255   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1256   if (CMSTriggerInterval >= 0) {
1257     if (CMSTriggerInterval == 0) {
1258       // Trigger always
1259       return true;
1260     }
1261 
1262     // Check the CMS time since begin (we do not check the stats validity
1263     // as we want to be able to trigger the first CMS cycle as well)
1264     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1265       if (Verbose && PrintGCDetails) {
1266         if (stats().valid()) {
1267           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1268                                  stats().cms_time_since_begin());
1269         } else {
1270           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1271         }
1272       }
1273       return true;
1274     }
1275   }
1276 
1277   return false;
1278 }
1279 
1280 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1281 
1282 // Clear _expansion_cause fields of constituent generations
1283 void CMSCollector::clear_expansion_cause() {
1284   _cmsGen->clear_expansion_cause();
1285 }
1286 
1287 // We should be conservative in starting a collection cycle.  To
1288 // start too eagerly runs the risk of collecting too often in the
1289 // extreme.  To collect too rarely falls back on full collections,
1290 // which works, even if not optimum in terms of concurrent work.
1291 // As a work around for too eagerly collecting, use the flag
1292 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1293 // giving the user an easily understandable way of controlling the
1294 // collections.
1295 // We want to start a new collection cycle if any of the following
1296 // conditions hold:
1297 // . our current occupancy exceeds the configured initiating occupancy
1298 //   for this generation, or
1299 // . we recently needed to expand this space and have not, since that
1300 //   expansion, done a collection of this generation, or
1301 // . the underlying space believes that it may be a good idea to initiate
1302 //   a concurrent collection (this may be based on criteria such as the
1303 //   following: the space uses linear allocation and linear allocation is
1304 //   going to fail, or there is believed to be excessive fragmentation in
1305 //   the generation, etc... or ...
1306 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1307 //   the case of the old generation; see CR 6543076):
1308 //   we may be approaching a point at which allocation requests may fail because
1309 //   we will be out of sufficient free space given allocation rate estimates.]
1310 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1311 
1312   assert_lock_strong(freelistLock());
1313   if (occupancy() > initiating_occupancy()) {
1314     if (PrintGCDetails && Verbose) {
1315       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1316         short_name(), occupancy(), initiating_occupancy());
1317     }
1318     return true;
1319   }
1320   if (UseCMSInitiatingOccupancyOnly) {
1321     return false;
1322   }
1323   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1324     if (PrintGCDetails && Verbose) {
1325       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1326         short_name());
1327     }
1328     return true;
1329   }
1330   if (_cmsSpace->should_concurrent_collect()) {
1331     if (PrintGCDetails && Verbose) {
1332       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1333         short_name());
1334     }
1335     return true;
1336   }
1337   return false;
1338 }
1339 
1340 void ConcurrentMarkSweepGeneration::collect(bool   full,
1341                                             bool   clear_all_soft_refs,
1342                                             size_t size,
1343                                             bool   tlab)
1344 {
1345   collector()->collect(full, clear_all_soft_refs, size, tlab);
1346 }
1347 
1348 void CMSCollector::collect(bool   full,
1349                            bool   clear_all_soft_refs,
1350                            size_t size,
1351                            bool   tlab)
1352 {
1353   // The following "if" branch is present for defensive reasons.
1354   // In the current uses of this interface, it can be replaced with:
1355   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1356   // But I am not placing that assert here to allow future
1357   // generality in invoking this interface.
1358   if (GC_locker::is_active()) {
1359     // A consistency test for GC_locker
1360     assert(GC_locker::needs_gc(), "Should have been set already");
1361     // Skip this foreground collection, instead
1362     // expanding the heap if necessary.
1363     // Need the free list locks for the call to free() in compute_new_size()
1364     compute_new_size();
1365     return;
1366   }
1367   acquire_control_and_collect(full, clear_all_soft_refs);
1368 }
1369 
1370 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1371   GenCollectedHeap* gch = GenCollectedHeap::heap();
1372   unsigned int gc_count = gch->total_full_collections();
1373   if (gc_count == full_gc_count) {
1374     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1375     _full_gc_requested = true;
1376     _full_gc_cause = cause;
1377     CGC_lock->notify();   // nudge CMS thread
1378   } else {
1379     assert(gc_count > full_gc_count, "Error: causal loop");
1380   }
1381 }
1382 
1383 bool CMSCollector::is_external_interruption() {
1384   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1385   return GCCause::is_user_requested_gc(cause) ||
1386          GCCause::is_serviceability_requested_gc(cause);
1387 }
1388 
1389 void CMSCollector::report_concurrent_mode_interruption() {
1390   if (is_external_interruption()) {
1391     if (PrintGCDetails) {
1392       gclog_or_tty->print(" (concurrent mode interrupted)");
1393     }
1394   } else {
1395     if (PrintGCDetails) {
1396       gclog_or_tty->print(" (concurrent mode failure)");
1397     }
1398     _gc_tracer_cm->report_concurrent_mode_failure();
1399   }
1400 }
1401 
1402 
1403 // The foreground and background collectors need to coordinate in order
1404 // to make sure that they do not mutually interfere with CMS collections.
1405 // When a background collection is active,
1406 // the foreground collector may need to take over (preempt) and
1407 // synchronously complete an ongoing collection. Depending on the
1408 // frequency of the background collections and the heap usage
1409 // of the application, this preemption can be seldom or frequent.
1410 // There are only certain
1411 // points in the background collection that the "collection-baton"
1412 // can be passed to the foreground collector.
1413 //
1414 // The foreground collector will wait for the baton before
1415 // starting any part of the collection.  The foreground collector
1416 // will only wait at one location.
1417 //
1418 // The background collector will yield the baton before starting a new
1419 // phase of the collection (e.g., before initial marking, marking from roots,
1420 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1421 // of the loop which switches the phases. The background collector does some
1422 // of the phases (initial mark, final re-mark) with the world stopped.
1423 // Because of locking involved in stopping the world,
1424 // the foreground collector should not block waiting for the background
1425 // collector when it is doing a stop-the-world phase.  The background
1426 // collector will yield the baton at an additional point just before
1427 // it enters a stop-the-world phase.  Once the world is stopped, the
1428 // background collector checks the phase of the collection.  If the
1429 // phase has not changed, it proceeds with the collection.  If the
1430 // phase has changed, it skips that phase of the collection.  See
1431 // the comments on the use of the Heap_lock in collect_in_background().
1432 //
1433 // Variable used in baton passing.
1434 //   _foregroundGCIsActive - Set to true by the foreground collector when
1435 //      it wants the baton.  The foreground clears it when it has finished
1436 //      the collection.
1437 //   _foregroundGCShouldWait - Set to true by the background collector
1438 //        when it is running.  The foreground collector waits while
1439 //      _foregroundGCShouldWait is true.
1440 //  CGC_lock - monitor used to protect access to the above variables
1441 //      and to notify the foreground and background collectors.
1442 //  _collectorState - current state of the CMS collection.
1443 //
1444 // The foreground collector
1445 //   acquires the CGC_lock
1446 //   sets _foregroundGCIsActive
1447 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1448 //     various locks acquired in preparation for the collection
1449 //     are released so as not to block the background collector
1450 //     that is in the midst of a collection
1451 //   proceeds with the collection
1452 //   clears _foregroundGCIsActive
1453 //   returns
1454 //
1455 // The background collector in a loop iterating on the phases of the
1456 //      collection
1457 //   acquires the CGC_lock
1458 //   sets _foregroundGCShouldWait
1459 //   if _foregroundGCIsActive is set
1460 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1461 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1462 //     and exits the loop.
1463 //   otherwise
1464 //     proceed with that phase of the collection
1465 //     if the phase is a stop-the-world phase,
1466 //       yield the baton once more just before enqueueing
1467 //       the stop-world CMS operation (executed by the VM thread).
1468 //   returns after all phases of the collection are done
1469 //
1470 
1471 void CMSCollector::acquire_control_and_collect(bool full,
1472         bool clear_all_soft_refs) {
1473   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1474   assert(!Thread::current()->is_ConcurrentGC_thread(),
1475          "shouldn't try to acquire control from self!");
1476 
1477   // Start the protocol for acquiring control of the
1478   // collection from the background collector (aka CMS thread).
1479   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1480          "VM thread should have CMS token");
1481   // Remember the possibly interrupted state of an ongoing
1482   // concurrent collection
1483   CollectorState first_state = _collectorState;
1484 
1485   // Signal to a possibly ongoing concurrent collection that
1486   // we want to do a foreground collection.
1487   _foregroundGCIsActive = true;
1488 
1489   // release locks and wait for a notify from the background collector
1490   // releasing the locks in only necessary for phases which
1491   // do yields to improve the granularity of the collection.
1492   assert_lock_strong(bitMapLock());
1493   // We need to lock the Free list lock for the space that we are
1494   // currently collecting.
1495   assert(haveFreelistLocks(), "Must be holding free list locks");
1496   bitMapLock()->unlock();
1497   releaseFreelistLocks();
1498   {
1499     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1500     if (_foregroundGCShouldWait) {
1501       // We are going to be waiting for action for the CMS thread;
1502       // it had better not be gone (for instance at shutdown)!
1503       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1504              "CMS thread must be running");
1505       // Wait here until the background collector gives us the go-ahead
1506       ConcurrentMarkSweepThread::clear_CMS_flag(
1507         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1508       // Get a possibly blocked CMS thread going:
1509       //   Note that we set _foregroundGCIsActive true above,
1510       //   without protection of the CGC_lock.
1511       CGC_lock->notify();
1512       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1513              "Possible deadlock");
1514       while (_foregroundGCShouldWait) {
1515         // wait for notification
1516         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1517         // Possibility of delay/starvation here, since CMS token does
1518         // not know to give priority to VM thread? Actually, i think
1519         // there wouldn't be any delay/starvation, but the proof of
1520         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1521       }
1522       ConcurrentMarkSweepThread::set_CMS_flag(
1523         ConcurrentMarkSweepThread::CMS_vm_has_token);
1524     }
1525   }
1526   // The CMS_token is already held.  Get back the other locks.
1527   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1528          "VM thread should have CMS token");
1529   getFreelistLocks();
1530   bitMapLock()->lock_without_safepoint_check();
1531   if (TraceCMSState) {
1532     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1533       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1534     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1535   }
1536 
1537   // Inform cms gen if this was due to partial collection failing.
1538   // The CMS gen may use this fact to determine its expansion policy.
1539   GenCollectedHeap* gch = GenCollectedHeap::heap();
1540   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1541     assert(!_cmsGen->incremental_collection_failed(),
1542            "Should have been noticed, reacted to and cleared");
1543     _cmsGen->set_incremental_collection_failed();
1544   }
1545 
1546   if (first_state > Idling) {
1547     report_concurrent_mode_interruption();
1548   }
1549 
1550   set_did_compact(true);
1551 
1552   // If the collection is being acquired from the background
1553   // collector, there may be references on the discovered
1554   // references lists.  Abandon those references, since some
1555   // of them may have become unreachable after concurrent
1556   // discovery; the STW compacting collector will redo discovery
1557   // more precisely, without being subject to floating garbage.
1558   // Leaving otherwise unreachable references in the discovered
1559   // lists would require special handling.
1560   ref_processor()->disable_discovery();
1561   ref_processor()->abandon_partial_discovery();
1562   ref_processor()->verify_no_references_recorded();
1563 
1564   if (first_state > Idling) {
1565     save_heap_summary();
1566   }
1567 
1568   do_compaction_work(clear_all_soft_refs);
1569 
1570   // Has the GC time limit been exceeded?
1571   size_t max_eden_size = _young_gen->max_capacity() -
1572                          _young_gen->to()->capacity() -
1573                          _young_gen->from()->capacity();
1574   GCCause::Cause gc_cause = gch->gc_cause();
1575   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1576                                          _young_gen->eden()->used(),
1577                                          _cmsGen->max_capacity(),
1578                                          max_eden_size,
1579                                          full,
1580                                          gc_cause,
1581                                          gch->collector_policy());
1582 
1583   // Reset the expansion cause, now that we just completed
1584   // a collection cycle.
1585   clear_expansion_cause();
1586   _foregroundGCIsActive = false;
1587   return;
1588 }
1589 
1590 // Resize the tenured generation
1591 // after obtaining the free list locks for the
1592 // two generations.
1593 void CMSCollector::compute_new_size() {
1594   assert_locked_or_safepoint(Heap_lock);
1595   FreelistLocker z(this);
1596   MetaspaceGC::compute_new_size();
1597   _cmsGen->compute_new_size_free_list();
1598 }
1599 
1600 // A work method used by the foreground collector to do
1601 // a mark-sweep-compact.
1602 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1603   GenCollectedHeap* gch = GenCollectedHeap::heap();
1604 
1605   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1606   gc_timer->register_gc_start();
1607 
1608   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1609   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1610 
1611   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1612 
1613   // Temporarily widen the span of the weak reference processing to
1614   // the entire heap.
1615   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1616   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1617   // Temporarily, clear the "is_alive_non_header" field of the
1618   // reference processor.
1619   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1620   // Temporarily make reference _processing_ single threaded (non-MT).
1621   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1622   // Temporarily make refs discovery atomic
1623   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1624   // Temporarily make reference _discovery_ single threaded (non-MT)
1625   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1626 
1627   ref_processor()->set_enqueuing_is_done(false);
1628   ref_processor()->enable_discovery();
1629   ref_processor()->setup_policy(clear_all_soft_refs);
1630   // If an asynchronous collection finishes, the _modUnionTable is
1631   // all clear.  If we are assuming the collection from an asynchronous
1632   // collection, clear the _modUnionTable.
1633   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1634     "_modUnionTable should be clear if the baton was not passed");
1635   _modUnionTable.clear_all();
1636   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1637     "mod union for klasses should be clear if the baton was passed");
1638   _ct->klass_rem_set()->clear_mod_union();
1639 
1640   // We must adjust the allocation statistics being maintained
1641   // in the free list space. We do so by reading and clearing
1642   // the sweep timer and updating the block flux rate estimates below.
1643   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1644   if (_inter_sweep_timer.is_active()) {
1645     _inter_sweep_timer.stop();
1646     // Note that we do not use this sample to update the _inter_sweep_estimate.
1647     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1648                                             _inter_sweep_estimate.padded_average(),
1649                                             _intra_sweep_estimate.padded_average());
1650   }
1651 
1652   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1653     ref_processor(), clear_all_soft_refs);
1654   #ifdef ASSERT
1655     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1656     size_t free_size = cms_space->free();
1657     assert(free_size ==
1658            pointer_delta(cms_space->end(), cms_space->compaction_top())
1659            * HeapWordSize,
1660       "All the free space should be compacted into one chunk at top");
1661     assert(cms_space->dictionary()->total_chunk_size(
1662                                       debug_only(cms_space->freelistLock())) == 0 ||
1663            cms_space->totalSizeInIndexedFreeLists() == 0,
1664       "All the free space should be in a single chunk");
1665     size_t num = cms_space->totalCount();
1666     assert((free_size == 0 && num == 0) ||
1667            (free_size > 0  && (num == 1 || num == 2)),
1668          "There should be at most 2 free chunks after compaction");
1669   #endif // ASSERT
1670   _collectorState = Resetting;
1671   assert(_restart_addr == NULL,
1672          "Should have been NULL'd before baton was passed");
1673   reset(false /* == !concurrent */);
1674   _cmsGen->reset_after_compaction();
1675   _concurrent_cycles_since_last_unload = 0;
1676 
1677   // Clear any data recorded in the PLAB chunk arrays.
1678   if (_survivor_plab_array != NULL) {
1679     reset_survivor_plab_arrays();
1680   }
1681 
1682   // Adjust the per-size allocation stats for the next epoch.
1683   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1684   // Restart the "inter sweep timer" for the next epoch.
1685   _inter_sweep_timer.reset();
1686   _inter_sweep_timer.start();
1687 
1688   gc_timer->register_gc_end();
1689 
1690   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1691 
1692   // For a mark-sweep-compact, compute_new_size() will be called
1693   // in the heap's do_collection() method.
1694 }
1695 
1696 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1697   ContiguousSpace* eden_space = _young_gen->eden();
1698   ContiguousSpace* from_space = _young_gen->from();
1699   ContiguousSpace* to_space   = _young_gen->to();
1700   // Eden
1701   if (_eden_chunk_array != NULL) {
1702     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1703                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1704                            p2i(eden_space->end()), eden_space->capacity());
1705     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1706                            "_eden_chunk_capacity=" SIZE_FORMAT,
1707                            _eden_chunk_index, _eden_chunk_capacity);
1708     for (size_t i = 0; i < _eden_chunk_index; i++) {
1709       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1710                              i, p2i(_eden_chunk_array[i]));
1711     }
1712   }
1713   // Survivor
1714   if (_survivor_chunk_array != NULL) {
1715     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1716                            p2i(from_space->bottom()), p2i(from_space->top()),
1717                            p2i(from_space->end()), from_space->capacity());
1718     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1719                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1720                            _survivor_chunk_index, _survivor_chunk_capacity);
1721     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1722       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1723                              i, p2i(_survivor_chunk_array[i]));
1724     }
1725   }
1726 }
1727 
1728 void CMSCollector::getFreelistLocks() const {
1729   // Get locks for all free lists in all generations that this
1730   // collector is responsible for
1731   _cmsGen->freelistLock()->lock_without_safepoint_check();
1732 }
1733 
1734 void CMSCollector::releaseFreelistLocks() const {
1735   // Release locks for all free lists in all generations that this
1736   // collector is responsible for
1737   _cmsGen->freelistLock()->unlock();
1738 }
1739 
1740 bool CMSCollector::haveFreelistLocks() const {
1741   // Check locks for all free lists in all generations that this
1742   // collector is responsible for
1743   assert_lock_strong(_cmsGen->freelistLock());
1744   PRODUCT_ONLY(ShouldNotReachHere());
1745   return true;
1746 }
1747 
1748 // A utility class that is used by the CMS collector to
1749 // temporarily "release" the foreground collector from its
1750 // usual obligation to wait for the background collector to
1751 // complete an ongoing phase before proceeding.
1752 class ReleaseForegroundGC: public StackObj {
1753  private:
1754   CMSCollector* _c;
1755  public:
1756   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1757     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1758     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1759     // allow a potentially blocked foreground collector to proceed
1760     _c->_foregroundGCShouldWait = false;
1761     if (_c->_foregroundGCIsActive) {
1762       CGC_lock->notify();
1763     }
1764     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1765            "Possible deadlock");
1766   }
1767 
1768   ~ReleaseForegroundGC() {
1769     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1770     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1771     _c->_foregroundGCShouldWait = true;
1772   }
1773 };
1774 
1775 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1776   assert(Thread::current()->is_ConcurrentGC_thread(),
1777     "A CMS asynchronous collection is only allowed on a CMS thread.");
1778 
1779   GenCollectedHeap* gch = GenCollectedHeap::heap();
1780   {
1781     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1782     MutexLockerEx hl(Heap_lock, safepoint_check);
1783     FreelistLocker fll(this);
1784     MutexLockerEx x(CGC_lock, safepoint_check);
1785     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1786       // The foreground collector is active or we're
1787       // not using asynchronous collections.  Skip this
1788       // background collection.
1789       assert(!_foregroundGCShouldWait, "Should be clear");
1790       return;
1791     } else {
1792       assert(_collectorState == Idling, "Should be idling before start.");
1793       _collectorState = InitialMarking;
1794       register_gc_start(cause);
1795       // Reset the expansion cause, now that we are about to begin
1796       // a new cycle.
1797       clear_expansion_cause();
1798 
1799       // Clear the MetaspaceGC flag since a concurrent collection
1800       // is starting but also clear it after the collection.
1801       MetaspaceGC::set_should_concurrent_collect(false);
1802     }
1803     // Decide if we want to enable class unloading as part of the
1804     // ensuing concurrent GC cycle.
1805     update_should_unload_classes();
1806     _full_gc_requested = false;           // acks all outstanding full gc requests
1807     _full_gc_cause = GCCause::_no_gc;
1808     // Signal that we are about to start a collection
1809     gch->increment_total_full_collections();  // ... starting a collection cycle
1810     _collection_count_start = gch->total_full_collections();
1811   }
1812 
1813   // Used for PrintGC
1814   size_t prev_used;
1815   if (PrintGC && Verbose) {
1816     prev_used = _cmsGen->used();
1817   }
1818 
1819   // The change of the collection state is normally done at this level;
1820   // the exceptions are phases that are executed while the world is
1821   // stopped.  For those phases the change of state is done while the
1822   // world is stopped.  For baton passing purposes this allows the
1823   // background collector to finish the phase and change state atomically.
1824   // The foreground collector cannot wait on a phase that is done
1825   // while the world is stopped because the foreground collector already
1826   // has the world stopped and would deadlock.
1827   while (_collectorState != Idling) {
1828     if (TraceCMSState) {
1829       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1830         p2i(Thread::current()), _collectorState);
1831     }
1832     // The foreground collector
1833     //   holds the Heap_lock throughout its collection.
1834     //   holds the CMS token (but not the lock)
1835     //     except while it is waiting for the background collector to yield.
1836     //
1837     // The foreground collector should be blocked (not for long)
1838     //   if the background collector is about to start a phase
1839     //   executed with world stopped.  If the background
1840     //   collector has already started such a phase, the
1841     //   foreground collector is blocked waiting for the
1842     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1843     //   are executed in the VM thread.
1844     //
1845     // The locking order is
1846     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1847     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1848     //   CMS token  (claimed in
1849     //                stop_world_and_do() -->
1850     //                  safepoint_synchronize() -->
1851     //                    CMSThread::synchronize())
1852 
1853     {
1854       // Check if the FG collector wants us to yield.
1855       CMSTokenSync x(true); // is cms thread
1856       if (waitForForegroundGC()) {
1857         // We yielded to a foreground GC, nothing more to be
1858         // done this round.
1859         assert(_foregroundGCShouldWait == false, "We set it to false in "
1860                "waitForForegroundGC()");
1861         if (TraceCMSState) {
1862           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1863             " exiting collection CMS state %d",
1864             p2i(Thread::current()), _collectorState);
1865         }
1866         return;
1867       } else {
1868         // The background collector can run but check to see if the
1869         // foreground collector has done a collection while the
1870         // background collector was waiting to get the CGC_lock
1871         // above.  If yes, break so that _foregroundGCShouldWait
1872         // is cleared before returning.
1873         if (_collectorState == Idling) {
1874           break;
1875         }
1876       }
1877     }
1878 
1879     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1880       "should be waiting");
1881 
1882     switch (_collectorState) {
1883       case InitialMarking:
1884         {
1885           ReleaseForegroundGC x(this);
1886           stats().record_cms_begin();
1887           VM_CMS_Initial_Mark initial_mark_op(this);
1888           VMThread::execute(&initial_mark_op);
1889         }
1890         // The collector state may be any legal state at this point
1891         // since the background collector may have yielded to the
1892         // foreground collector.
1893         break;
1894       case Marking:
1895         // initial marking in checkpointRootsInitialWork has been completed
1896         if (markFromRoots()) { // we were successful
1897           assert(_collectorState == Precleaning, "Collector state should "
1898             "have changed");
1899         } else {
1900           assert(_foregroundGCIsActive, "Internal state inconsistency");
1901         }
1902         break;
1903       case Precleaning:
1904         // marking from roots in markFromRoots has been completed
1905         preclean();
1906         assert(_collectorState == AbortablePreclean ||
1907                _collectorState == FinalMarking,
1908                "Collector state should have changed");
1909         break;
1910       case AbortablePreclean:
1911         abortable_preclean();
1912         assert(_collectorState == FinalMarking, "Collector state should "
1913           "have changed");
1914         break;
1915       case FinalMarking:
1916         {
1917           ReleaseForegroundGC x(this);
1918 
1919           VM_CMS_Final_Remark final_remark_op(this);
1920           VMThread::execute(&final_remark_op);
1921         }
1922         assert(_foregroundGCShouldWait, "block post-condition");
1923         break;
1924       case Sweeping:
1925         // final marking in checkpointRootsFinal has been completed
1926         sweep();
1927         assert(_collectorState == Resizing, "Collector state change "
1928           "to Resizing must be done under the free_list_lock");
1929 
1930       case Resizing: {
1931         // Sweeping has been completed...
1932         // At this point the background collection has completed.
1933         // Don't move the call to compute_new_size() down
1934         // into code that might be executed if the background
1935         // collection was preempted.
1936         {
1937           ReleaseForegroundGC x(this);   // unblock FG collection
1938           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1939           CMSTokenSync        z(true);   // not strictly needed.
1940           if (_collectorState == Resizing) {
1941             compute_new_size();
1942             save_heap_summary();
1943             _collectorState = Resetting;
1944           } else {
1945             assert(_collectorState == Idling, "The state should only change"
1946                    " because the foreground collector has finished the collection");
1947           }
1948         }
1949         break;
1950       }
1951       case Resetting:
1952         // CMS heap resizing has been completed
1953         reset(true);
1954         assert(_collectorState == Idling, "Collector state should "
1955           "have changed");
1956 
1957         MetaspaceGC::set_should_concurrent_collect(false);
1958 
1959         stats().record_cms_end();
1960         // Don't move the concurrent_phases_end() and compute_new_size()
1961         // calls to here because a preempted background collection
1962         // has it's state set to "Resetting".
1963         break;
1964       case Idling:
1965       default:
1966         ShouldNotReachHere();
1967         break;
1968     }
1969     if (TraceCMSState) {
1970       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1971         p2i(Thread::current()), _collectorState);
1972     }
1973     assert(_foregroundGCShouldWait, "block post-condition");
1974   }
1975 
1976   // Should this be in gc_epilogue?
1977   collector_policy()->counters()->update_counters();
1978 
1979   {
1980     // Clear _foregroundGCShouldWait and, in the event that the
1981     // foreground collector is waiting, notify it, before
1982     // returning.
1983     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1984     _foregroundGCShouldWait = false;
1985     if (_foregroundGCIsActive) {
1986       CGC_lock->notify();
1987     }
1988     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1989            "Possible deadlock");
1990   }
1991   if (TraceCMSState) {
1992     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1993       " exiting collection CMS state %d",
1994       p2i(Thread::current()), _collectorState);
1995   }
1996   if (PrintGC && Verbose) {
1997     _cmsGen->print_heap_change(prev_used);
1998   }
1999 }
2000 
2001 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2002   _cms_start_registered = true;
2003   _gc_timer_cm->register_gc_start();
2004   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2005 }
2006 
2007 void CMSCollector::register_gc_end() {
2008   if (_cms_start_registered) {
2009     report_heap_summary(GCWhen::AfterGC);
2010 
2011     _gc_timer_cm->register_gc_end();
2012     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2013     _cms_start_registered = false;
2014   }
2015 }
2016 
2017 void CMSCollector::save_heap_summary() {
2018   GenCollectedHeap* gch = GenCollectedHeap::heap();
2019   _last_heap_summary = gch->create_heap_summary();
2020   _last_metaspace_summary = gch->create_metaspace_summary();
2021 }
2022 
2023 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2024   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2025   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2026 }
2027 
2028 bool CMSCollector::waitForForegroundGC() {
2029   bool res = false;
2030   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2031          "CMS thread should have CMS token");
2032   // Block the foreground collector until the
2033   // background collectors decides whether to
2034   // yield.
2035   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2036   _foregroundGCShouldWait = true;
2037   if (_foregroundGCIsActive) {
2038     // The background collector yields to the
2039     // foreground collector and returns a value
2040     // indicating that it has yielded.  The foreground
2041     // collector can proceed.
2042     res = true;
2043     _foregroundGCShouldWait = false;
2044     ConcurrentMarkSweepThread::clear_CMS_flag(
2045       ConcurrentMarkSweepThread::CMS_cms_has_token);
2046     ConcurrentMarkSweepThread::set_CMS_flag(
2047       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2048     // Get a possibly blocked foreground thread going
2049     CGC_lock->notify();
2050     if (TraceCMSState) {
2051       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2052         p2i(Thread::current()), _collectorState);
2053     }
2054     while (_foregroundGCIsActive) {
2055       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2056     }
2057     ConcurrentMarkSweepThread::set_CMS_flag(
2058       ConcurrentMarkSweepThread::CMS_cms_has_token);
2059     ConcurrentMarkSweepThread::clear_CMS_flag(
2060       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2061   }
2062   if (TraceCMSState) {
2063     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2064       p2i(Thread::current()), _collectorState);
2065   }
2066   return res;
2067 }
2068 
2069 // Because of the need to lock the free lists and other structures in
2070 // the collector, common to all the generations that the collector is
2071 // collecting, we need the gc_prologues of individual CMS generations
2072 // delegate to their collector. It may have been simpler had the
2073 // current infrastructure allowed one to call a prologue on a
2074 // collector. In the absence of that we have the generation's
2075 // prologue delegate to the collector, which delegates back
2076 // some "local" work to a worker method in the individual generations
2077 // that it's responsible for collecting, while itself doing any
2078 // work common to all generations it's responsible for. A similar
2079 // comment applies to the  gc_epilogue()'s.
2080 // The role of the variable _between_prologue_and_epilogue is to
2081 // enforce the invocation protocol.
2082 void CMSCollector::gc_prologue(bool full) {
2083   // Call gc_prologue_work() for the CMSGen
2084   // we are responsible for.
2085 
2086   // The following locking discipline assumes that we are only called
2087   // when the world is stopped.
2088   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2089 
2090   // The CMSCollector prologue must call the gc_prologues for the
2091   // "generations" that it's responsible
2092   // for.
2093 
2094   assert(   Thread::current()->is_VM_thread()
2095          || (   CMSScavengeBeforeRemark
2096              && Thread::current()->is_ConcurrentGC_thread()),
2097          "Incorrect thread type for prologue execution");
2098 
2099   if (_between_prologue_and_epilogue) {
2100     // We have already been invoked; this is a gc_prologue delegation
2101     // from yet another CMS generation that we are responsible for, just
2102     // ignore it since all relevant work has already been done.
2103     return;
2104   }
2105 
2106   // set a bit saying prologue has been called; cleared in epilogue
2107   _between_prologue_and_epilogue = true;
2108   // Claim locks for common data structures, then call gc_prologue_work()
2109   // for each CMSGen.
2110 
2111   getFreelistLocks();   // gets free list locks on constituent spaces
2112   bitMapLock()->lock_without_safepoint_check();
2113 
2114   // Should call gc_prologue_work() for all cms gens we are responsible for
2115   bool duringMarking =    _collectorState >= Marking
2116                          && _collectorState < Sweeping;
2117 
2118   // The young collections clear the modified oops state, which tells if
2119   // there are any modified oops in the class. The remark phase also needs
2120   // that information. Tell the young collection to save the union of all
2121   // modified klasses.
2122   if (duringMarking) {
2123     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2124   }
2125 
2126   bool registerClosure = duringMarking;
2127 
2128   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2129 
2130   if (!full) {
2131     stats().record_gc0_begin();
2132   }
2133 }
2134 
2135 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2136 
2137   _capacity_at_prologue = capacity();
2138   _used_at_prologue = used();
2139 
2140   // Delegate to CMScollector which knows how to coordinate between
2141   // this and any other CMS generations that it is responsible for
2142   // collecting.
2143   collector()->gc_prologue(full);
2144 }
2145 
2146 // This is a "private" interface for use by this generation's CMSCollector.
2147 // Not to be called directly by any other entity (for instance,
2148 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2149 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2150   bool registerClosure, ModUnionClosure* modUnionClosure) {
2151   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2152   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2153     "Should be NULL");
2154   if (registerClosure) {
2155     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2156   }
2157   cmsSpace()->gc_prologue();
2158   // Clear stat counters
2159   NOT_PRODUCT(
2160     assert(_numObjectsPromoted == 0, "check");
2161     assert(_numWordsPromoted   == 0, "check");
2162     if (Verbose && PrintGC) {
2163       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2164                           SIZE_FORMAT" bytes concurrently",
2165       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2166     }
2167     _numObjectsAllocated = 0;
2168     _numWordsAllocated   = 0;
2169   )
2170 }
2171 
2172 void CMSCollector::gc_epilogue(bool full) {
2173   // The following locking discipline assumes that we are only called
2174   // when the world is stopped.
