1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/collectorCounters.hpp"
  28 #include "gc/shared/gcHeapSummary.hpp"
  29 #include "gc/shared/gcLocker.inline.hpp"
  30 #include "gc/shared/gcPolicyCounters.hpp"
  31 #include "gc/shared/gcTimer.hpp"
  32 #include "gc/shared/gcTrace.hpp"
  33 #include "gc/shared/gcTraceTime.hpp"
  34 #include "gc/shared/genCollectedHeap.hpp"
  35 #include "gc/shared/genOopClosures.inline.hpp"
  36 #include "gc/shared/genRemSet.hpp"
  37 #include "gc/shared/generationSpec.hpp"
  38 #include "gc/shared/referencePolicy.hpp"
  39 #include "gc/shared/space.inline.hpp"
  40 #include "gc/shared/spaceDecorator.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "memory/iterator.hpp"
  43 #include "oops/instanceRefKlass.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/prefetch.inline.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 #include "utilities/stack.inline.hpp"
  52 #if INCLUDE_ALL_GCS
  53 #include "gc/cms/parOopClosures.hpp"
  54 #endif
  55 
  56 //
  57 // DefNewGeneration functions.
  58 
  59 // Methods of protected closure types.
  60 
  61 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  62   assert(g->level() == 0, "Optimized for youngest gen.");
  63 }
  64 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  65   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  66 }
  67 
  68 DefNewGeneration::KeepAliveClosure::
  69 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  70   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  71   _rs = (CardTableRS*)rs;
  72 }
  73 
  74 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  75 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  76 
  77 
  78 DefNewGeneration::FastKeepAliveClosure::
  79 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  80   DefNewGeneration::KeepAliveClosure(cl) {
  81   _boundary = g->reserved().end();
  82 }
  83 
  84 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  85 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  86 
  87 DefNewGeneration::EvacuateFollowersClosure::
  88 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  89                          ScanClosure* cur, ScanClosure* older) :
  90   _gch(gch), _level(level),
  91   _scan_cur_or_nonheap(cur), _scan_older(older)
  92 {}
  93 
  94 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  95   do {
  96     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  97                                        _scan_older);
  98   } while (!_gch->no_allocs_since_save_marks(_level));
  99 }
 100 
 101 DefNewGeneration::FastEvacuateFollowersClosure::
 102 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 103                              DefNewGeneration* gen,
 104                              FastScanClosure* cur, FastScanClosure* older) :
 105   _gch(gch), _level(level), _gen(gen),
 106   _scan_cur_or_nonheap(cur), _scan_older(older)
 107 {}
 108 
 109 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 110   do {
 111     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 112                                        _scan_older);
 113   } while (!_gch->no_allocs_since_save_marks(_level));
 114   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 115 }
 116 
 117 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 118     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 119 {
 120   assert(_g->level() == 0, "Optimized for youngest generation");
 121   _boundary = _g->reserved().end();
 122 }
 123 
 124 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 125 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 126 
 127 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 128     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 129 {
 130   assert(_g->level() == 0, "Optimized for youngest generation");
 131   _boundary = _g->reserved().end();
 132 }
 133 
 134 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 135 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 136 
 137 void KlassScanClosure::do_klass(Klass* klass) {
 138 #ifndef PRODUCT
 139   if (TraceScavenge) {
 140     ResourceMark rm;
 141     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 142                            p2i(klass),
 143                            klass->external_name(),
 144                            klass->has_modified_oops() ? "true" : "false");
 145   }
 146 #endif
 147 
 148   // If the klass has not been dirtied we know that there's
 149   // no references into  the young gen and we can skip it.
 150   if (klass->has_modified_oops()) {
 151     if (_accumulate_modified_oops) {
 152       klass->accumulate_modified_oops();
 153     }
 154 
 155     // Clear this state since we're going to scavenge all the metadata.
 156     klass->clear_modified_oops();
 157 
 158     // Tell the closure which Klass is being scanned so that it can be dirtied
 159     // if oops are left pointing into the young gen.
