1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 #ifdef _DEBUG
  76 #include <crtdbg.h>
  77 #endif
  78 
  79 
  80 #include <windows.h>
  81 #include <sys/types.h>
  82 #include <sys/stat.h>
  83 #include <sys/timeb.h>
  84 #include <objidl.h>
  85 #include <shlobj.h>
  86 
  87 #include <malloc.h>
  88 #include <signal.h>
  89 #include <direct.h>
  90 #include <errno.h>
  91 #include <fcntl.h>
  92 #include <io.h>
  93 #include <process.h>              // For _beginthreadex(), _endthreadex()
  94 #include <imagehlp.h>             // For os::dll_address_to_function_name
  95 // for enumerating dll libraries
  96 #include <vdmdbg.h>
  97 
  98 // for timer info max values which include all bits
  99 #define ALL_64_BITS CONST64(-1)
 100 
 101 // For DLL loading/load error detection
 102 // Values of PE COFF
 103 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 104 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 105 
 106 static HANDLE main_process;
 107 static HANDLE main_thread;
 108 static int    main_thread_id;
 109 
 110 static FILETIME process_creation_time;
 111 static FILETIME process_exit_time;
 112 static FILETIME process_user_time;
 113 static FILETIME process_kernel_time;
 114 
 115 #ifdef _M_IA64
 116   #define __CPU__ ia64
 117 #else
 118   #ifdef _M_AMD64
 119     #define __CPU__ amd64
 120   #else
 121     #define __CPU__ i486
 122   #endif
 123 #endif
 124 
 125 // save DLL module handle, used by GetModuleFileName
 126 
 127 HINSTANCE vm_lib_handle;
 128 
 129 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 130   switch (reason) {
 131   case DLL_PROCESS_ATTACH:
 132     vm_lib_handle = hinst;
 133     if (ForceTimeHighResolution) {
 134       timeBeginPeriod(1L);
 135     }
 136     break;
 137   case DLL_PROCESS_DETACH:
 138     if (ForceTimeHighResolution) {
 139       timeEndPeriod(1L);
 140     }
 141     break;
 142   default:
 143     break;
 144   }
 145   return true;
 146 }
 147 
 148 static inline double fileTimeAsDouble(FILETIME* time) {
 149   const double high  = (double) ((unsigned int) ~0);
 150   const double split = 10000000.0;
 151   double result = (time->dwLowDateTime / split) +
 152                    time->dwHighDateTime * (high/split);
 153   return result;
 154 }
 155 
 156 // Implementation of os
 157 
 158 bool os::unsetenv(const char* name) {
 159   assert(name != NULL, "Null pointer");
 160   return (SetEnvironmentVariable(name, NULL) == TRUE);
 161 }
 162 
 163 // No setuid programs under Windows.
 164 bool os::have_special_privileges() {
 165   return false;
 166 }
 167 
 168 
 169 // This method is  a periodic task to check for misbehaving JNI applications
 170 // under CheckJNI, we can add any periodic checks here.
 171 // For Windows at the moment does nothing
 172 void os::run_periodic_checks() {
 173   return;
 174 }
 175 
 176 // previous UnhandledExceptionFilter, if there is one
 177 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 178 
 179 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 180 
 181 void os::init_system_properties_values() {
 182   // sysclasspath, java_home, dll_dir
 183   {
 184     char *home_path;
 185     char *dll_path;
 186     char *pslash;
 187     char *bin = "\\bin";
 188     char home_dir[MAX_PATH + 1];
 189     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 190 
 191     if (alt_home_dir != NULL)  {
 192       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 193       home_dir[MAX_PATH] = '\0';
 194     } else {
 195       os::jvm_path(home_dir, sizeof(home_dir));
 196       // Found the full path to jvm.dll.
 197       // Now cut the path to <java_home>/jre if we can.
 198       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 199       pslash = strrchr(home_dir, '\\');
 200       if (pslash != NULL) {
 201         *pslash = '\0';                   // get rid of \{client|server}
 202         pslash = strrchr(home_dir, '\\');
 203         if (pslash != NULL) {
 204           *pslash = '\0';                 // get rid of \bin
 205         }
 206       }
 207     }
 208 
 209     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 210     if (home_path == NULL) {
 211       return;
 212     }
 213     strcpy(home_path, home_dir);
 214     Arguments::set_java_home(home_path);
 215     FREE_C_HEAP_ARRAY(char, home_path);
 216 
 217     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 218                                 mtInternal);
 219     if (dll_path == NULL) {
 220       return;
 221     }
 222     strcpy(dll_path, home_dir);
 223     strcat(dll_path, bin);
 224     Arguments::set_dll_dir(dll_path);
 225     FREE_C_HEAP_ARRAY(char, dll_path);
 226 
 227     if (!set_boot_path('\\', ';')) {
 228       return;
 229     }
 230   }
 231 
 232 // library_path
 233 #define EXT_DIR "\\lib\\ext"
 234 #define BIN_DIR "\\bin"
 235 #define PACKAGE_DIR "\\Sun\\Java"
 236   {
 237     // Win32 library search order (See the documentation for LoadLibrary):
 238     //
 239     // 1. The directory from which application is loaded.
 240     // 2. The system wide Java Extensions directory (Java only)
 241     // 3. System directory (GetSystemDirectory)
 242     // 4. Windows directory (GetWindowsDirectory)
 243     // 5. The PATH environment variable
 244     // 6. The current directory
 245 
 246     char *library_path;
 247     char tmp[MAX_PATH];
 248     char *path_str = ::getenv("PATH");
 249 
 250     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 251                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 252 
 253     library_path[0] = '\0';
 254 
 255     GetModuleFileName(NULL, tmp, sizeof(tmp));
 256     *(strrchr(tmp, '\\')) = '\0';
 257     strcat(library_path, tmp);
 258 
 259     GetWindowsDirectory(tmp, sizeof(tmp));
 260     strcat(library_path, ";");
 261     strcat(library_path, tmp);
 262     strcat(library_path, PACKAGE_DIR BIN_DIR);
 263 
 264     GetSystemDirectory(tmp, sizeof(tmp));
 265     strcat(library_path, ";");
 266     strcat(library_path, tmp);
 267 
 268     GetWindowsDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271 
 272     if (path_str) {
 273       strcat(library_path, ";");
 274       strcat(library_path, path_str);
 275     }
 276 
 277     strcat(library_path, ";.");
 278 
 279     Arguments::set_library_path(library_path);
 280     FREE_C_HEAP_ARRAY(char, library_path);
 281   }
 282 
 283   // Default extensions directory
 284   {
 285     char path[MAX_PATH];
 286     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 287     GetWindowsDirectory(path, MAX_PATH);
 288     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 289             path, PACKAGE_DIR, EXT_DIR);
 290     Arguments::set_ext_dirs(buf);
 291   }
 292   #undef EXT_DIR
 293   #undef BIN_DIR
 294   #undef PACKAGE_DIR
 295 
 296 #ifndef _WIN64
 297   // set our UnhandledExceptionFilter and save any previous one
 298   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 299 #endif
 300 
 301   // Done
 302   return;
 303 }
 304 
 305 void os::breakpoint() {
 306   DebugBreak();
 307 }
 308 
 309 // Invoked from the BREAKPOINT Macro
 310 extern "C" void breakpoint() {
 311   os::breakpoint();
 312 }
 313 
 314 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 315 // So far, this method is only used by Native Memory Tracking, which is
 316 // only supported on Windows XP or later.
 317 //
 318 int os::get_native_stack(address* stack, int frames, int toSkip) {
 319 #ifdef _NMT_NOINLINE_
 320   toSkip++;
 321 #endif
 322   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 323                                                        (PVOID*)stack, NULL);
 324   for (int index = captured; index < frames; index ++) {
 325     stack[index] = NULL;
 326   }
 327   return captured;
 328 }
 329 
 330 
 331 // os::current_stack_base()
 332 //
 333 //   Returns the base of the stack, which is the stack's
 334 //   starting address.  This function must be called
 335 //   while running on the stack of the thread being queried.
 336 
 337 address os::current_stack_base() {
 338   MEMORY_BASIC_INFORMATION minfo;
 339   address stack_bottom;
 340   size_t stack_size;
 341 
 342   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 343   stack_bottom =  (address)minfo.AllocationBase;
 344   stack_size = minfo.RegionSize;
 345 
 346   // Add up the sizes of all the regions with the same
 347   // AllocationBase.
 348   while (1) {
 349     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 350     if (stack_bottom == (address)minfo.AllocationBase) {
 351       stack_size += minfo.RegionSize;
 352     } else {
 353       break;
 354     }
 355   }
 356 
 357 #ifdef _M_IA64
 358   // IA64 has memory and register stacks
 359   //
 360   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 361   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 362   // growing downwards, 2MB summed up)
 363   //
 364   // ...
 365   // ------- top of stack (high address) -----
 366   // |
 367   // |      1MB
 368   // |      Backing Store (Register Stack)
 369   // |
 370   // |         / \
 371   // |          |
 372   // |          |
 373   // |          |
 374   // ------------------------ stack base -----
 375   // |      1MB
 376   // |      Memory Stack
 377   // |
 378   // |          |
 379   // |          |
 380   // |          |
 381   // |         \ /
 382   // |
 383   // ----- bottom of stack (low address) -----
 384   // ...
 385 
 386   stack_size = stack_size / 2;
 387 #endif
 388   return stack_bottom + stack_size;
 389 }
 390 
 391 size_t os::current_stack_size() {
 392   size_t sz;
 393   MEMORY_BASIC_INFORMATION minfo;
 394   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 395   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 396   return sz;
 397 }
 398 
 399 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 400   const struct tm* time_struct_ptr = localtime(clock);
 401   if (time_struct_ptr != NULL) {
 402     *res = *time_struct_ptr;
 403     return res;
 404   }
 405   return NULL;
 406 }
 407 
 408 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 409 
 410 // Thread start routine for all new Java threads
 411 static unsigned __stdcall java_start(Thread* thread) {
 412   // Try to randomize the cache line index of hot stack frames.
 413   // This helps when threads of the same stack traces evict each other's
 414   // cache lines. The threads can be either from the same JVM instance, or
 415   // from different JVM instances. The benefit is especially true for
 416   // processors with hyperthreading technology.
 417   static int counter = 0;
 418   int pid = os::current_process_id();
 419   _alloca(((pid ^ counter++) & 7) * 128);
 420 
 421   OSThread* osthr = thread->osthread();
 422   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 423 
 424   if (UseNUMA) {
 425     int lgrp_id = os::numa_get_group_id();
 426     if (lgrp_id != -1) {
 427       thread->set_lgrp_id(lgrp_id);
 428     }
 429   }
 430 
 431   // Diagnostic code to investigate JDK-6573254
 432   int res = 30115;  // non-java thread
 433   if (thread->is_Java_thread()) {
 434     res = 20115;    // java thread
 435   }
 436 
 437   // Install a win32 structured exception handler around every thread created
 438   // by VM, so VM can generate error dump when an exception occurred in non-
 439   // Java thread (e.g. VM thread).
 440   __try {
 441     thread->run();
 442   } __except(topLevelExceptionFilter(
 443                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 444     // Nothing to do.
 445   }
 446 
 447   // One less thread is executing
 448   // When the VMThread gets here, the main thread may have already exited
 449   // which frees the CodeHeap containing the Atomic::add code
 450   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 451     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 452   }
 453 
 454   // Thread must not return from exit_process_or_thread(), but if it does,
 455   // let it proceed to exit normally
 456   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 457 }
 458 
 459 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 460                                   int thread_id) {
 461   // Allocate the OSThread object
 462   OSThread* osthread = new OSThread(NULL, NULL);
 463   if (osthread == NULL) return NULL;
 464 
 465   // Initialize support for Java interrupts
 466   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 467   if (interrupt_event == NULL) {
 468     delete osthread;
 469     return NULL;
 470   }
 471   osthread->set_interrupt_event(interrupt_event);
 472 
 473   // Store info on the Win32 thread into the OSThread
 474   osthread->set_thread_handle(thread_handle);
 475   osthread->set_thread_id(thread_id);
 476 
 477   if (UseNUMA) {
 478     int lgrp_id = os::numa_get_group_id();
 479     if (lgrp_id != -1) {
 480       thread->set_lgrp_id(lgrp_id);
 481     }
 482   }
 483 
 484   // Initial thread state is INITIALIZED, not SUSPENDED
 485   osthread->set_state(INITIALIZED);
 486 
 487   return osthread;
 488 }
 489 
 490 
 491 bool os::create_attached_thread(JavaThread* thread) {
 492 #ifdef ASSERT
 493   thread->verify_not_published();
 494 #endif
 495   HANDLE thread_h;
 496   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 497                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 498     fatal("DuplicateHandle failed\n");
 499   }
 500   OSThread* osthread = create_os_thread(thread, thread_h,
 501                                         (int)current_thread_id());
 502   if (osthread == NULL) {
 503     return false;
 504   }
 505 
 506   // Initial thread state is RUNNABLE
 507   osthread->set_state(RUNNABLE);
 508 
 509   thread->set_osthread(osthread);
 510   return true;
 511 }
 512 
 513 bool os::create_main_thread(JavaThread* thread) {
 514 #ifdef ASSERT
 515   thread->verify_not_published();
 516 #endif
 517   if (_starting_thread == NULL) {
 518     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 519     if (_starting_thread == NULL) {
 520       return false;
 521     }
 522   }
 523 
 524   // The primordial thread is runnable from the start)
 525   _starting_thread->set_state(RUNNABLE);
 526 
 527   thread->set_osthread(_starting_thread);
 528   return true;
 529 }
 530 
 531 // Allocate and initialize a new OSThread
 532 bool os::create_thread(Thread* thread, ThreadType thr_type,
 533                        size_t stack_size) {
 534   unsigned thread_id;
 535 
 536   // Allocate the OSThread object
 537   OSThread* osthread = new OSThread(NULL, NULL);
 538   if (osthread == NULL) {
 539     return false;
 540   }
 541 
 542   // Initialize support for Java interrupts
 543   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 544   if (interrupt_event == NULL) {
 545     delete osthread;
 546     return NULL;
 547   }
 548   osthread->set_interrupt_event(interrupt_event);
 549   osthread->set_interrupted(false);
 550 
 551   thread->set_osthread(osthread);
 552 
 553   if (stack_size == 0) {
 554     switch (thr_type) {
 555     case os::java_thread:
 556       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 557       if (JavaThread::stack_size_at_create() > 0) {
 558         stack_size = JavaThread::stack_size_at_create();
 559       }
 560       break;
 561     case os::compiler_thread:
 562       if (CompilerThreadStackSize > 0) {
 563         stack_size = (size_t)(CompilerThreadStackSize * K);
 564         break;
 565       } // else fall through:
 566         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 567     case os::vm_thread:
 568     case os::pgc_thread:
 569     case os::cgc_thread:
 570     case os::watcher_thread:
 571       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 572       break;
 573     }
 574   }
 575 
 576   // Create the Win32 thread
 577   //
 578   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 579   // does not specify stack size. Instead, it specifies the size of
 580   // initially committed space. The stack size is determined by
 581   // PE header in the executable. If the committed "stack_size" is larger
 582   // than default value in the PE header, the stack is rounded up to the
 583   // nearest multiple of 1MB. For example if the launcher has default
 584   // stack size of 320k, specifying any size less than 320k does not
 585   // affect the actual stack size at all, it only affects the initial
 586   // commitment. On the other hand, specifying 'stack_size' larger than
 587   // default value may cause significant increase in memory usage, because
 588   // not only the stack space will be rounded up to MB, but also the
 589   // entire space is committed upfront.
 590   //
 591   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 592   // for CreateThread() that can treat 'stack_size' as stack size. However we
 593   // are not supposed to call CreateThread() directly according to MSDN
 594   // document because JVM uses C runtime library. The good news is that the
 595   // flag appears to work with _beginthredex() as well.
 596 
 597 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 598   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 599 #endif
 600 
 601   HANDLE thread_handle =
 602     (HANDLE)_beginthreadex(NULL,
 603                            (unsigned)stack_size,
 604                            (unsigned (__stdcall *)(void*)) java_start,
 605                            thread,
 606                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 607                            &thread_id);
 608   if (thread_handle == NULL) {
 609     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 610     // without the flag.
 611     thread_handle =
 612       (HANDLE)_beginthreadex(NULL,
 613                              (unsigned)stack_size,
 614                              (unsigned (__stdcall *)(void*)) java_start,
 615                              thread,
 616                              CREATE_SUSPENDED,
 617                              &thread_id);
 618   }
 619   if (thread_handle == NULL) {
 620     // Need to clean up stuff we've allocated so far
 621     CloseHandle(osthread->interrupt_event());
 622     thread->set_osthread(NULL);
 623     delete osthread;
 624     return NULL;
 625   }
 626 
 627   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 628 
 629   // Store info on the Win32 thread into the OSThread
 630   osthread->set_thread_handle(thread_handle);
 631   osthread->set_thread_id(thread_id);
 632 
 633   // Initial thread state is INITIALIZED, not SUSPENDED
 634   osthread->set_state(INITIALIZED);
 635 
 636   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 637   return true;
 638 }
 639 
 640 
 641 // Free Win32 resources related to the OSThread
 642 void os::free_thread(OSThread* osthread) {
 643   assert(osthread != NULL, "osthread not set");
 644   CloseHandle(osthread->thread_handle());
 645   CloseHandle(osthread->interrupt_event());
 646   delete osthread;
 647 }
 648 
 649 static jlong first_filetime;
 650 static jlong initial_performance_count;
 651 static jlong performance_frequency;
 652 
 653 
 654 jlong as_long(LARGE_INTEGER x) {
 655   jlong result = 0; // initialization to avoid warning
 656   set_high(&result, x.HighPart);
 657   set_low(&result, x.LowPart);
 658   return result;
 659 }
 660 
 661 
 662 jlong os::elapsed_counter() {
 663   LARGE_INTEGER count;
 664   if (win32::_has_performance_count) {
 665     QueryPerformanceCounter(&count);
 666     return as_long(count) - initial_performance_count;
 667   } else {
 668     FILETIME wt;
 669     GetSystemTimeAsFileTime(&wt);
 670     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 671   }
 672 }
 673 
 674 
 675 jlong os::elapsed_frequency() {
 676   if (win32::_has_performance_count) {
 677     return performance_frequency;
 678   } else {
 679     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 680     return 10000000;
 681   }
 682 }
 683 
 684 
 685 julong os::available_memory() {
 686   return win32::available_memory();
 687 }
 688 
 689 julong os::win32::available_memory() {
 690   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 691   // value if total memory is larger than 4GB
 692   MEMORYSTATUSEX ms;
 693   ms.dwLength = sizeof(ms);
 694   GlobalMemoryStatusEx(&ms);
 695 
 696   return (julong)ms.ullAvailPhys;
 697 }
 698 
 699 julong os::physical_memory() {
 700   return win32::physical_memory();
 701 }
 702 
 703 bool os::has_allocatable_memory_limit(julong* limit) {
 704   MEMORYSTATUSEX ms;
 705   ms.dwLength = sizeof(ms);
 706   GlobalMemoryStatusEx(&ms);
 707 #ifdef _LP64
 708   *limit = (julong)ms.ullAvailVirtual;
 709   return true;
 710 #else
 711   // Limit to 1400m because of the 2gb address space wall
 712   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 713   return true;
 714 #endif
 715 }
 716 
 717 // VC6 lacks DWORD_PTR
 718 #if _MSC_VER < 1300
 719 typedef UINT_PTR DWORD_PTR;
 720 #endif
 721 
 722 int os::active_processor_count() {
 723   DWORD_PTR lpProcessAffinityMask = 0;
 724   DWORD_PTR lpSystemAffinityMask = 0;
 725   int proc_count = processor_count();
 726   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 727       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 728     // Nof active processors is number of bits in process affinity mask
 729     int bitcount = 0;
 730     while (lpProcessAffinityMask != 0) {
 731       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 732       bitcount++;
 733     }
 734     return bitcount;
 735   } else {
 736     return proc_count;
 737   }
 738 }
 739 
 740 void os::set_native_thread_name(const char *name) {
 741 
 742   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 743   //
 744   // Note that unfortunately this only works if the process
 745   // is already attached to a debugger; debugger must observe
 746   // the exception below to show the correct name.
 747 
 748   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 749   struct {
 750     DWORD dwType;     // must be 0x1000
 751     LPCSTR szName;    // pointer to name (in user addr space)
 752     DWORD dwThreadID; // thread ID (-1=caller thread)
 753     DWORD dwFlags;    // reserved for future use, must be zero
 754   } info;
 755 
 756   info.dwType = 0x1000;
 757   info.szName = name;
 758   info.dwThreadID = -1;
 759   info.dwFlags = 0;
 760 
 761   __try {
 762     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 763   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 764 }
 765 
 766 bool os::distribute_processes(uint length, uint* distribution) {
 767   // Not yet implemented.
 768   return false;
 769 }
 770 
 771 bool os::bind_to_processor(uint processor_id) {
 772   // Not yet implemented.