2175   assert(SafepointSynchronize::is_at_safepoint(),
2176          "world is stopped assumption");
2177 
2178   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2179   // if linear allocation blocks need to be appropriately marked to allow the
2180   // the blocks to be parsable. We also check here whether we need to nudge the
2181   // CMS collector thread to start a new cycle (if it's not already active).
2182   assert(   Thread::current()->is_VM_thread()
2183          || (   CMSScavengeBeforeRemark
2184              && Thread::current()->is_ConcurrentGC_thread()),
2185          "Incorrect thread type for epilogue execution");
2186 
2187   if (!_between_prologue_and_epilogue) {
2188     // We have already been invoked; this is a gc_epilogue delegation
2189     // from yet another CMS generation that we are responsible for, just
2190     // ignore it since all relevant work has already been done.
2191     return;
2192   }
2193   assert(haveFreelistLocks(), "must have freelist locks");
2194   assert_lock_strong(bitMapLock());
2195 
2196   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2197 
2198   _cmsGen->gc_epilogue_work(full);
2199 
2200   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2201     // in case sampling was not already enabled, enable it
2202     _start_sampling = true;
2203   }
2204   // reset _eden_chunk_array so sampling starts afresh
2205   _eden_chunk_index = 0;
2206 
2207   size_t cms_used   = _cmsGen->cmsSpace()->used();
2208 
2209   // update performance counters - this uses a special version of
2210   // update_counters() that allows the utilization to be passed as a
2211   // parameter, avoiding multiple calls to used().
2212   //
2213   _cmsGen->update_counters(cms_used);
2214 
2215   bitMapLock()->unlock();
2216   releaseFreelistLocks();
2217 
2218   if (!CleanChunkPoolAsync) {
2219     Chunk::clean_chunk_pool();
2220   }
2221 
2222   set_did_compact(false);
2223   _between_prologue_and_epilogue = false;  // ready for next cycle
2224 }
2225 
2226 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2227   collector()->gc_epilogue(full);
2228 
2229   // Also reset promotion tracking in par gc thread states.
2230   for (uint i = 0; i < ParallelGCThreads; i++) {
2231     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2232   }
2233 }
2234 
2235 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2236   assert(!incremental_collection_failed(), "Should have been cleared");
2237   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2238   cmsSpace()->gc_epilogue();
2239     // Print stat counters
2240   NOT_PRODUCT(
2241     assert(_numObjectsAllocated == 0, "check");
2242     assert(_numWordsAllocated == 0, "check");
2243     if (Verbose && PrintGC) {
2244       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2245                           SIZE_FORMAT" bytes",
2246                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2247     }
2248     _numObjectsPromoted = 0;
2249     _numWordsPromoted   = 0;
2250   )
2251 
2252   if (PrintGC && Verbose) {
2253     // Call down the chain in contiguous_available needs the freelistLock
2254     // so print this out before releasing the freeListLock.
2255     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2256                         contiguous_available());
2257   }
2258 }
2259 
2260 #ifndef PRODUCT
2261 bool CMSCollector::have_cms_token() {
2262   Thread* thr = Thread::current();
2263   if (thr->is_VM_thread()) {
2264     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2265   } else if (thr->is_ConcurrentGC_thread()) {
2266     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2267   } else if (thr->is_GC_task_thread()) {
2268     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2269            ParGCRareEvent_lock->owned_by_self();
2270   }
2271   return false;
2272 }
2273 #endif
2274 
2275 // Check reachability of the given heap address in CMS generation,
2276 // treating all other generations as roots.
2277 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2278   // We could "guarantee" below, rather than assert, but I'll
2279   // leave these as "asserts" so that an adventurous debugger
2280   // could try this in the product build provided some subset of
2281   // the conditions were met, provided they were interested in the
2282   // results and knew that the computation below wouldn't interfere
2283   // with other concurrent computations mutating the structures
2284   // being read or written.
2285   assert(SafepointSynchronize::is_at_safepoint(),
2286          "Else mutations in object graph will make answer suspect");
2287   assert(have_cms_token(), "Should hold cms token");
2288   assert(haveFreelistLocks(), "must hold free list locks");
2289   assert_lock_strong(bitMapLock());
2290 
2291   // Clear the marking bit map array before starting, but, just
2292   // for kicks, first report if the given address is already marked
2293   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2294                 _markBitMap.isMarked(addr) ? "" : " not");
2295 
2296   if (verify_after_remark()) {
2297     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2298     bool result = verification_mark_bm()->isMarked(addr);
2299     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2300                            result ? "IS" : "is NOT");
2301     return result;
2302   } else {
2303     gclog_or_tty->print_cr("Could not compute result");
2304     return false;
2305   }
2306 }
2307 
2308 
2309 void
2310 CMSCollector::print_on_error(outputStream* st) {
2311   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2312   if (collector != NULL) {
2313     CMSBitMap* bitmap = &collector->_markBitMap;
2314     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2315     bitmap->print_on_error(st, " Bits: ");
2316 
2317     st->cr();
2318 
2319     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2320     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2321     mut_bitmap->print_on_error(st, " Bits: ");
2322   }
2323 }
2324 
2325 ////////////////////////////////////////////////////////
2326 // CMS Verification Support
2327 ////////////////////////////////////////////////////////
2328 // Following the remark phase, the following invariant
2329 // should hold -- each object in the CMS heap which is
2330 // marked in markBitMap() should be marked in the verification_mark_bm().
2331 
2332 class VerifyMarkedClosure: public BitMapClosure {
2333   CMSBitMap* _marks;
2334   bool       _failed;
2335 
2336  public:
2337   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2338 
2339   bool do_bit(size_t offset) {
2340     HeapWord* addr = _marks->offsetToHeapWord(offset);
2341     if (!_marks->isMarked(addr)) {
2342       oop(addr)->print_on(gclog_or_tty);
2343       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2344       _failed = true;
2345     }
2346     return true;
2347   }
2348 
2349   bool failed() { return _failed; }
2350 };
2351 
2352 bool CMSCollector::verify_after_remark(bool silent) {
2353   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2354   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2355   static bool init = false;
2356 
2357   assert(SafepointSynchronize::is_at_safepoint(),
2358          "Else mutations in object graph will make answer suspect");
2359   assert(have_cms_token(),
2360          "Else there may be mutual interference in use of "
2361          " verification data structures");
2362   assert(_collectorState > Marking && _collectorState <= Sweeping,
2363          "Else marking info checked here may be obsolete");
2364   assert(haveFreelistLocks(), "must hold free list locks");
2365   assert_lock_strong(bitMapLock());
2366 
2367 
2368   // Allocate marking bit map if not already allocated
2369   if (!init) { // first time
2370     if (!verification_mark_bm()->allocate(_span)) {
2371       return false;
2372     }
2373     init = true;
2374   }
2375 
2376   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2377 
2378   // Turn off refs discovery -- so we will be tracing through refs.
2379   // This is as intended, because by this time
2380   // GC must already have cleared any refs that need to be cleared,
2381   // and traced those that need to be marked; moreover,
2382   // the marking done here is not going to interfere in any
2383   // way with the marking information used by GC.
2384   NoRefDiscovery no_discovery(ref_processor());
2385 
2386   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2387 
2388   // Clear any marks from a previous round
2389   verification_mark_bm()->clear_all();
2390   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2391   verify_work_stacks_empty();
2392 
2393   GenCollectedHeap* gch = GenCollectedHeap::heap();
2394   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2395   // Update the saved marks which may affect the root scans.
2396   gch->save_marks();
2397 
2398   if (CMSRemarkVerifyVariant == 1) {
2399     // In this first variant of verification, we complete
2400     // all marking, then check if the new marks-vector is
2401     // a subset of the CMS marks-vector.
2402     verify_after_remark_work_1();
2403   } else if (CMSRemarkVerifyVariant == 2) {
2404     // In this second variant of verification, we flag an error
2405     // (i.e. an object reachable in the new marks-vector not reachable
2406     // in the CMS marks-vector) immediately, also indicating the
2407     // identify of an object (A) that references the unmarked object (B) --
2408     // presumably, a mutation to A failed to be picked up by preclean/remark?
2409     verify_after_remark_work_2();
2410   } else {
2411     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2412             CMSRemarkVerifyVariant);
2413   }
2414   if (!silent) gclog_or_tty->print(" done] ");
2415   return true;
2416 }
2417 
2418 void CMSCollector::verify_after_remark_work_1() {
2419   ResourceMark rm;
2420   HandleMark  hm;
2421   GenCollectedHeap* gch = GenCollectedHeap::heap();
2422 
2423   // Get a clear set of claim bits for the roots processing to work with.
2424   ClassLoaderDataGraph::clear_claimed_marks();
2425 
2426   // Mark from roots one level into CMS
2427   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2428   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2429 
2430   {
2431     StrongRootsScope srs(1);
2432 
2433     gch->gen_process_roots(&srs,
2434                            _cmsGen->level(),
2435                            true,   // younger gens are roots
2436                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2437                            should_unload_classes(),
2438                            &notOlder,
2439                            NULL,
2440                            NULL);
2441   }
2442 
2443   // Now mark from the roots
2444   MarkFromRootsClosure markFromRootsClosure(this, _span,
2445     verification_mark_bm(), verification_mark_stack(),
2446     false /* don't yield */, true /* verifying */);
2447   assert(_restart_addr == NULL, "Expected pre-condition");
2448   verification_mark_bm()->iterate(&markFromRootsClosure);
2449   while (_restart_addr != NULL) {
2450     // Deal with stack overflow: by restarting at the indicated
2451     // address.
2452     HeapWord* ra = _restart_addr;
2453     markFromRootsClosure.reset(ra);
2454     _restart_addr = NULL;
2455     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2456   }
2457   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2458   verify_work_stacks_empty();
2459 
2460   // Marking completed -- now verify that each bit marked in
2461   // verification_mark_bm() is also marked in markBitMap(); flag all
2462   // errors by printing corresponding objects.
2463   VerifyMarkedClosure vcl(markBitMap());
2464   verification_mark_bm()->iterate(&vcl);
2465   if (vcl.failed()) {
2466     gclog_or_tty->print("Verification failed");
2467     gch->print_on(gclog_or_tty);
2468     fatal("CMS: failed marking verification after remark");
2469   }
2470 }
2471 
2472 class VerifyKlassOopsKlassClosure : public KlassClosure {
2473   class VerifyKlassOopsClosure : public OopClosure {
2474     CMSBitMap* _bitmap;
2475    public:
2476     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2477     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2478     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2479   } _oop_closure;
2480  public:
2481   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2482   void do_klass(Klass* k) {
2483     k->oops_do(&_oop_closure);
2484   }
2485 };
2486 
2487 void CMSCollector::verify_after_remark_work_2() {
2488   ResourceMark rm;
2489   HandleMark  hm;
2490   GenCollectedHeap* gch = GenCollectedHeap::heap();
2491 
2492   // Get a clear set of claim bits for the roots processing to work with.
2493   ClassLoaderDataGraph::clear_claimed_marks();
2494 
2495   // Mark from roots one level into CMS
2496   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2497                                      markBitMap());
2498   CLDToOopClosure cld_closure(&notOlder, true);
2499 
2500   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2501 
2502   {
2503     StrongRootsScope srs(1);
2504 
2505     gch->gen_process_roots(&srs,
2506                            _cmsGen->level(),
2507                            true,   // younger gens are roots
2508                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2509                            should_unload_classes(),
2510                            &notOlder,
2511                            NULL,
2512                            &cld_closure);
2513   }
2514 
2515   // Now mark from the roots
2516   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2517     verification_mark_bm(), markBitMap(), verification_mark_stack());
2518   assert(_restart_addr == NULL, "Expected pre-condition");
2519   verification_mark_bm()->iterate(&markFromRootsClosure);
2520   while (_restart_addr != NULL) {
2521     // Deal with stack overflow: by restarting at the indicated
2522     // address.
2523     HeapWord* ra = _restart_addr;
2524     markFromRootsClosure.reset(ra);
2525     _restart_addr = NULL;
2526     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2527   }
2528   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2529   verify_work_stacks_empty();
2530 
2531   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2532   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2533 
2534   // Marking completed -- now verify that each bit marked in
2535   // verification_mark_bm() is also marked in markBitMap(); flag all
2536   // errors by printing corresponding objects.
2537   VerifyMarkedClosure vcl(markBitMap());
2538   verification_mark_bm()->iterate(&vcl);
2539   assert(!vcl.failed(), "Else verification above should not have succeeded");
2540 }
2541 
2542 void ConcurrentMarkSweepGeneration::save_marks() {
2543   // delegate to CMS space
2544   cmsSpace()->save_marks();
2545   for (uint i = 0; i < ParallelGCThreads; i++) {
2546     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2547   }
2548 }
2549 
2550 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2551   return cmsSpace()->no_allocs_since_save_marks();
2552 }
2553 
2554 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2555                                                                 \
2556 void ConcurrentMarkSweepGeneration::                            \
2557 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2558   cl->set_generation(this);                                     \
2559   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2560   cl->reset_generation();                                       \
2561   save_marks();                                                 \
2562 }
2563 
2564 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2565 
2566 void
2567 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2568   if (freelistLock()->owned_by_self()) {
2569     Generation::oop_iterate(cl);
2570   } else {
2571     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2572     Generation::oop_iterate(cl);
2573   }
2574 }
2575 
2576 void
2577 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2578   if (freelistLock()->owned_by_self()) {
2579     Generation::object_iterate(cl);
2580   } else {
2581     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2582     Generation::object_iterate(cl);
2583   }
2584 }
2585 
2586 void
2587 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2588   if (freelistLock()->owned_by_self()) {
2589     Generation::safe_object_iterate(cl);
2590   } else {
2591     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2592     Generation::safe_object_iterate(cl);
2593   }
2594 }
2595 
2596 void
2597 ConcurrentMarkSweepGeneration::post_compact() {
2598 }
2599 
2600 void
2601 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2602   // Fix the linear allocation blocks to look like free blocks.
2603 
2604   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2605   // are not called when the heap is verified during universe initialization and
2606   // at vm shutdown.
2607   if (freelistLock()->owned_by_self()) {
2608     cmsSpace()->prepare_for_verify();
2609   } else {
2610     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2611     cmsSpace()->prepare_for_verify();
2612   }
2613 }
2614 
2615 void
2616 ConcurrentMarkSweepGeneration::verify() {
2617   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2618   // are not called when the heap is verified during universe initialization and
2619   // at vm shutdown.
2620   if (freelistLock()->owned_by_self()) {
2621     cmsSpace()->verify();
2622   } else {
2623     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2624     cmsSpace()->verify();
2625   }
2626 }
2627 
2628 void CMSCollector::verify() {
2629   _cmsGen->verify();
2630 }
2631 
2632 #ifndef PRODUCT
2633 bool CMSCollector::overflow_list_is_empty() const {
2634   assert(_num_par_pushes >= 0, "Inconsistency");
2635   if (_overflow_list == NULL) {
2636     assert(_num_par_pushes == 0, "Inconsistency");
2637   }
2638   return _overflow_list == NULL;
2639 }
2640 
2641 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2642 // merely consolidate assertion checks that appear to occur together frequently.
2643 void CMSCollector::verify_work_stacks_empty() const {
2644   assert(_markStack.isEmpty(), "Marking stack should be empty");
2645   assert(overflow_list_is_empty(), "Overflow list should be empty");
2646 }
2647 
2648 void CMSCollector::verify_overflow_empty() const {
2649   assert(overflow_list_is_empty(), "Overflow list should be empty");
2650   assert(no_preserved_marks(), "No preserved marks");
2651 }
2652 #endif // PRODUCT
2653 
2654 // Decide if we want to enable class unloading as part of the
2655 // ensuing concurrent GC cycle. We will collect and
2656 // unload classes if it's the case that:
2657 // (1) an explicit gc request has been made and the flag
2658 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2659 // (2) (a) class unloading is enabled at the command line, and
2660 //     (b) old gen is getting really full
2661 // NOTE: Provided there is no change in the state of the heap between
2662 // calls to this method, it should have idempotent results. Moreover,
2663 // its results should be monotonically increasing (i.e. going from 0 to 1,
2664 // but not 1 to 0) between successive calls between which the heap was
2665 // not collected. For the implementation below, it must thus rely on
2666 // the property that concurrent_cycles_since_last_unload()
2667 // will not decrease unless a collection cycle happened and that
2668 // _cmsGen->is_too_full() are
2669 // themselves also monotonic in that sense. See check_monotonicity()
2670 // below.
2671 void CMSCollector::update_should_unload_classes() {
2672   _should_unload_classes = false;
2673   // Condition 1 above
2674   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2675     _should_unload_classes = true;
2676   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2677     // Disjuncts 2.b.(i,ii,iii) above
2678     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2679                               CMSClassUnloadingMaxInterval)
2680                            || _cmsGen->is_too_full();
2681   }
2682 }
2683 
2684 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2685   bool res = should_concurrent_collect();
2686   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2687   return res;
2688 }
2689 
2690 void CMSCollector::setup_cms_unloading_and_verification_state() {
2691   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2692                              || VerifyBeforeExit;
2693   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2694 
2695   // We set the proper root for this CMS cycle here.
2696   if (should_unload_classes()) {   // Should unload classes this cycle
2697     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2698     set_verifying(should_verify);    // Set verification state for this cycle
2699     return;                            // Nothing else needs to be done at this time
2700   }
2701 
2702   // Not unloading classes this cycle
2703   assert(!should_unload_classes(), "Inconsistency!");
2704 
2705   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2706     // Include symbols, strings and code cache elements to prevent their resurrection.
2707     add_root_scanning_option(rso);
2708     set_verifying(true);
2709   } else if (verifying() && !should_verify) {
2710     // We were verifying, but some verification flags got disabled.
2711     set_verifying(false);
2712     // Exclude symbols, strings and code cache elements from root scanning to
2713     // reduce IM and RM pauses.
2714     remove_root_scanning_option(rso);
2715   }
2716 }
2717 
2718 
2719 #ifndef PRODUCT
2720 HeapWord* CMSCollector::block_start(const void* p) const {
2721   const HeapWord* addr = (HeapWord*)p;
2722   if (_span.contains(p)) {
2723     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2724       return _cmsGen->cmsSpace()->block_start(p);
2725     }
2726   }
2727   return NULL;
2728 }
2729 #endif
2730 
2731 HeapWord*
2732 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2733                                                    bool   tlab,
2734                                                    bool   parallel) {
2735   CMSSynchronousYieldRequest yr;
2736   assert(!tlab, "Can't deal with TLAB allocation");
2737   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2738   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2739   if (GCExpandToAllocateDelayMillis > 0) {
2740     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2741   }
2742   return have_lock_and_allocate(word_size, tlab);
2743 }
2744 
2745 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2746     size_t bytes,
2747     size_t expand_bytes,
2748     CMSExpansionCause::Cause cause)
2749 {
2750 
2751   bool success = expand(bytes, expand_bytes);
2752 
2753   // remember why we expanded; this information is used
2754   // by shouldConcurrentCollect() when making decisions on whether to start
2755   // a new CMS cycle.
2756   if (success) {
2757     set_expansion_cause(cause);
2758     if (PrintGCDetails && Verbose) {
2759       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2760         CMSExpansionCause::to_string(cause));
2761     }
2762   }
2763 }
2764 
2765 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2766   HeapWord* res = NULL;
2767   MutexLocker x(ParGCRareEvent_lock);
2768   while (true) {
2769     // Expansion by some other thread might make alloc OK now:
2770     res = ps->lab.alloc(word_sz);
2771     if (res != NULL) return res;
2772     // If there's not enough expansion space available, give up.
2773     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2774       return NULL;
2775     }
2776     // Otherwise, we try expansion.
2777     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2778     // Now go around the loop and try alloc again;
2779     // A competing par_promote might beat us to the expansion space,
2780     // so we may go around the loop again if promotion fails again.
2781     if (GCExpandToAllocateDelayMillis > 0) {
2782       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2783     }
2784   }
2785 }
2786 
2787 
2788 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2789   PromotionInfo* promo) {
2790   MutexLocker x(ParGCRareEvent_lock);
2791   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2792   while (true) {
2793     // Expansion by some other thread might make alloc OK now:
2794     if (promo->ensure_spooling_space()) {
2795       assert(promo->has_spooling_space(),
2796              "Post-condition of successful ensure_spooling_space()");
2797       return true;
2798     }
2799     // If there's not enough expansion space available, give up.
2800     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2801       return false;
2802     }
2803     // Otherwise, we try expansion.
2804     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2805     // Now go around the loop and try alloc again;
2806     // A competing allocation might beat us to the expansion space,
2807     // so we may go around the loop again if allocation fails again.
2808     if (GCExpandToAllocateDelayMillis > 0) {
2809       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2810     }
2811   }
2812 }
2813 
2814 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2815   // Only shrink if a compaction was done so that all the free space
2816   // in the generation is in a contiguous block at the end.
2817   if (did_compact()) {
2818     CardGeneration::shrink(bytes);
2819   }
2820 }
2821 
2822 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2823   assert_locked_or_safepoint(Heap_lock);
2824 }
2825 
2826 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2827   assert_locked_or_safepoint(Heap_lock);
2828   assert_lock_strong(freelistLock());
2829   if (PrintGCDetails && Verbose) {
2830     warning("Shrinking of CMS not yet implemented");
2831   }
2832   return;
2833 }
2834 
2835 
2836 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2837 // phases.
2838 class CMSPhaseAccounting: public StackObj {
2839  public:
2840   CMSPhaseAccounting(CMSCollector *collector,
2841                      const char *phase,
2842                      const GCId gc_id,
2843                      bool print_cr = true);
2844   ~CMSPhaseAccounting();
2845 
2846  private:
2847   CMSCollector *_collector;
2848   const char *_phase;
2849   elapsedTimer _wallclock;
2850   bool _print_cr;
2851   const GCId _gc_id;
2852 
2853  public:
2854   // Not MT-safe; so do not pass around these StackObj's
2855   // where they may be accessed by other threads.
2856   jlong wallclock_millis() {
2857     assert(_wallclock.is_active(), "Wall clock should not stop");
2858     _wallclock.stop();  // to record time
2859     jlong ret = _wallclock.milliseconds();
2860     _wallclock.start(); // restart
2861     return ret;
2862   }
2863 };
2864 
2865 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2866                                        const char *phase,
2867                                        const GCId gc_id,
2868                                        bool print_cr) :
2869   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2870 
2871   if (PrintCMSStatistics != 0) {
2872     _collector->resetYields();
2873   }
2874   if (PrintGCDetails) {
2875     gclog_or_tty->gclog_stamp(_gc_id);
2876     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2877       _collector->cmsGen()->short_name(), _phase);
2878   }
2879   _collector->resetTimer();
2880   _wallclock.start();
2881   _collector->startTimer();
2882 }
2883 
2884 CMSPhaseAccounting::~CMSPhaseAccounting() {
2885   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2886   _collector->stopTimer();
2887   _wallclock.stop();
2888   if (PrintGCDetails) {
2889     gclog_or_tty->gclog_stamp(_gc_id);
2890     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2891                  _collector->cmsGen()->short_name(),
2892                  _phase, _collector->timerValue(), _wallclock.seconds());
2893     if (_print_cr) {
2894       gclog_or_tty->cr();
2895     }
2896     if (PrintCMSStatistics != 0) {
2897       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2898                     _collector->yields());
2899     }
2900   }
2901 }
2902 
2903 // CMS work
2904 
2905 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2906 class CMSParMarkTask : public AbstractGangTask {
2907  protected:
2908   CMSCollector*     _collector;
2909   uint              _n_workers;
2910   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2911       AbstractGangTask(name),
2912       _collector(collector),
2913       _n_workers(n_workers) {}
2914   // Work method in support of parallel rescan ... of young gen spaces
2915   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2916                              ContiguousSpace* space,
2917                              HeapWord** chunk_array, size_t chunk_top);
2918   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2919 };
2920 
2921 // Parallel initial mark task
2922 class CMSParInitialMarkTask: public CMSParMarkTask {
2923   StrongRootsScope* _strong_roots_scope;
2924  public:
2925   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2926       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2927       _strong_roots_scope(strong_roots_scope) {}
2928   void work(uint worker_id);
2929 };
2930 
2931 // Checkpoint the roots into this generation from outside
2932 // this generation. [Note this initial checkpoint need only
2933 // be approximate -- we'll do a catch up phase subsequently.]
2934 void CMSCollector::checkpointRootsInitial() {
2935   assert(_collectorState == InitialMarking, "Wrong collector state");
2936   check_correct_thread_executing();
2937   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2938 
2939   save_heap_summary();
2940   report_heap_summary(GCWhen::BeforeGC);
2941 
2942   ReferenceProcessor* rp = ref_processor();
2943   assert(_restart_addr == NULL, "Control point invariant");
2944   {
2945     // acquire locks for subsequent manipulations
2946     MutexLockerEx x(bitMapLock(),
2947                     Mutex::_no_safepoint_check_flag);
2948     checkpointRootsInitialWork();
2949     // enable ("weak") refs discovery
2950     rp->enable_discovery();
2951     _collectorState = Marking;
2952   }
2953 }
2954 
2955 void CMSCollector::checkpointRootsInitialWork() {
2956   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2957   assert(_collectorState == InitialMarking, "just checking");
2958 
2959   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2960   // precede our marking with a collection of all
2961   // younger generations to keep floating garbage to a minimum.
2962   // XXX: we won't do this for now -- it's an optimization to be done later.
2963 
2964   // already have locks
2965   assert_lock_strong(bitMapLock());
2966   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2967 
2968   // Setup the verification and class unloading state for this
2969   // CMS collection cycle.
2970   setup_cms_unloading_and_verification_state();
2971 
2972   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2973     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2974 
2975   // Reset all the PLAB chunk arrays if necessary.
2976   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2977     reset_survivor_plab_arrays();
2978   }
2979 
2980   ResourceMark rm;
2981   HandleMark  hm;
2982 
2983   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2984   GenCollectedHeap* gch = GenCollectedHeap::heap();
2985 
2986   verify_work_stacks_empty();
2987   verify_overflow_empty();
2988 
2989   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2990   // Update the saved marks which may affect the root scans.
2991   gch->save_marks();
2992 
2993   // weak reference processing has not started yet.
2994   ref_processor()->set_enqueuing_is_done(false);
2995 
2996   // Need to remember all newly created CLDs,
2997   // so that we can guarantee that the remark finds them.
2998   ClassLoaderDataGraph::remember_new_clds(true);
2999 
3000   // Whenever a CLD is found, it will be claimed before proceeding to mark
3001   // the klasses. The claimed marks need to be cleared before marking starts.
3002   ClassLoaderDataGraph::clear_claimed_marks();
3003 
3004   if (CMSPrintEdenSurvivorChunks) {
3005     print_eden_and_survivor_chunk_arrays();
3006   }
3007 
3008   {
3009     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3010     if (CMSParallelInitialMarkEnabled) {
3011       // The parallel version.
3012       FlexibleWorkGang* workers = gch->workers();
3013       assert(workers != NULL, "Need parallel worker threads.");
3014       uint n_workers = workers->active_workers();
3015 
3016       StrongRootsScope srs(n_workers);
3017 
3018       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3019       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3020       if (n_workers > 1) {
3021         workers->run_task(&tsk);
3022       } else {
3023         tsk.work(0);
3024       }
3025     } else {
3026       // The serial version.
3027       CLDToOopClosure cld_closure(&notOlder, true);
3028       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3029 
3030       StrongRootsScope srs(1);
3031 
3032       gch->gen_process_roots(&srs,
3033                              _cmsGen->level(),
3034                              true,   // younger gens are roots
3035                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3036                              should_unload_classes(),
3037                              &notOlder,
3038                              NULL,
3039                              &cld_closure);
3040     }
3041   }
3042 
3043   // Clear mod-union table; it will be dirtied in the prologue of
3044   // CMS generation per each younger generation collection.
3045 
3046   assert(_modUnionTable.isAllClear(),
3047        "Was cleared in most recent final checkpoint phase"
3048        " or no bits are set in the gc_prologue before the start of the next "
3049        "subsequent marking phase.");
3050 
3051   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3052 
3053   // Save the end of the used_region of the constituent generations
3054   // to be used to limit the extent of sweep in each generation.
3055   save_sweep_limits();
3056   verify_overflow_empty();
3057 }
3058 
3059 bool CMSCollector::markFromRoots() {
3060   // we might be tempted to assert that:
3061   // assert(!SafepointSynchronize::is_at_safepoint(),
3062   //        "inconsistent argument?");
3063   // However that wouldn't be right, because it's possible that
3064   // a safepoint is indeed in progress as a younger generation
3065   // stop-the-world GC happens even as we mark in this generation.
3066   assert(_collectorState == Marking, "inconsistent state?");
3067   check_correct_thread_executing();
3068   verify_overflow_empty();
3069 
3070   // Weak ref discovery note: We may be discovering weak
3071   // refs in this generation concurrent (but interleaved) with
3072   // weak ref discovery by a younger generation collector.
3073 
3074   CMSTokenSyncWithLocks ts(true, bitMapLock());
3075   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3076   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3077   bool res = markFromRootsWork();
3078   if (res) {
3079     _collectorState = Precleaning;
3080   } else { // We failed and a foreground collection wants to take over
3081     assert(_foregroundGCIsActive, "internal state inconsistency");
3082     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3083     if (PrintGCDetails) {
3084       gclog_or_tty->print_cr("bailing out to foreground collection");
3085     }
3086   }
3087   verify_overflow_empty();
3088   return res;
3089 }
3090 
3091 bool CMSCollector::markFromRootsWork() {
3092   // iterate over marked bits in bit map, doing a full scan and mark
3093   // from these roots using the following algorithm:
3094   // . if oop is to the right of the current scan pointer,
3095   //   mark corresponding bit (we'll process it later)
3096   // . else (oop is to left of current scan pointer)
3097   //   push oop on marking stack
3098   // . drain the marking stack
3099 
3100   // Note that when we do a marking step we need to hold the
3101   // bit map lock -- recall that direct allocation (by mutators)
3102   // and promotion (by younger generation collectors) is also
3103   // marking the bit map. [the so-called allocate live policy.]
3104   // Because the implementation of bit map marking is not
3105   // robust wrt simultaneous marking of bits in the same word,
3106   // we need to make sure that there is no such interference
3107   // between concurrent such updates.
3108 
3109   // already have locks
3110   assert_lock_strong(bitMapLock());
3111 
3112   verify_work_stacks_empty();
3113   verify_overflow_empty();
3114   bool result = false;
3115   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3116     result = do_marking_mt();
3117   } else {
3118     result = do_marking_st();
3119   }
3120   return result;
3121 }
3122 
3123 // Forward decl
3124 class CMSConcMarkingTask;
3125 
3126 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3127   CMSCollector*       _collector;
3128   CMSConcMarkingTask* _task;
3129  public:
3130   virtual void yield();
3131 
3132   // "n_threads" is the number of threads to be terminated.
3133   // "queue_set" is a set of work queues of other threads.
3134   // "collector" is the CMS collector associated with this task terminator.
3135   // "yield" indicates whether we need the gang as a whole to yield.
3136   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3137     ParallelTaskTerminator(n_threads, queue_set),
3138     _collector(collector) { }
3139 
3140   void set_task(CMSConcMarkingTask* task) {
3141     _task = task;
3142   }
3143 };
3144 
3145 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3146   CMSConcMarkingTask* _task;
3147  public:
3148   bool should_exit_termination();
3149   void set_task(CMSConcMarkingTask* task) {
3150     _task = task;
3151   }
3152 };
3153 
3154 // MT Concurrent Marking Task
3155 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3156   CMSCollector* _collector;
3157   uint          _n_workers;       // requested/desired # workers
3158   bool          _result;
3159   CompactibleFreeListSpace*  _cms_space;
3160   char          _pad_front[64];   // padding to ...
