1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <time.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <sys/param.h>
  97 # include <sys/sysctl.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 #ifndef __APPLE__
 101 # include <link.h>
 102 #endif
 103 # include <stdint.h>
 104 # include <inttypes.h>
 105 # include <sys/ioctl.h>
 106 # include <sys/syscall.h>
 107 
 108 #if defined(__FreeBSD__) || defined(__NetBSD__)
 109   #include <elf.h>
 110 #endif
 111 
 112 #ifdef __APPLE__
 113   #include <mach/mach.h> // semaphore_* API
 114   #include <mach-o/dyld.h>
 115   #include <sys/proc_info.h>
 116   #include <objc/objc-auto.h>
 117 #endif
 118 
 119 #ifndef MAP_ANONYMOUS
 120   #define MAP_ANONYMOUS MAP_ANON
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 
 128 #define LARGEPAGES_BIT (1 << 6)
 129 
 130 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 131 
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Bsd::_physical_memory = 0;
 135 
 136 #ifdef __APPLE__
 137 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 138 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 139 #else
 140 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 #endif
 142 pthread_t os::Bsd::_main_thread;
 143 int os::Bsd::_page_size = -1;
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 167 
 168 julong os::available_memory() {
 169   return Bsd::available_memory();
 170 }
 171 
 172 // available here means free
 173 julong os::Bsd::available_memory() {
 174   uint64_t available = physical_memory() >> 2;
 175 #ifdef __APPLE__
 176   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 177   vm_statistics64_data_t vmstat;
 178   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 179                                          (host_info64_t)&vmstat, &count);
 180   assert(kerr == KERN_SUCCESS,
 181          "host_statistics64 failed - check mach_host_self() and count");
 182   if (kerr == KERN_SUCCESS) {
 183     available = vmstat.free_count * os::vm_page_size();
 184   }
 185 #endif
 186   return available;
 187 }
 188 
 189 julong os::physical_memory() {
 190   return Bsd::physical_memory();
 191 }
 192 
 193 // Return true if user is running as root.
 194 
 195 bool os::have_special_privileges() {
 196   static bool init = false;
 197   static bool privileges = false;
 198   if (!init) {
 199     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 200     init = true;
 201   }
 202   return privileges;
 203 }
 204 
 205 
 206 
 207 // Cpu architecture string
 208 #if   defined(ZERO)
 209 static char cpu_arch[] = ZERO_LIBARCH;
 210 #elif defined(IA64)
 211 static char cpu_arch[] = "ia64";
 212 #elif defined(IA32)
 213 static char cpu_arch[] = "i386";
 214 #elif defined(AMD64)
 215 static char cpu_arch[] = "amd64";
 216 #elif defined(ARM)
 217 static char cpu_arch[] = "arm";
 218 #elif defined(PPC32)
 219 static char cpu_arch[] = "ppc";
 220 #elif defined(SPARC)
 221   #ifdef _LP64
 222 static char cpu_arch[] = "sparcv9";
 223   #else
 224 static char cpu_arch[] = "sparc";
 225   #endif
 226 #else
 227   #error Add appropriate cpu_arch setting
 228 #endif
 229 
 230 // Compiler variant
 231 #ifdef COMPILER2
 232   #define COMPILER_VARIANT "server"
 233 #else
 234   #define COMPILER_VARIANT "client"
 235 #endif
 236 
 237 
 238 void os::Bsd::initialize_system_info() {
 239   int mib[2];
 240   size_t len;
 241   int cpu_val;
 242   julong mem_val;
 243 
 244   // get processors count via hw.ncpus sysctl
 245   mib[0] = CTL_HW;
 246   mib[1] = HW_NCPU;
 247   len = sizeof(cpu_val);
 248   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 249     assert(len == sizeof(cpu_val), "unexpected data size");
 250     set_processor_count(cpu_val);
 251   } else {
 252     set_processor_count(1);   // fallback
 253   }
 254 
 255   // get physical memory via hw.memsize sysctl (hw.memsize is used
 256   // since it returns a 64 bit value)
 257   mib[0] = CTL_HW;
 258 
 259 #if defined (HW_MEMSIZE) // Apple
 260   mib[1] = HW_MEMSIZE;
 261 #elif defined(HW_PHYSMEM) // Most of BSD
 262   mib[1] = HW_PHYSMEM;
 263 #elif defined(HW_REALMEM) // Old FreeBSD
 264   mib[1] = HW_REALMEM;
 265 #else
 266   #error No ways to get physmem
 267 #endif
 268 
 269   len = sizeof(mem_val);
 270   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 271     assert(len == sizeof(mem_val), "unexpected data size");
 272     _physical_memory = mem_val;
 273   } else {
 274     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 275   }
 276 
 277 #ifdef __OpenBSD__
 278   {
 279     // limit _physical_memory memory view on OpenBSD since
 280     // datasize rlimit restricts us anyway.
 281     struct rlimit limits;
 282     getrlimit(RLIMIT_DATA, &limits);
 283     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 284   }
 285 #endif
 286 }
 287 
 288 #ifdef __APPLE__
 289 static const char *get_home() {
 290   const char *home_dir = ::getenv("HOME");
 291   if ((home_dir == NULL) || (*home_dir == '\0')) {
 292     struct passwd *passwd_info = getpwuid(geteuid());
 293     if (passwd_info != NULL) {
 294       home_dir = passwd_info->pw_dir;
 295     }
 296   }
 297 
 298   return home_dir;
 299 }
 300 #endif
 301 
 302 void os::init_system_properties_values() {
 303   // The next steps are taken in the product version:
 304   //
 305   // Obtain the JAVA_HOME value from the location of libjvm.so.
 306   // This library should be located at:
 307   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 308   //
 309   // If "/jre/lib/" appears at the right place in the path, then we
 310   // assume libjvm.so is installed in a JDK and we use this path.
 311   //
 312   // Otherwise exit with message: "Could not create the Java virtual machine."
 313   //
 314   // The following extra steps are taken in the debugging version:
 315   //
 316   // If "/jre/lib/" does NOT appear at the right place in the path
 317   // instead of exit check for $JAVA_HOME environment variable.
 318   //
 319   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 320   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 321   // it looks like libjvm.so is installed there
 322   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 323   //
 324   // Otherwise exit.
 325   //
 326   // Important note: if the location of libjvm.so changes this
 327   // code needs to be changed accordingly.
 328 
 329   // See ld(1):
 330   //      The linker uses the following search paths to locate required
 331   //      shared libraries:
 332   //        1: ...
 333   //        ...
 334   //        7: The default directories, normally /lib and /usr/lib.
 335 #ifndef DEFAULT_LIBPATH
 336   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 337 #endif
 338 
 339 // Base path of extensions installed on the system.
 340 #define SYS_EXT_DIR     "/usr/java/packages"
 341 #define EXTENSIONS_DIR  "/lib/ext"
 342 
 343 #ifndef __APPLE__
 344 
 345   // Buffer that fits several sprintfs.
 346   // Note that the space for the colon and the trailing null are provided
 347   // by the nulls included by the sizeof operator.
 348   const size_t bufsize =
 349     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 350          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 351   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 352 
 353   // sysclasspath, java_home, dll_dir
 354   {
 355     char *pslash;
 356     os::jvm_path(buf, bufsize);
 357 
 358     // Found the full path to libjvm.so.
 359     // Now cut the path to <java_home>/jre if we can.
 360     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 361     pslash = strrchr(buf, '/');
 362     if (pslash != NULL) {
 363       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 364     }
 365     Arguments::set_dll_dir(buf);
 366 
 367     if (pslash != NULL) {
 368       pslash = strrchr(buf, '/');
 369       if (pslash != NULL) {
 370         *pslash = '\0';          // Get rid of /<arch>.
 371         pslash = strrchr(buf, '/');
 372         if (pslash != NULL) {
 373           *pslash = '\0';        // Get rid of /lib.
 374         }
 375       }
 376     }
 377     Arguments::set_java_home(buf);
 378     set_boot_path('/', ':');
 379   }
 380 
 381   // Where to look for native libraries.
 382   //
 383   // Note: Due to a legacy implementation, most of the library path
 384   // is set in the launcher. This was to accomodate linking restrictions
 385   // on legacy Bsd implementations (which are no longer supported).
 386   // Eventually, all the library path setting will be done here.
 387   //
 388   // However, to prevent the proliferation of improperly built native
 389   // libraries, the new path component /usr/java/packages is added here.
 390   // Eventually, all the library path setting will be done here.
 391   {
 392     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 393     // should always exist (until the legacy problem cited above is
 394     // addressed).
 395     const char *v = ::getenv("LD_LIBRARY_PATH");
 396     const char *v_colon = ":";
 397     if (v == NULL) { v = ""; v_colon = ""; }
 398     // That's +1 for the colon and +1 for the trailing '\0'.
 399     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 400                                                      strlen(v) + 1 +
 401                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 402                                                      mtInternal);
 403     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 404     Arguments::set_library_path(ld_library_path);
 405     FREE_C_HEAP_ARRAY(char, ld_library_path);
 406   }
 407 
 408   // Extensions directories.
 409   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 410   Arguments::set_ext_dirs(buf);
 411 
 412   FREE_C_HEAP_ARRAY(char, buf);
 413 
 414 #else // __APPLE__
 415 
 416   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 417   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 418 
 419   const char *user_home_dir = get_home();
 420   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 421   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 422     sizeof(SYS_EXTENSIONS_DIRS);
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 430   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 440     pslash = strrchr(buf, '/');
 441     if (pslash != NULL) {
 442       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 443     }
 444     Arguments::set_dll_dir(buf);
 445 
 446     if (pslash != NULL) {
 447       pslash = strrchr(buf, '/');
 448       if (pslash != NULL) {
 449         *pslash = '\0';          // Get rid of /lib.
 450       }
 451     }
 452     Arguments::set_java_home(buf);
 453     set_boot_path('/', ':');
 454   }
 455 
 456   // Where to look for native libraries.
 457   //
 458   // Note: Due to a legacy implementation, most of the library path
 459   // is set in the launcher. This was to accomodate linking restrictions
 460   // on legacy Bsd implementations (which are no longer supported).
 461   // Eventually, all the library path setting will be done here.
 462   //
 463   // However, to prevent the proliferation of improperly built native
 464   // libraries, the new path component /usr/java/packages is added here.
 465   // Eventually, all the library path setting will be done here.
 466   {
 467     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 468     // should always exist (until the legacy problem cited above is
 469     // addressed).
 470     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 471     // can specify a directory inside an app wrapper
 472     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 473     const char *l_colon = ":";
 474     if (l == NULL) { l = ""; l_colon = ""; }
 475 
 476     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 477     const char *v_colon = ":";
 478     if (v == NULL) { v = ""; v_colon = ""; }
 479 
 480     // Apple's Java6 has "." at the beginning of java.library.path.
 481     // OpenJDK on Windows has "." at the end of java.library.path.
 482     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 483     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 484     // "." is appended to the end of java.library.path. Yes, this
 485     // could cause a change in behavior, but Apple's Java6 behavior
 486     // can be achieved by putting "." at the beginning of the
 487     // JAVA_LIBRARY_PATH environment variable.
 488     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 489                                                      strlen(v) + 1 + strlen(l) + 1 +
 490                                                      system_ext_size + 3,
 491                                                      mtInternal);
 492     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 493             v, v_colon, l, l_colon, user_home_dir);
 494     Arguments::set_library_path(ld_library_path);
 495     FREE_C_HEAP_ARRAY(char, ld_library_path);
 496   }
 497 
 498   // Extensions directories.
 499   //
 500   // Note that the space for the colon and the trailing null are provided
 501   // by the nulls included by the sizeof operator (so actually one byte more
 502   // than necessary is allocated).
 503   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 504           user_home_dir, Arguments::get_java_home());
 505   Arguments::set_ext_dirs(buf);
 506 
 507   FREE_C_HEAP_ARRAY(char, buf);
 508 
 509 #undef SYS_EXTENSIONS_DIR
 510 #undef SYS_EXTENSIONS_DIRS
 511 
 512 #endif // __APPLE__
 513 
 514 #undef SYS_EXT_DIR
 515 #undef EXTENSIONS_DIR
 516 }
 517 
 518 ////////////////////////////////////////////////////////////////////////////////
 519 // breakpoint support
 520 
 521 void os::breakpoint() {
 522   BREAKPOINT;
 523 }
 524 
 525 extern "C" void breakpoint() {
 526   // use debugger to set breakpoint here
 527 }
 528 
 529 ////////////////////////////////////////////////////////////////////////////////
 530 // signal support
 531 
 532 debug_only(static bool signal_sets_initialized = false);
 533 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 534 
 535 bool os::Bsd::is_sig_ignored(int sig) {
 536   struct sigaction oact;
 537   sigaction(sig, (struct sigaction*)NULL, &oact);
 538   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 539                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 540   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 541     return true;
 542   } else {
 543     return false;
 544   }
 545 }
 546 
 547 void os::Bsd::signal_sets_init() {
 548   // Should also have an assertion stating we are still single-threaded.
 549   assert(!signal_sets_initialized, "Already initialized");
 550   // Fill in signals that are necessarily unblocked for all threads in
 551   // the VM. Currently, we unblock the following signals:
 552   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 553   //                         by -Xrs (=ReduceSignalUsage));
 554   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 555   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 556   // the dispositions or masks wrt these signals.
 557   // Programs embedding the VM that want to use the above signals for their
 558   // own purposes must, at this time, use the "-Xrs" option to prevent
 559   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 560   // (See bug 4345157, and other related bugs).
 561   // In reality, though, unblocking these signals is really a nop, since
 562   // these signals are not blocked by default.
 563   sigemptyset(&unblocked_sigs);
 564   sigemptyset(&allowdebug_blocked_sigs);
 565   sigaddset(&unblocked_sigs, SIGILL);
 566   sigaddset(&unblocked_sigs, SIGSEGV);
 567   sigaddset(&unblocked_sigs, SIGBUS);
 568   sigaddset(&unblocked_sigs, SIGFPE);
 569   sigaddset(&unblocked_sigs, SR_signum);
 570 
 571   if (!ReduceSignalUsage) {
 572     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 573       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 574       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 575     }
 576     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 577       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 578       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 579     }
 580     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 581       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 582       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 583     }
 584   }
 585   // Fill in signals that are blocked by all but the VM thread.
 586   sigemptyset(&vm_sigs);
 587   if (!ReduceSignalUsage) {
 588     sigaddset(&vm_sigs, BREAK_SIGNAL);
 589   }
 590   debug_only(signal_sets_initialized = true);
 591 
 592 }
 593 
 594 // These are signals that are unblocked while a thread is running Java.
 595 // (For some reason, they get blocked by default.)
 596 sigset_t* os::Bsd::unblocked_signals() {
 597   assert(signal_sets_initialized, "Not initialized");
 598   return &unblocked_sigs;
 599 }
 600 
 601 // These are the signals that are blocked while a (non-VM) thread is
 602 // running Java. Only the VM thread handles these signals.
 603 sigset_t* os::Bsd::vm_signals() {
 604   assert(signal_sets_initialized, "Not initialized");
 605   return &vm_sigs;
 606 }
 607 
 608 // These are signals that are blocked during cond_wait to allow debugger in
 609 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 610   assert(signal_sets_initialized, "Not initialized");
 611   return &allowdebug_blocked_sigs;
 612 }
 613 
 614 void os::Bsd::hotspot_sigmask(Thread* thread) {
 615 
 616   //Save caller's signal mask before setting VM signal mask
 617   sigset_t caller_sigmask;
 618   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 619 
 620   OSThread* osthread = thread->osthread();
 621   osthread->set_caller_sigmask(caller_sigmask);
 622 
 623   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 624 
 625   if (!ReduceSignalUsage) {
 626     if (thread->is_VM_thread()) {
 627       // Only the VM thread handles BREAK_SIGNAL ...
 628       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 629     } else {
 630       // ... all other threads block BREAK_SIGNAL
 631       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 632     }
 633   }
 634 }
 635 
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 // check if it's safe to start a new thread
 641 static bool _thread_safety_check(Thread* thread) {
 642   return true;
 643 }
 644 
 645 #ifdef __APPLE__
 646 // library handle for calling objc_registerThreadWithCollector()
 647 // without static linking to the libobjc library
 648   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 649   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 650 typedef void (*objc_registerThreadWithCollector_t)();
 651 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 652 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 653 #endif
 654 
 655 #ifdef __APPLE__
 656 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 657   // Additional thread_id used to correlate threads in SA
 658   thread_identifier_info_data_t     m_ident_info;
 659   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 660 
 661   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 662               (thread_info_t) &m_ident_info, &count);
 663 
 664   return m_ident_info.thread_id;
 665 }
 666 #endif
 667 
 668 // Thread start routine for all newly created threads
 669 static void *java_start(Thread *thread) {
 670   // Try to randomize the cache line index of hot stack frames.
 671   // This helps when threads of the same stack traces evict each other's
 672   // cache lines. The threads can be either from the same JVM instance, or
 673   // from different JVM instances. The benefit is especially true for
 674   // processors with hyperthreading technology.