 773   return false;
 774 }
 775 
 776 void os::win32::initialize_performance_counter() {
 777   LARGE_INTEGER count;
 778   if (QueryPerformanceFrequency(&count)) {
 779     win32::_has_performance_count = 1;
 780     performance_frequency = as_long(count);
 781     QueryPerformanceCounter(&count);
 782     initial_performance_count = as_long(count);
 783   } else {
 784     win32::_has_performance_count = 0;
 785     FILETIME wt;
 786     GetSystemTimeAsFileTime(&wt);
 787     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 788   }
 789 }
 790 
 791 
 792 double os::elapsedTime() {
 793   return (double) elapsed_counter() / (double) elapsed_frequency();
 794 }
 795 
 796 
 797 // Windows format:
 798 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 799 // Java format:
 800 //   Java standards require the number of milliseconds since 1/1/1970
 801 
 802 // Constant offset - calculated using offset()
 803 static jlong  _offset   = 116444736000000000;
 804 // Fake time counter for reproducible results when debugging
 805 static jlong  fake_time = 0;
 806 
 807 #ifdef ASSERT
 808 // Just to be safe, recalculate the offset in debug mode
 809 static jlong _calculated_offset = 0;
 810 static int   _has_calculated_offset = 0;
 811 
 812 jlong offset() {
 813   if (_has_calculated_offset) return _calculated_offset;
 814   SYSTEMTIME java_origin;
 815   java_origin.wYear          = 1970;
 816   java_origin.wMonth         = 1;
 817   java_origin.wDayOfWeek     = 0; // ignored
 818   java_origin.wDay           = 1;
 819   java_origin.wHour          = 0;
 820   java_origin.wMinute        = 0;
 821   java_origin.wSecond        = 0;
 822   java_origin.wMilliseconds  = 0;
 823   FILETIME jot;
 824   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 825     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 826   }
 827   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 828   _has_calculated_offset = 1;
 829   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 830   return _calculated_offset;
 831 }
 832 #else
 833 jlong offset() {
 834   return _offset;
 835 }
 836 #endif
 837 
 838 jlong windows_to_java_time(FILETIME wt) {
 839   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 840   return (a - offset()) / 10000;
 841 }
 842 
 843 // Returns time ticks in (10th of micro seconds)
 844 jlong windows_to_time_ticks(FILETIME wt) {
 845   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 846   return (a - offset());
 847 }
 848 
 849 FILETIME java_to_windows_time(jlong l) {
 850   jlong a = (l * 10000) + offset();
 851   FILETIME result;
 852   result.dwHighDateTime = high(a);
 853   result.dwLowDateTime  = low(a);
 854   return result;
 855 }
 856 
 857 bool os::supports_vtime() { return true; }
 858 bool os::enable_vtime() { return false; }
 859 bool os::vtime_enabled() { return false; }
 860 
 861 double os::elapsedVTime() {
 862   FILETIME created;
 863   FILETIME exited;
 864   FILETIME kernel;
 865   FILETIME user;
 866   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 867     // the resolution of windows_to_java_time() should be sufficient (ms)
 868     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 869   } else {
 870     return elapsedTime();
 871   }
 872 }
 873 
 874 jlong os::javaTimeMillis() {
 875   if (UseFakeTimers) {
 876     return fake_time++;
 877   } else {
 878     FILETIME wt;
 879     GetSystemTimeAsFileTime(&wt);
 880     return windows_to_java_time(wt);
 881   }
 882 }
 883 
 884 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 885   FILETIME wt;
 886   GetSystemTimeAsFileTime(&wt);
 887   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 888   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 889   seconds = secs;
 890   nanos = jlong(ticks - (secs*10000000)) * 100;
 891 }
 892 
 893 jlong os::javaTimeNanos() {
 894   if (!win32::_has_performance_count) {
 895     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 896   } else {
 897     LARGE_INTEGER current_count;
 898     QueryPerformanceCounter(&current_count);
 899     double current = as_long(current_count);
 900     double freq = performance_frequency;
 901     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 902     return time;
 903   }
 904 }
 905 
 906 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 907   if (!win32::_has_performance_count) {
 908     // javaTimeMillis() doesn't have much percision,
 909     // but it is not going to wrap -- so all 64 bits
 910     info_ptr->max_value = ALL_64_BITS;
 911 
 912     // this is a wall clock timer, so may skip
 913     info_ptr->may_skip_backward = true;
 914     info_ptr->may_skip_forward = true;
 915   } else {
 916     jlong freq = performance_frequency;
 917     if (freq < NANOSECS_PER_SEC) {
 918       // the performance counter is 64 bits and we will
 919       // be multiplying it -- so no wrap in 64 bits
 920       info_ptr->max_value = ALL_64_BITS;
 921     } else if (freq > NANOSECS_PER_SEC) {
 922       // use the max value the counter can reach to
 923       // determine the max value which could be returned
 924       julong max_counter = (julong)ALL_64_BITS;
 925       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 926     } else {
 927       // the performance counter is 64 bits and we will
 928       // be using it directly -- so no wrap in 64 bits
 929       info_ptr->max_value = ALL_64_BITS;
 930     }
 931 
 932     // using a counter, so no skipping
 933     info_ptr->may_skip_backward = false;
 934     info_ptr->may_skip_forward = false;
 935   }
 936   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 937 }
 938 
 939 char* os::local_time_string(char *buf, size_t buflen) {
 940   SYSTEMTIME st;
 941   GetLocalTime(&st);
 942   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 943                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 944   return buf;
 945 }
 946 
 947 bool os::getTimesSecs(double* process_real_time,
 948                       double* process_user_time,
 949                       double* process_system_time) {
 950   HANDLE h_process = GetCurrentProcess();
 951   FILETIME create_time, exit_time, kernel_time, user_time;
 952   BOOL result = GetProcessTimes(h_process,
 953                                 &create_time,
 954                                 &exit_time,
 955                                 &kernel_time,
 956                                 &user_time);
 957   if (result != 0) {
 958     FILETIME wt;
 959     GetSystemTimeAsFileTime(&wt);
 960     jlong rtc_millis = windows_to_java_time(wt);
 961     jlong user_millis = windows_to_java_time(user_time);
 962     jlong system_millis = windows_to_java_time(kernel_time);
 963     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 964     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 965     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 966     return true;
 967   } else {
 968     return false;
 969   }
 970 }
 971 
 972 void os::shutdown() {
 973   // allow PerfMemory to attempt cleanup of any persistent resources
 974   perfMemory_exit();
 975 
 976   // flush buffered output, finish log files
 977   ostream_abort();
 978 
 979   // Check for abort hook
 980   abort_hook_t abort_hook = Arguments::abort_hook();
 981   if (abort_hook != NULL) {
 982     abort_hook();
 983   }
 984 }
 985 
 986 
 987 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 988                                          PMINIDUMP_EXCEPTION_INFORMATION,
 989                                          PMINIDUMP_USER_STREAM_INFORMATION,
 990                                          PMINIDUMP_CALLBACK_INFORMATION);
 991 
 992 static HANDLE dumpFile = NULL;
 993 
 994 // Check if dump file can be created.
 995 void os::check_dump_limit(char* buffer, size_t buffsz) {
 996   bool status = true;
 997   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 998     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
 999     status = false;
1000   } else {
1001     const char* cwd = get_current_directory(NULL, 0);
1002     int pid = current_process_id();
1003     if (cwd != NULL) {
1004       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1005     } else {
1006       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1007     }
1008 
1009     if (dumpFile == NULL &&
1010        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1011                  == INVALID_HANDLE_VALUE) {
1012       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1013       status = false;
1014     }
1015   }
1016   VMError::record_coredump_status(buffer, status);
1017 }
1018 
1019 void os::abort(bool dump_core, void* siginfo, void* context) {
1020   HINSTANCE dbghelp;
1021   EXCEPTION_POINTERS ep;
1022   MINIDUMP_EXCEPTION_INFORMATION mei;
1023   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1024 
1025   HANDLE hProcess = GetCurrentProcess();
1026   DWORD processId = GetCurrentProcessId();
1027   MINIDUMP_TYPE dumpType;
1028 
1029   shutdown();
1030   if (!dump_core || dumpFile == NULL) {
1031     if (dumpFile != NULL) {
1032       CloseHandle(dumpFile);
1033     }
1034     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1035   }
1036 
1037   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1038 
1039   if (dbghelp == NULL) {
1040     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1041     CloseHandle(dumpFile);
1042     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1043   }
1044 
1045   _MiniDumpWriteDump =
1046       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1047                                     PMINIDUMP_EXCEPTION_INFORMATION,
1048                                     PMINIDUMP_USER_STREAM_INFORMATION,
1049                                     PMINIDUMP_CALLBACK_INFORMATION),
1050                                     GetProcAddress(dbghelp,
1051                                     "MiniDumpWriteDump"));
1052 
1053   if (_MiniDumpWriteDump == NULL) {
1054     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1055     CloseHandle(dumpFile);
1056     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1057   }
1058 
1059   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1060 
1061   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1062   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1063 #if API_VERSION_NUMBER >= 11
1064   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1065                              MiniDumpWithUnloadedModules);
1066 #endif
1067 
1068   if (siginfo != NULL && context != NULL) {
1069     ep.ContextRecord = (PCONTEXT) context;
1070     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1071 
1072     mei.ThreadId = GetCurrentThreadId();
1073     mei.ExceptionPointers = &ep;
1074     pmei = &mei;
1075   } else {
1076     pmei = NULL;
1077   }
1078 
1079   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1080   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1081   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1082       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1083     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1084   }
1085   CloseHandle(dumpFile);
1086   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1087 }
1088 
1089 void os::abort(bool dump_core) {
1090   abort(dump_core, NULL, NULL);
1091 }
1092 
1093 // Die immediately, no exit hook, no abort hook, no cleanup.
1094 void os::die() {
1095   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1096 }
1097 
1098 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1099 //  * dirent_md.c       1.15 00/02/02
1100 //
1101 // The declarations for DIR and struct dirent are in jvm_win32.h.
1102 
1103 // Caller must have already run dirname through JVM_NativePath, which removes
1104 // duplicate slashes and converts all instances of '/' into '\\'.
1105 
1106 DIR * os::opendir(const char *dirname) {
1107   assert(dirname != NULL, "just checking");   // hotspot change
1108   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1109   DWORD fattr;                                // hotspot change
1110   char alt_dirname[4] = { 0, 0, 0, 0 };
1111 
1112   if (dirp == 0) {
1113     errno = ENOMEM;
1114     return 0;
1115   }
1116 
1117   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1118   // as a directory in FindFirstFile().  We detect this case here and
1119   // prepend the current drive name.
1120   //
1121   if (dirname[1] == '\0' && dirname[0] == '\\') {
1122     alt_dirname[0] = _getdrive() + 'A' - 1;
1123     alt_dirname[1] = ':';
1124     alt_dirname[2] = '\\';
1125     alt_dirname[3] = '\0';
1126     dirname = alt_dirname;
1127   }
1128 
1129   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1130   if (dirp->path == 0) {
1131     free(dirp);
1132     errno = ENOMEM;
1133     return 0;
1134   }
1135   strcpy(dirp->path, dirname);
1136 
1137   fattr = GetFileAttributes(dirp->path);
1138   if (fattr == 0xffffffff) {
1139     free(dirp->path);
1140     free(dirp);
1141     errno = ENOENT;
1142     return 0;
1143   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1144     free(dirp->path);
1145     free(dirp);
1146     errno = ENOTDIR;
1147     return 0;
1148   }
1149 
1150   // Append "*.*", or possibly "\\*.*", to path
1151   if (dirp->path[1] == ':' &&
1152       (dirp->path[2] == '\0' ||
1153       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1154     // No '\\' needed for cases like "Z:" or "Z:\"
1155     strcat(dirp->path, "*.*");
1156   } else {
1157     strcat(dirp->path, "\\*.*");
1158   }
1159 
1160   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1161   if (dirp->handle == INVALID_HANDLE_VALUE) {
1162     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1163       free(dirp->path);
1164       free(dirp);
1165       errno = EACCES;
1166       return 0;
1167     }
1168   }
1169   return dirp;
1170 }
1171 
1172 // parameter dbuf unused on Windows
1173 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1174   assert(dirp != NULL, "just checking");      // hotspot change
1175   if (dirp->handle == INVALID_HANDLE_VALUE) {
1176     return 0;
1177   }
1178 
1179   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1180 
1181   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1182     if (GetLastError() == ERROR_INVALID_HANDLE) {
1183       errno = EBADF;
1184       return 0;
1185     }
1186     FindClose(dirp->handle);
1187     dirp->handle = INVALID_HANDLE_VALUE;
1188   }
1189 
1190   return &dirp->dirent;
1191 }
1192 
1193 int os::closedir(DIR *dirp) {
1194   assert(dirp != NULL, "just checking");      // hotspot change
1195   if (dirp->handle != INVALID_HANDLE_VALUE) {
1196     if (!FindClose(dirp->handle)) {
1197       errno = EBADF;
1198       return -1;
1199     }
1200     dirp->handle = INVALID_HANDLE_VALUE;
1201   }
1202   free(dirp->path);
1203   free(dirp);
1204   return 0;
1205 }
1206 
1207 // This must be hard coded because it's the system's temporary
1208 // directory not the java application's temp directory, ala java.io.tmpdir.
1209 const char* os::get_temp_directory() {
1210   static char path_buf[MAX_PATH];
1211   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1212     return path_buf;
1213   } else {
1214     path_buf[0] = '\0';
1215     return path_buf;
1216   }
1217 }
1218 
1219 static bool file_exists(const char* filename) {
1220   if (filename == NULL || strlen(filename) == 0) {
1221     return false;
1222   }
1223   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1224 }
1225 
1226 bool os::dll_build_name(char *buffer, size_t buflen,
1227                         const char* pname, const char* fname) {
1228   bool retval = false;
1229   const size_t pnamelen = pname ? strlen(pname) : 0;
1230   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1231 
1232   // Return error on buffer overflow.
1233   if (pnamelen + strlen(fname) + 10 > buflen) {
1234     return retval;
1235   }
1236 
1237   if (pnamelen == 0) {
1238     jio_snprintf(buffer, buflen, "%s.dll", fname);
1239     retval = true;
1240   } else if (c == ':' || c == '\\') {
1241     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1242     retval = true;
1243   } else if (strchr(pname, *os::path_separator()) != NULL) {
1244     int n;
1245     char** pelements = split_path(pname, &n);
1246     if (pelements == NULL) {
1247       return false;
1248     }
1249     for (int i = 0; i < n; i++) {
1250       char* path = pelements[i];
1251       // Really shouldn't be NULL, but check can't hurt
1252       size_t plen = (path == NULL) ? 0 : strlen(path);
1253       if (plen == 0) {
1254         continue; // skip the empty path values
1255       }
1256       const char lastchar = path[plen - 1];
1257       if (lastchar == ':' || lastchar == '\\') {
1258         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1259       } else {
1260         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1261       }
1262       if (file_exists(buffer)) {
1263         retval = true;
1264         break;
1265       }
1266     }
1267     // release the storage
1268     for (int i = 0; i < n; i++) {
1269       if (pelements[i] != NULL) {
1270         FREE_C_HEAP_ARRAY(char, pelements[i]);
1271       }
1272     }
1273     if (pelements != NULL) {
1274       FREE_C_HEAP_ARRAY(char*, pelements);
1275     }
1276   } else {
1277     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1278     retval = true;
1279   }
1280   return retval;
1281 }
1282 
1283 // Needs to be in os specific directory because windows requires another
1284 // header file <direct.h>
1285 const char* os::get_current_directory(char *buf, size_t buflen) {
1286   int n = static_cast<int>(buflen);
1287   if (buflen > INT_MAX)  n = INT_MAX;
1288   return _getcwd(buf, n);
1289 }
1290 
1291 //-----------------------------------------------------------
1292 // Helper functions for fatal error handler
1293 #ifdef _WIN64
1294 // Helper routine which returns true if address in
1295 // within the NTDLL address space.
1296 //
1297 static bool _addr_in_ntdll(address addr) {
1298   HMODULE hmod;
1299   MODULEINFO minfo;
1300 
1301   hmod = GetModuleHandle("NTDLL.DLL");
1302   if (hmod == NULL) return false;
1303   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1304                                           &minfo, sizeof(MODULEINFO))) {
1305     return false;
1306   }
1307 
1308   if ((addr >= minfo.lpBaseOfDll) &&
1309       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1310     return true;
1311   } else {
1312     return false;
1313   }
1314 }
1315 #endif
1316 
1317 struct _modinfo {
1318   address addr;
1319   char*   full_path;   // point to a char buffer
1320   int     buflen;      // size of the buffer
1321   address base_addr;
1322 };
1323 
1324 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1325                                   address top_address, void * param) {
1326   struct _modinfo *pmod = (struct _modinfo *)param;
1327   if (!pmod) return -1;
1328 
1329   if (base_addr   <= pmod->addr &&
1330       top_address > pmod->addr) {
1331     // if a buffer is provided, copy path name to the buffer
1332     if (pmod->full_path) {
1333       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1334     }
1335     pmod->base_addr = base_addr;
1336     return 1;
1337   }
1338   return 0;
1339 }
1340 
1341 bool os::dll_address_to_library_name(address addr, char* buf,
1342                                      int buflen, int* offset) {
1343   // buf is not optional, but offset is optional
1344   assert(buf != NULL, "sanity check");
1345 
1346 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1347 //       return the full path to the DLL file, sometimes it returns path
1348 //       to the corresponding PDB file (debug info); sometimes it only
1349 //       returns partial path, which makes life painful.
1350 
1351   struct _modinfo mi;
1352   mi.addr      = addr;
1353   mi.full_path = buf;
1354   mi.buflen    = buflen;
1355   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1356     // buf already contains path name
1357     if (offset) *offset = addr - mi.base_addr;
1358     return true;
1359   }
1360 
1361   buf[0] = '\0';
1362   if (offset) *offset = -1;
1363   return false;
1364 }
1365 
1366 bool os::dll_address_to_function_name(address addr, char *buf,
1367                                       int buflen, int *offset) {
1368   // buf is not optional, but offset is optional
1369   assert(buf != NULL, "sanity check");
1370 
1371   if (Decoder::decode(addr, buf, buflen, offset)) {
1372     return true;
1373   }
1374   if (offset != NULL)  *offset  = -1;
1375   buf[0] = '\0';
1376   return false;
1377 }
1378 
1379 // save the start and end address of jvm.dll into param[0] and param[1]
1380 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1381                            address top_address, void * param) {
1382   if (!param) return -1;
1383 
1384   if (base_addr   <= (address)_locate_jvm_dll &&
1385       top_address > (address)_locate_jvm_dll) {
1386     ((address*)param)[0] = base_addr;
1387     ((address*)param)[1] = top_address;
1388     return 1;
1389   }
1390   return 0;
1391 }
1392 
1393 address vm_lib_location[2];    // start and end address of jvm.dll
1394 
1395 // check if addr is inside jvm.dll
1396 bool os::address_is_in_vm(address addr) {
1397   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1398     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1399       assert(false, "Can't find jvm module.");
1400       return false;
1401     }
1402   }
1403 
1404   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1405 }
1406 
1407 // print module info; param is outputStream*
1408 static int _print_module(const char* fname, address base_address,
1409                          address top_address, void* param) {
1410   if (!param) return -1;
1411 
1412   outputStream* st = (outputStream*)param;
1413 
1414   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1415   return 0;
1416 }
1417 
1418 // Loads .dll/.so and
1419 // in case of error it checks if .dll/.so was built for the
1420 // same architecture as Hotspot is running on
1421 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1422   void * result = LoadLibrary(name);
1423   if (result != NULL) {
1424     return result;
1425   }
1426 
1427   DWORD errcode = GetLastError();
1428   if (errcode == ERROR_MOD_NOT_FOUND) {
1429     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1430     ebuf[ebuflen - 1] = '\0';
1431     return NULL;
1432   }
1433 
1434   // Parsing dll below
1435   // If we can read dll-info and find that dll was built
1436   // for an architecture other than Hotspot is running in
1437   // - then print to buffer "DLL was built for a different architecture"
1438   // else call os::lasterror to obtain system error message
1439 
1440   // Read system error message into ebuf
1441   // It may or may not be overwritten below (in the for loop and just above)
1442   lasterror(ebuf, (size_t) ebuflen);
1443   ebuf[ebuflen - 1] = '\0';
1444   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1445   if (fd < 0) {
1446     return NULL;
1447   }
1448 
1449   uint32_t signature_offset;
1450   uint16_t lib_arch = 0;
1451   bool failed_to_get_lib_arch =
1452     ( // Go to position 3c in the dll
1453      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1454      ||
1455      // Read location of signature
1456      (sizeof(signature_offset) !=
1457      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1458      ||
1459      // Go to COFF File Header in dll
1460      // that is located after "signature" (4 bytes long)
1461      (os::seek_to_file_offset(fd,
1462      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1463      ||
1464      // Read field that contains code of architecture
1465      // that dll was built for
1466      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1467     );
1468 
1469   ::close(fd);
1470   if (failed_to_get_lib_arch) {
1471     // file i/o error - report os::lasterror(...) msg
1472     return NULL;
1473   }
1474 
1475   typedef struct {
1476     uint16_t arch_code;
1477     char* arch_name;
1478   } arch_t;
1479 
1480   static const arch_t arch_array[] = {
1481     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1482     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1483     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1484   };
1485 #if   (defined _M_IA64)
1486   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1487 #elif (defined _M_AMD64)
1488   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1489 #elif (defined _M_IX86)
1490   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1491 #else
1492   #error Method os::dll_load requires that one of following \
1493          is defined :_M_IA64,_M_AMD64 or _M_IX86
1494 #endif
1495 
1496 
1497   // Obtain a string for printf operation
1498   // lib_arch_str shall contain string what platform this .dll was built for
1499   // running_arch_str shall string contain what platform Hotspot was built for
1500   char *running_arch_str = NULL, *lib_arch_str = NULL;
1501   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1502     if (lib_arch == arch_array[i].arch_code) {
1503       lib_arch_str = arch_array[i].arch_name;
1504     }
1505     if (running_arch == arch_array[i].arch_code) {
1506       running_arch_str = arch_array[i].arch_name;
1507     }
1508   }
1509 
1510   assert(running_arch_str,
1511          "Didn't find running architecture code in arch_array");
1512 
1513   // If the architecture is right
1514   // but some other error took place - report os::lasterror(...) msg
1515   if (lib_arch == running_arch) {
1516     return NULL;
1517   }
1518 
1519   if (lib_arch_str != NULL) {
1520     ::_snprintf(ebuf, ebuflen - 1,
1521                 "Can't load %s-bit .dll on a %s-bit platform",
1522                 lib_arch_str, running_arch_str);
1523   } else {
1524     // don't know what architecture this dll was build for
1525     ::_snprintf(ebuf, ebuflen - 1,
1526                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1527                 lib_arch, running_arch_str);
1528   }
1529 
1530   return NULL;
1531 }
1532 
1533 void os::print_dll_info(outputStream *st) {
1534   st->print_cr("Dynamic libraries:");
1535   get_loaded_modules_info(_print_module, (void *)st);
1536 }
1537 
1538 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1539   HANDLE   hProcess;
1540 
1541 # define MAX_NUM_MODULES 128
1542   HMODULE     modules[MAX_NUM_MODULES];
1543   static char filename[MAX_PATH];
1544   int         result = 0;
1545 
1546   if (!os::PSApiDll::PSApiAvailable()) {
1547     return 0;
1548   }
1549 
1550   int pid = os::current_process_id();
1551   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1552                          FALSE, pid);
1553   if (hProcess == NULL) return 0;
1554 
1555   DWORD size_needed;
1556   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1557                                         sizeof(modules), &size_needed)) {
1558     CloseHandle(hProcess);
1559     return 0;
1560   }
1561 
1562   // number of modules that are currently loaded
1563   int num_modules = size_needed / sizeof(HMODULE);
1564 
1565   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1566     // Get Full pathname:
1567     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1568                                            filename, sizeof(filename))) {
1569       filename[0] = '\0';
1570     }
1571 
1572     MODULEINFO modinfo;
1573     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1574                                             &modinfo, sizeof(modinfo))) {
1575       modinfo.lpBaseOfDll = NULL;
1576       modinfo.SizeOfImage = 0;
1577     }
1578 
1579     // Invoke callback function
1580     result = callback(filename, (address)modinfo.lpBaseOfDll,
1581                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1582     if (result) break;
1583   }
1584 
1585   CloseHandle(hProcess);
1586   return result;
1587 }
1588 
1589 void os::print_os_info_brief(outputStream* st) {
1590   os::print_os_info(st);
1591 }
1592 
1593 void os::print_os_info(outputStream* st) {
1594 #ifdef ASSERT
1595   char buffer[1024];
1596   DWORD size = sizeof(buffer);
1597   st->print(" HostName: ");
1598   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1599     st->print("%s", buffer);
1600   } else {
1601     st->print("N/A");
1602   }
1603 #endif
1604   st->print(" OS:");
1605   os::win32::print_windows_version(st);
1606 }
1607 
1608 void os::win32::print_windows_version(outputStream* st) {
1609   OSVERSIONINFOEX osvi;
1610   VS_FIXEDFILEINFO *file_info;
1611   TCHAR kernel32_path[MAX_PATH];
1612   UINT len, ret;
1613 
1614   // Use the GetVersionEx information to see if we're on a server or
1615   // workstation edition of Windows. Starting with Windows 8.1 we can't
1616   // trust the OS version information returned by this API.