3161   HeapWord*     _global_finger;   // ... avoid sharing cache line
3162   char          _pad_back[64];
3163   HeapWord*     _restart_addr;
3164 
3165   //  Exposed here for yielding support
3166   Mutex* const _bit_map_lock;
3167 
3168   // The per thread work queues, available here for stealing
3169   OopTaskQueueSet*  _task_queues;
3170 
3171   // Termination (and yielding) support
3172   CMSConcMarkingTerminator _term;
3173   CMSConcMarkingTerminatorTerminator _term_term;
3174 
3175  public:
3176   CMSConcMarkingTask(CMSCollector* collector,
3177                  CompactibleFreeListSpace* cms_space,
3178                  YieldingFlexibleWorkGang* workers,
3179                  OopTaskQueueSet* task_queues):
3180     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3181     _collector(collector),
3182     _cms_space(cms_space),
3183     _n_workers(0), _result(true),
3184     _task_queues(task_queues),
3185     _term(_n_workers, task_queues, _collector),
3186     _bit_map_lock(collector->bitMapLock())
3187   {
3188     _requested_size = _n_workers;
3189     _term.set_task(this);
3190     _term_term.set_task(this);
3191     _restart_addr = _global_finger = _cms_space->bottom();
3192   }
3193 
3194 
3195   OopTaskQueueSet* task_queues()  { return _task_queues; }
3196 
3197   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3198 
3199   HeapWord** global_finger_addr() { return &_global_finger; }
3200 
3201   CMSConcMarkingTerminator* terminator() { return &_term; }
3202 
3203   virtual void set_for_termination(uint active_workers) {
3204     terminator()->reset_for_reuse(active_workers);
3205   }
3206 
3207   void work(uint worker_id);
3208   bool should_yield() {
3209     return    ConcurrentMarkSweepThread::should_yield()
3210            && !_collector->foregroundGCIsActive();
3211   }
3212 
3213   virtual void coordinator_yield();  // stuff done by coordinator
3214   bool result() { return _result; }
3215 
3216   void reset(HeapWord* ra) {
3217     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3218     _restart_addr = _global_finger = ra;
3219     _term.reset_for_reuse();
3220   }
3221 
3222   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3223                                            OopTaskQueue* work_q);
3224 
3225  private:
3226   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3227   void do_work_steal(int i);
3228   void bump_global_finger(HeapWord* f);
3229 };
3230 
3231 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3232   assert(_task != NULL, "Error");
3233   return _task->yielding();
3234   // Note that we do not need the disjunct || _task->should_yield() above
3235   // because we want terminating threads to yield only if the task
3236   // is already in the midst of yielding, which happens only after at least one
3237   // thread has yielded.
3238 }
3239 
3240 void CMSConcMarkingTerminator::yield() {
3241   if (_task->should_yield()) {
3242     _task->yield();
3243   } else {
3244     ParallelTaskTerminator::yield();
3245   }
3246 }
3247 
3248 ////////////////////////////////////////////////////////////////
3249 // Concurrent Marking Algorithm Sketch
3250 ////////////////////////////////////////////////////////////////
3251 // Until all tasks exhausted (both spaces):
3252 // -- claim next available chunk
3253 // -- bump global finger via CAS
3254 // -- find first object that starts in this chunk
3255 //    and start scanning bitmap from that position
3256 // -- scan marked objects for oops
3257 // -- CAS-mark target, and if successful:
3258 //    . if target oop is above global finger (volatile read)
3259 //      nothing to do
3260 //    . if target oop is in chunk and above local finger
3261 //        then nothing to do
3262 //    . else push on work-queue
3263 // -- Deal with possible overflow issues:
3264 //    . local work-queue overflow causes stuff to be pushed on
3265 //      global (common) overflow queue
3266 //    . always first empty local work queue
3267 //    . then get a batch of oops from global work queue if any
3268 //    . then do work stealing
3269 // -- When all tasks claimed (both spaces)
3270 //    and local work queue empty,
3271 //    then in a loop do:
3272 //    . check global overflow stack; steal a batch of oops and trace
3273 //    . try to steal from other threads oif GOS is empty
3274 //    . if neither is available, offer termination
3275 // -- Terminate and return result
3276 //
3277 void CMSConcMarkingTask::work(uint worker_id) {
3278   elapsedTimer _timer;
3279   ResourceMark rm;
3280   HandleMark hm;
3281 
3282   DEBUG_ONLY(_collector->verify_overflow_empty();)
3283 
3284   // Before we begin work, our work queue should be empty
3285   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3286   // Scan the bitmap covering _cms_space, tracing through grey objects.
3287   _timer.start();
3288   do_scan_and_mark(worker_id, _cms_space);
3289   _timer.stop();
3290   if (PrintCMSStatistics != 0) {
3291     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3292       worker_id, _timer.seconds());
3293       // XXX: need xxx/xxx type of notation, two timers
3294   }
3295 
3296   // ... do work stealing
3297   _timer.reset();
3298   _timer.start();
3299   do_work_steal(worker_id);
3300   _timer.stop();
3301   if (PrintCMSStatistics != 0) {
3302     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3303       worker_id, _timer.seconds());
3304       // XXX: need xxx/xxx type of notation, two timers
3305   }
3306   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3307   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3308   // Note that under the current task protocol, the
3309   // following assertion is true even of the spaces
3310   // expanded since the completion of the concurrent
3311   // marking. XXX This will likely change under a strict
3312   // ABORT semantics.
3313   // After perm removal the comparison was changed to
3314   // greater than or equal to from strictly greater than.
3315   // Before perm removal the highest address sweep would
3316   // have been at the end of perm gen but now is at the
3317   // end of the tenured gen.
3318   assert(_global_finger >=  _cms_space->end(),
3319          "All tasks have been completed");
3320   DEBUG_ONLY(_collector->verify_overflow_empty();)
3321 }
3322 
3323 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3324   HeapWord* read = _global_finger;
3325   HeapWord* cur  = read;
3326   while (f > read) {
3327     cur = read;
3328     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3329     if (cur == read) {
3330       // our cas succeeded
3331       assert(_global_finger >= f, "protocol consistency");
3332       break;
3333     }
3334   }
3335 }
3336 
3337 // This is really inefficient, and should be redone by
3338 // using (not yet available) block-read and -write interfaces to the
3339 // stack and the work_queue. XXX FIX ME !!!
3340 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3341                                                       OopTaskQueue* work_q) {
3342   // Fast lock-free check
3343   if (ovflw_stk->length() == 0) {
3344     return false;
3345   }
3346   assert(work_q->size() == 0, "Shouldn't steal");
3347   MutexLockerEx ml(ovflw_stk->par_lock(),
3348                    Mutex::_no_safepoint_check_flag);
3349   // Grab up to 1/4 the size of the work queue
3350   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3351                     (size_t)ParGCDesiredObjsFromOverflowList);
3352   num = MIN2(num, ovflw_stk->length());
3353   for (int i = (int) num; i > 0; i--) {
3354     oop cur = ovflw_stk->pop();
3355     assert(cur != NULL, "Counted wrong?");
3356     work_q->push(cur);
3357   }
3358   return num > 0;
3359 }
3360 
3361 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3362   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3363   int n_tasks = pst->n_tasks();
3364   // We allow that there may be no tasks to do here because
3365   // we are restarting after a stack overflow.
3366   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3367   uint nth_task = 0;
3368 
3369   HeapWord* aligned_start = sp->bottom();
3370   if (sp->used_region().contains(_restart_addr)) {
3371     // Align down to a card boundary for the start of 0th task
3372     // for this space.
3373     aligned_start =
3374       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3375                                  CardTableModRefBS::card_size);
3376   }
3377 
3378   size_t chunk_size = sp->marking_task_size();
3379   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3380     // Having claimed the nth task in this space,
3381     // compute the chunk that it corresponds to:
3382     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3383                                aligned_start + (nth_task+1)*chunk_size);
3384     // Try and bump the global finger via a CAS;
3385     // note that we need to do the global finger bump
3386     // _before_ taking the intersection below, because
3387     // the task corresponding to that region will be
3388     // deemed done even if the used_region() expands
3389     // because of allocation -- as it almost certainly will
3390     // during start-up while the threads yield in the
3391     // closure below.
3392     HeapWord* finger = span.end();
3393     bump_global_finger(finger);   // atomically
3394     // There are null tasks here corresponding to chunks
3395     // beyond the "top" address of the space.
3396     span = span.intersection(sp->used_region());
3397     if (!span.is_empty()) {  // Non-null task
3398       HeapWord* prev_obj;
3399       assert(!span.contains(_restart_addr) || nth_task == 0,
3400              "Inconsistency");
3401       if (nth_task == 0) {
3402         // For the 0th task, we'll not need to compute a block_start.
3403         if (span.contains(_restart_addr)) {
3404           // In the case of a restart because of stack overflow,
3405           // we might additionally skip a chunk prefix.
3406           prev_obj = _restart_addr;
3407         } else {
3408           prev_obj = span.start();
3409         }
3410       } else {
3411         // We want to skip the first object because
3412         // the protocol is to scan any object in its entirety
3413         // that _starts_ in this span; a fortiori, any
3414         // object starting in an earlier span is scanned
3415         // as part of an earlier claimed task.
3416         // Below we use the "careful" version of block_start
3417         // so we do not try to navigate uninitialized objects.
3418         prev_obj = sp->block_start_careful(span.start());
3419         // Below we use a variant of block_size that uses the
3420         // Printezis bits to avoid waiting for allocated
3421         // objects to become initialized/parsable.
3422         while (prev_obj < span.start()) {
3423           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3424           if (sz > 0) {
3425             prev_obj += sz;
3426           } else {
3427             // In this case we may end up doing a bit of redundant
3428             // scanning, but that appears unavoidable, short of
3429             // locking the free list locks; see bug 6324141.
3430             break;
3431           }
3432         }
3433       }
3434       if (prev_obj < span.end()) {
3435         MemRegion my_span = MemRegion(prev_obj, span.end());
3436         // Do the marking work within a non-empty span --
3437         // the last argument to the constructor indicates whether the
3438         // iteration should be incremental with periodic yields.
3439         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3440                                     &_collector->_markBitMap,
3441                                     work_queue(i),
3442                                     &_collector->_markStack);
3443         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3444       } // else nothing to do for this task
3445     }   // else nothing to do for this task
3446   }
3447   // We'd be tempted to assert here that since there are no
3448   // more tasks left to claim in this space, the global_finger
3449   // must exceed space->top() and a fortiori space->end(). However,
3450   // that would not quite be correct because the bumping of
3451   // global_finger occurs strictly after the claiming of a task,
3452   // so by the time we reach here the global finger may not yet
3453   // have been bumped up by the thread that claimed the last
3454   // task.
3455   pst->all_tasks_completed();
3456 }
3457 
3458 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3459  private:
3460   CMSCollector* _collector;
3461   CMSConcMarkingTask* _task;
3462   MemRegion     _span;
3463   CMSBitMap*    _bit_map;
3464   CMSMarkStack* _overflow_stack;
3465   OopTaskQueue* _work_queue;
3466  protected:
3467   DO_OOP_WORK_DEFN
3468  public:
3469   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3470                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3471     MetadataAwareOopClosure(collector->ref_processor()),
3472     _collector(collector),
3473     _task(task),
3474     _span(collector->_span),
3475     _work_queue(work_queue),
3476     _bit_map(bit_map),
3477     _overflow_stack(overflow_stack)
3478   { }
3479   virtual void do_oop(oop* p);
3480   virtual void do_oop(narrowOop* p);
3481 
3482   void trim_queue(size_t max);
3483   void handle_stack_overflow(HeapWord* lost);
3484   void do_yield_check() {
3485     if (_task->should_yield()) {
3486       _task->yield();
3487     }
3488   }
3489 };
3490 
3491 // Grey object scanning during work stealing phase --
3492 // the salient assumption here is that any references
3493 // that are in these stolen objects being scanned must
3494 // already have been initialized (else they would not have
3495 // been published), so we do not need to check for
3496 // uninitialized objects before pushing here.
3497 void Par_ConcMarkingClosure::do_oop(oop obj) {
3498   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3499   HeapWord* addr = (HeapWord*)obj;
3500   // Check if oop points into the CMS generation
3501   // and is not marked
3502   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3503     // a white object ...
3504     // If we manage to "claim" the object, by being the
3505     // first thread to mark it, then we push it on our
3506     // marking stack
3507     if (_bit_map->par_mark(addr)) {     // ... now grey
3508       // push on work queue (grey set)
3509       bool simulate_overflow = false;
3510       NOT_PRODUCT(
3511         if (CMSMarkStackOverflowALot &&
3512             _collector->simulate_overflow()) {
3513           // simulate a stack overflow
3514           simulate_overflow = true;
3515         }
3516       )
3517       if (simulate_overflow ||
3518           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3519         // stack overflow
3520         if (PrintCMSStatistics != 0) {
3521           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3522                                  SIZE_FORMAT, _overflow_stack->capacity());
3523         }
3524         // We cannot assert that the overflow stack is full because
3525         // it may have been emptied since.
3526         assert(simulate_overflow ||
3527                _work_queue->size() == _work_queue->max_elems(),
3528               "Else push should have succeeded");
3529         handle_stack_overflow(addr);
3530       }
3531     } // Else, some other thread got there first
3532     do_yield_check();
3533   }
3534 }
3535 
3536 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3537 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3538 
3539 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3540   while (_work_queue->size() > max) {
3541     oop new_oop;
3542     if (_work_queue->pop_local(new_oop)) {
3543       assert(new_oop->is_oop(), "Should be an oop");
3544       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3545       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3546       new_oop->oop_iterate(this);  // do_oop() above
3547       do_yield_check();
3548     }
3549   }
3550 }
3551 
3552 // Upon stack overflow, we discard (part of) the stack,
3553 // remembering the least address amongst those discarded
3554 // in CMSCollector's _restart_address.
3555 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3556   // We need to do this under a mutex to prevent other
3557   // workers from interfering with the work done below.
3558   MutexLockerEx ml(_overflow_stack->par_lock(),
3559                    Mutex::_no_safepoint_check_flag);
3560   // Remember the least grey address discarded
3561   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3562   _collector->lower_restart_addr(ra);
3563   _overflow_stack->reset();  // discard stack contents
3564   _overflow_stack->expand(); // expand the stack if possible
3565 }
3566 
3567 
3568 void CMSConcMarkingTask::do_work_steal(int i) {
3569   OopTaskQueue* work_q = work_queue(i);
3570   oop obj_to_scan;
3571   CMSBitMap* bm = &(_collector->_markBitMap);
3572   CMSMarkStack* ovflw = &(_collector->_markStack);
3573   int* seed = _collector->hash_seed(i);
3574   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3575   while (true) {
3576     cl.trim_queue(0);
3577     assert(work_q->size() == 0, "Should have been emptied above");
3578     if (get_work_from_overflow_stack(ovflw, work_q)) {
3579       // Can't assert below because the work obtained from the
3580       // overflow stack may already have been stolen from us.
3581       // assert(work_q->size() > 0, "Work from overflow stack");
3582       continue;
3583     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3584       assert(obj_to_scan->is_oop(), "Should be an oop");
3585       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3586       obj_to_scan->oop_iterate(&cl);
3587     } else if (terminator()->offer_termination(&_term_term)) {
3588       assert(work_q->size() == 0, "Impossible!");
3589       break;
3590     } else if (yielding() || should_yield()) {
3591       yield();
3592     }
3593   }
3594 }
3595 
3596 // This is run by the CMS (coordinator) thread.
3597 void CMSConcMarkingTask::coordinator_yield() {
3598   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3599          "CMS thread should hold CMS token");
3600   // First give up the locks, then yield, then re-lock
3601   // We should probably use a constructor/destructor idiom to
3602   // do this unlock/lock or modify the MutexUnlocker class to
3603   // serve our purpose. XXX
3604   assert_lock_strong(_bit_map_lock);
3605   _bit_map_lock->unlock();
3606   ConcurrentMarkSweepThread::desynchronize(true);
3607   _collector->stopTimer();
3608   if (PrintCMSStatistics != 0) {
3609     _collector->incrementYields();
3610   }
3611 
3612   // It is possible for whichever thread initiated the yield request
3613   // not to get a chance to wake up and take the bitmap lock between
3614   // this thread releasing it and reacquiring it. So, while the
3615   // should_yield() flag is on, let's sleep for a bit to give the
3616   // other thread a chance to wake up. The limit imposed on the number
3617   // of iterations is defensive, to avoid any unforseen circumstances
3618   // putting us into an infinite loop. Since it's always been this
3619   // (coordinator_yield()) method that was observed to cause the
3620   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3621   // which is by default non-zero. For the other seven methods that
3622   // also perform the yield operation, as are using a different
3623   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3624   // can enable the sleeping for those methods too, if necessary.
3625   // See 6442774.
3626   //
3627   // We really need to reconsider the synchronization between the GC
3628   // thread and the yield-requesting threads in the future and we
3629   // should really use wait/notify, which is the recommended
3630   // way of doing this type of interaction. Additionally, we should
3631   // consolidate the eight methods that do the yield operation and they
3632   // are almost identical into one for better maintainability and
3633   // readability. See 6445193.
3634   //
3635   // Tony 2006.06.29
3636   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3637                    ConcurrentMarkSweepThread::should_yield() &&
3638                    !CMSCollector::foregroundGCIsActive(); ++i) {
3639     os::sleep(Thread::current(), 1, false);
3640   }
3641 
3642   ConcurrentMarkSweepThread::synchronize(true);
3643   _bit_map_lock->lock_without_safepoint_check();
3644   _collector->startTimer();
3645 }
3646 
3647 bool CMSCollector::do_marking_mt() {
3648   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3649   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3650                                                                   conc_workers()->active_workers(),
3651                                                                   Threads::number_of_non_daemon_threads());
3652   conc_workers()->set_active_workers(num_workers);
3653 
3654   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3655 
3656   CMSConcMarkingTask tsk(this,
3657                          cms_space,
3658                          conc_workers(),
3659                          task_queues());
3660 
3661   // Since the actual number of workers we get may be different
3662   // from the number we requested above, do we need to do anything different
3663   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3664   // class?? XXX
3665   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3666 
3667   // Refs discovery is already non-atomic.
3668   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3669   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3670   conc_workers()->start_task(&tsk);
3671   while (tsk.yielded()) {
3672     tsk.coordinator_yield();
3673     conc_workers()->continue_task(&tsk);
3674   }
3675   // If the task was aborted, _restart_addr will be non-NULL
3676   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3677   while (_restart_addr != NULL) {
3678     // XXX For now we do not make use of ABORTED state and have not
3679     // yet implemented the right abort semantics (even in the original
3680     // single-threaded CMS case). That needs some more investigation
3681     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3682     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3683     // If _restart_addr is non-NULL, a marking stack overflow
3684     // occurred; we need to do a fresh marking iteration from the
3685     // indicated restart address.
3686     if (_foregroundGCIsActive) {
3687       // We may be running into repeated stack overflows, having
3688       // reached the limit of the stack size, while making very
3689       // slow forward progress. It may be best to bail out and
3690       // let the foreground collector do its job.
3691       // Clear _restart_addr, so that foreground GC
3692       // works from scratch. This avoids the headache of
3693       // a "rescan" which would otherwise be needed because
3694       // of the dirty mod union table & card table.
3695       _restart_addr = NULL;
3696       return false;
3697     }
3698     // Adjust the task to restart from _restart_addr
3699     tsk.reset(_restart_addr);
3700     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3701                   _restart_addr);
3702     _restart_addr = NULL;
3703     // Get the workers going again
3704     conc_workers()->start_task(&tsk);
3705     while (tsk.yielded()) {
3706       tsk.coordinator_yield();
3707       conc_workers()->continue_task(&tsk);
3708     }
3709   }
3710   assert(tsk.completed(), "Inconsistency");
3711   assert(tsk.result() == true, "Inconsistency");
3712   return true;
3713 }
3714 
3715 bool CMSCollector::do_marking_st() {
3716   ResourceMark rm;
3717   HandleMark   hm;
3718 
3719   // Temporarily make refs discovery single threaded (non-MT)
3720   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3721   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3722     &_markStack, CMSYield);
3723   // the last argument to iterate indicates whether the iteration
3724   // should be incremental with periodic yields.
3725   _markBitMap.iterate(&markFromRootsClosure);
3726   // If _restart_addr is non-NULL, a marking stack overflow
3727   // occurred; we need to do a fresh iteration from the
3728   // indicated restart address.
3729   while (_restart_addr != NULL) {
3730     if (_foregroundGCIsActive) {
3731       // We may be running into repeated stack overflows, having
3732       // reached the limit of the stack size, while making very
3733       // slow forward progress. It may be best to bail out and
3734       // let the foreground collector do its job.
3735       // Clear _restart_addr, so that foreground GC
3736       // works from scratch. This avoids the headache of
3737       // a "rescan" which would otherwise be needed because
3738       // of the dirty mod union table & card table.
3739       _restart_addr = NULL;
3740       return false;  // indicating failure to complete marking
3741     }
3742     // Deal with stack overflow:
3743     // we restart marking from _restart_addr
3744     HeapWord* ra = _restart_addr;
3745     markFromRootsClosure.reset(ra);
3746     _restart_addr = NULL;
3747     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3748   }
3749   return true;
3750 }
3751 
3752 void CMSCollector::preclean() {
3753   check_correct_thread_executing();
3754   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3755   verify_work_stacks_empty();
3756   verify_overflow_empty();
3757   _abort_preclean = false;
3758   if (CMSPrecleaningEnabled) {
3759     if (!CMSEdenChunksRecordAlways) {
3760       _eden_chunk_index = 0;
3761     }
3762     size_t used = get_eden_used();
3763     size_t capacity = get_eden_capacity();
3764     // Don't start sampling unless we will get sufficiently
3765     // many samples.
3766     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3767                 * CMSScheduleRemarkEdenPenetration)) {
3768       _start_sampling = true;
3769     } else {
3770       _start_sampling = false;
3771     }
3772     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3773     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3774     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3775   }
3776   CMSTokenSync x(true); // is cms thread
3777   if (CMSPrecleaningEnabled) {
3778     sample_eden();
3779     _collectorState = AbortablePreclean;
3780   } else {
3781     _collectorState = FinalMarking;
3782   }
3783   verify_work_stacks_empty();
3784   verify_overflow_empty();
3785 }
3786 
3787 // Try and schedule the remark such that young gen
3788 // occupancy is CMSScheduleRemarkEdenPenetration %.
3789 void CMSCollector::abortable_preclean() {
3790   check_correct_thread_executing();
3791   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3792   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3793 
3794   // If Eden's current occupancy is below this threshold,
3795   // immediately schedule the remark; else preclean
3796   // past the next scavenge in an effort to
3797   // schedule the pause as described above. By choosing
3798   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3799   // we will never do an actual abortable preclean cycle.
3800   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3801     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3802     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3803     // We need more smarts in the abortable preclean
3804     // loop below to deal with cases where allocation
3805     // in young gen is very very slow, and our precleaning
3806     // is running a losing race against a horde of
3807     // mutators intent on flooding us with CMS updates
3808     // (dirty cards).
3809     // One, admittedly dumb, strategy is to give up
3810     // after a certain number of abortable precleaning loops
3811     // or after a certain maximum time. We want to make
3812     // this smarter in the next iteration.
3813     // XXX FIX ME!!! YSR
3814     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3815     while (!(should_abort_preclean() ||
3816              ConcurrentMarkSweepThread::should_terminate())) {
3817       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3818       cumworkdone += workdone;
3819       loops++;
3820       // Voluntarily terminate abortable preclean phase if we have
3821       // been at it for too long.
3822       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3823           loops >= CMSMaxAbortablePrecleanLoops) {
3824         if (PrintGCDetails) {
3825           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3826         }
3827         break;
3828       }
3829       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3830         if (PrintGCDetails) {
3831           gclog_or_tty->print(" CMS: abort preclean due to time ");
3832         }
3833         break;
3834       }
3835       // If we are doing little work each iteration, we should
3836       // take a short break.
3837       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3838         // Sleep for some time, waiting for work to accumulate
3839         stopTimer();
3840         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3841         startTimer();
3842         waited++;
3843       }
3844     }
3845     if (PrintCMSStatistics > 0) {
3846       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3847                           loops, waited, cumworkdone);
3848     }
3849   }
3850   CMSTokenSync x(true); // is cms thread
3851   if (_collectorState != Idling) {
3852     assert(_collectorState == AbortablePreclean,
3853            "Spontaneous state transition?");
3854     _collectorState = FinalMarking;
3855   } // Else, a foreground collection completed this CMS cycle.
3856   return;
3857 }
3858 
3859 // Respond to an Eden sampling opportunity
3860 void CMSCollector::sample_eden() {
3861   // Make sure a young gc cannot sneak in between our
3862   // reading and recording of a sample.
3863   assert(Thread::current()->is_ConcurrentGC_thread(),
3864          "Only the cms thread may collect Eden samples");
3865   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3866          "Should collect samples while holding CMS token");
3867   if (!_start_sampling) {
3868     return;
3869   }
3870   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3871   // is populated by the young generation.
3872   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3873     if (_eden_chunk_index < _eden_chunk_capacity) {
3874       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3875       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3876              "Unexpected state of Eden");
3877       // We'd like to check that what we just sampled is an oop-start address;
3878       // however, we cannot do that here since the object may not yet have been
3879       // initialized. So we'll instead do the check when we _use_ this sample
3880       // later.
3881       if (_eden_chunk_index == 0 ||
3882           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3883                          _eden_chunk_array[_eden_chunk_index-1])
3884            >= CMSSamplingGrain)) {
3885         _eden_chunk_index++;  // commit sample
3886       }
3887     }
3888   }
3889   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3890     size_t used = get_eden_used();
3891     size_t capacity = get_eden_capacity();
3892     assert(used <= capacity, "Unexpected state of Eden");
3893     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3894       _abort_preclean = true;
3895     }
3896   }
3897 }
3898 
3899 
3900 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3901   assert(_collectorState == Precleaning ||
3902          _collectorState == AbortablePreclean, "incorrect state");
3903   ResourceMark rm;
3904   HandleMark   hm;
3905 
3906   // Precleaning is currently not MT but the reference processor
3907   // may be set for MT.  Disable it temporarily here.
3908   ReferenceProcessor* rp = ref_processor();
3909   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3910 
3911   // Do one pass of scrubbing the discovered reference lists
3912   // to remove any reference objects with strongly-reachable
3913   // referents.
3914   if (clean_refs) {
3915     CMSPrecleanRefsYieldClosure yield_cl(this);
3916     assert(rp->span().equals(_span), "Spans should be equal");
3917     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3918                                    &_markStack, true /* preclean */);
3919     CMSDrainMarkingStackClosure complete_trace(this,
3920                                    _span, &_markBitMap, &_markStack,
3921                                    &keep_alive, true /* preclean */);
3922 
3923     // We don't want this step to interfere with a young
3924     // collection because we don't want to take CPU
3925     // or memory bandwidth away from the young GC threads
3926     // (which may be as many as there are CPUs).
3927     // Note that we don't need to protect ourselves from
3928     // interference with mutators because they can't
3929     // manipulate the discovered reference lists nor affect
3930     // the computed reachability of the referents, the
3931     // only properties manipulated by the precleaning
3932     // of these reference lists.
3933     stopTimer();
3934     CMSTokenSyncWithLocks x(true /* is cms thread */,
3935                             bitMapLock());
3936     startTimer();
3937     sample_eden();
3938 
3939     // The following will yield to allow foreground
3940     // collection to proceed promptly. XXX YSR:
3941     // The code in this method may need further
3942     // tweaking for better performance and some restructuring
3943     // for cleaner interfaces.
3944     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3945     rp->preclean_discovered_references(
3946           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3947           gc_timer, _gc_tracer_cm->gc_id());
3948   }
3949 
3950   if (clean_survivor) {  // preclean the active survivor space(s)
3951     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3952                              &_markBitMap, &_modUnionTable,
3953                              &_markStack, true /* precleaning phase */);
3954     stopTimer();
3955     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3956                              bitMapLock());
3957     startTimer();
3958     unsigned int before_count =
3959       GenCollectedHeap::heap()->total_collections();
3960     SurvivorSpacePrecleanClosure
3961       sss_cl(this, _span, &_markBitMap, &_markStack,
3962              &pam_cl, before_count, CMSYield);
3963     _young_gen->from()->object_iterate_careful(&sss_cl);
3964     _young_gen->to()->object_iterate_careful(&sss_cl);
3965   }
3966   MarkRefsIntoAndScanClosure
3967     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3968              &_markStack, this, CMSYield,
3969              true /* precleaning phase */);
3970   // CAUTION: The following closure has persistent state that may need to
3971   // be reset upon a decrease in the sequence of addresses it
3972   // processes.
3973   ScanMarkedObjectsAgainCarefullyClosure
3974     smoac_cl(this, _span,
3975       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3976 
3977   // Preclean dirty cards in ModUnionTable and CardTable using
3978   // appropriate convergence criterion;
3979   // repeat CMSPrecleanIter times unless we find that
3980   // we are losing.
3981   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3982   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3983          "Bad convergence multiplier");
3984   assert(CMSPrecleanThreshold >= 100,
3985          "Unreasonably low CMSPrecleanThreshold");
3986 
3987   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3988   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3989        numIter < CMSPrecleanIter;
3990        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3991     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3992     if (Verbose && PrintGCDetails) {
3993       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3994     }
3995     // Either there are very few dirty cards, so re-mark
3996     // pause will be small anyway, or our pre-cleaning isn't
3997     // that much faster than the rate at which cards are being
3998     // dirtied, so we might as well stop and re-mark since
3999     // precleaning won't improve our re-mark time by much.
4000     if (curNumCards <= CMSPrecleanThreshold ||
4001         (numIter > 0 &&
4002          (curNumCards * CMSPrecleanDenominator >
4003          lastNumCards * CMSPrecleanNumerator))) {
4004       numIter++;
4005       cumNumCards += curNumCards;
4006       break;
4007     }
4008   }
4009 
4010   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4011 
4012   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4013   cumNumCards += curNumCards;
4014   if (PrintGCDetails && PrintCMSStatistics != 0) {
4015     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4016                   curNumCards, cumNumCards, numIter);
4017   }
4018   return cumNumCards;   // as a measure of useful work done
4019 }
4020 
4021 // PRECLEANING NOTES:
4022 // Precleaning involves:
4023 // . reading the bits of the modUnionTable and clearing the set bits.
4024 // . For the cards corresponding to the set bits, we scan the
4025 //   objects on those cards. This means we need the free_list_lock
4026 //   so that we can safely iterate over the CMS space when scanning
4027 //   for oops.
4028 // . When we scan the objects, we'll be both reading and setting
4029 //   marks in the marking bit map, so we'll need the marking bit map.
4030 // . For protecting _collector_state transitions, we take the CGC_lock.
4031 //   Note that any races in the reading of of card table entries by the
4032 //   CMS thread on the one hand and the clearing of those entries by the
4033 //   VM thread or the setting of those entries by the mutator threads on the
4034 //   other are quite benign. However, for efficiency it makes sense to keep
4035 //   the VM thread from racing with the CMS thread while the latter is
4036 //   dirty card info to the modUnionTable. We therefore also use the
4037 //   CGC_lock to protect the reading of the card table and the mod union
4038 //   table by the CM thread.
4039 // . We run concurrently with mutator updates, so scanning
4040 //   needs to be done carefully  -- we should not try to scan
4041 //   potentially uninitialized objects.