 675   static int counter = 0;
 676   int pid = os::current_process_id();
 677   alloca(((pid ^ counter++) & 7) * 128);
 678 
 679   ThreadLocalStorage::set_thread(thread);
 680 
 681   OSThread* osthread = thread->osthread();
 682   Monitor* sync = osthread->startThread_lock();
 683 
 684   // non floating stack BsdThreads needs extra check, see above
 685   if (!_thread_safety_check(thread)) {
 686     // notify parent thread
 687     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 688     osthread->set_state(ZOMBIE);
 689     sync->notify_all();
 690     return NULL;
 691   }
 692 
 693   osthread->set_thread_id(os::Bsd::gettid());
 694 
 695 #ifdef __APPLE__
 696   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 697   guarantee(unique_thread_id != 0, "unique thread id was not found");
 698   osthread->set_unique_thread_id(unique_thread_id);
 699 #endif
 700   // initialize signal mask for this thread
 701   os::Bsd::hotspot_sigmask(thread);
 702 
 703   // initialize floating point control register
 704   os::Bsd::init_thread_fpu_state();
 705 
 706 #ifdef __APPLE__
 707   // register thread with objc gc
 708   if (objc_registerThreadWithCollectorFunction != NULL) {
 709     objc_registerThreadWithCollectorFunction();
 710   }
 711 #endif
 712 
 713   // handshaking with parent thread
 714   {
 715     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 716 
 717     // notify parent thread
 718     osthread->set_state(INITIALIZED);
 719     sync->notify_all();
 720 
 721     // wait until os::start_thread()
 722     while (osthread->get_state() == INITIALIZED) {
 723       sync->wait(Mutex::_no_safepoint_check_flag);
 724     }
 725   }
 726 
 727   // call one more level start routine
 728   thread->run();
 729 
 730   return 0;
 731 }
 732 
 733 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 734   assert(thread->osthread() == NULL, "caller responsible");
 735 
 736   // Allocate the OSThread object
 737   OSThread* osthread = new OSThread(NULL, NULL);
 738   if (osthread == NULL) {
 739     return false;
 740   }
 741 
 742   // set the correct thread state
 743   osthread->set_thread_type(thr_type);
 744 
 745   // Initial state is ALLOCATED but not INITIALIZED
 746   osthread->set_state(ALLOCATED);
 747 
 748   thread->set_osthread(osthread);
 749 
 750   // init thread attributes
 751   pthread_attr_t attr;
 752   pthread_attr_init(&attr);
 753   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 754 
 755   // stack size
 756   if (os::Bsd::supports_variable_stack_size()) {
 757     // calculate stack size if it's not specified by caller
 758     if (stack_size == 0) {
 759       stack_size = os::Bsd::default_stack_size(thr_type);
 760 
 761       switch (thr_type) {
 762       case os::java_thread:
 763         // Java threads use ThreadStackSize which default value can be
 764         // changed with the flag -Xss
 765         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 766         stack_size = JavaThread::stack_size_at_create();
 767         break;
 768       case os::compiler_thread:
 769         if (CompilerThreadStackSize > 0) {
 770           stack_size = (size_t)(CompilerThreadStackSize * K);
 771           break;
 772         } // else fall through:
 773           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 774       case os::vm_thread:
 775       case os::pgc_thread:
 776       case os::cgc_thread:
 777       case os::watcher_thread:
 778         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 779         break;
 780       }
 781     }
 782 
 783     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 784     pthread_attr_setstacksize(&attr, stack_size);
 785   } else {
 786     // let pthread_create() pick the default value.
 787   }
 788 
 789   ThreadState state;
 790 
 791   {
 792     pthread_t tid;
 793     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 794 
 795     pthread_attr_destroy(&attr);
 796 
 797     if (ret != 0) {
 798       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 799         perror("pthread_create()");
 800       }
 801       // Need to clean up stuff we've allocated so far
 802       thread->set_osthread(NULL);
 803       delete osthread;
 804       return false;
 805     }
 806 
 807     // Store pthread info into the OSThread
 808     osthread->set_pthread_id(tid);
 809 
 810     // Wait until child thread is either initialized or aborted
 811     {
 812       Monitor* sync_with_child = osthread->startThread_lock();
 813       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 814       while ((state = osthread->get_state()) == ALLOCATED) {
 815         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 816       }
 817     }
 818 
 819   }
 820 
 821   // Aborted due to thread limit being reached
 822   if (state == ZOMBIE) {
 823     thread->set_osthread(NULL);
 824     delete osthread;
 825     return false;
 826   }
 827 
 828   // The thread is returned suspended (in state INITIALIZED),
 829   // and is started higher up in the call chain
 830   assert(state == INITIALIZED, "race condition");
 831   return true;
 832 }
 833 
 834 /////////////////////////////////////////////////////////////////////////////
 835 // attach existing thread
 836 
 837 // bootstrap the main thread
 838 bool os::create_main_thread(JavaThread* thread) {
 839   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 840   return create_attached_thread(thread);
 841 }
 842 
 843 bool os::create_attached_thread(JavaThread* thread) {
 844 #ifdef ASSERT
 845   thread->verify_not_published();
 846 #endif
 847 
 848   // Allocate the OSThread object
 849   OSThread* osthread = new OSThread(NULL, NULL);
 850 
 851   if (osthread == NULL) {
 852     return false;
 853   }
 854 
 855   osthread->set_thread_id(os::Bsd::gettid());
 856 
 857   // Store pthread info into the OSThread
 858 #ifdef __APPLE__
 859   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 860   guarantee(unique_thread_id != 0, "just checking");
 861   osthread->set_unique_thread_id(unique_thread_id);
 862 #endif
 863   osthread->set_pthread_id(::pthread_self());
 864 
 865   // initialize floating point control register
 866   os::Bsd::init_thread_fpu_state();
 867 
 868   // Initial thread state is RUNNABLE
 869   osthread->set_state(RUNNABLE);
 870 
 871   thread->set_osthread(osthread);
 872 
 873   // initialize signal mask for this thread
 874   // and save the caller's signal mask
 875   os::Bsd::hotspot_sigmask(thread);
 876 
 877   return true;
 878 }
 879 
 880 void os::pd_start_thread(Thread* thread) {
 881   OSThread * osthread = thread->osthread();
 882   assert(osthread->get_state() != INITIALIZED, "just checking");
 883   Monitor* sync_with_child = osthread->startThread_lock();
 884   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 885   sync_with_child->notify();
 886 }
 887 
 888 // Free Bsd resources related to the OSThread
 889 void os::free_thread(OSThread* osthread) {
 890   assert(osthread != NULL, "osthread not set");
 891 
 892   if (Thread::current()->osthread() == osthread) {
 893     // Restore caller's signal mask
 894     sigset_t sigmask = osthread->caller_sigmask();
 895     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 896   }
 897 
 898   delete osthread;
 899 }
 900 
 901 //////////////////////////////////////////////////////////////////////////////
 902 // thread local storage
 903 
 904 // Restore the thread pointer if the destructor is called. This is in case
 905 // someone from JNI code sets up a destructor with pthread_key_create to run
 906 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 907 // will hang or crash. When detachCurrentThread is called the key will be set
 908 // to null and we will not be called again. If detachCurrentThread is never
 909 // called we could loop forever depending on the pthread implementation.
 910 static void restore_thread_pointer(void* p) {
 911   Thread* thread = (Thread*) p;
 912   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 913 }
 914 
 915 int os::allocate_thread_local_storage() {
 916   pthread_key_t key;
 917   int rslt = pthread_key_create(&key, restore_thread_pointer);
 918   assert(rslt == 0, "cannot allocate thread local storage");
 919   return (int)key;
 920 }
 921 
 922 // Note: This is currently not used by VM, as we don't destroy TLS key
 923 // on VM exit.
 924 void os::free_thread_local_storage(int index) {
 925   int rslt = pthread_key_delete((pthread_key_t)index);
 926   assert(rslt == 0, "invalid index");
 927 }
 928 
 929 void os::thread_local_storage_at_put(int index, void* value) {
 930   int rslt = pthread_setspecific((pthread_key_t)index, value);
 931   assert(rslt == 0, "pthread_setspecific failed");
 932 }
 933 
 934 extern "C" Thread* get_thread() {
 935   return ThreadLocalStorage::thread();
 936 }
 937 
 938 
 939 ////////////////////////////////////////////////////////////////////////////////
 940 // time support
 941 
 942 // Time since start-up in seconds to a fine granularity.
 943 // Used by VMSelfDestructTimer and the MemProfiler.
 944 double os::elapsedTime() {
 945 
 946   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 947 }
 948 
 949 jlong os::elapsed_counter() {
 950   return javaTimeNanos() - initial_time_count;
 951 }
 952 
 953 jlong os::elapsed_frequency() {
 954   return NANOSECS_PER_SEC; // nanosecond resolution
 955 }
 956 
 957 bool os::supports_vtime() { return true; }
 958 bool os::enable_vtime()   { return false; }
 959 bool os::vtime_enabled()  { return false; }
 960 
 961 double os::elapsedVTime() {
 962   // better than nothing, but not much
 963   return elapsedTime();
 964 }
 965 
 966 jlong os::javaTimeMillis() {
 967   timeval time;
 968   int status = gettimeofday(&time, NULL);
 969   assert(status != -1, "bsd error");
 970   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 971 }
 972 
 973 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 974   timeval time;
 975   int status = gettimeofday(&time, NULL);
 976   assert(status != -1, "bsd error");
 977   seconds = jlong(time.tv_sec);
 978   nanos = jlong(time.tv_usec) * 1000;
 979 }
 980 
 981 #ifndef __APPLE__
 982   #ifndef CLOCK_MONOTONIC
 983     #define CLOCK_MONOTONIC (1)
 984   #endif
 985 #endif
 986 
 987 #ifdef __APPLE__
 988 void os::Bsd::clock_init() {
 989   mach_timebase_info(&_timebase_info);
 990 }
 991 #else
 992 void os::Bsd::clock_init() {
 993   struct timespec res;
 994   struct timespec tp;
 995   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 996       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 997     // yes, monotonic clock is supported
 998     _clock_gettime = ::clock_gettime;
 999   }
1000 }
1001 #endif
1002 
1003 
1004 
1005 #ifdef __APPLE__
1006 
1007 jlong os::javaTimeNanos() {
1008   const uint64_t tm = mach_absolute_time();
1009   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1010   const uint64_t prev = Bsd::_max_abstime;
1011   if (now <= prev) {
1012     return prev;   // same or retrograde time;
1013   }
1014   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1015   assert(obsv >= prev, "invariant");   // Monotonicity
1016   // If the CAS succeeded then we're done and return "now".
1017   // If the CAS failed and the observed value "obsv" is >= now then
1018   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1019   // some other thread raced this thread and installed a new value, in which case
1020   // we could either (a) retry the entire operation, (b) retry trying to install now
1021   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1022   // we might discard a higher "now" value in deference to a slightly lower but freshly
1023   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1024   // to (a) or (b) -- and greatly reduces coherence traffic.
1025   // We might also condition (c) on the magnitude of the delta between obsv and now.
1026   // Avoiding excessive CAS operations to hot RW locations is critical.
1027   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1028   return (prev == obsv) ? now : obsv;
1029 }
1030 
1031 #else // __APPLE__
1032 
1033 jlong os::javaTimeNanos() {
1034   if (os::supports_monotonic_clock()) {
1035     struct timespec tp;
1036     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1037     assert(status == 0, "gettime error");
1038     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1039     return result;
1040   } else {
1041     timeval time;
1042     int status = gettimeofday(&time, NULL);
1043     assert(status != -1, "bsd error");
1044     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1045     return 1000 * usecs;
1046   }
1047 }
1048 
1049 #endif // __APPLE__
1050 
1051 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1052   if (os::supports_monotonic_clock()) {
1053     info_ptr->max_value = ALL_64_BITS;
1054 
1055     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1056     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1057     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1058   } else {
1059     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1060     info_ptr->max_value = ALL_64_BITS;
1061 
1062     // gettimeofday is a real time clock so it skips
1063     info_ptr->may_skip_backward = true;
1064     info_ptr->may_skip_forward = true;
1065   }
1066 
1067   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1068 }
1069 
1070 // Return the real, user, and system times in seconds from an
1071 // arbitrary fixed point in the past.
1072 bool os::getTimesSecs(double* process_real_time,
1073                       double* process_user_time,
1074                       double* process_system_time) {
1075   struct tms ticks;
1076   clock_t real_ticks = times(&ticks);
1077 
1078   if (real_ticks == (clock_t) (-1)) {
1079     return false;
1080   } else {
1081     double ticks_per_second = (double) clock_tics_per_sec;
1082     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1083     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1084     *process_real_time = ((double) real_ticks) / ticks_per_second;
1085 
1086     return true;
1087   }
1088 }
1089 
1090 
1091 char * os::local_time_string(char *buf, size_t buflen) {
1092   struct tm t;
1093   time_t long_time;
1094   time(&long_time);
1095   localtime_r(&long_time, &t);
1096   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1097                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1098                t.tm_hour, t.tm_min, t.tm_sec);
1099   return buf;
1100 }
1101 
1102 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1103   return localtime_r(clock, res);
1104 }
1105 
1106 ////////////////////////////////////////////////////////////////////////////////
1107 // runtime exit support
1108 
1109 // Note: os::shutdown() might be called very early during initialization, or
1110 // called from signal handler. Before adding something to os::shutdown(), make
1111 // sure it is async-safe and can handle partially initialized VM.
1112 void os::shutdown() {
1113 
1114   // allow PerfMemory to attempt cleanup of any persistent resources
1115   perfMemory_exit();
1116 
1117   // needs to remove object in file system
1118   AttachListener::abort();
1119 
1120   // flush buffered output, finish log files
1121   ostream_abort();
1122 
1123   // Check for abort hook
1124   abort_hook_t abort_hook = Arguments::abort_hook();
1125   if (abort_hook != NULL) {
1126     abort_hook();
1127   }
1128 
1129 }
1130 
1131 // Note: os::abort() might be called very early during initialization, or
1132 // called from signal handler. Before adding something to os::abort(), make
1133 // sure it is async-safe and can handle partially initialized VM.
1134 void os::abort(bool dump_core) {
1135   abort(dump_core, NULL, NULL);
1136 }
1137 
1138 void os::abort(bool dump_core, void* siginfo, void* context) {
1139   os::shutdown();
1140   if (dump_core) {
1141 #ifndef PRODUCT
1142     fdStream out(defaultStream::output_fd());
1143     out.print_raw("Current thread is ");
1144     char buf[16];
1145     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1146     out.print_raw_cr(buf);
1147     out.print_raw_cr("Dumping core ...");
1148 #endif
1149     ::abort(); // dump core
1150   }
1151 
1152   ::exit(1);
1153 }
1154 
1155 // Die immediately, no exit hook, no abort hook, no cleanup.
1156 void os::die() {
1157   // _exit() on BsdThreads only kills current thread
1158   ::abort();
1159 }
1160 
1161 // This method is a copy of JDK's sysGetLastErrorString
1162 // from src/solaris/hpi/src/system_md.c
1163 
1164 size_t os::lasterror(char *buf, size_t len) {
1165   if (errno == 0)  return 0;
1166 
1167   const char *s = ::strerror(errno);
1168   size_t n = ::strlen(s);
1169   if (n >= len) {
1170     n = len - 1;
1171   }
1172   ::strncpy(buf, s, n);
1173   buf[n] = '\0';
1174   return n;
1175 }
1176 
1177 // Information of current thread in variety of formats
1178 pid_t os::Bsd::gettid() {
1179   int retval = -1;
1180 
1181 #ifdef __APPLE__ //XNU kernel
1182   // despite the fact mach port is actually not a thread id use it
1183   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1184   retval = ::pthread_mach_thread_np(::pthread_self());
1185   guarantee(retval != 0, "just checking");
1186   return retval;
1187 
1188 #else
1189   #ifdef __FreeBSD__
1190   retval = syscall(SYS_thr_self);
1191   #else
1192     #ifdef __OpenBSD__
1193   retval = syscall(SYS_getthrid);
1194     #else
1195       #ifdef __NetBSD__
1196   retval = (pid_t) syscall(SYS__lwp_self);
1197       #endif
1198     #endif
1199   #endif
1200 #endif
1201 
1202   if (retval == -1) {
1203     return getpid();
1204   }
1205 }
1206 
1207 intx os::current_thread_id() {
1208 #ifdef __APPLE__
1209   return (intx)::pthread_mach_thread_np(::pthread_self());
1210 #else
1211   return (intx)::pthread_self();
1212 #endif
1213 }
1214 
1215 int os::current_process_id() {
1216 
1217   // Under the old bsd thread library, bsd gives each thread
1218   // its own process id. Because of this each thread will return
1219   // a different pid if this method were to return the result
1220   // of getpid(2). Bsd provides no api that returns the pid
1221   // of the launcher thread for the vm. This implementation
1222   // returns a unique pid, the pid of the launcher thread
1223   // that starts the vm 'process'.
1224 
1225   // Under the NPTL, getpid() returns the same pid as the
1226   // launcher thread rather than a unique pid per thread.
1227   // Use gettid() if you want the old pre NPTL behaviour.
1228 
1229   // if you are looking for the result of a call to getpid() that
1230   // returns a unique pid for the calling thread, then look at the
1231   // OSThread::thread_id() method in osThread_bsd.hpp file
1232 
1233   return (int)(_initial_pid ? _initial_pid : getpid());
1234 }
1235 
1236 // DLL functions
1237 
1238 #define JNI_LIB_PREFIX "lib"
1239 #ifdef __APPLE__
1240   #define JNI_LIB_SUFFIX ".dylib"
1241 #else
1242   #define JNI_LIB_SUFFIX ".so"
1243 #endif
1244 
1245 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1246 
1247 // This must be hard coded because it's the system's temporary
1248 // directory not the java application's temp directory, ala java.io.tmpdir.