1617   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1618   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1619   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1620     st->print_cr("Call to GetVersionEx failed");
1621     return;
1622   }
1623   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1624 
1625   // Get the full path to \Windows\System32\kernel32.dll and use that for
1626   // determining what version of Windows we're running on.
1627   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1628   ret = GetSystemDirectory(kernel32_path, len);
1629   if (ret == 0 || ret > len) {
1630     st->print_cr("Call to GetSystemDirectory failed");
1631     return;
1632   }
1633   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1634 
1635   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1636   if (version_size == 0) {
1637     st->print_cr("Call to GetFileVersionInfoSize failed");
1638     return;
1639   }
1640 
1641   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1642   if (version_info == NULL) {
1643     st->print_cr("Failed to allocate version_info");
1644     return;
1645   }
1646 
1647   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1648     os::free(version_info);
1649     st->print_cr("Call to GetFileVersionInfo failed");
1650     return;
1651   }
1652 
1653   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1654     os::free(version_info);
1655     st->print_cr("Call to VerQueryValue failed");
1656     return;
1657   }
1658 
1659   int major_version = HIWORD(file_info->dwProductVersionMS);
1660   int minor_version = LOWORD(file_info->dwProductVersionMS);
1661   int build_number = HIWORD(file_info->dwProductVersionLS);
1662   int build_minor = LOWORD(file_info->dwProductVersionLS);
1663   int os_vers = major_version * 1000 + minor_version;
1664   os::free(version_info);
1665 
1666   st->print(" Windows ");
1667   switch (os_vers) {
1668 
1669   case 6000:
1670     if (is_workstation) {
1671       st->print("Vista");
1672     } else {
1673       st->print("Server 2008");
1674     }
1675     break;
1676 
1677   case 6001:
1678     if (is_workstation) {
1679       st->print("7");
1680     } else {
1681       st->print("Server 2008 R2");
1682     }
1683     break;
1684 
1685   case 6002:
1686     if (is_workstation) {
1687       st->print("8");
1688     } else {
1689       st->print("Server 2012");
1690     }
1691     break;
1692 
1693   case 6003:
1694     if (is_workstation) {
1695       st->print("8.1");
1696     } else {
1697       st->print("Server 2012 R2");
1698     }
1699     break;
1700 
1701   case 10000:
1702     if (is_workstation) {
1703       st->print("10");
1704     } else {
1705       // The server version name of Windows 10 is not known at this time
1706       st->print("%d.%d", major_version, minor_version);
1707     }
1708     break;
1709 
1710   default:
1711     // Unrecognized windows, print out its major and minor versions
1712     st->print("%d.%d", major_version, minor_version);
1713     break;
1714   }
1715 
1716   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1717   // find out whether we are running on 64 bit processor or not
1718   SYSTEM_INFO si;
1719   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1720   os::Kernel32Dll::GetNativeSystemInfo(&si);
1721   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1722     st->print(" , 64 bit");
1723   }
1724 
1725   st->print(" Build %d", build_number);
1726   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1727   st->cr();
1728 }
1729 
1730 void os::pd_print_cpu_info(outputStream* st) {
1731   // Nothing to do for now.
1732 }
1733 
1734 void os::print_memory_info(outputStream* st) {
1735   st->print("Memory:");
1736   st->print(" %dk page", os::vm_page_size()>>10);
1737 
1738   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1739   // value if total memory is larger than 4GB
1740   MEMORYSTATUSEX ms;
1741   ms.dwLength = sizeof(ms);
1742   GlobalMemoryStatusEx(&ms);
1743 
1744   st->print(", physical %uk", os::physical_memory() >> 10);
1745   st->print("(%uk free)", os::available_memory() >> 10);
1746 
1747   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1748   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1749   st->cr();
1750 }
1751 
1752 void os::print_siginfo(outputStream *st, void *siginfo) {
1753   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1754   st->print("siginfo:");
1755   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1756 
1757   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1758       er->NumberParameters >= 2) {
1759     switch (er->ExceptionInformation[0]) {
1760     case 0: st->print(", reading address"); break;
1761     case 1: st->print(", writing address"); break;
1762     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1763                        er->ExceptionInformation[0]);
1764     }
1765     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1766   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1767              er->NumberParameters >= 2 && UseSharedSpaces) {
1768     FileMapInfo* mapinfo = FileMapInfo::current_info();
1769     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1770       st->print("\n\nError accessing class data sharing archive."       \
1771                 " Mapped file inaccessible during execution, "          \
1772                 " possible disk/network problem.");
1773     }
1774   } else {
1775     int num = er->NumberParameters;
1776     if (num > 0) {
1777       st->print(", ExceptionInformation=");
1778       for (int i = 0; i < num; i++) {
1779         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1780       }
1781     }
1782   }
1783   st->cr();
1784 }
1785 
1786 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1787   // do nothing
1788 }
1789 
1790 static char saved_jvm_path[MAX_PATH] = {0};
1791 
1792 // Find the full path to the current module, jvm.dll
1793 void os::jvm_path(char *buf, jint buflen) {
1794   // Error checking.
1795   if (buflen < MAX_PATH) {
1796     assert(false, "must use a large-enough buffer");
1797     buf[0] = '\0';
1798     return;
1799   }
1800   // Lazy resolve the path to current module.
1801   if (saved_jvm_path[0] != 0) {
1802     strcpy(buf, saved_jvm_path);
1803     return;
1804   }
1805 
1806   buf[0] = '\0';
1807   if (Arguments::sun_java_launcher_is_altjvm()) {
1808     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1809     // for a JAVA_HOME environment variable and fix up the path so it
1810     // looks like jvm.dll is installed there (append a fake suffix
1811     // hotspot/jvm.dll).
1812     char* java_home_var = ::getenv("JAVA_HOME");
1813     if (java_home_var != NULL && java_home_var[0] != 0 &&
1814         strlen(java_home_var) < (size_t)buflen) {
1815       strncpy(buf, java_home_var, buflen);
1816 
1817       // determine if this is a legacy image or modules image
1818       // modules image doesn't have "jre" subdirectory
1819       size_t len = strlen(buf);
1820       char* jrebin_p = buf + len;
1821       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1822       if (0 != _access(buf, 0)) {
1823         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1824       }
1825       len = strlen(buf);
1826       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1827     }
1828   }
1829 
1830   if (buf[0] == '\0') {
1831     GetModuleFileName(vm_lib_handle, buf, buflen);
1832   }
1833   strncpy(saved_jvm_path, buf, MAX_PATH);
1834   saved_jvm_path[MAX_PATH - 1] = '\0';
1835 }
1836 
1837 
1838 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1839 #ifndef _WIN64
1840   st->print("_");
1841 #endif
1842 }
1843 
1844 
1845 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1846 #ifndef _WIN64
1847   st->print("@%d", args_size  * sizeof(int));
1848 #endif
1849 }
1850 
1851 // This method is a copy of JDK's sysGetLastErrorString
1852 // from src/windows/hpi/src/system_md.c
1853 
1854 size_t os::lasterror(char* buf, size_t len) {
1855   DWORD errval;
1856 
1857   if ((errval = GetLastError()) != 0) {
1858     // DOS error
1859     size_t n = (size_t)FormatMessage(
1860                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1861                                      NULL,
1862                                      errval,
1863                                      0,
1864                                      buf,
1865                                      (DWORD)len,
1866                                      NULL);
1867     if (n > 3) {
1868       // Drop final '.', CR, LF
1869       if (buf[n - 1] == '\n') n--;
1870       if (buf[n - 1] == '\r') n--;
1871       if (buf[n - 1] == '.') n--;
1872       buf[n] = '\0';
1873     }
1874     return n;
1875   }
1876 
1877   if (errno != 0) {
1878     // C runtime error that has no corresponding DOS error code
1879     const char* s = strerror(errno);
1880     size_t n = strlen(s);
1881     if (n >= len) n = len - 1;
1882     strncpy(buf, s, n);
1883     buf[n] = '\0';
1884     return n;
1885   }
1886 
1887   return 0;
1888 }
1889 
1890 int os::get_last_error() {
1891   DWORD error = GetLastError();
1892   if (error == 0) {
1893     error = errno;
1894   }
1895   return (int)error;
1896 }
1897 
1898 // sun.misc.Signal
1899 // NOTE that this is a workaround for an apparent kernel bug where if
1900 // a signal handler for SIGBREAK is installed then that signal handler
1901 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1902 // See bug 4416763.
1903 static void (*sigbreakHandler)(int) = NULL;
1904 
1905 static void UserHandler(int sig, void *siginfo, void *context) {
1906   os::signal_notify(sig);
1907   // We need to reinstate the signal handler each time...
1908   os::signal(sig, (void*)UserHandler);
1909 }
1910 
1911 void* os::user_handler() {
1912   return (void*) UserHandler;
1913 }
1914 
1915 void* os::signal(int signal_number, void* handler) {
1916   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1917     void (*oldHandler)(int) = sigbreakHandler;
1918     sigbreakHandler = (void (*)(int)) handler;
1919     return (void*) oldHandler;
1920   } else {
1921     return (void*)::signal(signal_number, (void (*)(int))handler);
1922   }
1923 }
1924 
1925 void os::signal_raise(int signal_number) {
1926   raise(signal_number);
1927 }
1928 
1929 // The Win32 C runtime library maps all console control events other than ^C
1930 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1931 // logoff, and shutdown events.  We therefore install our own console handler
1932 // that raises SIGTERM for the latter cases.
1933 //
1934 static BOOL WINAPI consoleHandler(DWORD event) {
1935   switch (event) {
1936   case CTRL_C_EVENT:
1937     if (is_error_reported()) {
1938       // Ctrl-C is pressed during error reporting, likely because the error
1939       // handler fails to abort. Let VM die immediately.
1940       os::die();
1941     }
1942 
1943     os::signal_raise(SIGINT);
1944     return TRUE;
1945     break;
1946   case CTRL_BREAK_EVENT:
1947     if (sigbreakHandler != NULL) {
1948       (*sigbreakHandler)(SIGBREAK);
1949     }
1950     return TRUE;
1951     break;
1952   case CTRL_LOGOFF_EVENT: {
1953     // Don't terminate JVM if it is running in a non-interactive session,
1954     // such as a service process.
1955     USEROBJECTFLAGS flags;
1956     HANDLE handle = GetProcessWindowStation();
1957     if (handle != NULL &&
1958         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1959         sizeof(USEROBJECTFLAGS), NULL)) {
1960       // If it is a non-interactive session, let next handler to deal
1961       // with it.
1962       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1963         return FALSE;
1964       }
1965     }
1966   }
1967   case CTRL_CLOSE_EVENT:
1968   case CTRL_SHUTDOWN_EVENT:
1969     os::signal_raise(SIGTERM);
1970     return TRUE;
1971     break;
1972   default:
1973     break;
1974   }
1975   return FALSE;
1976 }
1977 
1978 // The following code is moved from os.cpp for making this
1979 // code platform specific, which it is by its very nature.
1980 
1981 // Return maximum OS signal used + 1 for internal use only
1982 // Used as exit signal for signal_thread
1983 int os::sigexitnum_pd() {
1984   return NSIG;
1985 }
1986 
1987 // a counter for each possible signal value, including signal_thread exit signal
1988 static volatile jint pending_signals[NSIG+1] = { 0 };
1989 static HANDLE sig_sem = NULL;
1990 
1991 void os::signal_init_pd() {
1992   // Initialize signal structures
1993   memset((void*)pending_signals, 0, sizeof(pending_signals));
1994 
1995   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1996 
1997   // Programs embedding the VM do not want it to attempt to receive
1998   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1999   // shutdown hooks mechanism introduced in 1.3.  For example, when
2000   // the VM is run as part of a Windows NT service (i.e., a servlet
2001   // engine in a web server), the correct behavior is for any console
2002   // control handler to return FALSE, not TRUE, because the OS's
2003   // "final" handler for such events allows the process to continue if
2004   // it is a service (while terminating it if it is not a service).
2005   // To make this behavior uniform and the mechanism simpler, we
2006   // completely disable the VM's usage of these console events if -Xrs
2007   // (=ReduceSignalUsage) is specified.  This means, for example, that
2008   // the CTRL-BREAK thread dump mechanism is also disabled in this
2009   // case.  See bugs 4323062, 4345157, and related bugs.
2010 
2011   if (!ReduceSignalUsage) {
2012     // Add a CTRL-C handler
2013     SetConsoleCtrlHandler(consoleHandler, TRUE);
2014   }
2015 }
2016 
2017 void os::signal_notify(int signal_number) {
2018   BOOL ret;
2019   if (sig_sem != NULL) {
2020     Atomic::inc(&pending_signals[signal_number]);
2021     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2022     assert(ret != 0, "ReleaseSemaphore() failed");
2023   }
2024 }
2025 
2026 static int check_pending_signals(bool wait_for_signal) {
2027   DWORD ret;
2028   while (true) {
2029     for (int i = 0; i < NSIG + 1; i++) {
2030       jint n = pending_signals[i];
2031       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2032         return i;
2033       }
2034     }
2035     if (!wait_for_signal) {
2036       return -1;
2037     }
2038 
2039     JavaThread *thread = JavaThread::current();
2040 
2041     ThreadBlockInVM tbivm(thread);
2042 
2043     bool threadIsSuspended;
2044     do {
2045       thread->set_suspend_equivalent();
2046       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2047       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2048       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2049 
2050       // were we externally suspended while we were waiting?
2051       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2052       if (threadIsSuspended) {
2053         // The semaphore has been incremented, but while we were waiting
2054         // another thread suspended us. We don't want to continue running
2055         // while suspended because that would surprise the thread that
2056         // suspended us.
2057         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2058         assert(ret != 0, "ReleaseSemaphore() failed");
2059 
2060         thread->java_suspend_self();
2061       }
2062     } while (threadIsSuspended);
2063   }
2064 }
2065 
2066 int os::signal_lookup() {
2067   return check_pending_signals(false);
2068 }
2069 
2070 int os::signal_wait() {
2071   return check_pending_signals(true);
2072 }
2073 
2074 // Implicit OS exception handling
2075 
2076 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2077                       address handler) {
2078   JavaThread* thread = JavaThread::current();
2079   // Save pc in thread
2080 #ifdef _M_IA64
2081   // Do not blow up if no thread info available.
2082   if (thread) {
2083     // Saving PRECISE pc (with slot information) in thread.
2084     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2085     // Convert precise PC into "Unix" format
2086     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2087     thread->set_saved_exception_pc((address)precise_pc);
2088   }
2089   // Set pc to handler
2090   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2091   // Clear out psr.ri (= Restart Instruction) in order to continue
2092   // at the beginning of the target bundle.
2093   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2094   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2095 #else
2096   #ifdef _M_AMD64
2097   // Do not blow up if no thread info available.
2098   if (thread) {
2099     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2100   }
2101   // Set pc to handler
2102   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2103   #else
2104   // Do not blow up if no thread info available.
2105   if (thread) {
2106     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2107   }
2108   // Set pc to handler
2109   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2110   #endif
2111 #endif
2112 
2113   // Continue the execution
2114   return EXCEPTION_CONTINUE_EXECUTION;
2115 }
2116 
2117 
2118 // Used for PostMortemDump
2119 extern "C" void safepoints();
2120 extern "C" void find(int x);
2121 extern "C" void events();
2122 
2123 // According to Windows API documentation, an illegal instruction sequence should generate
2124 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2125 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2126 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2127 
2128 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2129 
2130 // From "Execution Protection in the Windows Operating System" draft 0.35
2131 // Once a system header becomes available, the "real" define should be
2132 // included or copied here.
2133 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2134 
2135 // Handle NAT Bit consumption on IA64.
2136 #ifdef _M_IA64
2137   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2138 #endif
2139 
2140 // Windows Vista/2008 heap corruption check
2141 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2142 
2143 #define def_excpt(val) #val, val
2144 
2145 struct siglabel {
2146   char *name;
2147   int   number;
2148 };
2149 
2150 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2151 // C++ compiler contain this error code. Because this is a compiler-generated
2152 // error, the code is not listed in the Win32 API header files.
2153 // The code is actually a cryptic mnemonic device, with the initial "E"
2154 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2155 // ASCII values of "msc".
2156 
2157 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2158 
2159 
2160 struct siglabel exceptlabels[] = {
2161     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2162     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2163     def_excpt(EXCEPTION_BREAKPOINT),
2164     def_excpt(EXCEPTION_SINGLE_STEP),
2165     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2166     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2167     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2168     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2169     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2170     def_excpt(EXCEPTION_FLT_OVERFLOW),
2171     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2172     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2173     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2174     def_excpt(EXCEPTION_INT_OVERFLOW),
2175     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2176     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2177     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2178     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2179     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2180     def_excpt(EXCEPTION_STACK_OVERFLOW),
2181     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2182     def_excpt(EXCEPTION_GUARD_PAGE),
2183     def_excpt(EXCEPTION_INVALID_HANDLE),
2184     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2185     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2186 #ifdef _M_IA64
2187     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2188 #endif
2189     NULL, 0
2190 };
2191 
2192 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2193   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2194     if (exceptlabels[i].number == exception_code) {
2195       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2196       return buf;
2197     }
2198   }
2199 
2200   return NULL;
2201 }
2202 
2203 //-----------------------------------------------------------------------------
2204 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2205   // handle exception caused by idiv; should only happen for -MinInt/-1
2206   // (division by zero is handled explicitly)
2207 #ifdef _M_IA64
2208   assert(0, "Fix Handle_IDiv_Exception");
2209 #else
2210   #ifdef  _M_AMD64
2211   PCONTEXT ctx = exceptionInfo->ContextRecord;
2212   address pc = (address)ctx->Rip;
2213   assert(pc[0] == 0xF7, "not an idiv opcode");
2214   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2215   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2216   // set correct result values and continue after idiv instruction
2217   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2218   ctx->Rax = (DWORD)min_jint;      // result
2219   ctx->Rdx = (DWORD)0;             // remainder
2220   // Continue the execution
2221   #else
2222   PCONTEXT ctx = exceptionInfo->ContextRecord;
2223   address pc = (address)ctx->Eip;
2224   assert(pc[0] == 0xF7, "not an idiv opcode");
2225   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2226   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2227   // set correct result values and continue after idiv instruction
2228   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2229   ctx->Eax = (DWORD)min_jint;      // result
2230   ctx->Edx = (DWORD)0;             // remainder
2231   // Continue the execution
2232   #endif
2233 #endif
2234   return EXCEPTION_CONTINUE_EXECUTION;
2235 }
2236 
2237 //-----------------------------------------------------------------------------
2238 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2239   PCONTEXT ctx = exceptionInfo->ContextRecord;
2240 #ifndef  _WIN64
2241   // handle exception caused by native method modifying control word
2242   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2243 
2244   switch (exception_code) {
2245   case EXCEPTION_FLT_DENORMAL_OPERAND:
2246   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2247   case EXCEPTION_FLT_INEXACT_RESULT:
2248   case EXCEPTION_FLT_INVALID_OPERATION:
2249   case EXCEPTION_FLT_OVERFLOW:
2250   case EXCEPTION_FLT_STACK_CHECK:
2251   case EXCEPTION_FLT_UNDERFLOW:
2252     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2253     if (fp_control_word != ctx->FloatSave.ControlWord) {
2254       // Restore FPCW and mask out FLT exceptions
2255       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2256       // Mask out pending FLT exceptions
2257       ctx->FloatSave.StatusWord &=  0xffffff00;
2258       return EXCEPTION_CONTINUE_EXECUTION;
2259     }
2260   }
2261 
2262   if (prev_uef_handler != NULL) {
2263     // We didn't handle this exception so pass it to the previous
2264     // UnhandledExceptionFilter.