4042 //
4043 // Locking strategy: While holding the CGC_lock, we scan over and
4044 // reset a maximal dirty range of the mod union / card tables, then lock
4045 // the free_list_lock and bitmap lock to do a full marking, then
4046 // release these locks; and repeat the cycle. This allows for a
4047 // certain amount of fairness in the sharing of these locks between
4048 // the CMS collector on the one hand, and the VM thread and the
4049 // mutators on the other.
4050 
4051 // NOTE: preclean_mod_union_table() and preclean_card_table()
4052 // further below are largely identical; if you need to modify
4053 // one of these methods, please check the other method too.
4054 
4055 size_t CMSCollector::preclean_mod_union_table(
4056   ConcurrentMarkSweepGeneration* gen,
4057   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4058   verify_work_stacks_empty();
4059   verify_overflow_empty();
4060 
4061   // strategy: starting with the first card, accumulate contiguous
4062   // ranges of dirty cards; clear these cards, then scan the region
4063   // covered by these cards.
4064 
4065   // Since all of the MUT is committed ahead, we can just use
4066   // that, in case the generations expand while we are precleaning.
4067   // It might also be fine to just use the committed part of the
4068   // generation, but we might potentially miss cards when the
4069   // generation is rapidly expanding while we are in the midst
4070   // of precleaning.
4071   HeapWord* startAddr = gen->reserved().start();
4072   HeapWord* endAddr   = gen->reserved().end();
4073 
4074   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4075 
4076   size_t numDirtyCards, cumNumDirtyCards;
4077   HeapWord *nextAddr, *lastAddr;
4078   for (cumNumDirtyCards = numDirtyCards = 0,
4079        nextAddr = lastAddr = startAddr;
4080        nextAddr < endAddr;
4081        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4082 
4083     ResourceMark rm;
4084     HandleMark   hm;
4085 
4086     MemRegion dirtyRegion;
4087     {
4088       stopTimer();
4089       // Potential yield point
4090       CMSTokenSync ts(true);
4091       startTimer();
4092       sample_eden();
4093       // Get dirty region starting at nextOffset (inclusive),
4094       // simultaneously clearing it.
4095       dirtyRegion =
4096         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4097       assert(dirtyRegion.start() >= nextAddr,
4098              "returned region inconsistent?");
4099     }
4100     // Remember where the next search should begin.
4101     // The returned region (if non-empty) is a right open interval,
4102     // so lastOffset is obtained from the right end of that
4103     // interval.
4104     lastAddr = dirtyRegion.end();
4105     // Should do something more transparent and less hacky XXX
4106     numDirtyCards =
4107       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4108 
4109     // We'll scan the cards in the dirty region (with periodic
4110     // yields for foreground GC as needed).
4111     if (!dirtyRegion.is_empty()) {
4112       assert(numDirtyCards > 0, "consistency check");
4113       HeapWord* stop_point = NULL;
4114       stopTimer();
4115       // Potential yield point
4116       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4117                                bitMapLock());
4118       startTimer();
4119       {
4120         verify_work_stacks_empty();
4121         verify_overflow_empty();
4122         sample_eden();
4123         stop_point =
4124           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4125       }
4126       if (stop_point != NULL) {
4127         // The careful iteration stopped early either because it found an
4128         // uninitialized object, or because we were in the midst of an
4129         // "abortable preclean", which should now be aborted. Redirty
4130         // the bits corresponding to the partially-scanned or unscanned
4131         // cards. We'll either restart at the next block boundary or
4132         // abort the preclean.
4133         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4134                "Should only be AbortablePreclean.");
4135         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4136         if (should_abort_preclean()) {
4137           break; // out of preclean loop
4138         } else {
4139           // Compute the next address at which preclean should pick up;
4140           // might need bitMapLock in order to read P-bits.
4141           lastAddr = next_card_start_after_block(stop_point);
4142         }
4143       }
4144     } else {
4145       assert(lastAddr == endAddr, "consistency check");
4146       assert(numDirtyCards == 0, "consistency check");
4147       break;
4148     }
4149   }
4150   verify_work_stacks_empty();
4151   verify_overflow_empty();
4152   return cumNumDirtyCards;
4153 }
4154 
4155 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4156 // below are largely identical; if you need to modify
4157 // one of these methods, please check the other method too.
4158 
4159 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4160   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4161   // strategy: it's similar to precleamModUnionTable above, in that
4162   // we accumulate contiguous ranges of dirty cards, mark these cards
4163   // precleaned, then scan the region covered by these cards.
4164   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4165   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4166 
4167   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4168 
4169   size_t numDirtyCards, cumNumDirtyCards;
4170   HeapWord *lastAddr, *nextAddr;
4171 
4172   for (cumNumDirtyCards = numDirtyCards = 0,
4173        nextAddr = lastAddr = startAddr;
4174        nextAddr < endAddr;
4175        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4176 
4177     ResourceMark rm;
4178     HandleMark   hm;
4179 
4180     MemRegion dirtyRegion;
4181     {
4182       // See comments in "Precleaning notes" above on why we
4183       // do this locking. XXX Could the locking overheads be
4184       // too high when dirty cards are sparse? [I don't think so.]
4185       stopTimer();
4186       CMSTokenSync x(true); // is cms thread
4187       startTimer();
4188       sample_eden();
4189       // Get and clear dirty region from card table
4190       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4191                                     MemRegion(nextAddr, endAddr),
4192                                     true,
4193                                     CardTableModRefBS::precleaned_card_val());
4194 
4195       assert(dirtyRegion.start() >= nextAddr,
4196              "returned region inconsistent?");
4197     }
4198     lastAddr = dirtyRegion.end();
4199     numDirtyCards =
4200       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4201 
4202     if (!dirtyRegion.is_empty()) {
4203       stopTimer();
4204       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4205       startTimer();
4206       sample_eden();
4207       verify_work_stacks_empty();
4208       verify_overflow_empty();
4209       HeapWord* stop_point =
4210         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4211       if (stop_point != NULL) {
4212         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4213                "Should only be AbortablePreclean.");
4214         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4215         if (should_abort_preclean()) {
4216           break; // out of preclean loop
4217         } else {
4218           // Compute the next address at which preclean should pick up.
4219           lastAddr = next_card_start_after_block(stop_point);
4220         }
4221       }
4222     } else {
4223       break;
4224     }
4225   }
4226   verify_work_stacks_empty();
4227   verify_overflow_empty();
4228   return cumNumDirtyCards;
4229 }
4230 
4231 class PrecleanKlassClosure : public KlassClosure {
4232   KlassToOopClosure _cm_klass_closure;
4233  public:
4234   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4235   void do_klass(Klass* k) {
4236     if (k->has_accumulated_modified_oops()) {
4237       k->clear_accumulated_modified_oops();
4238 
4239       _cm_klass_closure.do_klass(k);
4240     }
4241   }
4242 };
4243 
4244 // The freelist lock is needed to prevent asserts, is it really needed?
4245 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4246 
4247   cl->set_freelistLock(freelistLock);
4248 
4249   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4250 
4251   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4252   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4253   PrecleanKlassClosure preclean_klass_closure(cl);
4254   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4255 
4256   verify_work_stacks_empty();
4257   verify_overflow_empty();
4258 }
4259 
4260 void CMSCollector::checkpointRootsFinal() {
4261   assert(_collectorState == FinalMarking, "incorrect state transition?");
4262   check_correct_thread_executing();
4263   // world is stopped at this checkpoint
4264   assert(SafepointSynchronize::is_at_safepoint(),
4265          "world should be stopped");
4266   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4267 
4268   verify_work_stacks_empty();
4269   verify_overflow_empty();
4270 
4271   if (PrintGCDetails) {
4272     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4273                         _young_gen->used() / K,
4274                         _young_gen->capacity() / K);
4275   }
4276   {
4277     if (CMSScavengeBeforeRemark) {
4278       GenCollectedHeap* gch = GenCollectedHeap::heap();
4279       // Temporarily set flag to false, GCH->do_collection will
4280       // expect it to be false and set to true
4281       FlagSetting fl(gch->_is_gc_active, false);
4282       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4283         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4284       int level = _cmsGen->level() - 1;
4285       if (level >= 0) {
4286         gch->do_collection(true,        // full (i.e. force, see below)
4287                            false,       // !clear_all_soft_refs
4288                            0,           // size
4289                            false,       // is_tlab
4290                            level        // max_level
4291                           );
4292       }
4293     }
4294     FreelistLocker x(this);
4295     MutexLockerEx y(bitMapLock(),
4296                     Mutex::_no_safepoint_check_flag);
4297     checkpointRootsFinalWork();
4298   }
4299   verify_work_stacks_empty();
4300   verify_overflow_empty();
4301 }
4302 
4303 void CMSCollector::checkpointRootsFinalWork() {
4304   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4305 
4306   assert(haveFreelistLocks(), "must have free list locks");
4307   assert_lock_strong(bitMapLock());
4308 
4309   ResourceMark rm;
4310   HandleMark   hm;
4311 
4312   GenCollectedHeap* gch = GenCollectedHeap::heap();
4313 
4314   if (should_unload_classes()) {
4315     CodeCache::gc_prologue();
4316   }
4317   assert(haveFreelistLocks(), "must have free list locks");
4318   assert_lock_strong(bitMapLock());
4319 
4320   // We might assume that we need not fill TLAB's when
4321   // CMSScavengeBeforeRemark is set, because we may have just done
4322   // a scavenge which would have filled all TLAB's -- and besides
4323   // Eden would be empty. This however may not always be the case --
4324   // for instance although we asked for a scavenge, it may not have
4325   // happened because of a JNI critical section. We probably need
4326   // a policy for deciding whether we can in that case wait until
4327   // the critical section releases and then do the remark following
4328   // the scavenge, and skip it here. In the absence of that policy,
4329   // or of an indication of whether the scavenge did indeed occur,
4330   // we cannot rely on TLAB's having been filled and must do
4331   // so here just in case a scavenge did not happen.
4332   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4333   // Update the saved marks which may affect the root scans.
4334   gch->save_marks();
4335 
4336   if (CMSPrintEdenSurvivorChunks) {
4337     print_eden_and_survivor_chunk_arrays();
4338   }
4339 
4340   {
4341     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4342 
4343     // Note on the role of the mod union table:
4344     // Since the marker in "markFromRoots" marks concurrently with
4345     // mutators, it is possible for some reachable objects not to have been
4346     // scanned. For instance, an only reference to an object A was
4347     // placed in object B after the marker scanned B. Unless B is rescanned,
4348     // A would be collected. Such updates to references in marked objects
4349     // are detected via the mod union table which is the set of all cards
4350     // dirtied since the first checkpoint in this GC cycle and prior to
4351     // the most recent young generation GC, minus those cleaned up by the
4352     // concurrent precleaning.
4353     if (CMSParallelRemarkEnabled) {
4354       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4355       do_remark_parallel();
4356     } else {
4357       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4358                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4359       do_remark_non_parallel();
4360     }
4361   }
4362   verify_work_stacks_empty();
4363   verify_overflow_empty();
4364 
4365   {
4366     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4367     refProcessingWork();
4368   }
4369   verify_work_stacks_empty();
4370   verify_overflow_empty();
4371 
4372   if (should_unload_classes()) {
4373     CodeCache::gc_epilogue();
4374   }
4375   JvmtiExport::gc_epilogue();
4376 
4377   // If we encountered any (marking stack / work queue) overflow
4378   // events during the current CMS cycle, take appropriate
4379   // remedial measures, where possible, so as to try and avoid
4380   // recurrence of that condition.
4381   assert(_markStack.isEmpty(), "No grey objects");
4382   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4383                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4384   if (ser_ovflw > 0) {
4385     if (PrintCMSStatistics != 0) {
4386       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4387         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4388         ", kac_preclean="SIZE_FORMAT")",
4389         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4390         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4391     }
4392     _markStack.expand();
4393     _ser_pmc_remark_ovflw = 0;
4394     _ser_pmc_preclean_ovflw = 0;
4395     _ser_kac_preclean_ovflw = 0;
4396     _ser_kac_ovflw = 0;
4397   }
4398   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4399     if (PrintCMSStatistics != 0) {
4400       gclog_or_tty->print_cr("Work queue overflow (benign) "
4401         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4402         _par_pmc_remark_ovflw, _par_kac_ovflw);
4403     }
4404     _par_pmc_remark_ovflw = 0;
4405     _par_kac_ovflw = 0;
4406   }
4407   if (PrintCMSStatistics != 0) {
4408      if (_markStack._hit_limit > 0) {
4409        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4410                               _markStack._hit_limit);
4411      }
4412      if (_markStack._failed_double > 0) {
4413        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4414                               " current capacity "SIZE_FORMAT,
4415                               _markStack._failed_double,
4416                               _markStack.capacity());
4417      }
4418   }
4419   _markStack._hit_limit = 0;
4420   _markStack._failed_double = 0;
4421 
4422   if ((VerifyAfterGC || VerifyDuringGC) &&
4423       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4424     verify_after_remark();
4425   }
4426 
4427   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4428 
4429   // Change under the freelistLocks.
4430   _collectorState = Sweeping;
4431   // Call isAllClear() under bitMapLock
4432   assert(_modUnionTable.isAllClear(),
4433       "Should be clear by end of the final marking");
4434   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4435       "Should be clear by end of the final marking");
4436 }
4437 
4438 void CMSParInitialMarkTask::work(uint worker_id) {
4439   elapsedTimer _timer;
4440   ResourceMark rm;
4441   HandleMark   hm;
4442 
4443   // ---------- scan from roots --------------
4444   _timer.start();
4445   GenCollectedHeap* gch = GenCollectedHeap::heap();
4446   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4447 
4448   // ---------- young gen roots --------------
4449   {
4450     work_on_young_gen_roots(worker_id, &par_mri_cl);
4451     _timer.stop();
4452     if (PrintCMSStatistics != 0) {
4453       gclog_or_tty->print_cr(
4454         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4455         worker_id, _timer.seconds());
4456     }
4457   }
4458 
4459   // ---------- remaining roots --------------
4460   _timer.reset();
4461   _timer.start();
4462 
4463   CLDToOopClosure cld_closure(&par_mri_cl, true);
4464 
4465   gch->gen_process_roots(_strong_roots_scope,
4466                          _collector->_cmsGen->level(),
4467                          false,     // yg was scanned above
4468                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4469                          _collector->should_unload_classes(),
4470                          &par_mri_cl,
4471                          NULL,
4472                          &cld_closure);
4473   assert(_collector->should_unload_classes()
4474          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4475          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4476   _timer.stop();
4477   if (PrintCMSStatistics != 0) {
4478     gclog_or_tty->print_cr(
4479       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4480       worker_id, _timer.seconds());
4481   }
4482 }
4483 
4484 // Parallel remark task
4485 class CMSParRemarkTask: public CMSParMarkTask {
4486   CompactibleFreeListSpace* _cms_space;
4487 
4488   // The per-thread work queues, available here for stealing.
4489   OopTaskQueueSet*       _task_queues;
4490   ParallelTaskTerminator _term;
4491   StrongRootsScope*      _strong_roots_scope;
4492 
4493  public:
4494   // A value of 0 passed to n_workers will cause the number of
4495   // workers to be taken from the active workers in the work gang.
4496   CMSParRemarkTask(CMSCollector* collector,
4497                    CompactibleFreeListSpace* cms_space,
4498                    uint n_workers, FlexibleWorkGang* workers,
4499                    OopTaskQueueSet* task_queues,
4500                    StrongRootsScope* strong_roots_scope):
4501     CMSParMarkTask("Rescan roots and grey objects in parallel",
4502                    collector, n_workers),
4503     _cms_space(cms_space),
4504     _task_queues(task_queues),
4505     _term(n_workers, task_queues),
4506     _strong_roots_scope(strong_roots_scope) { }
4507 
4508   OopTaskQueueSet* task_queues() { return _task_queues; }
4509 
4510   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4511 
4512   ParallelTaskTerminator* terminator() { return &_term; }
4513   uint n_workers() { return _n_workers; }
4514 
4515   void work(uint worker_id);
4516 
4517  private:
4518   // ... of  dirty cards in old space
4519   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4520                                   Par_MarkRefsIntoAndScanClosure* cl);
4521 
4522   // ... work stealing for the above
4523   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4524 };
4525 
4526 class RemarkKlassClosure : public KlassClosure {
4527   KlassToOopClosure _cm_klass_closure;
4528  public:
4529   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4530   void do_klass(Klass* k) {
4531     // Check if we have modified any oops in the Klass during the concurrent marking.
4532     if (k->has_accumulated_modified_oops()) {
4533       k->clear_accumulated_modified_oops();
4534 
4535       // We could have transfered the current modified marks to the accumulated marks,
4536       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4537     } else if (k->has_modified_oops()) {
4538       // Don't clear anything, this info is needed by the next young collection.
4539     } else {
4540       // No modified oops in the Klass.
4541       return;
4542     }
4543 
4544     // The klass has modified fields, need to scan the klass.
4545     _cm_klass_closure.do_klass(k);
4546   }
4547 };
4548 
4549 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4550   ParNewGeneration* young_gen = _collector->_young_gen;
4551   ContiguousSpace* eden_space = young_gen->eden();
4552   ContiguousSpace* from_space = young_gen->from();
4553   ContiguousSpace* to_space   = young_gen->to();
4554 
4555   HeapWord** eca = _collector->_eden_chunk_array;
4556   size_t     ect = _collector->_eden_chunk_index;
4557   HeapWord** sca = _collector->_survivor_chunk_array;
4558   size_t     sct = _collector->_survivor_chunk_index;
4559 
4560   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4561   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4562 
4563   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4564   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4565   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4566 }
4567 
4568 // work_queue(i) is passed to the closure
4569 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4570 // also is passed to do_dirty_card_rescan_tasks() and to
4571 // do_work_steal() to select the i-th task_queue.
4572 
4573 void CMSParRemarkTask::work(uint worker_id) {
4574   elapsedTimer _timer;
4575   ResourceMark rm;
4576   HandleMark   hm;
4577 
4578   // ---------- rescan from roots --------------
4579   _timer.start();
4580   GenCollectedHeap* gch = GenCollectedHeap::heap();
4581   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4582     _collector->_span, _collector->ref_processor(),
4583     &(_collector->_markBitMap),
4584     work_queue(worker_id));
4585 
4586   // Rescan young gen roots first since these are likely
4587   // coarsely partitioned and may, on that account, constitute
4588   // the critical path; thus, it's best to start off that
4589   // work first.
4590   // ---------- young gen roots --------------
4591   {
4592     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4593     _timer.stop();
4594     if (PrintCMSStatistics != 0) {
4595       gclog_or_tty->print_cr(
4596         "Finished young gen rescan work in %dth thread: %3.3f sec",
4597         worker_id, _timer.seconds());
4598     }
4599   }
4600 
4601   // ---------- remaining roots --------------
4602   _timer.reset();
4603   _timer.start();
4604   gch->gen_process_roots(_strong_roots_scope,
4605                          _collector->_cmsGen->level(),
4606                          false,     // yg was scanned above
4607                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4608                          _collector->should_unload_classes(),
4609                          &par_mrias_cl,
4610                          NULL,
4611                          NULL);     // The dirty klasses will be handled below
4612 
4613   assert(_collector->should_unload_classes()
4614          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4615          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4616   _timer.stop();
4617   if (PrintCMSStatistics != 0) {
4618     gclog_or_tty->print_cr(
4619       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4620       worker_id, _timer.seconds());
4621   }
4622 
4623   // ---------- unhandled CLD scanning ----------
4624   if (worker_id == 0) { // Single threaded at the moment.
4625     _timer.reset();
4626     _timer.start();
4627 
4628     // Scan all new class loader data objects and new dependencies that were
4629     // introduced during concurrent marking.
4630     ResourceMark rm;
4631     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4632     for (int i = 0; i < array->length(); i++) {
4633       par_mrias_cl.do_class_loader_data(array->at(i));
4634     }
4635 
4636     // We don't need to keep track of new CLDs anymore.
4637     ClassLoaderDataGraph::remember_new_clds(false);
4638 
4639     _timer.stop();
4640     if (PrintCMSStatistics != 0) {
4641       gclog_or_tty->print_cr(
4642           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4643           worker_id, _timer.seconds());
4644     }
4645   }
4646 
4647   // ---------- dirty klass scanning ----------
4648   if (worker_id == 0) { // Single threaded at the moment.
4649     _timer.reset();
4650     _timer.start();
4651 
4652     // Scan all classes that was dirtied during the concurrent marking phase.
4653     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4654     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4655 
4656     _timer.stop();
4657     if (PrintCMSStatistics != 0) {
4658       gclog_or_tty->print_cr(
4659           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4660           worker_id, _timer.seconds());
4661     }
4662   }
4663 
4664   // We might have added oops to ClassLoaderData::_handles during the
4665   // concurrent marking phase. These oops point to newly allocated objects
4666   // that are guaranteed to be kept alive. Either by the direct allocation
4667   // code, or when the young collector processes the roots. Hence,
4668   // we don't have to revisit the _handles block during the remark phase.
4669 
4670   // ---------- rescan dirty cards ------------
4671   _timer.reset();
4672   _timer.start();
4673 
4674   // Do the rescan tasks for each of the two spaces
4675   // (cms_space) in turn.
4676   // "worker_id" is passed to select the task_queue for "worker_id"
4677   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4678   _timer.stop();
4679   if (PrintCMSStatistics != 0) {
4680     gclog_or_tty->print_cr(
4681       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4682       worker_id, _timer.seconds());
4683   }
4684 
4685   // ---------- steal work from other threads ...
4686   // ---------- ... and drain overflow list.
4687   _timer.reset();
4688   _timer.start();
4689   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4690   _timer.stop();
4691   if (PrintCMSStatistics != 0) {
4692     gclog_or_tty->print_cr(
4693       "Finished work stealing in %dth thread: %3.3f sec",
4694       worker_id, _timer.seconds());
4695   }
4696 }
4697 
4698 // Note that parameter "i" is not used.
4699 void
4700 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4701   OopsInGenClosure* cl, ContiguousSpace* space,
4702   HeapWord** chunk_array, size_t chunk_top) {
4703   // Until all tasks completed:
4704   // . claim an unclaimed task
4705   // . compute region boundaries corresponding to task claimed
4706   //   using chunk_array
4707   // . par_oop_iterate(cl) over that region
4708 
4709   ResourceMark rm;
4710   HandleMark   hm;
4711 
4712   SequentialSubTasksDone* pst = space->par_seq_tasks();
4713 
4714   uint nth_task = 0;
4715   uint n_tasks  = pst->n_tasks();
4716 
4717   if (n_tasks > 0) {
4718     assert(pst->valid(), "Uninitialized use?");
4719     HeapWord *start, *end;
4720     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4721       // We claimed task # nth_task; compute its boundaries.
4722       if (chunk_top == 0) {  // no samples were taken
4723         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4724         start = space->bottom();
4725         end   = space->top();
4726       } else if (nth_task == 0) {
4727         start = space->bottom();
4728         end   = chunk_array[nth_task];
4729       } else if (nth_task < (uint)chunk_top) {
4730         assert(nth_task >= 1, "Control point invariant");
4731         start = chunk_array[nth_task - 1];
4732         end   = chunk_array[nth_task];
4733       } else {
4734         assert(nth_task == (uint)chunk_top, "Control point invariant");
4735         start = chunk_array[chunk_top - 1];
4736         end   = space->top();
4737       }
4738       MemRegion mr(start, end);
4739       // Verify that mr is in space
4740       assert(mr.is_empty() || space->used_region().contains(mr),
4741              "Should be in space");
4742       // Verify that "start" is an object boundary
4743       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4744              "Should be an oop");
4745       space->par_oop_iterate(mr, cl);
4746     }
4747     pst->all_tasks_completed();
4748   }
4749 }
4750 
4751 void
4752 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4753   CompactibleFreeListSpace* sp, int i,
4754   Par_MarkRefsIntoAndScanClosure* cl) {
4755   // Until all tasks completed:
4756   // . claim an unclaimed task
4757   // . compute region boundaries corresponding to task claimed
4758   // . transfer dirty bits ct->mut for that region
4759   // . apply rescanclosure to dirty mut bits for that region
4760 
4761   ResourceMark rm;
4762   HandleMark   hm;
4763 
4764   OopTaskQueue* work_q = work_queue(i);
4765   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4766   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4767   // CAUTION: This closure has state that persists across calls to
4768   // the work method dirty_range_iterate_clear() in that it has
4769   // embedded in it a (subtype of) UpwardsObjectClosure. The
4770   // use of that state in the embedded UpwardsObjectClosure instance
4771   // assumes that the cards are always iterated (even if in parallel
4772   // by several threads) in monotonically increasing order per each
4773   // thread. This is true of the implementation below which picks
4774   // card ranges (chunks) in monotonically increasing order globally
4775   // and, a-fortiori, in monotonically increasing order per thread
4776   // (the latter order being a subsequence of the former).
4777   // If the work code below is ever reorganized into a more chaotic
4778   // work-partitioning form than the current "sequential tasks"
4779   // paradigm, the use of that persistent state will have to be
4780   // revisited and modified appropriately. See also related
4781   // bug 4756801 work on which should examine this code to make
4782   // sure that the changes there do not run counter to the
4783   // assumptions made here and necessary for correctness and
4784   // efficiency. Note also that this code might yield inefficient
4785   // behavior in the case of very large objects that span one or
4786   // more work chunks. Such objects would potentially be scanned
4787   // several times redundantly. Work on 4756801 should try and
4788   // address that performance anomaly if at all possible. XXX
4789   MemRegion  full_span  = _collector->_span;
4790   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4791   MarkFromDirtyCardsClosure
4792     greyRescanClosure(_collector, full_span, // entire span of interest
4793                       sp, bm, work_q, cl);
4794 
4795   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4796   assert(pst->valid(), "Uninitialized use?");
4797   uint nth_task = 0;
4798   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4799   MemRegion span = sp->used_region();
4800   HeapWord* start_addr = span.start();
4801   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4802                                            alignment);
4803   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4804   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4805          start_addr, "Check alignment");
4806   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4807          chunk_size, "Check alignment");
4808 
4809   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4810     // Having claimed the nth_task, compute corresponding mem-region,
4811     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4812     // The alignment restriction ensures that we do not need any
4813     // synchronization with other gang-workers while setting or
4814     // clearing bits in thus chunk of the MUT.
4815     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4816                                     start_addr + (nth_task+1)*chunk_size);
4817     // The last chunk's end might be way beyond end of the
4818     // used region. In that case pull back appropriately.
4819     if (this_span.end() > end_addr) {
4820       this_span.set_end(end_addr);
4821       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4822     }
4823     // Iterate over the dirty cards covering this chunk, marking them
4824     // precleaned, and setting the corresponding bits in the mod union
4825     // table. Since we have been careful to partition at Card and MUT-word
4826     // boundaries no synchronization is needed between parallel threads.
4827     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4828                                                  &modUnionClosure);
4829 
4830     // Having transferred these marks into the modUnionTable,
4831     // rescan the marked objects on the dirty cards in the modUnionTable.
4832     // Even if this is at a synchronous collection, the initial marking
4833     // may have been done during an asynchronous collection so there
4834     // may be dirty bits in the mod-union table.
4835     _collector->_modUnionTable.dirty_range_iterate_clear(
4836                   this_span, &greyRescanClosure);
4837     _collector->_modUnionTable.verifyNoOneBitsInRange(
4838                                  this_span.start(),
4839                                  this_span.end());
4840   }
4841   pst->all_tasks_completed();  // declare that i am done
4842 }
4843 
4844 // . see if we can share work_queues with ParNew? XXX
4845 void
4846 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4847                                 int* seed) {
4848   OopTaskQueue* work_q = work_queue(i);
4849   NOT_PRODUCT(int num_steals = 0;)
4850   oop obj_to_scan;
4851   CMSBitMap* bm = &(_collector->_markBitMap);
4852 
4853   while (true) {
4854     // Completely finish any left over work from (an) earlier round(s)
4855     cl->trim_queue(0);
4856     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4857                                          (size_t)ParGCDesiredObjsFromOverflowList);
4858     // Now check if there's any work in the overflow list
4859     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4860     // only affects the number of attempts made to get work from the
4861     // overflow list and does not affect the number of workers.  Just
4862     // pass ParallelGCThreads so this behavior is unchanged.
4863     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4864                                                 work_q,
4865                                                 ParallelGCThreads)) {
4866       // found something in global overflow list;
4867       // not yet ready to go stealing work from others.
4868       // We'd like to assert(work_q->size() != 0, ...)
4869       // because we just took work from the overflow list,
4870       // but of course we can't since all of that could have
4871       // been already stolen from us.
4872       // "He giveth and He taketh away."
4873       continue;
4874     }
4875     // Verify that we have no work before we resort to stealing
4876     assert(work_q->size() == 0, "Have work, shouldn't steal");
4877     // Try to steal from other queues that have work
4878     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4879       NOT_PRODUCT(num_steals++;)
4880       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4881       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4882       // Do scanning work
4883       obj_to_scan->oop_iterate(cl);
4884       // Loop around, finish this work, and try to steal some more
4885     } else if (terminator()->offer_termination()) {
4886         break;  // nirvana from the infinite cycle
4887     }
4888   }
4889   NOT_PRODUCT(
4890     if (PrintCMSStatistics != 0) {
4891       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4892     }
4893   )
4894   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4895          "Else our work is not yet done");
4896 }
4897 
4898 // Record object boundaries in _eden_chunk_array by sampling the eden
4899 // top in the slow-path eden object allocation code path and record
4900 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4901 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4902 // sampling in sample_eden() that activates during the part of the
4903 // preclean phase.
4904 void CMSCollector::sample_eden_chunk() {
4905   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4906     if (_eden_chunk_lock->try_lock()) {
4907       // Record a sample. This is the critical section. The contents
4908       // of the _eden_chunk_array have to be non-decreasing in the
4909       // address order.
4910       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4911       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4912              "Unexpected state of Eden");
4913       if (_eden_chunk_index == 0 ||
4914           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4915            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4916                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4917         _eden_chunk_index++;  // commit sample
4918       }
4919       _eden_chunk_lock->unlock();
4920     }
4921   }
4922 }
4923 
4924 // Return a thread-local PLAB recording array, as appropriate.
4925 void* CMSCollector::get_data_recorder(int thr_num) {
4926   if (_survivor_plab_array != NULL &&
4927       (CMSPLABRecordAlways ||
4928        (_collectorState > Marking && _collectorState < FinalMarking))) {
4929     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4930     ChunkArray* ca = &_survivor_plab_array[thr_num];
4931     ca->reset();   // clear it so that fresh data is recorded
4932     return (void*) ca;
4933   } else {
4934     return NULL;
4935   }
4936 }
4937 
4938 // Reset all the thread-local PLAB recording arrays
4939 void CMSCollector::reset_survivor_plab_arrays() {
4940   for (uint i = 0; i < ParallelGCThreads; i++) {
4941     _survivor_plab_array[i].reset();
4942   }
4943 }
4944 
4945 // Merge the per-thread plab arrays into the global survivor chunk
4946 // array which will provide the partitioning of the survivor space
4947 // for CMS initial scan and rescan.
4948 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4949                                               int no_of_gc_threads) {
4950   assert(_survivor_plab_array  != NULL, "Error");
4951   assert(_survivor_chunk_array != NULL, "Error");
4952   assert(_collectorState == FinalMarking ||
4953          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4954   for (int j = 0; j < no_of_gc_threads; j++) {
4955     _cursor[j] = 0;
4956   }
4957   HeapWord* top = surv->top();
4958   size_t i;
4959   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4960     HeapWord* min_val = top;          // Higher than any PLAB address
4961     uint      min_tid = 0;            // position of min_val this round
4962     for (int j = 0; j < no_of_gc_threads; j++) {
4963       ChunkArray* cur_sca = &_survivor_plab_array[j];
4964       if (_cursor[j] == cur_sca->end()) {
4965         continue;
4966       }
4967       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4968       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4969       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4970       if (cur_val < min_val) {
4971         min_tid = j;
4972         min_val = cur_val;
4973       } else {
4974         assert(cur_val < top, "All recorded addresses should be less");
4975       }
4976     }
4977     // At this point min_val and min_tid are respectively
4978     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4979     // and the thread (j) that witnesses that address.
