1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/vm_operations_g1.hpp"
  53 #include "gc/shared/gcHeapSummary.hpp"
  54 #include "gc/shared/gcLocker.inline.hpp"
  55 #include "gc/shared/gcTimer.hpp"
  56 #include "gc/shared/gcTrace.hpp"
  57 #include "gc/shared/gcTraceTime.hpp"
  58 #include "gc/shared/generationSpec.hpp"
  59 #include "gc/shared/isGCActiveMark.hpp"
  60 #include "gc/shared/referenceProcessor.hpp"
  61 #include "gc/shared/taskqueue.inline.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/iterator.hpp"
  64 #include "oops/oop.inline.hpp"
  65 #include "runtime/atomic.inline.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "utilities/globalDefinitions.hpp"
  69 #include "utilities/stack.inline.hpp"
  70 
  71 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  72 
  73 // turn it on so that the contents of the young list (scan-only /
  74 // to-be-collected) are printed at "strategic" points before / during
  75 // / after the collection --- this is useful for debugging
  76 #define YOUNG_LIST_VERBOSE 0
  77 // CURRENT STATUS
  78 // This file is under construction.  Search for "FIXME".
  79 
  80 // INVARIANTS/NOTES
  81 //
  82 // All allocation activity covered by the G1CollectedHeap interface is
  83 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  84 // and allocate_new_tlab, which are the "entry" points to the
  85 // allocation code from the rest of the JVM.  (Note that this does not
  86 // apply to TLAB allocation, which is not part of this interface: it
  87 // is done by clients of this interface.)
  88 
  89 // Local to this file.
  90 
  91 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  92   bool _concurrent;
  93 public:
  94   RefineCardTableEntryClosure() : _concurrent(true) { }
  95 
  96   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  97     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  98     // This path is executed by the concurrent refine or mutator threads,
  99     // concurrently, and so we do not care if card_ptr contains references
 100     // that point into the collection set.
 101     assert(!oops_into_cset, "should be");
 102 
 103     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 104       // Caller will actually yield.
 105       return false;
 106     }
 107     // Otherwise, we finished successfully; return true.
 108     return true;
 109   }
 110 
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 116  private:
 117   size_t _num_processed;
 118 
 119  public:
 120   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 121 
 122   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 123     *card_ptr = CardTableModRefBS::dirty_card_val();
 124     _num_processed++;
 125     return true;
 126   }
 127 
 128   size_t num_processed() const { return _num_processed; }
 129 };
 130 
 131 YoungList::YoungList(G1CollectedHeap* g1h) :
 132     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 133     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 134   guarantee(check_list_empty(false), "just making sure...");
 135 }
 136 
 137 void YoungList::push_region(HeapRegion *hr) {
 138   assert(!hr->is_young(), "should not already be young");
 139   assert(hr->get_next_young_region() == NULL, "cause it should!");
 140 
 141   hr->set_next_young_region(_head);
 142   _head = hr;
 143 
 144   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 145   ++_length;
 146 }
 147 
 148 void YoungList::add_survivor_region(HeapRegion* hr) {
 149   assert(hr->is_survivor(), "should be flagged as survivor region");
 150   assert(hr->get_next_young_region() == NULL, "cause it should!");
 151 
 152   hr->set_next_young_region(_survivor_head);
 153   if (_survivor_head == NULL) {
 154     _survivor_tail = hr;
 155   }
 156   _survivor_head = hr;
 157   ++_survivor_length;
 158 }
 159 
 160 void YoungList::empty_list(HeapRegion* list) {
 161   while (list != NULL) {
 162     HeapRegion* next = list->get_next_young_region();
 163     list->set_next_young_region(NULL);
 164     list->uninstall_surv_rate_group();
 165     // This is called before a Full GC and all the non-empty /
 166     // non-humongous regions at the end of the Full GC will end up as
 167     // old anyway.
 168     list->set_old();
 169     list = next;
 170   }
 171 }
 172 
 173 void YoungList::empty_list() {
 174   assert(check_list_well_formed(), "young list should be well formed");
 175 
 176   empty_list(_head);
 177   _head = NULL;
 178   _length = 0;
 179 
 180   empty_list(_survivor_head);
 181   _survivor_head = NULL;
 182   _survivor_tail = NULL;
 183   _survivor_length = 0;
 184 
 185   _last_sampled_rs_lengths = 0;
 186 
 187   assert(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 bool YoungList::check_list_well_formed() {
 191   bool ret = true;
 192 
 193   uint length = 0;
 194   HeapRegion* curr = _head;
 195   HeapRegion* last = NULL;
 196   while (curr != NULL) {
 197     if (!curr->is_young()) {
 198       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 199                              "incorrectly tagged (y: %d, surv: %d)",
 200                              p2i(curr->bottom()), p2i(curr->end()),
 201                              curr->is_young(), curr->is_survivor());
 202       ret = false;
 203     }
 204     ++length;
 205     last = curr;
 206     curr = curr->get_next_young_region();
 207   }
 208   ret = ret && (length == _length);
 209 
 210   if (!ret) {
 211     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 212     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 213                            length, _length);
 214   }
 215 
 216   return ret;
 217 }
 218 
 219 bool YoungList::check_list_empty(bool check_sample) {
 220   bool ret = true;
 221 
 222   if (_length != 0) {
 223     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 224                   _length);
 225     ret = false;
 226   }
 227   if (check_sample && _last_sampled_rs_lengths != 0) {
 228     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 229     ret = false;
 230   }
 231   if (_head != NULL) {
 232     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 233     ret = false;
 234   }
 235   if (!ret) {
 236     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 237   }
 238 
 239   return ret;
 240 }
 241 
 242 void
 243 YoungList::rs_length_sampling_init() {
 244   _sampled_rs_lengths = 0;
 245   _curr               = _head;
 246 }
 247 
 248 bool
 249 YoungList::rs_length_sampling_more() {
 250   return _curr != NULL;
 251 }
 252 
 253 void
 254 YoungList::rs_length_sampling_next() {
 255   assert( _curr != NULL, "invariant" );
 256   size_t rs_length = _curr->rem_set()->occupied();
 257 
 258   _sampled_rs_lengths += rs_length;
 259 
 260   // The current region may not yet have been added to the
 261   // incremental collection set (it gets added when it is
 262   // retired as the current allocation region).
 263   if (_curr->in_collection_set()) {
 264     // Update the collection set policy information for this region
 265     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 266   }
 267 
 268   _curr = _curr->get_next_young_region();
 269   if (_curr == NULL) {
 270     _last_sampled_rs_lengths = _sampled_rs_lengths;
 271     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 272   }
 273 }
 274 
 275 void
 276 YoungList::reset_auxilary_lists() {
 277   guarantee( is_empty(), "young list should be empty" );
 278   assert(check_list_well_formed(), "young list should be well formed");
 279 
 280   // Add survivor regions to SurvRateGroup.
 281   _g1h->g1_policy()->note_start_adding_survivor_regions();
 282   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 283 
 284   int young_index_in_cset = 0;
 285   for (HeapRegion* curr = _survivor_head;
 286        curr != NULL;
 287        curr = curr->get_next_young_region()) {
 288     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 289 
 290     // The region is a non-empty survivor so let's add it to
 291     // the incremental collection set for the next evacuation
 292     // pause.
 293     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 294     young_index_in_cset += 1;
 295   }
 296   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 297   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 298 
 299   _head   = _survivor_head;
 300   _length = _survivor_length;
 301   if (_survivor_head != NULL) {
 302     assert(_survivor_tail != NULL, "cause it shouldn't be");
 303     assert(_survivor_length > 0, "invariant");
 304     _survivor_tail->set_next_young_region(NULL);
 305   }
 306 
 307   // Don't clear the survivor list handles until the start of
 308   // the next evacuation pause - we need it in order to re-tag
 309   // the survivor regions from this evacuation pause as 'young'
 310   // at the start of the next.
 311 
 312   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 313 
 314   assert(check_list_well_formed(), "young list should be well formed");
 315 }
 316 
 317 void YoungList::print() {
 318   HeapRegion* lists[] = {_head,   _survivor_head};
 319   const char* names[] = {"YOUNG", "SURVIVOR"};
 320 
 321   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 322     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 323     HeapRegion *curr = lists[list];
 324     if (curr == NULL)
 325       gclog_or_tty->print_cr("  empty");
 326     while (curr != NULL) {
 327       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 328                              HR_FORMAT_PARAMS(curr),
 329                              p2i(curr->prev_top_at_mark_start()),
 330                              p2i(curr->next_top_at_mark_start()),
 331                              curr->age_in_surv_rate_group_cond());
 332       curr = curr->get_next_young_region();
 333     }
 334   }
 335 
 336   gclog_or_tty->cr();
 337 }
 338 
 339 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 340   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 341 }
 342 
 343 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 344   // The from card cache is not the memory that is actually committed. So we cannot
 345   // take advantage of the zero_filled parameter.
 346   reset_from_card_cache(start_idx, num_regions);
 347 }
 348 
 349 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 350 {
 351   // Claim the right to put the region on the dirty cards region list
 352   // by installing a self pointer.
 353   HeapRegion* next = hr->get_next_dirty_cards_region();
 354   if (next == NULL) {
 355     HeapRegion* res = (HeapRegion*)
 356       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 357                           NULL);
 358     if (res == NULL) {
 359       HeapRegion* head;
 360       do {
 361         // Put the region to the dirty cards region list.
 362         head = _dirty_cards_region_list;
 363         next = (HeapRegion*)
 364           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 365         if (next == head) {
 366           assert(hr->get_next_dirty_cards_region() == hr,
 367                  "hr->get_next_dirty_cards_region() != hr");
 368           if (next == NULL) {
 369             // The last region in the list points to itself.
 370             hr->set_next_dirty_cards_region(hr);
 371           } else {
 372             hr->set_next_dirty_cards_region(next);
 373           }
 374         }
 375       } while (next != head);
 376     }
 377   }
 378 }
 379 
 380 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 381 {
 382   HeapRegion* head;
 383   HeapRegion* hr;
 384   do {
 385     head = _dirty_cards_region_list;
 386     if (head == NULL) {
 387       return NULL;
 388     }
 389     HeapRegion* new_head = head->get_next_dirty_cards_region();
 390     if (head == new_head) {
 391       // The last region.
 392       new_head = NULL;
 393     }
 394     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 395                                           head);
 396   } while (hr != head);
 397   assert(hr != NULL, "invariant");
 398   hr->set_next_dirty_cards_region(NULL);
 399   return hr;
 400 }
 401 
 402 // Returns true if the reference points to an object that
 403 // can move in an incremental collection.
 404 bool G1CollectedHeap::is_scavengable(const void* p) {
 405   HeapRegion* hr = heap_region_containing(p);
 406   return !hr->is_humongous();
 407 }
 408 
 409 // Private methods.
 410 
 411 HeapRegion*
 412 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 413   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 414   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 415     if (!_secondary_free_list.is_empty()) {
 416       if (G1ConcRegionFreeingVerbose) {
 417         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 418                                "secondary_free_list has %u entries",
 419                                _secondary_free_list.length());
 420       }
 421       // It looks as if there are free regions available on the
 422       // secondary_free_list. Let's move them to the free_list and try
 423       // again to allocate from it.
 424       append_secondary_free_list();
 425 
 426       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 427              "empty we should have moved at least one entry to the free_list");
 428       HeapRegion* res = _hrm.allocate_free_region(is_old);
 429       if (G1ConcRegionFreeingVerbose) {
 430         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 431                                "allocated "HR_FORMAT" from secondary_free_list",
 432                                HR_FORMAT_PARAMS(res));
 433       }
 434       return res;
 435     }
 436 
 437     // Wait here until we get notified either when (a) there are no
 438     // more free regions coming or (b) some regions have been moved on
 439     // the secondary_free_list.
 440     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 441   }
 442 
 443   if (G1ConcRegionFreeingVerbose) {
 444     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 445                            "could not allocate from secondary_free_list");
 446   }
 447   return NULL;
 448 }
 449 
 450 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 451   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 452          "the only time we use this to allocate a humongous region is "
 453          "when we are allocating a single humongous region");
 454 
 455   HeapRegion* res;
 456   if (G1StressConcRegionFreeing) {
 457     if (!_secondary_free_list.is_empty()) {
 458       if (G1ConcRegionFreeingVerbose) {
 459         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 460                                "forced to look at the secondary_free_list");
 461       }
 462       res = new_region_try_secondary_free_list(is_old);
 463       if (res != NULL) {
 464         return res;
 465       }
 466     }
 467   }
 468 
 469   res = _hrm.allocate_free_region(is_old);
 470 
 471   if (res == NULL) {
 472     if (G1ConcRegionFreeingVerbose) {
 473       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 474                              "res == NULL, trying the secondary_free_list");
 475     }
 476     res = new_region_try_secondary_free_list(is_old);
 477   }
 478   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 479     // Currently, only attempts to allocate GC alloc regions set
 480     // do_expand to true. So, we should only reach here during a
 481     // safepoint. If this assumption changes we might have to
 482     // reconsider the use of _expand_heap_after_alloc_failure.
 483     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 484 
 485     ergo_verbose1(ErgoHeapSizing,
 486                   "attempt heap expansion",
 487                   ergo_format_reason("region allocation request failed")
 488                   ergo_format_byte("allocation request"),
 489                   word_size * HeapWordSize);
 490     if (expand(word_size * HeapWordSize)) {
 491       // Given that expand() succeeded in expanding the heap, and we
 492       // always expand the heap by an amount aligned to the heap
 493       // region size, the free list should in theory not be empty.
 494       // In either case allocate_free_region() will check for NULL.
 495       res = _hrm.allocate_free_region(is_old);
 496     } else {
 497       _expand_heap_after_alloc_failure = false;
 498     }
 499   }
 500   return res;
 501 }
 502 
 503 HeapWord*
 504 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 505                                                            uint num_regions,
 506                                                            size_t word_size,
 507                                                            AllocationContext_t context) {
 508   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 509   assert(is_humongous(word_size), "word_size should be humongous");
 510   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 511 
 512   // Index of last region in the series + 1.
 513   uint last = first + num_regions;
 514 
 515   // We need to initialize the region(s) we just discovered. This is
 516   // a bit tricky given that it can happen concurrently with
 517   // refinement threads refining cards on these regions and
 518   // potentially wanting to refine the BOT as they are scanning
 519   // those cards (this can happen shortly after a cleanup; see CR
 520   // 6991377). So we have to set up the region(s) carefully and in
 521   // a specific order.
 522 
 523   // The word size sum of all the regions we will allocate.
 524   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 525   assert(word_size <= word_size_sum, "sanity");
 526 
 527   // This will be the "starts humongous" region.
 528   HeapRegion* first_hr = region_at(first);
 529   // The header of the new object will be placed at the bottom of
 530   // the first region.
 531   HeapWord* new_obj = first_hr->bottom();
 532   // This will be the new end of the first region in the series that
 533   // should also match the end of the last region in the series.
 534   HeapWord* new_end = new_obj + word_size_sum;
 535   // This will be the new top of the first region that will reflect
 536   // this allocation.
 537   HeapWord* new_top = new_obj + word_size;
 538 
 539   // First, we need to zero the header of the space that we will be
 540   // allocating. When we update top further down, some refinement
 541   // threads might try to scan the region. By zeroing the header we
 542   // ensure that any thread that will try to scan the region will
 543   // come across the zero klass word and bail out.
 544   //
 545   // NOTE: It would not have been correct to have used
 546   // CollectedHeap::fill_with_object() and make the space look like
 547   // an int array. The thread that is doing the allocation will
 548   // later update the object header to a potentially different array
 549   // type and, for a very short period of time, the klass and length
 550   // fields will be inconsistent. This could cause a refinement
 551   // thread to calculate the object size incorrectly.
 552   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 553 
 554   // We will set up the first region as "starts humongous". This
 555   // will also update the BOT covering all the regions to reflect
 556   // that there is a single object that starts at the bottom of the
 557   // first region.
 558   first_hr->set_starts_humongous(new_top, new_end);
 559   first_hr->set_allocation_context(context);
 560   // Then, if there are any, we will set up the "continues
 561   // humongous" regions.
 562   HeapRegion* hr = NULL;
 563   for (uint i = first + 1; i < last; ++i) {
 564     hr = region_at(i);
 565     hr->set_continues_humongous(first_hr);
 566     hr->set_allocation_context(context);
 567   }
 568   // If we have "continues humongous" regions (hr != NULL), then the
 569   // end of the last one should match new_end.
 570   assert(hr == NULL || hr->end() == new_end, "sanity");
 571 
 572   // Up to this point no concurrent thread would have been able to
 573   // do any scanning on any region in this series. All the top
 574   // fields still point to bottom, so the intersection between
 575   // [bottom,top] and [card_start,card_end] will be empty. Before we
 576   // update the top fields, we'll do a storestore to make sure that
 577   // no thread sees the update to top before the zeroing of the
 578   // object header and the BOT initialization.
 579   OrderAccess::storestore();
 580 
 581   // Now that the BOT and the object header have been initialized,
 582   // we can update top of the "starts humongous" region.
 583   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 584          "new_top should be in this region");
 585   first_hr->set_top(new_top);
 586   if (_hr_printer.is_active()) {
 587     HeapWord* bottom = first_hr->bottom();
 588     HeapWord* end = first_hr->orig_end();
 589     if ((first + 1) == last) {
 590       // the series has a single humongous region
 591       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 592     } else {
 593       // the series has more than one humongous regions
 594       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 595     }
 596   }
 597 
 598   // Now, we will update the top fields of the "continues humongous"
 599   // regions. The reason we need to do this is that, otherwise,
 600   // these regions would look empty and this will confuse parts of
 601   // G1. For example, the code that looks for a consecutive number
 602   // of empty regions will consider them empty and try to
 603   // re-allocate them. We can extend is_empty() to also include
 604   // !is_continues_humongous(), but it is easier to just update the top
 605   // fields here. The way we set top for all regions (i.e., top ==
 606   // end for all regions but the last one, top == new_top for the
 607   // last one) is actually used when we will free up the humongous
 608   // region in free_humongous_region().
 609   hr = NULL;
 610   for (uint i = first + 1; i < last; ++i) {
 611     hr = region_at(i);
 612     if ((i + 1) == last) {
 613       // last continues humongous region
 614       assert(hr->bottom() < new_top && new_top <= hr->end(),
 615              "new_top should fall on this region");
 616       hr->set_top(new_top);
 617       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 618     } else {
 619       // not last one
 620       assert(new_top > hr->end(), "new_top should be above this region");
 621       hr->set_top(hr->end());
 622       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 623     }
 624   }
 625   // If we have continues humongous regions (hr != NULL), then the
 626   // end of the last one should match new_end and its top should
 627   // match new_top.
 628   assert(hr == NULL ||
 629          (hr->end() == new_end && hr->top() == new_top), "sanity");
 630   check_bitmaps("Humongous Region Allocation", first_hr);
 631 
 632   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 633   _allocator->increase_used(first_hr->used());
 634   _humongous_set.add(first_hr);
 635 
 636   return new_obj;
 637 }
 638 
 639 // If could fit into free regions w/o expansion, try.
 640 // Otherwise, if can expand, do so.
 641 // Otherwise, if using ex regions might help, try with ex given back.
 642 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 643   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 644 
 645   verify_region_sets_optional();
 646 
 647   uint first = G1_NO_HRM_INDEX;
 648   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 649 
 650   if (obj_regions == 1) {
 651     // Only one region to allocate, try to use a fast path by directly allocating
 652     // from the free lists. Do not try to expand here, we will potentially do that
 653     // later.
 654     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 655     if (hr != NULL) {
 656       first = hr->hrm_index();
 657     }
 658   } else {
 659     // We can't allocate humongous regions spanning more than one region while
 660     // cleanupComplete() is running, since some of the regions we find to be
 661     // empty might not yet be added to the free list. It is not straightforward
 662     // to know in which list they are on so that we can remove them. We only
 663     // need to do this if we need to allocate more than one region to satisfy the
 664     // current humongous allocation request. If we are only allocating one region
 665     // we use the one-region region allocation code (see above), that already
 666     // potentially waits for regions from the secondary free list.
 667     wait_while_free_regions_coming();
 668     append_secondary_free_list_if_not_empty_with_lock();
 669 
 670     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 671     // are lucky enough to find some.
 672     first = _hrm.find_contiguous_only_empty(obj_regions);
 673     if (first != G1_NO_HRM_INDEX) {
 674       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 675     }
 676   }
 677 
 678   if (first == G1_NO_HRM_INDEX) {
 679     // Policy: We could not find enough regions for the humongous object in the
 680     // free list. Look through the heap to find a mix of free and uncommitted regions.
 681     // If so, try expansion.
 682     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 683     if (first != G1_NO_HRM_INDEX) {
 684       // We found something. Make sure these regions are committed, i.e. expand
 685       // the heap. Alternatively we could do a defragmentation GC.
 686       ergo_verbose1(ErgoHeapSizing,
 687                     "attempt heap expansion",
 688                     ergo_format_reason("humongous allocation request failed")
 689                     ergo_format_byte("allocation request"),
 690                     word_size * HeapWordSize);
 691 
 692       _hrm.expand_at(first, obj_regions);
 693       g1_policy()->record_new_heap_size(num_regions());
 694 
 695 #ifdef ASSERT
 696       for (uint i = first; i < first + obj_regions; ++i) {
 697         HeapRegion* hr = region_at(i);
 698         assert(hr->is_free(), "sanity");
 699         assert(hr->is_empty(), "sanity");
 700         assert(is_on_master_free_list(hr), "sanity");
 701       }
 702 #endif
 703       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 704     } else {
 705       // Policy: Potentially trigger a defragmentation GC.
 706     }
 707   }
 708 
 709   HeapWord* result = NULL;
 710   if (first != G1_NO_HRM_INDEX) {
 711     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 712                                                        word_size, context);
 713     assert(result != NULL, "it should always return a valid result");
 714 
 715     // A successful humongous object allocation changes the used space
 716     // information of the old generation so we need to recalculate the
 717     // sizes and update the jstat counters here.
 718     g1mm()->update_sizes();
 719   }
 720 
 721   verify_region_sets_optional();
 722 
 723   return result;
 724 }
 725 
 726 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 727   assert_heap_not_locked_and_not_at_safepoint();
 728   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 729 
 730   uint dummy_gc_count_before;
 731   uint dummy_gclocker_retry_count = 0;
 732   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 733 }
 734 
 735 HeapWord*
 736 G1CollectedHeap::mem_allocate(size_t word_size,
 737                               bool*  gc_overhead_limit_was_exceeded) {
 738   assert_heap_not_locked_and_not_at_safepoint();
 739 
 740   // Loop until the allocation is satisfied, or unsatisfied after GC.
 741   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 742     uint gc_count_before;
 743 
 744     HeapWord* result = NULL;
 745     if (!is_humongous(word_size)) {
 746       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 747     } else {
 748       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 749     }
 750     if (result != NULL) {
 751       return result;
 752     }
 753 
 754     // Create the garbage collection operation...
 755     VM_G1CollectForAllocation op(gc_count_before, word_size);
 756     op.set_allocation_context(AllocationContext::current());
 757 
 758     // ...and get the VM thread to execute it.
 759     VMThread::execute(&op);
 760 
 761     if (op.prologue_succeeded() && op.pause_succeeded()) {
 762       // If the operation was successful we'll return the result even
 763       // if it is NULL. If the allocation attempt failed immediately
 764       // after a Full GC, it's unlikely we'll be able to allocate now.
 765       HeapWord* result = op.result();
 766       if (result != NULL && !is_humongous(word_size)) {
 767         // Allocations that take place on VM operations do not do any
 768         // card dirtying and we have to do it here. We only have to do
 769         // this for non-humongous allocations, though.
 770         dirty_young_block(result, word_size);
 771       }
 772       return result;
 773     } else {
 774       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 775         return NULL;
 776       }
 777       assert(op.result() == NULL,
 778              "the result should be NULL if the VM op did not succeed");
 779     }
 780 
 781     // Give a warning if we seem to be looping forever.
 782     if ((QueuedAllocationWarningCount > 0) &&
 783         (try_count % QueuedAllocationWarningCount == 0)) {
 784       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 785     }
 786   }
 787 
 788   ShouldNotReachHere();
 789   return NULL;
 790 }
 791 
 792 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 793                                                    AllocationContext_t context,
 794                                                    uint* gc_count_before_ret,
 795                                                    uint* gclocker_retry_count_ret) {
 796   // Make sure you read the note in attempt_allocation_humongous().
 797 
 798   assert_heap_not_locked_and_not_at_safepoint();
 799   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 800          "be called for humongous allocation requests");
 801 
 802   // We should only get here after the first-level allocation attempt
 803   // (attempt_allocation()) failed to allocate.
 804 
 805   // We will loop until a) we manage to successfully perform the
 806   // allocation or b) we successfully schedule a collection which
 807   // fails to perform the allocation. b) is the only case when we'll
 808   // return NULL.
 809   HeapWord* result = NULL;
 810   for (int try_count = 1; /* we'll return */; try_count += 1) {
 811     bool should_try_gc;
 812     uint gc_count_before;
 813 
 814     {
 815       MutexLockerEx x(Heap_lock);
 816       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 817                                                                                     false /* bot_updates */);
 818       if (result != NULL) {
 819         return result;
 820       }
 821 
 822       // If we reach here, attempt_allocation_locked() above failed to
 823       // allocate a new region. So the mutator alloc region should be NULL.
 824       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 825 
 826       if (GC_locker::is_active_and_needs_gc()) {
 827         if (g1_policy()->can_expand_young_list()) {
 828           // No need for an ergo verbose message here,
 829           // can_expand_young_list() does this when it returns true.