2265     return (prev_uef_handler)(exceptionInfo);
2266   }
2267 #else // !_WIN64
2268   // On Windows, the mxcsr control bits are non-volatile across calls
2269   // See also CR 6192333
2270   //
2271   jint MxCsr = INITIAL_MXCSR;
2272   // we can't use StubRoutines::addr_mxcsr_std()
2273   // because in Win64 mxcsr is not saved there
2274   if (MxCsr != ctx->MxCsr) {
2275     ctx->MxCsr = MxCsr;
2276     return EXCEPTION_CONTINUE_EXECUTION;
2277   }
2278 #endif // !_WIN64
2279 
2280   return EXCEPTION_CONTINUE_SEARCH;
2281 }
2282 
2283 static inline void report_error(Thread* t, DWORD exception_code,
2284                                 address addr, void* siginfo, void* context) {
2285   VMError err(t, exception_code, addr, siginfo, context);
2286   err.report_and_die();
2287 
2288   // If UseOsErrorReporting, this will return here and save the error file
2289   // somewhere where we can find it in the minidump.
2290 }
2291 
2292 //-----------------------------------------------------------------------------
2293 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2294   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2295   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2296 #ifdef _M_IA64
2297   // On Itanium, we need the "precise pc", which has the slot number coded
2298   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2299   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2300   // Convert the pc to "Unix format", which has the slot number coded
2301   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2302   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2303   // information is saved in the Unix format.
2304   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2305 #else
2306   #ifdef _M_AMD64
2307   address pc = (address) exceptionInfo->ContextRecord->Rip;
2308   #else
2309   address pc = (address) exceptionInfo->ContextRecord->Eip;
2310   #endif
2311 #endif
2312   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2313 
2314   // Handle SafeFetch32 and SafeFetchN exceptions.
2315   if (StubRoutines::is_safefetch_fault(pc)) {
2316     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2317   }
2318 
2319 #ifndef _WIN64
2320   // Execution protection violation - win32 running on AMD64 only
2321   // Handled first to avoid misdiagnosis as a "normal" access violation;
2322   // This is safe to do because we have a new/unique ExceptionInformation
2323   // code for this condition.
2324   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2325     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2326     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2327     address addr = (address) exceptionRecord->ExceptionInformation[1];
2328 
2329     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2330       int page_size = os::vm_page_size();
2331 
2332       // Make sure the pc and the faulting address are sane.
2333       //
2334       // If an instruction spans a page boundary, and the page containing
2335       // the beginning of the instruction is executable but the following
2336       // page is not, the pc and the faulting address might be slightly
2337       // different - we still want to unguard the 2nd page in this case.
2338       //
2339       // 15 bytes seems to be a (very) safe value for max instruction size.
2340       bool pc_is_near_addr =
2341         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2342       bool instr_spans_page_boundary =
2343         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2344                          (intptr_t) page_size) > 0);
2345 
2346       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2347         static volatile address last_addr =
2348           (address) os::non_memory_address_word();
2349 
2350         // In conservative mode, don't unguard unless the address is in the VM
2351         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2352             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2353 
2354           // Set memory to RWX and retry
2355           address page_start =
2356             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2357           bool res = os::protect_memory((char*) page_start, page_size,
2358                                         os::MEM_PROT_RWX);
2359 
2360           if (PrintMiscellaneous && Verbose) {
2361             char buf[256];
2362             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2363                          "at " INTPTR_FORMAT
2364                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2365                          page_start, (res ? "success" : strerror(errno)));
2366             tty->print_raw_cr(buf);
2367           }
2368 
2369           // Set last_addr so if we fault again at the same address, we don't
2370           // end up in an endless loop.
2371           //
2372           // There are two potential complications here.  Two threads trapping
2373           // at the same address at the same time could cause one of the
2374           // threads to think it already unguarded, and abort the VM.  Likely
2375           // very rare.
2376           //
2377           // The other race involves two threads alternately trapping at
2378           // different addresses and failing to unguard the page, resulting in
2379           // an endless loop.  This condition is probably even more unlikely
2380           // than the first.
2381           //
2382           // Although both cases could be avoided by using locks or thread
2383           // local last_addr, these solutions are unnecessary complication:
2384           // this handler is a best-effort safety net, not a complete solution.
2385           // It is disabled by default and should only be used as a workaround
2386           // in case we missed any no-execute-unsafe VM code.
2387 
2388           last_addr = addr;
2389 
2390           return EXCEPTION_CONTINUE_EXECUTION;
2391         }
2392       }
2393 
2394       // Last unguard failed or not unguarding
2395       tty->print_raw_cr("Execution protection violation");
2396       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2397                    exceptionInfo->ContextRecord);
2398       return EXCEPTION_CONTINUE_SEARCH;
2399     }
2400   }
2401 #endif // _WIN64
2402 
2403   // Check to see if we caught the safepoint code in the
2404   // process of write protecting the memory serialization page.
2405   // It write enables the page immediately after protecting it
2406   // so just return.
2407   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2408     JavaThread* thread = (JavaThread*) t;
2409     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2410     address addr = (address) exceptionRecord->ExceptionInformation[1];
2411     if (os::is_memory_serialize_page(thread, addr)) {
2412       // Block current thread until the memory serialize page permission restored.
2413       os::block_on_serialize_page_trap();
2414       return EXCEPTION_CONTINUE_EXECUTION;
2415     }
2416   }
2417 
2418   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2419       VM_Version::is_cpuinfo_segv_addr(pc)) {
2420     // Verify that OS save/restore AVX registers.
2421     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2422   }
2423 
2424   if (t != NULL && t->is_Java_thread()) {
2425     JavaThread* thread = (JavaThread*) t;
2426     bool in_java = thread->thread_state() == _thread_in_Java;
2427 
2428     // Handle potential stack overflows up front.
2429     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2430       if (os::uses_stack_guard_pages()) {
2431 #ifdef _M_IA64
2432         // Use guard page for register stack.
2433         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2434         address addr = (address) exceptionRecord->ExceptionInformation[1];
2435         // Check for a register stack overflow on Itanium
2436         if (thread->addr_inside_register_stack_red_zone(addr)) {
2437           // Fatal red zone violation happens if the Java program
2438           // catches a StackOverflow error and does so much processing
2439           // that it runs beyond the unprotected yellow guard zone. As
2440           // a result, we are out of here.
2441           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2442         } else if(thread->addr_inside_register_stack(addr)) {
2443           // Disable the yellow zone which sets the state that
2444           // we've got a stack overflow problem.
2445           if (thread->stack_yellow_zone_enabled()) {
2446             thread->disable_stack_yellow_zone();
2447           }
2448           // Give us some room to process the exception.
2449           thread->disable_register_stack_guard();
2450           // Tracing with +Verbose.
2451           if (Verbose) {
2452             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2453             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2454             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2455             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2456                           thread->register_stack_base(),
2457                           thread->register_stack_base() + thread->stack_size());
2458           }
2459 
2460           // Reguard the permanent register stack red zone just to be sure.
2461           // We saw Windows silently disabling this without telling us.
2462           thread->enable_register_stack_red_zone();
2463 
2464           return Handle_Exception(exceptionInfo,
2465                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2466         }
2467 #endif
2468         if (thread->stack_yellow_zone_enabled()) {
2469           // Yellow zone violation.  The o/s has unprotected the first yellow
2470           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2471           // update the enabled status, even if the zone contains only one page.
2472           thread->disable_stack_yellow_zone();
2473           // If not in java code, return and hope for the best.
2474           return in_java
2475               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2476               :  EXCEPTION_CONTINUE_EXECUTION;
2477         } else {
2478           // Fatal red zone violation.
2479           thread->disable_stack_red_zone();
2480           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2481           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2482                        exceptionInfo->ContextRecord);
2483           return EXCEPTION_CONTINUE_SEARCH;
2484         }
2485       } else if (in_java) {
2486         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2487         // a one-time-only guard page, which it has released to us.  The next
2488         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2489         return Handle_Exception(exceptionInfo,
2490                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2491       } else {
2492         // Can only return and hope for the best.  Further stack growth will
2493         // result in an ACCESS_VIOLATION.
2494         return EXCEPTION_CONTINUE_EXECUTION;
2495       }
2496     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2497       // Either stack overflow or null pointer exception.
2498       if (in_java) {
2499         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2500         address addr = (address) exceptionRecord->ExceptionInformation[1];
2501         address stack_end = thread->stack_base() - thread->stack_size();
2502         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2503           // Stack overflow.
2504           assert(!os::uses_stack_guard_pages(),
2505                  "should be caught by red zone code above.");
2506           return Handle_Exception(exceptionInfo,
2507                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2508         }
2509         // Check for safepoint polling and implicit null
2510         // We only expect null pointers in the stubs (vtable)
2511         // the rest are checked explicitly now.
2512         CodeBlob* cb = CodeCache::find_blob(pc);
2513         if (cb != NULL) {
2514           if (os::is_poll_address(addr)) {
2515             address stub = SharedRuntime::get_poll_stub(pc);
2516             return Handle_Exception(exceptionInfo, stub);
2517           }
2518         }
2519         {
2520 #ifdef _WIN64
2521           // If it's a legal stack address map the entire region in
2522           //
2523           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2524           address addr = (address) exceptionRecord->ExceptionInformation[1];
2525           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2526             addr = (address)((uintptr_t)addr &
2527                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2528             os::commit_memory((char *)addr, thread->stack_base() - addr,
2529                               !ExecMem);
2530             return EXCEPTION_CONTINUE_EXECUTION;
2531           } else
2532 #endif
2533           {
2534             // Null pointer exception.
2535 #ifdef _M_IA64
2536             // Process implicit null checks in compiled code. Note: Implicit null checks
2537             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2538             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2539               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2540               // Handle implicit null check in UEP method entry
2541               if (cb && (cb->is_frame_complete_at(pc) ||
2542                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2543                 if (Verbose) {
2544                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2545                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2546                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2547                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2548                                 *(bundle_start + 1), *bundle_start);
2549                 }
2550                 return Handle_Exception(exceptionInfo,
2551                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2552               }
2553             }
2554 
2555             // Implicit null checks were processed above.  Hence, we should not reach
2556             // here in the usual case => die!
2557             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2558             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2559                          exceptionInfo->ContextRecord);
2560             return EXCEPTION_CONTINUE_SEARCH;
2561 
2562 #else // !IA64
2563 
2564             // Windows 98 reports faulting addresses incorrectly
2565             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2566                 !os::win32::is_nt()) {
2567               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2568               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2569             }
2570             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2571                          exceptionInfo->ContextRecord);
2572             return EXCEPTION_CONTINUE_SEARCH;
2573 #endif
2574           }
2575         }
2576       }
2577 
2578 #ifdef _WIN64
2579       // Special care for fast JNI field accessors.
2580       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2581       // in and the heap gets shrunk before the field access.
2582       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2583         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2584         if (addr != (address)-1) {
2585           return Handle_Exception(exceptionInfo, addr);
2586         }
2587       }
2588 #endif
2589 
2590       // Stack overflow or null pointer exception in native code.
2591       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2592                    exceptionInfo->ContextRecord);
2593       return EXCEPTION_CONTINUE_SEARCH;
2594     } // /EXCEPTION_ACCESS_VIOLATION
2595     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2596 #if defined _M_IA64
2597     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2598               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2599       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2600 
2601       // Compiled method patched to be non entrant? Following conditions must apply:
2602       // 1. must be first instruction in bundle
2603       // 2. must be a break instruction with appropriate code
2604       if ((((uint64_t) pc & 0x0F) == 0) &&
2605           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2606         return Handle_Exception(exceptionInfo,
2607                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2608       }
2609     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2610 #endif
2611 
2612 
2613     if (in_java) {
2614       switch (exception_code) {
2615       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2616         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2617 
2618       case EXCEPTION_INT_OVERFLOW:
2619         return Handle_IDiv_Exception(exceptionInfo);
2620 
2621       } // switch
2622     }
2623     if (((thread->thread_state() == _thread_in_Java) ||
2624          (thread->thread_state() == _thread_in_native)) &&
2625          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2626       LONG result=Handle_FLT_Exception(exceptionInfo);
2627       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2628     }
2629   }
2630 
2631   if (exception_code != EXCEPTION_BREAKPOINT) {
2632     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2633                  exceptionInfo->ContextRecord);
2634   }
2635   return EXCEPTION_CONTINUE_SEARCH;
2636 }
2637 
2638 #ifndef _WIN64
2639 // Special care for fast JNI accessors.
2640 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2641 // the heap gets shrunk before the field access.
2642 // Need to install our own structured exception handler since native code may
2643 // install its own.
2644 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2645   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2646   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2647     address pc = (address) exceptionInfo->ContextRecord->Eip;
2648     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2649     if (addr != (address)-1) {
2650       return Handle_Exception(exceptionInfo, addr);
2651     }
2652   }
2653   return EXCEPTION_CONTINUE_SEARCH;
2654 }
2655 
2656 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2657   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2658                                                      jobject obj,           \
2659                                                      jfieldID fieldID) {    \
2660     __try {                                                                 \
2661       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2662                                                                  obj,       \
2663                                                                  fieldID);  \
2664     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2665                                               _exception_info())) {         \
2666     }                                                                       \
2667     return 0;                                                               \
2668   }
2669 
2670 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2671 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2672 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2673 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2674 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2675 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2676 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2677 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2678 
2679 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2680   switch (type) {
2681   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2682   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2683   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2684   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2685   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2686   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2687   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2688   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2689   default:        ShouldNotReachHere();
2690   }
2691   return (address)-1;
2692 }
2693 #endif
2694 
2695 // Virtual Memory
2696 
2697 int os::vm_page_size() { return os::win32::vm_page_size(); }
2698 int os::vm_allocation_granularity() {
2699   return os::win32::vm_allocation_granularity();
2700 }
2701 
2702 // Windows large page support is available on Windows 2003. In order to use
2703 // large page memory, the administrator must first assign additional privilege
2704 // to the user:
2705 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2706 //   + select Local Policies -> User Rights Assignment
2707 //   + double click "Lock pages in memory", add users and/or groups
2708 //   + reboot
2709 // Note the above steps are needed for administrator as well, as administrators
2710 // by default do not have the privilege to lock pages in memory.
2711 //
2712 // Note about Windows 2003: although the API supports committing large page
2713 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2714 // scenario, I found through experiment it only uses large page if the entire
2715 // memory region is reserved and committed in a single VirtualAlloc() call.
2716 // This makes Windows large page support more or less like Solaris ISM, in
2717 // that the entire heap must be committed upfront. This probably will change
2718 // in the future, if so the code below needs to be revisited.
2719 
2720 #ifndef MEM_LARGE_PAGES
2721   #define MEM_LARGE_PAGES 0x20000000
2722 #endif
2723 
2724 static HANDLE    _hProcess;
2725 static HANDLE    _hToken;
2726 
2727 // Container for NUMA node list info
2728 class NUMANodeListHolder {
2729  private:
2730   int *_numa_used_node_list;  // allocated below
2731   int _numa_used_node_count;
2732 
2733   void free_node_list() {
2734     if (_numa_used_node_list != NULL) {
2735       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2736     }
2737   }
2738 
2739  public:
2740   NUMANodeListHolder() {
2741     _numa_used_node_count = 0;
2742     _numa_used_node_list = NULL;
2743     // do rest of initialization in build routine (after function pointers are set up)
2744   }
2745 
2746   ~NUMANodeListHolder() {
2747     free_node_list();
2748   }
2749 
2750   bool build() {
2751     DWORD_PTR proc_aff_mask;
2752     DWORD_PTR sys_aff_mask;
2753     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2754     ULONG highest_node_number;
2755     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2756     free_node_list();
2757     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2758     for (unsigned int i = 0; i <= highest_node_number; i++) {
2759       ULONGLONG proc_mask_numa_node;
2760       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2761       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2762         _numa_used_node_list[_numa_used_node_count++] = i;
2763       }
2764     }
2765     return (_numa_used_node_count > 1);
2766   }
2767 
2768   int get_count() { return _numa_used_node_count; }
2769   int get_node_list_entry(int n) {
2770     // for indexes out of range, returns -1
2771     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2772   }
2773 
2774 } numa_node_list_holder;
2775 
2776 
2777 
2778 static size_t _large_page_size = 0;
2779 
2780 static bool resolve_functions_for_large_page_init() {
2781   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2782     os::Advapi32Dll::AdvapiAvailable();
2783 }
2784 
2785 static bool request_lock_memory_privilege() {
2786   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2787                           os::current_process_id());
2788 
2789   LUID luid;
2790   if (_hProcess != NULL &&
2791       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2792       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2793 
2794     TOKEN_PRIVILEGES tp;
2795     tp.PrivilegeCount = 1;
2796     tp.Privileges[0].Luid = luid;
2797     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2798 
2799     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2800     // privilege. Check GetLastError() too. See MSDN document.
2801     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2802         (GetLastError() == ERROR_SUCCESS)) {
2803       return true;
2804     }
2805   }
2806 
2807   return false;
2808 }
2809 
2810 static void cleanup_after_large_page_init() {
2811   if (_hProcess) CloseHandle(_hProcess);
2812   _hProcess = NULL;
2813   if (_hToken) CloseHandle(_hToken);
2814   _hToken = NULL;
2815 }
2816 
2817 static bool numa_interleaving_init() {
2818   bool success = false;
2819   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2820 
2821   // print a warning if UseNUMAInterleaving flag is specified on command line
2822   bool warn_on_failure = use_numa_interleaving_specified;
2823 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2824 
2825   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2826   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2827   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2828 
2829   if (os::Kernel32Dll::NumaCallsAvailable()) {
2830     if (numa_node_list_holder.build()) {
2831       if (PrintMiscellaneous && Verbose) {
2832         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2833         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2834           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2835         }
2836         tty->print("\n");
2837       }
2838       success = true;
2839     } else {
2840       WARN("Process does not cover multiple NUMA nodes.");
2841     }
2842   } else {
2843     WARN("NUMA Interleaving is not supported by the operating system.");
2844   }
2845   if (!success) {
2846     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2847   }
2848   return success;
2849 #undef WARN
2850 }
2851 
2852 // this routine is used whenever we need to reserve a contiguous VA range
2853 // but we need to make separate VirtualAlloc calls for each piece of the range
2854 // Reasons for doing this:
2855 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2856 //  * UseNUMAInterleaving requires a separate node for each piece
2857 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2858                                          DWORD prot,
2859                                          bool should_inject_error = false) {
2860   char * p_buf;
2861   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2862   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2863   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2864 
2865   // first reserve enough address space in advance since we want to be
2866   // able to break a single contiguous virtual address range into multiple
2867   // large page commits but WS2003 does not allow reserving large page space
2868   // so we just use 4K pages for reserve, this gives us a legal contiguous
2869   // address space. then we will deallocate that reservation, and re alloc
2870   // using large pages
2871   const size_t size_of_reserve = bytes + chunk_size;
2872   if (bytes > size_of_reserve) {
2873     // Overflowed.
2874     return NULL;
2875   }
2876   p_buf = (char *) VirtualAlloc(addr,
2877                                 size_of_reserve,  // size of Reserve
2878                                 MEM_RESERVE,
2879                                 PAGE_READWRITE);
2880   // If reservation failed, return NULL
2881   if (p_buf == NULL) return NULL;
2882   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2883   os::release_memory(p_buf, bytes + chunk_size);
2884 
2885   // we still need to round up to a page boundary (in case we are using large pages)
2886   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2887   // instead we handle this in the bytes_to_rq computation below
2888   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2889 
2890   // now go through and allocate one chunk at a time until all bytes are
2891   // allocated
2892   size_t  bytes_remaining = bytes;
2893   // An overflow of align_size_up() would have been caught above
2894   // in the calculation of size_of_reserve.
2895   char * next_alloc_addr = p_buf;
2896   HANDLE hProc = GetCurrentProcess();
2897 
2898 #ifdef ASSERT
2899   // Variable for the failure injection
2900   long ran_num = os::random();
2901   size_t fail_after = ran_num % bytes;
2902 #endif
2903 
2904   int count=0;
2905   while (bytes_remaining) {
2906     // select bytes_to_rq to get to the next chunk_size boundary
2907 
2908     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2909     // Note allocate and commit
2910     char * p_new;
2911 
2912 #ifdef ASSERT
2913     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2914 #else
2915     const bool inject_error_now = false;
2916 #endif
2917 
2918     if (inject_error_now) {
2919       p_new = NULL;
2920     } else {
2921       if (!UseNUMAInterleaving) {
2922         p_new = (char *) VirtualAlloc(next_alloc_addr,
2923                                       bytes_to_rq,
2924                                       flags,
2925                                       prot);
2926       } else {
2927         // get the next node to use from the used_node_list
2928         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2929         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2930         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2931                                                             next_alloc_addr,
2932                                                             bytes_to_rq,
2933                                                             flags,
2934                                                             prot,
2935                                                             node);
2936       }
2937     }
2938 
2939     if (p_new == NULL) {
2940       // Free any allocated pages
2941       if (next_alloc_addr > p_buf) {
2942         // Some memory was committed so release it.