1249 #ifdef __APPLE__
1250 // macosx has a secure per-user temporary directory
1251 char temp_path_storage[PATH_MAX];
1252 const char* os::get_temp_directory() {
1253   static char *temp_path = NULL;
1254   if (temp_path == NULL) {
1255     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1256     if (pathSize == 0 || pathSize > PATH_MAX) {
1257       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1258     }
1259     temp_path = temp_path_storage;
1260   }
1261   return temp_path;
1262 }
1263 #else // __APPLE__
1264 const char* os::get_temp_directory() { return "/tmp"; }
1265 #endif // __APPLE__
1266 
1267 static bool file_exists(const char* filename) {
1268   struct stat statbuf;
1269   if (filename == NULL || strlen(filename) == 0) {
1270     return false;
1271   }
1272   return os::stat(filename, &statbuf) == 0;
1273 }
1274 
1275 bool os::dll_build_name(char* buffer, size_t buflen,
1276                         const char* pname, const char* fname) {
1277   bool retval = false;
1278   // Copied from libhpi
1279   const size_t pnamelen = pname ? strlen(pname) : 0;
1280 
1281   // Return error on buffer overflow.
1282   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1283     return retval;
1284   }
1285 
1286   if (pnamelen == 0) {
1287     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1288     retval = true;
1289   } else if (strchr(pname, *os::path_separator()) != NULL) {
1290     int n;
1291     char** pelements = split_path(pname, &n);
1292     if (pelements == NULL) {
1293       return false;
1294     }
1295     for (int i = 0; i < n; i++) {
1296       // Really shouldn't be NULL, but check can't hurt
1297       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1298         continue; // skip the empty path values
1299       }
1300       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1301                pelements[i], fname);
1302       if (file_exists(buffer)) {
1303         retval = true;
1304         break;
1305       }
1306     }
1307     // release the storage
1308     for (int i = 0; i < n; i++) {
1309       if (pelements[i] != NULL) {
1310         FREE_C_HEAP_ARRAY(char, pelements[i]);
1311       }
1312     }
1313     if (pelements != NULL) {
1314       FREE_C_HEAP_ARRAY(char*, pelements);
1315     }
1316   } else {
1317     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1318     retval = true;
1319   }
1320   return retval;
1321 }
1322 
1323 // check if addr is inside libjvm.so
1324 bool os::address_is_in_vm(address addr) {
1325   static address libjvm_base_addr;
1326   Dl_info dlinfo;
1327 
1328   if (libjvm_base_addr == NULL) {
1329     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1330       libjvm_base_addr = (address)dlinfo.dli_fbase;
1331     }
1332     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1333   }
1334 
1335   if (dladdr((void *)addr, &dlinfo) != 0) {
1336     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1337   }
1338 
1339   return false;
1340 }
1341 
1342 
1343 #define MACH_MAXSYMLEN 256
1344 
1345 bool os::dll_address_to_function_name(address addr, char *buf,
1346                                       int buflen, int *offset) {
1347   // buf is not optional, but offset is optional
1348   assert(buf != NULL, "sanity check");
1349 
1350   Dl_info dlinfo;
1351   char localbuf[MACH_MAXSYMLEN];
1352 
1353   if (dladdr((void*)addr, &dlinfo) != 0) {
1354     // see if we have a matching symbol
1355     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1356       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1357         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1358       }
1359       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1360       return true;
1361     }
1362     // no matching symbol so try for just file info
1363     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1364       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1365                           buf, buflen, offset, dlinfo.dli_fname)) {
1366         return true;
1367       }
1368     }
1369 
1370     // Handle non-dynamic manually:
1371     if (dlinfo.dli_fbase != NULL &&
1372         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1373       if (!Decoder::demangle(localbuf, buf, buflen)) {
1374         jio_snprintf(buf, buflen, "%s", localbuf);
1375       }
1376       return true;
1377     }
1378   }
1379   buf[0] = '\0';
1380   if (offset != NULL) *offset = -1;
1381   return false;
1382 }
1383 
1384 // ported from solaris version
1385 bool os::dll_address_to_library_name(address addr, char* buf,
1386                                      int buflen, int* offset) {
1387   // buf is not optional, but offset is optional
1388   assert(buf != NULL, "sanity check");
1389 
1390   Dl_info dlinfo;
1391 
1392   if (dladdr((void*)addr, &dlinfo) != 0) {
1393     if (dlinfo.dli_fname != NULL) {
1394       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1395     }
1396     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1397       *offset = addr - (address)dlinfo.dli_fbase;
1398     }
1399     return true;
1400   }
1401 
1402   buf[0] = '\0';
1403   if (offset) *offset = -1;
1404   return false;
1405 }
1406 
1407 // Loads .dll/.so and
1408 // in case of error it checks if .dll/.so was built for the
1409 // same architecture as Hotspot is running on
1410 
1411 #ifdef __APPLE__
1412 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1413   void * result= ::dlopen(filename, RTLD_LAZY);
1414   if (result != NULL) {
1415     // Successful loading
1416     return result;
1417   }
1418 
1419   // Read system error message into ebuf
1420   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1421   ebuf[ebuflen-1]='\0';
1422 
1423   return NULL;
1424 }
1425 #else
1426 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1427   void * result= ::dlopen(filename, RTLD_LAZY);
1428   if (result != NULL) {
1429     // Successful loading
1430     return result;
1431   }
1432 
1433   Elf32_Ehdr elf_head;
1434 
1435   // Read system error message into ebuf
1436   // It may or may not be overwritten below
1437   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1438   ebuf[ebuflen-1]='\0';
1439   int diag_msg_max_length=ebuflen-strlen(ebuf);
1440   char* diag_msg_buf=ebuf+strlen(ebuf);
1441 
1442   if (diag_msg_max_length==0) {
1443     // No more space in ebuf for additional diagnostics message
1444     return NULL;
1445   }
1446 
1447 
1448   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1449 
1450   if (file_descriptor < 0) {
1451     // Can't open library, report dlerror() message
1452     return NULL;
1453   }
1454 
1455   bool failed_to_read_elf_head=
1456     (sizeof(elf_head)!=
1457      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1458 
1459   ::close(file_descriptor);
1460   if (failed_to_read_elf_head) {
1461     // file i/o error - report dlerror() msg
1462     return NULL;
1463   }
1464 
1465   typedef struct {
1466     Elf32_Half  code;         // Actual value as defined in elf.h
1467     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1468     char        elf_class;    // 32 or 64 bit
1469     char        endianess;    // MSB or LSB
1470     char*       name;         // String representation
1471   } arch_t;
1472 
1473   #ifndef EM_486
1474     #define EM_486          6               /* Intel 80486 */
1475   #endif
1476 
1477   #ifndef EM_MIPS_RS3_LE
1478     #define EM_MIPS_RS3_LE  10              /* MIPS */
1479   #endif
1480 
1481   #ifndef EM_PPC64
1482     #define EM_PPC64        21              /* PowerPC64 */
1483   #endif
1484 
1485   #ifndef EM_S390
1486     #define EM_S390         22              /* IBM System/390 */
1487   #endif
1488 
1489   #ifndef EM_IA_64
1490     #define EM_IA_64        50              /* HP/Intel IA-64 */
1491   #endif
1492 
1493   #ifndef EM_X86_64
1494     #define EM_X86_64       62              /* AMD x86-64 */
1495   #endif
1496 
1497   static const arch_t arch_array[]={
1498     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1499     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1500     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1501     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1502     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1503     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1504     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1505     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1506     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1507     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1508     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1509     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1510     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1511     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1512     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1513     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1514   };
1515 
1516   #if  (defined IA32)
1517   static  Elf32_Half running_arch_code=EM_386;
1518   #elif   (defined AMD64)
1519   static  Elf32_Half running_arch_code=EM_X86_64;
1520   #elif  (defined IA64)
1521   static  Elf32_Half running_arch_code=EM_IA_64;
1522   #elif  (defined __sparc) && (defined _LP64)
1523   static  Elf32_Half running_arch_code=EM_SPARCV9;
1524   #elif  (defined __sparc) && (!defined _LP64)
1525   static  Elf32_Half running_arch_code=EM_SPARC;
1526   #elif  (defined __powerpc64__)
1527   static  Elf32_Half running_arch_code=EM_PPC64;
1528   #elif  (defined __powerpc__)
1529   static  Elf32_Half running_arch_code=EM_PPC;
1530   #elif  (defined ARM)
1531   static  Elf32_Half running_arch_code=EM_ARM;
1532   #elif  (defined S390)
1533   static  Elf32_Half running_arch_code=EM_S390;
1534   #elif  (defined ALPHA)
1535   static  Elf32_Half running_arch_code=EM_ALPHA;
1536   #elif  (defined MIPSEL)
1537   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1538   #elif  (defined PARISC)
1539   static  Elf32_Half running_arch_code=EM_PARISC;
1540   #elif  (defined MIPS)
1541   static  Elf32_Half running_arch_code=EM_MIPS;
1542   #elif  (defined M68K)
1543   static  Elf32_Half running_arch_code=EM_68K;
1544   #else
1545     #error Method os::dll_load requires that one of following is defined:\
1546          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1547   #endif
1548 
1549   // Identify compatability class for VM's architecture and library's architecture
1550   // Obtain string descriptions for architectures
1551 
1552   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1553   int running_arch_index=-1;
1554 
1555   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1556     if (running_arch_code == arch_array[i].code) {
1557       running_arch_index    = i;
1558     }
1559     if (lib_arch.code == arch_array[i].code) {
1560       lib_arch.compat_class = arch_array[i].compat_class;
1561       lib_arch.name         = arch_array[i].name;
1562     }
1563   }
1564 
1565   assert(running_arch_index != -1,
1566          "Didn't find running architecture code (running_arch_code) in arch_array");
1567   if (running_arch_index == -1) {
1568     // Even though running architecture detection failed
1569     // we may still continue with reporting dlerror() message
1570     return NULL;
1571   }
1572 
1573   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1574     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1575     return NULL;
1576   }
1577 
1578 #ifndef S390
1579   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1580     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1581     return NULL;
1582   }
1583 #endif // !S390
1584 
1585   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1586     if (lib_arch.name!=NULL) {
1587       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1588                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1589                  lib_arch.name, arch_array[running_arch_index].name);
1590     } else {
1591       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1592                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1593                  lib_arch.code,
1594                  arch_array[running_arch_index].name);
1595     }
1596   }
1597 
1598   return NULL;
1599 }
1600 #endif // !__APPLE__
1601 
1602 void* os::get_default_process_handle() {
1603 #ifdef __APPLE__
1604   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1605   // to avoid finding unexpected symbols on second (or later)
1606   // loads of a library.
1607   return (void*)::dlopen(NULL, RTLD_FIRST);
1608 #else
1609   return (void*)::dlopen(NULL, RTLD_LAZY);
1610 #endif
1611 }
1612 
1613 // XXX: Do we need a lock around this as per Linux?
1614 void* os::dll_lookup(void* handle, const char* name) {
1615   return dlsym(handle, name);
1616 }
1617 
1618 
1619 static bool _print_ascii_file(const char* filename, outputStream* st) {
1620   int fd = ::open(filename, O_RDONLY);
1621   if (fd == -1) {
1622     return false;
1623   }
1624 
1625   char buf[32];
1626   int bytes;
1627   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1628     st->print_raw(buf, bytes);
1629   }
1630 
1631   ::close(fd);
1632 
1633   return true;
1634 }
1635 
1636 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1637   outputStream * out = (outputStream *) param;
1638   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1639   return 0;
1640 }
1641 
1642 void os::print_dll_info(outputStream *st) {
1643   st->print_cr("Dynamic libraries:");
1644   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1645     st->print_cr("Error: Cannot print dynamic libraries.");
1646   }
1647 }
1648 
1649 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1650 #ifdef RTLD_DI_LINKMAP
1651   Dl_info dli;
1652   void *handle;
1653   Link_map *map;
1654   Link_map *p;
1655 
1656   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1657       dli.dli_fname == NULL) {
1658     return 1;
1659   }
1660   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1661   if (handle == NULL) {
1662     return 1;
1663   }
1664   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1665   if (map == NULL) {
1666     dlclose(handle);
1667     return 1;
1668   }
1669 
1670   while (map->l_prev != NULL)
1671     map = map->l_prev;
1672 
1673   while (map != NULL) {
1674     // Value for top_address is returned as 0 since we don't have any information about module size
1675     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1676       dlclose(handle);
1677       return 1;
1678     }
1679     map = map->l_next;
1680   }
1681 
1682   dlclose(handle);
1683 #elif defined(__APPLE__)
1684   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1685     // Value for top_address is returned as 0 since we don't have any information about module size
1686     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1687       return 1;
1688     }
1689   }
1690   return 0;
1691 #else
1692   return 1;
1693 #endif
1694 }
1695 
1696 void os::print_os_info_brief(outputStream* st) {
1697   st->print("Bsd");
1698 
1699   os::Posix::print_uname_info(st);
1700 }
1701 
1702 void os::print_os_info(outputStream* st) {
1703   st->print("OS:");
1704   st->print("Bsd");
1705 
1706   os::Posix::print_uname_info(st);
1707 
1708   os::Posix::print_rlimit_info(st);
1709 
1710   os::Posix::print_load_average(st);
1711 }
1712 
1713 void os::pd_print_cpu_info(outputStream* st) {
1714   // Nothing to do for now.
1715 }
1716 
1717 void os::print_memory_info(outputStream* st) {
1718 
1719   st->print("Memory:");
1720   st->print(" %dk page", os::vm_page_size()>>10);
1721 
1722   st->print(", physical " UINT64_FORMAT "k",
1723             os::physical_memory() >> 10);
1724   st->print("(" UINT64_FORMAT "k free)",
1725             os::available_memory() >> 10);
1726   st->cr();
1727 
1728   // meminfo
1729   st->print("\n/proc/meminfo:\n");
1730   _print_ascii_file("/proc/meminfo", st);
1731   st->cr();
1732 }
1733 
1734 void os::print_siginfo(outputStream* st, void* siginfo) {
1735   const siginfo_t* si = (const siginfo_t*)siginfo;
1736 
1737   os::Posix::print_siginfo_brief(st, si);
1738 
1739   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1740       UseSharedSpaces) {
1741     FileMapInfo* mapinfo = FileMapInfo::current_info();
1742     if (mapinfo->is_in_shared_space(si->si_addr)) {
1743       st->print("\n\nError accessing class data sharing archive."   \
1744                 " Mapped file inaccessible during execution, "      \
1745                 " possible disk/network problem.");
1746     }
1747   }
1748   st->cr();
1749 }
1750 
1751 
1752 static void print_signal_handler(outputStream* st, int sig,
1753                                  char* buf, size_t buflen);
1754 
1755 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1756   st->print_cr("Signal Handlers:");
1757   print_signal_handler(st, SIGSEGV, buf, buflen);
1758   print_signal_handler(st, SIGBUS , buf, buflen);
1759   print_signal_handler(st, SIGFPE , buf, buflen);
1760   print_signal_handler(st, SIGPIPE, buf, buflen);
1761   print_signal_handler(st, SIGXFSZ, buf, buflen);
1762   print_signal_handler(st, SIGILL , buf, buflen);
1763   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1764   print_signal_handler(st, SR_signum, buf, buflen);
1765   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1766   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1767   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1768   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1769 }
1770 
1771 static char saved_jvm_path[MAXPATHLEN] = {0};
1772 
1773 // Find the full path to the current module, libjvm
1774 void os::jvm_path(char *buf, jint buflen) {
1775   // Error checking.
1776   if (buflen < MAXPATHLEN) {
1777     assert(false, "must use a large-enough buffer");
1778     buf[0] = '\0';
1779     return;
1780   }
1781   // Lazy resolve the path to current module.
1782   if (saved_jvm_path[0] != 0) {
1783     strcpy(buf, saved_jvm_path);
1784     return;
1785   }
1786 
1787   char dli_fname[MAXPATHLEN];
1788   bool ret = dll_address_to_library_name(
1789                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1790                                          dli_fname, sizeof(dli_fname), NULL);
1791   assert(ret, "cannot locate libjvm");
1792   char *rp = NULL;
1793   if (ret && dli_fname[0] != '\0') {
1794     rp = realpath(dli_fname, buf);
1795   }
1796   if (rp == NULL) {
1797     return;
1798   }
1799 
1800   if (Arguments::sun_java_launcher_is_altjvm()) {
1801     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1802     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1803     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1804     // appears at the right place in the string, then assume we are
1805     // installed in a JDK and we're done. Otherwise, check for a
1806     // JAVA_HOME environment variable and construct a path to the JVM
1807     // being overridden.
1808 
1809     const char *p = buf + strlen(buf) - 1;
1810     for (int count = 0; p > buf && count < 5; ++count) {
1811       for (--p; p > buf && *p != '/'; --p)
1812         /* empty */ ;
1813     }
1814 
1815     if (strncmp(p, "/jre/lib/", 9) != 0) {
1816       // Look for JAVA_HOME in the environment.