 160     _scavenge_closure->set_scanned_klass(klass);
 161 
 162     klass->oops_do(_scavenge_closure);
 163 
 164     _scavenge_closure->set_scanned_klass(NULL);
 165   }
 166 }
 167 
 168 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 169   _g(g)
 170 {
 171   assert(_g->level() == 0, "Optimized for youngest generation");
 172   _boundary = _g->reserved().end();
 173 }
 174 
 175 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 176 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 177 
 178 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 179 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 180 
 181 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 182                                    KlassRemSet* klass_rem_set)
 183     : _scavenge_closure(scavenge_closure),
 184       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 185 
 186 
 187 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 188                                    size_t initial_size,
 189                                    int level,
 190                                    const char* policy)
 191   : Generation(rs, initial_size, level),
 192     _promo_failure_drain_in_progress(false),
 193     _should_allocate_from_space(false)
 194 {
 195   MemRegion cmr((HeapWord*)_virtual_space.low(),
 196                 (HeapWord*)_virtual_space.high());
 197   GenCollectedHeap* gch = GenCollectedHeap::heap();
 198 
 199   gch->barrier_set()->resize_covered_region(cmr);
 200 
 201   _eden_space = new ContiguousSpace();
 202   _from_space = new ContiguousSpace();
 203   _to_space   = new ContiguousSpace();
 204 
 205   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 206     vm_exit_during_initialization("Could not allocate a new gen space");
 207 
 208   // Compute the maximum eden and survivor space sizes. These sizes
 209   // are computed assuming the entire reserved space is committed.
 210   // These values are exported as performance counters.
 211   uintx alignment = gch->collector_policy()->space_alignment();
 212   uintx size = _virtual_space.reserved_size();
 213   _max_survivor_size = compute_survivor_size(size, alignment);
 214   _max_eden_size = size - (2*_max_survivor_size);
 215 
 216   // allocate the performance counters
 217   GenCollectorPolicy* gcp = (GenCollectorPolicy*)gch->collector_policy();
 218 
 219   // Generation counters -- generation 0, 3 subspaces
 220   _gen_counters = new GenerationCounters("new", 0, 3,
 221       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 222   _gc_counters = new CollectorCounters(policy, 0);
 223 
 224   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 225                                       _gen_counters);
 226   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 227                                       _gen_counters);
 228   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 229                                     _gen_counters);
 230 
 231   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 232   update_counters();
 233   _old_gen = NULL;
 234   _tenuring_threshold = MaxTenuringThreshold;
 235   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 236 
 237   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 238 }
 239 
 240 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 241                                                 bool clear_space,
 242                                                 bool mangle_space) {
 243   uintx alignment =
 244     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 245 
 246   // If the spaces are being cleared (only done at heap initialization
 247   // currently), the survivor spaces need not be empty.
 248   // Otherwise, no care is taken for used areas in the survivor spaces
 249   // so check.
 250   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 251     "Initialization of the survivor spaces assumes these are empty");
 252 
 253   // Compute sizes
 254   uintx size = _virtual_space.committed_size();
 255   uintx survivor_size = compute_survivor_size(size, alignment);
 256   uintx eden_size = size - (2*survivor_size);
 257   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 258 
 259   if (eden_size < minimum_eden_size) {
 260     // May happen due to 64Kb rounding, if so adjust eden size back up
 261     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 262     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 263     uintx unaligned_survivor_size =
 264       align_size_down(maximum_survivor_size, alignment);
 265     survivor_size = MAX2(unaligned_survivor_size, alignment);
 266     eden_size = size - (2*survivor_size);
 267     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 268     assert(eden_size >= minimum_eden_size, "just checking");
 269   }
 270 
 271   char *eden_start = _virtual_space.low();
 272   char *from_start = eden_start + eden_size;
 273   char *to_start   = from_start + survivor_size;
 274   char *to_end     = to_start   + survivor_size;
 275 
 276   assert(to_end == _virtual_space.high(), "just checking");
 277   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 278   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 279   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 280 
 281   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 282   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 283   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 284 
 285   // A minimum eden size implies that there is a part of eden that
 286   // is being used and that affects the initialization of any
 287   // newly formed eden.
 288   bool live_in_eden = minimum_eden_size > 0;
 289 
 290   // If not clearing the spaces, do some checking to verify that
 291   // the space are already mangled.
 292   if (!clear_space) {
 293     // Must check mangling before the spaces are reshaped.  Otherwise,
 294     // the bottom or end of one space may have moved into another
 295     // a failure of the check may not correctly indicate which space
 296     // is not properly mangled.
 297     if (ZapUnusedHeapArea) {
 298       HeapWord* limit = (HeapWord*) _virtual_space.high();
 299       eden()->check_mangled_unused_area(limit);
 300       from()->check_mangled_unused_area(limit);
 301         to()->check_mangled_unused_area(limit);
 302     }
 303   }
 304 
 305   // Reset the spaces for their new regions.