4980     // We record this address in the _survivor_chunk_array[i]
4981     // and increment _cursor[min_tid] prior to the next round i.
4982     if (min_val == top) {
4983       break;
4984     }
4985     _survivor_chunk_array[i] = min_val;
4986     _cursor[min_tid]++;
4987   }
4988   // We are all done; record the size of the _survivor_chunk_array
4989   _survivor_chunk_index = i; // exclusive: [0, i)
4990   if (PrintCMSStatistics > 0) {
4991     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4992   }
4993   // Verify that we used up all the recorded entries
4994   #ifdef ASSERT
4995     size_t total = 0;
4996     for (int j = 0; j < no_of_gc_threads; j++) {
4997       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4998       total += _cursor[j];
4999     }
5000     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5001     // Check that the merged array is in sorted order
5002     if (total > 0) {
5003       for (size_t i = 0; i < total - 1; i++) {
5004         if (PrintCMSStatistics > 0) {
5005           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5006                               i, p2i(_survivor_chunk_array[i]));
5007         }
5008         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5009                "Not sorted");
5010       }
5011     }
5012   #endif // ASSERT
5013 }
5014 
5015 // Set up the space's par_seq_tasks structure for work claiming
5016 // for parallel initial scan and rescan of young gen.
5017 // See ParRescanTask where this is currently used.
5018 void
5019 CMSCollector::
5020 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5021   assert(n_threads > 0, "Unexpected n_threads argument");
5022 
5023   // Eden space
5024   if (!_young_gen->eden()->is_empty()) {
5025     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5026     assert(!pst->valid(), "Clobbering existing data?");
5027     // Each valid entry in [0, _eden_chunk_index) represents a task.
5028     size_t n_tasks = _eden_chunk_index + 1;
5029     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5030     // Sets the condition for completion of the subtask (how many threads
5031     // need to finish in order to be done).
5032     pst->set_n_threads(n_threads);
5033     pst->set_n_tasks((int)n_tasks);
5034   }
5035 
5036   // Merge the survivor plab arrays into _survivor_chunk_array
5037   if (_survivor_plab_array != NULL) {
5038     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5039   } else {
5040     assert(_survivor_chunk_index == 0, "Error");
5041   }
5042 
5043   // To space
5044   {
5045     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5046     assert(!pst->valid(), "Clobbering existing data?");
5047     // Sets the condition for completion of the subtask (how many threads
5048     // need to finish in order to be done).
5049     pst->set_n_threads(n_threads);
5050     pst->set_n_tasks(1);
5051     assert(pst->valid(), "Error");
5052   }
5053 
5054   // From space
5055   {
5056     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5057     assert(!pst->valid(), "Clobbering existing data?");
5058     size_t n_tasks = _survivor_chunk_index + 1;
5059     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5060     // Sets the condition for completion of the subtask (how many threads
5061     // need to finish in order to be done).
5062     pst->set_n_threads(n_threads);
5063     pst->set_n_tasks((int)n_tasks);
5064     assert(pst->valid(), "Error");
5065   }
5066 }
5067 
5068 // Parallel version of remark
5069 void CMSCollector::do_remark_parallel() {
5070   GenCollectedHeap* gch = GenCollectedHeap::heap();
5071   FlexibleWorkGang* workers = gch->workers();
5072   assert(workers != NULL, "Need parallel worker threads.");
5073   // Choose to use the number of GC workers most recently set
5074   // into "active_workers".  If active_workers is not set, set it
5075   // to ParallelGCThreads.
5076   uint n_workers = workers->active_workers();
5077   if (n_workers == 0) {
5078     assert(n_workers > 0, "Should have been set during scavenge");
5079     n_workers = ParallelGCThreads;
5080     workers->set_active_workers(n_workers);
5081   }
5082   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5083 
5084   StrongRootsScope srs(n_workers);
5085 
5086   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5087 
5088   // We won't be iterating over the cards in the card table updating
5089   // the younger_gen cards, so we shouldn't call the following else
5090   // the verification code as well as subsequent younger_refs_iterate
5091   // code would get confused. XXX
5092   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5093 
5094   // The young gen rescan work will not be done as part of
5095   // process_roots (which currently doesn't know how to
5096   // parallelize such a scan), but rather will be broken up into
5097   // a set of parallel tasks (via the sampling that the [abortable]
5098   // preclean phase did of eden, plus the [two] tasks of
5099   // scanning the [two] survivor spaces. Further fine-grain
5100   // parallelization of the scanning of the survivor spaces
5101   // themselves, and of precleaning of the younger gen itself
5102   // is deferred to the future.
5103   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5104 
5105   // The dirty card rescan work is broken up into a "sequence"
5106   // of parallel tasks (per constituent space) that are dynamically
5107   // claimed by the parallel threads.
5108   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5109 
5110   // It turns out that even when we're using 1 thread, doing the work in a
5111   // separate thread causes wide variance in run times.  We can't help this
5112   // in the multi-threaded case, but we special-case n=1 here to get
5113   // repeatable measurements of the 1-thread overhead of the parallel code.
5114   if (n_workers > 1) {
5115     // Make refs discovery MT-safe, if it isn't already: it may not
5116     // necessarily be so, since it's possible that we are doing
5117     // ST marking.
5118     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5119     workers->run_task(&tsk);
5120   } else {
5121     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5122     tsk.work(0);
5123   }
5124 
5125   // restore, single-threaded for now, any preserved marks
5126   // as a result of work_q overflow
5127   restore_preserved_marks_if_any();
5128 }
5129 
5130 // Non-parallel version of remark
5131 void CMSCollector::do_remark_non_parallel() {
5132   ResourceMark rm;
5133   HandleMark   hm;
5134   GenCollectedHeap* gch = GenCollectedHeap::heap();
5135   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5136 
5137   MarkRefsIntoAndScanClosure
5138     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5139              &_markStack, this,
5140              false /* should_yield */, false /* not precleaning */);
5141   MarkFromDirtyCardsClosure
5142     markFromDirtyCardsClosure(this, _span,
5143                               NULL,  // space is set further below
5144                               &_markBitMap, &_markStack, &mrias_cl);
5145   {
5146     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5147     // Iterate over the dirty cards, setting the corresponding bits in the
5148     // mod union table.
5149     {
5150       ModUnionClosure modUnionClosure(&_modUnionTable);
5151       _ct->ct_bs()->dirty_card_iterate(
5152                       _cmsGen->used_region(),
5153                       &modUnionClosure);
5154     }
5155     // Having transferred these marks into the modUnionTable, we just need
5156     // to rescan the marked objects on the dirty cards in the modUnionTable.
5157     // The initial marking may have been done during an asynchronous
5158     // collection so there may be dirty bits in the mod-union table.
5159     const int alignment =
5160       CardTableModRefBS::card_size * BitsPerWord;
5161     {
5162       // ... First handle dirty cards in CMS gen
5163       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5164       MemRegion ur = _cmsGen->used_region();
5165       HeapWord* lb = ur.start();
5166       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5167       MemRegion cms_span(lb, ub);
5168       _modUnionTable.dirty_range_iterate_clear(cms_span,
5169                                                &markFromDirtyCardsClosure);
5170       verify_work_stacks_empty();
5171       if (PrintCMSStatistics != 0) {
5172         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5173           markFromDirtyCardsClosure.num_dirty_cards());
5174       }
5175     }
5176   }
5177   if (VerifyDuringGC &&
5178       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5179     HandleMark hm;  // Discard invalid handles created during verification
5180     Universe::verify();
5181   }
5182   {
5183     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5184 
5185     verify_work_stacks_empty();
5186 
5187     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5188     StrongRootsScope srs(1);
5189 
5190     gch->gen_process_roots(&srs,
5191                            _cmsGen->level(),
5192                            true,  // younger gens as roots
5193                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5194                            should_unload_classes(),
5195                            &mrias_cl,
5196                            NULL,
5197                            NULL); // The dirty klasses will be handled below
5198 
5199     assert(should_unload_classes()
5200            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5201            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5202   }
5203 
5204   {
5205     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5206 
5207     verify_work_stacks_empty();
5208 
5209     // Scan all class loader data objects that might have been introduced
5210     // during concurrent marking.
5211     ResourceMark rm;
5212     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5213     for (int i = 0; i < array->length(); i++) {
5214       mrias_cl.do_class_loader_data(array->at(i));
5215     }
5216 
5217     // We don't need to keep track of new CLDs anymore.
5218     ClassLoaderDataGraph::remember_new_clds(false);
5219 
5220     verify_work_stacks_empty();
5221   }
5222 
5223   {
5224     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5225 
5226     verify_work_stacks_empty();
5227 
5228     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5229     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5230 
5231     verify_work_stacks_empty();
5232   }
5233 
5234   // We might have added oops to ClassLoaderData::_handles during the
5235   // concurrent marking phase. These oops point to newly allocated objects
5236   // that are guaranteed to be kept alive. Either by the direct allocation
5237   // code, or when the young collector processes the roots. Hence,
5238   // we don't have to revisit the _handles block during the remark phase.
5239 
5240   verify_work_stacks_empty();
5241   // Restore evacuated mark words, if any, used for overflow list links
5242   if (!CMSOverflowEarlyRestoration) {
5243     restore_preserved_marks_if_any();
5244   }
5245   verify_overflow_empty();
5246 }
5247 
5248 ////////////////////////////////////////////////////////
5249 // Parallel Reference Processing Task Proxy Class
5250 ////////////////////////////////////////////////////////
5251 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5252   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5253   CMSCollector*          _collector;
5254   CMSBitMap*             _mark_bit_map;
5255   const MemRegion        _span;
5256   ProcessTask&           _task;
5257 
5258 public:
5259   CMSRefProcTaskProxy(ProcessTask&     task,
5260                       CMSCollector*    collector,
5261                       const MemRegion& span,
5262                       CMSBitMap*       mark_bit_map,
5263                       AbstractWorkGang* workers,
5264                       OopTaskQueueSet* task_queues):
5265     // XXX Should superclass AGTWOQ also know about AWG since it knows
5266     // about the task_queues used by the AWG? Then it could initialize
5267     // the terminator() object. See 6984287. The set_for_termination()
5268     // below is a temporary band-aid for the regression in 6984287.
5269     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5270       task_queues),
5271     _task(task),
5272     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5273   {
5274     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5275            "Inconsistency in _span");
5276     set_for_termination(workers->active_workers());
5277   }
5278 
5279   OopTaskQueueSet* task_queues() { return queues(); }
5280 
5281   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5282 
5283   void do_work_steal(int i,
5284                      CMSParDrainMarkingStackClosure* drain,
5285                      CMSParKeepAliveClosure* keep_alive,
5286                      int* seed);
5287 
5288   virtual void work(uint worker_id);
5289 };
5290 
5291 void CMSRefProcTaskProxy::work(uint worker_id) {
5292   ResourceMark rm;
5293   HandleMark hm;
5294   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5295   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5296                                         _mark_bit_map,
5297                                         work_queue(worker_id));
5298   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5299                                                  _mark_bit_map,
5300                                                  work_queue(worker_id));
5301   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5302   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5303   if (_task.marks_oops_alive()) {
5304     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5305                   _collector->hash_seed(worker_id));
5306   }
5307   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5308   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5309 }
5310 
5311 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5312   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5313   EnqueueTask& _task;
5314 
5315 public:
5316   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5317     : AbstractGangTask("Enqueue reference objects in parallel"),
5318       _task(task)
5319   { }
5320 
5321   virtual void work(uint worker_id)
5322   {
5323     _task.work(worker_id);
5324   }
5325 };
5326 
5327 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5328   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5329    _span(span),
5330    _bit_map(bit_map),
5331    _work_queue(work_queue),
5332    _mark_and_push(collector, span, bit_map, work_queue),
5333    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5334                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5335 { }
5336 
5337 // . see if we can share work_queues with ParNew? XXX
5338 void CMSRefProcTaskProxy::do_work_steal(int i,
5339   CMSParDrainMarkingStackClosure* drain,
5340   CMSParKeepAliveClosure* keep_alive,
5341   int* seed) {
5342   OopTaskQueue* work_q = work_queue(i);
5343   NOT_PRODUCT(int num_steals = 0;)
5344   oop obj_to_scan;
5345 
5346   while (true) {
5347     // Completely finish any left over work from (an) earlier round(s)
5348     drain->trim_queue(0);
5349     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5350                                          (size_t)ParGCDesiredObjsFromOverflowList);
5351     // Now check if there's any work in the overflow list
5352     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5353     // only affects the number of attempts made to get work from the
5354     // overflow list and does not affect the number of workers.  Just
5355     // pass ParallelGCThreads so this behavior is unchanged.
5356     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5357                                                 work_q,
5358                                                 ParallelGCThreads)) {
5359       // Found something in global overflow list;
5360       // not yet ready to go stealing work from others.
5361       // We'd like to assert(work_q->size() != 0, ...)
5362       // because we just took work from the overflow list,
5363       // but of course we can't, since all of that might have
5364       // been already stolen from us.
5365       continue;
5366     }
5367     // Verify that we have no work before we resort to stealing
5368     assert(work_q->size() == 0, "Have work, shouldn't steal");
5369     // Try to steal from other queues that have work
5370     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5371       NOT_PRODUCT(num_steals++;)
5372       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5373       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5374       // Do scanning work
5375       obj_to_scan->oop_iterate(keep_alive);
5376       // Loop around, finish this work, and try to steal some more
5377     } else if (terminator()->offer_termination()) {
5378       break;  // nirvana from the infinite cycle
5379     }
5380   }
5381   NOT_PRODUCT(
5382     if (PrintCMSStatistics != 0) {
5383       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5384     }
5385   )
5386 }
5387 
5388 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5389 {
5390   GenCollectedHeap* gch = GenCollectedHeap::heap();
5391   FlexibleWorkGang* workers = gch->workers();
5392   assert(workers != NULL, "Need parallel worker threads.");
5393   CMSRefProcTaskProxy rp_task(task, &_collector,
5394                               _collector.ref_processor()->span(),
5395                               _collector.markBitMap(),
5396                               workers, _collector.task_queues());
5397   workers->run_task(&rp_task);
5398 }
5399 
5400 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5401 {
5402 
5403   GenCollectedHeap* gch = GenCollectedHeap::heap();
5404   FlexibleWorkGang* workers = gch->workers();
5405   assert(workers != NULL, "Need parallel worker threads.");
5406   CMSRefEnqueueTaskProxy enq_task(task);
5407   workers->run_task(&enq_task);
5408 }
5409 
5410 void CMSCollector::refProcessingWork() {
5411   ResourceMark rm;
5412   HandleMark   hm;
5413 
5414   ReferenceProcessor* rp = ref_processor();
5415   assert(rp->span().equals(_span), "Spans should be equal");
5416   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5417   // Process weak references.
5418   rp->setup_policy(false);
5419   verify_work_stacks_empty();
5420 
5421   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5422                                           &_markStack, false /* !preclean */);
5423   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5424                                 _span, &_markBitMap, &_markStack,
5425                                 &cmsKeepAliveClosure, false /* !preclean */);
5426   {
5427     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5428 
5429     ReferenceProcessorStats stats;
5430     if (rp->processing_is_mt()) {
5431       // Set the degree of MT here.  If the discovery is done MT, there
5432       // may have been a different number of threads doing the discovery
5433       // and a different number of discovered lists may have Ref objects.
5434       // That is OK as long as the Reference lists are balanced (see
5435       // balance_all_queues() and balance_queues()).
5436       GenCollectedHeap* gch = GenCollectedHeap::heap();
5437       uint active_workers = ParallelGCThreads;
5438       FlexibleWorkGang* workers = gch->workers();
5439       if (workers != NULL) {
5440         active_workers = workers->active_workers();
5441         // The expectation is that active_workers will have already
5442         // been set to a reasonable value.  If it has not been set,
5443         // investigate.
5444         assert(active_workers > 0, "Should have been set during scavenge");
5445       }
5446       rp->set_active_mt_degree(active_workers);
5447       CMSRefProcTaskExecutor task_executor(*this);
5448       stats = rp->process_discovered_references(&_is_alive_closure,
5449                                         &cmsKeepAliveClosure,
5450                                         &cmsDrainMarkingStackClosure,
5451                                         &task_executor,
5452                                         _gc_timer_cm,
5453                                         _gc_tracer_cm->gc_id());
5454     } else {
5455       stats = rp->process_discovered_references(&_is_alive_closure,
5456                                         &cmsKeepAliveClosure,
5457                                         &cmsDrainMarkingStackClosure,
5458                                         NULL,
5459                                         _gc_timer_cm,
5460                                         _gc_tracer_cm->gc_id());
5461     }
5462     _gc_tracer_cm->report_gc_reference_stats(stats);
5463 
5464   }
5465 
5466   // This is the point where the entire marking should have completed.
5467   verify_work_stacks_empty();
5468 
5469   if (should_unload_classes()) {
5470     {
5471       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5472 
5473       // Unload classes and purge the SystemDictionary.
5474       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5475 
5476       // Unload nmethods.
5477       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5478 
5479       // Prune dead klasses from subklass/sibling/implementor lists.
5480       Klass::clean_weak_klass_links(&_is_alive_closure);
5481     }
5482 
5483     {
5484       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5485       // Clean up unreferenced symbols in symbol table.
5486       SymbolTable::unlink();
5487     }
5488 
5489     {
5490       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5491       // Delete entries for dead interned strings.
5492       StringTable::unlink(&_is_alive_closure);
5493     }
5494   }
5495 
5496 
5497   // Restore any preserved marks as a result of mark stack or
5498   // work queue overflow
5499   restore_preserved_marks_if_any();  // done single-threaded for now
5500 
5501   rp->set_enqueuing_is_done(true);
5502   if (rp->processing_is_mt()) {
5503     rp->balance_all_queues();
5504     CMSRefProcTaskExecutor task_executor(*this);
5505     rp->enqueue_discovered_references(&task_executor);
5506   } else {
5507     rp->enqueue_discovered_references(NULL);
5508   }
5509   rp->verify_no_references_recorded();
5510   assert(!rp->discovery_enabled(), "should have been disabled");
5511 }
5512 
5513 #ifndef PRODUCT
5514 void CMSCollector::check_correct_thread_executing() {
5515   Thread* t = Thread::current();
5516   // Only the VM thread or the CMS thread should be here.
5517   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5518          "Unexpected thread type");
5519   // If this is the vm thread, the foreground process
5520   // should not be waiting.  Note that _foregroundGCIsActive is
5521   // true while the foreground collector is waiting.
5522   if (_foregroundGCShouldWait) {
5523     // We cannot be the VM thread
5524     assert(t->is_ConcurrentGC_thread(),
5525            "Should be CMS thread");
5526   } else {
5527     // We can be the CMS thread only if we are in a stop-world
5528     // phase of CMS collection.
5529     if (t->is_ConcurrentGC_thread()) {
5530       assert(_collectorState == InitialMarking ||
5531              _collectorState == FinalMarking,
5532              "Should be a stop-world phase");
5533       // The CMS thread should be holding the CMS_token.
5534       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5535              "Potential interference with concurrently "
5536              "executing VM thread");
5537     }
5538   }
5539 }
5540 #endif
5541 
5542 void CMSCollector::sweep() {
5543   assert(_collectorState == Sweeping, "just checking");
5544   check_correct_thread_executing();
5545   verify_work_stacks_empty();
5546   verify_overflow_empty();
5547   increment_sweep_count();
5548   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5549 
5550   _inter_sweep_timer.stop();
5551   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5552 
5553   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5554   _intra_sweep_timer.reset();
5555   _intra_sweep_timer.start();
5556   {
5557     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5558     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5559     // First sweep the old gen
5560     {
5561       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5562                                bitMapLock());
5563       sweepWork(_cmsGen);
5564     }
5565 
5566     // Update Universe::_heap_*_at_gc figures.
5567     // We need all the free list locks to make the abstract state
5568     // transition from Sweeping to Resetting. See detailed note
5569     // further below.
5570     {
5571       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5572       // Update heap occupancy information which is used as
5573       // input to soft ref clearing policy at the next gc.
5574       Universe::update_heap_info_at_gc();
5575       _collectorState = Resizing;
5576     }
5577   }
5578   verify_work_stacks_empty();
5579   verify_overflow_empty();
5580 
5581   if (should_unload_classes()) {
5582     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5583     // requires that the virtual spaces are stable and not deleted.
5584     ClassLoaderDataGraph::set_should_purge(true);
5585   }
5586 
5587   _intra_sweep_timer.stop();
5588   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5589 
5590   _inter_sweep_timer.reset();
5591   _inter_sweep_timer.start();
5592 
5593   // We need to use a monotonically non-decreasing time in ms
5594   // or we will see time-warp warnings and os::javaTimeMillis()
5595   // does not guarantee monotonicity.
5596   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5597   update_time_of_last_gc(now);
5598 
5599   // NOTE on abstract state transitions:
5600   // Mutators allocate-live and/or mark the mod-union table dirty
5601   // based on the state of the collection.  The former is done in
5602   // the interval [Marking, Sweeping] and the latter in the interval
5603   // [Marking, Sweeping).  Thus the transitions into the Marking state
5604   // and out of the Sweeping state must be synchronously visible
5605   // globally to the mutators.
5606   // The transition into the Marking state happens with the world
5607   // stopped so the mutators will globally see it.  Sweeping is
5608   // done asynchronously by the background collector so the transition
5609   // from the Sweeping state to the Resizing state must be done
5610   // under the freelistLock (as is the check for whether to
5611   // allocate-live and whether to dirty the mod-union table).
5612   assert(_collectorState == Resizing, "Change of collector state to"
5613     " Resizing must be done under the freelistLocks (plural)");
5614 
5615   // Now that sweeping has been completed, we clear
5616   // the incremental_collection_failed flag,
5617   // thus inviting a younger gen collection to promote into
5618   // this generation. If such a promotion may still fail,
5619   // the flag will be set again when a young collection is
5620   // attempted.
5621   GenCollectedHeap* gch = GenCollectedHeap::heap();
5622   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5623   gch->update_full_collections_completed(_collection_count_start);
5624 }
5625 
5626 // FIX ME!!! Looks like this belongs in CFLSpace, with
5627 // CMSGen merely delegating to it.
5628 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5629   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5630   HeapWord*  minAddr        = _cmsSpace->bottom();
5631   HeapWord*  largestAddr    =
5632     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5633   if (largestAddr == NULL) {
5634     // The dictionary appears to be empty.  In this case
5635     // try to coalesce at the end of the heap.
5636     largestAddr = _cmsSpace->end();
5637   }
5638   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5639   size_t nearLargestOffset =
5640     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5641   if (PrintFLSStatistics != 0) {
5642     gclog_or_tty->print_cr(
5643       "CMS: Large Block: " PTR_FORMAT ";"
5644       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5645       p2i(largestAddr),
5646       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5647   }
5648   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5649 }
5650 
5651 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5652   return addr >= _cmsSpace->nearLargestChunk();
5653 }
5654 
5655 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5656   return _cmsSpace->find_chunk_at_end();
5657 }
5658 
5659 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5660                                                     bool full) {
5661   // The next lower level has been collected.  Gather any statistics
5662   // that are of interest at this point.
5663   if (!full && (current_level + 1) == level()) {
5664     // Gather statistics on the young generation collection.
5665     collector()->stats().record_gc0_end(used());
5666   }
5667 }
5668 
5669 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5670   // We iterate over the space(s) underlying this generation,
5671   // checking the mark bit map to see if the bits corresponding
5672   // to specific blocks are marked or not. Blocks that are
5673   // marked are live and are not swept up. All remaining blocks
5674   // are swept up, with coalescing on-the-fly as we sweep up
5675   // contiguous free and/or garbage blocks:
5676   // We need to ensure that the sweeper synchronizes with allocators
5677   // and stop-the-world collectors. In particular, the following
5678   // locks are used:
5679   // . CMS token: if this is held, a stop the world collection cannot occur
5680   // . freelistLock: if this is held no allocation can occur from this
5681   //                 generation by another thread
5682   // . bitMapLock: if this is held, no other thread can access or update
5683   //
5684 
5685   // Note that we need to hold the freelistLock if we use
5686   // block iterate below; else the iterator might go awry if
5687   // a mutator (or promotion) causes block contents to change
5688   // (for instance if the allocator divvies up a block).
5689   // If we hold the free list lock, for all practical purposes
5690   // young generation GC's can't occur (they'll usually need to
5691   // promote), so we might as well prevent all young generation
5692   // GC's while we do a sweeping step. For the same reason, we might
5693   // as well take the bit map lock for the entire duration
5694 
5695   // check that we hold the requisite locks
5696   assert(have_cms_token(), "Should hold cms token");
5697   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5698   assert_lock_strong(gen->freelistLock());
5699   assert_lock_strong(bitMapLock());
5700 
5701   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5702   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5703   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5704                                       _inter_sweep_estimate.padded_average(),
5705                                       _intra_sweep_estimate.padded_average());
5706   gen->setNearLargestChunk();
5707 
5708   {
5709     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5710     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5711     // We need to free-up/coalesce garbage/blocks from a
5712     // co-terminal free run. This is done in the SweepClosure
5713     // destructor; so, do not remove this scope, else the
5714     // end-of-sweep-census below will be off by a little bit.
5715   }
5716   gen->cmsSpace()->sweep_completed();
5717   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5718   if (should_unload_classes()) {                // unloaded classes this cycle,
5719     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5720   } else {                                      // did not unload classes,
5721     _concurrent_cycles_since_last_unload++;     // ... increment count
5722   }
5723 }
5724 
5725 // Reset CMS data structures (for now just the marking bit map)
5726 // preparatory for the next cycle.
5727 void CMSCollector::reset(bool concurrent) {
5728   if (concurrent) {
5729     CMSTokenSyncWithLocks ts(true, bitMapLock());
5730 
5731     // If the state is not "Resetting", the foreground  thread
5732     // has done a collection and the resetting.
5733     if (_collectorState != Resetting) {
5734       assert(_collectorState == Idling, "The state should only change"
5735         " because the foreground collector has finished the collection");
5736       return;
5737     }
5738 
5739     // Clear the mark bitmap (no grey objects to start with)
5740     // for the next cycle.
5741     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5742     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5743 
5744     HeapWord* curAddr = _markBitMap.startWord();
5745     while (curAddr < _markBitMap.endWord()) {
5746       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5747       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5748       _markBitMap.clear_large_range(chunk);
5749       if (ConcurrentMarkSweepThread::should_yield() &&
5750           !foregroundGCIsActive() &&
5751           CMSYield) {
5752         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5753                "CMS thread should hold CMS token");
5754         assert_lock_strong(bitMapLock());
5755         bitMapLock()->unlock();
5756         ConcurrentMarkSweepThread::desynchronize(true);
5757         stopTimer();
5758         if (PrintCMSStatistics != 0) {
5759           incrementYields();
5760         }
5761 
5762         // See the comment in coordinator_yield()
5763         for (unsigned i = 0; i < CMSYieldSleepCount &&
5764                          ConcurrentMarkSweepThread::should_yield() &&
5765                          !CMSCollector::foregroundGCIsActive(); ++i) {
5766           os::sleep(Thread::current(), 1, false);
5767         }
5768 
5769         ConcurrentMarkSweepThread::synchronize(true);
5770         bitMapLock()->lock_without_safepoint_check();
5771         startTimer();
5772       }
5773       curAddr = chunk.end();
5774     }
5775     // A successful mostly concurrent collection has been done.
5776     // Because only the full (i.e., concurrent mode failure) collections
5777     // are being measured for gc overhead limits, clean the "near" flag
5778     // and count.
5779     size_policy()->reset_gc_overhead_limit_count();
5780     _collectorState = Idling;
5781   } else {
5782     // already have the lock
5783     assert(_collectorState == Resetting, "just checking");
5784     assert_lock_strong(bitMapLock());
5785     _markBitMap.clear_all();
5786     _collectorState = Idling;
5787   }
5788 
5789   register_gc_end();
5790 }
5791 
5792 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5793   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5794   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5795   TraceCollectorStats tcs(counters());
5796 
5797   switch (op) {
5798     case CMS_op_checkpointRootsInitial: {
5799       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5800       checkpointRootsInitial();
5801       if (PrintGC) {
5802         _cmsGen->printOccupancy("initial-mark");
5803       }
5804       break;
5805     }
5806     case CMS_op_checkpointRootsFinal: {
5807       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5808       checkpointRootsFinal();
5809       if (PrintGC) {
5810         _cmsGen->printOccupancy("remark");
5811       }
5812       break;
5813     }
5814     default:
5815       fatal("No such CMS_op");
5816   }
5817 }
5818 
5819 #ifndef PRODUCT
5820 size_t const CMSCollector::skip_header_HeapWords() {
5821   return FreeChunk::header_size();
5822 }
5823 
5824 // Try and collect here conditions that should hold when
5825 // CMS thread is exiting. The idea is that the foreground GC
5826 // thread should not be blocked if it wants to terminate
5827 // the CMS thread and yet continue to run the VM for a while
5828 // after that.
5829 void CMSCollector::verify_ok_to_terminate() const {
5830   assert(Thread::current()->is_ConcurrentGC_thread(),
5831          "should be called by CMS thread");
5832   assert(!_foregroundGCShouldWait, "should be false");
5833   // We could check here that all the various low-level locks
5834   // are not held by the CMS thread, but that is overkill; see
5835   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5836   // is checked.
5837 }
5838 #endif
5839 
5840 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5841    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5842           "missing Printezis mark?");
5843   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5844   size_t size = pointer_delta(nextOneAddr + 1, addr);
5845   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5846          "alignment problem");
5847   assert(size >= 3, "Necessary for Printezis marks to work");
5848   return size;
5849 }
5850 
5851 // A variant of the above (block_size_using_printezis_bits()) except
5852 // that we return 0 if the P-bits are not yet set.
5853 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5854   if (_markBitMap.isMarked(addr + 1)) {
5855     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5856     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5857     size_t size = pointer_delta(nextOneAddr + 1, addr);
5858     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5859            "alignment problem");
5860     assert(size >= 3, "Necessary for Printezis marks to work");
5861     return size;
5862   }
5863   return 0;
5864 }
5865 
5866 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5867   size_t sz = 0;
5868   oop p = (oop)addr;
5869   if (p->klass_or_null() != NULL) {
5870     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5871   } else {
5872     sz = block_size_using_printezis_bits(addr);
5873   }
5874   assert(sz > 0, "size must be nonzero");
5875   HeapWord* next_block = addr + sz;
5876   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5877                                              CardTableModRefBS::card_size);
5878   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5879          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5880          "must be different cards");
5881   return next_card;
5882 }
5883 
5884 
5885 // CMS Bit Map Wrapper /////////////////////////////////////////
5886 
5887 // Construct a CMS bit map infrastructure, but don't create the
5888 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5889 // further below.
5890 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5891   _bm(),
5892   _shifter(shifter),
5893   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5894                                     Monitor::_safepoint_check_sometimes) : NULL)
5895 {
5896   _bmStartWord = 0;
5897   _bmWordSize  = 0;
5898 }
5899 
5900 bool CMSBitMap::allocate(MemRegion mr) {
5901   _bmStartWord = mr.start();
5902   _bmWordSize  = mr.word_size();
5903   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5904                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5905   if (!brs.is_reserved()) {
5906     warning("CMS bit map allocation failure");
5907     return false;
5908   }
5909   // For now we'll just commit all of the bit map up front.
5910   // Later on we'll try to be more parsimonious with swap.