2943         size_t bytes_to_release = bytes - bytes_remaining;
2944         // NMT has yet to record any individual blocks, so it
2945         // need to create a dummy 'reserve' record to match
2946         // the release.
2947         MemTracker::record_virtual_memory_reserve((address)p_buf,
2948                                                   bytes_to_release, CALLER_PC);
2949         os::release_memory(p_buf, bytes_to_release);
2950       }
2951 #ifdef ASSERT
2952       if (should_inject_error) {
2953         if (TracePageSizes && Verbose) {
2954           tty->print_cr("Reserving pages individually failed.");
2955         }
2956       }
2957 #endif
2958       return NULL;
2959     }
2960 
2961     bytes_remaining -= bytes_to_rq;
2962     next_alloc_addr += bytes_to_rq;
2963     count++;
2964   }
2965   // Although the memory is allocated individually, it is returned as one.
2966   // NMT records it as one block.
2967   if ((flags & MEM_COMMIT) != 0) {
2968     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2969   } else {
2970     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2971   }
2972 
2973   // made it this far, success
2974   return p_buf;
2975 }
2976 
2977 
2978 
2979 void os::large_page_init() {
2980   if (!UseLargePages) return;
2981 
2982   // print a warning if any large page related flag is specified on command line
2983   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2984                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2985   bool success = false;
2986 
2987 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2988   if (resolve_functions_for_large_page_init()) {
2989     if (request_lock_memory_privilege()) {
2990       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2991       if (s) {
2992 #if defined(IA32) || defined(AMD64)
2993         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2994           WARN("JVM cannot use large pages bigger than 4mb.");
2995         } else {
2996 #endif
2997           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2998             _large_page_size = LargePageSizeInBytes;
2999           } else {
3000             _large_page_size = s;
3001           }
3002           success = true;
3003 #if defined(IA32) || defined(AMD64)
3004         }
3005 #endif
3006       } else {
3007         WARN("Large page is not supported by the processor.");
3008       }
3009     } else {
3010       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3011     }
3012   } else {
3013     WARN("Large page is not supported by the operating system.");
3014   }
3015 #undef WARN
3016 
3017   const size_t default_page_size = (size_t) vm_page_size();
3018   if (success && _large_page_size > default_page_size) {
3019     _page_sizes[0] = _large_page_size;
3020     _page_sizes[1] = default_page_size;
3021     _page_sizes[2] = 0;
3022   }
3023 
3024   cleanup_after_large_page_init();
3025   UseLargePages = success;
3026 }
3027 
3028 // On win32, one cannot release just a part of reserved memory, it's an
3029 // all or nothing deal.  When we split a reservation, we must break the
3030 // reservation into two reservations.
3031 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3032                                   bool realloc) {
3033   if (size > 0) {
3034     release_memory(base, size);
3035     if (realloc) {
3036       reserve_memory(split, base);
3037     }
3038     if (size != split) {
3039       reserve_memory(size - split, base + split);
3040     }
3041   }
3042 }
3043 
3044 // Multiple threads can race in this code but it's not possible to unmap small sections of
3045 // virtual space to get requested alignment, like posix-like os's.
3046 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3047 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3048   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3049          "Alignment must be a multiple of allocation granularity (page size)");
3050   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3051 
3052   size_t extra_size = size + alignment;
3053   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3054 
3055   char* aligned_base = NULL;
3056 
3057   do {
3058     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3059     if (extra_base == NULL) {
3060       return NULL;
3061     }
3062     // Do manual alignment
3063     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3064 
3065     os::release_memory(extra_base, extra_size);
3066 
3067     aligned_base = os::reserve_memory(size, aligned_base);
3068 
3069   } while (aligned_base == NULL);
3070 
3071   return aligned_base;
3072 }
3073 
3074 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3075   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3076          "reserve alignment");
3077   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3078   char* res;
3079   // note that if UseLargePages is on, all the areas that require interleaving
3080   // will go thru reserve_memory_special rather than thru here.
3081   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3082   if (!use_individual) {
3083     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3084   } else {
3085     elapsedTimer reserveTimer;
3086     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3087     // in numa interleaving, we have to allocate pages individually
3088     // (well really chunks of NUMAInterleaveGranularity size)
3089     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3090     if (res == NULL) {
3091       warning("NUMA page allocation failed");
3092     }
3093     if (Verbose && PrintMiscellaneous) {
3094       reserveTimer.stop();
3095       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3096                     reserveTimer.milliseconds(), reserveTimer.ticks());
3097     }
3098   }
3099   assert(res == NULL || addr == NULL || addr == res,
3100          "Unexpected address from reserve.");
3101 
3102   return res;
3103 }
3104 
3105 // Reserve memory at an arbitrary address, only if that area is
3106 // available (and not reserved for something else).
3107 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3108   // Windows os::reserve_memory() fails of the requested address range is
3109   // not avilable.
3110   return reserve_memory(bytes, requested_addr);
3111 }
3112 
3113 size_t os::large_page_size() {
3114   return _large_page_size;
3115 }
3116 
3117 bool os::can_commit_large_page_memory() {
3118   // Windows only uses large page memory when the entire region is reserved
3119   // and committed in a single VirtualAlloc() call. This may change in the
3120   // future, but with Windows 2003 it's not possible to commit on demand.
3121   return false;
3122 }
3123 
3124 bool os::can_execute_large_page_memory() {
3125   return true;
3126 }
3127 
3128 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3129                                  bool exec) {
3130   assert(UseLargePages, "only for large pages");
3131 
3132   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3133     return NULL; // Fallback to small pages.
3134   }
3135 
3136   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3137   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3138 
3139   // with large pages, there are two cases where we need to use Individual Allocation
3140   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3141   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3142   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3143     if (TracePageSizes && Verbose) {
3144       tty->print_cr("Reserving large pages individually.");
3145     }
3146     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3147     if (p_buf == NULL) {
3148       // give an appropriate warning message
3149       if (UseNUMAInterleaving) {
3150         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3151       }
3152       if (UseLargePagesIndividualAllocation) {
3153         warning("Individually allocated large pages failed, "
3154                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3155       }
3156       return NULL;
3157     }
3158 
3159     return p_buf;
3160 
3161   } else {
3162     if (TracePageSizes && Verbose) {
3163       tty->print_cr("Reserving large pages in a single large chunk.");
3164     }
3165     // normal policy just allocate it all at once
3166     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3167     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3168     if (res != NULL) {
3169       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3170     }
3171 
3172     return res;
3173   }
3174 }
3175 
3176 bool os::release_memory_special(char* base, size_t bytes) {
3177   assert(base != NULL, "Sanity check");
3178   return release_memory(base, bytes);
3179 }
3180 
3181 void os::print_statistics() {
3182 }
3183 
3184 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3185   int err = os::get_last_error();
3186   char buf[256];
3187   size_t buf_len = os::lasterror(buf, sizeof(buf));
3188   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3189           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3190           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3191 }
3192 
3193 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3194   if (bytes == 0) {
3195     // Don't bother the OS with noops.
3196     return true;
3197   }
3198   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3199   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3200   // Don't attempt to print anything if the OS call fails. We're
3201   // probably low on resources, so the print itself may cause crashes.
3202 
3203   // unless we have NUMAInterleaving enabled, the range of a commit
3204   // is always within a reserve covered by a single VirtualAlloc
3205   // in that case we can just do a single commit for the requested size
3206   if (!UseNUMAInterleaving) {
3207     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3208       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3209       return false;
3210     }
3211     if (exec) {
3212       DWORD oldprot;
3213       // Windows doc says to use VirtualProtect to get execute permissions
3214       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3215         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3216         return false;
3217       }
3218     }
3219     return true;
3220   } else {
3221 
3222     // when NUMAInterleaving is enabled, the commit might cover a range that
3223     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3224     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3225     // returns represents the number of bytes that can be committed in one step.
3226     size_t bytes_remaining = bytes;
3227     char * next_alloc_addr = addr;
3228     while (bytes_remaining > 0) {
3229       MEMORY_BASIC_INFORMATION alloc_info;
3230       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3231       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3232       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3233                        PAGE_READWRITE) == NULL) {
3234         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3235                                             exec);)
3236         return false;
3237       }
3238       if (exec) {
3239         DWORD oldprot;
3240         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3241                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3242           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3243                                               exec);)
3244           return false;
3245         }
3246       }
3247       bytes_remaining -= bytes_to_rq;
3248       next_alloc_addr += bytes_to_rq;
3249     }
3250   }
3251   // if we made it this far, return true
3252   return true;
3253 }
3254 
3255 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3256                           bool exec) {
3257   // alignment_hint is ignored on this OS
3258   return pd_commit_memory(addr, size, exec);
3259 }
3260 
3261 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3262                                   const char* mesg) {
3263   assert(mesg != NULL, "mesg must be specified");
3264   if (!pd_commit_memory(addr, size, exec)) {
3265     warn_fail_commit_memory(addr, size, exec);
3266     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3267   }
3268 }
3269 
3270 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3271                                   size_t alignment_hint, bool exec,
3272                                   const char* mesg) {
3273   // alignment_hint is ignored on this OS
3274   pd_commit_memory_or_exit(addr, size, exec, mesg);
3275 }
3276 
3277 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3278   if (bytes == 0) {
3279     // Don't bother the OS with noops.
3280     return true;
3281   }
3282   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3283   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3284   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3285 }
3286 
3287 bool os::pd_release_memory(char* addr, size_t bytes) {
3288   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3289 }
3290 
3291 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3292   return os::commit_memory(addr, size, !ExecMem);
3293 }
3294 
3295 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3296   return os::uncommit_memory(addr, size);
3297 }
3298 
3299 // Set protections specified
3300 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3301                         bool is_committed) {
3302   unsigned int p = 0;
3303   switch (prot) {
3304   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3305   case MEM_PROT_READ: p = PAGE_READONLY; break;
3306   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3307   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3308   default:
3309     ShouldNotReachHere();
3310   }
3311 
3312   DWORD old_status;
3313 
3314   // Strange enough, but on Win32 one can change protection only for committed
3315   // memory, not a big deal anyway, as bytes less or equal than 64K
3316   if (!is_committed) {
3317     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3318                           "cannot commit protection page");
3319   }
3320   // One cannot use os::guard_memory() here, as on Win32 guard page
3321   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3322   //
3323   // Pages in the region become guard pages. Any attempt to access a guard page
3324   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3325   // the guard page status. Guard pages thus act as a one-time access alarm.
3326   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3327 }
3328 
3329 bool os::guard_memory(char* addr, size_t bytes) {
3330   DWORD old_status;
3331   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3332 }
3333 
3334 bool os::unguard_memory(char* addr, size_t bytes) {
3335   DWORD old_status;
3336   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3337 }
3338 
3339 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3340 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3341 void os::numa_make_global(char *addr, size_t bytes)    { }
3342 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3343 bool os::numa_topology_changed()                       { return false; }
3344 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3345 int os::numa_get_group_id()                            { return 0; }
3346 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3347   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3348     // Provide an answer for UMA systems
3349     ids[0] = 0;
3350     return 1;
3351   } else {
3352     // check for size bigger than actual groups_num
3353     size = MIN2(size, numa_get_groups_num());
3354     for (int i = 0; i < (int)size; i++) {
3355       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3356     }
3357     return size;
3358   }
3359 }
3360 
3361 bool os::get_page_info(char *start, page_info* info) {
3362   return false;
3363 }
3364 
3365 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3366                      page_info* page_found) {
3367   return end;
3368 }
3369 
3370 char* os::non_memory_address_word() {
3371   // Must never look like an address returned by reserve_memory,
3372   // even in its subfields (as defined by the CPU immediate fields,
3373   // if the CPU splits constants across multiple instructions).
3374   return (char*)-1;
3375 }
3376 
3377 #define MAX_ERROR_COUNT 100
3378 #define SYS_THREAD_ERROR 0xffffffffUL
3379 
3380 void os::pd_start_thread(Thread* thread) {
3381   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3382   // Returns previous suspend state:
3383   // 0:  Thread was not suspended
3384   // 1:  Thread is running now
3385   // >1: Thread is still suspended.
3386   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3387 }
3388 
3389 class HighResolutionInterval : public CHeapObj<mtThread> {
3390   // The default timer resolution seems to be 10 milliseconds.
3391   // (Where is this written down?)
3392   // If someone wants to sleep for only a fraction of the default,
3393   // then we set the timer resolution down to 1 millisecond for
3394   // the duration of their interval.
3395   // We carefully set the resolution back, since otherwise we
3396   // seem to incur an overhead (3%?) that we don't need.
3397   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3398   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3399   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3400   // timeBeginPeriod() if the relative error exceeded some threshold.
3401   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3402   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3403   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3404   // resolution timers running.
3405  private:
3406   jlong resolution;
3407  public:
3408   HighResolutionInterval(jlong ms) {
3409     resolution = ms % 10L;
3410     if (resolution != 0) {
3411       MMRESULT result = timeBeginPeriod(1L);
3412     }
3413   }
3414   ~HighResolutionInterval() {
3415     if (resolution != 0) {
3416       MMRESULT result = timeEndPeriod(1L);
3417     }
3418     resolution = 0L;
3419   }
3420 };
3421 
3422 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3423   jlong limit = (jlong) MAXDWORD;
3424 
3425   while (ms > limit) {
3426     int res;
3427     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3428       return res;
3429     }
3430     ms -= limit;
3431   }
3432 
3433   assert(thread == Thread::current(), "thread consistency check");
3434   OSThread* osthread = thread->osthread();
3435   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3436   int result;
3437   if (interruptable) {
3438     assert(thread->is_Java_thread(), "must be java thread");
3439     JavaThread *jt = (JavaThread *) thread;
3440     ThreadBlockInVM tbivm(jt);
3441 
3442     jt->set_suspend_equivalent();
3443     // cleared by handle_special_suspend_equivalent_condition() or
3444     // java_suspend_self() via check_and_wait_while_suspended()
3445 
3446     HANDLE events[1];
3447     events[0] = osthread->interrupt_event();
3448     HighResolutionInterval *phri=NULL;
3449     if (!ForceTimeHighResolution) {
3450       phri = new HighResolutionInterval(ms);
3451     }
3452     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3453       result = OS_TIMEOUT;
3454     } else {
3455       ResetEvent(osthread->interrupt_event());
3456       osthread->set_interrupted(false);
3457       result = OS_INTRPT;
3458     }
3459     delete phri; //if it is NULL, harmless
3460 
3461     // were we externally suspended while we were waiting?
3462     jt->check_and_wait_while_suspended();
3463   } else {
3464     assert(!thread->is_Java_thread(), "must not be java thread");
3465     Sleep((long) ms);
3466     result = OS_TIMEOUT;
3467   }
3468   return result;
3469 }
3470 
3471 // Short sleep, direct OS call.
3472 //
3473 // ms = 0, means allow others (if any) to run.
3474 //
3475 void os::naked_short_sleep(jlong ms) {
3476   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3477   Sleep(ms);
3478 }
3479 
3480 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3481 void os::infinite_sleep() {
3482   while (true) {    // sleep forever ...
3483     Sleep(100000);  // ... 100 seconds at a time
3484   }
3485 }
3486 
3487 typedef BOOL (WINAPI * STTSignature)(void);
3488 
3489 void os::naked_yield() {
3490   // Use either SwitchToThread() or Sleep(0)
3491   // Consider passing back the return value from SwitchToThread().
3492   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3493     SwitchToThread();
3494   } else {
3495     Sleep(0);
3496   }
3497 }
3498 
3499 // Win32 only gives you access to seven real priorities at a time,
3500 // so we compress Java's ten down to seven.  It would be better
3501 // if we dynamically adjusted relative priorities.
3502 
3503 int os::java_to_os_priority[CriticalPriority + 1] = {
3504   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3505   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3506   THREAD_PRIORITY_LOWEST,                       // 2
3507   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3508   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3509   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3510   THREAD_PRIORITY_NORMAL,                       // 6
3511   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3512   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3513   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3514   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3515   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3516 };
3517 
3518 int prio_policy1[CriticalPriority + 1] = {
3519   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3520   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3521   THREAD_PRIORITY_LOWEST,                       // 2
3522   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3523   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3524   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3525   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3526   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3527   THREAD_PRIORITY_HIGHEST,                      // 8
3528   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3529   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3530   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3531 };
3532 
3533 static int prio_init() {
3534   // If ThreadPriorityPolicy is 1, switch tables
3535   if (ThreadPriorityPolicy == 1) {
3536     int i;
3537     for (i = 0; i < CriticalPriority + 1; i++) {
3538       os::java_to_os_priority[i] = prio_policy1[i];
3539     }
3540   }
3541   if (UseCriticalJavaThreadPriority) {
3542     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3543   }
3544   return 0;
3545 }
3546 
3547 OSReturn os::set_native_priority(Thread* thread, int priority) {
3548   if (!UseThreadPriorities) return OS_OK;
3549   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3550   return ret ? OS_OK : OS_ERR;
3551 }
3552 
3553 OSReturn os::get_native_priority(const Thread* const thread,
3554                                  int* priority_ptr) {
3555   if (!UseThreadPriorities) {
3556     *priority_ptr = java_to_os_priority[NormPriority];
3557     return OS_OK;
3558   }
3559   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3560   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3561     assert(false, "GetThreadPriority failed");
3562     return OS_ERR;
3563   }
3564   *priority_ptr = os_prio;
3565   return OS_OK;
3566 }
3567 
3568 
3569 // Hint to the underlying OS that a task switch would not be good.
3570 // Void return because it's a hint and can fail.
3571 void os::hint_no_preempt() {}
3572 
3573 void os::interrupt(Thread* thread) {
3574   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3575          Threads_lock->owned_by_self(),
3576          "possibility of dangling Thread pointer");
3577 
3578   OSThread* osthread = thread->osthread();
3579   osthread->set_interrupted(true);
3580   // More than one thread can get here with the same value of osthread,
3581   // resulting in multiple notifications.  We do, however, want the store
3582   // to interrupted() to be visible to other threads before we post
3583   // the interrupt event.
3584   OrderAccess::release();
3585   SetEvent(osthread->interrupt_event());
3586   // For JSR166:  unpark after setting status
3587   if (thread->is_Java_thread()) {
3588     ((JavaThread*)thread)->parker()->unpark();
3589   }
3590 
3591   ParkEvent * ev = thread->_ParkEvent;
3592   if (ev != NULL) ev->unpark();
3593 }
3594 
3595 
3596 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3597   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3598          "possibility of dangling Thread pointer");
3599 
3600   OSThread* osthread = thread->osthread();
3601   // There is no synchronization between the setting of the interrupt
3602   // and it being cleared here. It is critical - see 6535709 - that
3603   // we only clear the interrupt state, and reset the interrupt event,
3604   // if we are going to report that we were indeed interrupted - else
3605   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3606   // depending on the timing. By checking thread interrupt event to see
3607   // if the thread gets real interrupt thus prevent spurious wakeup.
3608   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3609   if (interrupted && clear_interrupted) {
3610     osthread->set_interrupted(false);
3611     ResetEvent(osthread->interrupt_event());
3612   } // Otherwise leave the interrupted state alone
3613 
3614   return interrupted;
3615 }
3616 
3617 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3618 ExtendedPC os::get_thread_pc(Thread* thread) {
3619   CONTEXT context;
3620   context.ContextFlags = CONTEXT_CONTROL;
3621   HANDLE handle = thread->osthread()->thread_handle();
3622 #ifdef _M_IA64
3623   assert(0, "Fix get_thread_pc");
3624   return ExtendedPC(NULL);
3625 #else
3626   if (GetThreadContext(handle, &context)) {
3627 #ifdef _M_AMD64
3628     return ExtendedPC((address) context.Rip);
3629 #else
3630     return ExtendedPC((address) context.Eip);
3631 #endif
3632   } else {
3633     return ExtendedPC(NULL);
3634   }
3635 #endif
3636 }
3637 
3638 // GetCurrentThreadId() returns DWORD
3639 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3640 
3641 static int _initial_pid = 0;
3642 
3643 int os::current_process_id() {
3644   return (_initial_pid ? _initial_pid : _getpid());
3645 }
3646 
3647 int    os::win32::_vm_page_size              = 0;
3648 int    os::win32::_vm_allocation_granularity = 0;
3649 int    os::win32::_processor_type            = 0;
3650 // Processor level is not available on non-NT systems, use vm_version instead
3651 int    os::win32::_processor_level           = 0;
3652 julong os::win32::_physical_memory           = 0;
3653 size_t os::win32::_default_stack_size        = 0;
3654 
3655 intx          os::win32::_os_thread_limit    = 0;
3656 volatile intx os::win32::_os_thread_count    = 0;
3657 
3658 bool   os::win32::_is_nt                     = false;
3659 bool   os::win32::_is_windows_2003           = false;
3660 bool   os::win32::_is_windows_server         = false;
3661 
3662 // 6573254
3663 // Currently, the bug is observed across all the supported Windows releases,
3664 // including the latest one (as of this writing - Windows Server 2012 R2)
3665 bool   os::win32::_has_exit_bug              = true;
3666 bool   os::win32::_has_performance_count     = 0;
3667 
3668 void os::win32::initialize_system_info() {
3669   SYSTEM_INFO si;
3670   GetSystemInfo(&si);
3671   _vm_page_size    = si.dwPageSize;
3672   _vm_allocation_granularity = si.dwAllocationGranularity;
3673   _processor_type  = si.dwProcessorType;
3674   _processor_level = si.wProcessorLevel;
3675   set_processor_count(si.dwNumberOfProcessors);
3676 
3677   MEMORYSTATUSEX ms;
3678   ms.dwLength = sizeof(ms);
3679 
3680   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3681   // dwMemoryLoad (% of memory in use)
3682   GlobalMemoryStatusEx(&ms);
3683   _physical_memory = ms.ullTotalPhys;
3684 
3685   OSVERSIONINFOEX oi;
3686   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3687   GetVersionEx((OSVERSIONINFO*)&oi);
3688   switch (oi.dwPlatformId) {
3689   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3690   case VER_PLATFORM_WIN32_NT:
3691     _is_nt = true;
3692     {
3693       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3694       if (os_vers == 5002) {
3695         _is_windows_2003 = true;
3696       }
3697       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3698           oi.wProductType == VER_NT_SERVER) {
3699         _is_windows_server = true;
3700       }
3701     }
3702     break;
3703   default: fatal("Unknown platform");
3704   }
3705 
3706   _default_stack_size = os::current_stack_size();
3707   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3708   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3709          "stack size not a multiple of page size");
3710 
3711   initialize_performance_counter();
3712 
3713   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3714   // known to deadlock the system, if the VM issues to thread operations with
3715   // a too high frequency, e.g., such as changing the priorities.