1817       char* java_home_var = ::getenv("JAVA_HOME");
1818       if (java_home_var != NULL && java_home_var[0] != 0) {
1819         char* jrelib_p;
1820         int len;
1821 
1822         // Check the current module name "libjvm"
1823         p = strrchr(buf, '/');
1824         assert(strstr(p, "/libjvm") == p, "invalid library name");
1825 
1826         rp = realpath(java_home_var, buf);
1827         if (rp == NULL) {
1828           return;
1829         }
1830 
1831         // determine if this is a legacy image or modules image
1832         // modules image doesn't have "jre" subdirectory
1833         len = strlen(buf);
1834         assert(len < buflen, "Ran out of buffer space");
1835         jrelib_p = buf + len;
1836 
1837         // Add the appropriate library subdir
1838         snprintf(jrelib_p, buflen-len, "/jre/lib");
1839         if (0 != access(buf, F_OK)) {
1840           snprintf(jrelib_p, buflen-len, "/lib");
1841         }
1842 
1843         // Add the appropriate client or server subdir
1844         len = strlen(buf);
1845         jrelib_p = buf + len;
1846         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1847         if (0 != access(buf, F_OK)) {
1848           snprintf(jrelib_p, buflen-len, "%s", "");
1849         }
1850 
1851         // If the path exists within JAVA_HOME, add the JVM library name
1852         // to complete the path to JVM being overridden.  Otherwise fallback
1853         // to the path to the current library.
1854         if (0 == access(buf, F_OK)) {
1855           // Use current module name "libjvm"
1856           len = strlen(buf);
1857           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1858         } else {
1859           // Fall back to path of current library
1860           rp = realpath(dli_fname, buf);
1861           if (rp == NULL) {
1862             return;
1863           }
1864         }
1865       }
1866     }
1867   }
1868 
1869   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1870   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1871 }
1872 
1873 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1874   // no prefix required, not even "_"
1875 }
1876 
1877 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1878   // no suffix required
1879 }
1880 
1881 ////////////////////////////////////////////////////////////////////////////////
1882 // sun.misc.Signal support
1883 
1884 static volatile jint sigint_count = 0;
1885 
1886 static void UserHandler(int sig, void *siginfo, void *context) {
1887   // 4511530 - sem_post is serialized and handled by the manager thread. When
1888   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1889   // don't want to flood the manager thread with sem_post requests.
1890   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1891     return;
1892   }
1893 
1894   // Ctrl-C is pressed during error reporting, likely because the error
1895   // handler fails to abort. Let VM die immediately.
1896   if (sig == SIGINT && is_error_reported()) {
1897     os::die();
1898   }
1899 
1900   os::signal_notify(sig);
1901 }
1902 
1903 void* os::user_handler() {
1904   return CAST_FROM_FN_PTR(void*, UserHandler);
1905 }
1906 
1907 extern "C" {
1908   typedef void (*sa_handler_t)(int);
1909   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1910 }
1911 
1912 void* os::signal(int signal_number, void* handler) {
1913   struct sigaction sigAct, oldSigAct;
1914 
1915   sigfillset(&(sigAct.sa_mask));
1916   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1917   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1918 
1919   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1920     // -1 means registration failed
1921     return (void *)-1;
1922   }
1923 
1924   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1925 }
1926 
1927 void os::signal_raise(int signal_number) {
1928   ::raise(signal_number);
1929 }
1930 
1931 // The following code is moved from os.cpp for making this
1932 // code platform specific, which it is by its very nature.
1933 
1934 // Will be modified when max signal is changed to be dynamic
1935 int os::sigexitnum_pd() {
1936   return NSIG;
1937 }
1938 
1939 // a counter for each possible signal value
1940 static volatile jint pending_signals[NSIG+1] = { 0 };
1941 
1942 // Bsd(POSIX) specific hand shaking semaphore.
1943 #ifdef __APPLE__
1944 typedef semaphore_t os_semaphore_t;
1945 
1946   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1947   #define SEM_WAIT(sem)           semaphore_wait(sem)
1948   #define SEM_POST(sem)           semaphore_signal(sem)
1949   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1950 #else
1951 typedef sem_t os_semaphore_t;
1952 
1953   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1954   #define SEM_WAIT(sem)           sem_wait(&sem)
1955   #define SEM_POST(sem)           sem_post(&sem)
1956   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1957 #endif
1958 
1959 class Semaphore : public StackObj {
1960  public:
1961   Semaphore();
1962   ~Semaphore();
1963   void signal();
1964   void wait();
1965   bool trywait();
1966   bool timedwait(unsigned int sec, int nsec);
1967  private:
1968   jlong currenttime() const;
1969   os_semaphore_t _semaphore;
1970 };
1971 
1972 Semaphore::Semaphore() : _semaphore(0) {
1973   SEM_INIT(_semaphore, 0);
1974 }
1975 
1976 Semaphore::~Semaphore() {
1977   SEM_DESTROY(_semaphore);
1978 }
1979 
1980 void Semaphore::signal() {
1981   SEM_POST(_semaphore);
1982 }
1983 
1984 void Semaphore::wait() {
1985   SEM_WAIT(_semaphore);
1986 }
1987 
1988 jlong Semaphore::currenttime() const {
1989   struct timeval tv;
1990   gettimeofday(&tv, NULL);
1991   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1992 }
1993 
1994 #ifdef __APPLE__
1995 bool Semaphore::trywait() {
1996   return timedwait(0, 0);
1997 }
1998 
1999 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2000   kern_return_t kr = KERN_ABORTED;
2001   mach_timespec_t waitspec;
2002   waitspec.tv_sec = sec;
2003   waitspec.tv_nsec = nsec;
2004 
2005   jlong starttime = currenttime();
2006 
2007   kr = semaphore_timedwait(_semaphore, waitspec);
2008   while (kr == KERN_ABORTED) {
2009     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2010 
2011     jlong current = currenttime();
2012     jlong passedtime = current - starttime;
2013 
2014     if (passedtime >= totalwait) {
2015       waitspec.tv_sec = 0;
2016       waitspec.tv_nsec = 0;
2017     } else {
2018       jlong waittime = totalwait - (current - starttime);
2019       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2020       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2021     }
2022 
2023     kr = semaphore_timedwait(_semaphore, waitspec);
2024   }
2025 
2026   return kr == KERN_SUCCESS;
2027 }
2028 
2029 #else
2030 
2031 bool Semaphore::trywait() {
2032   return sem_trywait(&_semaphore) == 0;
2033 }
2034 
2035 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2036   struct timespec ts;
2037   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2038 
2039   while (1) {
2040     int result = sem_timedwait(&_semaphore, &ts);
2041     if (result == 0) {
2042       return true;
2043     } else if (errno == EINTR) {
2044       continue;
2045     } else if (errno == ETIMEDOUT) {
2046       return false;
2047     } else {
2048       return false;
2049     }
2050   }
2051 }
2052 
2053 #endif // __APPLE__
2054 
2055 static os_semaphore_t sig_sem;
2056 static Semaphore sr_semaphore;
2057 
2058 void os::signal_init_pd() {
2059   // Initialize signal structures
2060   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2061 
2062   // Initialize signal semaphore
2063   ::SEM_INIT(sig_sem, 0);
2064 }
2065 
2066 void os::signal_notify(int sig) {
2067   Atomic::inc(&pending_signals[sig]);
2068   ::SEM_POST(sig_sem);
2069 }
2070 
2071 static int check_pending_signals(bool wait) {
2072   Atomic::store(0, &sigint_count);
2073   for (;;) {
2074     for (int i = 0; i < NSIG + 1; i++) {
2075       jint n = pending_signals[i];
2076       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2077         return i;
2078       }
2079     }
2080     if (!wait) {
2081       return -1;
2082     }
2083     JavaThread *thread = JavaThread::current();
2084     ThreadBlockInVM tbivm(thread);
2085 
2086     bool threadIsSuspended;
2087     do {
2088       thread->set_suspend_equivalent();
2089       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2090       ::SEM_WAIT(sig_sem);
2091 
2092       // were we externally suspended while we were waiting?
2093       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2094       if (threadIsSuspended) {
2095         // The semaphore has been incremented, but while we were waiting
2096         // another thread suspended us. We don't want to continue running
2097         // while suspended because that would surprise the thread that
2098         // suspended us.
2099         ::SEM_POST(sig_sem);
2100 
2101         thread->java_suspend_self();
2102       }
2103     } while (threadIsSuspended);
2104   }
2105 }
2106 
2107 int os::signal_lookup() {
2108   return check_pending_signals(false);
2109 }
2110 
2111 int os::signal_wait() {
2112   return check_pending_signals(true);
2113 }
2114 
2115 ////////////////////////////////////////////////////////////////////////////////
2116 // Virtual Memory
2117 
2118 int os::vm_page_size() {
2119   // Seems redundant as all get out
2120   assert(os::Bsd::page_size() != -1, "must call os::init");
2121   return os::Bsd::page_size();
2122 }
2123 
2124 // Solaris allocates memory by pages.
2125 int os::vm_allocation_granularity() {
2126   assert(os::Bsd::page_size() != -1, "must call os::init");
2127   return os::Bsd::page_size();
2128 }
2129 
2130 // Rationale behind this function:
2131 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2132 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2133 //  samples for JITted code. Here we create private executable mapping over the code cache
2134 //  and then we can use standard (well, almost, as mapping can change) way to provide
2135 //  info for the reporting script by storing timestamp and location of symbol
2136 void bsd_wrap_code(char* base, size_t size) {
2137   static volatile jint cnt = 0;
2138 
2139   if (!UseOprofile) {
2140     return;
2141   }
2142 
2143   char buf[PATH_MAX + 1];
2144   int num = Atomic::add(1, &cnt);
2145 
2146   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2147            os::get_temp_directory(), os::current_process_id(), num);
2148   unlink(buf);
2149 
2150   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2151 
2152   if (fd != -1) {
2153     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2154     if (rv != (off_t)-1) {
2155       if (::write(fd, "", 1) == 1) {
2156         mmap(base, size,
2157              PROT_READ|PROT_WRITE|PROT_EXEC,
2158              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2159       }
2160     }
2161     ::close(fd);
2162     unlink(buf);
2163   }
2164 }
2165 
2166 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2167                                     int err) {
2168   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2169           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2170           strerror(err), err);
2171 }
2172 
2173 // NOTE: Bsd kernel does not really reserve the pages for us.
2174 //       All it does is to check if there are enough free pages
2175 //       left at the time of mmap(). This could be a potential
2176 //       problem.
2177 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2178   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2179 #ifdef __OpenBSD__
2180   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2181   if (::mprotect(addr, size, prot) == 0) {
2182     return true;
2183   }
2184 #else
2185   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2186                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2187   if (res != (uintptr_t) MAP_FAILED) {
2188     return true;
2189   }
2190 #endif
2191 
2192   // Warn about any commit errors we see in non-product builds just
2193   // in case mmap() doesn't work as described on the man page.
2194   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2195 
2196   return false;
2197 }
2198 
2199 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2200                           bool exec) {
2201   // alignment_hint is ignored on this OS
2202   return pd_commit_memory(addr, size, exec);
2203 }
2204 
2205 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2206                                   const char* mesg) {
2207   assert(mesg != NULL, "mesg must be specified");
2208   if (!pd_commit_memory(addr, size, exec)) {
2209     // add extra info in product mode for vm_exit_out_of_memory():
2210     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2211     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2212   }
2213 }
2214 
2215 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2216                                   size_t alignment_hint, bool exec,
2217                                   const char* mesg) {
2218   // alignment_hint is ignored on this OS
2219   pd_commit_memory_or_exit(addr, size, exec, mesg);
2220 }
2221 
2222 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2223 }
2224 
2225 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2226   ::madvise(addr, bytes, MADV_DONTNEED);
2227 }
2228 
2229 void os::numa_make_global(char *addr, size_t bytes) {
2230 }
2231 
2232 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2233 }
2234 
2235 bool os::numa_topology_changed()   { return false; }
2236 
2237 size_t os::numa_get_groups_num() {
2238   return 1;
2239 }
2240 
2241 int os::numa_get_group_id() {
2242   return 0;
2243 }
2244 
2245 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2246   if (size > 0) {
2247     ids[0] = 0;
2248     return 1;
2249   }
2250   return 0;
2251 }
2252 
2253 bool os::get_page_info(char *start, page_info* info) {
2254   return false;
2255 }
2256 
2257 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2258   return end;
2259 }
2260 
2261 
2262 bool os::pd_uncommit_memory(char* addr, size_t size) {
2263 #ifdef __OpenBSD__
2264   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2265   return ::mprotect(addr, size, PROT_NONE) == 0;
2266 #else
2267   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2268                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2269   return res  != (uintptr_t) MAP_FAILED;
2270 #endif
2271 }
2272 
2273 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2274   return os::commit_memory(addr, size, !ExecMem);
2275 }
2276 
2277 // If this is a growable mapping, remove the guard pages entirely by
2278 // munmap()ping them.  If not, just call uncommit_memory().
2279 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2280   return os::uncommit_memory(addr, size);
2281 }
2282 
2283 static address _highest_vm_reserved_address = NULL;
2284 
2285 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2286 // at 'requested_addr'. If there are existing memory mappings at the same
2287 // location, however, they will be overwritten. If 'fixed' is false,
2288 // 'requested_addr' is only treated as a hint, the return value may or
2289 // may not start from the requested address. Unlike Bsd mmap(), this
2290 // function returns NULL to indicate failure.
2291 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2292   char * addr;
2293   int flags;
2294 
2295   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2296   if (fixed) {
2297     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2298     flags |= MAP_FIXED;
2299   }
2300 
2301   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2302   // touch an uncommitted page. Otherwise, the read/write might
2303   // succeed if we have enough swap space to back the physical page.
2304   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2305                        flags, -1, 0);
2306 
2307   if (addr != MAP_FAILED) {
2308     // anon_mmap() should only get called during VM initialization,
2309     // don't need lock (actually we can skip locking even it can be called
2310     // from multiple threads, because _highest_vm_reserved_address is just a
2311     // hint about the upper limit of non-stack memory regions.)
2312     if ((address)addr + bytes > _highest_vm_reserved_address) {
2313       _highest_vm_reserved_address = (address)addr + bytes;
2314     }
2315   }
2316 
2317   return addr == MAP_FAILED ? NULL : addr;
2318 }
2319 
2320 // Don't update _highest_vm_reserved_address, because there might be memory
2321 // regions above addr + size. If so, releasing a memory region only creates
2322 // a hole in the address space, it doesn't help prevent heap-stack collision.
2323 //
2324 static int anon_munmap(char * addr, size_t size) {
2325   return ::munmap(addr, size) == 0;
2326 }
2327 
2328 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2329                             size_t alignment_hint) {
2330   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2331 }
2332 
2333 bool os::pd_release_memory(char* addr, size_t size) {
2334   return anon_munmap(addr, size);
2335 }
2336 
2337 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2338   // Bsd wants the mprotect address argument to be page aligned.
2339   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2340 
2341   // According to SUSv3, mprotect() should only be used with mappings
2342   // established by mmap(), and mmap() always maps whole pages. Unaligned
2343   // 'addr' likely indicates problem in the VM (e.g. trying to change
2344   // protection of malloc'ed or statically allocated memory). Check the
2345   // caller if you hit this assert.
2346   assert(addr == bottom, "sanity check");
2347 
2348   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2349   return ::mprotect(bottom, size, prot) == 0;
2350 }
2351 
2352 // Set protections specified
2353 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2354                         bool is_committed) {
2355   unsigned int p = 0;
2356   switch (prot) {
2357   case MEM_PROT_NONE: p = PROT_NONE; break;
2358   case MEM_PROT_READ: p = PROT_READ; break;
2359   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2360   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2361   default:
2362     ShouldNotReachHere();
2363   }
2364   // is_committed is unused.
2365   return bsd_mprotect(addr, bytes, p);
2366 }
2367 
2368 bool os::guard_memory(char* addr, size_t size) {
2369   return bsd_mprotect(addr, size, PROT_NONE);
2370 }
2371 
2372 bool os::unguard_memory(char* addr, size_t size) {
2373   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2374 }
2375 
2376 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2377   return false;
2378 }
2379 
2380 // Large page support
2381 
2382 static size_t _large_page_size = 0;
2383 
2384 void os::large_page_init() {
2385 }
2386 
2387 
2388 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2389   fatal("This code is not used or maintained.");
2390 
2391   // "exec" is passed in but not used.  Creating the shared image for
2392   // the code cache doesn't have an SHM_X executable permission to check.
2393   assert(UseLargePages && UseSHM, "only for SHM large pages");
2394 
2395   key_t key = IPC_PRIVATE;
2396   char *addr;
2397 
2398   bool warn_on_failure = UseLargePages &&
2399                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2400                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2401 
2402   // Create a large shared memory region to attach to based on size.
2403   // Currently, size is the total size of the heap
2404   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2405   if (shmid == -1) {
2406     // Possible reasons for shmget failure:
2407     // 1. shmmax is too small for Java heap.
2408     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2409     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2410     // 2. not enough large page memory.
2411     //    > check available large pages: cat /proc/meminfo
2412     //    > increase amount of large pages:
2413     //          echo new_value > /proc/sys/vm/nr_hugepages
2414     //      Note 1: different Bsd may use different name for this property,
2415     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2416     //      Note 2: it's possible there's enough physical memory available but
2417     //            they are so fragmented after a long run that they can't
2418     //            coalesce into large pages. Try to reserve large pages when
2419     //            the system is still "fresh".