 306   eden()->initialize(edenMR,
 307                      clear_space && !live_in_eden,
 308                      SpaceDecorator::Mangle);
 309   // If clear_space and live_in_eden, we will not have cleared any
 310   // portion of eden above its top. This can cause newly
 311   // expanded space not to be mangled if using ZapUnusedHeapArea.
 312   // We explicitly do such mangling here.
 313   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 314     eden()->mangle_unused_area();
 315   }
 316   from()->initialize(fromMR, clear_space, mangle_space);
 317   to()->initialize(toMR, clear_space, mangle_space);
 318 
 319   // Set next compaction spaces.
 320   eden()->set_next_compaction_space(from());
 321   // The to-space is normally empty before a compaction so need
 322   // not be considered.  The exception is during promotion
 323   // failure handling when to-space can contain live objects.
 324   from()->set_next_compaction_space(NULL);
 325 }
 326 
 327 void DefNewGeneration::swap_spaces() {
 328   ContiguousSpace* s = from();
 329   _from_space        = to();
 330   _to_space          = s;
 331   eden()->set_next_compaction_space(from());
 332   // The to-space is normally empty before a compaction so need
 333   // not be considered.  The exception is during promotion
 334   // failure handling when to-space can contain live objects.
 335   from()->set_next_compaction_space(NULL);
 336 
 337   if (UsePerfData) {
 338     CSpaceCounters* c = _from_counters;
 339     _from_counters = _to_counters;
 340     _to_counters = c;
 341   }
 342 }
 343 
 344 bool DefNewGeneration::expand(size_t bytes) {
 345   MutexLocker x(ExpandHeap_lock);
 346   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 347   bool success = _virtual_space.expand_by(bytes);
 348   if (success && ZapUnusedHeapArea) {
 349     // Mangle newly committed space immediately because it
 350     // can be done here more simply that after the new
 351     // spaces have been computed.
 352     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 353     MemRegion mangle_region(prev_high, new_high);
 354     SpaceMangler::mangle_region(mangle_region);
 355   }
 356 
 357   // Do not attempt an expand-to-the reserve size.  The
 358   // request should properly observe the maximum size of
 359   // the generation so an expand-to-reserve should be
 360   // unnecessary.  Also a second call to expand-to-reserve
 361   // value potentially can cause an undue expansion.
 362   // For example if the first expand fail for unknown reasons,
 363   // but the second succeeds and expands the heap to its maximum
 364   // value.
 365   if (GC_locker::is_active()) {
 366     if (PrintGC && Verbose) {
 367       gclog_or_tty->print_cr("Garbage collection disabled, "
 368         "expanded heap instead");
 369     }
 370   }
 371 
 372   return success;
 373 }
 374 
 375 
 376 void DefNewGeneration::compute_new_size() {
 377   // This is called after a gc that includes the following generation
 378   // (which is required to exist.)  So from-space will normally be empty.
 379   // Note that we check both spaces, since if scavenge failed they revert roles.
 380   // If not we bail out (otherwise we would have to relocate the objects)
 381   if (!from()->is_empty() || !to()->is_empty()) {
 382     return;
 383   }
 384 
 385   int next_level = level() + 1;
 386   GenCollectedHeap* gch = GenCollectedHeap::heap();
 387   assert(next_level == 1, "DefNewGeneration must be a young gen");
 388 
 389   Generation* old_gen = gch->old_gen();
 390   size_t old_size = old_gen->capacity();
 391   size_t new_size_before = _virtual_space.committed_size();
 392   size_t min_new_size = spec()->init_size();
 393   size_t max_new_size = reserved().byte_size();
 394   assert(min_new_size <= new_size_before &&
 395          new_size_before <= max_new_size,
 396          "just checking");
 397   // All space sizes must be multiples of Generation::GenGrain.
 398   size_t alignment = Generation::GenGrain;
 399 
 400   // Compute desired new generation size based on NewRatio and
 401   // NewSizeThreadIncrease
 402   size_t desired_new_size = old_size/NewRatio;
 403   int threads_count = Threads::number_of_non_daemon_threads();
 404   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 405   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 406 
 407   // Adjust new generation size
 408   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 409   assert(desired_new_size <= max_new_size, "just checking");
 410 
 411   bool changed = false;
 412   if (desired_new_size > new_size_before) {
 413     size_t change = desired_new_size - new_size_before;
 414     assert(change % alignment == 0, "just checking");
 415     if (expand(change)) {
 416        changed = true;
 417     }
 418     // If the heap failed to expand to the desired size,
 419     // "changed" will be false.  If the expansion failed
 420     // (and at this point it was expected to succeed),
 421     // ignore the failure (leaving "changed" as false).