 830           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 831                                                                                        false /* bot_updates */);
 832           if (result != NULL) {
 833             return result;
 834           }
 835         }
 836         should_try_gc = false;
 837       } else {
 838         // The GCLocker may not be active but the GCLocker initiated
 839         // GC may not yet have been performed (GCLocker::needs_gc()
 840         // returns true). In this case we do not try this GC and
 841         // wait until the GCLocker initiated GC is performed, and
 842         // then retry the allocation.
 843         if (GC_locker::needs_gc()) {
 844           should_try_gc = false;
 845         } else {
 846           // Read the GC count while still holding the Heap_lock.
 847           gc_count_before = total_collections();
 848           should_try_gc = true;
 849         }
 850       }
 851     }
 852 
 853     if (should_try_gc) {
 854       bool succeeded;
 855       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 856                                    GCCause::_g1_inc_collection_pause);
 857       if (result != NULL) {
 858         assert(succeeded, "only way to get back a non-NULL result");
 859         return result;
 860       }
 861 
 862       if (succeeded) {
 863         // If we get here we successfully scheduled a collection which
 864         // failed to allocate. No point in trying to allocate
 865         // further. We'll just return NULL.
 866         MutexLockerEx x(Heap_lock);
 867         *gc_count_before_ret = total_collections();
 868         return NULL;
 869       }
 870     } else {
 871       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 872         MutexLockerEx x(Heap_lock);
 873         *gc_count_before_ret = total_collections();
 874         return NULL;
 875       }
 876       // The GCLocker is either active or the GCLocker initiated
 877       // GC has not yet been performed. Stall until it is and
 878       // then retry the allocation.
 879       GC_locker::stall_until_clear();
 880       (*gclocker_retry_count_ret) += 1;
 881     }
 882 
 883     // We can reach here if we were unsuccessful in scheduling a
 884     // collection (because another thread beat us to it) or if we were
 885     // stalled due to the GC locker. In either can we should retry the
 886     // allocation attempt in case another thread successfully
 887     // performed a collection and reclaimed enough space. We do the
 888     // first attempt (without holding the Heap_lock) here and the
 889     // follow-on attempt will be at the start of the next loop
 890     // iteration (after taking the Heap_lock).
 891     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 892                                                                            false /* bot_updates */);
 893     if (result != NULL) {
 894       return result;
 895     }
 896 
 897     // Give a warning if we seem to be looping forever.
 898     if ((QueuedAllocationWarningCount > 0) &&
 899         (try_count % QueuedAllocationWarningCount == 0)) {
 900       warning("G1CollectedHeap::attempt_allocation_slow() "
 901               "retries %d times", try_count);
 902     }
 903   }
 904 
 905   ShouldNotReachHere();
 906   return NULL;
 907 }
 908 
 909 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 910                                                         uint* gc_count_before_ret,
 911                                                         uint* gclocker_retry_count_ret) {
 912   // The structure of this method has a lot of similarities to
 913   // attempt_allocation_slow(). The reason these two were not merged
 914   // into a single one is that such a method would require several "if
 915   // allocation is not humongous do this, otherwise do that"
 916   // conditional paths which would obscure its flow. In fact, an early
 917   // version of this code did use a unified method which was harder to
 918   // follow and, as a result, it had subtle bugs that were hard to
 919   // track down. So keeping these two methods separate allows each to
 920   // be more readable. It will be good to keep these two in sync as
 921   // much as possible.
 922 
 923   assert_heap_not_locked_and_not_at_safepoint();
 924   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 925          "should only be called for humongous allocations");
 926 
 927   // Humongous objects can exhaust the heap quickly, so we should check if we
 928   // need to start a marking cycle at each humongous object allocation. We do
 929   // the check before we do the actual allocation. The reason for doing it
 930   // before the allocation is that we avoid having to keep track of the newly
 931   // allocated memory while we do a GC.
 932   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 933                                            word_size)) {
 934     collect(GCCause::_g1_humongous_allocation);
 935   }
 936 
 937   // We will loop until a) we manage to successfully perform the
 938   // allocation or b) we successfully schedule a collection which
 939   // fails to perform the allocation. b) is the only case when we'll
 940   // return NULL.
 941   HeapWord* result = NULL;
 942   for (int try_count = 1; /* we'll return */; try_count += 1) {
 943     bool should_try_gc;
 944     uint gc_count_before;
 945 
 946     {
 947       MutexLockerEx x(Heap_lock);
 948 
 949       // Given that humongous objects are not allocated in young
 950       // regions, we'll first try to do the allocation without doing a
 951       // collection hoping that there's enough space in the heap.
 952       result = humongous_obj_allocate(word_size, AllocationContext::current());
 953       if (result != NULL) {
 954         return result;
 955       }
 956 
 957       if (GC_locker::is_active_and_needs_gc()) {
 958         should_try_gc = false;
 959       } else {
 960          // The GCLocker may not be active but the GCLocker initiated
 961         // GC may not yet have been performed (GCLocker::needs_gc()
 962         // returns true). In this case we do not try this GC and
 963         // wait until the GCLocker initiated GC is performed, and
 964         // then retry the allocation.
 965         if (GC_locker::needs_gc()) {
 966           should_try_gc = false;
 967         } else {
 968           // Read the GC count while still holding the Heap_lock.
 969           gc_count_before = total_collections();
 970           should_try_gc = true;
 971         }
 972       }
 973     }
 974 
 975     if (should_try_gc) {
 976       // If we failed to allocate the humongous object, we should try to
 977       // do a collection pause (if we're allowed) in case it reclaims
 978       // enough space for the allocation to succeed after the pause.
 979 
 980       bool succeeded;
 981       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 982                                    GCCause::_g1_humongous_allocation);
 983       if (result != NULL) {
 984         assert(succeeded, "only way to get back a non-NULL result");
 985         return result;
 986       }
 987 
 988       if (succeeded) {
 989         // If we get here we successfully scheduled a collection which
 990         // failed to allocate. No point in trying to allocate
 991         // further. We'll just return NULL.
 992         MutexLockerEx x(Heap_lock);
 993         *gc_count_before_ret = total_collections();
 994         return NULL;
 995       }
 996     } else {
 997       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 998         MutexLockerEx x(Heap_lock);
 999         *gc_count_before_ret = total_collections();
1000         return NULL;
1001       }
1002       // The GCLocker is either active or the GCLocker initiated
1003       // GC has not yet been performed. Stall until it is and
1004       // then retry the allocation.
1005       GC_locker::stall_until_clear();
1006       (*gclocker_retry_count_ret) += 1;
1007     }
1008 
1009     // We can reach here if we were unsuccessful in scheduling a
1010     // collection (because another thread beat us to it) or if we were
1011     // stalled due to the GC locker. In either can we should retry the
1012     // allocation attempt in case another thread successfully
1013     // performed a collection and reclaimed enough space.  Give a
1014     // warning if we seem to be looping forever.
1015 
1016     if ((QueuedAllocationWarningCount > 0) &&
1017         (try_count % QueuedAllocationWarningCount == 0)) {
1018       warning("G1CollectedHeap::attempt_allocation_humongous() "
1019               "retries %d times", try_count);
1020     }
1021   }
1022 
1023   ShouldNotReachHere();
1024   return NULL;
1025 }
1026 
1027 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1028                                                            AllocationContext_t context,
1029                                                            bool expect_null_mutator_alloc_region) {
1030   assert_at_safepoint(true /* should_be_vm_thread */);
1031   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1032                                              !expect_null_mutator_alloc_region,
1033          "the current alloc region was unexpectedly found to be non-NULL");
1034 
1035   if (!is_humongous(word_size)) {
1036     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1037                                                       false /* bot_updates */);
1038   } else {
1039     HeapWord* result = humongous_obj_allocate(word_size, context);
1040     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1041       g1_policy()->set_initiate_conc_mark_if_possible();
1042     }
1043     return result;
1044   }
1045 
1046   ShouldNotReachHere();
1047 }
1048 
1049 class PostMCRemSetClearClosure: public HeapRegionClosure {
1050   G1CollectedHeap* _g1h;
1051   ModRefBarrierSet* _mr_bs;
1052 public:
1053   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1054     _g1h(g1h), _mr_bs(mr_bs) {}
1055 
1056   bool doHeapRegion(HeapRegion* r) {
1057     HeapRegionRemSet* hrrs = r->rem_set();
1058 
1059     if (r->is_continues_humongous()) {
1060       // We'll assert that the strong code root list and RSet is empty
1061       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1062       assert(hrrs->occupied() == 0, "RSet should be empty");
1063       return false;
1064     }
1065 
1066     _g1h->reset_gc_time_stamps(r);
1067     hrrs->clear();
1068     // You might think here that we could clear just the cards
1069     // corresponding to the used region.  But no: if we leave a dirty card
1070     // in a region we might allocate into, then it would prevent that card
1071     // from being enqueued, and cause it to be missed.
1072     // Re: the performance cost: we shouldn't be doing full GC anyway!
1073     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1074 
1075     return false;
1076   }
1077 };
1078 
1079 void G1CollectedHeap::clear_rsets_post_compaction() {
1080   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1081   heap_region_iterate(&rs_clear);
1082 }
1083 
1084 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1085   G1CollectedHeap*   _g1h;
1086   UpdateRSOopClosure _cl;
1087 public:
1088   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1089     _cl(g1->g1_rem_set(), worker_i),
1090     _g1h(g1)
1091   { }
1092 
1093   bool doHeapRegion(HeapRegion* r) {
1094     if (!r->is_continues_humongous()) {
1095       _cl.set_from(r);
1096       r->oop_iterate(&_cl);
1097     }
1098     return false;
1099   }
1100 };
1101 
1102 class ParRebuildRSTask: public AbstractGangTask {
1103   G1CollectedHeap* _g1;
1104   HeapRegionClaimer _hrclaimer;
1105 
1106 public:
1107   ParRebuildRSTask(G1CollectedHeap* g1) :
1108       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1109 
1110   void work(uint worker_id) {
1111     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1112     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1113   }
1114 };
1115 
1116 class PostCompactionPrinterClosure: public HeapRegionClosure {
1117 private:
1118   G1HRPrinter* _hr_printer;
1119 public:
1120   bool doHeapRegion(HeapRegion* hr) {
1121     assert(!hr->is_young(), "not expecting to find young regions");
1122     if (hr->is_free()) {
1123       // We only generate output for non-empty regions.
1124     } else if (hr->is_starts_humongous()) {
1125       if (hr->region_num() == 1) {
1126         // single humongous region
1127         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1128       } else {
1129         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1130       }
1131     } else if (hr->is_continues_humongous()) {
1132       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1133     } else if (hr->is_old()) {
1134       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1135     } else {
1136       ShouldNotReachHere();
1137     }
1138     return false;
1139   }
1140 
1141   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1142     : _hr_printer(hr_printer) { }
1143 };
1144 
1145 void G1CollectedHeap::print_hrm_post_compaction() {
1146   PostCompactionPrinterClosure cl(hr_printer());
1147   heap_region_iterate(&cl);
1148 }
1149 
1150 bool G1CollectedHeap::do_collection(bool explicit_gc,
1151                                     bool clear_all_soft_refs,
1152                                     size_t word_size) {
1153   assert_at_safepoint(true /* should_be_vm_thread */);
1154 
1155   if (GC_locker::check_active_before_gc()) {
1156     return false;
1157   }
1158 
1159   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1160   gc_timer->register_gc_start();
1161 
1162   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1163   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1164 
1165   SvcGCMarker sgcm(SvcGCMarker::FULL);
1166   ResourceMark rm;
1167 
1168   G1Log::update_level();
1169   print_heap_before_gc();
1170   trace_heap_before_gc(gc_tracer);
1171 
1172   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1173 
1174   verify_region_sets_optional();
1175 
1176   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1177                            collector_policy()->should_clear_all_soft_refs();
1178 
1179   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1180 
1181   {
1182     IsGCActiveMark x;
1183 
1184     // Timing
1185     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1186     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1187 
1188     {
1189       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1190       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1191       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1192 
1193       g1_policy()->record_full_collection_start();
1194 
1195       // Note: When we have a more flexible GC logging framework that
1196       // allows us to add optional attributes to a GC log record we
1197       // could consider timing and reporting how long we wait in the
1198       // following two methods.
1199       wait_while_free_regions_coming();
1200       // If we start the compaction before the CM threads finish
1201       // scanning the root regions we might trip them over as we'll
1202       // be moving objects / updating references. So let's wait until
1203       // they are done. By telling them to abort, they should complete
1204       // early.
1205       _cm->root_regions()->abort();
1206       _cm->root_regions()->wait_until_scan_finished();
1207       append_secondary_free_list_if_not_empty_with_lock();
1208 
1209       gc_prologue(true);
1210       increment_total_collections(true /* full gc */);
1211       increment_old_marking_cycles_started();
1212 
1213       assert(used() == recalculate_used(), "Should be equal");
1214 
1215       verify_before_gc();
1216 
1217       check_bitmaps("Full GC Start");
1218       pre_full_gc_dump(gc_timer);
1219 
1220       COMPILER2_PRESENT(DerivedPointerTable::clear());
1221 
1222       // Disable discovery and empty the discovered lists
1223       // for the CM ref processor.
1224       ref_processor_cm()->disable_discovery();
1225       ref_processor_cm()->abandon_partial_discovery();
1226       ref_processor_cm()->verify_no_references_recorded();
1227 
1228       // Abandon current iterations of concurrent marking and concurrent
1229       // refinement, if any are in progress. We have to do this before
1230       // wait_until_scan_finished() below.
1231       concurrent_mark()->abort();
1232 
1233       // Make sure we'll choose a new allocation region afterwards.
1234       _allocator->release_mutator_alloc_region();
1235       _allocator->abandon_gc_alloc_regions();
1236       g1_rem_set()->cleanupHRRS();
1237 
1238       // We should call this after we retire any currently active alloc
1239       // regions so that all the ALLOC / RETIRE events are generated
1240       // before the start GC event.
1241       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1242 
1243       // We may have added regions to the current incremental collection
1244       // set between the last GC or pause and now. We need to clear the
1245       // incremental collection set and then start rebuilding it afresh
1246       // after this full GC.
1247       abandon_collection_set(g1_policy()->inc_cset_head());
1248       g1_policy()->clear_incremental_cset();
1249       g1_policy()->stop_incremental_cset_building();
1250 
1251       tear_down_region_sets(false /* free_list_only */);
1252       g1_policy()->set_gcs_are_young(true);
1253 
1254       // See the comments in g1CollectedHeap.hpp and
1255       // G1CollectedHeap::ref_processing_init() about
1256       // how reference processing currently works in G1.
1257 
1258       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1259       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1260 
1261       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1262       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1263 
1264       ref_processor_stw()->enable_discovery();
1265       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1266 
1267       // Do collection work
1268       {
1269         HandleMark hm;  // Discard invalid handles created during gc
1270         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1271       }
1272 
1273       assert(num_free_regions() == 0, "we should not have added any free regions");
1274       rebuild_region_sets(false /* free_list_only */);
1275 
1276       // Enqueue any discovered reference objects that have
1277       // not been removed from the discovered lists.
1278       ref_processor_stw()->enqueue_discovered_references();
1279 
1280       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1281 
1282       MemoryService::track_memory_usage();
1283 
1284       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1285       ref_processor_stw()->verify_no_references_recorded();
1286 
1287       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1288       ClassLoaderDataGraph::purge();
1289       MetaspaceAux::verify_metrics();
1290 
1291       // Note: since we've just done a full GC, concurrent
1292       // marking is no longer active. Therefore we need not
1293       // re-enable reference discovery for the CM ref processor.
1294       // That will be done at the start of the next marking cycle.
1295       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1296       ref_processor_cm()->verify_no_references_recorded();
1297 
1298       reset_gc_time_stamp();
1299       // Since everything potentially moved, we will clear all remembered
1300       // sets, and clear all cards.  Later we will rebuild remembered
1301       // sets. We will also reset the GC time stamps of the regions.
1302       clear_rsets_post_compaction();
1303       check_gc_time_stamps();
1304 
1305       // Resize the heap if necessary.
1306       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1307 
1308       if (_hr_printer.is_active()) {
1309         // We should do this after we potentially resize the heap so
1310         // that all the COMMIT / UNCOMMIT events are generated before
1311         // the end GC event.
1312 
1313         print_hrm_post_compaction();
1314         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1315       }
1316 
1317       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1318       if (hot_card_cache->use_cache()) {
1319         hot_card_cache->reset_card_counts();
1320         hot_card_cache->reset_hot_cache();
1321       }
1322 
1323       // Rebuild remembered sets of all regions.
1324       uint n_workers =
1325         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1326                                                 workers()->active_workers(),
1327                                                 Threads::number_of_non_daemon_threads());
1328       assert(UseDynamicNumberOfGCThreads ||
1329              n_workers == workers()->total_workers(),
1330              "If not dynamic should be using all the  workers");
1331       workers()->set_active_workers(n_workers);
1332 
1333       ParRebuildRSTask rebuild_rs_task(this);
1334       assert(UseDynamicNumberOfGCThreads ||
1335              workers()->active_workers() == workers()->total_workers(),
1336              "Unless dynamic should use total workers");
1337       workers()->run_task(&rebuild_rs_task);
1338 
1339       // Rebuild the strong code root lists for each region
1340       rebuild_strong_code_roots();
1341 
1342       if (true) { // FIXME
1343         MetaspaceGC::compute_new_size();
1344       }
1345 
1346 #ifdef TRACESPINNING
1347       ParallelTaskTerminator::print_termination_counts();
1348 #endif
1349 
1350       // Discard all rset updates
1351       JavaThread::dirty_card_queue_set().abandon_logs();
1352       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1353 
1354       _young_list->reset_sampled_info();
1355       // At this point there should be no regions in the
1356       // entire heap tagged as young.
1357       assert(check_young_list_empty(true /* check_heap */),
1358              "young list should be empty at this point");
1359 
1360       // Update the number of full collections that have been completed.
1361       increment_old_marking_cycles_completed(false /* concurrent */);
1362 
1363       _hrm.verify_optional();
1364       verify_region_sets_optional();
1365 
1366       verify_after_gc();
1367 
1368       // Clear the previous marking bitmap, if needed for bitmap verification.
1369       // Note we cannot do this when we clear the next marking bitmap in
1370       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1371       // objects marked during a full GC against the previous bitmap.
1372       // But we need to clear it before calling check_bitmaps below since
1373       // the full GC has compacted objects and updated TAMS but not updated
1374       // the prev bitmap.
1375       if (G1VerifyBitmaps) {
1376         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1377       }
1378       check_bitmaps("Full GC End");
1379 
1380       // Start a new incremental collection set for the next pause
1381       assert(g1_policy()->collection_set() == NULL, "must be");
1382       g1_policy()->start_incremental_cset_building();
1383 
1384       clear_cset_fast_test();
1385 
1386       _allocator->init_mutator_alloc_region();
1387 
1388       g1_policy()->record_full_collection_end();
1389 
1390       if (G1Log::fine()) {
1391         g1_policy()->print_heap_transition();
1392       }
1393 
1394       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1395       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1396       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1397       // before any GC notifications are raised.
1398       g1mm()->update_sizes();
1399 
1400       gc_epilogue(true);
1401     }
1402 
1403     if (G1Log::finer()) {
1404       g1_policy()->print_detailed_heap_transition(true /* full */);
1405     }
1406 
1407     print_heap_after_gc();
1408     trace_heap_after_gc(gc_tracer);
1409 
1410     post_full_gc_dump(gc_timer);
1411 
1412     gc_timer->register_gc_end();
1413     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1414   }
1415 
1416   return true;
1417 }
1418 
1419 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1420   // do_collection() will return whether it succeeded in performing
1421   // the GC. Currently, there is no facility on the
1422   // do_full_collection() API to notify the caller than the collection
1423   // did not succeed (e.g., because it was locked out by the GC
1424   // locker). So, right now, we'll ignore the return value.
1425   bool dummy = do_collection(true,                /* explicit_gc */
1426                              clear_all_soft_refs,
1427                              0                    /* word_size */);
1428 }
1429 
1430 // This code is mostly copied from TenuredGeneration.
1431 void
1432 G1CollectedHeap::
1433 resize_if_necessary_after_full_collection(size_t word_size) {
1434   // Include the current allocation, if any, and bytes that will be
1435   // pre-allocated to support collections, as "used".
1436   const size_t used_after_gc = used();
1437   const size_t capacity_after_gc = capacity();
1438   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1439 
1440   // This is enforced in arguments.cpp.
1441   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1442          "otherwise the code below doesn't make sense");
1443 
1444   // We don't have floating point command-line arguments
1445   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1446   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1447   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1448   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1449 
1450   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1451   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1452 
1453   // We have to be careful here as these two calculations can overflow
1454   // 32-bit size_t's.
1455   double used_after_gc_d = (double) used_after_gc;
1456   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1457   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1458 
1459   // Let's make sure that they are both under the max heap size, which
1460   // by default will make them fit into a size_t.
1461   double desired_capacity_upper_bound = (double) max_heap_size;
1462   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1463                                     desired_capacity_upper_bound);
1464   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1465                                     desired_capacity_upper_bound);
1466 
1467   // We can now safely turn them into size_t's.
1468   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1469   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1470 
1471   // This assert only makes sense here, before we adjust them
1472   // with respect to the min and max heap size.
1473   assert(minimum_desired_capacity <= maximum_desired_capacity,
1474          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1475                  "maximum_desired_capacity = "SIZE_FORMAT,
1476                  minimum_desired_capacity, maximum_desired_capacity));
1477 
1478   // Should not be greater than the heap max size. No need to adjust
1479   // it with respect to the heap min size as it's a lower bound (i.e.,
1480   // we'll try to make the capacity larger than it, not smaller).
1481   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1482   // Should not be less than the heap min size. No need to adjust it
1483   // with respect to the heap max size as it's an upper bound (i.e.,
1484   // we'll try to make the capacity smaller than it, not greater).
1485   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1486 
1487   if (capacity_after_gc < minimum_desired_capacity) {
1488     // Don't expand unless it's significant
1489     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1490     ergo_verbose4(ErgoHeapSizing,
1491                   "attempt heap expansion",
1492                   ergo_format_reason("capacity lower than "
1493                                      "min desired capacity after Full GC")
1494                   ergo_format_byte("capacity")
1495                   ergo_format_byte("occupancy")
1496                   ergo_format_byte_perc("min desired capacity"),
1497                   capacity_after_gc, used_after_gc,
1498                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1499     expand(expand_bytes);
1500 
1501     // No expansion, now see if we want to shrink
1502   } else if (capacity_after_gc > maximum_desired_capacity) {
1503     // Capacity too large, compute shrinking size
1504     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1505     ergo_verbose4(ErgoHeapSizing,
1506                   "attempt heap shrinking",
1507                   ergo_format_reason("capacity higher than "
1508                                      "max desired capacity after Full GC")
1509                   ergo_format_byte("capacity")
1510                   ergo_format_byte("occupancy")
1511                   ergo_format_byte_perc("max desired capacity"),
1512                   capacity_after_gc, used_after_gc,
1513                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1514     shrink(shrink_bytes);
1515   }
1516 }
1517 
1518 
1519 HeapWord*
1520 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1521                                            AllocationContext_t context,
1522                                            bool* succeeded) {
1523   assert_at_safepoint(true /* should_be_vm_thread */);
1524 
1525   *succeeded = true;
1526   // Let's attempt the allocation first.
1527   HeapWord* result =
1528     attempt_allocation_at_safepoint(word_size,
1529                                     context,
1530                                     false /* expect_null_mutator_alloc_region */);
1531   if (result != NULL) {
1532     assert(*succeeded, "sanity");
1533     return result;
1534   }
1535 
1536   // In a G1 heap, we're supposed to keep allocation from failing by
1537   // incremental pauses.  Therefore, at least for now, we'll favor
1538   // expansion over collection.  (This might change in the future if we can
1539   // do something smarter than full collection to satisfy a failed alloc.)
1540   result = expand_and_allocate(word_size, context);
1541   if (result != NULL) {
1542     assert(*succeeded, "sanity");
1543     return result;
1544   }
1545 
1546   // Expansion didn't work, we'll try to do a Full GC.
1547   bool gc_succeeded = do_collection(false, /* explicit_gc */
1548                                     false, /* clear_all_soft_refs */
1549                                     word_size);
1550   if (!gc_succeeded) {
1551     *succeeded = false;
1552     return NULL;
1553   }
1554 
1555   // Retry the allocation
1556   result = attempt_allocation_at_safepoint(word_size,
1557                                            context,
1558                                            true /* expect_null_mutator_alloc_region */);
1559   if (result != NULL) {
1560     assert(*succeeded, "sanity");
1561     return result;
1562   }
1563 
1564   // Then, try a Full GC that will collect all soft references.
1565   gc_succeeded = do_collection(false, /* explicit_gc */
1566                                true,  /* clear_all_soft_refs */
1567                                word_size);
1568   if (!gc_succeeded) {
1569     *succeeded = false;
1570     return NULL;
1571   }
1572 
1573   // Retry the allocation once more
1574   result = attempt_allocation_at_safepoint(word_size,
1575                                            context,
1576                                            true /* expect_null_mutator_alloc_region */);
1577   if (result != NULL) {
1578     assert(*succeeded, "sanity");
1579     return result;
1580   }
1581 
1582   assert(!collector_policy()->should_clear_all_soft_refs(),
1583          "Flag should have been handled and cleared prior to this point");
1584 
1585   // What else?  We might try synchronous finalization later.  If the total
1586   // space available is large enough for the allocation, then a more
1587   // complete compaction phase than we've tried so far might be
1588   // appropriate.
1589   assert(*succeeded, "sanity");
1590   return NULL;
1591 }
1592 
1593 // Attempting to expand the heap sufficiently
1594 // to support an allocation of the given "word_size".  If
1595 // successful, perform the allocation and return the address of the
1596 // allocated block, or else "NULL".