2420     if (warn_on_failure) {
2421       warning("Failed to reserve shared memory (errno = %d).", errno);
2422     }
2423     return NULL;
2424   }
2425 
2426   // attach to the region
2427   addr = (char*)shmat(shmid, req_addr, 0);
2428   int err = errno;
2429 
2430   // Remove shmid. If shmat() is successful, the actual shared memory segment
2431   // will be deleted when it's detached by shmdt() or when the process
2432   // terminates. If shmat() is not successful this will remove the shared
2433   // segment immediately.
2434   shmctl(shmid, IPC_RMID, NULL);
2435 
2436   if ((intptr_t)addr == -1) {
2437     if (warn_on_failure) {
2438       warning("Failed to attach shared memory (errno = %d).", err);
2439     }
2440     return NULL;
2441   }
2442 
2443   // The memory is committed
2444   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2445 
2446   return addr;
2447 }
2448 
2449 bool os::release_memory_special(char* base, size_t bytes) {
2450   if (MemTracker::tracking_level() > NMT_minimal) {
2451     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2452     // detaching the SHM segment will also delete it, see reserve_memory_special()
2453     int rslt = shmdt(base);
2454     if (rslt == 0) {
2455       tkr.record((address)base, bytes);
2456       return true;
2457     } else {
2458       return false;
2459     }
2460   } else {
2461     return shmdt(base) == 0;
2462   }
2463 }
2464 
2465 size_t os::large_page_size() {
2466   return _large_page_size;
2467 }
2468 
2469 // HugeTLBFS allows application to commit large page memory on demand;
2470 // with SysV SHM the entire memory region must be allocated as shared
2471 // memory.
2472 bool os::can_commit_large_page_memory() {
2473   return UseHugeTLBFS;
2474 }
2475 
2476 bool os::can_execute_large_page_memory() {
2477   return UseHugeTLBFS;
2478 }
2479 
2480 // Reserve memory at an arbitrary address, only if that area is
2481 // available (and not reserved for something else).
2482 
2483 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2484   const int max_tries = 10;
2485   char* base[max_tries];
2486   size_t size[max_tries];
2487   const size_t gap = 0x000000;
2488 
2489   // Assert only that the size is a multiple of the page size, since
2490   // that's all that mmap requires, and since that's all we really know
2491   // about at this low abstraction level.  If we need higher alignment,
2492   // we can either pass an alignment to this method or verify alignment
2493   // in one of the methods further up the call chain.  See bug 5044738.
2494   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2495 
2496   // Repeatedly allocate blocks until the block is allocated at the
2497   // right spot. Give up after max_tries. Note that reserve_memory() will
2498   // automatically update _highest_vm_reserved_address if the call is
2499   // successful. The variable tracks the highest memory address every reserved
2500   // by JVM. It is used to detect heap-stack collision if running with
2501   // fixed-stack BsdThreads. Because here we may attempt to reserve more
2502   // space than needed, it could confuse the collision detecting code. To
2503   // solve the problem, save current _highest_vm_reserved_address and
2504   // calculate the correct value before return.
2505   address old_highest = _highest_vm_reserved_address;
2506 
2507   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2508   // if kernel honors the hint then we can return immediately.
2509   char * addr = anon_mmap(requested_addr, bytes, false);
2510   if (addr == requested_addr) {
2511     return requested_addr;
2512   }
2513 
2514   if (addr != NULL) {
2515     // mmap() is successful but it fails to reserve at the requested address
2516     anon_munmap(addr, bytes);
2517   }
2518 
2519   int i;
2520   for (i = 0; i < max_tries; ++i) {
2521     base[i] = reserve_memory(bytes);
2522 
2523     if (base[i] != NULL) {
2524       // Is this the block we wanted?
2525       if (base[i] == requested_addr) {
2526         size[i] = bytes;
2527         break;
2528       }
2529 
2530       // Does this overlap the block we wanted? Give back the overlapped
2531       // parts and try again.
2532 
2533       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2534       if (top_overlap >= 0 && top_overlap < bytes) {
2535         unmap_memory(base[i], top_overlap);
2536         base[i] += top_overlap;
2537         size[i] = bytes - top_overlap;
2538       } else {
2539         size_t bottom_overlap = base[i] + bytes - requested_addr;
2540         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2541           unmap_memory(requested_addr, bottom_overlap);
2542           size[i] = bytes - bottom_overlap;
2543         } else {
2544           size[i] = bytes;
2545         }
2546       }
2547     }
2548   }
2549 
2550   // Give back the unused reserved pieces.
2551 
2552   for (int j = 0; j < i; ++j) {
2553     if (base[j] != NULL) {
2554       unmap_memory(base[j], size[j]);
2555     }
2556   }
2557 
2558   if (i < max_tries) {
2559     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2560     return requested_addr;
2561   } else {
2562     _highest_vm_reserved_address = old_highest;
2563     return NULL;
2564   }
2565 }
2566 
2567 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2568   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2569 }
2570 
2571 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2572   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2573 }
2574 
2575 void os::naked_short_sleep(jlong ms) {
2576   struct timespec req;
2577 
2578   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2579   req.tv_sec = 0;
2580   if (ms > 0) {
2581     req.tv_nsec = (ms % 1000) * 1000000;
2582   } else {
2583     req.tv_nsec = 1;
2584   }
2585 
2586   nanosleep(&req, NULL);
2587 
2588   return;
2589 }
2590 
2591 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2592 void os::infinite_sleep() {
2593   while (true) {    // sleep forever ...
2594     ::sleep(100);   // ... 100 seconds at a time
2595   }
2596 }
2597 
2598 // Used to convert frequent JVM_Yield() to nops
2599 bool os::dont_yield() {
2600   return DontYieldALot;
2601 }
2602 
2603 void os::naked_yield() {
2604   sched_yield();
2605 }
2606 
2607 ////////////////////////////////////////////////////////////////////////////////
2608 // thread priority support
2609 
2610 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2611 // only supports dynamic priority, static priority must be zero. For real-time
2612 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2613 // However, for large multi-threaded applications, SCHED_RR is not only slower
2614 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2615 // of 5 runs - Sep 2005).
2616 //
2617 // The following code actually changes the niceness of kernel-thread/LWP. It
2618 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2619 // not the entire user process, and user level threads are 1:1 mapped to kernel
2620 // threads. It has always been the case, but could change in the future. For
2621 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2622 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2623 
2624 #if !defined(__APPLE__)
2625 int os::java_to_os_priority[CriticalPriority + 1] = {
2626   19,              // 0 Entry should never be used
2627 
2628    0,              // 1 MinPriority
2629    3,              // 2
2630    6,              // 3
2631 
2632   10,              // 4
2633   15,              // 5 NormPriority
2634   18,              // 6
2635 
2636   21,              // 7
2637   25,              // 8
2638   28,              // 9 NearMaxPriority
2639 
2640   31,              // 10 MaxPriority
2641 
2642   31               // 11 CriticalPriority
2643 };
2644 #else
2645 // Using Mach high-level priority assignments
2646 int os::java_to_os_priority[CriticalPriority + 1] = {
2647    0,              // 0 Entry should never be used (MINPRI_USER)
2648 
2649   27,              // 1 MinPriority
2650   28,              // 2
2651   29,              // 3
2652 
2653   30,              // 4
2654   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2655   32,              // 6
2656 
2657   33,              // 7
2658   34,              // 8
2659   35,              // 9 NearMaxPriority
2660 
2661   36,              // 10 MaxPriority
2662 
2663   36               // 11 CriticalPriority
2664 };
2665 #endif
2666 
2667 static int prio_init() {
2668   if (ThreadPriorityPolicy == 1) {
2669     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2670     // if effective uid is not root. Perhaps, a more elegant way of doing
2671     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2672     if (geteuid() != 0) {
2673       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2674         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2675       }
2676       ThreadPriorityPolicy = 0;
2677     }
2678   }
2679   if (UseCriticalJavaThreadPriority) {
2680     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2681   }
2682   return 0;
2683 }
2684 
2685 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2686   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2687 
2688 #ifdef __OpenBSD__
2689   // OpenBSD pthread_setprio starves low priority threads
2690   return OS_OK;
2691 #elif defined(__FreeBSD__)
2692   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2693 #elif defined(__APPLE__) || defined(__NetBSD__)
2694   struct sched_param sp;
2695   int policy;
2696   pthread_t self = pthread_self();
2697 
2698   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2699     return OS_ERR;
2700   }
2701 
2702   sp.sched_priority = newpri;
2703   if (pthread_setschedparam(self, policy, &sp) != 0) {
2704     return OS_ERR;
2705   }
2706 
2707   return OS_OK;
2708 #else
2709   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2710   return (ret == 0) ? OS_OK : OS_ERR;
2711 #endif
2712 }
2713 
2714 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2715   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2716     *priority_ptr = java_to_os_priority[NormPriority];
2717     return OS_OK;
2718   }
2719 
2720   errno = 0;
2721 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2722   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2723 #elif defined(__APPLE__) || defined(__NetBSD__)
2724   int policy;
2725   struct sched_param sp;
2726 
2727   pthread_getschedparam(pthread_self(), &policy, &sp);
2728   *priority_ptr = sp.sched_priority;
2729 #else
2730   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2731 #endif
2732   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2733 }
2734 
2735 // Hint to the underlying OS that a task switch would not be good.
2736 // Void return because it's a hint and can fail.
2737 void os::hint_no_preempt() {}
2738 
2739 ////////////////////////////////////////////////////////////////////////////////
2740 // suspend/resume support
2741 
2742 //  the low-level signal-based suspend/resume support is a remnant from the
2743 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2744 //  within hotspot. Now there is a single use-case for this:
2745 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2746 //      that runs in the watcher thread.
2747 //  The remaining code is greatly simplified from the more general suspension
2748 //  code that used to be used.
2749 //
2750 //  The protocol is quite simple:
2751 //  - suspend:
2752 //      - sends a signal to the target thread
2753 //      - polls the suspend state of the osthread using a yield loop
2754 //      - target thread signal handler (SR_handler) sets suspend state
2755 //        and blocks in sigsuspend until continued
2756 //  - resume:
2757 //      - sets target osthread state to continue
2758 //      - sends signal to end the sigsuspend loop in the SR_handler
2759 //
2760 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2761 
2762 static void resume_clear_context(OSThread *osthread) {
2763   osthread->set_ucontext(NULL);
2764   osthread->set_siginfo(NULL);
2765 }
2766 
2767 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2768   osthread->set_ucontext(context);
2769   osthread->set_siginfo(siginfo);
2770 }
2771 
2772 // Handler function invoked when a thread's execution is suspended or
2773 // resumed. We have to be careful that only async-safe functions are
2774 // called here (Note: most pthread functions are not async safe and
2775 // should be avoided.)
2776 //
2777 // Note: sigwait() is a more natural fit than sigsuspend() from an
2778 // interface point of view, but sigwait() prevents the signal hander
2779 // from being run. libpthread would get very confused by not having
2780 // its signal handlers run and prevents sigwait()'s use with the
2781 // mutex granting granting signal.
2782 //
2783 // Currently only ever called on the VMThread or JavaThread
2784 //
2785 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2786   // Save and restore errno to avoid confusing native code with EINTR
2787   // after sigsuspend.
2788   int old_errno = errno;
2789 
2790   Thread* thread = Thread::current();
2791   OSThread* osthread = thread->osthread();
2792   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2793 
2794   os::SuspendResume::State current = osthread->sr.state();
2795   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2796     suspend_save_context(osthread, siginfo, context);
2797 
2798     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2799     os::SuspendResume::State state = osthread->sr.suspended();
2800     if (state == os::SuspendResume::SR_SUSPENDED) {
2801       sigset_t suspend_set;  // signals for sigsuspend()
2802 
2803       // get current set of blocked signals and unblock resume signal
2804       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2805       sigdelset(&suspend_set, SR_signum);
2806 
2807       sr_semaphore.signal();
2808       // wait here until we are resumed
2809       while (1) {
2810         sigsuspend(&suspend_set);
2811 
2812         os::SuspendResume::State result = osthread->sr.running();
2813         if (result == os::SuspendResume::SR_RUNNING) {
2814           sr_semaphore.signal();
2815           break;
2816         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2817           ShouldNotReachHere();
2818         }
2819       }
2820 
2821     } else if (state == os::SuspendResume::SR_RUNNING) {
2822       // request was cancelled, continue
2823     } else {
2824       ShouldNotReachHere();
2825     }
2826 
2827     resume_clear_context(osthread);
2828   } else if (current == os::SuspendResume::SR_RUNNING) {
2829     // request was cancelled, continue
2830   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2831     // ignore
2832   } else {
2833     // ignore
2834   }
2835 
2836   errno = old_errno;
2837 }
2838 
2839 
2840 static int SR_initialize() {
2841   struct sigaction act;
2842   char *s;
2843   // Get signal number to use for suspend/resume
2844   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2845     int sig = ::strtol(s, 0, 10);
2846     if (sig > 0 || sig < NSIG) {
2847       SR_signum = sig;
2848     }
2849   }
2850 
2851   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2852          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2853 
2854   sigemptyset(&SR_sigset);
2855   sigaddset(&SR_sigset, SR_signum);
2856 
2857   // Set up signal handler for suspend/resume
2858   act.sa_flags = SA_RESTART|SA_SIGINFO;
2859   act.sa_handler = (void (*)(int)) SR_handler;
2860 
2861   // SR_signum is blocked by default.
2862   // 4528190 - We also need to block pthread restart signal (32 on all
2863   // supported Bsd platforms). Note that BsdThreads need to block
2864   // this signal for all threads to work properly. So we don't have
2865   // to use hard-coded signal number when setting up the mask.
2866   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2867 
2868   if (sigaction(SR_signum, &act, 0) == -1) {
2869     return -1;
2870   }
2871 
2872   // Save signal flag
2873   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2874   return 0;
2875 }
2876 
2877 static int sr_notify(OSThread* osthread) {
2878   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2879   assert_status(status == 0, status, "pthread_kill");
2880   return status;
2881 }
2882 
2883 // "Randomly" selected value for how long we want to spin
2884 // before bailing out on suspending a thread, also how often
2885 // we send a signal to a thread we want to resume
2886 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2887 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2888 
2889 // returns true on success and false on error - really an error is fatal
2890 // but this seems the normal response to library errors
2891 static bool do_suspend(OSThread* osthread) {
2892   assert(osthread->sr.is_running(), "thread should be running");
2893   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2894 
2895   // mark as suspended and send signal
2896   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2897     // failed to switch, state wasn't running?
2898     ShouldNotReachHere();
2899     return false;
2900   }
2901 
2902   if (sr_notify(osthread) != 0) {
2903     ShouldNotReachHere();
2904   }
2905 
2906   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2907   while (true) {
2908     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2909       break;
2910     } else {
2911       // timeout
2912       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2913       if (cancelled == os::SuspendResume::SR_RUNNING) {
2914         return false;
2915       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2916         // make sure that we consume the signal on the semaphore as well
2917         sr_semaphore.wait();
2918         break;
2919       } else {
2920         ShouldNotReachHere();
2921         return false;
2922       }
2923     }
2924   }
2925 
2926   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2927   return true;
2928 }
2929 
2930 static void do_resume(OSThread* osthread) {
2931   assert(osthread->sr.is_suspended(), "thread should be suspended");
2932   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2933 
2934   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2935     // failed to switch to WAKEUP_REQUEST
2936     ShouldNotReachHere();
2937     return;
2938   }
2939 
2940   while (true) {
2941     if (sr_notify(osthread) == 0) {
2942       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2943         if (osthread->sr.is_running()) {
2944           return;
2945         }
2946       }
2947     } else {
2948       ShouldNotReachHere();
2949     }
2950   }
2951 
2952   guarantee(osthread->sr.is_running(), "Must be running!");
2953 }
2954 
2955 ///////////////////////////////////////////////////////////////////////////////////
2956 // signal handling (except suspend/resume)
2957 
2958 // This routine may be used by user applications as a "hook" to catch signals.
2959 // The user-defined signal handler must pass unrecognized signals to this
2960 // routine, and if it returns true (non-zero), then the signal handler must
2961 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2962 // routine will never retun false (zero), but instead will execute a VM panic
2963 // routine kill the process.
2964 //
2965 // If this routine returns false, it is OK to call it again.  This allows
2966 // the user-defined signal handler to perform checks either before or after
2967 // the VM performs its own checks.  Naturally, the user code would be making
2968 // a serious error if it tried to handle an exception (such as a null check
2969 // or breakpoint) that the VM was generating for its own correct operation.
2970 //
2971 // This routine may recognize any of the following kinds of signals:
2972 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2973 // It should be consulted by handlers for any of those signals.
2974 //
2975 // The caller of this routine must pass in the three arguments supplied
2976 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2977 // field of the structure passed to sigaction().  This routine assumes that
2978 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2979 //
2980 // Note that the VM will print warnings if it detects conflicting signal
2981 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2982 //
2983 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2984                                                void* ucontext,
2985                                                int abort_if_unrecognized);
2986 
2987 void signalHandler(int sig, siginfo_t* info, void* uc) {
2988   assert(info != NULL && uc != NULL, "it must be old kernel");
2989   int orig_errno = errno;  // Preserve errno value over signal handler.
2990   JVM_handle_bsd_signal(sig, info, uc, true);
2991   errno = orig_errno;
2992 }
2993 
2994 
2995 // This boolean allows users to forward their own non-matching signals
2996 // to JVM_handle_bsd_signal, harmlessly.