 422   }
 423   if (desired_new_size < new_size_before && eden()->is_empty()) {
 424     // bail out of shrinking if objects in eden
 425     size_t change = new_size_before - desired_new_size;
 426     assert(change % alignment == 0, "just checking");
 427     _virtual_space.shrink_by(change);
 428     changed = true;
 429   }
 430   if (changed) {
 431     // The spaces have already been mangled at this point but
 432     // may not have been cleared (set top = bottom) and should be.
 433     // Mangling was done when the heap was being expanded.
 434     compute_space_boundaries(eden()->used(),
 435                              SpaceDecorator::Clear,
 436                              SpaceDecorator::DontMangle);
 437     MemRegion cmr((HeapWord*)_virtual_space.low(),
 438                   (HeapWord*)_virtual_space.high());
 439     gch->barrier_set()->resize_covered_region(cmr);
 440     if (Verbose && PrintGC) {
 441       size_t new_size_after  = _virtual_space.committed_size();
 442       size_t eden_size_after = eden()->capacity();
 443       size_t survivor_size_after = from()->capacity();
 444       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 445         SIZE_FORMAT "K [eden="
 446         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 447         new_size_before/K, new_size_after/K,
 448         eden_size_after/K, survivor_size_after/K);
 449       if (WizardMode) {
 450         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 451           thread_increase_size/K, threads_count);
 452       }
 453       gclog_or_tty->cr();
 454     }
 455   }
 456 }
 457 
 458 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 459   assert(false, "NYI -- are you sure you want to call this?");
 460 }
 461 
 462 
 463 size_t DefNewGeneration::capacity() const {
 464   return eden()->capacity()
 465        + from()->capacity();  // to() is only used during scavenge
 466 }
 467 
 468 
 469 size_t DefNewGeneration::used() const {
 470   return eden()->used()
 471        + from()->used();      // to() is only used during scavenge
 472 }
 473 
 474 
 475 size_t DefNewGeneration::free() const {
 476   return eden()->free()
 477        + from()->free();      // to() is only used during scavenge
 478 }
 479 
 480 size_t DefNewGeneration::max_capacity() const {
 481   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 482   const size_t reserved_bytes = reserved().byte_size();
 483   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 484 }
 485 
 486 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 487   return eden()->free();
 488 }
 489 
 490 size_t DefNewGeneration::capacity_before_gc() const {
 491   return eden()->capacity();
 492 }
 493 
 494 size_t DefNewGeneration::contiguous_available() const {
 495   return eden()->free();
 496 }
 497 
 498 
 499 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 500 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 501 
 502 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 503   eden()->object_iterate(blk);
 504   from()->object_iterate(blk);
 505 }
 506 
 507 
 508 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 509                                      bool usedOnly) {
 510   blk->do_space(eden());
 511   blk->do_space(from());
 512   blk->do_space(to());
 513 }
 514 
 515 // The last collection bailed out, we are running out of heap space,
 516 // so we try to allocate the from-space, too.
 517 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 518   HeapWord* result = NULL;
 519   if (Verbose && PrintGCDetails) {
 520     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 521                         "  will_fail: %s"
 522                         "  heap_lock: %s"
 523                         "  free: " SIZE_FORMAT,
 524                         size,
 525                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 526                           "true" : "false",
 527                         Heap_lock->is_locked() ? "locked" : "unlocked",
 528                         from()->free());
 529   }
 530   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 531     if (Heap_lock->owned_by_self() ||
 532         (SafepointSynchronize::is_at_safepoint() &&
 533          Thread::current()->is_VM_thread())) {
 534       // If the Heap_lock is not locked by this thread, this will be called
 535       // again later with the Heap_lock held.
 536       result = from()->allocate(size);
 537     } else if (PrintGC && Verbose) {
 538       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 539     }
 540   } else if (PrintGC && Verbose) {
 541     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 542   }
 543   if (PrintGC && Verbose) {
 544     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 545   }
 546   return result;
 547 }
 548 
 549 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 550                                                 bool   is_tlab,
 551                                                 bool   parallel) {
 552   // We don't attempt to expand the young generation (but perhaps we should.)