5911   if (!_virtual_space.initialize(brs, brs.size())) {
5912     warning("CMS bit map backing store failure");
5913     return false;
5914   }
5915   assert(_virtual_space.committed_size() == brs.size(),
5916          "didn't reserve backing store for all of CMS bit map?");
5917   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5918   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5919          _bmWordSize, "inconsistency in bit map sizing");
5920   _bm.set_size(_bmWordSize >> _shifter);
5921 
5922   // bm.clear(); // can we rely on getting zero'd memory? verify below
5923   assert(isAllClear(),
5924          "Expected zero'd memory from ReservedSpace constructor");
5925   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5926          "consistency check");
5927   return true;
5928 }
5929 
5930 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5931   HeapWord *next_addr, *end_addr, *last_addr;
5932   assert_locked();
5933   assert(covers(mr), "out-of-range error");
5934   // XXX assert that start and end are appropriately aligned
5935   for (next_addr = mr.start(), end_addr = mr.end();
5936        next_addr < end_addr; next_addr = last_addr) {
5937     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5938     last_addr = dirty_region.end();
5939     if (!dirty_region.is_empty()) {
5940       cl->do_MemRegion(dirty_region);
5941     } else {
5942       assert(last_addr == end_addr, "program logic");
5943       return;
5944     }
5945   }
5946 }
5947 
5948 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5949   _bm.print_on_error(st, prefix);
5950 }
5951 
5952 #ifndef PRODUCT
5953 void CMSBitMap::assert_locked() const {
5954   CMSLockVerifier::assert_locked(lock());
5955 }
5956 
5957 bool CMSBitMap::covers(MemRegion mr) const {
5958   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5959   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5960          "size inconsistency");
5961   return (mr.start() >= _bmStartWord) &&
5962          (mr.end()   <= endWord());
5963 }
5964 
5965 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5966     return (start >= _bmStartWord && (start + size) <= endWord());
5967 }
5968 
5969 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5970   // verify that there are no 1 bits in the interval [left, right)
5971   FalseBitMapClosure falseBitMapClosure;
5972   iterate(&falseBitMapClosure, left, right);
5973 }
5974 
5975 void CMSBitMap::region_invariant(MemRegion mr)
5976 {
5977   assert_locked();
5978   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5979   assert(!mr.is_empty(), "unexpected empty region");
5980   assert(covers(mr), "mr should be covered by bit map");
5981   // convert address range into offset range
5982   size_t start_ofs = heapWordToOffset(mr.start());
5983   // Make sure that end() is appropriately aligned
5984   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5985                         (1 << (_shifter+LogHeapWordSize))),
5986          "Misaligned mr.end()");
5987   size_t end_ofs   = heapWordToOffset(mr.end());
5988   assert(end_ofs > start_ofs, "Should mark at least one bit");
5989 }
5990 
5991 #endif
5992 
5993 bool CMSMarkStack::allocate(size_t size) {
5994   // allocate a stack of the requisite depth
5995   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5996                    size * sizeof(oop)));
5997   if (!rs.is_reserved()) {
5998     warning("CMSMarkStack allocation failure");
5999     return false;
6000   }
6001   if (!_virtual_space.initialize(rs, rs.size())) {
6002     warning("CMSMarkStack backing store failure");
6003     return false;
6004   }
6005   assert(_virtual_space.committed_size() == rs.size(),
6006          "didn't reserve backing store for all of CMS stack?");
6007   _base = (oop*)(_virtual_space.low());
6008   _index = 0;
6009   _capacity = size;
6010   NOT_PRODUCT(_max_depth = 0);
6011   return true;
6012 }
6013 
6014 // XXX FIX ME !!! In the MT case we come in here holding a
6015 // leaf lock. For printing we need to take a further lock
6016 // which has lower rank. We need to recalibrate the two
6017 // lock-ranks involved in order to be able to print the
6018 // messages below. (Or defer the printing to the caller.
6019 // For now we take the expedient path of just disabling the
6020 // messages for the problematic case.)
6021 void CMSMarkStack::expand() {
6022   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6023   if (_capacity == MarkStackSizeMax) {
6024     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6025       // We print a warning message only once per CMS cycle.
6026       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6027     }
6028     return;
6029   }
6030   // Double capacity if possible
6031   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6032   // Do not give up existing stack until we have managed to
6033   // get the double capacity that we desired.
6034   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6035                    new_capacity * sizeof(oop)));
6036   if (rs.is_reserved()) {
6037     // Release the backing store associated with old stack
6038     _virtual_space.release();
6039     // Reinitialize virtual space for new stack
6040     if (!_virtual_space.initialize(rs, rs.size())) {
6041       fatal("Not enough swap for expanded marking stack");
6042     }
6043     _base = (oop*)(_virtual_space.low());
6044     _index = 0;
6045     _capacity = new_capacity;
6046   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6047     // Failed to double capacity, continue;
6048     // we print a detail message only once per CMS cycle.
6049     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6050             SIZE_FORMAT"K",
6051             _capacity / K, new_capacity / K);
6052   }
6053 }
6054 
6055 
6056 // Closures
6057 // XXX: there seems to be a lot of code  duplication here;
6058 // should refactor and consolidate common code.
6059 
6060 // This closure is used to mark refs into the CMS generation in
6061 // the CMS bit map. Called at the first checkpoint. This closure
6062 // assumes that we do not need to re-mark dirty cards; if the CMS
6063 // generation on which this is used is not an oldest
6064 // generation then this will lose younger_gen cards!
6065 
6066 MarkRefsIntoClosure::MarkRefsIntoClosure(
6067   MemRegion span, CMSBitMap* bitMap):
6068     _span(span),
6069     _bitMap(bitMap)
6070 {
6071     assert(_ref_processor == NULL, "deliberately left NULL");
6072     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6073 }
6074 
6075 void MarkRefsIntoClosure::do_oop(oop obj) {
6076   // if p points into _span, then mark corresponding bit in _markBitMap
6077   assert(obj->is_oop(), "expected an oop");
6078   HeapWord* addr = (HeapWord*)obj;
6079   if (_span.contains(addr)) {
6080     // this should be made more efficient
6081     _bitMap->mark(addr);
6082   }
6083 }
6084 
6085 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6086 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6087 
6088 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6089   MemRegion span, CMSBitMap* bitMap):
6090     _span(span),
6091     _bitMap(bitMap)
6092 {
6093     assert(_ref_processor == NULL, "deliberately left NULL");
6094     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6095 }
6096 
6097 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6098   // if p points into _span, then mark corresponding bit in _markBitMap
6099   assert(obj->is_oop(), "expected an oop");
6100   HeapWord* addr = (HeapWord*)obj;
6101   if (_span.contains(addr)) {
6102     // this should be made more efficient
6103     _bitMap->par_mark(addr);
6104   }
6105 }
6106 
6107 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6108 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6109 
6110 // A variant of the above, used for CMS marking verification.
6111 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6112   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6113     _span(span),
6114     _verification_bm(verification_bm),
6115     _cms_bm(cms_bm)
6116 {
6117     assert(_ref_processor == NULL, "deliberately left NULL");
6118     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6119 }
6120 
6121 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6122   // if p points into _span, then mark corresponding bit in _markBitMap
6123   assert(obj->is_oop(), "expected an oop");
6124   HeapWord* addr = (HeapWord*)obj;
6125   if (_span.contains(addr)) {
6126     _verification_bm->mark(addr);
6127     if (!_cms_bm->isMarked(addr)) {
6128       oop(addr)->print();
6129       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6130       fatal("... aborting");
6131     }
6132   }
6133 }
6134 
6135 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6136 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6137 
6138 //////////////////////////////////////////////////
6139 // MarkRefsIntoAndScanClosure
6140 //////////////////////////////////////////////////
6141 
6142 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6143                                                        ReferenceProcessor* rp,
6144                                                        CMSBitMap* bit_map,
6145                                                        CMSBitMap* mod_union_table,
6146                                                        CMSMarkStack*  mark_stack,
6147                                                        CMSCollector* collector,
6148                                                        bool should_yield,
6149                                                        bool concurrent_precleaning):
6150   _collector(collector),
6151   _span(span),
6152   _bit_map(bit_map),
6153   _mark_stack(mark_stack),
6154   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6155                       mark_stack, concurrent_precleaning),
6156   _yield(should_yield),
6157   _concurrent_precleaning(concurrent_precleaning),
6158   _freelistLock(NULL)
6159 {
6160   _ref_processor = rp;
6161   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6162 }
6163 
6164 // This closure is used to mark refs into the CMS generation at the
6165 // second (final) checkpoint, and to scan and transitively follow
6166 // the unmarked oops. It is also used during the concurrent precleaning
6167 // phase while scanning objects on dirty cards in the CMS generation.
6168 // The marks are made in the marking bit map and the marking stack is
6169 // used for keeping the (newly) grey objects during the scan.
6170 // The parallel version (Par_...) appears further below.
6171 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6172   if (obj != NULL) {
6173     assert(obj->is_oop(), "expected an oop");
6174     HeapWord* addr = (HeapWord*)obj;
6175     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6176     assert(_collector->overflow_list_is_empty(),
6177            "overflow list should be empty");
6178     if (_span.contains(addr) &&
6179         !_bit_map->isMarked(addr)) {
6180       // mark bit map (object is now grey)
6181       _bit_map->mark(addr);
6182       // push on marking stack (stack should be empty), and drain the
6183       // stack by applying this closure to the oops in the oops popped
6184       // from the stack (i.e. blacken the grey objects)
6185       bool res = _mark_stack->push(obj);
6186       assert(res, "Should have space to push on empty stack");
6187       do {
6188         oop new_oop = _mark_stack->pop();
6189         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6190         assert(_bit_map->isMarked((HeapWord*)new_oop),
6191                "only grey objects on this stack");
6192         // iterate over the oops in this oop, marking and pushing
6193         // the ones in CMS heap (i.e. in _span).
6194         new_oop->oop_iterate(&_pushAndMarkClosure);
6195         // check if it's time to yield
6196         do_yield_check();
6197       } while (!_mark_stack->isEmpty() ||
6198                (!_concurrent_precleaning && take_from_overflow_list()));
6199         // if marking stack is empty, and we are not doing this
6200         // during precleaning, then check the overflow list
6201     }
6202     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6203     assert(_collector->overflow_list_is_empty(),
6204            "overflow list was drained above");
6205     // We could restore evacuated mark words, if any, used for
6206     // overflow list links here because the overflow list is
6207     // provably empty here. That would reduce the maximum
6208     // size requirements for preserved_{oop,mark}_stack.
6209     // But we'll just postpone it until we are all done
6210     // so we can just stream through.
6211     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6212       _collector->restore_preserved_marks_if_any();
6213       assert(_collector->no_preserved_marks(), "No preserved marks");
6214     }
6215     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6216            "All preserved marks should have been restored above");
6217   }
6218 }
6219 
6220 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6221 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6222 
6223 void MarkRefsIntoAndScanClosure::do_yield_work() {
6224   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6225          "CMS thread should hold CMS token");
6226   assert_lock_strong(_freelistLock);
6227   assert_lock_strong(_bit_map->lock());
6228   // relinquish the free_list_lock and bitMaplock()
6229   _bit_map->lock()->unlock();
6230   _freelistLock->unlock();
6231   ConcurrentMarkSweepThread::desynchronize(true);
6232   _collector->stopTimer();
6233   if (PrintCMSStatistics != 0) {
6234     _collector->incrementYields();
6235   }
6236 
6237   // See the comment in coordinator_yield()
6238   for (unsigned i = 0;
6239        i < CMSYieldSleepCount &&
6240        ConcurrentMarkSweepThread::should_yield() &&
6241        !CMSCollector::foregroundGCIsActive();
6242        ++i) {
6243     os::sleep(Thread::current(), 1, false);
6244   }
6245 
6246   ConcurrentMarkSweepThread::synchronize(true);
6247   _freelistLock->lock_without_safepoint_check();
6248   _bit_map->lock()->lock_without_safepoint_check();
6249   _collector->startTimer();
6250 }
6251 
6252 ///////////////////////////////////////////////////////////
6253 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6254 //                                 MarkRefsIntoAndScanClosure
6255 ///////////////////////////////////////////////////////////
6256 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6257   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6258   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6259   _span(span),
6260   _bit_map(bit_map),
6261   _work_queue(work_queue),
6262   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6263                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6264   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6265 {
6266   _ref_processor = rp;
6267   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6268 }
6269 
6270 // This closure is used to mark refs into the CMS generation at the
6271 // second (final) checkpoint, and to scan and transitively follow
6272 // the unmarked oops. The marks are made in the marking bit map and
6273 // the work_queue is used for keeping the (newly) grey objects during
6274 // the scan phase whence they are also available for stealing by parallel
6275 // threads. Since the marking bit map is shared, updates are
6276 // synchronized (via CAS).
6277 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6278   if (obj != NULL) {
6279     // Ignore mark word because this could be an already marked oop
6280     // that may be chained at the end of the overflow list.
6281     assert(obj->is_oop(true), "expected an oop");
6282     HeapWord* addr = (HeapWord*)obj;
6283     if (_span.contains(addr) &&
6284         !_bit_map->isMarked(addr)) {
6285       // mark bit map (object will become grey):
6286       // It is possible for several threads to be
6287       // trying to "claim" this object concurrently;
6288       // the unique thread that succeeds in marking the
6289       // object first will do the subsequent push on
6290       // to the work queue (or overflow list).
6291       if (_bit_map->par_mark(addr)) {
6292         // push on work_queue (which may not be empty), and trim the
6293         // queue to an appropriate length by applying this closure to
6294         // the oops in the oops popped from the stack (i.e. blacken the
6295         // grey objects)
6296         bool res = _work_queue->push(obj);
6297         assert(res, "Low water mark should be less than capacity?");
6298         trim_queue(_low_water_mark);
6299       } // Else, another thread claimed the object
6300     }
6301   }
6302 }
6303 
6304 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6305 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6306 
6307 // This closure is used to rescan the marked objects on the dirty cards
6308 // in the mod union table and the card table proper.
6309 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6310   oop p, MemRegion mr) {
6311 
6312   size_t size = 0;
6313   HeapWord* addr = (HeapWord*)p;
6314   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6315   assert(_span.contains(addr), "we are scanning the CMS generation");
6316   // check if it's time to yield
6317   if (do_yield_check()) {
6318     // We yielded for some foreground stop-world work,
6319     // and we have been asked to abort this ongoing preclean cycle.
6320     return 0;
6321   }
6322   if (_bitMap->isMarked(addr)) {
6323     // it's marked; is it potentially uninitialized?
6324     if (p->klass_or_null() != NULL) {
6325         // an initialized object; ignore mark word in verification below
6326         // since we are running concurrent with mutators
6327         assert(p->is_oop(true), "should be an oop");
6328         if (p->is_objArray()) {
6329           // objArrays are precisely marked; restrict scanning
6330           // to dirty cards only.
6331           size = CompactibleFreeListSpace::adjustObjectSize(
6332                    p->oop_iterate(_scanningClosure, mr));
6333         } else {
6334           // A non-array may have been imprecisely marked; we need
6335           // to scan object in its entirety.
6336           size = CompactibleFreeListSpace::adjustObjectSize(
6337                    p->oop_iterate(_scanningClosure));
6338         }
6339         #ifdef ASSERT
6340           size_t direct_size =
6341             CompactibleFreeListSpace::adjustObjectSize(p->size());
6342           assert(size == direct_size, "Inconsistency in size");
6343           assert(size >= 3, "Necessary for Printezis marks to work");
6344           if (!_bitMap->isMarked(addr+1)) {
6345             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6346           } else {
6347             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6348             assert(_bitMap->isMarked(addr+size-1),
6349                    "inconsistent Printezis mark");
6350           }
6351         #endif // ASSERT
6352     } else {
6353       // An uninitialized object.
6354       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6355       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6356       size = pointer_delta(nextOneAddr + 1, addr);
6357       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6358              "alignment problem");
6359       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6360       // will dirty the card when the klass pointer is installed in the
6361       // object (signaling the completion of initialization).
6362     }
6363   } else {
6364     // Either a not yet marked object or an uninitialized object
6365     if (p->klass_or_null() == NULL) {
6366       // An uninitialized object, skip to the next card, since
6367       // we may not be able to read its P-bits yet.
6368       assert(size == 0, "Initial value");
6369     } else {
6370       // An object not (yet) reached by marking: we merely need to
6371       // compute its size so as to go look at the next block.
6372       assert(p->is_oop(true), "should be an oop");
6373       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6374     }
6375   }
6376   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6377   return size;
6378 }
6379 
6380 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6381   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6382          "CMS thread should hold CMS token");
6383   assert_lock_strong(_freelistLock);
6384   assert_lock_strong(_bitMap->lock());
6385   // relinquish the free_list_lock and bitMaplock()
6386   _bitMap->lock()->unlock();
6387   _freelistLock->unlock();
6388   ConcurrentMarkSweepThread::desynchronize(true);
6389   _collector->stopTimer();
6390   if (PrintCMSStatistics != 0) {
6391     _collector->incrementYields();
6392   }
6393 
6394   // See the comment in coordinator_yield()
6395   for (unsigned i = 0; i < CMSYieldSleepCount &&
6396                    ConcurrentMarkSweepThread::should_yield() &&
6397                    !CMSCollector::foregroundGCIsActive(); ++i) {
6398     os::sleep(Thread::current(), 1, false);
6399   }
6400 
6401   ConcurrentMarkSweepThread::synchronize(true);
6402   _freelistLock->lock_without_safepoint_check();
6403   _bitMap->lock()->lock_without_safepoint_check();
6404   _collector->startTimer();
6405 }
6406 
6407 
6408 //////////////////////////////////////////////////////////////////
6409 // SurvivorSpacePrecleanClosure
6410 //////////////////////////////////////////////////////////////////
6411 // This (single-threaded) closure is used to preclean the oops in
6412 // the survivor spaces.
6413 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6414 
6415   HeapWord* addr = (HeapWord*)p;
6416   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6417   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6418   assert(p->klass_or_null() != NULL, "object should be initialized");
6419   // an initialized object; ignore mark word in verification below
6420   // since we are running concurrent with mutators
6421   assert(p->is_oop(true), "should be an oop");
6422   // Note that we do not yield while we iterate over
6423   // the interior oops of p, pushing the relevant ones
6424   // on our marking stack.
6425   size_t size = p->oop_iterate(_scanning_closure);
6426   do_yield_check();
6427   // Observe that below, we do not abandon the preclean
6428   // phase as soon as we should; rather we empty the
6429   // marking stack before returning. This is to satisfy
6430   // some existing assertions. In general, it may be a
6431   // good idea to abort immediately and complete the marking
6432   // from the grey objects at a later time.
6433   while (!_mark_stack->isEmpty()) {
6434     oop new_oop = _mark_stack->pop();
6435     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6436     assert(_bit_map->isMarked((HeapWord*)new_oop),
6437            "only grey objects on this stack");
6438     // iterate over the oops in this oop, marking and pushing
6439     // the ones in CMS heap (i.e. in _span).
6440     new_oop->oop_iterate(_scanning_closure);
6441     // check if it's time to yield
6442     do_yield_check();
6443   }
6444   unsigned int after_count =
6445     GenCollectedHeap::heap()->total_collections();
6446   bool abort = (_before_count != after_count) ||
6447                _collector->should_abort_preclean();
6448   return abort ? 0 : size;
6449 }
6450 
6451 void SurvivorSpacePrecleanClosure::do_yield_work() {
6452   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6453          "CMS thread should hold CMS token");
6454   assert_lock_strong(_bit_map->lock());
6455   // Relinquish the bit map lock
6456   _bit_map->lock()->unlock();
6457   ConcurrentMarkSweepThread::desynchronize(true);
6458   _collector->stopTimer();
6459   if (PrintCMSStatistics != 0) {
6460     _collector->incrementYields();
6461   }
6462 
6463   // See the comment in coordinator_yield()
6464   for (unsigned i = 0; i < CMSYieldSleepCount &&
6465                        ConcurrentMarkSweepThread::should_yield() &&
6466                        !CMSCollector::foregroundGCIsActive(); ++i) {
6467     os::sleep(Thread::current(), 1, false);
6468   }
6469 
6470   ConcurrentMarkSweepThread::synchronize(true);
6471   _bit_map->lock()->lock_without_safepoint_check();
6472   _collector->startTimer();
6473 }
6474 
6475 // This closure is used to rescan the marked objects on the dirty cards
6476 // in the mod union table and the card table proper. In the parallel
6477 // case, although the bitMap is shared, we do a single read so the
6478 // isMarked() query is "safe".
6479 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6480   // Ignore mark word because we are running concurrent with mutators
6481   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6482   HeapWord* addr = (HeapWord*)p;
6483   assert(_span.contains(addr), "we are scanning the CMS generation");
6484   bool is_obj_array = false;
6485   #ifdef ASSERT
6486     if (!_parallel) {
6487       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6488       assert(_collector->overflow_list_is_empty(),
6489              "overflow list should be empty");
6490 
6491     }
6492   #endif // ASSERT
6493   if (_bit_map->isMarked(addr)) {
6494     // Obj arrays are precisely marked, non-arrays are not;
6495     // so we scan objArrays precisely and non-arrays in their
6496     // entirety.
6497     if (p->is_objArray()) {
6498       is_obj_array = true;
6499       if (_parallel) {
6500         p->oop_iterate(_par_scan_closure, mr);
6501       } else {
6502         p->oop_iterate(_scan_closure, mr);
6503       }
6504     } else {
6505       if (_parallel) {
6506         p->oop_iterate(_par_scan_closure);
6507       } else {
6508         p->oop_iterate(_scan_closure);
6509       }
6510     }
6511   }
6512   #ifdef ASSERT
6513     if (!_parallel) {
6514       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6515       assert(_collector->overflow_list_is_empty(),
6516              "overflow list should be empty");
6517 
6518     }
6519   #endif // ASSERT
6520   return is_obj_array;
6521 }
6522 
6523 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6524                         MemRegion span,
6525                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6526                         bool should_yield, bool verifying):
6527   _collector(collector),
6528   _span(span),
6529   _bitMap(bitMap),
6530   _mut(&collector->_modUnionTable),
6531   _markStack(markStack),
6532   _yield(should_yield),
6533   _skipBits(0)
6534 {
6535   assert(_markStack->isEmpty(), "stack should be empty");
6536   _finger = _bitMap->startWord();
6537   _threshold = _finger;
6538   assert(_collector->_restart_addr == NULL, "Sanity check");
6539   assert(_span.contains(_finger), "Out of bounds _finger?");
6540   DEBUG_ONLY(_verifying = verifying;)
6541 }
6542 
6543 void MarkFromRootsClosure::reset(HeapWord* addr) {
6544   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6545   assert(_span.contains(addr), "Out of bounds _finger?");
6546   _finger = addr;
6547   _threshold = (HeapWord*)round_to(
6548                  (intptr_t)_finger, CardTableModRefBS::card_size);
6549 }
6550 
6551 // Should revisit to see if this should be restructured for
6552 // greater efficiency.
6553 bool MarkFromRootsClosure::do_bit(size_t offset) {
6554   if (_skipBits > 0) {
6555     _skipBits--;
6556     return true;
6557   }
6558   // convert offset into a HeapWord*
6559   HeapWord* addr = _bitMap->startWord() + offset;
6560   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6561          "address out of range");
6562   assert(_bitMap->isMarked(addr), "tautology");
6563   if (_bitMap->isMarked(addr+1)) {
6564     // this is an allocated but not yet initialized object
6565     assert(_skipBits == 0, "tautology");
6566     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6567     oop p = oop(addr);
6568     if (p->klass_or_null() == NULL) {
6569       DEBUG_ONLY(if (!_verifying) {)
6570         // We re-dirty the cards on which this object lies and increase
6571         // the _threshold so that we'll come back to scan this object
6572         // during the preclean or remark phase. (CMSCleanOnEnter)
6573         if (CMSCleanOnEnter) {
6574           size_t sz = _collector->block_size_using_printezis_bits(addr);
6575           HeapWord* end_card_addr   = (HeapWord*)round_to(
6576                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6577           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6578           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6579           // Bump _threshold to end_card_addr; note that
6580           // _threshold cannot possibly exceed end_card_addr, anyhow.
6581           // This prevents future clearing of the card as the scan proceeds
6582           // to the right.
6583           assert(_threshold <= end_card_addr,
6584                  "Because we are just scanning into this object");
6585           if (_threshold < end_card_addr) {
6586             _threshold = end_card_addr;
6587           }
6588           if (p->klass_or_null() != NULL) {
6589             // Redirty the range of cards...
6590             _mut->mark_range(redirty_range);
6591           } // ...else the setting of klass will dirty the card anyway.
6592         }
6593       DEBUG_ONLY(})
6594       return true;
6595     }
6596   }
6597   scanOopsInOop(addr);
6598   return true;
6599 }
6600 
6601 // We take a break if we've been at this for a while,
6602 // so as to avoid monopolizing the locks involved.
6603 void MarkFromRootsClosure::do_yield_work() {
6604   // First give up the locks, then yield, then re-lock
6605   // We should probably use a constructor/destructor idiom to
6606   // do this unlock/lock or modify the MutexUnlocker class to
6607   // serve our purpose. XXX
6608   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6609          "CMS thread should hold CMS token");
6610   assert_lock_strong(_bitMap->lock());
6611   _bitMap->lock()->unlock();
6612   ConcurrentMarkSweepThread::desynchronize(true);
6613   _collector->stopTimer();
6614   if (PrintCMSStatistics != 0) {
6615     _collector->incrementYields();
6616   }
6617 
6618   // See the comment in coordinator_yield()
6619   for (unsigned i = 0; i < CMSYieldSleepCount &&
6620                        ConcurrentMarkSweepThread::should_yield() &&
6621                        !CMSCollector::foregroundGCIsActive(); ++i) {
6622     os::sleep(Thread::current(), 1, false);
6623   }
6624 
6625   ConcurrentMarkSweepThread::synchronize(true);
6626   _bitMap->lock()->lock_without_safepoint_check();
6627   _collector->startTimer();
6628 }
6629 
6630 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6631   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6632   assert(_markStack->isEmpty(),
6633          "should drain stack to limit stack usage");
6634   // convert ptr to an oop preparatory to scanning
6635   oop obj = oop(ptr);
6636   // Ignore mark word in verification below, since we
6637   // may be running concurrent with mutators.
6638   assert(obj->is_oop(true), "should be an oop");
6639   assert(_finger <= ptr, "_finger runneth ahead");
6640   // advance the finger to right end of this object
6641   _finger = ptr + obj->size();
6642   assert(_finger > ptr, "we just incremented it above");
6643   // On large heaps, it may take us some time to get through
6644   // the marking phase. During
6645   // this time it's possible that a lot of mutations have
6646   // accumulated in the card table and the mod union table --
6647   // these mutation records are redundant until we have
6648   // actually traced into the corresponding card.
6649   // Here, we check whether advancing the finger would make
6650   // us cross into a new card, and if so clear corresponding
6651   // cards in the MUT (preclean them in the card-table in the
6652   // future).
6653 
6654   DEBUG_ONLY(if (!_verifying) {)
6655     // The clean-on-enter optimization is disabled by default,
6656     // until we fix 6178663.
6657     if (CMSCleanOnEnter && (_finger > _threshold)) {
6658       // [_threshold, _finger) represents the interval
6659       // of cards to be cleared  in MUT (or precleaned in card table).
6660       // The set of cards to be cleared is all those that overlap
6661       // with the interval [_threshold, _finger); note that
6662       // _threshold is always kept card-aligned but _finger isn't
6663       // always card-aligned.
6664       HeapWord* old_threshold = _threshold;
6665       assert(old_threshold == (HeapWord*)round_to(
6666               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6667              "_threshold should always be card-aligned");
6668       _threshold = (HeapWord*)round_to(
6669                      (intptr_t)_finger, CardTableModRefBS::card_size);
6670       MemRegion mr(old_threshold, _threshold);
6671       assert(!mr.is_empty(), "Control point invariant");
6672       assert(_span.contains(mr), "Should clear within span");
6673       _mut->clear_range(mr);
6674     }
6675   DEBUG_ONLY(})
6676   // Note: the finger doesn't advance while we drain
6677   // the stack below.
6678   PushOrMarkClosure pushOrMarkClosure(_collector,
6679                                       _span, _bitMap, _markStack,
6680                                       _finger, this);
6681   bool res = _markStack->push(obj);
6682   assert(res, "Empty non-zero size stack should have space for single push");
6683   while (!_markStack->isEmpty()) {
6684     oop new_oop = _markStack->pop();
6685     // Skip verifying header mark word below because we are
6686     // running concurrent with mutators.
6687     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6688     // now scan this oop's oops
6689     new_oop->oop_iterate(&pushOrMarkClosure);
6690     do_yield_check();
6691   }
6692   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6693 }
6694 
6695 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6696                        CMSCollector* collector, MemRegion span,
6697                        CMSBitMap* bit_map,
6698                        OopTaskQueue* work_queue,
6699                        CMSMarkStack*  overflow_stack):
6700   _collector(collector),
6701   _whole_span(collector->_span),
6702   _span(span),
6703   _bit_map(bit_map),
6704   _mut(&collector->_modUnionTable),
6705   _work_queue(work_queue),
6706   _overflow_stack(overflow_stack),
6707   _skip_bits(0),
6708   _task(task)
6709 {
6710   assert(_work_queue->size() == 0, "work_queue should be empty");
6711   _finger = span.start();
6712   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6713   assert(_span.contains(_finger), "Out of bounds _finger?");
6714 }
6715 
6716 // Should revisit to see if this should be restructured for
6717 // greater efficiency.
6718 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6719   if (_skip_bits > 0) {
6720     _skip_bits--;
6721     return true;
6722   }
6723   // convert offset into a HeapWord*
6724   HeapWord* addr = _bit_map->startWord() + offset;
6725   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6726          "address out of range");
6727   assert(_bit_map->isMarked(addr), "tautology");
6728   if (_bit_map->isMarked(addr+1)) {
6729     // this is an allocated object that might not yet be initialized
6730     assert(_skip_bits == 0, "tautology");
6731     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6732     oop p = oop(addr);
6733     if (p->klass_or_null() == NULL) {
6734       // in the case of Clean-on-Enter optimization, redirty card
6735       // and avoid clearing card by increasing  the threshold.
6736       return true;
6737     }
6738   }
6739   scan_oops_in_oop(addr);
6740   return true;
6741 }
6742 
6743 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6744   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6745   // Should we assert that our work queue is empty or
6746   // below some drain limit?
6747   assert(_work_queue->size() == 0,
6748          "should drain stack to limit stack usage");
6749   // convert ptr to an oop preparatory to scanning
6750   oop obj = oop(ptr);
6751   // Ignore mark word in verification below, since we
6752   // may be running concurrent with mutators.
6753   assert(obj->is_oop(true), "should be an oop");
6754   assert(_finger <= ptr, "_finger runneth ahead");
6755   // advance the finger to right end of this object
6756   _finger = ptr + obj->size();
6757   assert(_finger > ptr, "we just incremented it above");
6758   // On large heaps, it may take us some time to get through
6759   // the marking phase. During
6760   // this time it's possible that a lot of mutations have
6761   // accumulated in the card table and the mod union table --
6762   // these mutation records are redundant until we have
6763   // actually traced into the corresponding card.
6764   // Here, we check whether advancing the finger would make
6765   // us cross into a new card, and if so clear corresponding
6766   // cards in the MUT (preclean them in the card-table in the
6767   // future).
6768 
6769   // The clean-on-enter optimization is disabled by default,
6770   // until we fix 6178663.
6771   if (CMSCleanOnEnter && (_finger > _threshold)) {
6772     // [_threshold, _finger) represents the interval
6773     // of cards to be cleared  in MUT (or precleaned in card table).
6774     // The set of cards to be cleared is all those that overlap
6775     // with the interval [_threshold, _finger); note that
6776     // _threshold is always kept card-aligned but _finger isn't
6777     // always card-aligned.