2997 bool os::Bsd::signal_handlers_are_installed = false;
2998 
2999 // For signal-chaining
3000 struct sigaction os::Bsd::sigact[MAXSIGNUM];
3001 unsigned int os::Bsd::sigs = 0;
3002 bool os::Bsd::libjsig_is_loaded = false;
3003 typedef struct sigaction *(*get_signal_t)(int);
3004 get_signal_t os::Bsd::get_signal_action = NULL;
3005 
3006 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3007   struct sigaction *actp = NULL;
3008 
3009   if (libjsig_is_loaded) {
3010     // Retrieve the old signal handler from libjsig
3011     actp = (*get_signal_action)(sig);
3012   }
3013   if (actp == NULL) {
3014     // Retrieve the preinstalled signal handler from jvm
3015     actp = get_preinstalled_handler(sig);
3016   }
3017 
3018   return actp;
3019 }
3020 
3021 static bool call_chained_handler(struct sigaction *actp, int sig,
3022                                  siginfo_t *siginfo, void *context) {
3023   // Call the old signal handler
3024   if (actp->sa_handler == SIG_DFL) {
3025     // It's more reasonable to let jvm treat it as an unexpected exception
3026     // instead of taking the default action.
3027     return false;
3028   } else if (actp->sa_handler != SIG_IGN) {
3029     if ((actp->sa_flags & SA_NODEFER) == 0) {
3030       // automaticlly block the signal
3031       sigaddset(&(actp->sa_mask), sig);
3032     }
3033 
3034     sa_handler_t hand;
3035     sa_sigaction_t sa;
3036     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3037     // retrieve the chained handler
3038     if (siginfo_flag_set) {
3039       sa = actp->sa_sigaction;
3040     } else {
3041       hand = actp->sa_handler;
3042     }
3043 
3044     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3045       actp->sa_handler = SIG_DFL;
3046     }
3047 
3048     // try to honor the signal mask
3049     sigset_t oset;
3050     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3051 
3052     // call into the chained handler
3053     if (siginfo_flag_set) {
3054       (*sa)(sig, siginfo, context);
3055     } else {
3056       (*hand)(sig);
3057     }
3058 
3059     // restore the signal mask
3060     pthread_sigmask(SIG_SETMASK, &oset, 0);
3061   }
3062   // Tell jvm's signal handler the signal is taken care of.
3063   return true;
3064 }
3065 
3066 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3067   bool chained = false;
3068   // signal-chaining
3069   if (UseSignalChaining) {
3070     struct sigaction *actp = get_chained_signal_action(sig);
3071     if (actp != NULL) {
3072       chained = call_chained_handler(actp, sig, siginfo, context);
3073     }
3074   }
3075   return chained;
3076 }
3077 
3078 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3079   if ((((unsigned int)1 << sig) & sigs) != 0) {
3080     return &sigact[sig];
3081   }
3082   return NULL;
3083 }
3084 
3085 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3086   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3087   sigact[sig] = oldAct;
3088   sigs |= (unsigned int)1 << sig;
3089 }
3090 
3091 // for diagnostic
3092 int os::Bsd::sigflags[MAXSIGNUM];
3093 
3094 int os::Bsd::get_our_sigflags(int sig) {
3095   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3096   return sigflags[sig];
3097 }
3098 
3099 void os::Bsd::set_our_sigflags(int sig, int flags) {
3100   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3101   sigflags[sig] = flags;
3102 }
3103 
3104 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3105   // Check for overwrite.
3106   struct sigaction oldAct;
3107   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3108 
3109   void* oldhand = oldAct.sa_sigaction
3110                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3111                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3112   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3113       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3114       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3115     if (AllowUserSignalHandlers || !set_installed) {
3116       // Do not overwrite; user takes responsibility to forward to us.
3117       return;
3118     } else if (UseSignalChaining) {
3119       // save the old handler in jvm
3120       save_preinstalled_handler(sig, oldAct);
3121       // libjsig also interposes the sigaction() call below and saves the
3122       // old sigaction on it own.
3123     } else {
3124       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3125                     "%#lx for signal %d.", (long)oldhand, sig));
3126     }
3127   }
3128 
3129   struct sigaction sigAct;
3130   sigfillset(&(sigAct.sa_mask));
3131   sigAct.sa_handler = SIG_DFL;
3132   if (!set_installed) {
3133     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3134   } else {
3135     sigAct.sa_sigaction = signalHandler;
3136     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3137   }
3138 #ifdef __APPLE__
3139   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3140   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3141   // if the signal handler declares it will handle it on alternate stack.
3142   // Notice we only declare we will handle it on alt stack, but we are not
3143   // actually going to use real alt stack - this is just a workaround.
3144   // Please see ux_exception.c, method catch_mach_exception_raise for details
3145   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3146   if (sig == SIGSEGV) {
3147     sigAct.sa_flags |= SA_ONSTACK;
3148   }
3149 #endif
3150 
3151   // Save flags, which are set by ours
3152   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3153   sigflags[sig] = sigAct.sa_flags;
3154 
3155   int ret = sigaction(sig, &sigAct, &oldAct);
3156   assert(ret == 0, "check");
3157 
3158   void* oldhand2  = oldAct.sa_sigaction
3159                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3160                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3161   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3162 }
3163 
3164 // install signal handlers for signals that HotSpot needs to
3165 // handle in order to support Java-level exception handling.
3166 
3167 void os::Bsd::install_signal_handlers() {
3168   if (!signal_handlers_are_installed) {
3169     signal_handlers_are_installed = true;
3170 
3171     // signal-chaining
3172     typedef void (*signal_setting_t)();
3173     signal_setting_t begin_signal_setting = NULL;
3174     signal_setting_t end_signal_setting = NULL;
3175     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3176                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3177     if (begin_signal_setting != NULL) {
3178       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3179                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3180       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3181                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3182       libjsig_is_loaded = true;
3183       assert(UseSignalChaining, "should enable signal-chaining");
3184     }
3185     if (libjsig_is_loaded) {
3186       // Tell libjsig jvm is setting signal handlers
3187       (*begin_signal_setting)();
3188     }
3189 
3190     set_signal_handler(SIGSEGV, true);
3191     set_signal_handler(SIGPIPE, true);
3192     set_signal_handler(SIGBUS, true);
3193     set_signal_handler(SIGILL, true);
3194     set_signal_handler(SIGFPE, true);
3195     set_signal_handler(SIGXFSZ, true);
3196 
3197 #if defined(__APPLE__)
3198     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3199     // signals caught and handled by the JVM. To work around this, we reset the mach task
3200     // signal handler that's placed on our process by CrashReporter. This disables
3201     // CrashReporter-based reporting.
3202     //
3203     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3204     // on caught fatal signals.
3205     //
3206     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3207     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3208     // exception handling, while leaving the standard BSD signal handlers functional.
3209     kern_return_t kr;
3210     kr = task_set_exception_ports(mach_task_self(),
3211                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3212                                   MACH_PORT_NULL,
3213                                   EXCEPTION_STATE_IDENTITY,
3214                                   MACHINE_THREAD_STATE);
3215 
3216     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3217 #endif
3218 
3219     if (libjsig_is_loaded) {
3220       // Tell libjsig jvm finishes setting signal handlers
3221       (*end_signal_setting)();
3222     }
3223 
3224     // We don't activate signal checker if libjsig is in place, we trust ourselves
3225     // and if UserSignalHandler is installed all bets are off
3226     if (CheckJNICalls) {
3227       if (libjsig_is_loaded) {
3228         if (PrintJNIResolving) {
3229           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3230         }
3231         check_signals = false;
3232       }
3233       if (AllowUserSignalHandlers) {
3234         if (PrintJNIResolving) {
3235           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3236         }
3237         check_signals = false;
3238       }
3239     }
3240   }
3241 }
3242 
3243 
3244 /////
3245 // glibc on Bsd platform uses non-documented flag
3246 // to indicate, that some special sort of signal
3247 // trampoline is used.
3248 // We will never set this flag, and we should
3249 // ignore this flag in our diagnostic
3250 #ifdef SIGNIFICANT_SIGNAL_MASK
3251   #undef SIGNIFICANT_SIGNAL_MASK
3252 #endif
3253 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3254 
3255 static const char* get_signal_handler_name(address handler,
3256                                            char* buf, int buflen) {
3257   int offset;
3258   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3259   if (found) {
3260     // skip directory names
3261     const char *p1, *p2;
3262     p1 = buf;
3263     size_t len = strlen(os::file_separator());
3264     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3265     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3266   } else {
3267     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3268   }
3269   return buf;
3270 }
3271 
3272 static void print_signal_handler(outputStream* st, int sig,
3273                                  char* buf, size_t buflen) {
3274   struct sigaction sa;
3275 
3276   sigaction(sig, NULL, &sa);
3277 
3278   // See comment for SIGNIFICANT_SIGNAL_MASK define
3279   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3280 
3281   st->print("%s: ", os::exception_name(sig, buf, buflen));
3282 
3283   address handler = (sa.sa_flags & SA_SIGINFO)
3284     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3285     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3286 
3287   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3288     st->print("SIG_DFL");
3289   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3290     st->print("SIG_IGN");
3291   } else {
3292     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3293   }
3294 
3295   st->print(", sa_mask[0]=");
3296   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3297 
3298   address rh = VMError::get_resetted_sighandler(sig);
3299   // May be, handler was resetted by VMError?
3300   if (rh != NULL) {
3301     handler = rh;
3302     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3303   }
3304 
3305   st->print(", sa_flags=");
3306   os::Posix::print_sa_flags(st, sa.sa_flags);
3307 
3308   // Check: is it our handler?
3309   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3310       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3311     // It is our signal handler
3312     // check for flags, reset system-used one!
3313     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3314       st->print(
3315                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3316                 os::Bsd::get_our_sigflags(sig));
3317     }
3318   }
3319   st->cr();
3320 }
3321 
3322 
3323 #define DO_SIGNAL_CHECK(sig)                      \
3324   do {                                            \
3325     if (!sigismember(&check_signal_done, sig)) {  \
3326       os::Bsd::check_signal_handler(sig);         \
3327     }                                             \
3328   } while (0)
3329 
3330 // This method is a periodic task to check for misbehaving JNI applications
3331 // under CheckJNI, we can add any periodic checks here
3332 
3333 void os::run_periodic_checks() {
3334 
3335   if (check_signals == false) return;
3336 
3337   // SEGV and BUS if overridden could potentially prevent
3338   // generation of hs*.log in the event of a crash, debugging
3339   // such a case can be very challenging, so we absolutely
3340   // check the following for a good measure:
3341   DO_SIGNAL_CHECK(SIGSEGV);
3342   DO_SIGNAL_CHECK(SIGILL);
3343   DO_SIGNAL_CHECK(SIGFPE);
3344   DO_SIGNAL_CHECK(SIGBUS);
3345   DO_SIGNAL_CHECK(SIGPIPE);
3346   DO_SIGNAL_CHECK(SIGXFSZ);
3347 
3348 
3349   // ReduceSignalUsage allows the user to override these handlers
3350   // see comments at the very top and jvm_solaris.h
3351   if (!ReduceSignalUsage) {
3352     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3353     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3354     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3355     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3356   }
3357 
3358   DO_SIGNAL_CHECK(SR_signum);
3359   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3360 }
3361 
3362 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3363 
3364 static os_sigaction_t os_sigaction = NULL;
3365 
3366 void os::Bsd::check_signal_handler(int sig) {
3367   char buf[O_BUFLEN];
3368   address jvmHandler = NULL;
3369 
3370 
3371   struct sigaction act;
3372   if (os_sigaction == NULL) {
3373     // only trust the default sigaction, in case it has been interposed
3374     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3375     if (os_sigaction == NULL) return;
3376   }
3377 
3378   os_sigaction(sig, (struct sigaction*)NULL, &act);
3379 
3380 
3381   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3382 
3383   address thisHandler = (act.sa_flags & SA_SIGINFO)
3384     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3385     : CAST_FROM_FN_PTR(address, act.sa_handler);
3386 
3387 
3388   switch (sig) {
3389   case SIGSEGV:
3390   case SIGBUS:
3391   case SIGFPE:
3392   case SIGPIPE:
3393   case SIGILL:
3394   case SIGXFSZ:
3395     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3396     break;
3397 
3398   case SHUTDOWN1_SIGNAL:
3399   case SHUTDOWN2_SIGNAL:
3400   case SHUTDOWN3_SIGNAL:
3401   case BREAK_SIGNAL:
3402     jvmHandler = (address)user_handler();
3403     break;
3404 
3405   case INTERRUPT_SIGNAL:
3406     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3407     break;
3408 
3409   default:
3410     if (sig == SR_signum) {
3411       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3412     } else {
3413       return;
3414     }
3415     break;
3416   }
3417 
3418   if (thisHandler != jvmHandler) {
3419     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3420     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3421     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3422     // No need to check this sig any longer
3423     sigaddset(&check_signal_done, sig);
3424     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3425     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3426       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3427                     exception_name(sig, buf, O_BUFLEN));
3428     }
3429   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3430     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3431     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3432     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3433     // No need to check this sig any longer
3434     sigaddset(&check_signal_done, sig);
3435   }
3436 
3437   // Dump all the signal
3438   if (sigismember(&check_signal_done, sig)) {
3439     print_signal_handlers(tty, buf, O_BUFLEN);
3440   }
3441 }
3442 
3443 extern void report_error(char* file_name, int line_no, char* title,
3444                          char* format, ...);
3445 
3446 extern bool signal_name(int signo, char* buf, size_t len);
3447 
3448 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3449   if (0 < exception_code && exception_code <= SIGRTMAX) {
3450     // signal
3451     if (!signal_name(exception_code, buf, size)) {
3452       jio_snprintf(buf, size, "SIG%d", exception_code);
3453     }
3454     return buf;
3455   } else {
3456     return NULL;
3457   }
3458 }
3459 
3460 // this is called _before_ the most of global arguments have been parsed
3461 void os::init(void) {
3462   char dummy;   // used to get a guess on initial stack address
3463 //  first_hrtime = gethrtime();
3464 
3465   // With BsdThreads the JavaMain thread pid (primordial thread)
3466   // is different than the pid of the java launcher thread.
3467   // So, on Bsd, the launcher thread pid is passed to the VM
3468   // via the sun.java.launcher.pid property.
3469   // Use this property instead of getpid() if it was correctly passed.
3470   // See bug 6351349.
3471   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3472 
3473   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3474 
3475   clock_tics_per_sec = CLK_TCK;
3476 
3477   init_random(1234567);
3478 
3479   ThreadCritical::initialize();
3480 
3481   Bsd::set_page_size(getpagesize());
3482   if (Bsd::page_size() == -1) {
3483     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3484                   strerror(errno)));
3485   }
3486   init_page_sizes((size_t) Bsd::page_size());
3487 
3488   Bsd::initialize_system_info();
3489 
3490   // main_thread points to the aboriginal thread
3491   Bsd::_main_thread = pthread_self();
3492 
3493   Bsd::clock_init();
3494   initial_time_count = javaTimeNanos();
3495 
3496 #ifdef __APPLE__
3497   // XXXDARWIN
3498   // Work around the unaligned VM callbacks in hotspot's
3499   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3500   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3501   // alignment when doing symbol lookup. To work around this, we force early
3502   // binding of all symbols now, thus binding when alignment is known-good.
3503   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3504 #endif
3505 }
3506 
3507 // To install functions for atexit system call
3508 extern "C" {
3509   static void perfMemory_exit_helper() {
3510     perfMemory_exit();
3511   }
3512 }
3513 
3514 // this is called _after_ the global arguments have been parsed
3515 jint os::init_2(void) {
3516   // Allocate a single page and mark it as readable for safepoint polling
3517   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3518   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3519 
3520   os::set_polling_page(polling_page);
3521 
3522 #ifndef PRODUCT
3523   if (Verbose && PrintMiscellaneous) {
3524     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3525                (intptr_t)polling_page);
3526   }
3527 #endif
3528 
3529   if (!UseMembar) {
3530     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3531     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3532     os::set_memory_serialize_page(mem_serialize_page);
3533 
3534 #ifndef PRODUCT
3535     if (Verbose && PrintMiscellaneous) {
3536       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3537                  (intptr_t)mem_serialize_page);
3538     }
3539 #endif
3540   }
3541 
3542   // initialize suspend/resume support - must do this before signal_sets_init()
3543   if (SR_initialize() != 0) {
3544     perror("SR_initialize failed");
3545     return JNI_ERR;
3546   }
3547 
3548   Bsd::signal_sets_init();
3549   Bsd::install_signal_handlers();
3550 
3551   // Check minimum allowable stack size for thread creation and to initialize
3552   // the java system classes, including StackOverflowError - depends on page
3553   // size.  Add a page for compiler2 recursion in main thread.
3554   // Add in 2*BytesPerWord times page size to account for VM stack during
3555   // class initialization depending on 32 or 64 bit VM.
3556   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3557                                     (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3558                                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3559 
3560   size_t threadStackSizeInBytes = ThreadStackSize * K;
3561   if (threadStackSizeInBytes != 0 &&
3562       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3563     tty->print_cr("\nThe stack size specified is too small, "
3564                   "Specify at least %dk",
3565                   os::Bsd::min_stack_allowed/ K);
3566     return JNI_ERR;
3567   }
3568 
3569   // Make the stack size a multiple of the page size so that
3570   // the yellow/red zones can be guarded.