1597 
1598 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1599   assert_at_safepoint(true /* should_be_vm_thread */);
1600 
1601   verify_region_sets_optional();
1602 
1603   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1604   ergo_verbose1(ErgoHeapSizing,
1605                 "attempt heap expansion",
1606                 ergo_format_reason("allocation request failed")
1607                 ergo_format_byte("allocation request"),
1608                 word_size * HeapWordSize);
1609   if (expand(expand_bytes)) {
1610     _hrm.verify_optional();
1611     verify_region_sets_optional();
1612     return attempt_allocation_at_safepoint(word_size,
1613                                            context,
1614                                            false /* expect_null_mutator_alloc_region */);
1615   }
1616   return NULL;
1617 }
1618 
1619 bool G1CollectedHeap::expand(size_t expand_bytes) {
1620   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1621   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1622                                        HeapRegion::GrainBytes);
1623   ergo_verbose2(ErgoHeapSizing,
1624                 "expand the heap",
1625                 ergo_format_byte("requested expansion amount")
1626                 ergo_format_byte("attempted expansion amount"),
1627                 expand_bytes, aligned_expand_bytes);
1628 
1629   if (is_maximal_no_gc()) {
1630     ergo_verbose0(ErgoHeapSizing,
1631                       "did not expand the heap",
1632                       ergo_format_reason("heap already fully expanded"));
1633     return false;
1634   }
1635 
1636   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1637   assert(regions_to_expand > 0, "Must expand by at least one region");
1638 
1639   uint expanded_by = _hrm.expand_by(regions_to_expand);
1640 
1641   if (expanded_by > 0) {
1642     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1643     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1644     g1_policy()->record_new_heap_size(num_regions());
1645   } else {
1646     ergo_verbose0(ErgoHeapSizing,
1647                   "did not expand the heap",
1648                   ergo_format_reason("heap expansion operation failed"));
1649     // The expansion of the virtual storage space was unsuccessful.
1650     // Let's see if it was because we ran out of swap.
1651     if (G1ExitOnExpansionFailure &&
1652         _hrm.available() >= regions_to_expand) {
1653       // We had head room...
1654       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1655     }
1656   }
1657   return regions_to_expand > 0;
1658 }
1659 
1660 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1661   size_t aligned_shrink_bytes =
1662     ReservedSpace::page_align_size_down(shrink_bytes);
1663   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1664                                          HeapRegion::GrainBytes);
1665   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1666 
1667   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1668   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1669 
1670   ergo_verbose3(ErgoHeapSizing,
1671                 "shrink the heap",
1672                 ergo_format_byte("requested shrinking amount")
1673                 ergo_format_byte("aligned shrinking amount")
1674                 ergo_format_byte("attempted shrinking amount"),
1675                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1676   if (num_regions_removed > 0) {
1677     g1_policy()->record_new_heap_size(num_regions());
1678   } else {
1679     ergo_verbose0(ErgoHeapSizing,
1680                   "did not shrink the heap",
1681                   ergo_format_reason("heap shrinking operation failed"));
1682   }
1683 }
1684 
1685 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1686   verify_region_sets_optional();
1687 
1688   // We should only reach here at the end of a Full GC which means we
1689   // should not not be holding to any GC alloc regions. The method
1690   // below will make sure of that and do any remaining clean up.
1691   _allocator->abandon_gc_alloc_regions();
1692 
1693   // Instead of tearing down / rebuilding the free lists here, we
1694   // could instead use the remove_all_pending() method on free_list to
1695   // remove only the ones that we need to remove.
1696   tear_down_region_sets(true /* free_list_only */);
1697   shrink_helper(shrink_bytes);
1698   rebuild_region_sets(true /* free_list_only */);
1699 
1700   _hrm.verify_optional();
1701   verify_region_sets_optional();
1702 }
1703 
1704 // Public methods.
1705 
1706 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1707 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1708 #endif // _MSC_VER
1709 
1710 
1711 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1712   CollectedHeap(),
1713   _g1_policy(policy_),
1714   _dirty_card_queue_set(false),
1715   _into_cset_dirty_card_queue_set(false),
1716   _is_alive_closure_cm(this),
1717   _is_alive_closure_stw(this),
1718   _ref_processor_cm(NULL),
1719   _ref_processor_stw(NULL),
1720   _bot_shared(NULL),
1721   _evac_failure_scan_stack(NULL),
1722   _mark_in_progress(false),
1723   _cg1r(NULL),
1724   _g1mm(NULL),
1725   _refine_cte_cl(NULL),
1726   _full_collection(false),
1727   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1728   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1729   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1730   _humongous_reclaim_candidates(),
1731   _has_humongous_reclaim_candidates(false),
1732   _free_regions_coming(false),
1733   _young_list(new YoungList(this)),
1734   _gc_time_stamp(0),
1735   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1736   _old_plab_stats(OldPLABSize, PLABWeight),
1737   _expand_heap_after_alloc_failure(true),
1738   _surviving_young_words(NULL),
1739   _old_marking_cycles_started(0),
1740   _old_marking_cycles_completed(0),
1741   _concurrent_cycle_started(false),
1742   _heap_summary_sent(false),
1743   _in_cset_fast_test(),
1744   _dirty_cards_region_list(NULL),
1745   _worker_cset_start_region(NULL),
1746   _worker_cset_start_region_time_stamp(NULL),
1747   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1748   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1749   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1750   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1751 
1752   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1753                           /* are_GC_task_threads */true,
1754                           /* are_ConcurrentGC_threads */false);
1755   _workers->initialize_workers();
1756 
1757   _allocator = G1Allocator::create_allocator(this);
1758   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1759 
1760   int n_queues = MAX2((int)ParallelGCThreads, 1);
1761   _task_queues = new RefToScanQueueSet(n_queues);
1762 
1763   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1764   assert(n_rem_sets > 0, "Invariant.");
1765 
1766   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1767   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1768   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1769 
1770   for (int i = 0; i < n_queues; i++) {
1771     RefToScanQueue* q = new RefToScanQueue();
1772     q->initialize();
1773     _task_queues->register_queue(i, q);
1774     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1775   }
1776   clear_cset_start_regions();
1777 
1778   // Initialize the G1EvacuationFailureALot counters and flags.
1779   NOT_PRODUCT(reset_evacuation_should_fail();)
1780 
1781   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1782 }
1783 
1784 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1785                                                                  size_t size,
1786                                                                  size_t translation_factor) {
1787   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1788   // Allocate a new reserved space, preferring to use large pages.
1789   ReservedSpace rs(size, preferred_page_size);
1790   G1RegionToSpaceMapper* result  =
1791     G1RegionToSpaceMapper::create_mapper(rs,
1792                                          size,
1793                                          rs.alignment(),
1794                                          HeapRegion::GrainBytes,
1795                                          translation_factor,
1796                                          mtGC);
1797   if (TracePageSizes) {
1798     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1799                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1800   }
1801   return result;
1802 }
1803 
1804 jint G1CollectedHeap::initialize() {
1805   CollectedHeap::pre_initialize();
1806   os::enable_vtime();
1807 
1808   G1Log::init();
1809 
1810   // Necessary to satisfy locking discipline assertions.
1811 
1812   MutexLocker x(Heap_lock);
1813 
1814   // We have to initialize the printer before committing the heap, as
1815   // it will be used then.
1816   _hr_printer.set_active(G1PrintHeapRegions);
1817 
1818   // While there are no constraints in the GC code that HeapWordSize
1819   // be any particular value, there are multiple other areas in the
1820   // system which believe this to be true (e.g. oop->object_size in some
1821   // cases incorrectly returns the size in wordSize units rather than
1822   // HeapWordSize).
1823   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1824 
1825   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1826   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1827   size_t heap_alignment = collector_policy()->heap_alignment();
1828 
1829   // Ensure that the sizes are properly aligned.
1830   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1831   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1832   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1833 
1834   _refine_cte_cl = new RefineCardTableEntryClosure();
1835 
1836   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1837 
1838   // Reserve the maximum.
1839 
1840   // When compressed oops are enabled, the preferred heap base
1841   // is calculated by subtracting the requested size from the
1842   // 32Gb boundary and using the result as the base address for
1843   // heap reservation. If the requested size is not aligned to
1844   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1845   // into the ReservedHeapSpace constructor) then the actual
1846   // base of the reserved heap may end up differing from the
1847   // address that was requested (i.e. the preferred heap base).
1848   // If this happens then we could end up using a non-optimal
1849   // compressed oops mode.
1850 
1851   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1852                                                  heap_alignment);
1853 
1854   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1855 
1856   // Create the barrier set for the entire reserved region.
1857   G1SATBCardTableLoggingModRefBS* bs
1858     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1859   bs->initialize();
1860   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1861   set_barrier_set(bs);
1862 
1863   // Also create a G1 rem set.
1864   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1865 
1866   // Carve out the G1 part of the heap.
1867 
1868   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1869   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1870   G1RegionToSpaceMapper* heap_storage =
1871     G1RegionToSpaceMapper::create_mapper(g1_rs,
1872                                          g1_rs.size(),
1873                                          page_size,
1874                                          HeapRegion::GrainBytes,
1875                                          1,
1876                                          mtJavaHeap);
1877   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1878                        max_byte_size, page_size,
1879                        heap_rs.base(),
1880                        heap_rs.size());
1881   heap_storage->set_mapping_changed_listener(&_listener);
1882 
1883   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1884   G1RegionToSpaceMapper* bot_storage =
1885     create_aux_memory_mapper("Block offset table",
1886                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1887                              G1BlockOffsetSharedArray::heap_map_factor());
1888 
1889   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1890   G1RegionToSpaceMapper* cardtable_storage =
1891     create_aux_memory_mapper("Card table",
1892                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1893                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1894 
1895   G1RegionToSpaceMapper* card_counts_storage =
1896     create_aux_memory_mapper("Card counts table",
1897                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1898                              G1CardCounts::heap_map_factor());
1899 
1900   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1901   G1RegionToSpaceMapper* prev_bitmap_storage =
1902     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1903   G1RegionToSpaceMapper* next_bitmap_storage =
1904     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1905 
1906   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1907   g1_barrier_set()->initialize(cardtable_storage);
1908    // Do later initialization work for concurrent refinement.
1909   _cg1r->init(card_counts_storage);
1910 
1911   // 6843694 - ensure that the maximum region index can fit
1912   // in the remembered set structures.
1913   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1914   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1915 
1916   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1917   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1918   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1919             "too many cards per region");
1920 
1921   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1922 
1923   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1924 
1925   {
1926     HeapWord* start = _hrm.reserved().start();
1927     HeapWord* end = _hrm.reserved().end();
1928     size_t granularity = HeapRegion::GrainBytes;
1929 
1930     _in_cset_fast_test.initialize(start, end, granularity);
1931     _humongous_reclaim_candidates.initialize(start, end, granularity);
1932   }
1933 
1934   // Create the ConcurrentMark data structure and thread.
1935   // (Must do this late, so that "max_regions" is defined.)
1936   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1937   if (_cm == NULL || !_cm->completed_initialization()) {
1938     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1939     return JNI_ENOMEM;
1940   }
1941   _cmThread = _cm->cmThread();
1942 
1943   // Initialize the from_card cache structure of HeapRegionRemSet.
1944   HeapRegionRemSet::init_heap(max_regions());
1945 
1946   // Now expand into the initial heap size.
1947   if (!expand(init_byte_size)) {
1948     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1949     return JNI_ENOMEM;
1950   }
1951 
1952   // Perform any initialization actions delegated to the policy.
1953   g1_policy()->init();
1954 
1955   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1956                                                SATB_Q_FL_lock,
1957                                                G1SATBProcessCompletedThreshold,
1958                                                Shared_SATB_Q_lock);
1959 
1960   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1961                                                 DirtyCardQ_CBL_mon,
1962                                                 DirtyCardQ_FL_lock,
1963                                                 concurrent_g1_refine()->yellow_zone(),
1964                                                 concurrent_g1_refine()->red_zone(),
1965                                                 Shared_DirtyCardQ_lock);
1966 
1967   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1968                                     DirtyCardQ_CBL_mon,
1969                                     DirtyCardQ_FL_lock,
1970                                     -1, // never trigger processing
1971                                     -1, // no limit on length
1972                                     Shared_DirtyCardQ_lock,
1973                                     &JavaThread::dirty_card_queue_set());
1974 
1975   // Initialize the card queue set used to hold cards containing
1976   // references into the collection set.
1977   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1978                                              DirtyCardQ_CBL_mon,
1979                                              DirtyCardQ_FL_lock,
1980                                              -1, // never trigger processing
1981                                              -1, // no limit on length
1982                                              Shared_DirtyCardQ_lock,
1983                                              &JavaThread::dirty_card_queue_set());
1984 
1985   // Here we allocate the dummy HeapRegion that is required by the
1986   // G1AllocRegion class.
1987   HeapRegion* dummy_region = _hrm.get_dummy_region();
1988 
1989   // We'll re-use the same region whether the alloc region will
1990   // require BOT updates or not and, if it doesn't, then a non-young
1991   // region will complain that it cannot support allocations without
1992   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1993   dummy_region->set_eden();
1994   // Make sure it's full.
1995   dummy_region->set_top(dummy_region->end());
1996   G1AllocRegion::setup(this, dummy_region);
1997 
1998   _allocator->init_mutator_alloc_region();
1999 
2000   // Do create of the monitoring and management support so that
2001   // values in the heap have been properly initialized.
2002   _g1mm = new G1MonitoringSupport(this);
2003 
2004   G1StringDedup::initialize();
2005 
2006   return JNI_OK;
2007 }
2008 
2009 void G1CollectedHeap::stop() {
2010   // Stop all concurrent threads. We do this to make sure these threads
2011   // do not continue to execute and access resources (e.g. gclog_or_tty)
2012   // that are destroyed during shutdown.
2013   _cg1r->stop();
2014   _cmThread->stop();
2015   if (G1StringDedup::is_enabled()) {
2016     G1StringDedup::stop();
2017   }
2018 }
2019 
2020 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2021   return HeapRegion::max_region_size();
2022 }
2023 
2024 void G1CollectedHeap::post_initialize() {
2025   CollectedHeap::post_initialize();
2026   ref_processing_init();
2027 }
2028 
2029 void G1CollectedHeap::ref_processing_init() {
2030   // Reference processing in G1 currently works as follows:
2031   //
2032   // * There are two reference processor instances. One is
2033   //   used to record and process discovered references
2034   //   during concurrent marking; the other is used to
2035   //   record and process references during STW pauses
2036   //   (both full and incremental).
2037   // * Both ref processors need to 'span' the entire heap as
2038   //   the regions in the collection set may be dotted around.
2039   //
2040   // * For the concurrent marking ref processor:
2041   //   * Reference discovery is enabled at initial marking.
2042   //   * Reference discovery is disabled and the discovered
2043   //     references processed etc during remarking.
2044   //   * Reference discovery is MT (see below).
2045   //   * Reference discovery requires a barrier (see below).
2046   //   * Reference processing may or may not be MT
2047   //     (depending on the value of ParallelRefProcEnabled
2048   //     and ParallelGCThreads).
2049   //   * A full GC disables reference discovery by the CM
2050   //     ref processor and abandons any entries on it's
2051   //     discovered lists.
2052   //
2053   // * For the STW processor:
2054   //   * Non MT discovery is enabled at the start of a full GC.
2055   //   * Processing and enqueueing during a full GC is non-MT.
2056   //   * During a full GC, references are processed after marking.
2057   //
2058   //   * Discovery (may or may not be MT) is enabled at the start
2059   //     of an incremental evacuation pause.
2060   //   * References are processed near the end of a STW evacuation pause.
2061   //   * For both types of GC:
2062   //     * Discovery is atomic - i.e. not concurrent.
2063   //     * Reference discovery will not need a barrier.
2064 
2065   MemRegion mr = reserved_region();
2066 
2067   // Concurrent Mark ref processor
2068   _ref_processor_cm =
2069     new ReferenceProcessor(mr,    // span
2070                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2071                                 // mt processing
2072                            (int) ParallelGCThreads,
2073                                 // degree of mt processing
2074                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2075                                 // mt discovery
2076                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2077                                 // degree of mt discovery
2078                            false,
2079                                 // Reference discovery is not atomic
2080                            &_is_alive_closure_cm);
2081                                 // is alive closure
2082                                 // (for efficiency/performance)
2083 
2084   // STW ref processor
2085   _ref_processor_stw =
2086     new ReferenceProcessor(mr,    // span
2087                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2088                                 // mt processing
2089                            MAX2((int)ParallelGCThreads, 1),
2090                                 // degree of mt processing
2091                            (ParallelGCThreads > 1),
2092                                 // mt discovery
2093                            MAX2((int)ParallelGCThreads, 1),
2094                                 // degree of mt discovery
2095                            true,
2096                                 // Reference discovery is atomic
2097                            &_is_alive_closure_stw);
2098                                 // is alive closure
2099                                 // (for efficiency/performance)
2100 }
2101 
2102 size_t G1CollectedHeap::capacity() const {
2103   return _hrm.length() * HeapRegion::GrainBytes;
2104 }
2105 
2106 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2107   assert(!hr->is_continues_humongous(), "pre-condition");
2108   hr->reset_gc_time_stamp();
2109   if (hr->is_starts_humongous()) {
2110     uint first_index = hr->hrm_index() + 1;
2111     uint last_index = hr->last_hc_index();
2112     for (uint i = first_index; i < last_index; i += 1) {
2113       HeapRegion* chr = region_at(i);
2114       assert(chr->is_continues_humongous(), "sanity");
2115       chr->reset_gc_time_stamp();
2116     }
2117   }
2118 }
2119 
2120 #ifndef PRODUCT
2121 
2122 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2123 private:
2124   unsigned _gc_time_stamp;
2125   bool _failures;
2126 
2127 public:
2128   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2129     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2130 
2131   virtual bool doHeapRegion(HeapRegion* hr) {
2132     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2133     if (_gc_time_stamp != region_gc_time_stamp) {
2134       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2135                              "expected %d", HR_FORMAT_PARAMS(hr),
2136                              region_gc_time_stamp, _gc_time_stamp);
2137       _failures = true;
2138     }
2139     return false;
2140   }
2141 
2142   bool failures() { return _failures; }
2143 };
2144 
2145 void G1CollectedHeap::check_gc_time_stamps() {
2146   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2147   heap_region_iterate(&cl);
2148   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2149 }
2150 #endif // PRODUCT
2151 
2152 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2153                                                  DirtyCardQueue* into_cset_dcq,
2154                                                  bool concurrent,
2155                                                  uint worker_i) {
2156   // Clean cards in the hot card cache
2157   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2158   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2159 
2160   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2161   size_t n_completed_buffers = 0;
2162   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2163     n_completed_buffers++;
2164   }
2165   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2166   dcqs.clear_n_completed_buffers();
2167   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2168 }
2169 
2170 
2171 // Computes the sum of the storage used by the various regions.
2172 size_t G1CollectedHeap::used() const {
2173   return _allocator->used();
2174 }
2175 
2176 size_t G1CollectedHeap::used_unlocked() const {
2177   return _allocator->used_unlocked();
2178 }
2179 
2180 class SumUsedClosure: public HeapRegionClosure {
2181   size_t _used;
2182 public:
2183   SumUsedClosure() : _used(0) {}
2184   bool doHeapRegion(HeapRegion* r) {
2185     if (!r->is_continues_humongous()) {
2186       _used += r->used();
2187     }
2188     return false;
2189   }
2190   size_t result() { return _used; }
2191 };
2192 
2193 size_t G1CollectedHeap::recalculate_used() const {
2194   double recalculate_used_start = os::elapsedTime();
2195 
2196   SumUsedClosure blk;
2197   heap_region_iterate(&blk);
2198 
2199   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2200   return blk.result();
2201 }
2202 
2203 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2204   switch (cause) {
2205     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2206     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2207     case GCCause::_g1_humongous_allocation: return true;
2208     case GCCause::_update_allocation_context_stats_inc: return true;
2209     case GCCause::_wb_conc_mark:            return true;
2210     default:                                return false;
2211   }
2212 }
2213 
2214 #ifndef PRODUCT
2215 void G1CollectedHeap::allocate_dummy_regions() {
2216   // Let's fill up most of the region
2217   size_t word_size = HeapRegion::GrainWords - 1024;
2218   // And as a result the region we'll allocate will be humongous.
2219   guarantee(is_humongous(word_size), "sanity");
2220 
2221   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2222     // Let's use the existing mechanism for the allocation
2223     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2224                                                  AllocationContext::system());
2225     if (dummy_obj != NULL) {
2226       MemRegion mr(dummy_obj, word_size);
2227       CollectedHeap::fill_with_object(mr);
2228     } else {
2229       // If we can't allocate once, we probably cannot allocate
2230       // again. Let's get out of the loop.
2231       break;
2232     }
2233   }
2234 }
2235 #endif // !PRODUCT
2236 
2237 void G1CollectedHeap::increment_old_marking_cycles_started() {
2238   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2239     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2240     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2241     _old_marking_cycles_started, _old_marking_cycles_completed));
2242 
2243   _old_marking_cycles_started++;
2244 }
2245 
2246 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2247   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2248 
2249   // We assume that if concurrent == true, then the caller is a
2250   // concurrent thread that was joined the Suspendible Thread
2251   // Set. If there's ever a cheap way to check this, we should add an
2252   // assert here.
2253 
2254   // Given that this method is called at the end of a Full GC or of a
2255   // concurrent cycle, and those can be nested (i.e., a Full GC can
2256   // interrupt a concurrent cycle), the number of full collections
2257   // completed should be either one (in the case where there was no
2258   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2259   // behind the number of full collections started.
2260 
2261   // This is the case for the inner caller, i.e. a Full GC.
2262   assert(concurrent ||
2263          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2264          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2265          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2266                  "is inconsistent with _old_marking_cycles_completed = %u",
2267                  _old_marking_cycles_started, _old_marking_cycles_completed));
2268 
2269   // This is the case for the outer caller, i.e. the concurrent cycle.
2270   assert(!concurrent ||
2271          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2272          err_msg("for outer caller (concurrent cycle): "
2273                  "_old_marking_cycles_started = %u "
2274                  "is inconsistent with _old_marking_cycles_completed = %u",
2275                  _old_marking_cycles_started, _old_marking_cycles_completed));
2276 
2277   _old_marking_cycles_completed += 1;
2278 
2279   // We need to clear the "in_progress" flag in the CM thread before
2280   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2281   // is set) so that if a waiter requests another System.gc() it doesn't
2282   // incorrectly see that a marking cycle is still in progress.
2283   if (concurrent) {
2284     _cmThread->clear_in_progress();
2285   }
2286 
2287   // This notify_all() will ensure that a thread that called
2288   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2289   // and it's waiting for a full GC to finish will be woken up. It is
2290   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2291   FullGCCount_lock->notify_all();
2292 }
2293 
2294 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2295   _concurrent_cycle_started = true;
2296   _gc_timer_cm->register_gc_start(start_time);
2297 
2298   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2299   trace_heap_before_gc(_gc_tracer_cm);
2300 }
2301 
2302 void G1CollectedHeap::register_concurrent_cycle_end() {
2303   if (_concurrent_cycle_started) {
2304     if (_cm->has_aborted()) {
2305       _gc_tracer_cm->report_concurrent_mode_failure();
2306     }
2307 
2308     _gc_timer_cm->register_gc_end();
2309     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2310 
2311     // Clear state variables to prepare for the next concurrent cycle.
2312     _concurrent_cycle_started = false;
2313     _heap_summary_sent = false;
2314   }
2315 }
2316 
2317 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2318   if (_concurrent_cycle_started) {
2319     // This function can be called when:
2320     //  the cleanup pause is run
2321     //  the concurrent cycle is aborted before the cleanup pause.
2322     //  the concurrent cycle is aborted after the cleanup pause,
2323     //   but before the concurrent cycle end has been registered.
2324     // Make sure that we only send the heap information once.
2325     if (!_heap_summary_sent) {
2326       trace_heap_after_gc(_gc_tracer_cm);
2327       _heap_summary_sent = true;
2328     }
2329   }
2330 }
2331 
2332 G1YCType G1CollectedHeap::yc_type() {
2333   bool is_young = g1_policy()->gcs_are_young();
2334   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2335   bool is_during_mark = mark_in_progress();
2336 
2337   if (is_initial_mark) {
2338     return InitialMark;
2339   } else if (is_during_mark) {
2340     return DuringMark;
2341   } else if (is_young) {
2342     return Normal;
2343   } else {
2344     return Mixed;
2345   }
2346 }
2347 
2348 void G1CollectedHeap::collect(GCCause::Cause cause) {
2349   assert_heap_not_locked();
2350 
2351   uint gc_count_before;
2352   uint old_marking_count_before;
2353   uint full_gc_count_before;
2354   bool retry_gc;
2355 
2356   do {
2357     retry_gc = false;
2358 
2359     {
2360       MutexLocker ml(Heap_lock);
2361 
2362       // Read the GC count while holding the Heap_lock
2363       gc_count_before = total_collections();
2364       full_gc_count_before = total_full_collections();
2365       old_marking_count_before = _old_marking_cycles_started;
2366     }
2367 
2368     if (should_do_concurrent_full_gc(cause)) {
2369       // Schedule an initial-mark evacuation pause that will start a
2370       // concurrent cycle. We're setting word_size to 0 which means that
2371       // we are not requesting a post-GC allocation.