 553   return allocate(size, is_tlab);
 554 }
 555 
 556 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 557   // Set the desired survivor size to half the real survivor space
 558   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 559   _tenuring_threshold =
 560     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 561 }
 562 
 563 void DefNewGeneration::collect(bool   full,
 564                                bool   clear_all_soft_refs,
 565                                size_t size,
 566                                bool   is_tlab) {
 567   assert(full || size > 0, "otherwise we don't want to collect");
 568 
 569   GenCollectedHeap* gch = GenCollectedHeap::heap();
 570 
 571   _gc_timer->register_gc_start();
 572   DefNewTracer gc_tracer;
 573   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 574 
 575   _old_gen = gch->old_gen();
 576 
 577   // If the next generation is too full to accommodate promotion
 578   // from this generation, pass on collection; let the next generation
 579   // do it.
 580   if (!collection_attempt_is_safe()) {
 581     if (Verbose && PrintGCDetails) {
 582       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 583     }
 584     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 585     return;
 586   }
 587   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 588 
 589   init_assuming_no_promotion_failure();
 590 
 591   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 592   // Capture heap used before collection (for printing).
 593   size_t gch_prev_used = gch->used();
 594 
 595   gch->trace_heap_before_gc(&gc_tracer);
 596 
 597   // These can be shared for all code paths
 598   IsAliveClosure is_alive(this);
 599   ScanWeakRefClosure scan_weak_ref(this);
 600 
 601   age_table()->clear();
 602   to()->clear(SpaceDecorator::Mangle);
 603 
 604   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 605 
 606   assert(gch->no_allocs_since_save_marks(0),
 607          "save marks have not been newly set.");
 608 
 609   // Not very pretty.
 610   CollectorPolicy* cp = gch->collector_policy();
 611 
 612   FastScanClosure fsc_with_no_gc_barrier(this, false);
 613   FastScanClosure fsc_with_gc_barrier(this, true);
 614 
 615   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 616                                       gch->rem_set()->klass_rem_set());
 617   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 618                                            &fsc_with_no_gc_barrier,
 619                                            false);
 620 
 621   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 622   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 623                                                   &fsc_with_no_gc_barrier,
 624                                                   &fsc_with_gc_barrier);
 625 
 626   assert(gch->no_allocs_since_save_marks(0),
 627          "save marks have not been newly set.");
 628 
 629   {
 630     // DefNew needs to run with n_threads == 0, to make sure the serial
 631     // version of the card table scanning code is used.
 632     // See: CardTableModRefBS::non_clean_card_iterate_possibly_parallel.
 633     StrongRootsScope srs(0);
 634 
 635     gch->gen_process_roots(&srs,
 636                            _level,
 637                            true,  // Process younger gens, if any,
 638                                   // as strong roots.
 639                            GenCollectedHeap::SO_ScavengeCodeCache,
 640                            GenCollectedHeap::StrongAndWeakRoots,
 641                            &fsc_with_no_gc_barrier,
 642                            &fsc_with_gc_barrier,
 643                            &cld_scan_closure);
 644   }
 645 
 646   // "evacuate followers".
 647   evacuate_followers.do_void();
 648 
 649   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 650   ReferenceProcessor* rp = ref_processor();
 651   rp->setup_policy(clear_all_soft_refs);
 652   const ReferenceProcessorStats& stats =
 653   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 654                                     NULL, _gc_timer, gc_tracer.gc_id());
 655   gc_tracer.report_gc_reference_stats(stats);
 656 
 657   if (!_promotion_failed) {
 658     // Swap the survivor spaces.
 659     eden()->clear(SpaceDecorator::Mangle);
 660     from()->clear(SpaceDecorator::Mangle);
 661     if (ZapUnusedHeapArea) {
 662       // This is now done here because of the piece-meal mangling which
 663       // can check for valid mangling at intermediate points in the
 664       // collection(s).  When a minor collection fails to collect
 665       // sufficient space resizing of the young generation can occur
 666       // an redistribute the spaces in the young generation.  Mangle
 667       // here so that unzapped regions don't get distributed to
 668       // other spaces.
 669       to()->mangle_unused_area();
 670     }
 671     swap_spaces();
 672 
 673     assert(to()->is_empty(), "to space should be empty now");
 674 
 675     adjust_desired_tenuring_threshold();
 676 
 677     // A successful scavenge should restart the GC time limit count which is
 678     // for full GC's.