6778     HeapWord* old_threshold = _threshold;
6779     assert(old_threshold == (HeapWord*)round_to(
6780             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6781            "_threshold should always be card-aligned");
6782     _threshold = (HeapWord*)round_to(
6783                    (intptr_t)_finger, CardTableModRefBS::card_size);
6784     MemRegion mr(old_threshold, _threshold);
6785     assert(!mr.is_empty(), "Control point invariant");
6786     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6787     _mut->clear_range(mr);
6788   }
6789 
6790   // Note: the local finger doesn't advance while we drain
6791   // the stack below, but the global finger sure can and will.
6792   HeapWord** gfa = _task->global_finger_addr();
6793   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6794                                       _span, _bit_map,
6795                                       _work_queue,
6796                                       _overflow_stack,
6797                                       _finger,
6798                                       gfa, this);
6799   bool res = _work_queue->push(obj);   // overflow could occur here
6800   assert(res, "Will hold once we use workqueues");
6801   while (true) {
6802     oop new_oop;
6803     if (!_work_queue->pop_local(new_oop)) {
6804       // We emptied our work_queue; check if there's stuff that can
6805       // be gotten from the overflow stack.
6806       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6807             _overflow_stack, _work_queue)) {
6808         do_yield_check();
6809         continue;
6810       } else {  // done
6811         break;
6812       }
6813     }
6814     // Skip verifying header mark word below because we are
6815     // running concurrent with mutators.
6816     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6817     // now scan this oop's oops
6818     new_oop->oop_iterate(&pushOrMarkClosure);
6819     do_yield_check();
6820   }
6821   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6822 }
6823 
6824 // Yield in response to a request from VM Thread or
6825 // from mutators.
6826 void Par_MarkFromRootsClosure::do_yield_work() {
6827   assert(_task != NULL, "sanity");
6828   _task->yield();
6829 }
6830 
6831 // A variant of the above used for verifying CMS marking work.
6832 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6833                         MemRegion span,
6834                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6835                         CMSMarkStack*  mark_stack):
6836   _collector(collector),
6837   _span(span),
6838   _verification_bm(verification_bm),
6839   _cms_bm(cms_bm),
6840   _mark_stack(mark_stack),
6841   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6842                       mark_stack)
6843 {
6844   assert(_mark_stack->isEmpty(), "stack should be empty");
6845   _finger = _verification_bm->startWord();
6846   assert(_collector->_restart_addr == NULL, "Sanity check");
6847   assert(_span.contains(_finger), "Out of bounds _finger?");
6848 }
6849 
6850 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6851   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6852   assert(_span.contains(addr), "Out of bounds _finger?");
6853   _finger = addr;
6854 }
6855 
6856 // Should revisit to see if this should be restructured for
6857 // greater efficiency.
6858 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6859   // convert offset into a HeapWord*
6860   HeapWord* addr = _verification_bm->startWord() + offset;
6861   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6862          "address out of range");
6863   assert(_verification_bm->isMarked(addr), "tautology");
6864   assert(_cms_bm->isMarked(addr), "tautology");
6865 
6866   assert(_mark_stack->isEmpty(),
6867          "should drain stack to limit stack usage");
6868   // convert addr to an oop preparatory to scanning
6869   oop obj = oop(addr);
6870   assert(obj->is_oop(), "should be an oop");
6871   assert(_finger <= addr, "_finger runneth ahead");
6872   // advance the finger to right end of this object
6873   _finger = addr + obj->size();
6874   assert(_finger > addr, "we just incremented it above");
6875   // Note: the finger doesn't advance while we drain
6876   // the stack below.
6877   bool res = _mark_stack->push(obj);
6878   assert(res, "Empty non-zero size stack should have space for single push");
6879   while (!_mark_stack->isEmpty()) {
6880     oop new_oop = _mark_stack->pop();
6881     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6882     // now scan this oop's oops
6883     new_oop->oop_iterate(&_pam_verify_closure);
6884   }
6885   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6886   return true;
6887 }
6888 
6889 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6890   CMSCollector* collector, MemRegion span,
6891   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6892   CMSMarkStack*  mark_stack):
6893   MetadataAwareOopClosure(collector->ref_processor()),
6894   _collector(collector),
6895   _span(span),
6896   _verification_bm(verification_bm),
6897   _cms_bm(cms_bm),
6898   _mark_stack(mark_stack)
6899 { }
6900 
6901 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6902 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6903 
6904 // Upon stack overflow, we discard (part of) the stack,
6905 // remembering the least address amongst those discarded
6906 // in CMSCollector's _restart_address.
6907 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6908   // Remember the least grey address discarded
6909   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6910   _collector->lower_restart_addr(ra);
6911   _mark_stack->reset();  // discard stack contents
6912   _mark_stack->expand(); // expand the stack if possible
6913 }
6914 
6915 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6916   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6917   HeapWord* addr = (HeapWord*)obj;
6918   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6919     // Oop lies in _span and isn't yet grey or black
6920     _verification_bm->mark(addr);            // now grey
6921     if (!_cms_bm->isMarked(addr)) {
6922       oop(addr)->print();
6923       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6924                              p2i(addr));
6925       fatal("... aborting");
6926     }
6927 
6928     if (!_mark_stack->push(obj)) { // stack overflow
6929       if (PrintCMSStatistics != 0) {
6930         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6931                                SIZE_FORMAT, _mark_stack->capacity());
6932       }
6933       assert(_mark_stack->isFull(), "Else push should have succeeded");
6934       handle_stack_overflow(addr);
6935     }
6936     // anything including and to the right of _finger
6937     // will be scanned as we iterate over the remainder of the
6938     // bit map
6939   }
6940 }
6941 
6942 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6943                      MemRegion span,
6944                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6945                      HeapWord* finger, MarkFromRootsClosure* parent) :
6946   MetadataAwareOopClosure(collector->ref_processor()),
6947   _collector(collector),
6948   _span(span),
6949   _bitMap(bitMap),
6950   _markStack(markStack),
6951   _finger(finger),
6952   _parent(parent)
6953 { }
6954 
6955 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6956                      MemRegion span,
6957                      CMSBitMap* bit_map,
6958                      OopTaskQueue* work_queue,
6959                      CMSMarkStack*  overflow_stack,
6960                      HeapWord* finger,
6961                      HeapWord** global_finger_addr,
6962                      Par_MarkFromRootsClosure* parent) :
6963   MetadataAwareOopClosure(collector->ref_processor()),
6964   _collector(collector),
6965   _whole_span(collector->_span),
6966   _span(span),
6967   _bit_map(bit_map),
6968   _work_queue(work_queue),
6969   _overflow_stack(overflow_stack),
6970   _finger(finger),
6971   _global_finger_addr(global_finger_addr),
6972   _parent(parent)
6973 { }
6974 
6975 // Assumes thread-safe access by callers, who are
6976 // responsible for mutual exclusion.
6977 void CMSCollector::lower_restart_addr(HeapWord* low) {
6978   assert(_span.contains(low), "Out of bounds addr");
6979   if (_restart_addr == NULL) {
6980     _restart_addr = low;
6981   } else {
6982     _restart_addr = MIN2(_restart_addr, low);
6983   }
6984 }
6985 
6986 // Upon stack overflow, we discard (part of) the stack,
6987 // remembering the least address amongst those discarded
6988 // in CMSCollector's _restart_address.
6989 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6990   // Remember the least grey address discarded
6991   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6992   _collector->lower_restart_addr(ra);
6993   _markStack->reset();  // discard stack contents
6994   _markStack->expand(); // expand the stack if possible
6995 }
6996 
6997 // Upon stack overflow, we discard (part of) the stack,
6998 // remembering the least address amongst those discarded
6999 // in CMSCollector's _restart_address.
7000 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7001   // We need to do this under a mutex to prevent other
7002   // workers from interfering with the work done below.
7003   MutexLockerEx ml(_overflow_stack->par_lock(),
7004                    Mutex::_no_safepoint_check_flag);
7005   // Remember the least grey address discarded
7006   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7007   _collector->lower_restart_addr(ra);
7008   _overflow_stack->reset();  // discard stack contents
7009   _overflow_stack->expand(); // expand the stack if possible
7010 }
7011 
7012 void PushOrMarkClosure::do_oop(oop obj) {
7013   // Ignore mark word because we are running concurrent with mutators.
7014   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7015   HeapWord* addr = (HeapWord*)obj;
7016   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7017     // Oop lies in _span and isn't yet grey or black
7018     _bitMap->mark(addr);            // now grey
7019     if (addr < _finger) {
7020       // the bit map iteration has already either passed, or
7021       // sampled, this bit in the bit map; we'll need to
7022       // use the marking stack to scan this oop's oops.
7023       bool simulate_overflow = false;
7024       NOT_PRODUCT(
7025         if (CMSMarkStackOverflowALot &&
7026             _collector->simulate_overflow()) {
7027           // simulate a stack overflow
7028           simulate_overflow = true;
7029         }
7030       )
7031       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7032         if (PrintCMSStatistics != 0) {
7033           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7034                                  SIZE_FORMAT, _markStack->capacity());
7035         }
7036         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7037         handle_stack_overflow(addr);
7038       }
7039     }
7040     // anything including and to the right of _finger
7041     // will be scanned as we iterate over the remainder of the
7042     // bit map
7043     do_yield_check();
7044   }
7045 }
7046 
7047 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7048 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7049 
7050 void Par_PushOrMarkClosure::do_oop(oop obj) {
7051   // Ignore mark word because we are running concurrent with mutators.
7052   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7053   HeapWord* addr = (HeapWord*)obj;
7054   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7055     // Oop lies in _span and isn't yet grey or black
7056     // We read the global_finger (volatile read) strictly after marking oop
7057     bool res = _bit_map->par_mark(addr);    // now grey
7058     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7059     // Should we push this marked oop on our stack?
7060     // -- if someone else marked it, nothing to do
7061     // -- if target oop is above global finger nothing to do
7062     // -- if target oop is in chunk and above local finger
7063     //      then nothing to do
7064     // -- else push on work queue
7065     if (   !res       // someone else marked it, they will deal with it
7066         || (addr >= *gfa)  // will be scanned in a later task
7067         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7068       return;
7069     }
7070     // the bit map iteration has already either passed, or
7071     // sampled, this bit in the bit map; we'll need to
7072     // use the marking stack to scan this oop's oops.
7073     bool simulate_overflow = false;
7074     NOT_PRODUCT(
7075       if (CMSMarkStackOverflowALot &&
7076           _collector->simulate_overflow()) {
7077         // simulate a stack overflow
7078         simulate_overflow = true;
7079       }
7080     )
7081     if (simulate_overflow ||
7082         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7083       // stack overflow
7084       if (PrintCMSStatistics != 0) {
7085         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7086                                SIZE_FORMAT, _overflow_stack->capacity());
7087       }
7088       // We cannot assert that the overflow stack is full because
7089       // it may have been emptied since.
7090       assert(simulate_overflow ||
7091              _work_queue->size() == _work_queue->max_elems(),
7092             "Else push should have succeeded");
7093       handle_stack_overflow(addr);
7094     }
7095     do_yield_check();
7096   }
7097 }
7098 
7099 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7100 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7101 
7102 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7103                                        MemRegion span,
7104                                        ReferenceProcessor* rp,
7105                                        CMSBitMap* bit_map,
7106                                        CMSBitMap* mod_union_table,
7107                                        CMSMarkStack*  mark_stack,
7108                                        bool           concurrent_precleaning):
7109   MetadataAwareOopClosure(rp),
7110   _collector(collector),
7111   _span(span),
7112   _bit_map(bit_map),
7113   _mod_union_table(mod_union_table),
7114   _mark_stack(mark_stack),
7115   _concurrent_precleaning(concurrent_precleaning)
7116 {
7117   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7118 }
7119 
7120 // Grey object rescan during pre-cleaning and second checkpoint phases --
7121 // the non-parallel version (the parallel version appears further below.)
7122 void PushAndMarkClosure::do_oop(oop obj) {
7123   // Ignore mark word verification. If during concurrent precleaning,
7124   // the object monitor may be locked. If during the checkpoint
7125   // phases, the object may already have been reached by a  different
7126   // path and may be at the end of the global overflow list (so
7127   // the mark word may be NULL).
7128   assert(obj->is_oop_or_null(true /* ignore mark word */),
7129          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7130   HeapWord* addr = (HeapWord*)obj;
7131   // Check if oop points into the CMS generation
7132   // and is not marked
7133   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7134     // a white object ...
7135     _bit_map->mark(addr);         // ... now grey
7136     // push on the marking stack (grey set)
7137     bool simulate_overflow = false;
7138     NOT_PRODUCT(
7139       if (CMSMarkStackOverflowALot &&
7140           _collector->simulate_overflow()) {
7141         // simulate a stack overflow
7142         simulate_overflow = true;
7143       }
7144     )
7145     if (simulate_overflow || !_mark_stack->push(obj)) {
7146       if (_concurrent_precleaning) {
7147          // During precleaning we can just dirty the appropriate card(s)
7148          // in the mod union table, thus ensuring that the object remains
7149          // in the grey set  and continue. In the case of object arrays
7150          // we need to dirty all of the cards that the object spans,
7151          // since the rescan of object arrays will be limited to the
7152          // dirty cards.
7153          // Note that no one can be interfering with us in this action
7154          // of dirtying the mod union table, so no locking or atomics
7155          // are required.
7156          if (obj->is_objArray()) {
7157            size_t sz = obj->size();
7158            HeapWord* end_card_addr = (HeapWord*)round_to(
7159                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7160            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7161            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7162            _mod_union_table->mark_range(redirty_range);
7163          } else {
7164            _mod_union_table->mark(addr);
7165          }
7166          _collector->_ser_pmc_preclean_ovflw++;
7167       } else {
7168          // During the remark phase, we need to remember this oop
7169          // in the overflow list.
7170          _collector->push_on_overflow_list(obj);
7171          _collector->_ser_pmc_remark_ovflw++;
7172       }
7173     }
7174   }
7175 }
7176 
7177 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7178                                                MemRegion span,
7179                                                ReferenceProcessor* rp,
7180                                                CMSBitMap* bit_map,
7181                                                OopTaskQueue* work_queue):
7182   MetadataAwareOopClosure(rp),
7183   _collector(collector),
7184   _span(span),
7185   _bit_map(bit_map),
7186   _work_queue(work_queue)
7187 {
7188   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7189 }
7190 
7191 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7192 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7193 
7194 // Grey object rescan during second checkpoint phase --
7195 // the parallel version.
7196 void Par_PushAndMarkClosure::do_oop(oop obj) {
7197   // In the assert below, we ignore the mark word because
7198   // this oop may point to an already visited object that is
7199   // on the overflow stack (in which case the mark word has
7200   // been hijacked for chaining into the overflow stack --
7201   // if this is the last object in the overflow stack then
7202   // its mark word will be NULL). Because this object may
7203   // have been subsequently popped off the global overflow
7204   // stack, and the mark word possibly restored to the prototypical
7205   // value, by the time we get to examined this failing assert in
7206   // the debugger, is_oop_or_null(false) may subsequently start
7207   // to hold.
7208   assert(obj->is_oop_or_null(true),
7209          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7210   HeapWord* addr = (HeapWord*)obj;
7211   // Check if oop points into the CMS generation
7212   // and is not marked
7213   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7214     // a white object ...
7215     // If we manage to "claim" the object, by being the
7216     // first thread to mark it, then we push it on our
7217     // marking stack
7218     if (_bit_map->par_mark(addr)) {     // ... now grey
7219       // push on work queue (grey set)
7220       bool simulate_overflow = false;
7221       NOT_PRODUCT(
7222         if (CMSMarkStackOverflowALot &&
7223             _collector->par_simulate_overflow()) {
7224           // simulate a stack overflow
7225           simulate_overflow = true;
7226         }
7227       )
7228       if (simulate_overflow || !_work_queue->push(obj)) {
7229         _collector->par_push_on_overflow_list(obj);
7230         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7231       }
7232     } // Else, some other thread got there first
7233   }
7234 }
7235 
7236 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7237 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7238 
7239 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7240   Mutex* bml = _collector->bitMapLock();
7241   assert_lock_strong(bml);
7242   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7243          "CMS thread should hold CMS token");
7244 
7245   bml->unlock();
7246   ConcurrentMarkSweepThread::desynchronize(true);
7247 
7248   _collector->stopTimer();
7249   if (PrintCMSStatistics != 0) {
7250     _collector->incrementYields();
7251   }
7252 
7253   // See the comment in coordinator_yield()
7254   for (unsigned i = 0; i < CMSYieldSleepCount &&
7255                        ConcurrentMarkSweepThread::should_yield() &&
7256                        !CMSCollector::foregroundGCIsActive(); ++i) {
7257     os::sleep(Thread::current(), 1, false);
7258   }
7259 
7260   ConcurrentMarkSweepThread::synchronize(true);
7261   bml->lock();
7262 
7263   _collector->startTimer();
7264 }
7265 
7266 bool CMSPrecleanRefsYieldClosure::should_return() {
7267   if (ConcurrentMarkSweepThread::should_yield()) {
7268     do_yield_work();
7269   }
7270   return _collector->foregroundGCIsActive();
7271 }
7272 
7273 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7274   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7275          "mr should be aligned to start at a card boundary");
7276   // We'd like to assert:
7277   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7278   //        "mr should be a range of cards");
7279   // However, that would be too strong in one case -- the last
7280   // partition ends at _unallocated_block which, in general, can be
7281   // an arbitrary boundary, not necessarily card aligned.
7282   if (PrintCMSStatistics != 0) {
7283     _num_dirty_cards +=
7284          mr.word_size()/CardTableModRefBS::card_size_in_words;
7285   }
7286   _space->object_iterate_mem(mr, &_scan_cl);
7287 }
7288 
7289 SweepClosure::SweepClosure(CMSCollector* collector,
7290                            ConcurrentMarkSweepGeneration* g,
7291                            CMSBitMap* bitMap, bool should_yield) :
7292   _collector(collector),
7293   _g(g),
7294   _sp(g->cmsSpace()),
7295   _limit(_sp->sweep_limit()),
7296   _freelistLock(_sp->freelistLock()),
7297   _bitMap(bitMap),
7298   _yield(should_yield),
7299   _inFreeRange(false),           // No free range at beginning of sweep
7300   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7301   _lastFreeRangeCoalesced(false),
7302   _freeFinger(g->used_region().start())
7303 {
7304   NOT_PRODUCT(
7305     _numObjectsFreed = 0;
7306     _numWordsFreed   = 0;
7307     _numObjectsLive = 0;
7308     _numWordsLive = 0;
7309     _numObjectsAlreadyFree = 0;
7310     _numWordsAlreadyFree = 0;
7311     _last_fc = NULL;
7312 
7313     _sp->initializeIndexedFreeListArrayReturnedBytes();
7314     _sp->dictionary()->initialize_dict_returned_bytes();
7315   )
7316   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7317          "sweep _limit out of bounds");
7318   if (CMSTraceSweeper) {
7319     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7320                         p2i(_limit));
7321   }
7322 }
7323 
7324 void SweepClosure::print_on(outputStream* st) const {
7325   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7326                 p2i(_sp->bottom()), p2i(_sp->end()));
7327   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7328   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7329   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7330   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7331                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7332 }
7333 
7334 #ifndef PRODUCT
7335 // Assertion checking only:  no useful work in product mode --
7336 // however, if any of the flags below become product flags,
7337 // you may need to review this code to see if it needs to be
7338 // enabled in product mode.
7339 SweepClosure::~SweepClosure() {
7340   assert_lock_strong(_freelistLock);
7341   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7342          "sweep _limit out of bounds");
7343   if (inFreeRange()) {
7344     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7345     print();
7346     ShouldNotReachHere();
7347   }
7348   if (Verbose && PrintGC) {
7349     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7350                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7351     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7352                            SIZE_FORMAT" bytes  "
7353       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7354       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7355       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7356     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7357                         * sizeof(HeapWord);
7358     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7359 
7360     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7361       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7362       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7363       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7364       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7365       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7366         indexListReturnedBytes);
7367       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7368         dict_returned_bytes);
7369     }
7370   }
7371   if (CMSTraceSweeper) {
7372     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7373                            p2i(_limit));
7374   }
7375 }
7376 #endif  // PRODUCT
7377 
7378 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7379     bool freeRangeInFreeLists) {
7380   if (CMSTraceSweeper) {
7381     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7382                p2i(freeFinger), freeRangeInFreeLists);
7383   }
7384   assert(!inFreeRange(), "Trampling existing free range");
7385   set_inFreeRange(true);
7386   set_lastFreeRangeCoalesced(false);
7387 
7388   set_freeFinger(freeFinger);
7389   set_freeRangeInFreeLists(freeRangeInFreeLists);
7390   if (CMSTestInFreeList) {
7391     if (freeRangeInFreeLists) {
7392       FreeChunk* fc = (FreeChunk*) freeFinger;
7393       assert(fc->is_free(), "A chunk on the free list should be free.");
7394       assert(fc->size() > 0, "Free range should have a size");
7395       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7396     }
7397   }
7398 }
7399 
7400 // Note that the sweeper runs concurrently with mutators. Thus,
7401 // it is possible for direct allocation in this generation to happen
7402 // in the middle of the sweep. Note that the sweeper also coalesces
7403 // contiguous free blocks. Thus, unless the sweeper and the allocator
7404 // synchronize appropriately freshly allocated blocks may get swept up.
7405 // This is accomplished by the sweeper locking the free lists while
7406 // it is sweeping. Thus blocks that are determined to be free are
7407 // indeed free. There is however one additional complication:
7408 // blocks that have been allocated since the final checkpoint and
7409 // mark, will not have been marked and so would be treated as
7410 // unreachable and swept up. To prevent this, the allocator marks
7411 // the bit map when allocating during the sweep phase. This leads,
7412 // however, to a further complication -- objects may have been allocated
7413 // but not yet initialized -- in the sense that the header isn't yet
7414 // installed. The sweeper can not then determine the size of the block
7415 // in order to skip over it. To deal with this case, we use a technique
7416 // (due to Printezis) to encode such uninitialized block sizes in the
7417 // bit map. Since the bit map uses a bit per every HeapWord, but the
7418 // CMS generation has a minimum object size of 3 HeapWords, it follows
7419 // that "normal marks" won't be adjacent in the bit map (there will
7420 // always be at least two 0 bits between successive 1 bits). We make use
7421 // of these "unused" bits to represent uninitialized blocks -- the bit
7422 // corresponding to the start of the uninitialized object and the next
7423 // bit are both set. Finally, a 1 bit marks the end of the object that
7424 // started with the two consecutive 1 bits to indicate its potentially
7425 // uninitialized state.
7426 
7427 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7428   FreeChunk* fc = (FreeChunk*)addr;
7429   size_t res;
7430 
7431   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7432   // than "addr == _limit" because although _limit was a block boundary when
7433   // we started the sweep, it may no longer be one because heap expansion
7434   // may have caused us to coalesce the block ending at the address _limit
7435   // with a newly expanded chunk (this happens when _limit was set to the
7436   // previous _end of the space), so we may have stepped past _limit:
7437   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7438   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7439     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7440            "sweep _limit out of bounds");
7441     assert(addr < _sp->end(), "addr out of bounds");
7442     // Flush any free range we might be holding as a single
7443     // coalesced chunk to the appropriate free list.
7444     if (inFreeRange()) {
7445       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7446              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7447       flush_cur_free_chunk(freeFinger(),
7448                            pointer_delta(addr, freeFinger()));
7449       if (CMSTraceSweeper) {
7450         gclog_or_tty->print("Sweep: last chunk: ");
7451         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7452                    "[coalesced:%d]\n",
7453                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7454                    lastFreeRangeCoalesced() ? 1 : 0);
7455       }
7456     }
7457 
7458     // help the iterator loop finish
7459     return pointer_delta(_sp->end(), addr);
7460   }
7461 
7462   assert(addr < _limit, "sweep invariant");
7463   // check if we should yield
7464   do_yield_check(addr);
7465   if (fc->is_free()) {
7466     // Chunk that is already free
7467     res = fc->size();
7468     do_already_free_chunk(fc);
7469     debug_only(_sp->verifyFreeLists());
7470     // If we flush the chunk at hand in lookahead_and_flush()
7471     // and it's coalesced with a preceding chunk, then the
7472     // process of "mangling" the payload of the coalesced block
7473     // will cause erasure of the size information from the
7474     // (erstwhile) header of all the coalesced blocks but the
7475     // first, so the first disjunct in the assert will not hold
7476     // in that specific case (in which case the second disjunct
7477     // will hold).
7478     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7479            "Otherwise the size info doesn't change at this step");
7480     NOT_PRODUCT(
7481       _numObjectsAlreadyFree++;
7482       _numWordsAlreadyFree += res;
7483     )
7484     NOT_PRODUCT(_last_fc = fc;)
7485   } else if (!_bitMap->isMarked(addr)) {
7486     // Chunk is fresh garbage
7487     res = do_garbage_chunk(fc);
7488     debug_only(_sp->verifyFreeLists());
7489     NOT_PRODUCT(
7490       _numObjectsFreed++;
7491       _numWordsFreed += res;
7492     )
7493   } else {
7494     // Chunk that is alive.
7495     res = do_live_chunk(fc);
7496     debug_only(_sp->verifyFreeLists());
7497     NOT_PRODUCT(
7498         _numObjectsLive++;
7499         _numWordsLive += res;
7500     )
7501   }
7502   return res;
7503 }
7504 
7505 // For the smart allocation, record following
7506 //  split deaths - a free chunk is removed from its free list because
7507 //      it is being split into two or more chunks.
7508 //  split birth - a free chunk is being added to its free list because
7509 //      a larger free chunk has been split and resulted in this free chunk.
7510 //  coal death - a free chunk is being removed from its free list because
7511 //      it is being coalesced into a large free chunk.
7512 //  coal birth - a free chunk is being added to its free list because
7513 //      it was created when two or more free chunks where coalesced into
7514 //      this free chunk.
7515 //
7516 // These statistics are used to determine the desired number of free
7517 // chunks of a given size.  The desired number is chosen to be relative
7518 // to the end of a CMS sweep.  The desired number at the end of a sweep
7519 // is the
7520 //      count-at-end-of-previous-sweep (an amount that was enough)
7521 //              - count-at-beginning-of-current-sweep  (the excess)
7522 //              + split-births  (gains in this size during interval)
7523 //              - split-deaths  (demands on this size during interval)
7524 // where the interval is from the end of one sweep to the end of the
7525 // next.
7526 //
7527 // When sweeping the sweeper maintains an accumulated chunk which is
7528 // the chunk that is made up of chunks that have been coalesced.  That
7529 // will be termed the left-hand chunk.  A new chunk of garbage that
7530 // is being considered for coalescing will be referred to as the
7531 // right-hand chunk.
7532 //
7533 // When making a decision on whether to coalesce a right-hand chunk with
7534 // the current left-hand chunk, the current count vs. the desired count
7535 // of the left-hand chunk is considered.  Also if the right-hand chunk
7536 // is near the large chunk at the end of the heap (see
7537 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7538 // left-hand chunk is coalesced.
7539 //
7540 // When making a decision about whether to split a chunk, the desired count
7541 // vs. the current count of the candidate to be split is also considered.
7542 // If the candidate is underpopulated (currently fewer chunks than desired)
7543 // a chunk of an overpopulated (currently more chunks than desired) size may
7544 // be chosen.  The "hint" associated with a free list, if non-null, points
7545 // to a free list which may be overpopulated.
7546 //
7547 
7548 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7549   const size_t size = fc->size();
7550   // Chunks that cannot be coalesced are not in the
7551   // free lists.
7552   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7553     assert(_sp->verify_chunk_in_free_list(fc),
7554       "free chunk should be in free lists");
7555   }
7556   // a chunk that is already free, should not have been
7557   // marked in the bit map
7558   HeapWord* const addr = (HeapWord*) fc;
7559   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7560   // Verify that the bit map has no bits marked between
7561   // addr and purported end of this block.
7562   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7563 
7564   // Some chunks cannot be coalesced under any circumstances.
7565   // See the definition of cantCoalesce().
7566   if (!fc->cantCoalesce()) {
7567     // This chunk can potentially be coalesced.
7568     if (_sp->adaptive_freelists()) {
7569       // All the work is done in
7570       do_post_free_or_garbage_chunk(fc, size);
7571     } else {  // Not adaptive free lists
7572       // this is a free chunk that can potentially be coalesced by the sweeper;
7573       if (!inFreeRange()) {
7574         // if the next chunk is a free block that can't be coalesced
7575         // it doesn't make sense to remove this chunk from the free lists
7576         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7577         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7578         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7579             nextChunk->is_free()               &&     // ... which is free...
7580             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7581           // nothing to do
7582         } else {
7583           // Potentially the start of a new free range:
7584           // Don't eagerly remove it from the free lists.
7585           // No need to remove it if it will just be put
7586           // back again.  (Also from a pragmatic point of view
7587           // if it is a free block in a region that is beyond
7588           // any allocated blocks, an assertion will fail)
7589           // Remember the start of a free run.
7590           initialize_free_range(addr, true);
7591           // end - can coalesce with next chunk
7592         }
7593       } else {
7594         // the midst of a free range, we are coalescing
7595         print_free_block_coalesced(fc);
7596         if (CMSTraceSweeper) {
7597           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7598         }
7599         // remove it from the free lists
7600         _sp->removeFreeChunkFromFreeLists(fc);
7601         set_lastFreeRangeCoalesced(true);
7602         // If the chunk is being coalesced and the current free range is
7603         // in the free lists, remove the current free range so that it
7604         // will be returned to the free lists in its entirety - all
7605         // the coalesced pieces included.
7606         if (freeRangeInFreeLists()) {
7607           FreeChunk* ffc = (FreeChunk*) freeFinger();
7608           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7609             "Size of free range is inconsistent with chunk size.");
7610           if (CMSTestInFreeList) {
7611             assert(_sp->verify_chunk_in_free_list(ffc),
7612               "free range is not in free lists");
7613           }
7614           _sp->removeFreeChunkFromFreeLists(ffc);
7615           set_freeRangeInFreeLists(false);
7616         }
7617       }
7618     }
7619     // Note that if the chunk is not coalescable (the else arm
7620     // below), we unconditionally flush, without needing to do
7621     // a "lookahead," as we do below.
7622     if (inFreeRange()) lookahead_and_flush(fc, size);
7623   } else {
7624     // Code path common to both original and adaptive free lists.
7625 
7626     // cant coalesce with previous block; this should be treated
7627     // as the end of a free run if any
7628     if (inFreeRange()) {
7629       // we kicked some butt; time to pick up the garbage
7630       assert(freeFinger() < addr, "freeFinger points too high");
7631       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7632     }
7633     // else, nothing to do, just continue
7634   }
7635 }
7636 
7637 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7638   // This is a chunk of garbage.  It is not in any free list.
7639   // Add it to a free list or let it possibly be coalesced into
7640   // a larger chunk.
7641   HeapWord* const addr = (HeapWord*) fc;
7642   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7643 
7644   if (_sp->adaptive_freelists()) {
7645     // Verify that the bit map has no bits marked between
7646     // addr and purported end of just dead object.
7647     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7648 
7649     do_post_free_or_garbage_chunk(fc, size);
7650   } else {
7651     if (!inFreeRange()) {
7652       // start of a new free range
7653       assert(size > 0, "A free range should have a size");
7654       initialize_free_range(addr, false);
7655     } else {
7656       // this will be swept up when we hit the end of the
7657       // free range
7658       if (CMSTraceSweeper) {
7659         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7660       }
7661       // If the chunk is being coalesced and the current free range is
7662       // in the free lists, remove the current free range so that it
7663       // will be returned to the free lists in its entirety - all
7664       // the coalesced pieces included.