3716   // The 6000 seems to work well - no deadlocks has been notices on the test
3717   // programs that we have seen experience this problem.
3718   if (!os::win32::is_nt()) {
3719     StarvationMonitorInterval = 6000;
3720   }
3721 }
3722 
3723 
3724 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3725                                       int ebuflen) {
3726   char path[MAX_PATH];
3727   DWORD size;
3728   DWORD pathLen = (DWORD)sizeof(path);
3729   HINSTANCE result = NULL;
3730 
3731   // only allow library name without path component
3732   assert(strchr(name, '\\') == NULL, "path not allowed");
3733   assert(strchr(name, ':') == NULL, "path not allowed");
3734   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3735     jio_snprintf(ebuf, ebuflen,
3736                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3737     return NULL;
3738   }
3739 
3740   // search system directory
3741   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3742     if (size >= pathLen) {
3743       return NULL; // truncated
3744     }
3745     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3746       return NULL; // truncated
3747     }
3748     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3749       return result;
3750     }
3751   }
3752 
3753   // try Windows directory
3754   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3755     if (size >= pathLen) {
3756       return NULL; // truncated
3757     }
3758     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3759       return NULL; // truncated
3760     }
3761     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762       return result;
3763     }
3764   }
3765 
3766   jio_snprintf(ebuf, ebuflen,
3767                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3768   return NULL;
3769 }
3770 
3771 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3772 
3773 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3774   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3775   return TRUE;
3776 }
3777 
3778 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3779   // Basic approach:
3780   //  - Each exiting thread registers its intent to exit and then does so.
3781   //  - A thread trying to terminate the process must wait for all
3782   //    threads currently exiting to complete their exit.
3783 
3784   if (os::win32::has_exit_bug()) {
3785     // The array holds handles of the threads that have started exiting by calling
3786     // _endthreadex().
3787     // Should be large enough to avoid blocking the exiting thread due to lack of
3788     // a free slot.
3789     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3790     static int handle_count = 0;
3791 
3792     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3793     static CRITICAL_SECTION crit_sect;
3794     static volatile jint process_exiting = 0;
3795     int i, j;
3796     DWORD res;
3797     HANDLE hproc, hthr;
3798 
3799     // The first thread that reached this point, initializes the critical section.
3800     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3801       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3802     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3803       EnterCriticalSection(&crit_sect);
3804 
3805       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3806         // Remove from the array those handles of the threads that have completed exiting.
3807         for (i = 0, j = 0; i < handle_count; ++i) {
3808           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3809           if (res == WAIT_TIMEOUT) {
3810             handles[j++] = handles[i];
3811           } else {
3812             if (res == WAIT_FAILED) {
3813               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3814                       GetLastError(), __FILE__, __LINE__);
3815             }
3816             // Don't keep the handle, if we failed waiting for it.
3817             CloseHandle(handles[i]);
3818           }
3819         }
3820 
3821         // If there's no free slot in the array of the kept handles, we'll have to
3822         // wait until at least one thread completes exiting.
3823         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3824           // Raise the priority of the oldest exiting thread to increase its chances
3825           // to complete sooner.
3826           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3827           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3828           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3829             i = (res - WAIT_OBJECT_0);
3830             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3831             for (; i < handle_count; ++i) {
3832               handles[i] = handles[i + 1];
3833             }
3834           } else {
3835             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3836                     (res == WAIT_FAILED ? "failed" : "timed out"),
3837                     GetLastError(), __FILE__, __LINE__);
3838             // Don't keep handles, if we failed waiting for them.
3839             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3840               CloseHandle(handles[i]);
3841             }
3842             handle_count = 0;
3843           }
3844         }
3845 
3846         // Store a duplicate of the current thread handle in the array of handles.
3847         hproc = GetCurrentProcess();
3848         hthr = GetCurrentThread();
3849         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3850                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3851           warning("DuplicateHandle failed (%u) in %s: %d\n",
3852                   GetLastError(), __FILE__, __LINE__);
3853         } else {
3854           ++handle_count;
3855         }
3856 
3857         // The current exiting thread has stored its handle in the array, and now
3858         // should leave the critical section before calling _endthreadex().
3859 
3860       } else if (what != EPT_THREAD) {
3861         if (handle_count > 0) {
3862           // Before ending the process, make sure all the threads that had called
3863           // _endthreadex() completed.
3864 
3865           // Set the priority level of the current thread to the same value as
3866           // the priority level of exiting threads.
3867           // This is to ensure it will be given a fair chance to execute if
3868           // the timeout expires.
3869           hthr = GetCurrentThread();
3870           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3871           for (i = 0; i < handle_count; ++i) {
3872             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3873           }
3874           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3875           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3876             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3877                     (res == WAIT_FAILED ? "failed" : "timed out"),
3878                     GetLastError(), __FILE__, __LINE__);
3879           }
3880           for (i = 0; i < handle_count; ++i) {
3881             CloseHandle(handles[i]);
3882           }
3883           handle_count = 0;
3884         }
3885 
3886         OrderAccess::release_store(&process_exiting, 1);
3887       }
3888 
3889       LeaveCriticalSection(&crit_sect);
3890     }
3891 
3892     if (what == EPT_THREAD) {
3893       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3894         // Some other thread is about to call exit(), so we
3895         // don't let the current thread proceed to _endthreadex()
3896         SuspendThread(GetCurrentThread());
3897         // Avoid busy-wait loop, if SuspendThread() failed.
3898         Sleep(EXIT_TIMEOUT);
3899       }
3900     }
3901   }
3902 
3903   // We are here if either
3904   // - there's no 'race at exit' bug on this OS release;
3905   // - initialization of the critical section failed (unlikely);
3906   // - the current thread has stored its handle and left the critical section;
3907   // - the process-exiting thread has raised the flag and left the critical section.
3908   if (what == EPT_THREAD) {
3909     _endthreadex((unsigned)exit_code);
3910   } else if (what == EPT_PROCESS) {
3911     ::exit(exit_code);
3912   } else {
3913     _exit(exit_code);
3914   }
3915 
3916   // Should not reach here
3917   return exit_code;
3918 }
3919 
3920 #undef EXIT_TIMEOUT
3921 
3922 void os::win32::setmode_streams() {
3923   _setmode(_fileno(stdin), _O_BINARY);
3924   _setmode(_fileno(stdout), _O_BINARY);
3925   _setmode(_fileno(stderr), _O_BINARY);
3926 }
3927 
3928 
3929 bool os::is_debugger_attached() {
3930   return IsDebuggerPresent() ? true : false;
3931 }
3932 
3933 
3934 void os::wait_for_keypress_at_exit(void) {
3935   if (PauseAtExit) {
3936     fprintf(stderr, "Press any key to continue...\n");
3937     fgetc(stdin);
3938   }
3939 }
3940 
3941 
3942 int os::message_box(const char* title, const char* message) {
3943   int result = MessageBox(NULL, message, title,
3944                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3945   return result == IDYES;
3946 }
3947 
3948 int os::allocate_thread_local_storage() {
3949   return TlsAlloc();
3950 }
3951 
3952 
3953 void os::free_thread_local_storage(int index) {
3954   TlsFree(index);
3955 }
3956 
3957 
3958 void os::thread_local_storage_at_put(int index, void* value) {
3959   TlsSetValue(index, value);
3960   assert(thread_local_storage_at(index) == value, "Just checking");
3961 }
3962 
3963 
3964 void* os::thread_local_storage_at(int index) {
3965   return TlsGetValue(index);
3966 }
3967 
3968 
3969 #ifndef PRODUCT
3970 #ifndef _WIN64
3971 // Helpers to check whether NX protection is enabled
3972 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3973   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3974       pex->ExceptionRecord->NumberParameters > 0 &&
3975       pex->ExceptionRecord->ExceptionInformation[0] ==
3976       EXCEPTION_INFO_EXEC_VIOLATION) {
3977     return EXCEPTION_EXECUTE_HANDLER;
3978   }
3979   return EXCEPTION_CONTINUE_SEARCH;
3980 }
3981 
3982 void nx_check_protection() {
3983   // If NX is enabled we'll get an exception calling into code on the stack
3984   char code[] = { (char)0xC3 }; // ret
3985   void *code_ptr = (void *)code;
3986   __try {
3987     __asm call code_ptr
3988   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3989     tty->print_raw_cr("NX protection detected.");
3990   }
3991 }
3992 #endif // _WIN64
3993 #endif // PRODUCT
3994 
3995 // this is called _before_ the global arguments have been parsed
3996 void os::init(void) {
3997   _initial_pid = _getpid();
3998 
3999   init_random(1234567);
4000 
4001   win32::initialize_system_info();
4002   win32::setmode_streams();
4003   init_page_sizes((size_t) win32::vm_page_size());
4004 
4005   // This may be overridden later when argument processing is done.
4006   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4007                 os::win32::is_windows_2003());
4008 
4009   // Initialize main_process and main_thread
4010   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4011   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4012                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4013     fatal("DuplicateHandle failed\n");
4014   }
4015   main_thread_id = (int) GetCurrentThreadId();
4016 }
4017 
4018 // To install functions for atexit processing
4019 extern "C" {
4020   static void perfMemory_exit_helper() {
4021     perfMemory_exit();
4022   }
4023 }
4024 
4025 static jint initSock();
4026 
4027 // this is called _after_ the global arguments have been parsed
4028 jint os::init_2(void) {
4029   // Allocate a single page and mark it as readable for safepoint polling
4030   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4031   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4032 
4033   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4034   guarantee(return_page != NULL, "Commit Failed for polling page");
4035 
4036   os::set_polling_page(polling_page);
4037 
4038 #ifndef PRODUCT
4039   if (Verbose && PrintMiscellaneous) {
4040     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4041                (intptr_t)polling_page);
4042   }
4043 #endif
4044 
4045   if (!UseMembar) {
4046     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4047     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4048 
4049     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4050     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4051 
4052     os::set_memory_serialize_page(mem_serialize_page);
4053 
4054 #ifndef PRODUCT
4055     if (Verbose && PrintMiscellaneous) {
4056       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4057                  (intptr_t)mem_serialize_page);
4058     }
4059 #endif
4060   }
4061 
4062   // Setup Windows Exceptions
4063 
4064   // for debugging float code generation bugs
4065   if (ForceFloatExceptions) {
4066 #ifndef  _WIN64
4067     static long fp_control_word = 0;
4068     __asm { fstcw fp_control_word }
4069     // see Intel PPro Manual, Vol. 2, p 7-16
4070     const long precision = 0x20;
4071     const long underflow = 0x10;
4072     const long overflow  = 0x08;
4073     const long zero_div  = 0x04;
4074     const long denorm    = 0x02;
4075     const long invalid   = 0x01;
4076     fp_control_word |= invalid;
4077     __asm { fldcw fp_control_word }
4078 #endif
4079   }
4080 
4081   // If stack_commit_size is 0, windows will reserve the default size,
4082   // but only commit a small portion of it.
4083   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4084   size_t default_reserve_size = os::win32::default_stack_size();
4085   size_t actual_reserve_size = stack_commit_size;
4086   if (stack_commit_size < default_reserve_size) {
4087     // If stack_commit_size == 0, we want this too
4088     actual_reserve_size = default_reserve_size;
4089   }
4090 
4091   // Check minimum allowable stack size for thread creation and to initialize
4092   // the java system classes, including StackOverflowError - depends on page
4093   // size.  Add a page for compiler2 recursion in main thread.
4094   // Add in 2*BytesPerWord times page size to account for VM stack during
4095   // class initialization depending on 32 or 64 bit VM.
4096   size_t min_stack_allowed =
4097             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4098                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4099   if (actual_reserve_size < min_stack_allowed) {
4100     tty->print_cr("\nThe stack size specified is too small, "
4101                   "Specify at least %dk",
4102                   min_stack_allowed / K);
4103     return JNI_ERR;
4104   }
4105 
4106   JavaThread::set_stack_size_at_create(stack_commit_size);
4107 
4108   // Calculate theoretical max. size of Threads to guard gainst artifical
4109   // out-of-memory situations, where all available address-space has been
4110   // reserved by thread stacks.
4111   assert(actual_reserve_size != 0, "Must have a stack");
4112 
4113   // Calculate the thread limit when we should start doing Virtual Memory
4114   // banging. Currently when the threads will have used all but 200Mb of space.
4115   //
4116   // TODO: consider performing a similar calculation for commit size instead
4117   // as reserve size, since on a 64-bit platform we'll run into that more
4118   // often than running out of virtual memory space.  We can use the
4119   // lower value of the two calculations as the os_thread_limit.
4120   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4121   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4122 
4123   // at exit methods are called in the reverse order of their registration.
4124   // there is no limit to the number of functions registered. atexit does
4125   // not set errno.
4126 
4127   if (PerfAllowAtExitRegistration) {
4128     // only register atexit functions if PerfAllowAtExitRegistration is set.
4129     // atexit functions can be delayed until process exit time, which
4130     // can be problematic for embedded VM situations. Embedded VMs should
4131     // call DestroyJavaVM() to assure that VM resources are released.
4132 
4133     // note: perfMemory_exit_helper atexit function may be removed in
4134     // the future if the appropriate cleanup code can be added to the
4135     // VM_Exit VMOperation's doit method.
4136     if (atexit(perfMemory_exit_helper) != 0) {
4137       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4138     }
4139   }
4140 
4141 #ifndef _WIN64
4142   // Print something if NX is enabled (win32 on AMD64)
4143   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4144 #endif
4145 
4146   // initialize thread priority policy
4147   prio_init();
4148 
4149   if (UseNUMA && !ForceNUMA) {
4150     UseNUMA = false; // We don't fully support this yet
4151   }
4152 
4153   if (UseNUMAInterleaving) {
4154     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4155     bool success = numa_interleaving_init();
4156     if (!success) UseNUMAInterleaving = false;
4157   }
4158 
4159   if (initSock() != JNI_OK) {
4160     return JNI_ERR;
4161   }
4162 
4163   return JNI_OK;
4164 }
4165 
4166 // Mark the polling page as unreadable
4167 void os::make_polling_page_unreadable(void) {
4168   DWORD old_status;
4169   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4170                       PAGE_NOACCESS, &old_status)) {
4171     fatal("Could not disable polling page");
4172   }
4173 }
4174 
4175 // Mark the polling page as readable
4176 void os::make_polling_page_readable(void) {
4177   DWORD old_status;
4178   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4179                       PAGE_READONLY, &old_status)) {
4180     fatal("Could not enable polling page");
4181   }
4182 }
4183 
4184 
4185 int os::stat(const char *path, struct stat *sbuf) {
4186   char pathbuf[MAX_PATH];
4187   if (strlen(path) > MAX_PATH - 1) {
4188     errno = ENAMETOOLONG;
4189     return -1;
4190   }
4191   os::native_path(strcpy(pathbuf, path));
4192   int ret = ::stat(pathbuf, sbuf);
4193   if (sbuf != NULL && UseUTCFileTimestamp) {
4194     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4195     // the system timezone and so can return different values for the
4196     // same file if/when daylight savings time changes.  This adjustment
4197     // makes sure the same timestamp is returned regardless of the TZ.
4198     //
4199     // See:
4200     // http://msdn.microsoft.com/library/
4201     //   default.asp?url=/library/en-us/sysinfo/base/
4202     //   time_zone_information_str.asp
4203     // and
4204     // http://msdn.microsoft.com/library/default.asp?url=
4205     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4206     //
4207     // NOTE: there is a insidious bug here:  If the timezone is changed
4208     // after the call to stat() but before 'GetTimeZoneInformation()', then
4209     // the adjustment we do here will be wrong and we'll return the wrong
4210     // value (which will likely end up creating an invalid class data
4211     // archive).  Absent a better API for this, or some time zone locking
4212     // mechanism, we'll have to live with this risk.
4213     TIME_ZONE_INFORMATION tz;
4214     DWORD tzid = GetTimeZoneInformation(&tz);
4215     int daylightBias =
4216       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4217     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4218   }
4219   return ret;
4220 }
4221 
4222 
4223 #define FT2INT64(ft) \
4224   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4225 
4226 
4227 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4228 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4229 // of a thread.
4230 //
4231 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4232 // the fast estimate available on the platform.
4233 
4234 // current_thread_cpu_time() is not optimized for Windows yet
4235 jlong os::current_thread_cpu_time() {
4236   // return user + sys since the cost is the same
4237   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4238 }
4239 
4240 jlong os::thread_cpu_time(Thread* thread) {
4241   // consistent with what current_thread_cpu_time() returns.
4242   return os::thread_cpu_time(thread, true /* user+sys */);
4243 }
4244 
4245 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4246   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4247 }
4248 
4249 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4250   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4251   // If this function changes, os::is_thread_cpu_time_supported() should too
4252   if (os::win32::is_nt()) {
4253     FILETIME CreationTime;
4254     FILETIME ExitTime;
4255     FILETIME KernelTime;
4256     FILETIME UserTime;
4257 
4258     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4259                        &ExitTime, &KernelTime, &UserTime) == 0) {
4260       return -1;
4261     } else if (user_sys_cpu_time) {
4262       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4263     } else {
4264       return FT2INT64(UserTime) * 100;
4265     }
4266   } else {
4267     return (jlong) timeGetTime() * 1000000;
4268   }
4269 }
4270 
4271 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4272   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4273   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4274   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4275   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4276 }
4277 
4278 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4279   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4280   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4281   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4282   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4283 }
4284 
4285 bool os::is_thread_cpu_time_supported() {
4286   // see os::thread_cpu_time
4287   if (os::win32::is_nt()) {
4288     FILETIME CreationTime;
4289     FILETIME ExitTime;
4290     FILETIME KernelTime;
4291     FILETIME UserTime;
4292 
4293     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4294                        &KernelTime, &UserTime) == 0) {
4295       return false;
4296     } else {
4297       return true;
4298     }
4299   } else {
4300     return false;
4301   }
4302 }
4303 
4304 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4305 // It does have primitives (PDH API) to get CPU usage and run queue length.
4306 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4307 // If we wanted to implement loadavg on Windows, we have a few options:
4308 //
4309 // a) Query CPU usage and run queue length and "fake" an answer by
4310 //    returning the CPU usage if it's under 100%, and the run queue
4311 //    length otherwise.  It turns out that querying is pretty slow
4312 //    on Windows, on the order of 200 microseconds on a fast machine.
4313 //    Note that on the Windows the CPU usage value is the % usage
4314 //    since the last time the API was called (and the first call
4315 //    returns 100%), so we'd have to deal with that as well.
4316 //
4317 // b) Sample the "fake" answer using a sampling thread and store
4318 //    the answer in a global variable.  The call to loadavg would
4319 //    just return the value of the global, avoiding the slow query.
4320 //
4321 // c) Sample a better answer using exponential decay to smooth the
4322 //    value.  This is basically the algorithm used by UNIX kernels.
4323 //
4324 // Note that sampling thread starvation could affect both (b) and (c).
4325 int os::loadavg(double loadavg[], int nelem) {
4326   return -1;
4327 }
4328 
4329 
4330 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4331 bool os::dont_yield() {
4332   return DontYieldALot;
4333 }
4334 
4335 // This method is a slightly reworked copy of JDK's sysOpen
4336 // from src/windows/hpi/src/sys_api_md.c
4337 
4338 int os::open(const char *path, int oflag, int mode) {
4339   char pathbuf[MAX_PATH];
4340 
4341   if (strlen(path) > MAX_PATH - 1) {
4342     errno = ENAMETOOLONG;
4343     return -1;
4344   }
4345   os::native_path(strcpy(pathbuf, path));
4346   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4347 }
4348 
4349 FILE* os::open(int fd, const char* mode) {
4350   return ::_fdopen(fd, mode);
4351 }
4352 
4353 // Is a (classpath) directory empty?
4354 bool os::dir_is_empty(const char* path) {
4355   WIN32_FIND_DATA fd;
4356   HANDLE f = FindFirstFile(path, &fd);
4357   if (f == INVALID_HANDLE_VALUE) {
4358     return true;
4359   }
4360   FindClose(f);
4361   return false;
4362 }
4363 
4364 // create binary file, rewriting existing file if required
4365 int os::create_binary_file(const char* path, bool rewrite_existing) {
4366   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4367   if (!rewrite_existing) {
4368     oflags |= _O_EXCL;
4369   }
4370   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4371 }
4372 
4373 // return current position of file pointer
4374 jlong os::current_file_offset(int fd) {
4375   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4376 }
4377 
4378 // move file pointer to the specified offset
4379 jlong os::seek_to_file_offset(int fd, jlong offset) {
4380   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4381 }
4382 
4383 
4384 jlong os::lseek(int fd, jlong offset, int whence) {
4385   return (jlong) ::_lseeki64(fd, offset, whence);
4386 }
4387 
4388 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4389   OVERLAPPED ov;
4390   DWORD nread;
4391   BOOL result;
4392 
4393   ZeroMemory(&ov, sizeof(ov));
4394   ov.Offset = (DWORD)offset;
4395   ov.OffsetHigh = (DWORD)(offset >> 32);
4396 
4397   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4398 
4399   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4400 
4401   return result ? nread : 0;
4402 }
4403 
4404 
4405 // This method is a slightly reworked copy of JDK's sysNativePath
4406 // from src/windows/hpi/src/path_md.c
4407 
4408 // Convert a pathname to native format.  On win32, this involves forcing all
4409 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4410 // sometimes rejects '/') and removing redundant separators.  The input path is
4411 // assumed to have been converted into the character encoding used by the local
4412 // system.  Because this might be a double-byte encoding, care is taken to
4413 // treat double-byte lead characters correctly.