2372       VM_G1IncCollectionPause op(gc_count_before,
2373                                  0,     /* word_size */
2374                                  true,  /* should_initiate_conc_mark */
2375                                  g1_policy()->max_pause_time_ms(),
2376                                  cause);
2377       op.set_allocation_context(AllocationContext::current());
2378 
2379       VMThread::execute(&op);
2380       if (!op.pause_succeeded()) {
2381         if (old_marking_count_before == _old_marking_cycles_started) {
2382           retry_gc = op.should_retry_gc();
2383         } else {
2384           // A Full GC happened while we were trying to schedule the
2385           // initial-mark GC. No point in starting a new cycle given
2386           // that the whole heap was collected anyway.
2387         }
2388 
2389         if (retry_gc) {
2390           if (GC_locker::is_active_and_needs_gc()) {
2391             GC_locker::stall_until_clear();
2392           }
2393         }
2394       }
2395     } else {
2396       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2397           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2398 
2399         // Schedule a standard evacuation pause. We're setting word_size
2400         // to 0 which means that we are not requesting a post-GC allocation.
2401         VM_G1IncCollectionPause op(gc_count_before,
2402                                    0,     /* word_size */
2403                                    false, /* should_initiate_conc_mark */
2404                                    g1_policy()->max_pause_time_ms(),
2405                                    cause);
2406         VMThread::execute(&op);
2407       } else {
2408         // Schedule a Full GC.
2409         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2410         VMThread::execute(&op);
2411       }
2412     }
2413   } while (retry_gc);
2414 }
2415 
2416 bool G1CollectedHeap::is_in(const void* p) const {
2417   if (_hrm.reserved().contains(p)) {
2418     // Given that we know that p is in the reserved space,
2419     // heap_region_containing_raw() should successfully
2420     // return the containing region.
2421     HeapRegion* hr = heap_region_containing_raw(p);
2422     return hr->is_in(p);
2423   } else {
2424     return false;
2425   }
2426 }
2427 
2428 #ifdef ASSERT
2429 bool G1CollectedHeap::is_in_exact(const void* p) const {
2430   bool contains = reserved_region().contains(p);
2431   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2432   if (contains && available) {
2433     return true;
2434   } else {
2435     return false;
2436   }
2437 }
2438 #endif
2439 
2440 // Iteration functions.
2441 
2442 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2443 
2444 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2445   ExtendedOopClosure* _cl;
2446 public:
2447   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2448   bool doHeapRegion(HeapRegion* r) {
2449     if (!r->is_continues_humongous()) {
2450       r->oop_iterate(_cl);
2451     }
2452     return false;
2453   }
2454 };
2455 
2456 // Iterates an ObjectClosure over all objects within a HeapRegion.
2457 
2458 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2459   ObjectClosure* _cl;
2460 public:
2461   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2462   bool doHeapRegion(HeapRegion* r) {
2463     if (!r->is_continues_humongous()) {
2464       r->object_iterate(_cl);
2465     }
2466     return false;
2467   }
2468 };
2469 
2470 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2471   IterateObjectClosureRegionClosure blk(cl);
2472   heap_region_iterate(&blk);
2473 }
2474 
2475 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2476   _hrm.iterate(cl);
2477 }
2478 
2479 void
2480 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2481                                          uint worker_id,
2482                                          HeapRegionClaimer *hrclaimer,
2483                                          bool concurrent) const {
2484   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2485 }
2486 
2487 // Clear the cached CSet starting regions and (more importantly)
2488 // the time stamps. Called when we reset the GC time stamp.
2489 void G1CollectedHeap::clear_cset_start_regions() {
2490   assert(_worker_cset_start_region != NULL, "sanity");
2491   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2492 
2493   int n_queues = MAX2((int)ParallelGCThreads, 1);
2494   for (int i = 0; i < n_queues; i++) {
2495     _worker_cset_start_region[i] = NULL;
2496     _worker_cset_start_region_time_stamp[i] = 0;
2497   }
2498 }
2499 
2500 // Given the id of a worker, obtain or calculate a suitable
2501 // starting region for iterating over the current collection set.
2502 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2503   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2504 
2505   HeapRegion* result = NULL;
2506   unsigned gc_time_stamp = get_gc_time_stamp();
2507 
2508   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2509     // Cached starting region for current worker was set
2510     // during the current pause - so it's valid.
2511     // Note: the cached starting heap region may be NULL
2512     // (when the collection set is empty).
2513     result = _worker_cset_start_region[worker_i];
2514     assert(result == NULL || result->in_collection_set(), "sanity");
2515     return result;
2516   }
2517 
2518   // The cached entry was not valid so let's calculate
2519   // a suitable starting heap region for this worker.
2520 
2521   // We want the parallel threads to start their collection
2522   // set iteration at different collection set regions to
2523   // avoid contention.
2524   // If we have:
2525   //          n collection set regions
2526   //          p threads
2527   // Then thread t will start at region floor ((t * n) / p)
2528 
2529   result = g1_policy()->collection_set();
2530   uint cs_size = g1_policy()->cset_region_length();
2531   uint active_workers = workers()->active_workers();
2532   assert(UseDynamicNumberOfGCThreads ||
2533            active_workers == workers()->total_workers(),
2534            "Unless dynamic should use total workers");
2535 
2536   uint end_ind   = (cs_size * worker_i) / active_workers;
2537   uint start_ind = 0;
2538 
2539   if (worker_i > 0 &&
2540       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2541     // Previous workers starting region is valid
2542     // so let's iterate from there
2543     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2544     result = _worker_cset_start_region[worker_i - 1];
2545   }
2546 
2547   for (uint i = start_ind; i < end_ind; i++) {
2548     result = result->next_in_collection_set();
2549   }
2550 
2551   // Note: the calculated starting heap region may be NULL
2552   // (when the collection set is empty).
2553   assert(result == NULL || result->in_collection_set(), "sanity");
2554   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2555          "should be updated only once per pause");
2556   _worker_cset_start_region[worker_i] = result;
2557   OrderAccess::storestore();
2558   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2559   return result;
2560 }
2561 
2562 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2563   HeapRegion* r = g1_policy()->collection_set();
2564   while (r != NULL) {
2565     HeapRegion* next = r->next_in_collection_set();
2566     if (cl->doHeapRegion(r)) {
2567       cl->incomplete();
2568       return;
2569     }
2570     r = next;
2571   }
2572 }
2573 
2574 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2575                                                   HeapRegionClosure *cl) {
2576   if (r == NULL) {
2577     // The CSet is empty so there's nothing to do.
2578     return;
2579   }
2580 
2581   assert(r->in_collection_set(),
2582          "Start region must be a member of the collection set.");
2583   HeapRegion* cur = r;
2584   while (cur != NULL) {
2585     HeapRegion* next = cur->next_in_collection_set();
2586     if (cl->doHeapRegion(cur) && false) {
2587       cl->incomplete();
2588       return;
2589     }
2590     cur = next;
2591   }
2592   cur = g1_policy()->collection_set();
2593   while (cur != r) {
2594     HeapRegion* next = cur->next_in_collection_set();
2595     if (cl->doHeapRegion(cur) && false) {
2596       cl->incomplete();
2597       return;
2598     }
2599     cur = next;
2600   }
2601 }
2602 
2603 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2604   HeapRegion* result = _hrm.next_region_in_heap(from);
2605   while (result != NULL && result->is_humongous()) {
2606     result = _hrm.next_region_in_heap(result);
2607   }
2608   return result;
2609 }
2610 
2611 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2612   HeapRegion* hr = heap_region_containing(addr);
2613   return hr->block_start(addr);
2614 }
2615 
2616 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2617   HeapRegion* hr = heap_region_containing(addr);
2618   return hr->block_size(addr);
2619 }
2620 
2621 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2622   HeapRegion* hr = heap_region_containing(addr);
2623   return hr->block_is_obj(addr);
2624 }
2625 
2626 bool G1CollectedHeap::supports_tlab_allocation() const {
2627   return true;
2628 }
2629 
2630 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2631   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2632 }
2633 
2634 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2635   return young_list()->eden_used_bytes();
2636 }
2637 
2638 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2639 // must be smaller than the humongous object limit.
2640 size_t G1CollectedHeap::max_tlab_size() const {
2641   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2642 }
2643 
2644 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2645   // Return the remaining space in the cur alloc region, but not less than
2646   // the min TLAB size.
2647 
2648   // Also, this value can be at most the humongous object threshold,
2649   // since we can't allow tlabs to grow big enough to accommodate
2650   // humongous objects.
2651 
2652   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2653   size_t max_tlab = max_tlab_size() * wordSize;
2654   if (hr == NULL) {
2655     return max_tlab;
2656   } else {
2657     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2658   }
2659 }
2660 
2661 size_t G1CollectedHeap::max_capacity() const {
2662   return _hrm.reserved().byte_size();
2663 }
2664 
2665 jlong G1CollectedHeap::millis_since_last_gc() {
2666   // assert(false, "NYI");
2667   return 0;
2668 }
2669 
2670 void G1CollectedHeap::prepare_for_verify() {
2671   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2672     ensure_parsability(false);
2673   }
2674   g1_rem_set()->prepare_for_verify();
2675 }
2676 
2677 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2678                                               VerifyOption vo) {
2679   switch (vo) {
2680   case VerifyOption_G1UsePrevMarking:
2681     return hr->obj_allocated_since_prev_marking(obj);
2682   case VerifyOption_G1UseNextMarking:
2683     return hr->obj_allocated_since_next_marking(obj);
2684   case VerifyOption_G1UseMarkWord:
2685     return false;
2686   default:
2687     ShouldNotReachHere();
2688   }
2689   return false; // keep some compilers happy
2690 }
2691 
2692 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2693   switch (vo) {
2694   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2695   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2696   case VerifyOption_G1UseMarkWord:    return NULL;
2697   default:                            ShouldNotReachHere();
2698   }
2699   return NULL; // keep some compilers happy
2700 }
2701 
2702 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2703   switch (vo) {
2704   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2705   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2706   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2707   default:                            ShouldNotReachHere();
2708   }
2709   return false; // keep some compilers happy
2710 }
2711 
2712 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2713   switch (vo) {
2714   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2715   case VerifyOption_G1UseNextMarking: return "NTAMS";
2716   case VerifyOption_G1UseMarkWord:    return "NONE";
2717   default:                            ShouldNotReachHere();
2718   }
2719   return NULL; // keep some compilers happy
2720 }
2721 
2722 class VerifyRootsClosure: public OopClosure {
2723 private:
2724   G1CollectedHeap* _g1h;
2725   VerifyOption     _vo;
2726   bool             _failures;
2727 public:
2728   // _vo == UsePrevMarking -> use "prev" marking information,
2729   // _vo == UseNextMarking -> use "next" marking information,
2730   // _vo == UseMarkWord    -> use mark word from object header.
2731   VerifyRootsClosure(VerifyOption vo) :
2732     _g1h(G1CollectedHeap::heap()),
2733     _vo(vo),
2734     _failures(false) { }
2735 
2736   bool failures() { return _failures; }
2737 
2738   template <class T> void do_oop_nv(T* p) {
2739     T heap_oop = oopDesc::load_heap_oop(p);
2740     if (!oopDesc::is_null(heap_oop)) {
2741       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2742       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2743         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2744                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2745         if (_vo == VerifyOption_G1UseMarkWord) {
2746           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2747         }
2748         obj->print_on(gclog_or_tty);
2749         _failures = true;
2750       }
2751     }
2752   }
2753 
2754   void do_oop(oop* p)       { do_oop_nv(p); }
2755   void do_oop(narrowOop* p) { do_oop_nv(p); }
2756 };
2757 
2758 class G1VerifyCodeRootOopClosure: public OopClosure {
2759   G1CollectedHeap* _g1h;
2760   OopClosure* _root_cl;
2761   nmethod* _nm;
2762   VerifyOption _vo;
2763   bool _failures;
2764 
2765   template <class T> void do_oop_work(T* p) {
2766     // First verify that this root is live
2767     _root_cl->do_oop(p);
2768 
2769     if (!G1VerifyHeapRegionCodeRoots) {
2770       // We're not verifying the code roots attached to heap region.
2771       return;
2772     }
2773 
2774     // Don't check the code roots during marking verification in a full GC
2775     if (_vo == VerifyOption_G1UseMarkWord) {
2776       return;
2777     }
2778 
2779     // Now verify that the current nmethod (which contains p) is
2780     // in the code root list of the heap region containing the
2781     // object referenced by p.
2782 
2783     T heap_oop = oopDesc::load_heap_oop(p);
2784     if (!oopDesc::is_null(heap_oop)) {
2785       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2786 
2787       // Now fetch the region containing the object
2788       HeapRegion* hr = _g1h->heap_region_containing(obj);
2789       HeapRegionRemSet* hrrs = hr->rem_set();
2790       // Verify that the strong code root list for this region
2791       // contains the nmethod
2792       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2793         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2794                                "from nmethod "PTR_FORMAT" not in strong "
2795                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2796                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2797         _failures = true;
2798       }
2799     }
2800   }
2801 
2802 public:
2803   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2804     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2805 
2806   void do_oop(oop* p) { do_oop_work(p); }
2807   void do_oop(narrowOop* p) { do_oop_work(p); }
2808 
2809   void set_nmethod(nmethod* nm) { _nm = nm; }
2810   bool failures() { return _failures; }
2811 };
2812 
2813 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2814   G1VerifyCodeRootOopClosure* _oop_cl;
2815 
2816 public:
2817   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2818     _oop_cl(oop_cl) {}
2819 
2820   void do_code_blob(CodeBlob* cb) {
2821     nmethod* nm = cb->as_nmethod_or_null();
2822     if (nm != NULL) {
2823       _oop_cl->set_nmethod(nm);
2824       nm->oops_do(_oop_cl);
2825     }
2826   }
2827 };
2828 
2829 class YoungRefCounterClosure : public OopClosure {
2830   G1CollectedHeap* _g1h;
2831   int              _count;
2832  public:
2833   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2834   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2835   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2836 
2837   int count() { return _count; }
2838   void reset_count() { _count = 0; };
2839 };
2840 
2841 class VerifyKlassClosure: public KlassClosure {
2842   YoungRefCounterClosure _young_ref_counter_closure;
2843   OopClosure *_oop_closure;
2844  public:
2845   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2846   void do_klass(Klass* k) {
2847     k->oops_do(_oop_closure);
2848 
2849     _young_ref_counter_closure.reset_count();
2850     k->oops_do(&_young_ref_counter_closure);
2851     if (_young_ref_counter_closure.count() > 0) {
2852       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
2853     }
2854   }
2855 };
2856 
2857 class VerifyLivenessOopClosure: public OopClosure {
2858   G1CollectedHeap* _g1h;
2859   VerifyOption _vo;
2860 public:
2861   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2862     _g1h(g1h), _vo(vo)
2863   { }
2864   void do_oop(narrowOop *p) { do_oop_work(p); }
2865   void do_oop(      oop *p) { do_oop_work(p); }
2866 
2867   template <class T> void do_oop_work(T *p) {
2868     oop obj = oopDesc::load_decode_heap_oop(p);
2869     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2870               "Dead object referenced by a not dead object");
2871   }
2872 };
2873 
2874 class VerifyObjsInRegionClosure: public ObjectClosure {
2875 private:
2876   G1CollectedHeap* _g1h;
2877   size_t _live_bytes;
2878   HeapRegion *_hr;
2879   VerifyOption _vo;
2880 public:
2881   // _vo == UsePrevMarking -> use "prev" marking information,
2882   // _vo == UseNextMarking -> use "next" marking information,
2883   // _vo == UseMarkWord    -> use mark word from object header.
2884   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2885     : _live_bytes(0), _hr(hr), _vo(vo) {
2886     _g1h = G1CollectedHeap::heap();
2887   }
2888   void do_object(oop o) {
2889     VerifyLivenessOopClosure isLive(_g1h, _vo);
2890     assert(o != NULL, "Huh?");
2891     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2892       // If the object is alive according to the mark word,
2893       // then verify that the marking information agrees.
2894       // Note we can't verify the contra-positive of the
2895       // above: if the object is dead (according to the mark
2896       // word), it may not be marked, or may have been marked
2897       // but has since became dead, or may have been allocated
2898       // since the last marking.
2899       if (_vo == VerifyOption_G1UseMarkWord) {
2900         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2901       }
2902 
2903       o->oop_iterate_no_header(&isLive);
2904       if (!_hr->obj_allocated_since_prev_marking(o)) {
2905         size_t obj_size = o->size();    // Make sure we don't overflow
2906         _live_bytes += (obj_size * HeapWordSize);
2907       }
2908     }
2909   }
2910   size_t live_bytes() { return _live_bytes; }
2911 };
2912 
2913 class VerifyRegionClosure: public HeapRegionClosure {
2914 private:
2915   bool             _par;
2916   VerifyOption     _vo;
2917   bool             _failures;
2918 public:
2919   // _vo == UsePrevMarking -> use "prev" marking information,
2920   // _vo == UseNextMarking -> use "next" marking information,
2921   // _vo == UseMarkWord    -> use mark word from object header.
2922   VerifyRegionClosure(bool par, VerifyOption vo)
2923     : _par(par),
2924       _vo(vo),
2925       _failures(false) {}
2926 
2927   bool failures() {
2928     return _failures;
2929   }
2930 
2931   bool doHeapRegion(HeapRegion* r) {
2932     if (!r->is_continues_humongous()) {
2933       bool failures = false;
2934       r->verify(_vo, &failures);
2935       if (failures) {
2936         _failures = true;
2937       } else {
2938         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2939         r->object_iterate(&not_dead_yet_cl);
2940         if (_vo != VerifyOption_G1UseNextMarking) {
2941           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2942             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2943                                    "max_live_bytes "SIZE_FORMAT" "
2944                                    "< calculated "SIZE_FORMAT,
2945                                    p2i(r->bottom()), p2i(r->end()),
2946                                    r->max_live_bytes(),
2947                                  not_dead_yet_cl.live_bytes());
2948             _failures = true;
2949           }
2950         } else {
2951           // When vo == UseNextMarking we cannot currently do a sanity
2952           // check on the live bytes as the calculation has not been
2953           // finalized yet.
2954         }
2955       }
2956     }
2957     return false; // stop the region iteration if we hit a failure
2958   }
2959 };
2960 
2961 // This is the task used for parallel verification of the heap regions
2962 
2963 class G1ParVerifyTask: public AbstractGangTask {
2964 private:
2965   G1CollectedHeap*  _g1h;
2966   VerifyOption      _vo;
2967   bool              _failures;
2968   HeapRegionClaimer _hrclaimer;
2969 
2970 public:
2971   // _vo == UsePrevMarking -> use "prev" marking information,
2972   // _vo == UseNextMarking -> use "next" marking information,
2973   // _vo == UseMarkWord    -> use mark word from object header.
2974   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
2975       AbstractGangTask("Parallel verify task"),
2976       _g1h(g1h),
2977       _vo(vo),
2978       _failures(false),
2979       _hrclaimer(g1h->workers()->active_workers()) {}
2980 
2981   bool failures() {
2982     return _failures;
2983   }
2984 
2985   void work(uint worker_id) {
2986     HandleMark hm;
2987     VerifyRegionClosure blk(true, _vo);
2988     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
2989     if (blk.failures()) {
2990       _failures = true;
2991     }
2992   }
2993 };
2994 
2995 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
2996   if (SafepointSynchronize::is_at_safepoint()) {
2997     assert(Thread::current()->is_VM_thread(),
2998            "Expected to be executed serially by the VM thread at this point");
2999 
3000     if (!silent) { gclog_or_tty->print("Roots "); }
3001     VerifyRootsClosure rootsCl(vo);
3002     VerifyKlassClosure klassCl(this, &rootsCl);
3003     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3004 
3005     // We apply the relevant closures to all the oops in the
3006     // system dictionary, class loader data graph, the string table
3007     // and the nmethods in the code cache.
3008     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3009     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3010 
3011     {
3012       G1RootProcessor root_processor(this, 1);
3013       root_processor.process_all_roots(&rootsCl,
3014                                        &cldCl,
3015                                        &blobsCl);
3016     }
3017 
3018     bool failures = rootsCl.failures() || codeRootsCl.failures();
3019 
3020     if (vo != VerifyOption_G1UseMarkWord) {
3021       // If we're verifying during a full GC then the region sets
3022       // will have been torn down at the start of the GC. Therefore
3023       // verifying the region sets will fail. So we only verify
3024       // the region sets when not in a full GC.
3025       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3026       verify_region_sets();
3027     }
3028 
3029     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3030     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3031 
3032       G1ParVerifyTask task(this, vo);
3033       assert(UseDynamicNumberOfGCThreads ||
3034         workers()->active_workers() == workers()->total_workers(),
3035         "If not dynamic should be using all the workers");
3036       workers()->run_task(&task);
3037       if (task.failures()) {
3038         failures = true;
3039       }
3040 
3041     } else {
3042       VerifyRegionClosure blk(false, vo);
3043       heap_region_iterate(&blk);
3044       if (blk.failures()) {
3045         failures = true;
3046       }
3047     }
3048 
3049     if (G1StringDedup::is_enabled()) {
3050       if (!silent) gclog_or_tty->print("StrDedup ");
3051       G1StringDedup::verify();
3052     }
3053 
3054     if (failures) {
3055       gclog_or_tty->print_cr("Heap:");
3056       // It helps to have the per-region information in the output to
3057       // help us track down what went wrong. This is why we call
3058       // print_extended_on() instead of print_on().
3059       print_extended_on(gclog_or_tty);
3060       gclog_or_tty->cr();
3061       gclog_or_tty->flush();
3062     }
3063     guarantee(!failures, "there should not have been any failures");
3064   } else {
3065     if (!silent) {
3066       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3067       if (G1StringDedup::is_enabled()) {
3068         gclog_or_tty->print(", StrDedup");
3069       }
3070       gclog_or_tty->print(") ");
3071     }
3072   }
3073 }
3074 
3075 void G1CollectedHeap::verify(bool silent) {
3076   verify(silent, VerifyOption_G1UsePrevMarking);
3077 }
3078 
3079 double G1CollectedHeap::verify(bool guard, const char* msg) {
3080   double verify_time_ms = 0.0;
3081 
3082   if (guard && total_collections() >= VerifyGCStartAt) {
3083     double verify_start = os::elapsedTime();
3084     HandleMark hm;  // Discard invalid handles created during verification
3085     prepare_for_verify();
3086     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3087     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3088   }
3089 
3090   return verify_time_ms;
3091 }
3092 
3093 void G1CollectedHeap::verify_before_gc() {
3094   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3095   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3096 }
3097 
3098 void G1CollectedHeap::verify_after_gc() {
3099   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3100   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3101 }
3102 
3103 class PrintRegionClosure: public HeapRegionClosure {
3104   outputStream* _st;
3105 public:
3106   PrintRegionClosure(outputStream* st) : _st(st) {}
3107   bool doHeapRegion(HeapRegion* r) {
3108     r->print_on(_st);
3109     return false;
3110   }
3111 };
3112 
3113 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3114                                        const HeapRegion* hr,
3115                                        const VerifyOption vo) const {
3116   switch (vo) {
3117   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3118   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3119   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3120   default:                            ShouldNotReachHere();
3121   }
3122   return false; // keep some compilers happy
3123 }
3124 
3125 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3126                                        const VerifyOption vo) const {
3127   switch (vo) {
3128   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3129   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3130   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3131   default:                            ShouldNotReachHere();
3132   }
3133   return false; // keep some compilers happy
3134 }
3135 
3136 void G1CollectedHeap::print_on(outputStream* st) const {
3137   st->print(" %-20s", "garbage-first heap");
3138   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3139             capacity()/K, used_unlocked()/K);
3140   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3141             p2i(_hrm.reserved().start()),
3142             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3143             p2i(_hrm.reserved().end()));
3144   st->cr();
3145   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3146   uint young_regions = _young_list->length();
3147   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3148             (size_t) young_regions * HeapRegion::GrainBytes / K);
3149   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3150   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3151             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3152   st->cr();
3153   MetaspaceAux::print_on(st);
3154 }
3155 
3156 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3157   print_on(st);
3158 
3159   // Print the per-region information.
3160   st->cr();
3161   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3162                "HS=humongous(starts), HC=humongous(continues), "
3163                "CS=collection set, F=free, TS=gc time stamp, "
3164                "PTAMS=previous top-at-mark-start, "
3165                "NTAMS=next top-at-mark-start)");
3166   PrintRegionClosure blk(st);
3167   heap_region_iterate(&blk);
3168 }
3169 
3170 void G1CollectedHeap::print_on_error(outputStream* st) const {
3171   this->CollectedHeap::print_on_error(st);
3172 
3173   if (_cm != NULL) {
3174     st->cr();
3175     _cm->print_on_error(st);
3176   }
3177 }
3178 
3179 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3180   workers()->print_worker_threads_on(st);
3181   _cmThread->print_on(st);
3182   st->cr();
3183   _cm->print_worker_threads_on(st);
3184   _cg1r->print_worker_threads_on(st);
3185   if (G1StringDedup::is_enabled()) {
3186     G1StringDedup::print_worker_threads_on(st);
3187   }
3188 }
3189 
3190 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3191   workers()->threads_do(tc);
3192   tc->do_thread(_cmThread);
3193   _cg1r->threads_do(tc);
3194   if (G1StringDedup::is_enabled()) {
3195     G1StringDedup::threads_do(tc);
3196   }
3197 }
3198 
3199 void G1CollectedHeap::print_tracing_info() const {
3200   // We'll overload this to mean "trace GC pause statistics."
3201   if (TraceYoungGenTime || TraceOldGenTime) {
3202     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3203     // to that.
3204     g1_policy()->print_tracing_info();
3205   }
3206   if (G1SummarizeRSetStats) {
3207     g1_rem_set()->print_summary_info();
3208   }
3209   if (G1SummarizeConcMark) {
3210     concurrent_mark()->print_summary_info();
3211   }
3212   g1_policy()->print_yg_surv_rate_info();
3213 }
3214 
3215 #ifndef PRODUCT
3216 // Helpful for debugging RSet issues.