7665       if (freeRangeInFreeLists()) {
7666         FreeChunk* ffc = (FreeChunk*)freeFinger();
7667         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7668           "Size of free range is inconsistent with chunk size.");
7669         if (CMSTestInFreeList) {
7670           assert(_sp->verify_chunk_in_free_list(ffc),
7671             "free range is not in free lists");
7672         }
7673         _sp->removeFreeChunkFromFreeLists(ffc);
7674         set_freeRangeInFreeLists(false);
7675       }
7676       set_lastFreeRangeCoalesced(true);
7677     }
7678     // this will be swept up when we hit the end of the free range
7679 
7680     // Verify that the bit map has no bits marked between
7681     // addr and purported end of just dead object.
7682     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7683   }
7684   assert(_limit >= addr + size,
7685          "A freshly garbage chunk can't possibly straddle over _limit");
7686   if (inFreeRange()) lookahead_and_flush(fc, size);
7687   return size;
7688 }
7689 
7690 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7691   HeapWord* addr = (HeapWord*) fc;
7692   // The sweeper has just found a live object. Return any accumulated
7693   // left hand chunk to the free lists.
7694   if (inFreeRange()) {
7695     assert(freeFinger() < addr, "freeFinger points too high");
7696     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7697   }
7698 
7699   // This object is live: we'd normally expect this to be
7700   // an oop, and like to assert the following:
7701   // assert(oop(addr)->is_oop(), "live block should be an oop");
7702   // However, as we commented above, this may be an object whose
7703   // header hasn't yet been initialized.
7704   size_t size;
7705   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7706   if (_bitMap->isMarked(addr + 1)) {
7707     // Determine the size from the bit map, rather than trying to
7708     // compute it from the object header.
7709     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7710     size = pointer_delta(nextOneAddr + 1, addr);
7711     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7712            "alignment problem");
7713 
7714 #ifdef ASSERT
7715       if (oop(addr)->klass_or_null() != NULL) {
7716         // Ignore mark word because we are running concurrent with mutators
7717         assert(oop(addr)->is_oop(true), "live block should be an oop");
7718         assert(size ==
7719                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7720                "P-mark and computed size do not agree");
7721       }
7722 #endif
7723 
7724   } else {
7725     // This should be an initialized object that's alive.
7726     assert(oop(addr)->klass_or_null() != NULL,
7727            "Should be an initialized object");
7728     // Ignore mark word because we are running concurrent with mutators
7729     assert(oop(addr)->is_oop(true), "live block should be an oop");
7730     // Verify that the bit map has no bits marked between
7731     // addr and purported end of this block.
7732     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7733     assert(size >= 3, "Necessary for Printezis marks to work");
7734     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7735     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7736   }
7737   return size;
7738 }
7739 
7740 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7741                                                  size_t chunkSize) {
7742   // do_post_free_or_garbage_chunk() should only be called in the case
7743   // of the adaptive free list allocator.
7744   const bool fcInFreeLists = fc->is_free();
7745   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7746   assert((HeapWord*)fc <= _limit, "sweep invariant");
7747   if (CMSTestInFreeList && fcInFreeLists) {
7748     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7749   }
7750 
7751   if (CMSTraceSweeper) {
7752     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7753   }
7754 
7755   HeapWord* const fc_addr = (HeapWord*) fc;
7756 
7757   bool coalesce;
7758   const size_t left  = pointer_delta(fc_addr, freeFinger());
7759   const size_t right = chunkSize;
7760   switch (FLSCoalescePolicy) {
7761     // numeric value forms a coalition aggressiveness metric
7762     case 0:  { // never coalesce
7763       coalesce = false;
7764       break;
7765     }
7766     case 1: { // coalesce if left & right chunks on overpopulated lists
7767       coalesce = _sp->coalOverPopulated(left) &&
7768                  _sp->coalOverPopulated(right);
7769       break;
7770     }
7771     case 2: { // coalesce if left chunk on overpopulated list (default)
7772       coalesce = _sp->coalOverPopulated(left);
7773       break;
7774     }
7775     case 3: { // coalesce if left OR right chunk on overpopulated list
7776       coalesce = _sp->coalOverPopulated(left) ||
7777                  _sp->coalOverPopulated(right);
7778       break;
7779     }
7780     case 4: { // always coalesce
7781       coalesce = true;
7782       break;
7783     }
7784     default:
7785      ShouldNotReachHere();
7786   }
7787 
7788   // Should the current free range be coalesced?
7789   // If the chunk is in a free range and either we decided to coalesce above
7790   // or the chunk is near the large block at the end of the heap
7791   // (isNearLargestChunk() returns true), then coalesce this chunk.
7792   const bool doCoalesce = inFreeRange()
7793                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7794   if (doCoalesce) {
7795     // Coalesce the current free range on the left with the new
7796     // chunk on the right.  If either is on a free list,
7797     // it must be removed from the list and stashed in the closure.
7798     if (freeRangeInFreeLists()) {
7799       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7800       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7801         "Size of free range is inconsistent with chunk size.");
7802       if (CMSTestInFreeList) {
7803         assert(_sp->verify_chunk_in_free_list(ffc),
7804           "Chunk is not in free lists");
7805       }
7806       _sp->coalDeath(ffc->size());
7807       _sp->removeFreeChunkFromFreeLists(ffc);
7808       set_freeRangeInFreeLists(false);
7809     }
7810     if (fcInFreeLists) {
7811       _sp->coalDeath(chunkSize);
7812       assert(fc->size() == chunkSize,
7813         "The chunk has the wrong size or is not in the free lists");
7814       _sp->removeFreeChunkFromFreeLists(fc);
7815     }
7816     set_lastFreeRangeCoalesced(true);
7817     print_free_block_coalesced(fc);
7818   } else {  // not in a free range and/or should not coalesce
7819     // Return the current free range and start a new one.
7820     if (inFreeRange()) {
7821       // In a free range but cannot coalesce with the right hand chunk.
7822       // Put the current free range into the free lists.
7823       flush_cur_free_chunk(freeFinger(),
7824                            pointer_delta(fc_addr, freeFinger()));
7825     }
7826     // Set up for new free range.  Pass along whether the right hand
7827     // chunk is in the free lists.
7828     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7829   }
7830 }
7831 
7832 // Lookahead flush:
7833 // If we are tracking a free range, and this is the last chunk that
7834 // we'll look at because its end crosses past _limit, we'll preemptively
7835 // flush it along with any free range we may be holding on to. Note that
7836 // this can be the case only for an already free or freshly garbage
7837 // chunk. If this block is an object, it can never straddle
7838 // over _limit. The "straddling" occurs when _limit is set at
7839 // the previous end of the space when this cycle started, and
7840 // a subsequent heap expansion caused the previously co-terminal
7841 // free block to be coalesced with the newly expanded portion,
7842 // thus rendering _limit a non-block-boundary making it dangerous
7843 // for the sweeper to step over and examine.
7844 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7845   assert(inFreeRange(), "Should only be called if currently in a free range.");
7846   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7847   assert(_sp->used_region().contains(eob - 1),
7848          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7849                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7850                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7851                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7852   if (eob >= _limit) {
7853     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7854     if (CMSTraceSweeper) {
7855       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7856                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7857                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7858                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7859     }
7860     // Return the storage we are tracking back into the free lists.
7861     if (CMSTraceSweeper) {
7862       gclog_or_tty->print_cr("Flushing ... ");
7863     }
7864     assert(freeFinger() < eob, "Error");
7865     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7866   }
7867 }
7868 
7869 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7870   assert(inFreeRange(), "Should only be called if currently in a free range.");
7871   assert(size > 0,
7872     "A zero sized chunk cannot be added to the free lists.");
7873   if (!freeRangeInFreeLists()) {
7874     if (CMSTestInFreeList) {
7875       FreeChunk* fc = (FreeChunk*) chunk;
7876       fc->set_size(size);
7877       assert(!_sp->verify_chunk_in_free_list(fc),
7878         "chunk should not be in free lists yet");
7879     }
7880     if (CMSTraceSweeper) {
7881       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7882                     p2i(chunk), size);
7883     }
7884     // A new free range is going to be starting.  The current
7885     // free range has not been added to the free lists yet or
7886     // was removed so add it back.
7887     // If the current free range was coalesced, then the death
7888     // of the free range was recorded.  Record a birth now.
7889     if (lastFreeRangeCoalesced()) {
7890       _sp->coalBirth(size);
7891     }
7892     _sp->addChunkAndRepairOffsetTable(chunk, size,
7893             lastFreeRangeCoalesced());
7894   } else if (CMSTraceSweeper) {
7895     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7896   }
7897   set_inFreeRange(false);
7898   set_freeRangeInFreeLists(false);
7899 }
7900 
7901 // We take a break if we've been at this for a while,
7902 // so as to avoid monopolizing the locks involved.
7903 void SweepClosure::do_yield_work(HeapWord* addr) {
7904   // Return current free chunk being used for coalescing (if any)
7905   // to the appropriate freelist.  After yielding, the next
7906   // free block encountered will start a coalescing range of
7907   // free blocks.  If the next free block is adjacent to the
7908   // chunk just flushed, they will need to wait for the next
7909   // sweep to be coalesced.
7910   if (inFreeRange()) {
7911     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7912   }
7913 
7914   // First give up the locks, then yield, then re-lock.
7915   // We should probably use a constructor/destructor idiom to
7916   // do this unlock/lock or modify the MutexUnlocker class to
7917   // serve our purpose. XXX
7918   assert_lock_strong(_bitMap->lock());
7919   assert_lock_strong(_freelistLock);
7920   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7921          "CMS thread should hold CMS token");
7922   _bitMap->lock()->unlock();
7923   _freelistLock->unlock();
7924   ConcurrentMarkSweepThread::desynchronize(true);
7925   _collector->stopTimer();
7926   if (PrintCMSStatistics != 0) {
7927     _collector->incrementYields();
7928   }
7929 
7930   // See the comment in coordinator_yield()
7931   for (unsigned i = 0; i < CMSYieldSleepCount &&
7932                        ConcurrentMarkSweepThread::should_yield() &&
7933                        !CMSCollector::foregroundGCIsActive(); ++i) {
7934     os::sleep(Thread::current(), 1, false);
7935   }
7936 
7937   ConcurrentMarkSweepThread::synchronize(true);
7938   _freelistLock->lock();
7939   _bitMap->lock()->lock_without_safepoint_check();
7940   _collector->startTimer();
7941 }
7942 
7943 #ifndef PRODUCT
7944 // This is actually very useful in a product build if it can
7945 // be called from the debugger.  Compile it into the product
7946 // as needed.
7947 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7948   return debug_cms_space->verify_chunk_in_free_list(fc);
7949 }
7950 #endif
7951 
7952 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7953   if (CMSTraceSweeper) {
7954     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7955                            p2i(fc), fc->size());
7956   }
7957 }
7958 
7959 // CMSIsAliveClosure
7960 bool CMSIsAliveClosure::do_object_b(oop obj) {
7961   HeapWord* addr = (HeapWord*)obj;
7962   return addr != NULL &&
7963          (!_span.contains(addr) || _bit_map->isMarked(addr));
7964 }
7965 
7966 
7967 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7968                       MemRegion span,
7969                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7970                       bool cpc):
7971   _collector(collector),
7972   _span(span),
7973   _bit_map(bit_map),
7974   _mark_stack(mark_stack),
7975   _concurrent_precleaning(cpc) {
7976   assert(!_span.is_empty(), "Empty span could spell trouble");
7977 }
7978 
7979 
7980 // CMSKeepAliveClosure: the serial version
7981 void CMSKeepAliveClosure::do_oop(oop obj) {
7982   HeapWord* addr = (HeapWord*)obj;
7983   if (_span.contains(addr) &&
7984       !_bit_map->isMarked(addr)) {
7985     _bit_map->mark(addr);
7986     bool simulate_overflow = false;
7987     NOT_PRODUCT(
7988       if (CMSMarkStackOverflowALot &&
7989           _collector->simulate_overflow()) {
7990         // simulate a stack overflow
7991         simulate_overflow = true;
7992       }
7993     )
7994     if (simulate_overflow || !_mark_stack->push(obj)) {
7995       if (_concurrent_precleaning) {
7996         // We dirty the overflown object and let the remark
7997         // phase deal with it.
7998         assert(_collector->overflow_list_is_empty(), "Error");
7999         // In the case of object arrays, we need to dirty all of
8000         // the cards that the object spans. No locking or atomics
8001         // are needed since no one else can be mutating the mod union
8002         // table.
8003         if (obj->is_objArray()) {
8004           size_t sz = obj->size();
8005           HeapWord* end_card_addr =
8006             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8007           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8008           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8009           _collector->_modUnionTable.mark_range(redirty_range);
8010         } else {
8011           _collector->_modUnionTable.mark(addr);
8012         }
8013         _collector->_ser_kac_preclean_ovflw++;
8014       } else {
8015         _collector->push_on_overflow_list(obj);
8016         _collector->_ser_kac_ovflw++;
8017       }
8018     }
8019   }
8020 }
8021 
8022 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8023 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8024 
8025 // CMSParKeepAliveClosure: a parallel version of the above.
8026 // The work queues are private to each closure (thread),
8027 // but (may be) available for stealing by other threads.
8028 void CMSParKeepAliveClosure::do_oop(oop obj) {
8029   HeapWord* addr = (HeapWord*)obj;
8030   if (_span.contains(addr) &&
8031       !_bit_map->isMarked(addr)) {
8032     // In general, during recursive tracing, several threads
8033     // may be concurrently getting here; the first one to
8034     // "tag" it, claims it.
8035     if (_bit_map->par_mark(addr)) {
8036       bool res = _work_queue->push(obj);
8037       assert(res, "Low water mark should be much less than capacity");
8038       // Do a recursive trim in the hope that this will keep
8039       // stack usage lower, but leave some oops for potential stealers
8040       trim_queue(_low_water_mark);
8041     } // Else, another thread got there first
8042   }
8043 }
8044 
8045 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8046 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8047 
8048 void CMSParKeepAliveClosure::trim_queue(uint max) {
8049   while (_work_queue->size() > max) {
8050     oop new_oop;
8051     if (_work_queue->pop_local(new_oop)) {
8052       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8053       assert(_bit_map->isMarked((HeapWord*)new_oop),
8054              "no white objects on this stack!");
8055       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8056       // iterate over the oops in this oop, marking and pushing
8057       // the ones in CMS heap (i.e. in _span).
8058       new_oop->oop_iterate(&_mark_and_push);
8059     }
8060   }
8061 }
8062 
8063 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8064                                 CMSCollector* collector,
8065                                 MemRegion span, CMSBitMap* bit_map,
8066                                 OopTaskQueue* work_queue):
8067   _collector(collector),
8068   _span(span),
8069   _bit_map(bit_map),
8070   _work_queue(work_queue) { }
8071 
8072 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8073   HeapWord* addr = (HeapWord*)obj;
8074   if (_span.contains(addr) &&
8075       !_bit_map->isMarked(addr)) {
8076     if (_bit_map->par_mark(addr)) {
8077       bool simulate_overflow = false;
8078       NOT_PRODUCT(
8079         if (CMSMarkStackOverflowALot &&
8080             _collector->par_simulate_overflow()) {
8081           // simulate a stack overflow
8082           simulate_overflow = true;
8083         }
8084       )
8085       if (simulate_overflow || !_work_queue->push(obj)) {
8086         _collector->par_push_on_overflow_list(obj);
8087         _collector->_par_kac_ovflw++;
8088       }
8089     } // Else another thread got there already
8090   }
8091 }
8092 
8093 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8094 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8095 
8096 //////////////////////////////////////////////////////////////////
8097 //  CMSExpansionCause                /////////////////////////////
8098 //////////////////////////////////////////////////////////////////
8099 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8100   switch (cause) {
8101     case _no_expansion:
8102       return "No expansion";
8103     case _satisfy_free_ratio:
8104       return "Free ratio";
8105     case _satisfy_promotion:
8106       return "Satisfy promotion";
8107     case _satisfy_allocation:
8108       return "allocation";
8109     case _allocate_par_lab:
8110       return "Par LAB";
8111     case _allocate_par_spooling_space:
8112       return "Par Spooling Space";
8113     case _adaptive_size_policy:
8114       return "Ergonomics";
8115     default:
8116       return "unknown";
8117   }
8118 }
8119 
8120 void CMSDrainMarkingStackClosure::do_void() {
8121   // the max number to take from overflow list at a time
8122   const size_t num = _mark_stack->capacity()/4;
8123   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8124          "Overflow list should be NULL during concurrent phases");
8125   while (!_mark_stack->isEmpty() ||
8126          // if stack is empty, check the overflow list
8127          _collector->take_from_overflow_list(num, _mark_stack)) {
8128     oop obj = _mark_stack->pop();
8129     HeapWord* addr = (HeapWord*)obj;
8130     assert(_span.contains(addr), "Should be within span");
8131     assert(_bit_map->isMarked(addr), "Should be marked");
8132     assert(obj->is_oop(), "Should be an oop");
8133     obj->oop_iterate(_keep_alive);
8134   }
8135 }
8136 
8137 void CMSParDrainMarkingStackClosure::do_void() {
8138   // drain queue
8139   trim_queue(0);
8140 }
8141 
8142 // Trim our work_queue so its length is below max at return
8143 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8144   while (_work_queue->size() > max) {
8145     oop new_oop;
8146     if (_work_queue->pop_local(new_oop)) {
8147       assert(new_oop->is_oop(), "Expected an oop");
8148       assert(_bit_map->isMarked((HeapWord*)new_oop),
8149              "no white objects on this stack!");
8150       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8151       // iterate over the oops in this oop, marking and pushing
8152       // the ones in CMS heap (i.e. in _span).
8153       new_oop->oop_iterate(&_mark_and_push);
8154     }
8155   }
8156 }
8157 
8158 ////////////////////////////////////////////////////////////////////
8159 // Support for Marking Stack Overflow list handling and related code
8160 ////////////////////////////////////////////////////////////////////
8161 // Much of the following code is similar in shape and spirit to the
8162 // code used in ParNewGC. We should try and share that code
8163 // as much as possible in the future.
8164 
8165 #ifndef PRODUCT
8166 // Debugging support for CMSStackOverflowALot
8167 
8168 // It's OK to call this multi-threaded;  the worst thing
8169 // that can happen is that we'll get a bunch of closely
8170 // spaced simulated overflows, but that's OK, in fact
8171 // probably good as it would exercise the overflow code
8172 // under contention.
8173 bool CMSCollector::simulate_overflow() {
8174   if (_overflow_counter-- <= 0) { // just being defensive
8175     _overflow_counter = CMSMarkStackOverflowInterval;
8176     return true;
8177   } else {
8178     return false;
8179   }
8180 }
8181 
8182 bool CMSCollector::par_simulate_overflow() {
8183   return simulate_overflow();
8184 }
8185 #endif
8186 
8187 // Single-threaded
8188 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8189   assert(stack->isEmpty(), "Expected precondition");
8190   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8191   size_t i = num;
8192   oop  cur = _overflow_list;
8193   const markOop proto = markOopDesc::prototype();
8194   NOT_PRODUCT(ssize_t n = 0;)
8195   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8196     next = oop(cur->mark());
8197     cur->set_mark(proto);   // until proven otherwise
8198     assert(cur->is_oop(), "Should be an oop");
8199     bool res = stack->push(cur);
8200     assert(res, "Bit off more than can chew?");
8201     NOT_PRODUCT(n++;)
8202   }
8203   _overflow_list = cur;
8204 #ifndef PRODUCT
8205   assert(_num_par_pushes >= n, "Too many pops?");
8206   _num_par_pushes -=n;
8207 #endif
8208   return !stack->isEmpty();
8209 }
8210 
8211 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8212 // (MT-safe) Get a prefix of at most "num" from the list.
8213 // The overflow list is chained through the mark word of
8214 // each object in the list. We fetch the entire list,
8215 // break off a prefix of the right size and return the
8216 // remainder. If other threads try to take objects from
8217 // the overflow list at that time, they will wait for
8218 // some time to see if data becomes available. If (and
8219 // only if) another thread places one or more object(s)
8220 // on the global list before we have returned the suffix
8221 // to the global list, we will walk down our local list
8222 // to find its end and append the global list to
8223 // our suffix before returning it. This suffix walk can
8224 // prove to be expensive (quadratic in the amount of traffic)
8225 // when there are many objects in the overflow list and
8226 // there is much producer-consumer contention on the list.
8227 // *NOTE*: The overflow list manipulation code here and
8228 // in ParNewGeneration:: are very similar in shape,
8229 // except that in the ParNew case we use the old (from/eden)
8230 // copy of the object to thread the list via its klass word.
8231 // Because of the common code, if you make any changes in
8232 // the code below, please check the ParNew version to see if
8233 // similar changes might be needed.
8234 // CR 6797058 has been filed to consolidate the common code.
8235 bool CMSCollector::par_take_from_overflow_list(size_t num,
8236                                                OopTaskQueue* work_q,
8237                                                int no_of_gc_threads) {
8238   assert(work_q->size() == 0, "First empty local work queue");
8239   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8240   if (_overflow_list == NULL) {
8241     return false;
8242   }
8243   // Grab the entire list; we'll put back a suffix
8244   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8245   Thread* tid = Thread::current();
8246   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8247   // set to ParallelGCThreads.
8248   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8249   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8250   // If the list is busy, we spin for a short while,
8251   // sleeping between attempts to get the list.
8252   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8253     os::sleep(tid, sleep_time_millis, false);
8254     if (_overflow_list == NULL) {
8255       // Nothing left to take
8256       return false;
8257     } else if (_overflow_list != BUSY) {
8258       // Try and grab the prefix
8259       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8260     }
8261   }
8262   // If the list was found to be empty, or we spun long
8263   // enough, we give up and return empty-handed. If we leave
8264   // the list in the BUSY state below, it must be the case that
8265   // some other thread holds the overflow list and will set it
8266   // to a non-BUSY state in the future.
8267   if (prefix == NULL || prefix == BUSY) {
8268      // Nothing to take or waited long enough
8269      if (prefix == NULL) {
8270        // Write back the NULL in case we overwrote it with BUSY above
8271        // and it is still the same value.
8272        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8273      }
8274      return false;
8275   }
8276   assert(prefix != NULL && prefix != BUSY, "Error");
8277   size_t i = num;
8278   oop cur = prefix;
8279   // Walk down the first "num" objects, unless we reach the end.
8280   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8281   if (cur->mark() == NULL) {
8282     // We have "num" or fewer elements in the list, so there
8283     // is nothing to return to the global list.
8284     // Write back the NULL in lieu of the BUSY we wrote
8285     // above, if it is still the same value.
8286     if (_overflow_list == BUSY) {
8287       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8288     }
8289   } else {
8290     // Chop off the suffix and return it to the global list.
8291     assert(cur->mark() != BUSY, "Error");
8292     oop suffix_head = cur->mark(); // suffix will be put back on global list
8293     cur->set_mark(NULL);           // break off suffix
8294     // It's possible that the list is still in the empty(busy) state
8295     // we left it in a short while ago; in that case we may be
8296     // able to place back the suffix without incurring the cost
8297     // of a walk down the list.
8298     oop observed_overflow_list = _overflow_list;
8299     oop cur_overflow_list = observed_overflow_list;
8300     bool attached = false;
8301     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8302       observed_overflow_list =
8303         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8304       if (cur_overflow_list == observed_overflow_list) {
8305         attached = true;
8306         break;
8307       } else cur_overflow_list = observed_overflow_list;
8308     }
8309     if (!attached) {
8310       // Too bad, someone else sneaked in (at least) an element; we'll need
8311       // to do a splice. Find tail of suffix so we can prepend suffix to global
8312       // list.
8313       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8314       oop suffix_tail = cur;
8315       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8316              "Tautology");
8317       observed_overflow_list = _overflow_list;
8318       do {
8319         cur_overflow_list = observed_overflow_list;
8320         if (cur_overflow_list != BUSY) {
8321           // Do the splice ...
8322           suffix_tail->set_mark(markOop(cur_overflow_list));
8323         } else { // cur_overflow_list == BUSY
8324           suffix_tail->set_mark(NULL);
8325         }
8326         // ... and try to place spliced list back on overflow_list ...
8327         observed_overflow_list =
8328           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8329       } while (cur_overflow_list != observed_overflow_list);
8330       // ... until we have succeeded in doing so.
8331     }
8332   }
8333 
8334   // Push the prefix elements on work_q
8335   assert(prefix != NULL, "control point invariant");
8336   const markOop proto = markOopDesc::prototype();
8337   oop next;
8338   NOT_PRODUCT(ssize_t n = 0;)
8339   for (cur = prefix; cur != NULL; cur = next) {
8340     next = oop(cur->mark());
8341     cur->set_mark(proto);   // until proven otherwise
8342     assert(cur->is_oop(), "Should be an oop");
8343     bool res = work_q->push(cur);
8344     assert(res, "Bit off more than we can chew?");
8345     NOT_PRODUCT(n++;)
8346   }
8347 #ifndef PRODUCT
8348   assert(_num_par_pushes >= n, "Too many pops?");
8349   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8350 #endif
8351   return true;
8352 }
8353 
8354 // Single-threaded
8355 void CMSCollector::push_on_overflow_list(oop p) {
8356   NOT_PRODUCT(_num_par_pushes++;)
8357   assert(p->is_oop(), "Not an oop");
8358   preserve_mark_if_necessary(p);
8359   p->set_mark((markOop)_overflow_list);
8360   _overflow_list = p;
8361 }
8362 
8363 // Multi-threaded; use CAS to prepend to overflow list
8364 void CMSCollector::par_push_on_overflow_list(oop p) {
8365   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8366   assert(p->is_oop(), "Not an oop");
8367   par_preserve_mark_if_necessary(p);
8368   oop observed_overflow_list = _overflow_list;
8369   oop cur_overflow_list;
8370   do {
8371     cur_overflow_list = observed_overflow_list;
8372     if (cur_overflow_list != BUSY) {
8373       p->set_mark(markOop(cur_overflow_list));
8374     } else {
8375       p->set_mark(NULL);
8376     }
8377     observed_overflow_list =
8378       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8379   } while (cur_overflow_list != observed_overflow_list);
8380 }
8381 #undef BUSY
8382 
8383 // Single threaded
8384 // General Note on GrowableArray: pushes may silently fail
8385 // because we are (temporarily) out of C-heap for expanding
8386 // the stack. The problem is quite ubiquitous and affects
8387 // a lot of code in the JVM. The prudent thing for GrowableArray
8388 // to do (for now) is to exit with an error. However, that may
8389 // be too draconian in some cases because the caller may be
8390 // able to recover without much harm. For such cases, we
8391 // should probably introduce a "soft_push" method which returns
8392 // an indication of success or failure with the assumption that
8393 // the caller may be able to recover from a failure; code in
8394 // the VM can then be changed, incrementally, to deal with such
8395 // failures where possible, thus, incrementally hardening the VM
8396 // in such low resource situations.
8397 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8398   _preserved_oop_stack.push(p);
8399   _preserved_mark_stack.push(m);
8400   assert(m == p->mark(), "Mark word changed");
8401   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8402          "bijection");
8403 }
8404 
8405 // Single threaded
8406 void CMSCollector::preserve_mark_if_necessary(oop p) {
8407   markOop m = p->mark();
8408   if (m->must_be_preserved(p)) {
8409     preserve_mark_work(p, m);
8410   }
8411 }
8412 
8413 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8414   markOop m = p->mark();
8415   if (m->must_be_preserved(p)) {
8416     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8417     // Even though we read the mark word without holding
8418     // the lock, we are assured that it will not change
8419     // because we "own" this oop, so no other thread can
8420     // be trying to push it on the overflow list; see
8421     // the assertion in preserve_mark_work() that checks
8422     // that m == p->mark().
8423     preserve_mark_work(p, m);
8424   }
8425 }
8426 
8427 // We should be able to do this multi-threaded,
8428 // a chunk of stack being a task (this is
8429 // correct because each oop only ever appears
8430 // once in the overflow list. However, it's
8431 // not very easy to completely overlap this with
8432 // other operations, so will generally not be done
8433 // until all work's been completed. Because we
8434 // expect the preserved oop stack (set) to be small,
8435 // it's probably fine to do this single-threaded.
8436 // We can explore cleverer concurrent/overlapped/parallel
8437 // processing of preserved marks if we feel the
8438 // need for this in the future. Stack overflow should
8439 // be so rare in practice and, when it happens, its
8440 // effect on performance so great that this will
8441 // likely just be in the noise anyway.
8442 void CMSCollector::restore_preserved_marks_if_any() {
8443   assert(SafepointSynchronize::is_at_safepoint(),
8444          "world should be stopped");
8445   assert(Thread::current()->is_ConcurrentGC_thread() ||
8446          Thread::current()->is_VM_thread(),
8447          "should be single-threaded");
8448   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8449          "bijection");
8450 
8451   while (!_preserved_oop_stack.is_empty()) {
8452     oop p = _preserved_oop_stack.pop();
8453     assert(p->is_oop(), "Should be an oop");
8454     assert(_span.contains(p), "oop should be in _span");
8455     assert(p->mark() == markOopDesc::prototype(),
8456            "Set when taken from overflow list");
8457     markOop m = _preserved_mark_stack.pop();
8458     p->set_mark(m);
8459   }
8460   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8461          "stacks were cleared above");
8462 }
8463 
8464 #ifndef PRODUCT
8465 bool CMSCollector::no_preserved_marks() const {
8466   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8467 }
8468 #endif
8469 
8470 // Transfer some number of overflown objects to usual marking
8471 // stack. Return true if some objects were transferred.
8472 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8473   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8474                     (size_t)ParGCDesiredObjsFromOverflowList);
8475 
8476   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8477   assert(_collector->overflow_list_is_empty() || res,
8478          "If list is not empty, we should have taken something");
8479   assert(!res || !_mark_stack->isEmpty(),
8480          "If we took something, it should now be on our stack");
8481   return res;
8482 }
8483 
8484 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8485   size_t res = _sp->block_size_no_stall(addr, _collector);
8486   if (_sp->block_is_obj(addr)) {
8487     if (_live_bit_map->isMarked(addr)) {
8488       // It can't have been dead in a previous cycle
8489       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8490     } else {
8491       _dead_bit_map->mark(addr);      // mark the dead object
8492     }
8493   }
8494   // Could be 0, if the block size could not be computed without stalling.
8495   return res;
8496 }
8497 
8498 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8499 
8500   switch (phase) {
8501     case CMSCollector::InitialMarking:
8502       initialize(true  /* fullGC */ ,
8503                  cause /* cause of the GC */,
8504                  true  /* recordGCBeginTime */,
8505                  true  /* recordPreGCUsage */,
8506                  false /* recordPeakUsage */,
8507                  false /* recordPostGCusage */,
8508                  true  /* recordAccumulatedGCTime */,
8509                  false /* recordGCEndTime */,
8510                  false /* countCollection */  );
8511       break;
8512 
8513     case CMSCollector::FinalMarking:
8514       initialize(true  /* fullGC */ ,
8515                  cause /* cause of the GC */,
8516                  false /* recordGCBeginTime */,
8517                  false /* recordPreGCUsage */,
8518                  false /* recordPeakUsage */,
8519                  false /* recordPostGCusage */,
8520                  true  /* recordAccumulatedGCTime */,
8521                  false /* recordGCEndTime */,
8522                  false /* countCollection */  );
8523       break;
8524 
8525     case CMSCollector::Sweeping:
8526       initialize(true  /* fullGC */ ,
8527                  cause /* cause of the GC */,
8528                  false /* recordGCBeginTime */,
8529                  false /* recordPreGCUsage */,
8530                  true  /* recordPeakUsage */,
8531                  true  /* recordPostGCusage */,
8532                  false /* recordAccumulatedGCTime */,
8533                  true  /* recordGCEndTime */,
8534                  true  /* countCollection */  );
8535       break;
8536 
8537     default:
8538       ShouldNotReachHere();
8539   }
8540 }