4414 //
4415 // This procedure modifies the given path in place, as the result is never
4416 // longer than the original.  There is no error return; this operation always
4417 // succeeds.
4418 char * os::native_path(char *path) {
4419   char *src = path, *dst = path, *end = path;
4420   char *colon = NULL;  // If a drive specifier is found, this will
4421                        // point to the colon following the drive letter
4422 
4423   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4424   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4425           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4426 
4427   // Check for leading separators
4428 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4429   while (isfilesep(*src)) {
4430     src++;
4431   }
4432 
4433   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4434     // Remove leading separators if followed by drive specifier.  This
4435     // hack is necessary to support file URLs containing drive
4436     // specifiers (e.g., "file://c:/path").  As a side effect,
4437     // "/c:/path" can be used as an alternative to "c:/path".
4438     *dst++ = *src++;
4439     colon = dst;
4440     *dst++ = ':';
4441     src++;
4442   } else {
4443     src = path;
4444     if (isfilesep(src[0]) && isfilesep(src[1])) {
4445       // UNC pathname: Retain first separator; leave src pointed at
4446       // second separator so that further separators will be collapsed
4447       // into the second separator.  The result will be a pathname
4448       // beginning with "\\\\" followed (most likely) by a host name.
4449       src = dst = path + 1;
4450       path[0] = '\\';     // Force first separator to '\\'
4451     }
4452   }
4453 
4454   end = dst;
4455 
4456   // Remove redundant separators from remainder of path, forcing all
4457   // separators to be '\\' rather than '/'. Also, single byte space
4458   // characters are removed from the end of the path because those
4459   // are not legal ending characters on this operating system.
4460   //
4461   while (*src != '\0') {
4462     if (isfilesep(*src)) {
4463       *dst++ = '\\'; src++;
4464       while (isfilesep(*src)) src++;
4465       if (*src == '\0') {
4466         // Check for trailing separator
4467         end = dst;
4468         if (colon == dst - 2) break;  // "z:\\"
4469         if (dst == path + 1) break;   // "\\"
4470         if (dst == path + 2 && isfilesep(path[0])) {
4471           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4472           // beginning of a UNC pathname.  Even though it is not, by
4473           // itself, a valid UNC pathname, we leave it as is in order
4474           // to be consistent with the path canonicalizer as well
4475           // as the win32 APIs, which treat this case as an invalid
4476           // UNC pathname rather than as an alias for the root
4477           // directory of the current drive.
4478           break;
4479         }
4480         end = --dst;  // Path does not denote a root directory, so
4481                       // remove trailing separator
4482         break;
4483       }
4484       end = dst;
4485     } else {
4486       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4487         *dst++ = *src++;
4488         if (*src) *dst++ = *src++;
4489         end = dst;
4490       } else {  // Copy a single-byte character
4491         char c = *src++;
4492         *dst++ = c;
4493         // Space is not a legal ending character
4494         if (c != ' ') end = dst;
4495       }
4496     }
4497   }
4498 
4499   *end = '\0';
4500 
4501   // For "z:", add "." to work around a bug in the C runtime library
4502   if (colon == dst - 1) {
4503     path[2] = '.';
4504     path[3] = '\0';
4505   }
4506 
4507   return path;
4508 }
4509 
4510 // This code is a copy of JDK's sysSetLength
4511 // from src/windows/hpi/src/sys_api_md.c
4512 
4513 int os::ftruncate(int fd, jlong length) {
4514   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4515   long high = (long)(length >> 32);
4516   DWORD ret;
4517 
4518   if (h == (HANDLE)(-1)) {
4519     return -1;
4520   }
4521 
4522   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4523   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4524     return -1;
4525   }
4526 
4527   if (::SetEndOfFile(h) == FALSE) {
4528     return -1;
4529   }
4530 
4531   return 0;
4532 }
4533 
4534 
4535 // This code is a copy of JDK's sysSync
4536 // from src/windows/hpi/src/sys_api_md.c
4537 // except for the legacy workaround for a bug in Win 98
4538 
4539 int os::fsync(int fd) {
4540   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4541 
4542   if ((!::FlushFileBuffers(handle)) &&
4543       (GetLastError() != ERROR_ACCESS_DENIED)) {
4544     // from winerror.h
4545     return -1;
4546   }
4547   return 0;
4548 }
4549 
4550 static int nonSeekAvailable(int, long *);
4551 static int stdinAvailable(int, long *);
4552 
4553 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4554 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4555 
4556 // This code is a copy of JDK's sysAvailable
4557 // from src/windows/hpi/src/sys_api_md.c
4558 
4559 int os::available(int fd, jlong *bytes) {
4560   jlong cur, end;
4561   struct _stati64 stbuf64;
4562 
4563   if (::_fstati64(fd, &stbuf64) >= 0) {
4564     int mode = stbuf64.st_mode;
4565     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4566       int ret;
4567       long lpbytes;
4568       if (fd == 0) {
4569         ret = stdinAvailable(fd, &lpbytes);
4570       } else {
4571         ret = nonSeekAvailable(fd, &lpbytes);
4572       }
4573       (*bytes) = (jlong)(lpbytes);
4574       return ret;
4575     }
4576     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4577       return FALSE;
4578     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4579       return FALSE;
4580     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4581       return FALSE;
4582     }
4583     *bytes = end - cur;
4584     return TRUE;
4585   } else {
4586     return FALSE;
4587   }
4588 }
4589 
4590 // This code is a copy of JDK's nonSeekAvailable
4591 // from src/windows/hpi/src/sys_api_md.c
4592 
4593 static int nonSeekAvailable(int fd, long *pbytes) {
4594   // This is used for available on non-seekable devices
4595   // (like both named and anonymous pipes, such as pipes
4596   //  connected to an exec'd process).
4597   // Standard Input is a special case.
4598   HANDLE han;
4599 
4600   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4601     return FALSE;
4602   }
4603 
4604   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4605     // PeekNamedPipe fails when at EOF.  In that case we
4606     // simply make *pbytes = 0 which is consistent with the
4607     // behavior we get on Solaris when an fd is at EOF.
4608     // The only alternative is to raise an Exception,
4609     // which isn't really warranted.
4610     //
4611     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4612       return FALSE;
4613     }
4614     *pbytes = 0;
4615   }
4616   return TRUE;
4617 }
4618 
4619 #define MAX_INPUT_EVENTS 2000
4620 
4621 // This code is a copy of JDK's stdinAvailable
4622 // from src/windows/hpi/src/sys_api_md.c
4623 
4624 static int stdinAvailable(int fd, long *pbytes) {
4625   HANDLE han;
4626   DWORD numEventsRead = 0;  // Number of events read from buffer
4627   DWORD numEvents = 0;      // Number of events in buffer
4628   DWORD i = 0;              // Loop index
4629   DWORD curLength = 0;      // Position marker
4630   DWORD actualLength = 0;   // Number of bytes readable
4631   BOOL error = FALSE;       // Error holder
4632   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4633 
4634   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4635     return FALSE;
4636   }
4637 
4638   // Construct an array of input records in the console buffer
4639   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4640   if (error == 0) {
4641     return nonSeekAvailable(fd, pbytes);
4642   }
4643 
4644   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4645   if (numEvents > MAX_INPUT_EVENTS) {
4646     numEvents = MAX_INPUT_EVENTS;
4647   }
4648 
4649   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4650   if (lpBuffer == NULL) {
4651     return FALSE;
4652   }
4653 
4654   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4655   if (error == 0) {
4656     os::free(lpBuffer);
4657     return FALSE;
4658   }
4659 
4660   // Examine input records for the number of bytes available
4661   for (i=0; i<numEvents; i++) {
4662     if (lpBuffer[i].EventType == KEY_EVENT) {
4663 
4664       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4665                                       &(lpBuffer[i].Event);
4666       if (keyRecord->bKeyDown == TRUE) {
4667         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4668         curLength++;
4669         if (*keyPressed == '\r') {
4670           actualLength = curLength;
4671         }
4672       }
4673     }
4674   }
4675 
4676   if (lpBuffer != NULL) {
4677     os::free(lpBuffer);
4678   }
4679 
4680   *pbytes = (long) actualLength;
4681   return TRUE;
4682 }
4683 
4684 // Map a block of memory.
4685 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4686                         char *addr, size_t bytes, bool read_only,
4687                         bool allow_exec) {
4688   HANDLE hFile;
4689   char* base;
4690 
4691   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4692                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4693   if (hFile == NULL) {
4694     if (PrintMiscellaneous && Verbose) {
4695       DWORD err = GetLastError();
4696       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4697     }
4698     return NULL;
4699   }
4700 
4701   if (allow_exec) {
4702     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4703     // unless it comes from a PE image (which the shared archive is not.)
4704     // Even VirtualProtect refuses to give execute access to mapped memory
4705     // that was not previously executable.
4706     //
4707     // Instead, stick the executable region in anonymous memory.  Yuck.
4708     // Penalty is that ~4 pages will not be shareable - in the future
4709     // we might consider DLLizing the shared archive with a proper PE
4710     // header so that mapping executable + sharing is possible.
4711 
4712     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4713                                 PAGE_READWRITE);
4714     if (base == NULL) {
4715       if (PrintMiscellaneous && Verbose) {
4716         DWORD err = GetLastError();
4717         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4718       }
4719       CloseHandle(hFile);
4720       return NULL;
4721     }
4722 
4723     DWORD bytes_read;
4724     OVERLAPPED overlapped;
4725     overlapped.Offset = (DWORD)file_offset;
4726     overlapped.OffsetHigh = 0;
4727     overlapped.hEvent = NULL;
4728     // ReadFile guarantees that if the return value is true, the requested
4729     // number of bytes were read before returning.
4730     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4731     if (!res) {
4732       if (PrintMiscellaneous && Verbose) {
4733         DWORD err = GetLastError();
4734         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4735       }
4736       release_memory(base, bytes);
4737       CloseHandle(hFile);
4738       return NULL;
4739     }
4740   } else {
4741     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4742                                     NULL /* file_name */);
4743     if (hMap == NULL) {
4744       if (PrintMiscellaneous && Verbose) {
4745         DWORD err = GetLastError();
4746         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4747       }
4748       CloseHandle(hFile);
4749       return NULL;
4750     }
4751 
4752     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4753     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4754                                   (DWORD)bytes, addr);
4755     if (base == NULL) {
4756       if (PrintMiscellaneous && Verbose) {
4757         DWORD err = GetLastError();
4758         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4759       }
4760       CloseHandle(hMap);
4761       CloseHandle(hFile);
4762       return NULL;
4763     }
4764 
4765     if (CloseHandle(hMap) == 0) {
4766       if (PrintMiscellaneous && Verbose) {
4767         DWORD err = GetLastError();
4768         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4769       }
4770       CloseHandle(hFile);
4771       return base;
4772     }
4773   }
4774 
4775   if (allow_exec) {
4776     DWORD old_protect;
4777     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4778     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4779 
4780     if (!res) {
4781       if (PrintMiscellaneous && Verbose) {
4782         DWORD err = GetLastError();
4783         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4784       }
4785       // Don't consider this a hard error, on IA32 even if the
4786       // VirtualProtect fails, we should still be able to execute
4787       CloseHandle(hFile);
4788       return base;
4789     }
4790   }
4791 
4792   if (CloseHandle(hFile) == 0) {
4793     if (PrintMiscellaneous && Verbose) {
4794       DWORD err = GetLastError();
4795       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4796     }
4797     return base;
4798   }
4799 
4800   return base;
4801 }
4802 
4803 
4804 // Remap a block of memory.
4805 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4806                           char *addr, size_t bytes, bool read_only,
4807                           bool allow_exec) {
4808   // This OS does not allow existing memory maps to be remapped so we
4809   // have to unmap the memory before we remap it.
4810   if (!os::unmap_memory(addr, bytes)) {
4811     return NULL;
4812   }
4813 
4814   // There is a very small theoretical window between the unmap_memory()
4815   // call above and the map_memory() call below where a thread in native
4816   // code may be able to access an address that is no longer mapped.
4817 
4818   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4819                         read_only, allow_exec);
4820 }
4821 
4822 
4823 // Unmap a block of memory.
4824 // Returns true=success, otherwise false.
4825 
4826 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4827   BOOL result = UnmapViewOfFile(addr);
4828   if (result == 0) {
4829     if (PrintMiscellaneous && Verbose) {
4830       DWORD err = GetLastError();
4831       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4832     }
4833     return false;
4834   }
4835   return true;
4836 }
4837 
4838 void os::pause() {
4839   char filename[MAX_PATH];
4840   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4841     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4842   } else {
4843     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4844   }
4845 
4846   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4847   if (fd != -1) {
4848     struct stat buf;
4849     ::close(fd);
4850     while (::stat(filename, &buf) == 0) {
4851       Sleep(100);
4852     }
4853   } else {
4854     jio_fprintf(stderr,
4855                 "Could not open pause file '%s', continuing immediately.\n", filename);
4856   }
4857 }
4858 
4859 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4860   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4861 }
4862 
4863 // See the caveats for this class in os_windows.hpp
4864 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4865 // into this method and returns false. If no OS EXCEPTION was raised, returns
4866 // true.
4867 // The callback is supposed to provide the method that should be protected.
4868 //
4869 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4870   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4871   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4872          "crash_protection already set?");
4873 
4874   bool success = true;
4875   __try {
4876     WatcherThread::watcher_thread()->set_crash_protection(this);
4877     cb.call();
4878   } __except(EXCEPTION_EXECUTE_HANDLER) {
4879     // only for protection, nothing to do
4880     success = false;
4881   }
4882   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4883   return success;
4884 }
4885 
4886 // An Event wraps a win32 "CreateEvent" kernel handle.
4887 //
4888 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4889 //
4890 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4891 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4892 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4893 //     In addition, an unpark() operation might fetch the handle field, but the
4894 //     event could recycle between the fetch and the SetEvent() operation.
4895 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4896 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4897 //     on an stale but recycled handle would be harmless, but in practice this might
4898 //     confuse other non-Sun code, so it's not a viable approach.
4899 //
4900 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4901 //     with the Event.  The event handle is never closed.  This could be construed
4902 //     as handle leakage, but only up to the maximum # of threads that have been extant
4903 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4904 //     permit a process to have hundreds of thousands of open handles.
4905 //
4906 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4907 //     and release unused handles.
4908 //
4909 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4910 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4911 //
4912 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4913 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4914 //
4915 // We use (2).
4916 //
4917 // TODO-FIXME:
4918 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4919 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4920 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4921 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4922 //     into a single win32 CreateEvent() handle.
4923 //
4924 // Assumption:
4925 //    Only one parker can exist on an event, which is why we allocate
4926 //    them per-thread. Multiple unparkers can coexist.
4927 //
4928 // _Event transitions in park()
4929 //   -1 => -1 : illegal
4930 //    1 =>  0 : pass - return immediately
4931 //    0 => -1 : block; then set _Event to 0 before returning
4932 //
4933 // _Event transitions in unpark()
4934 //    0 => 1 : just return
4935 //    1 => 1 : just return
4936 //   -1 => either 0 or 1; must signal target thread
4937 //         That is, we can safely transition _Event from -1 to either
4938 //         0 or 1.
4939 //
4940 // _Event serves as a restricted-range semaphore.
4941 //   -1 : thread is blocked, i.e. there is a waiter
4942 //    0 : neutral: thread is running or ready,
4943 //        could have been signaled after a wait started
4944 //    1 : signaled - thread is running or ready
4945 //
4946 // Another possible encoding of _Event would be with
4947 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4948 //
4949 
4950 int os::PlatformEvent::park(jlong Millis) {
4951   // Transitions for _Event:
4952   //   -1 => -1 : illegal
4953   //    1 =>  0 : pass - return immediately
4954   //    0 => -1 : block; then set _Event to 0 before returning
4955 
4956   guarantee(_ParkHandle != NULL , "Invariant");
4957   guarantee(Millis > 0          , "Invariant");
4958 
4959   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4960   // the initial park() operation.
4961   // Consider: use atomic decrement instead of CAS-loop
4962 
4963   int v;
4964   for (;;) {
4965     v = _Event;
4966     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4967   }
4968   guarantee((v == 0) || (v == 1), "invariant");
4969   if (v != 0) return OS_OK;
4970 
4971   // Do this the hard way by blocking ...
4972   // TODO: consider a brief spin here, gated on the success of recent
4973   // spin attempts by this thread.
4974   //
4975   // We decompose long timeouts into series of shorter timed waits.
4976   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4977   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4978   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4979   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4980   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4981   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4982   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4983   // for the already waited time.  This policy does not admit any new outcomes.
4984   // In the future, however, we might want to track the accumulated wait time and
4985   // adjust Millis accordingly if we encounter a spurious wakeup.
4986 
4987   const int MAXTIMEOUT = 0x10000000;
4988   DWORD rv = WAIT_TIMEOUT;
4989   while (_Event < 0 && Millis > 0) {
4990     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4991     if (Millis > MAXTIMEOUT) {
4992       prd = MAXTIMEOUT;
4993     }
4994     rv = ::WaitForSingleObject(_ParkHandle, prd);
4995     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4996     if (rv == WAIT_TIMEOUT) {
4997       Millis -= prd;
4998     }
4999   }
5000   v = _Event;
5001   _Event = 0;
5002   // see comment at end of os::PlatformEvent::park() below:
5003   OrderAccess::fence();
5004   // If we encounter a nearly simultanous timeout expiry and unpark()
5005   // we return OS_OK indicating we awoke via unpark().
5006   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5007   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5008 }
5009 
5010 void os::PlatformEvent::park() {
5011   // Transitions for _Event:
5012   //   -1 => -1 : illegal
5013   //    1 =>  0 : pass - return immediately
5014   //    0 => -1 : block; then set _Event to 0 before returning
5015 
5016   guarantee(_ParkHandle != NULL, "Invariant");
5017   // Invariant: Only the thread associated with the Event/PlatformEvent
5018   // may call park().
5019   // Consider: use atomic decrement instead of CAS-loop
5020   int v;
5021   for (;;) {
5022     v = _Event;
5023     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5024   }
5025   guarantee((v == 0) || (v == 1), "invariant");
5026   if (v != 0) return;
5027 
5028   // Do this the hard way by blocking ...
5029   // TODO: consider a brief spin here, gated on the success of recent
5030   // spin attempts by this thread.
5031   while (_Event < 0) {
5032     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5033     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5034   }
5035 
5036   // Usually we'll find _Event == 0 at this point, but as
5037   // an optional optimization we clear it, just in case can
5038   // multiple unpark() operations drove _Event up to 1.
5039   _Event = 0;
5040   OrderAccess::fence();
5041   guarantee(_Event >= 0, "invariant");
5042 }
5043 
5044 void os::PlatformEvent::unpark() {
5045   guarantee(_ParkHandle != NULL, "Invariant");
5046 
5047   // Transitions for _Event:
5048   //    0 => 1 : just return
5049   //    1 => 1 : just return
5050   //   -1 => either 0 or 1; must signal target thread
5051   //         That is, we can safely transition _Event from -1 to either
5052   //         0 or 1.
5053   // See also: "Semaphores in Plan 9" by Mullender & Cox
5054   //
5055   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5056   // that it will take two back-to-back park() calls for the owning
5057   // thread to block. This has the benefit of forcing a spurious return
5058   // from the first park() call after an unpark() call which will help
5059   // shake out uses of park() and unpark() without condition variables.
5060 
5061   if (Atomic::xchg(1, &_Event) >= 0) return;
5062 
5063   ::SetEvent(_ParkHandle);
5064 }
5065 
5066 
5067 // JSR166
5068 // -------------------------------------------------------
5069 
5070 // The Windows implementation of Park is very straightforward: Basic
5071 // operations on Win32 Events turn out to have the right semantics to
5072 // use them directly. We opportunistically resuse the event inherited
5073 // from Monitor.
5074 
5075 void Parker::park(bool isAbsolute, jlong time) {
5076   guarantee(_ParkEvent != NULL, "invariant");
5077   // First, demultiplex/decode time arguments
5078   if (time < 0) { // don't wait
5079     return;
5080   } else if (time == 0 && !isAbsolute) {
5081     time = INFINITE;
5082   } else if (isAbsolute) {
5083     time -= os::javaTimeMillis(); // convert to relative time
5084     if (time <= 0) {  // already elapsed
5085       return;
5086     }
5087   } else { // relative
5088     time /= 1000000;  // Must coarsen from nanos to millis
5089     if (time == 0) {  // Wait for the minimal time unit if zero
5090       time = 1;
5091     }
5092   }
5093 
5094   JavaThread* thread = (JavaThread*)(Thread::current());
5095   assert(thread->is_Java_thread(), "Must be JavaThread");
5096   JavaThread *jt = (JavaThread *)thread;
5097 
5098   // Don't wait if interrupted or already triggered
5099   if (Thread::is_interrupted(thread, false) ||
5100       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5101     ResetEvent(_ParkEvent);
5102     return;
5103   } else {
5104     ThreadBlockInVM tbivm(jt);
5105     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5106     jt->set_suspend_equivalent();
5107 
5108     WaitForSingleObject(_ParkEvent, time);
5109     ResetEvent(_ParkEvent);
5110 
5111     // If externally suspended while waiting, re-suspend
5112     if (jt->handle_special_suspend_equivalent_condition()) {
5113       jt->java_suspend_self();
5114     }
5115   }
5116 }
5117 
5118 void Parker::unpark() {
5119   guarantee(_ParkEvent != NULL, "invariant");
5120   SetEvent(_ParkEvent);
5121 }
5122 
5123 // Run the specified command in a separate process. Return its exit value,
5124 // or -1 on failure (e.g. can't create a new process).