3217 
3218 class PrintRSetsClosure : public HeapRegionClosure {
3219 private:
3220   const char* _msg;
3221   size_t _occupied_sum;
3222 
3223 public:
3224   bool doHeapRegion(HeapRegion* r) {
3225     HeapRegionRemSet* hrrs = r->rem_set();
3226     size_t occupied = hrrs->occupied();
3227     _occupied_sum += occupied;
3228 
3229     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3230                            HR_FORMAT_PARAMS(r));
3231     if (occupied == 0) {
3232       gclog_or_tty->print_cr("  RSet is empty");
3233     } else {
3234       hrrs->print();
3235     }
3236     gclog_or_tty->print_cr("----------");
3237     return false;
3238   }
3239 
3240   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3241     gclog_or_tty->cr();
3242     gclog_or_tty->print_cr("========================================");
3243     gclog_or_tty->print_cr("%s", msg);
3244     gclog_or_tty->cr();
3245   }
3246 
3247   ~PrintRSetsClosure() {
3248     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3249     gclog_or_tty->print_cr("========================================");
3250     gclog_or_tty->cr();
3251   }
3252 };
3253 
3254 void G1CollectedHeap::print_cset_rsets() {
3255   PrintRSetsClosure cl("Printing CSet RSets");
3256   collection_set_iterate(&cl);
3257 }
3258 
3259 void G1CollectedHeap::print_all_rsets() {
3260   PrintRSetsClosure cl("Printing All RSets");;
3261   heap_region_iterate(&cl);
3262 }
3263 #endif // PRODUCT
3264 
3265 G1CollectedHeap* G1CollectedHeap::heap() {
3266   CollectedHeap* heap = Universe::heap();
3267   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3268   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3269   return (G1CollectedHeap*)heap;
3270 }
3271 
3272 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3273   // always_do_update_barrier = false;
3274   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3275   // Fill TLAB's and such
3276   accumulate_statistics_all_tlabs();
3277   ensure_parsability(true);
3278 
3279   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3280       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3281     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3282   }
3283 }
3284 
3285 void G1CollectedHeap::gc_epilogue(bool full) {
3286 
3287   if (G1SummarizeRSetStats &&
3288       (G1SummarizeRSetStatsPeriod > 0) &&
3289       // we are at the end of the GC. Total collections has already been increased.
3290       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3291     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3292   }
3293 
3294   // FIXME: what is this about?
3295   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3296   // is set.
3297   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3298                         "derived pointer present"));
3299   // always_do_update_barrier = true;
3300 
3301   resize_all_tlabs();
3302   allocation_context_stats().update(full);
3303 
3304   // We have just completed a GC. Update the soft reference
3305   // policy with the new heap occupancy
3306   Universe::update_heap_info_at_gc();
3307 }
3308 
3309 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3310                                                uint gc_count_before,
3311                                                bool* succeeded,
3312                                                GCCause::Cause gc_cause) {
3313   assert_heap_not_locked_and_not_at_safepoint();
3314   g1_policy()->record_stop_world_start();
3315   VM_G1IncCollectionPause op(gc_count_before,
3316                              word_size,
3317                              false, /* should_initiate_conc_mark */
3318                              g1_policy()->max_pause_time_ms(),
3319                              gc_cause);
3320 
3321   op.set_allocation_context(AllocationContext::current());
3322   VMThread::execute(&op);
3323 
3324   HeapWord* result = op.result();
3325   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3326   assert(result == NULL || ret_succeeded,
3327          "the result should be NULL if the VM did not succeed");
3328   *succeeded = ret_succeeded;
3329 
3330   assert_heap_not_locked();
3331   return result;
3332 }
3333 
3334 void
3335 G1CollectedHeap::doConcurrentMark() {
3336   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3337   if (!_cmThread->in_progress()) {
3338     _cmThread->set_started();
3339     CGC_lock->notify();
3340   }
3341 }
3342 
3343 size_t G1CollectedHeap::pending_card_num() {
3344   size_t extra_cards = 0;
3345   JavaThread *curr = Threads::first();
3346   while (curr != NULL) {
3347     DirtyCardQueue& dcq = curr->dirty_card_queue();
3348     extra_cards += dcq.size();
3349     curr = curr->next();
3350   }
3351   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3352   size_t buffer_size = dcqs.buffer_size();
3353   size_t buffer_num = dcqs.completed_buffers_num();
3354 
3355   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3356   // in bytes - not the number of 'entries'. We need to convert
3357   // into a number of cards.
3358   return (buffer_size * buffer_num + extra_cards) / oopSize;
3359 }
3360 
3361 size_t G1CollectedHeap::cards_scanned() {
3362   return g1_rem_set()->cardsScanned();
3363 }
3364 
3365 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3366  private:
3367   size_t _total_humongous;
3368   size_t _candidate_humongous;
3369 
3370   DirtyCardQueue _dcq;
3371 
3372   // We don't nominate objects with many remembered set entries, on
3373   // the assumption that such objects are likely still live.
3374   bool is_remset_small(HeapRegion* region) const {
3375     HeapRegionRemSet* const rset = region->rem_set();
3376     return G1EagerReclaimHumongousObjectsWithStaleRefs
3377       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3378       : rset->is_empty();
3379   }
3380 
3381   bool is_typeArray_region(HeapRegion* region) const {
3382     return oop(region->bottom())->is_typeArray();
3383   }
3384 
3385   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3386     assert(region->is_starts_humongous(), "Must start a humongous object");
3387 
3388     // Candidate selection must satisfy the following constraints
3389     // while concurrent marking is in progress:
3390     //
3391     // * In order to maintain SATB invariants, an object must not be
3392     // reclaimed if it was allocated before the start of marking and
3393     // has not had its references scanned.  Such an object must have
3394     // its references (including type metadata) scanned to ensure no
3395     // live objects are missed by the marking process.  Objects
3396     // allocated after the start of concurrent marking don't need to
3397     // be scanned.
3398     //
3399     // * An object must not be reclaimed if it is on the concurrent
3400     // mark stack.  Objects allocated after the start of concurrent
3401     // marking are never pushed on the mark stack.
3402     //
3403     // Nominating only objects allocated after the start of concurrent
3404     // marking is sufficient to meet both constraints.  This may miss
3405     // some objects that satisfy the constraints, but the marking data
3406     // structures don't support efficiently performing the needed
3407     // additional tests or scrubbing of the mark stack.
3408     //
3409     // However, we presently only nominate is_typeArray() objects.
3410     // A humongous object containing references induces remembered
3411     // set entries on other regions.  In order to reclaim such an
3412     // object, those remembered sets would need to be cleaned up.
3413     //
3414     // We also treat is_typeArray() objects specially, allowing them
3415     // to be reclaimed even if allocated before the start of
3416     // concurrent mark.  For this we rely on mark stack insertion to
3417     // exclude is_typeArray() objects, preventing reclaiming an object
3418     // that is in the mark stack.  We also rely on the metadata for
3419     // such objects to be built-in and so ensured to be kept live.
3420     // Frequent allocation and drop of large binary blobs is an
3421     // important use case for eager reclaim, and this special handling
3422     // may reduce needed headroom.
3423 
3424     return is_typeArray_region(region) && is_remset_small(region);
3425   }
3426 
3427  public:
3428   RegisterHumongousWithInCSetFastTestClosure()
3429   : _total_humongous(0),
3430     _candidate_humongous(0),
3431     _dcq(&JavaThread::dirty_card_queue_set()) {
3432   }
3433 
3434   virtual bool doHeapRegion(HeapRegion* r) {
3435     if (!r->is_starts_humongous()) {
3436       return false;
3437     }
3438     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3439 
3440     bool is_candidate = humongous_region_is_candidate(g1h, r);
3441     uint rindex = r->hrm_index();
3442     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3443     if (is_candidate) {
3444       _candidate_humongous++;
3445       g1h->register_humongous_region_with_cset(rindex);
3446       // Is_candidate already filters out humongous object with large remembered sets.
3447       // If we have a humongous object with a few remembered sets, we simply flush these
3448       // remembered set entries into the DCQS. That will result in automatic
3449       // re-evaluation of their remembered set entries during the following evacuation
3450       // phase.
3451       if (!r->rem_set()->is_empty()) {
3452         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3453                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3454         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3455         HeapRegionRemSetIterator hrrs(r->rem_set());
3456         size_t card_index;
3457         while (hrrs.has_next(card_index)) {
3458           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3459           // The remembered set might contain references to already freed
3460           // regions. Filter out such entries to avoid failing card table
3461           // verification.
3462           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3463             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3464               *card_ptr = CardTableModRefBS::dirty_card_val();
3465               _dcq.enqueue(card_ptr);
3466             }
3467           }
3468         }
3469         r->rem_set()->clear_locked();
3470       }
3471       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3472     }
3473     _total_humongous++;
3474 
3475     return false;
3476   }
3477 
3478   size_t total_humongous() const { return _total_humongous; }
3479   size_t candidate_humongous() const { return _candidate_humongous; }
3480 
3481   void flush_rem_set_entries() { _dcq.flush(); }
3482 };
3483 
3484 void G1CollectedHeap::register_humongous_regions_with_cset() {
3485   if (!G1EagerReclaimHumongousObjects) {
3486     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3487     return;
3488   }
3489   double time = os::elapsed_counter();
3490 
3491   // Collect reclaim candidate information and register candidates with cset.
3492   RegisterHumongousWithInCSetFastTestClosure cl;
3493   heap_region_iterate(&cl);
3494 
3495   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3496   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3497                                                                   cl.total_humongous(),
3498                                                                   cl.candidate_humongous());
3499   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3500 
3501   // Finally flush all remembered set entries to re-check into the global DCQS.
3502   cl.flush_rem_set_entries();
3503 }
3504 
3505 void
3506 G1CollectedHeap::setup_surviving_young_words() {
3507   assert(_surviving_young_words == NULL, "pre-condition");
3508   uint array_length = g1_policy()->young_cset_region_length();
3509   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3510   if (_surviving_young_words == NULL) {
3511     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3512                           "Not enough space for young surv words summary.");
3513   }
3514   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3515 #ifdef ASSERT
3516   for (uint i = 0;  i < array_length; ++i) {
3517     assert( _surviving_young_words[i] == 0, "memset above" );
3518   }
3519 #endif // !ASSERT
3520 }
3521 
3522 void
3523 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3524   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3525   uint array_length = g1_policy()->young_cset_region_length();
3526   for (uint i = 0; i < array_length; ++i) {
3527     _surviving_young_words[i] += surv_young_words[i];
3528   }
3529 }
3530 
3531 void
3532 G1CollectedHeap::cleanup_surviving_young_words() {
3533   guarantee( _surviving_young_words != NULL, "pre-condition" );
3534   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3535   _surviving_young_words = NULL;
3536 }
3537 
3538 #ifdef ASSERT
3539 class VerifyCSetClosure: public HeapRegionClosure {
3540 public:
3541   bool doHeapRegion(HeapRegion* hr) {
3542     // Here we check that the CSet region's RSet is ready for parallel
3543     // iteration. The fields that we'll verify are only manipulated
3544     // when the region is part of a CSet and is collected. Afterwards,
3545     // we reset these fields when we clear the region's RSet (when the
3546     // region is freed) so they are ready when the region is
3547     // re-allocated. The only exception to this is if there's an
3548     // evacuation failure and instead of freeing the region we leave
3549     // it in the heap. In that case, we reset these fields during
3550     // evacuation failure handling.
3551     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3552 
3553     // Here's a good place to add any other checks we'd like to
3554     // perform on CSet regions.
3555     return false;
3556   }
3557 };
3558 #endif // ASSERT
3559 
3560 #if TASKQUEUE_STATS
3561 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3562   st->print_raw_cr("GC Task Stats");
3563   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3564   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3565 }
3566 
3567 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3568   print_taskqueue_stats_hdr(st);
3569 
3570   TaskQueueStats totals;
3571   const uint n = workers()->total_workers();
3572   for (uint i = 0; i < n; ++i) {
3573     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3574     totals += task_queue(i)->stats;
3575   }
3576   st->print_raw("tot "); totals.print(st); st->cr();
3577 
3578   DEBUG_ONLY(totals.verify());
3579 }
3580 
3581 void G1CollectedHeap::reset_taskqueue_stats() {
3582   const uint n = workers()->total_workers();
3583   for (uint i = 0; i < n; ++i) {
3584     task_queue(i)->stats.reset();
3585   }
3586 }
3587 #endif // TASKQUEUE_STATS
3588 
3589 void G1CollectedHeap::log_gc_header() {
3590   if (!G1Log::fine()) {
3591     return;
3592   }
3593 
3594   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3595 
3596   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3597     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3598     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3599 
3600   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3601 }
3602 
3603 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3604   if (!G1Log::fine()) {
3605     return;
3606   }
3607 
3608   if (G1Log::finer()) {
3609     if (evacuation_failed()) {
3610       gclog_or_tty->print(" (to-space exhausted)");
3611     }
3612     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3613     g1_policy()->phase_times()->note_gc_end();
3614     g1_policy()->phase_times()->print(pause_time_sec);
3615     g1_policy()->print_detailed_heap_transition();
3616   } else {
3617     if (evacuation_failed()) {
3618       gclog_or_tty->print("--");
3619     }
3620     g1_policy()->print_heap_transition();
3621     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3622   }
3623   gclog_or_tty->flush();
3624 }
3625 
3626 bool
3627 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3628   assert_at_safepoint(true /* should_be_vm_thread */);
3629   guarantee(!is_gc_active(), "collection is not reentrant");
3630 
3631   if (GC_locker::check_active_before_gc()) {
3632     return false;
3633   }
3634 
3635   _gc_timer_stw->register_gc_start();
3636 
3637   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3638 
3639   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3640   ResourceMark rm;
3641 
3642   G1Log::update_level();
3643   print_heap_before_gc();
3644   trace_heap_before_gc(_gc_tracer_stw);
3645 
3646   verify_region_sets_optional();
3647   verify_dirty_young_regions();
3648 
3649   // This call will decide whether this pause is an initial-mark
3650   // pause. If it is, during_initial_mark_pause() will return true
3651   // for the duration of this pause.
3652   g1_policy()->decide_on_conc_mark_initiation();
3653 
3654   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3655   assert(!g1_policy()->during_initial_mark_pause() ||
3656           g1_policy()->gcs_are_young(), "sanity");
3657 
3658   // We also do not allow mixed GCs during marking.
3659   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3660 
3661   // Record whether this pause is an initial mark. When the current
3662   // thread has completed its logging output and it's safe to signal
3663   // the CM thread, the flag's value in the policy has been reset.
3664   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3665 
3666   // Inner scope for scope based logging, timers, and stats collection
3667   {
3668     EvacuationInfo evacuation_info;
3669 
3670     if (g1_policy()->during_initial_mark_pause()) {
3671       // We are about to start a marking cycle, so we increment the
3672       // full collection counter.
3673       increment_old_marking_cycles_started();
3674       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3675     }
3676 
3677     _gc_tracer_stw->report_yc_type(yc_type());
3678 
3679     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3680 
3681     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3682                                                                   workers()->active_workers(),
3683                                                                   Threads::number_of_non_daemon_threads());
3684     assert(UseDynamicNumberOfGCThreads ||
3685            active_workers == workers()->total_workers(),
3686            "If not dynamic should be using all the  workers");
3687     workers()->set_active_workers(active_workers);
3688 
3689     double pause_start_sec = os::elapsedTime();
3690     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3691     log_gc_header();
3692 
3693     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3694     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3695 
3696     // If the secondary_free_list is not empty, append it to the
3697     // free_list. No need to wait for the cleanup operation to finish;
3698     // the region allocation code will check the secondary_free_list
3699     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3700     // set, skip this step so that the region allocation code has to
3701     // get entries from the secondary_free_list.
3702     if (!G1StressConcRegionFreeing) {
3703       append_secondary_free_list_if_not_empty_with_lock();
3704     }
3705 
3706     assert(check_young_list_well_formed(), "young list should be well formed");
3707 
3708     // Don't dynamically change the number of GC threads this early.  A value of
3709     // 0 is used to indicate serial work.  When parallel work is done,
3710     // it will be set.
3711 
3712     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3713       IsGCActiveMark x;
3714 
3715       gc_prologue(false);
3716       increment_total_collections(false /* full gc */);
3717       increment_gc_time_stamp();
3718 
3719       verify_before_gc();
3720 
3721       check_bitmaps("GC Start");
3722 
3723       COMPILER2_PRESENT(DerivedPointerTable::clear());
3724 
3725       // Please see comment in g1CollectedHeap.hpp and
3726       // G1CollectedHeap::ref_processing_init() to see how
3727       // reference processing currently works in G1.
3728 
3729       // Enable discovery in the STW reference processor
3730       ref_processor_stw()->enable_discovery();
3731 
3732       {
3733         // We want to temporarily turn off discovery by the
3734         // CM ref processor, if necessary, and turn it back on
3735         // on again later if we do. Using a scoped
3736         // NoRefDiscovery object will do this.
3737         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3738 
3739         // Forget the current alloc region (we might even choose it to be part
3740         // of the collection set!).
3741         _allocator->release_mutator_alloc_region();
3742 
3743         // We should call this after we retire the mutator alloc
3744         // region(s) so that all the ALLOC / RETIRE events are generated
3745         // before the start GC event.
3746         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3747 
3748         // This timing is only used by the ergonomics to handle our pause target.
3749         // It is unclear why this should not include the full pause. We will
3750         // investigate this in CR 7178365.
3751         //
3752         // Preserving the old comment here if that helps the investigation:
3753         //
3754         // The elapsed time induced by the start time below deliberately elides
3755         // the possible verification above.
3756         double sample_start_time_sec = os::elapsedTime();
3757 
3758 #if YOUNG_LIST_VERBOSE
3759         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3760         _young_list->print();
3761         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3762 #endif // YOUNG_LIST_VERBOSE
3763 
3764         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3765 
3766         double scan_wait_start = os::elapsedTime();
3767         // We have to wait until the CM threads finish scanning the
3768         // root regions as it's the only way to ensure that all the
3769         // objects on them have been correctly scanned before we start
3770         // moving them during the GC.
3771         bool waited = _cm->root_regions()->wait_until_scan_finished();
3772         double wait_time_ms = 0.0;
3773         if (waited) {
3774           double scan_wait_end = os::elapsedTime();
3775           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3776         }
3777         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3778 
3779 #if YOUNG_LIST_VERBOSE
3780         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3781         _young_list->print();
3782 #endif // YOUNG_LIST_VERBOSE
3783 
3784         if (g1_policy()->during_initial_mark_pause()) {
3785           concurrent_mark()->checkpointRootsInitialPre();
3786         }
3787 
3788 #if YOUNG_LIST_VERBOSE
3789         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3790         _young_list->print();
3791         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3792 #endif // YOUNG_LIST_VERBOSE
3793 
3794         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3795 
3796         register_humongous_regions_with_cset();
3797 
3798         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3799 
3800         _cm->note_start_of_gc();
3801         // We call this after finalize_cset() to
3802         // ensure that the CSet has been finalized.
3803         _cm->verify_no_cset_oops();
3804 
3805         if (_hr_printer.is_active()) {
3806           HeapRegion* hr = g1_policy()->collection_set();
3807           while (hr != NULL) {
3808             _hr_printer.cset(hr);
3809             hr = hr->next_in_collection_set();
3810           }
3811         }
3812 
3813 #ifdef ASSERT
3814         VerifyCSetClosure cl;
3815         collection_set_iterate(&cl);
3816 #endif // ASSERT
3817 
3818         setup_surviving_young_words();
3819 
3820         // Initialize the GC alloc regions.
3821         _allocator->init_gc_alloc_regions(evacuation_info);
3822 
3823         // Actually do the work...
3824         evacuate_collection_set(evacuation_info);
3825 
3826         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3827 
3828         eagerly_reclaim_humongous_regions();
3829 
3830         g1_policy()->clear_collection_set();
3831 
3832         cleanup_surviving_young_words();
3833 
3834         // Start a new incremental collection set for the next pause.
3835         g1_policy()->start_incremental_cset_building();
3836 
3837         clear_cset_fast_test();
3838 
3839         _young_list->reset_sampled_info();
3840 
3841         // Don't check the whole heap at this point as the
3842         // GC alloc regions from this pause have been tagged
3843         // as survivors and moved on to the survivor list.
3844         // Survivor regions will fail the !is_young() check.
3845         assert(check_young_list_empty(false /* check_heap */),
3846           "young list should be empty");
3847 
3848 #if YOUNG_LIST_VERBOSE
3849         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3850         _young_list->print();
3851 #endif // YOUNG_LIST_VERBOSE
3852 
3853         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3854                                              _young_list->first_survivor_region(),
3855                                              _young_list->last_survivor_region());
3856 
3857         _young_list->reset_auxilary_lists();
3858 
3859         if (evacuation_failed()) {
3860           _allocator->set_used(recalculate_used());
3861           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3862           for (uint i = 0; i < n_queues; i++) {
3863             if (_evacuation_failed_info_array[i].has_failed()) {
3864               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3865             }
3866           }
3867         } else {
3868           // The "used" of the the collection set have already been subtracted
3869           // when they were freed.  Add in the bytes evacuated.
3870           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3871         }
3872 
3873         if (g1_policy()->during_initial_mark_pause()) {
3874           // We have to do this before we notify the CM threads that
3875           // they can start working to make sure that all the
3876           // appropriate initialization is done on the CM object.
3877           concurrent_mark()->checkpointRootsInitialPost();
3878           set_marking_started();
3879           // Note that we don't actually trigger the CM thread at
3880           // this point. We do that later when we're sure that
3881           // the current thread has completed its logging output.
3882         }
3883 
3884         allocate_dummy_regions();
3885 
3886 #if YOUNG_LIST_VERBOSE
3887         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3888         _young_list->print();
3889         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3890 #endif // YOUNG_LIST_VERBOSE
3891 
3892         _allocator->init_mutator_alloc_region();
3893 
3894         {
3895           size_t expand_bytes = g1_policy()->expansion_amount();
3896           if (expand_bytes > 0) {
3897             size_t bytes_before = capacity();
3898             // No need for an ergo verbose message here,
3899             // expansion_amount() does this when it returns a value > 0.
3900             if (!expand(expand_bytes)) {
3901               // We failed to expand the heap. Cannot do anything about it.
3902             }
3903           }
3904         }
3905 
3906         // We redo the verification but now wrt to the new CSet which
3907         // has just got initialized after the previous CSet was freed.
3908         _cm->verify_no_cset_oops();
3909         _cm->note_end_of_gc();
3910 
3911         // This timing is only used by the ergonomics to handle our pause target.
3912         // It is unclear why this should not include the full pause. We will
3913         // investigate this in CR 7178365.
3914         double sample_end_time_sec = os::elapsedTime();
3915         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3916         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3917 
3918         MemoryService::track_memory_usage();
3919 
3920         // In prepare_for_verify() below we'll need to scan the deferred
3921         // update buffers to bring the RSets up-to-date if
3922         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3923         // the update buffers we'll probably need to scan cards on the
3924         // regions we just allocated to (i.e., the GC alloc
3925         // regions). However, during the last GC we called
3926         // set_saved_mark() on all the GC alloc regions, so card
3927         // scanning might skip the [saved_mark_word()...top()] area of
3928         // those regions (i.e., the area we allocated objects into
3929         // during the last GC). But it shouldn't. Given that
3930         // saved_mark_word() is conditional on whether the GC time stamp
3931         // on the region is current or not, by incrementing the GC time
3932         // stamp here we invalidate all the GC time stamps on all the
3933         // regions and saved_mark_word() will simply return top() for
3934         // all the regions. This is a nicer way of ensuring this rather
3935         // than iterating over the regions and fixing them. In fact, the
3936         // GC time stamp increment here also ensures that
3937         // saved_mark_word() will return top() between pauses, i.e.,
3938         // during concurrent refinement. So we don't need the
3939         // is_gc_active() check to decided which top to use when
3940         // scanning cards (see CR 7039627).
3941         increment_gc_time_stamp();
3942 
3943         verify_after_gc();
3944         check_bitmaps("GC End");
3945 
3946         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3947         ref_processor_stw()->verify_no_references_recorded();
3948 
3949         // CM reference discovery will be re-enabled if necessary.
3950       }
3951 
3952       // We should do this after we potentially expand the heap so
3953       // that all the COMMIT events are generated before the end GC
3954       // event, and after we retire the GC alloc regions so that all
3955       // RETIRE events are generated before the end GC event.
3956       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3957 
3958 #ifdef TRACESPINNING
3959       ParallelTaskTerminator::print_termination_counts();
3960 #endif
3961 
3962       gc_epilogue(false);
3963     }
3964 
3965     // Print the remainder of the GC log output.
3966     log_gc_footer(os::elapsedTime() - pause_start_sec);
3967 
3968     // It is not yet to safe to tell the concurrent mark to
3969     // start as we have some optional output below. We don't want the
3970     // output from the concurrent mark thread interfering with this
3971     // logging output either.
3972 
3973     _hrm.verify_optional();
3974     verify_region_sets_optional();
3975 
3976     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
3977     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3978 
3979     print_heap_after_gc();
3980     trace_heap_after_gc(_gc_tracer_stw);
3981 
3982     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3983     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3984     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3985     // before any GC notifications are raised.
3986     g1mm()->update_sizes();
3987 
3988     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3989     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3990     _gc_timer_stw->register_gc_end();
3991     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3992   }
3993   // It should now be safe to tell the concurrent mark thread to start
3994   // without its logging output interfering with the logging output
3995   // that came from the pause.