3571   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3572                                                 vm_page_size()));
3573 
3574   if (MaxFDLimit) {
3575     // set the number of file descriptors to max. print out error
3576     // if getrlimit/setrlimit fails but continue regardless.
3577     struct rlimit nbr_files;
3578     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3579     if (status != 0) {
3580       if (PrintMiscellaneous && (Verbose || WizardMode)) {
3581         perror("os::init_2 getrlimit failed");
3582       }
3583     } else {
3584       nbr_files.rlim_cur = nbr_files.rlim_max;
3585 
3586 #ifdef __APPLE__
3587       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3588       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3589       // be used instead
3590       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3591 #endif
3592 
3593       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3594       if (status != 0) {
3595         if (PrintMiscellaneous && (Verbose || WizardMode)) {
3596           perror("os::init_2 setrlimit failed");
3597         }
3598       }
3599     }
3600   }
3601 
3602   // at-exit methods are called in the reverse order of their registration.
3603   // atexit functions are called on return from main or as a result of a
3604   // call to exit(3C). There can be only 32 of these functions registered
3605   // and atexit() does not set errno.
3606 
3607   if (PerfAllowAtExitRegistration) {
3608     // only register atexit functions if PerfAllowAtExitRegistration is set.
3609     // atexit functions can be delayed until process exit time, which
3610     // can be problematic for embedded VM situations. Embedded VMs should
3611     // call DestroyJavaVM() to assure that VM resources are released.
3612 
3613     // note: perfMemory_exit_helper atexit function may be removed in
3614     // the future if the appropriate cleanup code can be added to the
3615     // VM_Exit VMOperation's doit method.
3616     if (atexit(perfMemory_exit_helper) != 0) {
3617       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3618     }
3619   }
3620 
3621   // initialize thread priority policy
3622   prio_init();
3623 
3624 #ifdef __APPLE__
3625   // dynamically link to objective c gc registration
3626   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3627   if (handleLibObjc != NULL) {
3628     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3629   }
3630 #endif
3631 
3632   return JNI_OK;
3633 }
3634 
3635 // Mark the polling page as unreadable
3636 void os::make_polling_page_unreadable(void) {
3637   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3638     fatal("Could not disable polling page");
3639   }
3640 }
3641 
3642 // Mark the polling page as readable
3643 void os::make_polling_page_readable(void) {
3644   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3645     fatal("Could not enable polling page");
3646   }
3647 }
3648 
3649 int os::active_processor_count() {
3650   return _processor_count;
3651 }
3652 
3653 void os::set_native_thread_name(const char *name) {
3654 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3655   // This is only supported in Snow Leopard and beyond
3656   if (name != NULL) {
3657     // Add a "Java: " prefix to the name
3658     char buf[MAXTHREADNAMESIZE];
3659     snprintf(buf, sizeof(buf), "Java: %s", name);
3660     pthread_setname_np(buf);
3661   }
3662 #endif
3663 }
3664 
3665 bool os::distribute_processes(uint length, uint* distribution) {
3666   // Not yet implemented.
3667   return false;
3668 }
3669 
3670 bool os::bind_to_processor(uint processor_id) {
3671   // Not yet implemented.
3672   return false;
3673 }
3674 
3675 void os::SuspendedThreadTask::internal_do_task() {
3676   if (do_suspend(_thread->osthread())) {
3677     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3678     do_task(context);
3679     do_resume(_thread->osthread());
3680   }
3681 }
3682 
3683 ///
3684 class PcFetcher : public os::SuspendedThreadTask {
3685  public:
3686   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3687   ExtendedPC result();
3688  protected:
3689   void do_task(const os::SuspendedThreadTaskContext& context);
3690  private:
3691   ExtendedPC _epc;
3692 };
3693 
3694 ExtendedPC PcFetcher::result() {
3695   guarantee(is_done(), "task is not done yet.");
3696   return _epc;
3697 }
3698 
3699 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3700   Thread* thread = context.thread();
3701   OSThread* osthread = thread->osthread();
3702   if (osthread->ucontext() != NULL) {
3703     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3704   } else {
3705     // NULL context is unexpected, double-check this is the VMThread
3706     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3707   }
3708 }
3709 
3710 // Suspends the target using the signal mechanism and then grabs the PC before
3711 // resuming the target. Used by the flat-profiler only
3712 ExtendedPC os::get_thread_pc(Thread* thread) {
3713   // Make sure that it is called by the watcher for the VMThread
3714   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3715   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3716 
3717   PcFetcher fetcher(thread);
3718   fetcher.run();
3719   return fetcher.result();
3720 }
3721 
3722 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3723                                  pthread_mutex_t *_mutex,
3724                                  const struct timespec *_abstime) {
3725   return pthread_cond_timedwait(_cond, _mutex, _abstime);
3726 }
3727 
3728 ////////////////////////////////////////////////////////////////////////////////
3729 // debug support
3730 
3731 bool os::find(address addr, outputStream* st) {
3732   Dl_info dlinfo;
3733   memset(&dlinfo, 0, sizeof(dlinfo));
3734   if (dladdr(addr, &dlinfo) != 0) {
3735     st->print(PTR_FORMAT ": ", addr);
3736     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3737       st->print("%s+%#x", dlinfo.dli_sname,
3738                 addr - (intptr_t)dlinfo.dli_saddr);
3739     } else if (dlinfo.dli_fbase != NULL) {
3740       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3741     } else {
3742       st->print("<absolute address>");
3743     }
3744     if (dlinfo.dli_fname != NULL) {
3745       st->print(" in %s", dlinfo.dli_fname);
3746     }
3747     if (dlinfo.dli_fbase != NULL) {
3748       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3749     }
3750     st->cr();
3751 
3752     if (Verbose) {
3753       // decode some bytes around the PC
3754       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3755       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3756       address       lowest = (address) dlinfo.dli_sname;
3757       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3758       if (begin < lowest)  begin = lowest;
3759       Dl_info dlinfo2;
3760       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3761           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3762         end = (address) dlinfo2.dli_saddr;
3763       }
3764       Disassembler::decode(begin, end, st);
3765     }
3766     return true;
3767   }
3768   return false;
3769 }
3770 
3771 ////////////////////////////////////////////////////////////////////////////////
3772 // misc
3773 
3774 // This does not do anything on Bsd. This is basically a hook for being
3775 // able to use structured exception handling (thread-local exception filters)
3776 // on, e.g., Win32.
3777 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3778                               methodHandle* method, JavaCallArguments* args,
3779                               Thread* thread) {
3780   f(value, method, args, thread);
3781 }
3782 
3783 void os::print_statistics() {
3784 }
3785 
3786 int os::message_box(const char* title, const char* message) {
3787   int i;
3788   fdStream err(defaultStream::error_fd());
3789   for (i = 0; i < 78; i++) err.print_raw("=");
3790   err.cr();
3791   err.print_raw_cr(title);
3792   for (i = 0; i < 78; i++) err.print_raw("-");
3793   err.cr();
3794   err.print_raw_cr(message);
3795   for (i = 0; i < 78; i++) err.print_raw("=");
3796   err.cr();
3797 
3798   char buf[16];
3799   // Prevent process from exiting upon "read error" without consuming all CPU
3800   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3801 
3802   return buf[0] == 'y' || buf[0] == 'Y';
3803 }
3804 
3805 int os::stat(const char *path, struct stat *sbuf) {
3806   char pathbuf[MAX_PATH];
3807   if (strlen(path) > MAX_PATH - 1) {
3808     errno = ENAMETOOLONG;
3809     return -1;
3810   }
3811   os::native_path(strcpy(pathbuf, path));
3812   return ::stat(pathbuf, sbuf);
3813 }
3814 
3815 bool os::check_heap(bool force) {
3816   return true;
3817 }
3818 
3819 // Is a (classpath) directory empty?
3820 bool os::dir_is_empty(const char* path) {
3821   DIR *dir = NULL;
3822   struct dirent *ptr;
3823 
3824   dir = opendir(path);
3825   if (dir == NULL) return true;
3826 
3827   // Scan the directory
3828   bool result = true;
3829   char buf[sizeof(struct dirent) + MAX_PATH];
3830   while (result && (ptr = ::readdir(dir)) != NULL) {
3831     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3832       result = false;
3833     }
3834   }
3835   closedir(dir);
3836   return result;
3837 }
3838 
3839 // This code originates from JDK's sysOpen and open64_w
3840 // from src/solaris/hpi/src/system_md.c
3841 
3842 int os::open(const char *path, int oflag, int mode) {
3843   if (strlen(path) > MAX_PATH - 1) {
3844     errno = ENAMETOOLONG;
3845     return -1;
3846   }
3847   int fd;
3848 
3849   fd = ::open(path, oflag, mode);
3850   if (fd == -1) return -1;
3851 
3852   // If the open succeeded, the file might still be a directory
3853   {
3854     struct stat buf;
3855     int ret = ::fstat(fd, &buf);
3856     int st_mode = buf.st_mode;
3857 
3858     if (ret != -1) {
3859       if ((st_mode & S_IFMT) == S_IFDIR) {
3860         errno = EISDIR;
3861         ::close(fd);
3862         return -1;
3863       }
3864     } else {
3865       ::close(fd);
3866       return -1;
3867     }
3868   }
3869 
3870   // All file descriptors that are opened in the JVM and not
3871   // specifically destined for a subprocess should have the
3872   // close-on-exec flag set.  If we don't set it, then careless 3rd
3873   // party native code might fork and exec without closing all
3874   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3875   // UNIXProcess.c), and this in turn might:
3876   //
3877   // - cause end-of-file to fail to be detected on some file
3878   //   descriptors, resulting in mysterious hangs, or
3879   //
3880   // - might cause an fopen in the subprocess to fail on a system
3881   //   suffering from bug 1085341.
3882   //
3883   // (Yes, the default setting of the close-on-exec flag is a Unix
3884   // design flaw)
3885   //
3886   // See:
3887   // 1085341: 32-bit stdio routines should support file descriptors >255
3888   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3889   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3890   //
3891 #ifdef FD_CLOEXEC
3892   {
3893     int flags = ::fcntl(fd, F_GETFD);
3894     if (flags != -1) {
3895       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3896     }
3897   }
3898 #endif
3899 
3900   return fd;
3901 }
3902 
3903 
3904 // create binary file, rewriting existing file if required
3905 int os::create_binary_file(const char* path, bool rewrite_existing) {
3906   int oflags = O_WRONLY | O_CREAT;
3907   if (!rewrite_existing) {
3908     oflags |= O_EXCL;
3909   }
3910   return ::open(path, oflags, S_IREAD | S_IWRITE);
3911 }
3912 
3913 // return current position of file pointer
3914 jlong os::current_file_offset(int fd) {
3915   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3916 }
3917 
3918 // move file pointer to the specified offset
3919 jlong os::seek_to_file_offset(int fd, jlong offset) {
3920   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3921 }
3922 
3923 // This code originates from JDK's sysAvailable
3924 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3925 
3926 int os::available(int fd, jlong *bytes) {
3927   jlong cur, end;
3928   int mode;
3929   struct stat buf;
3930 
3931   if (::fstat(fd, &buf) >= 0) {
3932     mode = buf.st_mode;
3933     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3934       // XXX: is the following call interruptible? If so, this might
3935       // need to go through the INTERRUPT_IO() wrapper as for other
3936       // blocking, interruptible calls in this file.
3937       int n;
3938       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3939         *bytes = n;
3940         return 1;
3941       }
3942     }
3943   }
3944   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3945     return 0;
3946   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3947     return 0;
3948   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3949     return 0;
3950   }
3951   *bytes = end - cur;
3952   return 1;
3953 }
3954 
3955 // Map a block of memory.
3956 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3957                         char *addr, size_t bytes, bool read_only,
3958                         bool allow_exec) {
3959   int prot;
3960   int flags;
3961 
3962   if (read_only) {
3963     prot = PROT_READ;
3964     flags = MAP_SHARED;
3965   } else {
3966     prot = PROT_READ | PROT_WRITE;
3967     flags = MAP_PRIVATE;
3968   }
3969 
3970   if (allow_exec) {
3971     prot |= PROT_EXEC;
3972   }
3973 
3974   if (addr != NULL) {
3975     flags |= MAP_FIXED;
3976   }
3977 
3978   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3979                                      fd, file_offset);
3980   if (mapped_address == MAP_FAILED) {
3981     return NULL;
3982   }
3983   return mapped_address;
3984 }
3985 
3986 
3987 // Remap a block of memory.
3988 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3989                           char *addr, size_t bytes, bool read_only,
3990                           bool allow_exec) {
3991   // same as map_memory() on this OS
3992   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3993                         allow_exec);
3994 }
3995 
3996 
3997 // Unmap a block of memory.
3998 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3999   return munmap(addr, bytes) == 0;
4000 }
4001 
4002 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4003 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4004 // of a thread.
4005 //
4006 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4007 // the fast estimate available on the platform.
4008 
4009 jlong os::current_thread_cpu_time() {
4010 #ifdef __APPLE__
4011   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4012 #else
4013   Unimplemented();
4014   return 0;
4015 #endif
4016 }
4017 
4018 jlong os::thread_cpu_time(Thread* thread) {
4019 #ifdef __APPLE__
4020   return os::thread_cpu_time(thread, true /* user + sys */);
4021 #else
4022   Unimplemented();
4023   return 0;
4024 #endif
4025 }
4026 
4027 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4028 #ifdef __APPLE__
4029   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4030 #else
4031   Unimplemented();
4032   return 0;
4033 #endif
4034 }
4035 
4036 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4037 #ifdef __APPLE__
4038   struct thread_basic_info tinfo;
4039   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4040   kern_return_t kr;
4041   thread_t mach_thread;
4042 
4043   mach_thread = thread->osthread()->thread_id();
4044   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4045   if (kr != KERN_SUCCESS) {
4046     return -1;
4047   }
4048 
4049   if (user_sys_cpu_time) {
4050     jlong nanos;
4051     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4052     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4053     return nanos;
4054   } else {
4055     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4056   }
4057 #else
4058   Unimplemented();
4059   return 0;
4060 #endif
4061 }
4062 
4063 
4064 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4065   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4066   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4067   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4068   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4069 }
4070 
4071 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4072   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4073   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4074   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4075   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4076 }
4077 
4078 bool os::is_thread_cpu_time_supported() {
4079 #ifdef __APPLE__
4080   return true;
4081 #else
4082   return false;
4083 #endif
4084 }
4085 
4086 // System loadavg support.  Returns -1 if load average cannot be obtained.
4087 // Bsd doesn't yet have a (official) notion of processor sets,
4088 // so just return the system wide load average.
4089 int os::loadavg(double loadavg[], int nelem) {
4090   return ::getloadavg(loadavg, nelem);
4091 }
4092 
4093 void os::pause() {
4094   char filename[MAX_PATH];
4095   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4096     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4097   } else {
4098     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4099   }
4100 
4101   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4102   if (fd != -1) {
4103     struct stat buf;
4104     ::close(fd);
4105     while (::stat(filename, &buf) == 0) {
4106       (void)::poll(NULL, 0, 100);
4107     }
4108   } else {
4109     jio_fprintf(stderr,
4110                 "Could not open pause file '%s', continuing immediately.\n", filename);
4111   }
4112 }
4113 
4114 
4115 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4116 // comment paragraphs are worth repeating here:
4117 //
4118 // Assumption:
4119 //    Only one parker can exist on an event, which is why we allocate
4120 //    them per-thread. Multiple unparkers can coexist.
4121 //
4122 // _Event serves as a restricted-range semaphore.
4123 //   -1 : thread is blocked, i.e. there is a waiter
4124 //    0 : neutral: thread is running or ready,
4125 //        could have been signaled after a wait started
4126 //    1 : signaled - thread is running or ready
4127 //
4128 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4129 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4130 // For specifics regarding the bug see GLIBC BUGID 261237 :
4131 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4132 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4133 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4134 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4135 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4136 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4137 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4138 // of libpthread avoids the problem, but isn't practical.
4139 //
4140 // Possible remedies:
4141 //
4142 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4143 //      This is palliative and probabilistic, however.  If the thread is preempted
4144 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4145 //      than the minimum period may have passed, and the abstime may be stale (in the
4146 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4147 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4148 //
4149 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4150 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4151 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4152 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4153 //      thread.
4154 //
4155 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4156 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4157 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4158 //      This also works well.  In fact it avoids kernel-level scalability impediments
4159 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4160 //      timers in a graceful fashion.
4161 //
4162 // 4.   When the abstime value is in the past it appears that control returns
4163 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4164 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4165 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4166 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4167 //      It may be possible to avoid reinitialization by checking the return
4168 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4169 //      condvar we must establish the invariant that cond_signal() is only called
4170 //      within critical sections protected by the adjunct mutex.  This prevents
4171 //      cond_signal() from "seeing" a condvar that's in the midst of being
4172 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4173 //      desirable signal-after-unlock optimization that avoids futile context switching.
4174 //
4175 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4176 //      structure when a condvar is used or initialized.  cond_destroy()  would
4177 //      release the helper structure.  Our reinitialize-after-timedwait fix
4178 //      put excessive stress on malloc/free and locks protecting the c-heap.
4179 //
4180 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4181 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4182 // and only enabling the work-around for vulnerable environments.