5125 int os::fork_and_exec(char* cmd) {
5126   STARTUPINFO si;
5127   PROCESS_INFORMATION pi;
5128 
5129   memset(&si, 0, sizeof(si));
5130   si.cb = sizeof(si);
5131   memset(&pi, 0, sizeof(pi));
5132   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5133                             cmd,    // command line
5134                             NULL,   // process security attribute
5135                             NULL,   // thread security attribute
5136                             TRUE,   // inherits system handles
5137                             0,      // no creation flags
5138                             NULL,   // use parent's environment block
5139                             NULL,   // use parent's starting directory
5140                             &si,    // (in) startup information
5141                             &pi);   // (out) process information
5142 
5143   if (rslt) {
5144     // Wait until child process exits.
5145     WaitForSingleObject(pi.hProcess, INFINITE);
5146 
5147     DWORD exit_code;
5148     GetExitCodeProcess(pi.hProcess, &exit_code);
5149 
5150     // Close process and thread handles.
5151     CloseHandle(pi.hProcess);
5152     CloseHandle(pi.hThread);
5153 
5154     return (int)exit_code;
5155   } else {
5156     return -1;
5157   }
5158 }
5159 
5160 //--------------------------------------------------------------------------------------------------
5161 // Non-product code
5162 
5163 static int mallocDebugIntervalCounter = 0;
5164 static int mallocDebugCounter = 0;
5165 bool os::check_heap(bool force) {
5166   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5167   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5168     // Note: HeapValidate executes two hardware breakpoints when it finds something
5169     // wrong; at these points, eax contains the address of the offending block (I think).
5170     // To get to the exlicit error message(s) below, just continue twice.
5171     HANDLE heap = GetProcessHeap();
5172 
5173     // If we fail to lock the heap, then gflags.exe has been used
5174     // or some other special heap flag has been set that prevents
5175     // locking. We don't try to walk a heap we can't lock.
5176     if (HeapLock(heap) != 0) {
5177       PROCESS_HEAP_ENTRY phe;
5178       phe.lpData = NULL;
5179       while (HeapWalk(heap, &phe) != 0) {
5180         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5181             !HeapValidate(heap, 0, phe.lpData)) {
5182           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5183           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5184           fatal("corrupted C heap");
5185         }
5186       }
5187       DWORD err = GetLastError();
5188       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5189         fatal(err_msg("heap walk aborted with error %d", err));
5190       }
5191       HeapUnlock(heap);
5192     }
5193     mallocDebugIntervalCounter = 0;
5194   }
5195   return true;
5196 }
5197 
5198 
5199 bool os::find(address addr, outputStream* st) {
5200   // Nothing yet
5201   return false;
5202 }
5203 
5204 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5205   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5206 
5207   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5208     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5209     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5210     address addr = (address) exceptionRecord->ExceptionInformation[1];
5211 
5212     if (os::is_memory_serialize_page(thread, addr)) {
5213       return EXCEPTION_CONTINUE_EXECUTION;
5214     }
5215   }
5216 
5217   return EXCEPTION_CONTINUE_SEARCH;
5218 }
5219 
5220 // We don't build a headless jre for Windows
5221 bool os::is_headless_jre() { return false; }
5222 
5223 static jint initSock() {
5224   WSADATA wsadata;
5225 
5226   if (!os::WinSock2Dll::WinSock2Available()) {
5227     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5228                 ::GetLastError());
5229     return JNI_ERR;
5230   }
5231 
5232   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5233     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5234                 ::GetLastError());
5235     return JNI_ERR;
5236   }
5237   return JNI_OK;
5238 }
5239 
5240 struct hostent* os::get_host_by_name(char* name) {
5241   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5242 }
5243 
5244 int os::socket_close(int fd) {
5245   return ::closesocket(fd);
5246 }
5247 
5248 int os::socket(int domain, int type, int protocol) {
5249   return ::socket(domain, type, protocol);
5250 }
5251 
5252 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5253   return ::connect(fd, him, len);
5254 }
5255 
5256 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5257   return ::recv(fd, buf, (int)nBytes, flags);
5258 }
5259 
5260 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5261   return ::send(fd, buf, (int)nBytes, flags);
5262 }
5263 
5264 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5265   return ::send(fd, buf, (int)nBytes, flags);
5266 }
5267 
5268 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5269 #if defined(IA32)
5270   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5271 #elif defined (AMD64)
5272   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5273 #endif
5274 
5275 // returns true if thread could be suspended,
5276 // false otherwise
5277 static bool do_suspend(HANDLE* h) {
5278   if (h != NULL) {
5279     if (SuspendThread(*h) != ~0) {
5280       return true;
5281     }
5282   }
5283   return false;
5284 }
5285 
5286 // resume the thread
5287 // calling resume on an active thread is a no-op
5288 static void do_resume(HANDLE* h) {
5289   if (h != NULL) {
5290     ResumeThread(*h);
5291   }
5292 }
5293 
5294 // retrieve a suspend/resume context capable handle
5295 // from the tid. Caller validates handle return value.
5296 void get_thread_handle_for_extended_context(HANDLE* h,
5297                                             OSThread::thread_id_t tid) {
5298   if (h != NULL) {
5299     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5300   }
5301 }
5302 
5303 // Thread sampling implementation
5304 //
5305 void os::SuspendedThreadTask::internal_do_task() {
5306   CONTEXT    ctxt;
5307   HANDLE     h = NULL;
5308 
5309   // get context capable handle for thread
5310   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5311 
5312   // sanity
5313   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5314     return;
5315   }
5316 
5317   // suspend the thread
5318   if (do_suspend(&h)) {
5319     ctxt.ContextFlags = sampling_context_flags;
5320     // get thread context
5321     GetThreadContext(h, &ctxt);
5322     SuspendedThreadTaskContext context(_thread, &ctxt);
5323     // pass context to Thread Sampling impl
5324     do_task(context);
5325     // resume thread
5326     do_resume(&h);
5327   }
5328 
5329   // close handle
5330   CloseHandle(h);
5331 }
5332 
5333 
5334 // Kernel32 API
5335 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5336 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5337 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5338 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5339 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5340 
5341 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5342 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5343 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5344 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5345 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5346 
5347 
5348 BOOL                        os::Kernel32Dll::initialized = FALSE;
5349 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5350   assert(initialized && _GetLargePageMinimum != NULL,
5351          "GetLargePageMinimumAvailable() not yet called");
5352   return _GetLargePageMinimum();
5353 }
5354 
5355 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5356   if (!initialized) {
5357     initialize();
5358   }
5359   return _GetLargePageMinimum != NULL;
5360 }
5361 
5362 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5363   if (!initialized) {
5364     initialize();
5365   }
5366   return _VirtualAllocExNuma != NULL;
5367 }
5368 
5369 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5370                                            SIZE_T bytes, DWORD flags,
5371                                            DWORD prot, DWORD node) {
5372   assert(initialized && _VirtualAllocExNuma != NULL,
5373          "NUMACallsAvailable() not yet called");
5374 
5375   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5376 }
5377 
5378 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5379   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5380          "NUMACallsAvailable() not yet called");
5381 
5382   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5383 }
5384 
5385 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5386                                                PULONGLONG proc_mask) {
5387   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5388          "NUMACallsAvailable() not yet called");
5389 
5390   return _GetNumaNodeProcessorMask(node, proc_mask);
5391 }
5392 
5393 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5394                                                  ULONG FrameToCapture,
5395                                                  PVOID* BackTrace,
5396                                                  PULONG BackTraceHash) {
5397   if (!initialized) {
5398     initialize();
5399   }
5400 
5401   if (_RtlCaptureStackBackTrace != NULL) {
5402     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5403                                      BackTrace, BackTraceHash);
5404   } else {
5405     return 0;
5406   }
5407 }
5408 
5409 void os::Kernel32Dll::initializeCommon() {
5410   if (!initialized) {
5411     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5412     assert(handle != NULL, "Just check");
5413     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5414     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5415     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5416     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5417     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5418     initialized = TRUE;
5419   }
5420 }
5421 
5422 
5423 
5424 #ifndef JDK6_OR_EARLIER
5425 
5426 void os::Kernel32Dll::initialize() {
5427   initializeCommon();
5428 }
5429 
5430 
5431 // Kernel32 API
5432 inline BOOL os::Kernel32Dll::SwitchToThread() {
5433   return ::SwitchToThread();
5434 }
5435 
5436 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5437   return true;
5438 }
5439 
5440 // Help tools
5441 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5442   return true;
5443 }
5444 
5445 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5446                                                         DWORD th32ProcessId) {
5447   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5448 }
5449 
5450 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5451                                            LPMODULEENTRY32 lpme) {
5452   return ::Module32First(hSnapshot, lpme);
5453 }
5454 
5455 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5456                                           LPMODULEENTRY32 lpme) {
5457   return ::Module32Next(hSnapshot, lpme);
5458 }
5459 
5460 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5461   ::GetNativeSystemInfo(lpSystemInfo);
5462 }
5463 
5464 // PSAPI API
5465 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5466                                              HMODULE *lpModule, DWORD cb,
5467                                              LPDWORD lpcbNeeded) {
5468   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5469 }
5470 
5471 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5472                                                HMODULE hModule,
5473                                                LPTSTR lpFilename,
5474                                                DWORD nSize) {
5475   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5476 }
5477 
5478 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5479                                                HMODULE hModule,
5480                                                LPMODULEINFO lpmodinfo,
5481                                                DWORD cb) {
5482   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5483 }
5484 
5485 inline BOOL os::PSApiDll::PSApiAvailable() {
5486   return true;
5487 }
5488 
5489 
5490 // WinSock2 API
5491 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5492                                         LPWSADATA lpWSAData) {
5493   return ::WSAStartup(wVersionRequested, lpWSAData);
5494 }
5495 
5496 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5497   return ::gethostbyname(name);
5498 }
5499 
5500 inline BOOL os::WinSock2Dll::WinSock2Available() {
5501   return true;
5502 }
5503 
5504 // Advapi API
5505 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5506                                                    BOOL DisableAllPrivileges,
5507                                                    PTOKEN_PRIVILEGES NewState,
5508                                                    DWORD BufferLength,
5509                                                    PTOKEN_PRIVILEGES PreviousState,
5510                                                    PDWORD ReturnLength) {
5511   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5512                                  BufferLength, PreviousState, ReturnLength);
5513 }
5514 
5515 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5516                                               DWORD DesiredAccess,
5517                                               PHANDLE TokenHandle) {
5518   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5519 }
5520 
5521 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5522                                                   LPCTSTR lpName,
5523                                                   PLUID lpLuid) {
5524   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5525 }
5526 
5527 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5528   return true;
5529 }
5530 
5531 void* os::get_default_process_handle() {
5532   return (void*)GetModuleHandle(NULL);
5533 }
5534 
5535 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5536 // which is used to find statically linked in agents.
5537 // Additionally for windows, takes into account __stdcall names.
5538 // Parameters:
5539 //            sym_name: Symbol in library we are looking for
5540 //            lib_name: Name of library to look in, NULL for shared libs.
5541 //            is_absolute_path == true if lib_name is absolute path to agent
5542 //                                     such as "C:/a/b/L.dll"
5543 //            == false if only the base name of the library is passed in
5544 //               such as "L"
5545 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5546                                     bool is_absolute_path) {
5547   char *agent_entry_name;
5548   size_t len;
5549   size_t name_len;
5550   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5551   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5552   const char *start;
5553 
5554   if (lib_name != NULL) {
5555     len = name_len = strlen(lib_name);
5556     if (is_absolute_path) {
5557       // Need to strip path, prefix and suffix
5558       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5559         lib_name = ++start;
5560       } else {
5561         // Need to check for drive prefix
5562         if ((start = strchr(lib_name, ':')) != NULL) {
5563           lib_name = ++start;
5564         }
5565       }
5566       if (len <= (prefix_len + suffix_len)) {
5567         return NULL;
5568       }
5569       lib_name += prefix_len;
5570       name_len = strlen(lib_name) - suffix_len;
5571     }
5572   }
5573   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5574   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5575   if (agent_entry_name == NULL) {
5576     return NULL;
5577   }
5578   if (lib_name != NULL) {
5579     const char *p = strrchr(sym_name, '@');
5580     if (p != NULL && p != sym_name) {
5581       // sym_name == _Agent_OnLoad@XX
5582       strncpy(agent_entry_name, sym_name, (p - sym_name));
5583       agent_entry_name[(p-sym_name)] = '\0';
5584       // agent_entry_name == _Agent_OnLoad
5585       strcat(agent_entry_name, "_");
5586       strncat(agent_entry_name, lib_name, name_len);
5587       strcat(agent_entry_name, p);
5588       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5589     } else {
5590       strcpy(agent_entry_name, sym_name);
5591       strcat(agent_entry_name, "_");
5592       strncat(agent_entry_name, lib_name, name_len);
5593     }
5594   } else {
5595     strcpy(agent_entry_name, sym_name);
5596   }
5597   return agent_entry_name;
5598 }
5599 
5600 #else
5601 // Kernel32 API
5602 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5603 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5604 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5605 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5606 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5607 
5608 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5609 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5610 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5611 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5612 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5613 
5614 void os::Kernel32Dll::initialize() {
5615   if (!initialized) {
5616     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5617     assert(handle != NULL, "Just check");
5618 
5619     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5620     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5621       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5622     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5623     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5624     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5625     initializeCommon();  // resolve the functions that always need resolving
5626 
5627     initialized = TRUE;
5628   }
5629 }
5630 
5631 BOOL os::Kernel32Dll::SwitchToThread() {
5632   assert(initialized && _SwitchToThread != NULL,
5633          "SwitchToThreadAvailable() not yet called");
5634   return _SwitchToThread();
5635 }
5636 
5637 
5638 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5639   if (!initialized) {
5640     initialize();
5641   }
5642   return _SwitchToThread != NULL;
5643 }
5644 
5645 // Help tools
5646 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5647   if (!initialized) {
5648     initialize();
5649   }
5650   return _CreateToolhelp32Snapshot != NULL &&
5651          _Module32First != NULL &&
5652          _Module32Next != NULL;
5653 }
5654 
5655 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5656                                                  DWORD th32ProcessId) {
5657   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5658          "HelpToolsAvailable() not yet called");
5659 
5660   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5661 }
5662 
5663 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5664   assert(initialized && _Module32First != NULL,
5665          "HelpToolsAvailable() not yet called");
5666 
5667   return _Module32First(hSnapshot, lpme);
5668 }
5669 
5670 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5671                                           LPMODULEENTRY32 lpme) {
5672   assert(initialized && _Module32Next != NULL,
5673          "HelpToolsAvailable() not yet called");
5674 
5675   return _Module32Next(hSnapshot, lpme);
5676 }
5677 
5678 
5679 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5680   if (!initialized) {
5681     initialize();
5682   }
5683   return _GetNativeSystemInfo != NULL;
5684 }
5685 
5686 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5687   assert(initialized && _GetNativeSystemInfo != NULL,
5688          "GetNativeSystemInfoAvailable() not yet called");
5689 
5690   _GetNativeSystemInfo(lpSystemInfo);
5691 }
5692 
5693 // PSAPI API
5694 
5695 
5696 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5697 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5698 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5699 
5700 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5701 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5702 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5703 BOOL                    os::PSApiDll::initialized = FALSE;
5704 
5705 void os::PSApiDll::initialize() {
5706   if (!initialized) {
5707     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5708     if (handle != NULL) {
5709       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5710                                                                     "EnumProcessModules");
5711       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5712                                                                       "GetModuleFileNameExA");
5713       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5714                                                                         "GetModuleInformation");
5715     }
5716     initialized = TRUE;
5717   }
5718 }
5719 
5720 
5721 
5722 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5723                                       DWORD cb, LPDWORD lpcbNeeded) {
5724   assert(initialized && _EnumProcessModules != NULL,
5725          "PSApiAvailable() not yet called");
5726   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5727 }
5728 
5729 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5730                                         LPTSTR lpFilename, DWORD nSize) {
5731   assert(initialized && _GetModuleFileNameEx != NULL,
5732          "PSApiAvailable() not yet called");
5733   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5734 }
5735 
5736 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5737                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5738   assert(initialized && _GetModuleInformation != NULL,
5739          "PSApiAvailable() not yet called");
5740   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5741 }
5742 
5743 BOOL os::PSApiDll::PSApiAvailable() {
5744   if (!initialized) {
5745     initialize();
5746   }
5747   return _EnumProcessModules != NULL &&
5748     _GetModuleFileNameEx != NULL &&
5749     _GetModuleInformation != NULL;
5750 }
5751 
5752 
5753 // WinSock2 API
5754 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5755 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5756 
5757 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5758 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5759 BOOL             os::WinSock2Dll::initialized = FALSE;
5760 
5761 void os::WinSock2Dll::initialize() {
5762   if (!initialized) {
5763     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5764     if (handle != NULL) {
5765       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5766       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5767     }
5768     initialized = TRUE;
5769   }
5770 }
5771 
5772 
5773 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5774   assert(initialized && _WSAStartup != NULL,
5775          "WinSock2Available() not yet called");
5776   return _WSAStartup(wVersionRequested, lpWSAData);
5777 }
5778 
5779 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5780   assert(initialized && _gethostbyname != NULL,
5781          "WinSock2Available() not yet called");
5782   return _gethostbyname(name);
5783 }
5784 
5785 BOOL os::WinSock2Dll::WinSock2Available() {
5786   if (!initialized) {
5787     initialize();
5788   }
5789   return _WSAStartup != NULL &&
5790     _gethostbyname != NULL;
5791 }
5792 
5793 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5794 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5795 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5796 
5797 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5798 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5799 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5800 BOOL                     os::Advapi32Dll::initialized = FALSE;
5801 
5802 void os::Advapi32Dll::initialize() {
5803   if (!initialized) {
5804     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5805     if (handle != NULL) {
5806       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5807                                                                           "AdjustTokenPrivileges");
5808       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5809                                                                 "OpenProcessToken");
5810       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5811                                                                         "LookupPrivilegeValueA");
5812     }
5813     initialized = TRUE;
5814   }
5815 }
5816 
5817 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5818                                             BOOL DisableAllPrivileges,
5819                                             PTOKEN_PRIVILEGES NewState,
5820                                             DWORD BufferLength,
5821                                             PTOKEN_PRIVILEGES PreviousState,
5822                                             PDWORD ReturnLength) {
5823   assert(initialized && _AdjustTokenPrivileges != NULL,
5824          "AdvapiAvailable() not yet called");
5825   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5826                                 BufferLength, PreviousState, ReturnLength);
5827 }
5828 
5829 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5830                                        DWORD DesiredAccess,
5831                                        PHANDLE TokenHandle) {
5832   assert(initialized && _OpenProcessToken != NULL,
5833          "AdvapiAvailable() not yet called");
5834   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5835 }
5836 
5837 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5838                                            LPCTSTR lpName, PLUID lpLuid) {
5839   assert(initialized && _LookupPrivilegeValue != NULL,
5840          "AdvapiAvailable() not yet called");
5841   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5842 }
5843 
5844 BOOL os::Advapi32Dll::AdvapiAvailable() {
5845   if (!initialized) {
5846     initialize();
5847   }
5848   return _AdjustTokenPrivileges != NULL &&
5849     _OpenProcessToken != NULL &&
5850     _LookupPrivilegeValue != NULL;
5851 }
5852 
5853 #endif
5854 
5855 #ifndef PRODUCT
5856 
5857 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5858 // contiguous memory block at a particular address.
5859 // The test first tries to find a good approximate address to allocate at by using the same
5860 // method to allocate some memory at any address. The test then tries to allocate memory in
5861 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5862 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5863 // the previously allocated memory is available for allocation. The only actual failure
5864 // that is reported is when the test tries to allocate at a particular location but gets a
5865 // different valid one. A NULL return value at this point is not considered an error but may
5866 // be legitimate.
5867 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5868 void TestReserveMemorySpecial_test() {
5869   if (!UseLargePages) {
5870     if (VerboseInternalVMTests) {
5871       gclog_or_tty->print("Skipping test because large pages are disabled");
5872     }
5873     return;
5874   }
5875   // save current value of globals
5876   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5877   bool old_use_numa_interleaving = UseNUMAInterleaving;
5878 
5879   // set globals to make sure we hit the correct code path
5880   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5881 
5882   // do an allocation at an address selected by the OS to get a good one.
5883   const size_t large_allocation_size = os::large_page_size() * 4;
5884   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5885   if (result == NULL) {
5886     if (VerboseInternalVMTests) {
5887       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5888                           large_allocation_size);
5889     }
5890   } else {
5891     os::release_memory_special(result, large_allocation_size);
5892 
5893     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5894     // we managed to get it once.
5895     const size_t expected_allocation_size = os::large_page_size();
5896     char* expected_location = result + os::large_page_size();
5897     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5898     if (actual_location == NULL) {
5899       if (VerboseInternalVMTests) {
5900         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5901                             expected_location, large_allocation_size);
5902       }
5903     } else {
5904       // release memory
5905       os::release_memory_special(actual_location, expected_allocation_size);
5906       // only now check, after releasing any memory to avoid any leaks.
5907       assert(actual_location == expected_location,
5908              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5909              expected_location, expected_allocation_size, actual_location));
5910     }
5911   }
5912 
5913   // restore globals
5914   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5915   UseNUMAInterleaving = old_use_numa_interleaving;
5916 }
5917 #endif // PRODUCT