3996 
3997   if (should_start_conc_mark) {
3998     // CAUTION: after the doConcurrentMark() call below,
3999     // the concurrent marking thread(s) could be running
4000     // concurrently with us. Make sure that anything after
4001     // this point does not assume that we are the only GC thread
4002     // running. Note: of course, the actual marking work will
4003     // not start until the safepoint itself is released in
4004     // SuspendibleThreadSet::desynchronize().
4005     doConcurrentMark();
4006   }
4007 
4008   return true;
4009 }
4010 
4011 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4012   _drain_in_progress = false;
4013   set_evac_failure_closure(cl);
4014   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4015 }
4016 
4017 void G1CollectedHeap::finalize_for_evac_failure() {
4018   assert(_evac_failure_scan_stack != NULL &&
4019          _evac_failure_scan_stack->length() == 0,
4020          "Postcondition");
4021   assert(!_drain_in_progress, "Postcondition");
4022   delete _evac_failure_scan_stack;
4023   _evac_failure_scan_stack = NULL;
4024 }
4025 
4026 void G1CollectedHeap::remove_self_forwarding_pointers() {
4027   double remove_self_forwards_start = os::elapsedTime();
4028 
4029   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4030   workers()->run_task(&rsfp_task);
4031 
4032   // Now restore saved marks, if any.
4033   assert(_objs_with_preserved_marks.size() ==
4034             _preserved_marks_of_objs.size(), "Both or none.");
4035   while (!_objs_with_preserved_marks.is_empty()) {
4036     oop obj = _objs_with_preserved_marks.pop();
4037     markOop m = _preserved_marks_of_objs.pop();
4038     obj->set_mark(m);
4039   }
4040   _objs_with_preserved_marks.clear(true);
4041   _preserved_marks_of_objs.clear(true);
4042 
4043   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4044 }
4045 
4046 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4047   _evac_failure_scan_stack->push(obj);
4048 }
4049 
4050 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4051   assert(_evac_failure_scan_stack != NULL, "precondition");
4052 
4053   while (_evac_failure_scan_stack->length() > 0) {
4054      oop obj = _evac_failure_scan_stack->pop();
4055      _evac_failure_closure->set_region(heap_region_containing(obj));
4056      obj->oop_iterate_backwards(_evac_failure_closure);
4057   }
4058 }
4059 
4060 oop
4061 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4062                                                oop old) {
4063   assert(obj_in_cs(old),
4064          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4065                  p2i(old)));
4066   markOop m = old->mark();
4067   oop forward_ptr = old->forward_to_atomic(old);
4068   if (forward_ptr == NULL) {
4069     // Forward-to-self succeeded.
4070     assert(_par_scan_state != NULL, "par scan state");
4071     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4072     uint queue_num = _par_scan_state->queue_num();
4073 
4074     _evacuation_failed = true;
4075     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4076     if (_evac_failure_closure != cl) {
4077       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4078       assert(!_drain_in_progress,
4079              "Should only be true while someone holds the lock.");
4080       // Set the global evac-failure closure to the current thread's.
4081       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4082       set_evac_failure_closure(cl);
4083       // Now do the common part.
4084       handle_evacuation_failure_common(old, m);
4085       // Reset to NULL.
4086       set_evac_failure_closure(NULL);
4087     } else {
4088       // The lock is already held, and this is recursive.
4089       assert(_drain_in_progress, "This should only be the recursive case.");
4090       handle_evacuation_failure_common(old, m);
4091     }
4092     return old;
4093   } else {
4094     // Forward-to-self failed. Either someone else managed to allocate
4095     // space for this object (old != forward_ptr) or they beat us in
4096     // self-forwarding it (old == forward_ptr).
4097     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4098            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4099                    "should not be in the CSet",
4100                    p2i(old), p2i(forward_ptr)));
4101     return forward_ptr;
4102   }
4103 }
4104 
4105 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4106   preserve_mark_if_necessary(old, m);
4107 
4108   HeapRegion* r = heap_region_containing(old);
4109   if (!r->evacuation_failed()) {
4110     r->set_evacuation_failed(true);
4111     _hr_printer.evac_failure(r);
4112   }
4113 
4114   push_on_evac_failure_scan_stack(old);
4115 
4116   if (!_drain_in_progress) {
4117     // prevent recursion in copy_to_survivor_space()
4118     _drain_in_progress = true;
4119     drain_evac_failure_scan_stack();
4120     _drain_in_progress = false;
4121   }
4122 }
4123 
4124 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4125   assert(evacuation_failed(), "Oversaving!");
4126   // We want to call the "for_promotion_failure" version only in the
4127   // case of a promotion failure.
4128   if (m->must_be_preserved_for_promotion_failure(obj)) {
4129     _objs_with_preserved_marks.push(obj);
4130     _preserved_marks_of_objs.push(m);
4131   }
4132 }
4133 
4134 void G1ParCopyHelper::mark_object(oop obj) {
4135   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4136 
4137   // We know that the object is not moving so it's safe to read its size.
4138   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4139 }
4140 
4141 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4142   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4143   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4144   assert(from_obj != to_obj, "should not be self-forwarded");
4145 
4146   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4147   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4148 
4149   // The object might be in the process of being copied by another
4150   // worker so we cannot trust that its to-space image is
4151   // well-formed. So we have to read its size from its from-space
4152   // image which we know should not be changing.
4153   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4154 }
4155 
4156 template <class T>
4157 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4158   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4159     _scanned_klass->record_modified_oops();
4160   }
4161 }
4162 
4163 template <G1Barrier barrier, G1Mark do_mark_object>
4164 template <class T>
4165 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4166   T heap_oop = oopDesc::load_heap_oop(p);
4167 
4168   if (oopDesc::is_null(heap_oop)) {
4169     return;
4170   }
4171 
4172   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4173 
4174   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4175 
4176   const InCSetState state = _g1->in_cset_state(obj);
4177   if (state.is_in_cset()) {
4178     oop forwardee;
4179     markOop m = obj->mark();
4180     if (m->is_marked()) {
4181       forwardee = (oop) m->decode_pointer();
4182     } else {
4183       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4184     }
4185     assert(forwardee != NULL, "forwardee should not be NULL");
4186     oopDesc::encode_store_heap_oop(p, forwardee);
4187     if (do_mark_object != G1MarkNone && forwardee != obj) {
4188       // If the object is self-forwarded we don't need to explicitly
4189       // mark it, the evacuation failure protocol will do so.
4190       mark_forwarded_object(obj, forwardee);
4191     }
4192 
4193     if (barrier == G1BarrierKlass) {
4194       do_klass_barrier(p, forwardee);
4195     }
4196   } else {
4197     if (state.is_humongous()) {
4198       _g1->set_humongous_is_live(obj);
4199     }
4200     // The object is not in collection set. If we're a root scanning
4201     // closure during an initial mark pause then attempt to mark the object.
4202     if (do_mark_object == G1MarkFromRoot) {
4203       mark_object(obj);
4204     }
4205   }
4206 
4207   if (barrier == G1BarrierEvac) {
4208     _par_scan_state->update_rs(_from, p, _worker_id);
4209   }
4210 }
4211 
4212 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4213 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4214 
4215 class G1ParEvacuateFollowersClosure : public VoidClosure {
4216 protected:
4217   G1CollectedHeap*              _g1h;
4218   G1ParScanThreadState*         _par_scan_state;
4219   RefToScanQueueSet*            _queues;
4220   ParallelTaskTerminator*       _terminator;
4221 
4222   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4223   RefToScanQueueSet*      queues()         { return _queues; }
4224   ParallelTaskTerminator* terminator()     { return _terminator; }
4225 
4226 public:
4227   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4228                                 G1ParScanThreadState* par_scan_state,
4229                                 RefToScanQueueSet* queues,
4230                                 ParallelTaskTerminator* terminator)
4231     : _g1h(g1h), _par_scan_state(par_scan_state),
4232       _queues(queues), _terminator(terminator) {}
4233 
4234   void do_void();
4235 
4236 private:
4237   inline bool offer_termination();
4238 };
4239 
4240 bool G1ParEvacuateFollowersClosure::offer_termination() {
4241   G1ParScanThreadState* const pss = par_scan_state();
4242   pss->start_term_time();
4243   const bool res = terminator()->offer_termination();
4244   pss->end_term_time();
4245   return res;
4246 }
4247 
4248 void G1ParEvacuateFollowersClosure::do_void() {
4249   G1ParScanThreadState* const pss = par_scan_state();
4250   pss->trim_queue();
4251   do {
4252     pss->steal_and_trim_queue(queues());
4253   } while (!offer_termination());
4254 }
4255 
4256 class G1KlassScanClosure : public KlassClosure {
4257  G1ParCopyHelper* _closure;
4258  bool             _process_only_dirty;
4259  int              _count;
4260  public:
4261   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4262       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4263   void do_klass(Klass* klass) {
4264     // If the klass has not been dirtied we know that there's
4265     // no references into  the young gen and we can skip it.
4266    if (!_process_only_dirty || klass->has_modified_oops()) {
4267       // Clean the klass since we're going to scavenge all the metadata.
4268       klass->clear_modified_oops();
4269 
4270       // Tell the closure that this klass is the Klass to scavenge
4271       // and is the one to dirty if oops are left pointing into the young gen.
4272       _closure->set_scanned_klass(klass);
4273 
4274       klass->oops_do(_closure);
4275 
4276       _closure->set_scanned_klass(NULL);
4277     }
4278     _count++;
4279   }
4280 };
4281 
4282 class G1ParTask : public AbstractGangTask {
4283 protected:
4284   G1CollectedHeap*       _g1h;
4285   RefToScanQueueSet      *_queues;
4286   G1RootProcessor*       _root_processor;
4287   ParallelTaskTerminator _terminator;
4288   uint _n_workers;
4289 
4290   Mutex _stats_lock;
4291   Mutex* stats_lock() { return &_stats_lock; }
4292 
4293 public:
4294   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4295     : AbstractGangTask("G1 collection"),
4296       _g1h(g1h),
4297       _queues(task_queues),
4298       _root_processor(root_processor),
4299       _terminator(0, _queues),
4300       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4301   {}
4302 
4303   RefToScanQueueSet* queues() { return _queues; }
4304 
4305   RefToScanQueue *work_queue(int i) {
4306     return queues()->queue(i);
4307   }
4308 
4309   ParallelTaskTerminator* terminator() { return &_terminator; }
4310 
4311   virtual void set_for_termination(uint active_workers) {
4312     terminator()->reset_for_reuse(active_workers);
4313     _n_workers = active_workers;
4314   }
4315 
4316   // Helps out with CLD processing.
4317   //
4318   // During InitialMark we need to:
4319   // 1) Scavenge all CLDs for the young GC.
4320   // 2) Mark all objects directly reachable from strong CLDs.
4321   template <G1Mark do_mark_object>
4322   class G1CLDClosure : public CLDClosure {
4323     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4324     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4325     G1KlassScanClosure                                _klass_in_cld_closure;
4326     bool                                              _claim;
4327 
4328    public:
4329     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4330                  bool only_young, bool claim)
4331         : _oop_closure(oop_closure),
4332           _oop_in_klass_closure(oop_closure->g1(),
4333                                 oop_closure->pss(),
4334                                 oop_closure->rp()),
4335           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4336           _claim(claim) {
4337 
4338     }
4339 
4340     void do_cld(ClassLoaderData* cld) {
4341       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4342     }
4343   };
4344 
4345   void work(uint worker_id) {
4346     if (worker_id >= _n_workers) return;  // no work needed this round
4347 
4348     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4349 
4350     {
4351       ResourceMark rm;
4352       HandleMark   hm;
4353 
4354       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4355 
4356       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4357       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4358 
4359       pss.set_evac_failure_closure(&evac_failure_cl);
4360 
4361       bool only_young = _g1h->g1_policy()->gcs_are_young();
4362 
4363       // Non-IM young GC.
4364       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4365       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4366                                                                                only_young, // Only process dirty klasses.
4367                                                                                false);     // No need to claim CLDs.
4368       // IM young GC.
4369       //    Strong roots closures.
4370       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4371       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4372                                                                                false, // Process all klasses.
4373                                                                                true); // Need to claim CLDs.
4374       //    Weak roots closures.
4375       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4376       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4377                                                                                     false, // Process all klasses.
4378                                                                                     true); // Need to claim CLDs.
4379 
4380       OopClosure* strong_root_cl;
4381       OopClosure* weak_root_cl;
4382       CLDClosure* strong_cld_cl;
4383       CLDClosure* weak_cld_cl;
4384 
4385       bool trace_metadata = false;
4386 
4387       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4388         // We also need to mark copied objects.
4389         strong_root_cl = &scan_mark_root_cl;
4390         strong_cld_cl  = &scan_mark_cld_cl;
4391         if (ClassUnloadingWithConcurrentMark) {
4392           weak_root_cl = &scan_mark_weak_root_cl;
4393           weak_cld_cl  = &scan_mark_weak_cld_cl;
4394           trace_metadata = true;
4395         } else {
4396           weak_root_cl = &scan_mark_root_cl;
4397           weak_cld_cl  = &scan_mark_cld_cl;
4398         }
4399       } else {
4400         strong_root_cl = &scan_only_root_cl;
4401         weak_root_cl   = &scan_only_root_cl;
4402         strong_cld_cl  = &scan_only_cld_cl;
4403         weak_cld_cl    = &scan_only_cld_cl;
4404       }
4405 
4406       pss.start_strong_roots();
4407 
4408       _root_processor->evacuate_roots(strong_root_cl,
4409                                       weak_root_cl,
4410                                       strong_cld_cl,
4411                                       weak_cld_cl,
4412                                       trace_metadata,
4413                                       worker_id);
4414 
4415       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4416       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4417                                             weak_root_cl,
4418                                             worker_id);
4419       pss.end_strong_roots();
4420 
4421       {
4422         double start = os::elapsedTime();
4423         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4424         evac.do_void();
4425         double elapsed_sec = os::elapsedTime() - start;
4426         double term_sec = pss.term_time();
4427         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4428         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4429         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4430       }
4431       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4432       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4433 
4434       if (PrintTerminationStats) {
4435         MutexLocker x(stats_lock());
4436         pss.print_termination_stats(worker_id);
4437       }
4438 
4439       assert(pss.queue_is_empty(), "should be empty");
4440 
4441       // Close the inner scope so that the ResourceMark and HandleMark
4442       // destructors are executed here and are included as part of the
4443       // "GC Worker Time".
4444     }
4445     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4446   }
4447 };
4448 
4449 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4450 private:
4451   BoolObjectClosure* _is_alive;
4452   int _initial_string_table_size;
4453   int _initial_symbol_table_size;
4454 
4455   bool  _process_strings;
4456   int _strings_processed;
4457   int _strings_removed;
4458 
4459   bool  _process_symbols;
4460   int _symbols_processed;
4461   int _symbols_removed;
4462 
4463 public:
4464   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4465     AbstractGangTask("String/Symbol Unlinking"),
4466     _is_alive(is_alive),
4467     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4468     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4469 
4470     _initial_string_table_size = StringTable::the_table()->table_size();
4471     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4472     if (process_strings) {
4473       StringTable::clear_parallel_claimed_index();
4474     }
4475     if (process_symbols) {
4476       SymbolTable::clear_parallel_claimed_index();
4477     }
4478   }
4479 
4480   ~G1StringSymbolTableUnlinkTask() {
4481     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4482               err_msg("claim value %d after unlink less than initial string table size %d",
4483                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4484     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4485               err_msg("claim value %d after unlink less than initial symbol table size %d",
4486                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4487 
4488     if (G1TraceStringSymbolTableScrubbing) {
4489       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4490                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4491                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4492                              strings_processed(), strings_removed(),
4493                              symbols_processed(), symbols_removed());
4494     }
4495   }
4496 
4497   void work(uint worker_id) {
4498     int strings_processed = 0;
4499     int strings_removed = 0;
4500     int symbols_processed = 0;
4501     int symbols_removed = 0;
4502     if (_process_strings) {
4503       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4504       Atomic::add(strings_processed, &_strings_processed);
4505       Atomic::add(strings_removed, &_strings_removed);
4506     }
4507     if (_process_symbols) {
4508       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4509       Atomic::add(symbols_processed, &_symbols_processed);
4510       Atomic::add(symbols_removed, &_symbols_removed);
4511     }
4512   }
4513 
4514   size_t strings_processed() const { return (size_t)_strings_processed; }
4515   size_t strings_removed()   const { return (size_t)_strings_removed; }
4516 
4517   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4518   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4519 };
4520 
4521 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4522 private:
4523   static Monitor* _lock;
4524 
4525   BoolObjectClosure* const _is_alive;
4526   const bool               _unloading_occurred;
4527   const uint               _num_workers;
4528 
4529   // Variables used to claim nmethods.
4530   nmethod* _first_nmethod;
4531   volatile nmethod* _claimed_nmethod;
4532 
4533   // The list of nmethods that need to be processed by the second pass.
4534   volatile nmethod* _postponed_list;
4535   volatile uint     _num_entered_barrier;
4536 
4537  public:
4538   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4539       _is_alive(is_alive),
4540       _unloading_occurred(unloading_occurred),
4541       _num_workers(num_workers),
4542       _first_nmethod(NULL),
4543       _claimed_nmethod(NULL),
4544       _postponed_list(NULL),
4545       _num_entered_barrier(0)
4546   {
4547     nmethod::increase_unloading_clock();
4548     // Get first alive nmethod
4549     NMethodIterator iter = NMethodIterator();
4550     if(iter.next_alive()) {
4551       _first_nmethod = iter.method();
4552     }
4553     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4554   }
4555 
4556   ~G1CodeCacheUnloadingTask() {
4557     CodeCache::verify_clean_inline_caches();
4558 
4559     CodeCache::set_needs_cache_clean(false);
4560     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4561 
4562     CodeCache::verify_icholder_relocations();
4563   }
4564 
4565  private:
4566   void add_to_postponed_list(nmethod* nm) {
4567       nmethod* old;
4568       do {
4569         old = (nmethod*)_postponed_list;
4570         nm->set_unloading_next(old);
4571       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4572   }
4573 
4574   void clean_nmethod(nmethod* nm) {
4575     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4576 
4577     if (postponed) {
4578       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4579       add_to_postponed_list(nm);
4580     }
4581 
4582     // Mark that this thread has been cleaned/unloaded.
4583     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4584     nm->set_unloading_clock(nmethod::global_unloading_clock());
4585   }
4586 
4587   void clean_nmethod_postponed(nmethod* nm) {
4588     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4589   }
4590 
4591   static const int MaxClaimNmethods = 16;
4592 
4593   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4594     nmethod* first;
4595     NMethodIterator last;
4596 
4597     do {
4598       *num_claimed_nmethods = 0;
4599 
4600       first = (nmethod*)_claimed_nmethod;
4601       last = NMethodIterator(first);
4602 
4603       if (first != NULL) {
4604 
4605         for (int i = 0; i < MaxClaimNmethods; i++) {
4606           if (!last.next_alive()) {
4607             break;
4608           }
4609           claimed_nmethods[i] = last.method();
4610           (*num_claimed_nmethods)++;
4611         }
4612       }
4613 
4614     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4615   }
4616 
4617   nmethod* claim_postponed_nmethod() {
4618     nmethod* claim;
4619     nmethod* next;
4620 
4621     do {
4622       claim = (nmethod*)_postponed_list;
4623       if (claim == NULL) {
4624         return NULL;
4625       }
4626 
4627       next = claim->unloading_next();
4628 
4629     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4630 
4631     return claim;
4632   }
4633 
4634  public:
4635   // Mark that we're done with the first pass of nmethod cleaning.
4636   void barrier_mark(uint worker_id) {
4637     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4638     _num_entered_barrier++;
4639     if (_num_entered_barrier == _num_workers) {
4640       ml.notify_all();
4641     }
4642   }
4643 
4644   // See if we have to wait for the other workers to
4645   // finish their first-pass nmethod cleaning work.
4646   void barrier_wait(uint worker_id) {
4647     if (_num_entered_barrier < _num_workers) {
4648       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4649       while (_num_entered_barrier < _num_workers) {
4650           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4651       }
4652     }
4653   }
4654 
4655   // Cleaning and unloading of nmethods. Some work has to be postponed
4656   // to the second pass, when we know which nmethods survive.
4657   void work_first_pass(uint worker_id) {
4658     // The first nmethods is claimed by the first worker.
4659     if (worker_id == 0 && _first_nmethod != NULL) {
4660       clean_nmethod(_first_nmethod);
4661       _first_nmethod = NULL;
4662     }
4663 
4664     int num_claimed_nmethods;
4665     nmethod* claimed_nmethods[MaxClaimNmethods];
4666 
4667     while (true) {
4668       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4669 
4670       if (num_claimed_nmethods == 0) {
4671         break;
4672       }
4673 
4674       for (int i = 0; i < num_claimed_nmethods; i++) {
4675         clean_nmethod(claimed_nmethods[i]);
4676       }
4677     }
4678   }
4679 
4680   void work_second_pass(uint worker_id) {
4681     nmethod* nm;
4682     // Take care of postponed nmethods.
4683     while ((nm = claim_postponed_nmethod()) != NULL) {
4684       clean_nmethod_postponed(nm);
4685     }
4686   }
4687 };
4688 
4689 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4690 
4691 class G1KlassCleaningTask : public StackObj {
4692   BoolObjectClosure*                      _is_alive;
4693   volatile jint                           _clean_klass_tree_claimed;
4694   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4695 
4696  public:
4697   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4698       _is_alive(is_alive),
4699       _clean_klass_tree_claimed(0),
4700       _klass_iterator() {
4701   }
4702 
4703  private:
4704   bool claim_clean_klass_tree_task() {
4705     if (_clean_klass_tree_claimed) {
4706       return false;
4707     }
4708 
4709     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4710   }
4711 
4712   InstanceKlass* claim_next_klass() {
4713     Klass* klass;
4714     do {
4715       klass =_klass_iterator.next_klass();
4716     } while (klass != NULL && !klass->oop_is_instance());
4717 
4718     return (InstanceKlass*)klass;
4719   }
4720 
4721 public:
4722 
4723   void clean_klass(InstanceKlass* ik) {
4724     ik->clean_implementors_list(_is_alive);
4725     ik->clean_method_data(_is_alive);
4726 
4727     // G1 specific cleanup work that has
4728     // been moved here to be done in parallel.
4729     ik->clean_dependent_nmethods();
4730   }
4731 
4732   void work() {
4733     ResourceMark rm;
4734 
4735     // One worker will clean the subklass/sibling klass tree.
4736     if (claim_clean_klass_tree_task()) {
4737       Klass::clean_subklass_tree(_is_alive);
4738     }
4739 
4740     // All workers will help cleaning the classes,
4741     InstanceKlass* klass;
4742     while ((klass = claim_next_klass()) != NULL) {
4743       clean_klass(klass);
4744     }
4745   }
4746 };
4747 
4748 // To minimize the remark pause times, the tasks below are done in parallel.
4749 class G1ParallelCleaningTask : public AbstractGangTask {
4750 private:
4751   G1StringSymbolTableUnlinkTask _string_symbol_task;
4752   G1CodeCacheUnloadingTask      _code_cache_task;
4753   G1KlassCleaningTask           _klass_cleaning_task;
4754 
4755 public:
4756   // The constructor is run in the VMThread.
4757   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4758       AbstractGangTask("Parallel Cleaning"),
4759       _string_symbol_task(is_alive, process_strings, process_symbols),
4760       _code_cache_task(num_workers, is_alive, unloading_occurred),
4761       _klass_cleaning_task(is_alive) {
4762   }
4763 
4764   // The parallel work done by all worker threads.
4765   void work(uint worker_id) {
4766     // Do first pass of code cache cleaning.
4767     _code_cache_task.work_first_pass(worker_id);
4768 
4769     // Let the threads mark that the first pass is done.
4770     _code_cache_task.barrier_mark(worker_id);
4771 
4772     // Clean the Strings and Symbols.
4773     _string_symbol_task.work(worker_id);
4774 
4775     // Wait for all workers to finish the first code cache cleaning pass.
4776     _code_cache_task.barrier_wait(worker_id);
4777 
4778     // Do the second code cache cleaning work, which realize on
4779     // the liveness information gathered during the first pass.
4780     _code_cache_task.work_second_pass(worker_id);
4781 
4782     // Clean all klasses that were not unloaded.
4783     _klass_cleaning_task.work();
4784   }
4785 };
4786 
4787 
4788 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4789                                         bool process_strings,
4790                                         bool process_symbols,
4791                                         bool class_unloading_occurred) {
4792   uint n_workers = workers()->active_workers();
4793 
4794   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4795                                         n_workers, class_unloading_occurred);
4796   workers()->run_task(&g1_unlink_task);
4797 }
4798 
4799 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4800                                                      bool process_strings, bool process_symbols) {
4801   {
4802     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4803     workers()->run_task(&g1_unlink_task);
4804   }
4805 
4806   if (G1StringDedup::is_enabled()) {
4807     G1StringDedup::unlink(is_alive);
4808   }
4809 }
4810 
4811 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4812  private:
4813   DirtyCardQueueSet* _queue;
4814  public:
4815   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4816 
4817   virtual void work(uint worker_id) {
4818     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4819     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4820 
4821     RedirtyLoggedCardTableEntryClosure cl;
4822     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4823 
4824     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4825   }
4826 };
4827 
4828 void G1CollectedHeap::redirty_logged_cards() {
4829   double redirty_logged_cards_start = os::elapsedTime();
4830 
4831   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4832   dirty_card_queue_set().reset_for_par_iteration();
4833   workers()->run_task(&redirty_task);
4834 
4835   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4836   dcq.merge_bufferlists(&dirty_card_queue_set());
4837   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4838 
4839   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4840 }
4841 
4842 // Weak Reference Processing support
4843 
4844 // An always "is_alive" closure that is used to preserve referents.