4183 
4184 // utility to compute the abstime argument to timedwait:
4185 // millis is the relative timeout time
4186 // abstime will be the absolute timeout time
4187 // TODO: replace compute_abstime() with unpackTime()
4188 
4189 static struct timespec* compute_abstime(struct timespec* abstime,
4190                                         jlong millis) {
4191   if (millis < 0)  millis = 0;
4192   struct timeval now;
4193   int status = gettimeofday(&now, NULL);
4194   assert(status == 0, "gettimeofday");
4195   jlong seconds = millis / 1000;
4196   millis %= 1000;
4197   if (seconds > 50000000) { // see man cond_timedwait(3T)
4198     seconds = 50000000;
4199   }
4200   abstime->tv_sec = now.tv_sec  + seconds;
4201   long       usec = now.tv_usec + millis * 1000;
4202   if (usec >= 1000000) {
4203     abstime->tv_sec += 1;
4204     usec -= 1000000;
4205   }
4206   abstime->tv_nsec = usec * 1000;
4207   return abstime;
4208 }
4209 
4210 void os::PlatformEvent::park() {       // AKA "down()"
4211   // Transitions for _Event:
4212   //   -1 => -1 : illegal
4213   //    1 =>  0 : pass - return immediately
4214   //    0 => -1 : block; then set _Event to 0 before returning
4215 
4216   // Invariant: Only the thread associated with the Event/PlatformEvent
4217   // may call park().
4218   // TODO: assert that _Assoc != NULL or _Assoc == Self
4219   assert(_nParked == 0, "invariant");
4220 
4221   int v;
4222   for (;;) {
4223     v = _Event;
4224     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4225   }
4226   guarantee(v >= 0, "invariant");
4227   if (v == 0) {
4228     // Do this the hard way by blocking ...
4229     int status = pthread_mutex_lock(_mutex);
4230     assert_status(status == 0, status, "mutex_lock");
4231     guarantee(_nParked == 0, "invariant");
4232     ++_nParked;
4233     while (_Event < 0) {
4234       status = pthread_cond_wait(_cond, _mutex);
4235       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4236       // Treat this the same as if the wait was interrupted
4237       if (status == ETIMEDOUT) { status = EINTR; }
4238       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4239     }
4240     --_nParked;
4241 
4242     _Event = 0;
4243     status = pthread_mutex_unlock(_mutex);
4244     assert_status(status == 0, status, "mutex_unlock");
4245     // Paranoia to ensure our locked and lock-free paths interact
4246     // correctly with each other.
4247     OrderAccess::fence();
4248   }
4249   guarantee(_Event >= 0, "invariant");
4250 }
4251 
4252 int os::PlatformEvent::park(jlong millis) {
4253   // Transitions for _Event:
4254   //   -1 => -1 : illegal
4255   //    1 =>  0 : pass - return immediately
4256   //    0 => -1 : block; then set _Event to 0 before returning
4257 
4258   guarantee(_nParked == 0, "invariant");
4259 
4260   int v;
4261   for (;;) {
4262     v = _Event;
4263     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4264   }
4265   guarantee(v >= 0, "invariant");
4266   if (v != 0) return OS_OK;
4267 
4268   // We do this the hard way, by blocking the thread.
4269   // Consider enforcing a minimum timeout value.
4270   struct timespec abst;
4271   compute_abstime(&abst, millis);
4272 
4273   int ret = OS_TIMEOUT;
4274   int status = pthread_mutex_lock(_mutex);
4275   assert_status(status == 0, status, "mutex_lock");
4276   guarantee(_nParked == 0, "invariant");
4277   ++_nParked;
4278 
4279   // Object.wait(timo) will return because of
4280   // (a) notification
4281   // (b) timeout
4282   // (c) thread.interrupt
4283   //
4284   // Thread.interrupt and object.notify{All} both call Event::set.
4285   // That is, we treat thread.interrupt as a special case of notification.
4286   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4287   // We assume all ETIME returns are valid.
4288   //
4289   // TODO: properly differentiate simultaneous notify+interrupt.
4290   // In that case, we should propagate the notify to another waiter.
4291 
4292   while (_Event < 0) {
4293     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4294     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4295       pthread_cond_destroy(_cond);
4296       pthread_cond_init(_cond, NULL);
4297     }
4298     assert_status(status == 0 || status == EINTR ||
4299                   status == ETIMEDOUT,
4300                   status, "cond_timedwait");
4301     if (!FilterSpuriousWakeups) break;                 // previous semantics
4302     if (status == ETIMEDOUT) break;
4303     // We consume and ignore EINTR and spurious wakeups.
4304   }
4305   --_nParked;
4306   if (_Event >= 0) {
4307     ret = OS_OK;
4308   }
4309   _Event = 0;
4310   status = pthread_mutex_unlock(_mutex);
4311   assert_status(status == 0, status, "mutex_unlock");
4312   assert(_nParked == 0, "invariant");
4313   // Paranoia to ensure our locked and lock-free paths interact
4314   // correctly with each other.
4315   OrderAccess::fence();
4316   return ret;
4317 }
4318 
4319 void os::PlatformEvent::unpark() {
4320   // Transitions for _Event:
4321   //    0 => 1 : just return
4322   //    1 => 1 : just return
4323   //   -1 => either 0 or 1; must signal target thread
4324   //         That is, we can safely transition _Event from -1 to either
4325   //         0 or 1.
4326   // See also: "Semaphores in Plan 9" by Mullender & Cox
4327   //
4328   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4329   // that it will take two back-to-back park() calls for the owning
4330   // thread to block. This has the benefit of forcing a spurious return
4331   // from the first park() call after an unpark() call which will help
4332   // shake out uses of park() and unpark() without condition variables.
4333 
4334   if (Atomic::xchg(1, &_Event) >= 0) return;
4335 
4336   // Wait for the thread associated with the event to vacate
4337   int status = pthread_mutex_lock(_mutex);
4338   assert_status(status == 0, status, "mutex_lock");
4339   int AnyWaiters = _nParked;
4340   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4341   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4342     AnyWaiters = 0;
4343     pthread_cond_signal(_cond);
4344   }
4345   status = pthread_mutex_unlock(_mutex);
4346   assert_status(status == 0, status, "mutex_unlock");
4347   if (AnyWaiters != 0) {
4348     // Note that we signal() *after* dropping the lock for "immortal" Events.
4349     // This is safe and avoids a common class of  futile wakeups.  In rare
4350     // circumstances this can cause a thread to return prematurely from
4351     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4352     // will simply re-test the condition and re-park itself.
4353     // This provides particular benefit if the underlying platform does not
4354     // provide wait morphing.
4355     status = pthread_cond_signal(_cond);
4356     assert_status(status == 0, status, "cond_signal");
4357   }
4358 }
4359 
4360 
4361 // JSR166
4362 // -------------------------------------------------------
4363 
4364 // The solaris and bsd implementations of park/unpark are fairly
4365 // conservative for now, but can be improved. They currently use a
4366 // mutex/condvar pair, plus a a count.
4367 // Park decrements count if > 0, else does a condvar wait.  Unpark
4368 // sets count to 1 and signals condvar.  Only one thread ever waits
4369 // on the condvar. Contention seen when trying to park implies that someone
4370 // is unparking you, so don't wait. And spurious returns are fine, so there
4371 // is no need to track notifications.
4372 
4373 #define MAX_SECS 100000000
4374 
4375 // This code is common to bsd and solaris and will be moved to a
4376 // common place in dolphin.
4377 //
4378 // The passed in time value is either a relative time in nanoseconds
4379 // or an absolute time in milliseconds. Either way it has to be unpacked
4380 // into suitable seconds and nanoseconds components and stored in the
4381 // given timespec structure.
4382 // Given time is a 64-bit value and the time_t used in the timespec is only
4383 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4384 // overflow if times way in the future are given. Further on Solaris versions
4385 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4386 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4387 // As it will be 28 years before "now + 100000000" will overflow we can
4388 // ignore overflow and just impose a hard-limit on seconds using the value
4389 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4390 // years from "now".
4391 
4392 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4393   assert(time > 0, "convertTime");
4394 
4395   struct timeval now;
4396   int status = gettimeofday(&now, NULL);
4397   assert(status == 0, "gettimeofday");
4398 
4399   time_t max_secs = now.tv_sec + MAX_SECS;
4400 
4401   if (isAbsolute) {
4402     jlong secs = time / 1000;
4403     if (secs > max_secs) {
4404       absTime->tv_sec = max_secs;
4405     } else {
4406       absTime->tv_sec = secs;
4407     }
4408     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4409   } else {
4410     jlong secs = time / NANOSECS_PER_SEC;
4411     if (secs >= MAX_SECS) {
4412       absTime->tv_sec = max_secs;
4413       absTime->tv_nsec = 0;
4414     } else {
4415       absTime->tv_sec = now.tv_sec + secs;
4416       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4417       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4418         absTime->tv_nsec -= NANOSECS_PER_SEC;
4419         ++absTime->tv_sec; // note: this must be <= max_secs
4420       }
4421     }
4422   }
4423   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4424   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4425   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4426   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4427 }
4428 
4429 void Parker::park(bool isAbsolute, jlong time) {
4430   // Ideally we'd do something useful while spinning, such
4431   // as calling unpackTime().
4432 
4433   // Optional fast-path check:
4434   // Return immediately if a permit is available.
4435   // We depend on Atomic::xchg() having full barrier semantics
4436   // since we are doing a lock-free update to _counter.
4437   if (Atomic::xchg(0, &_counter) > 0) return;
4438 
4439   Thread* thread = Thread::current();
4440   assert(thread->is_Java_thread(), "Must be JavaThread");
4441   JavaThread *jt = (JavaThread *)thread;
4442 
4443   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4444   // Check interrupt before trying to wait
4445   if (Thread::is_interrupted(thread, false)) {
4446     return;
4447   }
4448 
4449   // Next, demultiplex/decode time arguments
4450   struct timespec absTime;
4451   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4452     return;
4453   }
4454   if (time > 0) {
4455     unpackTime(&absTime, isAbsolute, time);
4456   }
4457 
4458 
4459   // Enter safepoint region
4460   // Beware of deadlocks such as 6317397.
4461   // The per-thread Parker:: mutex is a classic leaf-lock.
4462   // In particular a thread must never block on the Threads_lock while
4463   // holding the Parker:: mutex.  If safepoints are pending both the
4464   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4465   ThreadBlockInVM tbivm(jt);
4466 
4467   // Don't wait if cannot get lock since interference arises from
4468   // unblocking.  Also. check interrupt before trying wait
4469   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4470     return;
4471   }
4472 
4473   int status;
4474   if (_counter > 0)  { // no wait needed
4475     _counter = 0;
4476     status = pthread_mutex_unlock(_mutex);
4477     assert(status == 0, "invariant");
4478     // Paranoia to ensure our locked and lock-free paths interact
4479     // correctly with each other and Java-level accesses.
4480     OrderAccess::fence();
4481     return;
4482   }
4483 
4484 #ifdef ASSERT
4485   // Don't catch signals while blocked; let the running threads have the signals.
4486   // (This allows a debugger to break into the running thread.)
4487   sigset_t oldsigs;
4488   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4489   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4490 #endif
4491 
4492   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4493   jt->set_suspend_equivalent();
4494   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4495 
4496   if (time == 0) {
4497     status = pthread_cond_wait(_cond, _mutex);
4498   } else {
4499     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4500     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4501       pthread_cond_destroy(_cond);
4502       pthread_cond_init(_cond, NULL);
4503     }
4504   }
4505   assert_status(status == 0 || status == EINTR ||
4506                 status == ETIMEDOUT,
4507                 status, "cond_timedwait");
4508 
4509 #ifdef ASSERT
4510   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4511 #endif
4512 
4513   _counter = 0;
4514   status = pthread_mutex_unlock(_mutex);
4515   assert_status(status == 0, status, "invariant");
4516   // Paranoia to ensure our locked and lock-free paths interact
4517   // correctly with each other and Java-level accesses.
4518   OrderAccess::fence();
4519 
4520   // If externally suspended while waiting, re-suspend
4521   if (jt->handle_special_suspend_equivalent_condition()) {
4522     jt->java_suspend_self();
4523   }
4524 }
4525 
4526 void Parker::unpark() {
4527   int status = pthread_mutex_lock(_mutex);
4528   assert(status == 0, "invariant");
4529   const int s = _counter;
4530   _counter = 1;
4531   if (s < 1) {
4532     if (WorkAroundNPTLTimedWaitHang) {
4533       status = pthread_cond_signal(_cond);
4534       assert(status == 0, "invariant");
4535       status = pthread_mutex_unlock(_mutex);
4536       assert(status == 0, "invariant");
4537     } else {
4538       status = pthread_mutex_unlock(_mutex);
4539       assert(status == 0, "invariant");
4540       status = pthread_cond_signal(_cond);
4541       assert(status == 0, "invariant");
4542     }
4543   } else {
4544     pthread_mutex_unlock(_mutex);
4545     assert(status == 0, "invariant");
4546   }
4547 }
4548 
4549 
4550 // Darwin has no "environ" in a dynamic library.
4551 #ifdef __APPLE__
4552   #include <crt_externs.h>
4553   #define environ (*_NSGetEnviron())
4554 #else
4555 extern char** environ;
4556 #endif
4557 
4558 // Run the specified command in a separate process. Return its exit value,
4559 // or -1 on failure (e.g. can't fork a new process).
4560 // Unlike system(), this function can be called from signal handler. It
4561 // doesn't block SIGINT et al.
4562 int os::fork_and_exec(char* cmd) {
4563   const char * argv[4] = {"sh", "-c", cmd, NULL};
4564 
4565   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4566   // pthread_atfork handlers and reset pthread library. All we need is a
4567   // separate process to execve. Make a direct syscall to fork process.
4568   // On IA64 there's no fork syscall, we have to use fork() and hope for
4569   // the best...
4570   pid_t pid = fork();
4571 
4572   if (pid < 0) {
4573     // fork failed
4574     return -1;
4575 
4576   } else if (pid == 0) {
4577     // child process
4578 
4579     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4580     // first to kill every thread on the thread list. Because this list is
4581     // not reset by fork() (see notes above), execve() will instead kill
4582     // every thread in the parent process. We know this is the only thread
4583     // in the new process, so make a system call directly.
4584     // IA64 should use normal execve() from glibc to match the glibc fork()
4585     // above.
4586     execve("/bin/sh", (char* const*)argv, environ);
4587 
4588     // execve failed
4589     _exit(-1);
4590 
4591   } else  {
4592     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4593     // care about the actual exit code, for now.
4594 
4595     int status;
4596 
4597     // Wait for the child process to exit.  This returns immediately if
4598     // the child has already exited. */
4599     while (waitpid(pid, &status, 0) < 0) {
4600       switch (errno) {
4601       case ECHILD: return 0;
4602       case EINTR: break;
4603       default: return -1;
4604       }
4605     }
4606 
4607     if (WIFEXITED(status)) {
4608       // The child exited normally; get its exit code.
4609       return WEXITSTATUS(status);
4610     } else if (WIFSIGNALED(status)) {
4611       // The child exited because of a signal
4612       // The best value to return is 0x80 + signal number,
4613       // because that is what all Unix shells do, and because
4614       // it allows callers to distinguish between process exit and
4615       // process death by signal.
4616       return 0x80 + WTERMSIG(status);
4617     } else {
4618       // Unknown exit code; pass it through
4619       return status;
4620     }
4621   }
4622 }
4623 
4624 // is_headless_jre()
4625 //
4626 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4627 // in order to report if we are running in a headless jre
4628 //
4629 // Since JDK8 xawt/libmawt.so was moved into the same directory
4630 // as libawt.so, and renamed libawt_xawt.so
4631 //
4632 bool os::is_headless_jre() {
4633 #ifdef __APPLE__
4634   // We no longer build headless-only on Mac OS X
4635   return false;
4636 #else
4637   struct stat statbuf;
4638   char buf[MAXPATHLEN];
4639   char libmawtpath[MAXPATHLEN];
4640   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4641   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4642   char *p;
4643 
4644   // Get path to libjvm.so
4645   os::jvm_path(buf, sizeof(buf));
4646 
4647   // Get rid of libjvm.so
4648   p = strrchr(buf, '/');
4649   if (p == NULL) {
4650     return false;
4651   } else {
4652     *p = '\0';
4653   }
4654 
4655   // Get rid of client or server
4656   p = strrchr(buf, '/');
4657   if (p == NULL) {
4658     return false;
4659   } else {
4660     *p = '\0';
4661   }
4662 
4663   // check xawt/libmawt.so
4664   strcpy(libmawtpath, buf);
4665   strcat(libmawtpath, xawtstr);
4666   if (::stat(libmawtpath, &statbuf) == 0) return false;
4667 
4668   // check libawt_xawt.so
4669   strcpy(libmawtpath, buf);
4670   strcat(libmawtpath, new_xawtstr);
4671   if (::stat(libmawtpath, &statbuf) == 0) return false;
4672 
4673   return true;
4674 #endif
4675 }
4676 
4677 // Get the default path to the core file
4678 // Returns the length of the string
4679 int os::get_core_path(char* buffer, size_t bufferSize) {
4680   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4681 
4682   // Truncate if theoretical string was longer than bufferSize
4683   n = MIN2(n, (int)bufferSize);
4684 
4685   return n;
4686 }
4687 
4688 #ifndef PRODUCT
4689 void TestReserveMemorySpecial_test() {
4690   // No tests available for this platform
4691 }
4692 #endif