 679     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 680     size_policy->reset_gc_overhead_limit_count();
 681     assert(!gch->incremental_collection_failed(), "Should be clear");
 682   } else {
 683     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 684     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 685 
 686     remove_forwarding_pointers();
 687     if (PrintGCDetails) {
 688       gclog_or_tty->print(" (promotion failed) ");
 689     }
 690     // Add to-space to the list of space to compact
 691     // when a promotion failure has occurred.  In that
 692     // case there can be live objects in to-space
 693     // as a result of a partial evacuation of eden
 694     // and from-space.
 695     swap_spaces();   // For uniformity wrt ParNewGeneration.
 696     from()->set_next_compaction_space(to());
 697     gch->set_incremental_collection_failed();
 698 
 699     // Inform the next generation that a promotion failure occurred.
 700     _old_gen->promotion_failure_occurred();
 701     gc_tracer.report_promotion_failed(_promotion_failed_info);
 702 
 703     // Reset the PromotionFailureALot counters.
 704     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 705   }
 706   if (PrintGC && !PrintGCDetails) {
 707     gch->print_heap_change(gch_prev_used);
 708   }
 709   // set new iteration safe limit for the survivor spaces
 710   from()->set_concurrent_iteration_safe_limit(from()->top());
 711   to()->set_concurrent_iteration_safe_limit(to()->top());
 712 
 713   // We need to use a monotonically non-decreasing time in ms
 714   // or we will see time-warp warnings and os::javaTimeMillis()
 715   // does not guarantee monotonicity.
 716   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 717   update_time_of_last_gc(now);
 718 
 719   gch->trace_heap_after_gc(&gc_tracer);
 720   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 721 
 722   _gc_timer->register_gc_end();
 723 
 724   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 725 }
 726 
 727 class RemoveForwardPointerClosure: public ObjectClosure {
 728 public:
 729   void do_object(oop obj) {
 730     obj->init_mark();
 731   }
 732 };
 733 
 734 void DefNewGeneration::init_assuming_no_promotion_failure() {
 735   _promotion_failed = false;
 736   _promotion_failed_info.reset();
 737   from()->set_next_compaction_space(NULL);
 738 }
 739 
 740 void DefNewGeneration::remove_forwarding_pointers() {
 741   RemoveForwardPointerClosure rspc;
 742   eden()->object_iterate(&rspc);
 743   from()->object_iterate(&rspc);
 744 
 745   // Now restore saved marks, if any.
 746   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 747          "should be the same");
 748   while (!_objs_with_preserved_marks.is_empty()) {
 749     oop obj   = _objs_with_preserved_marks.pop();
 750     markOop m = _preserved_marks_of_objs.pop();
 751     obj->set_mark(m);
 752   }
 753   _objs_with_preserved_marks.clear(true);
 754   _preserved_marks_of_objs.clear(true);
 755 }
 756 
 757 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 758   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 759          "Oversaving!");
 760   _objs_with_preserved_marks.push(obj);
 761   _preserved_marks_of_objs.push(m);
 762 }
 763 
 764 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 765   if (m->must_be_preserved_for_promotion_failure(obj)) {
 766     preserve_mark(obj, m);
 767   }
 768 }
 769 
 770 void DefNewGeneration::handle_promotion_failure(oop old) {
 771   if (PrintPromotionFailure && !_promotion_failed) {
 772     gclog_or_tty->print(" (promotion failure size = %d) ",
 773                         old->size());
 774   }
 775   _promotion_failed = true;
 776   _promotion_failed_info.register_copy_failure(old->size());
 777   preserve_mark_if_necessary(old, old->mark());
 778   // forward to self
 779   old->forward_to(old);
 780 
 781   _promo_failure_scan_stack.push(old);
 782 
 783   if (!_promo_failure_drain_in_progress) {
 784     // prevent recursion in copy_to_survivor_space()
 785     _promo_failure_drain_in_progress = true;
 786     drain_promo_failure_scan_stack();
 787     _promo_failure_drain_in_progress = false;
 788   }
 789 }
 790 
 791 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 792   assert(is_in_reserved(old) && !old->is_forwarded(),
 793          "shouldn't be scavenging this oop");
 794   size_t s = old->size();
 795   oop obj = NULL;
 796 
 797   // Try allocating obj in to-space (unless too old)