4845 // If the object is non-null then it's alive.  Used in the preservation
4846 // of referent objects that are pointed to by reference objects
4847 // discovered by the CM ref processor.
4848 class G1AlwaysAliveClosure: public BoolObjectClosure {
4849   G1CollectedHeap* _g1;
4850 public:
4851   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4852   bool do_object_b(oop p) {
4853     if (p != NULL) {
4854       return true;
4855     }
4856     return false;
4857   }
4858 };
4859 
4860 bool G1STWIsAliveClosure::do_object_b(oop p) {
4861   // An object is reachable if it is outside the collection set,
4862   // or is inside and copied.
4863   return !_g1->obj_in_cs(p) || p->is_forwarded();
4864 }
4865 
4866 // Non Copying Keep Alive closure
4867 class G1KeepAliveClosure: public OopClosure {
4868   G1CollectedHeap* _g1;
4869 public:
4870   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4871   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4872   void do_oop(oop* p) {
4873     oop obj = *p;
4874     assert(obj != NULL, "the caller should have filtered out NULL values");
4875 
4876     const InCSetState cset_state = _g1->in_cset_state(obj);
4877     if (!cset_state.is_in_cset_or_humongous()) {
4878       return;
4879     }
4880     if (cset_state.is_in_cset()) {
4881       assert( obj->is_forwarded(), "invariant" );
4882       *p = obj->forwardee();
4883     } else {
4884       assert(!obj->is_forwarded(), "invariant" );
4885       assert(cset_state.is_humongous(),
4886              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4887       _g1->set_humongous_is_live(obj);
4888     }
4889   }
4890 };
4891 
4892 // Copying Keep Alive closure - can be called from both
4893 // serial and parallel code as long as different worker
4894 // threads utilize different G1ParScanThreadState instances
4895 // and different queues.
4896 
4897 class G1CopyingKeepAliveClosure: public OopClosure {
4898   G1CollectedHeap*         _g1h;
4899   OopClosure*              _copy_non_heap_obj_cl;
4900   G1ParScanThreadState*    _par_scan_state;
4901 
4902 public:
4903   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4904                             OopClosure* non_heap_obj_cl,
4905                             G1ParScanThreadState* pss):
4906     _g1h(g1h),
4907     _copy_non_heap_obj_cl(non_heap_obj_cl),
4908     _par_scan_state(pss)
4909   {}
4910 
4911   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4912   virtual void do_oop(      oop* p) { do_oop_work(p); }
4913 
4914   template <class T> void do_oop_work(T* p) {
4915     oop obj = oopDesc::load_decode_heap_oop(p);
4916 
4917     if (_g1h->is_in_cset_or_humongous(obj)) {
4918       // If the referent object has been forwarded (either copied
4919       // to a new location or to itself in the event of an
4920       // evacuation failure) then we need to update the reference
4921       // field and, if both reference and referent are in the G1
4922       // heap, update the RSet for the referent.
4923       //
4924       // If the referent has not been forwarded then we have to keep
4925       // it alive by policy. Therefore we have copy the referent.
4926       //
4927       // If the reference field is in the G1 heap then we can push
4928       // on the PSS queue. When the queue is drained (after each
4929       // phase of reference processing) the object and it's followers
4930       // will be copied, the reference field set to point to the
4931       // new location, and the RSet updated. Otherwise we need to
4932       // use the the non-heap or metadata closures directly to copy
4933       // the referent object and update the pointer, while avoiding
4934       // updating the RSet.
4935 
4936       if (_g1h->is_in_g1_reserved(p)) {
4937         _par_scan_state->push_on_queue(p);
4938       } else {
4939         assert(!Metaspace::contains((const void*)p),
4940                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
4941         _copy_non_heap_obj_cl->do_oop(p);
4942       }
4943     }
4944   }
4945 };
4946 
4947 // Serial drain queue closure. Called as the 'complete_gc'
4948 // closure for each discovered list in some of the
4949 // reference processing phases.
4950 
4951 class G1STWDrainQueueClosure: public VoidClosure {
4952 protected:
4953   G1CollectedHeap* _g1h;
4954   G1ParScanThreadState* _par_scan_state;
4955 
4956   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4957 
4958 public:
4959   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4960     _g1h(g1h),
4961     _par_scan_state(pss)
4962   { }
4963 
4964   void do_void() {
4965     G1ParScanThreadState* const pss = par_scan_state();
4966     pss->trim_queue();
4967   }
4968 };
4969 
4970 // Parallel Reference Processing closures
4971 
4972 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4973 // processing during G1 evacuation pauses.
4974 
4975 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4976 private:
4977   G1CollectedHeap*   _g1h;
4978   RefToScanQueueSet* _queues;
4979   FlexibleWorkGang*  _workers;
4980   uint               _active_workers;
4981 
4982 public:
4983   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4984                            FlexibleWorkGang* workers,
4985                            RefToScanQueueSet *task_queues,
4986                            uint n_workers) :
4987     _g1h(g1h),
4988     _queues(task_queues),
4989     _workers(workers),
4990     _active_workers(n_workers)
4991   {
4992     assert(n_workers > 0, "shouldn't call this otherwise");
4993   }
4994 
4995   // Executes the given task using concurrent marking worker threads.
4996   virtual void execute(ProcessTask& task);
4997   virtual void execute(EnqueueTask& task);
4998 };
4999 
5000 // Gang task for possibly parallel reference processing
5001 
5002 class G1STWRefProcTaskProxy: public AbstractGangTask {
5003   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5004   ProcessTask&     _proc_task;
5005   G1CollectedHeap* _g1h;
5006   RefToScanQueueSet *_task_queues;
5007   ParallelTaskTerminator* _terminator;
5008 
5009 public:
5010   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5011                      G1CollectedHeap* g1h,
5012                      RefToScanQueueSet *task_queues,
5013                      ParallelTaskTerminator* terminator) :
5014     AbstractGangTask("Process reference objects in parallel"),
5015     _proc_task(proc_task),
5016     _g1h(g1h),
5017     _task_queues(task_queues),
5018     _terminator(terminator)
5019   {}
5020 
5021   virtual void work(uint worker_id) {
5022     // The reference processing task executed by a single worker.
5023     ResourceMark rm;
5024     HandleMark   hm;
5025 
5026     G1STWIsAliveClosure is_alive(_g1h);
5027 
5028     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5029     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5030 
5031     pss.set_evac_failure_closure(&evac_failure_cl);
5032 
5033     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5034 
5035     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5036 
5037     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5038 
5039     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5040       // We also need to mark copied objects.
5041       copy_non_heap_cl = &copy_mark_non_heap_cl;
5042     }
5043 
5044     // Keep alive closure.
5045     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5046 
5047     // Complete GC closure
5048     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5049 
5050     // Call the reference processing task's work routine.
5051     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5052 
5053     // Note we cannot assert that the refs array is empty here as not all
5054     // of the processing tasks (specifically phase2 - pp2_work) execute
5055     // the complete_gc closure (which ordinarily would drain the queue) so
5056     // the queue may not be empty.
5057   }
5058 };
5059 
5060 // Driver routine for parallel reference processing.
5061 // Creates an instance of the ref processing gang
5062 // task and has the worker threads execute it.
5063 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5064   assert(_workers != NULL, "Need parallel worker threads.");
5065 
5066   ParallelTaskTerminator terminator(_active_workers, _queues);
5067   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5068 
5069   _workers->run_task(&proc_task_proxy);
5070 }
5071 
5072 // Gang task for parallel reference enqueueing.
5073 
5074 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5075   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5076   EnqueueTask& _enq_task;
5077 
5078 public:
5079   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5080     AbstractGangTask("Enqueue reference objects in parallel"),
5081     _enq_task(enq_task)
5082   { }
5083 
5084   virtual void work(uint worker_id) {
5085     _enq_task.work(worker_id);
5086   }
5087 };
5088 
5089 // Driver routine for parallel reference enqueueing.
5090 // Creates an instance of the ref enqueueing gang
5091 // task and has the worker threads execute it.
5092 
5093 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5094   assert(_workers != NULL, "Need parallel worker threads.");
5095 
5096   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5097 
5098   _workers->run_task(&enq_task_proxy);
5099 }
5100 
5101 // End of weak reference support closures
5102 
5103 // Abstract task used to preserve (i.e. copy) any referent objects
5104 // that are in the collection set and are pointed to by reference
5105 // objects discovered by the CM ref processor.
5106 
5107 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5108 protected:
5109   G1CollectedHeap* _g1h;
5110   RefToScanQueueSet      *_queues;
5111   ParallelTaskTerminator _terminator;
5112   uint _n_workers;
5113 
5114 public:
5115   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5116     AbstractGangTask("ParPreserveCMReferents"),
5117     _g1h(g1h),
5118     _queues(task_queues),
5119     _terminator(workers, _queues),
5120     _n_workers(workers)
5121   { }
5122 
5123   void work(uint worker_id) {
5124     ResourceMark rm;
5125     HandleMark   hm;
5126 
5127     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5128     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5129 
5130     pss.set_evac_failure_closure(&evac_failure_cl);
5131 
5132     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5133 
5134     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5135 
5136     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5137 
5138     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5139 
5140     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5141       // We also need to mark copied objects.
5142       copy_non_heap_cl = &copy_mark_non_heap_cl;
5143     }
5144 
5145     // Is alive closure
5146     G1AlwaysAliveClosure always_alive(_g1h);
5147 
5148     // Copying keep alive closure. Applied to referent objects that need
5149     // to be copied.
5150     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5151 
5152     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5153 
5154     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5155     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5156 
5157     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5158     // So this must be true - but assert just in case someone decides to
5159     // change the worker ids.
5160     assert(worker_id < limit, "sanity");
5161     assert(!rp->discovery_is_atomic(), "check this code");
5162 
5163     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5164     for (uint idx = worker_id; idx < limit; idx += stride) {
5165       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5166 
5167       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5168       while (iter.has_next()) {
5169         // Since discovery is not atomic for the CM ref processor, we
5170         // can see some null referent objects.
5171         iter.load_ptrs(DEBUG_ONLY(true));
5172         oop ref = iter.obj();
5173 
5174         // This will filter nulls.
5175         if (iter.is_referent_alive()) {
5176           iter.make_referent_alive();
5177         }
5178         iter.move_to_next();
5179       }
5180     }
5181 
5182     // Drain the queue - which may cause stealing
5183     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5184     drain_queue.do_void();
5185     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5186     assert(pss.queue_is_empty(), "should be");
5187   }
5188 };
5189 
5190 // Weak Reference processing during an evacuation pause (part 1).
5191 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5192   double ref_proc_start = os::elapsedTime();
5193 
5194   ReferenceProcessor* rp = _ref_processor_stw;
5195   assert(rp->discovery_enabled(), "should have been enabled");
5196 
5197   // Any reference objects, in the collection set, that were 'discovered'
5198   // by the CM ref processor should have already been copied (either by
5199   // applying the external root copy closure to the discovered lists, or
5200   // by following an RSet entry).
5201   //
5202   // But some of the referents, that are in the collection set, that these
5203   // reference objects point to may not have been copied: the STW ref
5204   // processor would have seen that the reference object had already
5205   // been 'discovered' and would have skipped discovering the reference,
5206   // but would not have treated the reference object as a regular oop.
5207   // As a result the copy closure would not have been applied to the
5208   // referent object.
5209   //
5210   // We need to explicitly copy these referent objects - the references
5211   // will be processed at the end of remarking.
5212   //
5213   // We also need to do this copying before we process the reference
5214   // objects discovered by the STW ref processor in case one of these
5215   // referents points to another object which is also referenced by an
5216   // object discovered by the STW ref processor.
5217 
5218   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5219 
5220   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5221                                                  no_of_gc_workers,
5222                                                  _task_queues);
5223 
5224   workers()->run_task(&keep_cm_referents);
5225 
5226   // Closure to test whether a referent is alive.
5227   G1STWIsAliveClosure is_alive(this);
5228 
5229   // Even when parallel reference processing is enabled, the processing
5230   // of JNI refs is serial and performed serially by the current thread
5231   // rather than by a worker. The following PSS will be used for processing
5232   // JNI refs.
5233 
5234   // Use only a single queue for this PSS.
5235   G1ParScanThreadState            pss(this, 0, NULL);
5236 
5237   // We do not embed a reference processor in the copying/scanning
5238   // closures while we're actually processing the discovered
5239   // reference objects.
5240   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5241 
5242   pss.set_evac_failure_closure(&evac_failure_cl);
5243 
5244   assert(pss.queue_is_empty(), "pre-condition");
5245 
5246   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5247 
5248   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5249 
5250   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5251 
5252   if (g1_policy()->during_initial_mark_pause()) {
5253     // We also need to mark copied objects.
5254     copy_non_heap_cl = &copy_mark_non_heap_cl;
5255   }
5256 
5257   // Keep alive closure.
5258   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5259 
5260   // Serial Complete GC closure
5261   G1STWDrainQueueClosure drain_queue(this, &pss);
5262 
5263   // Setup the soft refs policy...
5264   rp->setup_policy(false);
5265 
5266   ReferenceProcessorStats stats;
5267   if (!rp->processing_is_mt()) {
5268     // Serial reference processing...
5269     stats = rp->process_discovered_references(&is_alive,
5270                                               &keep_alive,
5271                                               &drain_queue,
5272                                               NULL,
5273                                               _gc_timer_stw,
5274                                               _gc_tracer_stw->gc_id());
5275   } else {
5276     // Parallel reference processing
5277     assert(rp->num_q() == no_of_gc_workers, "sanity");
5278     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5279 
5280     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5281     stats = rp->process_discovered_references(&is_alive,
5282                                               &keep_alive,
5283                                               &drain_queue,
5284                                               &par_task_executor,
5285                                               _gc_timer_stw,
5286                                               _gc_tracer_stw->gc_id());
5287   }
5288 
5289   _gc_tracer_stw->report_gc_reference_stats(stats);
5290 
5291   // We have completed copying any necessary live referent objects.
5292   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5293 
5294   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5295   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5296 }
5297 
5298 // Weak Reference processing during an evacuation pause (part 2).
5299 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5300   double ref_enq_start = os::elapsedTime();
5301 
5302   ReferenceProcessor* rp = _ref_processor_stw;
5303   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5304 
5305   // Now enqueue any remaining on the discovered lists on to
5306   // the pending list.
5307   if (!rp->processing_is_mt()) {
5308     // Serial reference processing...
5309     rp->enqueue_discovered_references();
5310   } else {
5311     // Parallel reference enqueueing
5312 
5313     assert(no_of_gc_workers == workers()->active_workers(),
5314            "Need to reset active workers");
5315     assert(rp->num_q() == no_of_gc_workers, "sanity");
5316     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5317 
5318     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5319     rp->enqueue_discovered_references(&par_task_executor);
5320   }
5321 
5322   rp->verify_no_references_recorded();
5323   assert(!rp->discovery_enabled(), "should have been disabled");
5324 
5325   // FIXME
5326   // CM's reference processing also cleans up the string and symbol tables.
5327   // Should we do that here also? We could, but it is a serial operation
5328   // and could significantly increase the pause time.
5329 
5330   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5331   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5332 }
5333 
5334 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5335   _expand_heap_after_alloc_failure = true;
5336   _evacuation_failed = false;
5337 
5338   // Should G1EvacuationFailureALot be in effect for this GC?
5339   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5340 
5341   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5342 
5343   // Disable the hot card cache.
5344   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5345   hot_card_cache->reset_hot_cache_claimed_index();
5346   hot_card_cache->set_use_cache(false);
5347 
5348   const uint n_workers = workers()->active_workers();
5349   assert(UseDynamicNumberOfGCThreads ||
5350          n_workers == workers()->total_workers(),
5351          "If not dynamic should be using all the  workers");
5352 
5353   init_for_evac_failure(NULL);
5354 
5355   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5356   double start_par_time_sec = os::elapsedTime();
5357   double end_par_time_sec;
5358 
5359   {
5360     G1RootProcessor root_processor(this, n_workers);
5361     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5362     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5363     if (g1_policy()->during_initial_mark_pause()) {
5364       ClassLoaderDataGraph::clear_claimed_marks();
5365     }
5366 
5367      // The individual threads will set their evac-failure closures.
5368      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5369      // These tasks use ShareHeap::_process_strong_tasks
5370      assert(UseDynamicNumberOfGCThreads ||
5371             workers()->active_workers() == workers()->total_workers(),
5372             "If not dynamic should be using all the  workers");
5373     workers()->run_task(&g1_par_task);
5374     end_par_time_sec = os::elapsedTime();
5375 
5376     // Closing the inner scope will execute the destructor
5377     // for the G1RootProcessor object. We record the current
5378     // elapsed time before closing the scope so that time
5379     // taken for the destructor is NOT included in the
5380     // reported parallel time.
5381   }
5382 
5383   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5384 
5385   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5386   phase_times->record_par_time(par_time_ms);
5387 
5388   double code_root_fixup_time_ms =
5389         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5390   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5391 
5392   // Process any discovered reference objects - we have
5393   // to do this _before_ we retire the GC alloc regions
5394   // as we may have to copy some 'reachable' referent
5395   // objects (and their reachable sub-graphs) that were
5396   // not copied during the pause.
5397   process_discovered_references(n_workers);
5398 
5399   if (G1StringDedup::is_enabled()) {
5400     double fixup_start = os::elapsedTime();
5401 
5402     G1STWIsAliveClosure is_alive(this);
5403     G1KeepAliveClosure keep_alive(this);
5404     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5405 
5406     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5407     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5408   }
5409 
5410   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5411   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5412 
5413   // Reset and re-enable the hot card cache.
5414   // Note the counts for the cards in the regions in the
5415   // collection set are reset when the collection set is freed.
5416   hot_card_cache->reset_hot_cache();
5417   hot_card_cache->set_use_cache(true);
5418 
5419   purge_code_root_memory();
5420 
5421   finalize_for_evac_failure();
5422 
5423   if (evacuation_failed()) {
5424     remove_self_forwarding_pointers();
5425 
5426     // Reset the G1EvacuationFailureALot counters and flags
5427     // Note: the values are reset only when an actual
5428     // evacuation failure occurs.
5429     NOT_PRODUCT(reset_evacuation_should_fail();)
5430   }
5431 
5432   // Enqueue any remaining references remaining on the STW
5433   // reference processor's discovered lists. We need to do
5434   // this after the card table is cleaned (and verified) as
5435   // the act of enqueueing entries on to the pending list
5436   // will log these updates (and dirty their associated
5437   // cards). We need these updates logged to update any
5438   // RSets.
5439   enqueue_discovered_references(n_workers);
5440 
5441   redirty_logged_cards();
5442   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5443 }
5444 
5445 void G1CollectedHeap::free_region(HeapRegion* hr,
5446                                   FreeRegionList* free_list,
5447                                   bool par,
5448                                   bool locked) {
5449   assert(!hr->is_free(), "the region should not be free");
5450   assert(!hr->is_empty(), "the region should not be empty");
5451   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5452   assert(free_list != NULL, "pre-condition");
5453 
5454   if (G1VerifyBitmaps) {
5455     MemRegion mr(hr->bottom(), hr->end());
5456     concurrent_mark()->clearRangePrevBitmap(mr);
5457   }
5458 
5459   // Clear the card counts for this region.
5460   // Note: we only need to do this if the region is not young
5461   // (since we don't refine cards in young regions).
5462   if (!hr->is_young()) {
5463     _cg1r->hot_card_cache()->reset_card_counts(hr);
5464   }
5465   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5466   free_list->add_ordered(hr);
5467 }
5468 
5469 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5470                                      FreeRegionList* free_list,
5471                                      bool par) {
5472   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5473   assert(free_list != NULL, "pre-condition");
5474 
5475   size_t hr_capacity = hr->capacity();
5476   // We need to read this before we make the region non-humongous,
5477   // otherwise the information will be gone.
5478   uint last_index = hr->last_hc_index();
5479   hr->clear_humongous();
5480   free_region(hr, free_list, par);
5481 
5482   uint i = hr->hrm_index() + 1;
5483   while (i < last_index) {
5484     HeapRegion* curr_hr = region_at(i);
5485     assert(curr_hr->is_continues_humongous(), "invariant");
5486     curr_hr->clear_humongous();
5487     free_region(curr_hr, free_list, par);
5488     i += 1;
5489   }
5490 }
5491 
5492 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5493                                        const HeapRegionSetCount& humongous_regions_removed) {
5494   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5495     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5496     _old_set.bulk_remove(old_regions_removed);
5497     _humongous_set.bulk_remove(humongous_regions_removed);
5498   }
5499 
5500 }
5501 
5502 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5503   assert(list != NULL, "list can't be null");
5504   if (!list->is_empty()) {
5505     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5506     _hrm.insert_list_into_free_list(list);
5507   }
5508 }
5509 
5510 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5511   _allocator->decrease_used(bytes);
5512 }
5513 
5514 class G1ParCleanupCTTask : public AbstractGangTask {
5515   G1SATBCardTableModRefBS* _ct_bs;
5516   G1CollectedHeap* _g1h;
5517   HeapRegion* volatile _su_head;
5518 public:
5519   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5520                      G1CollectedHeap* g1h) :
5521     AbstractGangTask("G1 Par Cleanup CT Task"),
5522     _ct_bs(ct_bs), _g1h(g1h) { }
5523 
5524   void work(uint worker_id) {
5525     HeapRegion* r;
5526     while (r = _g1h->pop_dirty_cards_region()) {
5527       clear_cards(r);
5528     }
5529   }
5530 
5531   void clear_cards(HeapRegion* r) {
5532     // Cards of the survivors should have already been dirtied.
5533     if (!r->is_survivor()) {
5534       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5535     }
5536   }
5537 };
5538 
5539 #ifndef PRODUCT
5540 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5541   G1CollectedHeap* _g1h;
5542   G1SATBCardTableModRefBS* _ct_bs;
5543 public:
5544   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5545     : _g1h(g1h), _ct_bs(ct_bs) { }
5546   virtual bool doHeapRegion(HeapRegion* r) {
5547     if (r->is_survivor()) {
5548       _g1h->verify_dirty_region(r);
5549     } else {
5550       _g1h->verify_not_dirty_region(r);
5551     }
5552     return false;
5553   }
5554 };
5555 
5556 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5557   // All of the region should be clean.
5558   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5559   MemRegion mr(hr->bottom(), hr->end());
5560   ct_bs->verify_not_dirty_region(mr);
5561 }
5562 
5563 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5564   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5565   // dirty allocated blocks as they allocate them. The thread that
5566   // retires each region and replaces it with a new one will do a
5567   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5568   // not dirty that area (one less thing to have to do while holding
5569   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5570   // is dirty.
5571   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5572   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5573   if (hr->is_young()) {
5574     ct_bs->verify_g1_young_region(mr);
5575   } else {
5576     ct_bs->verify_dirty_region(mr);
5577   }
5578 }
5579 
5580 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5581   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5582   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5583     verify_dirty_region(hr);
5584   }
5585 }
5586 
5587 void G1CollectedHeap::verify_dirty_young_regions() {
5588   verify_dirty_young_list(_young_list->first_region());
5589 }
5590 
5591 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5592                                                HeapWord* tams, HeapWord* end) {
5593   guarantee(tams <= end,
5594             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5595   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5596   if (result < end) {
5597     gclog_or_tty->cr();
5598     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5599                            bitmap_name, p2i(result));
5600     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5601                            bitmap_name, p2i(tams), p2i(end));
5602     return false;
5603   }
5604   return true;
5605 }
5606 
5607 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5608   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5609   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5610 
5611   HeapWord* bottom = hr->bottom();
5612   HeapWord* ptams  = hr->prev_top_at_mark_start();
5613   HeapWord* ntams  = hr->next_top_at_mark_start();
5614   HeapWord* end    = hr->end();
5615 
5616   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5617 
5618   bool res_n = true;
5619   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5620   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5621   // if we happen to be in that state.
5622   if (mark_in_progress() || !_cmThread->in_progress()) {
5623     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5624   }
5625   if (!res_p || !res_n) {
5626     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5627                            HR_FORMAT_PARAMS(hr));
5628     gclog_or_tty->print_cr("#### Caller: %s", caller);
5629     return false;
5630   }
5631   return true;
5632 }
5633 
5634 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5635   if (!G1VerifyBitmaps) return;
5636 
5637   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5638 }
5639 
5640 class G1VerifyBitmapClosure : public HeapRegionClosure {
5641 private:
5642   const char* _caller;
5643   G1CollectedHeap* _g1h;
5644   bool _failures;
5645 
5646 public:
5647   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5648     _caller(caller), _g1h(g1h), _failures(false) { }
5649 
5650   bool failures() { return _failures; }
5651 
5652   virtual bool doHeapRegion(HeapRegion* hr) {
5653     if (hr->is_continues_humongous()) return false;
5654 
5655     bool result = _g1h->verify_bitmaps(_caller, hr);
5656     if (!result) {
5657       _failures = true;
5658     }
5659     return false;
5660   }
5661 };
5662 
5663 void G1CollectedHeap::check_bitmaps(const char* caller) {
5664   if (!G1VerifyBitmaps) return;
5665 
5666   G1VerifyBitmapClosure cl(caller, this);
5667   heap_region_iterate(&cl);
5668   guarantee(!cl.failures(), "bitmap verification");
5669 }
5670 
5671 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5672  private:
5673   bool _failures;
5674  public:
5675   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5676 
5677   virtual bool doHeapRegion(HeapRegion* hr) {
5678     uint i = hr->hrm_index();
5679     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5680     if (hr->is_humongous()) {
5681       if (hr->in_collection_set()) {
5682         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5683         _failures = true;
5684         return true;
5685       }
5686       if (cset_state.is_in_cset()) {
5687         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5688         _failures = true;
5689         return true;
5690       }
5691       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5692         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5693         _failures = true;
5694         return true;
5695       }
5696     } else {
5697       if (cset_state.is_humongous()) {
5698         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5699         _failures = true;
5700         return true;
5701       }
5702       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5703         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5704                                hr->in_collection_set(), cset_state.value(), i);
5705         _failures = true;
5706         return true;
5707       }
5708       if (cset_state.is_in_cset()) {
5709         if (hr->is_young() != (cset_state.is_young())) {
5710           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5711                                  hr->is_young(), cset_state.value(), i);
5712           _failures = true;
5713           return true;
5714         }
5715         if (hr->is_old() != (cset_state.is_old())) {
5716           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5717                                  hr->is_old(), cset_state.value(), i);
5718           _failures = true;
5719           return true;
5720         }
5721       }
5722     }
5723     return false;
5724   }
5725 
5726   bool failures() const { return _failures; }
5727 };
5728 
5729 bool G1CollectedHeap::check_cset_fast_test() {
5730   G1CheckCSetFastTableClosure cl;
5731   _hrm.iterate(&cl);
5732   return !cl.failures();
5733 }
5734 #endif // PRODUCT
5735 
5736 void G1CollectedHeap::cleanUpCardTable() {
5737   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5738   double start = os::elapsedTime();
5739 
5740   {
5741     // Iterate over the dirty cards region list.