 798   if (old->age() < tenuring_threshold()) {
 799     obj = (oop) to()->allocate_aligned(s);
 800   }
 801 
 802   // Otherwise try allocating obj tenured
 803   if (obj == NULL) {
 804     obj = _old_gen->promote(old, s);
 805     if (obj == NULL) {
 806       handle_promotion_failure(old);
 807       return old;
 808     }
 809   } else {
 810     // Prefetch beyond obj
 811     const intx interval = PrefetchCopyIntervalInBytes;
 812     Prefetch::write(obj, interval);
 813 
 814     // Copy obj
 815     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 816 
 817     // Increment age if obj still in new generation
 818     obj->incr_age();
 819     age_table()->add(obj, s);
 820   }
 821 
 822   // Done, insert forward pointer to obj in this header
 823   old->forward_to(obj);
 824 
 825   return obj;
 826 }
 827 
 828 void DefNewGeneration::drain_promo_failure_scan_stack() {
 829   while (!_promo_failure_scan_stack.is_empty()) {
 830      oop obj = _promo_failure_scan_stack.pop();
 831      obj->oop_iterate(_promo_failure_scan_stack_closure);
 832   }
 833 }
 834 
 835 void DefNewGeneration::save_marks() {
 836   eden()->set_saved_mark();
 837   to()->set_saved_mark();
 838   from()->set_saved_mark();
 839 }
 840 
 841 
 842 void DefNewGeneration::reset_saved_marks() {
 843   eden()->reset_saved_mark();
 844   to()->reset_saved_mark();
 845   from()->reset_saved_mark();
 846 }
 847 
 848 
 849 bool DefNewGeneration::no_allocs_since_save_marks() {
 850   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 851   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 852   return to()->saved_mark_at_top();
 853 }
 854 
 855 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 856                                                                 \
 857 void DefNewGeneration::                                         \
 858 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 859   cl->set_generation(this);                                     \
 860   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 861   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 862   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 863   cl->reset_generation();                                       \
 864   save_marks();                                                 \
 865 }
 866 
 867 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 868 
 869 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 870 
 871 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 872                                          size_t max_alloc_words) {
 873   if (requestor == this || _promotion_failed) return;
 874   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 875 
 876   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 877   if (to_space->top() > to_space->bottom()) {
 878     trace("to_space not empty when contribute_scratch called");
 879   }
 880   */
 881 
 882   ContiguousSpace* to_space = to();
 883   assert(to_space->end() >= to_space->top(), "pointers out of order");
 884   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 885   if (free_words >= MinFreeScratchWords) {
 886     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 887     sb->num_words = free_words;
 888     sb->next = list;
 889     list = sb;
 890   }
 891 }
 892 
 893 void DefNewGeneration::reset_scratch() {
 894   // If contributing scratch in to_space, mangle all of
 895   // to_space if ZapUnusedHeapArea.  This is needed because
 896   // top is not maintained while using to-space as scratch.
 897   if (ZapUnusedHeapArea) {
 898     to()->mangle_unused_area_complete();
 899   }
 900 }
 901 
 902 bool DefNewGeneration::collection_attempt_is_safe() {
 903   if (!to()->is_empty()) {
 904     if (Verbose && PrintGCDetails) {
 905       gclog_or_tty->print(" :: to is not empty :: ");
 906     }
 907     return false;
 908   }
 909   if (_old_gen == NULL) {
 910     GenCollectedHeap* gch = GenCollectedHeap::heap();
 911     _old_gen = gch->old_gen();
 912   }
 913   return _old_gen->promotion_attempt_is_safe(used());
 914 }
 915 
 916 void DefNewGeneration::gc_epilogue(bool full) {
 917   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 918 
 919   assert(!GC_locker::is_active(), "We should not be executing here");
 920   // Check if the heap is approaching full after a collection has
 921   // been done.  Generally the young generation is empty at
 922   // a minimum at the end of a collection.  If it is not, then
 923   // the heap is approaching full.
 924   GenCollectedHeap* gch = GenCollectedHeap::heap();
 925   if (full) {
 926     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 927     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 928       if (Verbose && PrintGCDetails) {
 929         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 930                             GCCause::to_string(gch->gc_cause()));
 931       }
 932       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 933       set_should_allocate_from_space(); // we seem to be running out of space
 934     } else {
 935       if (Verbose && PrintGCDetails) {
 936         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 937                             GCCause::to_string(gch->gc_cause()));
 938       }
 939       gch->clear_incremental_collection_failed(); // We just did a full collection
 940       clear_should_allocate_from_space(); // if set
 941     }
 942   } else {
 943 #ifdef ASSERT
 944     // It is possible that incremental_collection_failed() == true
 945     // here, because an attempted scavenge did not succeed. The policy
 946     // is normally expected to cause a full collection which should
 947     // clear that condition, so we should not be here twice in a row
 948     // with incremental_collection_failed() == true without having done
 949     // a full collection in between.
 950     if (!seen_incremental_collection_failed &&
 951         gch->incremental_collection_failed()) {
 952       if (Verbose && PrintGCDetails) {
 953         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 954                             GCCause::to_string(gch->gc_cause()));
 955       }
 956       seen_incremental_collection_failed = true;
 957     } else if (seen_incremental_collection_failed) {
 958       if (Verbose && PrintGCDetails) {
 959         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 960                             GCCause::to_string(gch->gc_cause()));
 961       }
 962       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 963              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 964              !gch->incremental_collection_failed(),
 965              "Twice in a row");
 966       seen_incremental_collection_failed = false;
 967     }
 968 #endif // ASSERT
 969   }
 970 
 971   if (ZapUnusedHeapArea) {
 972     eden()->check_mangled_unused_area_complete();
 973     from()->check_mangled_unused_area_complete();
 974     to()->check_mangled_unused_area_complete();
 975   }
 976 
 977   if (!CleanChunkPoolAsync) {
 978     Chunk::clean_chunk_pool();
 979   }
 980 
 981   // update the generation and space performance counters
 982   update_counters();
 983   gch->collector_policy()->counters()->update_counters();
 984 }
 985 
 986 void DefNewGeneration::record_spaces_top() {
 987   assert(ZapUnusedHeapArea, "Not mangling unused space");
 988   eden()->set_top_for_allocations();
 989   to()->set_top_for_allocations();
 990   from()->set_top_for_allocations();
 991 }
 992 
 993 void DefNewGeneration::ref_processor_init() {
 994   Generation::ref_processor_init();
 995 }
 996 
 997 
 998 void DefNewGeneration::update_counters() {
 999   if (UsePerfData) {
1000     _eden_counters->update_all();
1001     _from_counters->update_all();
1002     _to_counters->update_all();
1003     _gen_counters->update_all();
1004   }
1005 }
1006 
1007 void DefNewGeneration::verify() {
1008   eden()->verify();
1009   from()->verify();
1010     to()->verify();
1011 }
1012 
1013 void DefNewGeneration::print_on(outputStream* st) const {
1014   Generation::print_on(st);
1015   st->print("  eden");
1016   eden()->print_on(st);
1017   st->print("  from");
1018   from()->print_on(st);
1019   st->print("  to  ");
1020   to()->print_on(st);
1021 }
1022 
1023 
1024 const char* DefNewGeneration::name() const {
1025   return "def new generation";
1026 }
1027 
1028 // Moved from inline file as they are not called inline
1029 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1030   return eden();
1031 }
1032 
1033 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1034   // This is the slow-path allocation for the DefNewGeneration.
1035   // Most allocations are fast-path in compiled code.
1036   // We try to allocate from the eden.  If that works, we are happy.
1037   // Note that since DefNewGeneration supports lock-free allocation, we
1038   // have to use it here, as well.
1039   HeapWord* result = eden()->par_allocate(word_size);
1040   if (result != NULL) {
1041     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1042       _old_gen->sample_eden_chunk();
1043     }
1044   } else {
1045     // If the eden is full and the last collection bailed out, we are running
1046     // out of heap space, and we try to allocate the from-space, too.
1047     // allocate_from_space can't be inlined because that would introduce a
1048     // circular dependency at compile time.
1049     result = allocate_from_space(word_size);
1050   }
1051   return result;
1052 }
1053 
1054 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1055                                          bool is_tlab) {
1056   HeapWord* res = eden()->par_allocate(word_size);
1057   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1058     _old_gen->sample_eden_chunk();
1059   }
1060   return res;
1061 }
1062 
1063 size_t DefNewGeneration::tlab_capacity() const {
1064   return eden()->capacity();
1065 }
1066 
1067 size_t DefNewGeneration::tlab_used() const {
1068   return eden()->used();
1069 }
1070 
1071 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1072   return unsafe_max_alloc_nogc();
1073 }