5742     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5743 
5744     workers()->run_task(&cleanup_task);
5745 #ifndef PRODUCT
5746     if (G1VerifyCTCleanup || VerifyAfterGC) {
5747       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5748       heap_region_iterate(&cleanup_verifier);
5749     }
5750 #endif
5751   }
5752 
5753   double elapsed = os::elapsedTime() - start;
5754   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5755 }
5756 
5757 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5758   size_t pre_used = 0;
5759   FreeRegionList local_free_list("Local List for CSet Freeing");
5760 
5761   double young_time_ms     = 0.0;
5762   double non_young_time_ms = 0.0;
5763 
5764   // Since the collection set is a superset of the the young list,
5765   // all we need to do to clear the young list is clear its
5766   // head and length, and unlink any young regions in the code below
5767   _young_list->clear();
5768 
5769   G1CollectorPolicy* policy = g1_policy();
5770 
5771   double start_sec = os::elapsedTime();
5772   bool non_young = true;
5773 
5774   HeapRegion* cur = cs_head;
5775   int age_bound = -1;
5776   size_t rs_lengths = 0;
5777 
5778   while (cur != NULL) {
5779     assert(!is_on_master_free_list(cur), "sanity");
5780     if (non_young) {
5781       if (cur->is_young()) {
5782         double end_sec = os::elapsedTime();
5783         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5784         non_young_time_ms += elapsed_ms;
5785 
5786         start_sec = os::elapsedTime();
5787         non_young = false;
5788       }
5789     } else {
5790       if (!cur->is_young()) {
5791         double end_sec = os::elapsedTime();
5792         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5793         young_time_ms += elapsed_ms;
5794 
5795         start_sec = os::elapsedTime();
5796         non_young = true;
5797       }
5798     }
5799 
5800     rs_lengths += cur->rem_set()->occupied_locked();
5801 
5802     HeapRegion* next = cur->next_in_collection_set();
5803     assert(cur->in_collection_set(), "bad CS");
5804     cur->set_next_in_collection_set(NULL);
5805     clear_in_cset(cur);
5806 
5807     if (cur->is_young()) {
5808       int index = cur->young_index_in_cset();
5809       assert(index != -1, "invariant");
5810       assert((uint) index < policy->young_cset_region_length(), "invariant");
5811       size_t words_survived = _surviving_young_words[index];
5812       cur->record_surv_words_in_group(words_survived);
5813 
5814       // At this point the we have 'popped' cur from the collection set
5815       // (linked via next_in_collection_set()) but it is still in the
5816       // young list (linked via next_young_region()). Clear the
5817       // _next_young_region field.
5818       cur->set_next_young_region(NULL);
5819     } else {
5820       int index = cur->young_index_in_cset();
5821       assert(index == -1, "invariant");
5822     }
5823 
5824     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5825             (!cur->is_young() && cur->young_index_in_cset() == -1),
5826             "invariant" );
5827 
5828     if (!cur->evacuation_failed()) {
5829       MemRegion used_mr = cur->used_region();
5830 
5831       // And the region is empty.
5832       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5833       pre_used += cur->used();
5834       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5835     } else {
5836       cur->uninstall_surv_rate_group();
5837       if (cur->is_young()) {
5838         cur->set_young_index_in_cset(-1);
5839       }
5840       cur->set_evacuation_failed(false);
5841       // The region is now considered to be old.
5842       cur->set_old();
5843       _old_set.add(cur);
5844       evacuation_info.increment_collectionset_used_after(cur->used());
5845     }
5846     cur = next;
5847   }
5848 
5849   evacuation_info.set_regions_freed(local_free_list.length());
5850   policy->record_max_rs_lengths(rs_lengths);
5851   policy->cset_regions_freed();
5852 
5853   double end_sec = os::elapsedTime();
5854   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5855 
5856   if (non_young) {
5857     non_young_time_ms += elapsed_ms;
5858   } else {
5859     young_time_ms += elapsed_ms;
5860   }
5861 
5862   prepend_to_freelist(&local_free_list);
5863   decrement_summary_bytes(pre_used);
5864   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5865   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5866 }
5867 
5868 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5869  private:
5870   FreeRegionList* _free_region_list;
5871   HeapRegionSet* _proxy_set;
5872   HeapRegionSetCount _humongous_regions_removed;
5873   size_t _freed_bytes;
5874  public:
5875 
5876   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5877     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5878   }
5879 
5880   virtual bool doHeapRegion(HeapRegion* r) {
5881     if (!r->is_starts_humongous()) {
5882       return false;
5883     }
5884 
5885     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5886 
5887     oop obj = (oop)r->bottom();
5888     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5889 
5890     // The following checks whether the humongous object is live are sufficient.
5891     // The main additional check (in addition to having a reference from the roots
5892     // or the young gen) is whether the humongous object has a remembered set entry.
5893     //
5894     // A humongous object cannot be live if there is no remembered set for it
5895     // because:
5896     // - there can be no references from within humongous starts regions referencing
5897     // the object because we never allocate other objects into them.
5898     // (I.e. there are no intra-region references that may be missed by the
5899     // remembered set)
5900     // - as soon there is a remembered set entry to the humongous starts region
5901     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5902     // until the end of a concurrent mark.
5903     //
5904     // It is not required to check whether the object has been found dead by marking
5905     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5906     // all objects allocated during that time are considered live.
5907     // SATB marking is even more conservative than the remembered set.
5908     // So if at this point in the collection there is no remembered set entry,
5909     // nobody has a reference to it.
5910     // At the start of collection we flush all refinement logs, and remembered sets
5911     // are completely up-to-date wrt to references to the humongous object.
5912     //
5913     // Other implementation considerations:
5914     // - never consider object arrays at this time because they would pose
5915     // considerable effort for cleaning up the the remembered sets. This is
5916     // required because stale remembered sets might reference locations that
5917     // are currently allocated into.
5918     uint region_idx = r->hrm_index();
5919     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5920         !r->rem_set()->is_empty()) {
5921 
5922       if (G1TraceEagerReclaimHumongousObjects) {
5923         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5924                                region_idx,
5925                                (size_t)obj->size() * HeapWordSize,
5926                                p2i(r->bottom()),
5927                                r->region_num(),
5928                                r->rem_set()->occupied(),
5929                                r->rem_set()->strong_code_roots_list_length(),
5930                                next_bitmap->isMarked(r->bottom()),
5931                                g1h->is_humongous_reclaim_candidate(region_idx),
5932                                obj->is_typeArray()
5933                               );
5934       }
5935 
5936       return false;
5937     }
5938 
5939     guarantee(obj->is_typeArray(),
5940               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
5941                       PTR_FORMAT " is not.",
5942                       p2i(r->bottom())));
5943 
5944     if (G1TraceEagerReclaimHumongousObjects) {
5945       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5946                              region_idx,
5947                              (size_t)obj->size() * HeapWordSize,
5948                              p2i(r->bottom()),
5949                              r->region_num(),
5950                              r->rem_set()->occupied(),
5951                              r->rem_set()->strong_code_roots_list_length(),
5952                              next_bitmap->isMarked(r->bottom()),
5953                              g1h->is_humongous_reclaim_candidate(region_idx),
5954                              obj->is_typeArray()
5955                             );
5956     }
5957     // Need to clear mark bit of the humongous object if already set.
5958     if (next_bitmap->isMarked(r->bottom())) {
5959       next_bitmap->clear(r->bottom());
5960     }
5961     _freed_bytes += r->used();
5962     r->set_containing_set(NULL);
5963     _humongous_regions_removed.increment(1u, r->capacity());
5964     g1h->free_humongous_region(r, _free_region_list, false);
5965 
5966     return false;
5967   }
5968 
5969   HeapRegionSetCount& humongous_free_count() {
5970     return _humongous_regions_removed;
5971   }
5972 
5973   size_t bytes_freed() const {
5974     return _freed_bytes;
5975   }
5976 
5977   size_t humongous_reclaimed() const {
5978     return _humongous_regions_removed.length();
5979   }
5980 };
5981 
5982 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5983   assert_at_safepoint(true);
5984 
5985   if (!G1EagerReclaimHumongousObjects ||
5986       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5987     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5988     return;
5989   }
5990 
5991   double start_time = os::elapsedTime();
5992 
5993   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5994 
5995   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5996   heap_region_iterate(&cl);
5997 
5998   HeapRegionSetCount empty_set;
5999   remove_from_old_sets(empty_set, cl.humongous_free_count());
6000 
6001   G1HRPrinter* hrp = hr_printer();
6002   if (hrp->is_active()) {
6003     FreeRegionListIterator iter(&local_cleanup_list);
6004     while (iter.more_available()) {
6005       HeapRegion* hr = iter.get_next();
6006       hrp->cleanup(hr);
6007     }
6008   }
6009 
6010   prepend_to_freelist(&local_cleanup_list);
6011   decrement_summary_bytes(cl.bytes_freed());
6012 
6013   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6014                                                                     cl.humongous_reclaimed());
6015 }
6016 
6017 // This routine is similar to the above but does not record
6018 // any policy statistics or update free lists; we are abandoning
6019 // the current incremental collection set in preparation of a
6020 // full collection. After the full GC we will start to build up
6021 // the incremental collection set again.
6022 // This is only called when we're doing a full collection
6023 // and is immediately followed by the tearing down of the young list.
6024 
6025 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6026   HeapRegion* cur = cs_head;
6027 
6028   while (cur != NULL) {
6029     HeapRegion* next = cur->next_in_collection_set();
6030     assert(cur->in_collection_set(), "bad CS");
6031     cur->set_next_in_collection_set(NULL);
6032     clear_in_cset(cur);
6033     cur->set_young_index_in_cset(-1);
6034     cur = next;
6035   }
6036 }
6037 
6038 void G1CollectedHeap::set_free_regions_coming() {
6039   if (G1ConcRegionFreeingVerbose) {
6040     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6041                            "setting free regions coming");
6042   }
6043 
6044   assert(!free_regions_coming(), "pre-condition");
6045   _free_regions_coming = true;
6046 }
6047 
6048 void G1CollectedHeap::reset_free_regions_coming() {
6049   assert(free_regions_coming(), "pre-condition");
6050 
6051   {
6052     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6053     _free_regions_coming = false;
6054     SecondaryFreeList_lock->notify_all();
6055   }
6056 
6057   if (G1ConcRegionFreeingVerbose) {
6058     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6059                            "reset free regions coming");
6060   }
6061 }
6062 
6063 void G1CollectedHeap::wait_while_free_regions_coming() {
6064   // Most of the time we won't have to wait, so let's do a quick test
6065   // first before we take the lock.
6066   if (!free_regions_coming()) {
6067     return;
6068   }
6069 
6070   if (G1ConcRegionFreeingVerbose) {
6071     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6072                            "waiting for free regions");
6073   }
6074 
6075   {
6076     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6077     while (free_regions_coming()) {
6078       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6079     }
6080   }
6081 
6082   if (G1ConcRegionFreeingVerbose) {
6083     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6084                            "done waiting for free regions");
6085   }
6086 }
6087 
6088 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6089   _young_list->push_region(hr);
6090 }
6091 
6092 class NoYoungRegionsClosure: public HeapRegionClosure {
6093 private:
6094   bool _success;
6095 public:
6096   NoYoungRegionsClosure() : _success(true) { }
6097   bool doHeapRegion(HeapRegion* r) {
6098     if (r->is_young()) {
6099       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6100                              p2i(r->bottom()), p2i(r->end()));
6101       _success = false;
6102     }
6103     return false;
6104   }
6105   bool success() { return _success; }
6106 };
6107 
6108 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6109   bool ret = _young_list->check_list_empty(check_sample);
6110 
6111   if (check_heap) {
6112     NoYoungRegionsClosure closure;
6113     heap_region_iterate(&closure);
6114     ret = ret && closure.success();
6115   }
6116 
6117   return ret;
6118 }
6119 
6120 class TearDownRegionSetsClosure : public HeapRegionClosure {
6121 private:
6122   HeapRegionSet *_old_set;
6123 
6124 public:
6125   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6126 
6127   bool doHeapRegion(HeapRegion* r) {
6128     if (r->is_old()) {
6129       _old_set->remove(r);
6130     } else {
6131       // We ignore free regions, we'll empty the free list afterwards.
6132       // We ignore young regions, we'll empty the young list afterwards.
6133       // We ignore humongous regions, we're not tearing down the
6134       // humongous regions set.
6135       assert(r->is_free() || r->is_young() || r->is_humongous(),
6136              "it cannot be another type");
6137     }
6138     return false;
6139   }
6140 
6141   ~TearDownRegionSetsClosure() {
6142     assert(_old_set->is_empty(), "post-condition");
6143   }
6144 };
6145 
6146 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6147   assert_at_safepoint(true /* should_be_vm_thread */);
6148 
6149   if (!free_list_only) {
6150     TearDownRegionSetsClosure cl(&_old_set);
6151     heap_region_iterate(&cl);
6152 
6153     // Note that emptying the _young_list is postponed and instead done as
6154     // the first step when rebuilding the regions sets again. The reason for
6155     // this is that during a full GC string deduplication needs to know if
6156     // a collected region was young or old when the full GC was initiated.
6157   }
6158   _hrm.remove_all_free_regions();
6159 }
6160 
6161 class RebuildRegionSetsClosure : public HeapRegionClosure {
6162 private:
6163   bool            _free_list_only;
6164   HeapRegionSet*   _old_set;
6165   HeapRegionManager*   _hrm;
6166   size_t          _total_used;
6167 
6168 public:
6169   RebuildRegionSetsClosure(bool free_list_only,
6170                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6171     _free_list_only(free_list_only),
6172     _old_set(old_set), _hrm(hrm), _total_used(0) {
6173     assert(_hrm->num_free_regions() == 0, "pre-condition");
6174     if (!free_list_only) {
6175       assert(_old_set->is_empty(), "pre-condition");
6176     }
6177   }
6178 
6179   bool doHeapRegion(HeapRegion* r) {
6180     if (r->is_continues_humongous()) {
6181       return false;
6182     }
6183 
6184     if (r->is_empty()) {
6185       // Add free regions to the free list
6186       r->set_free();
6187       r->set_allocation_context(AllocationContext::system());
6188       _hrm->insert_into_free_list(r);
6189     } else if (!_free_list_only) {
6190       assert(!r->is_young(), "we should not come across young regions");
6191 
6192       if (r->is_humongous()) {
6193         // We ignore humongous regions, we left the humongous set unchanged
6194       } else {
6195         // Objects that were compacted would have ended up on regions
6196         // that were previously old or free.
6197         assert(r->is_free() || r->is_old(), "invariant");
6198         // We now consider them old, so register as such.
6199         r->set_old();
6200         _old_set->add(r);
6201       }
6202       _total_used += r->used();
6203     }
6204 
6205     return false;
6206   }
6207 
6208   size_t total_used() {
6209     return _total_used;
6210   }
6211 };
6212 
6213 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6214   assert_at_safepoint(true /* should_be_vm_thread */);
6215 
6216   if (!free_list_only) {
6217     _young_list->empty_list();
6218   }
6219 
6220   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6221   heap_region_iterate(&cl);
6222 
6223   if (!free_list_only) {
6224     _allocator->set_used(cl.total_used());
6225   }
6226   assert(_allocator->used_unlocked() == recalculate_used(),
6227          err_msg("inconsistent _allocator->used_unlocked(), "
6228                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6229                  _allocator->used_unlocked(), recalculate_used()));
6230 }
6231 
6232 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6233   _refine_cte_cl->set_concurrent(concurrent);
6234 }
6235 
6236 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6237   HeapRegion* hr = heap_region_containing(p);
6238   return hr->is_in(p);
6239 }
6240 
6241 // Methods for the mutator alloc region
6242 
6243 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6244                                                       bool force) {
6245   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6246   assert(!force || g1_policy()->can_expand_young_list(),
6247          "if force is true we should be able to expand the young list");
6248   bool young_list_full = g1_policy()->is_young_list_full();
6249   if (force || !young_list_full) {
6250     HeapRegion* new_alloc_region = new_region(word_size,
6251                                               false /* is_old */,
6252                                               false /* do_expand */);
6253     if (new_alloc_region != NULL) {
6254       set_region_short_lived_locked(new_alloc_region);
6255       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6256       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6257       return new_alloc_region;
6258     }
6259   }
6260   return NULL;
6261 }
6262 
6263 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6264                                                   size_t allocated_bytes) {
6265   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6266   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6267 
6268   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6269   _allocator->increase_used(allocated_bytes);
6270   _hr_printer.retire(alloc_region);
6271   // We update the eden sizes here, when the region is retired,
6272   // instead of when it's allocated, since this is the point that its
6273   // used space has been recored in _summary_bytes_used.
6274   g1mm()->update_eden_size();
6275 }
6276 
6277 // Methods for the GC alloc regions
6278 
6279 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6280                                                  uint count,
6281                                                  InCSetState dest) {
6282   assert(FreeList_lock->owned_by_self(), "pre-condition");
6283 
6284   if (count < g1_policy()->max_regions(dest)) {
6285     const bool is_survivor = (dest.is_young());
6286     HeapRegion* new_alloc_region = new_region(word_size,
6287                                               !is_survivor,
6288                                               true /* do_expand */);
6289     if (new_alloc_region != NULL) {
6290       // We really only need to do this for old regions given that we
6291       // should never scan survivors. But it doesn't hurt to do it
6292       // for survivors too.
6293       new_alloc_region->record_timestamp();
6294       if (is_survivor) {
6295         new_alloc_region->set_survivor();
6296         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6297         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6298       } else {
6299         new_alloc_region->set_old();
6300         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6301         check_bitmaps("Old Region Allocation", new_alloc_region);
6302       }
6303       bool during_im = g1_policy()->during_initial_mark_pause();
6304       new_alloc_region->note_start_of_copying(during_im);
6305       return new_alloc_region;
6306     }
6307   }
6308   return NULL;
6309 }
6310 
6311 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6312                                              size_t allocated_bytes,
6313                                              InCSetState dest) {
6314   bool during_im = g1_policy()->during_initial_mark_pause();
6315   alloc_region->note_end_of_copying(during_im);
6316   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6317   if (dest.is_young()) {
6318     young_list()->add_survivor_region(alloc_region);
6319   } else {
6320     _old_set.add(alloc_region);
6321   }
6322   _hr_printer.retire(alloc_region);
6323 }
6324 
6325 // Heap region set verification
6326 
6327 class VerifyRegionListsClosure : public HeapRegionClosure {
6328 private:
6329   HeapRegionSet*   _old_set;
6330   HeapRegionSet*   _humongous_set;
6331   HeapRegionManager*   _hrm;
6332 
6333 public:
6334   HeapRegionSetCount _old_count;
6335   HeapRegionSetCount _humongous_count;
6336   HeapRegionSetCount _free_count;
6337 
6338   VerifyRegionListsClosure(HeapRegionSet* old_set,
6339                            HeapRegionSet* humongous_set,
6340                            HeapRegionManager* hrm) :
6341     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6342     _old_count(), _humongous_count(), _free_count(){ }
6343 
6344   bool doHeapRegion(HeapRegion* hr) {
6345     if (hr->is_continues_humongous()) {
6346       return false;
6347     }
6348 
6349     if (hr->is_young()) {
6350       // TODO
6351     } else if (hr->is_starts_humongous()) {
6352       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6353       _humongous_count.increment(1u, hr->capacity());
6354     } else if (hr->is_empty()) {
6355       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6356       _free_count.increment(1u, hr->capacity());
6357     } else if (hr->is_old()) {
6358       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6359       _old_count.increment(1u, hr->capacity());
6360     } else {
6361       ShouldNotReachHere();
6362     }
6363     return false;
6364   }
6365 
6366   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6367     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6368     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6369         old_set->total_capacity_bytes(), _old_count.capacity()));
6370 
6371     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6372     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6373         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6374 
6375     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6376     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6377         free_list->total_capacity_bytes(), _free_count.capacity()));
6378   }
6379 };
6380 
6381 void G1CollectedHeap::verify_region_sets() {
6382   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6383 
6384   // First, check the explicit lists.
6385   _hrm.verify();
6386   {
6387     // Given that a concurrent operation might be adding regions to
6388     // the secondary free list we have to take the lock before
6389     // verifying it.
6390     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6391     _secondary_free_list.verify_list();
6392   }
6393 
6394   // If a concurrent region freeing operation is in progress it will
6395   // be difficult to correctly attributed any free regions we come
6396   // across to the correct free list given that they might belong to
6397   // one of several (free_list, secondary_free_list, any local lists,
6398   // etc.). So, if that's the case we will skip the rest of the
6399   // verification operation. Alternatively, waiting for the concurrent
6400   // operation to complete will have a non-trivial effect on the GC's
6401   // operation (no concurrent operation will last longer than the
6402   // interval between two calls to verification) and it might hide
6403   // any issues that we would like to catch during testing.
6404   if (free_regions_coming()) {
6405     return;
6406   }
6407 
6408   // Make sure we append the secondary_free_list on the free_list so
6409   // that all free regions we will come across can be safely
6410   // attributed to the free_list.
6411   append_secondary_free_list_if_not_empty_with_lock();
6412 
6413   // Finally, make sure that the region accounting in the lists is
6414   // consistent with what we see in the heap.
6415 
6416   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6417   heap_region_iterate(&cl);
6418   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6419 }
6420 
6421 // Optimized nmethod scanning
6422 
6423 class RegisterNMethodOopClosure: public OopClosure {
6424   G1CollectedHeap* _g1h;
6425   nmethod* _nm;
6426 
6427   template <class T> void do_oop_work(T* p) {
6428     T heap_oop = oopDesc::load_heap_oop(p);
6429     if (!oopDesc::is_null(heap_oop)) {
6430       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6431       HeapRegion* hr = _g1h->heap_region_containing(obj);
6432       assert(!hr->is_continues_humongous(),
6433              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6434                      " starting at "HR_FORMAT,
6435                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6436 
6437       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6438       hr->add_strong_code_root_locked(_nm);
6439     }
6440   }
6441 
6442 public:
6443   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6444     _g1h(g1h), _nm(nm) {}
6445 
6446   void do_oop(oop* p)       { do_oop_work(p); }
6447   void do_oop(narrowOop* p) { do_oop_work(p); }
6448 };
6449 
6450 class UnregisterNMethodOopClosure: public OopClosure {
6451   G1CollectedHeap* _g1h;
6452   nmethod* _nm;
6453 
6454   template <class T> void do_oop_work(T* p) {
6455     T heap_oop = oopDesc::load_heap_oop(p);
6456     if (!oopDesc::is_null(heap_oop)) {
6457       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6458       HeapRegion* hr = _g1h->heap_region_containing(obj);
6459       assert(!hr->is_continues_humongous(),
6460              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6461                      " starting at "HR_FORMAT,
6462                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6463 
6464       hr->remove_strong_code_root(_nm);
6465     }
6466   }
6467 
6468 public:
6469   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6470     _g1h(g1h), _nm(nm) {}
6471 
6472   void do_oop(oop* p)       { do_oop_work(p); }
6473   void do_oop(narrowOop* p) { do_oop_work(p); }
6474 };
6475 
6476 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6477   CollectedHeap::register_nmethod(nm);
6478 
6479   guarantee(nm != NULL, "sanity");
6480   RegisterNMethodOopClosure reg_cl(this, nm);
6481   nm->oops_do(&reg_cl);
6482 }
6483 
6484 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6485   CollectedHeap::unregister_nmethod(nm);
6486 
6487   guarantee(nm != NULL, "sanity");
6488   UnregisterNMethodOopClosure reg_cl(this, nm);
6489   nm->oops_do(&reg_cl, true);
6490 }
6491 
6492 void G1CollectedHeap::purge_code_root_memory() {
6493   double purge_start = os::elapsedTime();
6494   G1CodeRootSet::purge();
6495   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6496   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6497 }
6498 
6499 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6500   G1CollectedHeap* _g1h;
6501 
6502 public:
6503   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6504     _g1h(g1h) {}
6505 
6506   void do_code_blob(CodeBlob* cb) {
6507     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6508     if (nm == NULL) {
6509       return;
6510     }
6511 
6512     if (ScavengeRootsInCode) {
6513       _g1h->register_nmethod(nm);
6514     }
6515   }
6516 };
6517 
6518 void G1CollectedHeap::rebuild_strong_code_roots() {
6519   RebuildStrongCodeRootClosure blob_cl(this);
6520   CodeCache::blobs_do(&blob_cl);
6521 }