1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/semaphore.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   } else {
1002     const char* cwd = get_current_directory(NULL, 0);
1003     int pid = current_process_id();
1004     if (cwd != NULL) {
1005       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1006     } else {
1007       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1008     }
1009 
1010     if (dumpFile == NULL &&
1011        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1012                  == INVALID_HANDLE_VALUE) {
1013       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1014       status = false;
1015     }
1016   }
1017   VMError::record_coredump_status(buffer, status);
1018 }
1019 
1020 void os::abort(bool dump_core, void* siginfo, void* context) {
1021   HINSTANCE dbghelp;
1022   EXCEPTION_POINTERS ep;
1023   MINIDUMP_EXCEPTION_INFORMATION mei;
1024   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1025 
1026   HANDLE hProcess = GetCurrentProcess();
1027   DWORD processId = GetCurrentProcessId();
1028   MINIDUMP_TYPE dumpType;
1029 
1030   shutdown();
1031   if (!dump_core || dumpFile == NULL) {
1032     if (dumpFile != NULL) {
1033       CloseHandle(dumpFile);
1034     }
1035     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1036   }
1037 
1038   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1039 
1040   if (dbghelp == NULL) {
1041     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1042     CloseHandle(dumpFile);
1043     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1044   }
1045 
1046   _MiniDumpWriteDump =
1047       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1048                                     PMINIDUMP_EXCEPTION_INFORMATION,
1049                                     PMINIDUMP_USER_STREAM_INFORMATION,
1050                                     PMINIDUMP_CALLBACK_INFORMATION),
1051                                     GetProcAddress(dbghelp,
1052                                     "MiniDumpWriteDump"));
1053 
1054   if (_MiniDumpWriteDump == NULL) {
1055     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1056     CloseHandle(dumpFile);
1057     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1058   }
1059 
1060   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1061 
1062   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1063   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1064 #if API_VERSION_NUMBER >= 11
1065   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1066                              MiniDumpWithUnloadedModules);
1067 #endif
1068 
1069   if (siginfo != NULL && context != NULL) {
1070     ep.ContextRecord = (PCONTEXT) context;
1071     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1072 
1073     mei.ThreadId = GetCurrentThreadId();
1074     mei.ExceptionPointers = &ep;
1075     pmei = &mei;
1076   } else {
1077     pmei = NULL;
1078   }
1079 
1080   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1081   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1082   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1083       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1084     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1085   }
1086   CloseHandle(dumpFile);
1087   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1088 }
1089 
1090 void os::abort(bool dump_core) {
1091   abort(dump_core, NULL, NULL);
1092 }
1093 
1094 // Die immediately, no exit hook, no abort hook, no cleanup.
1095 void os::die() {
1096   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1097 }
1098 
1099 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1100 //  * dirent_md.c       1.15 00/02/02
1101 //
1102 // The declarations for DIR and struct dirent are in jvm_win32.h.
1103 
1104 // Caller must have already run dirname through JVM_NativePath, which removes
1105 // duplicate slashes and converts all instances of '/' into '\\'.
1106 
1107 DIR * os::opendir(const char *dirname) {
1108   assert(dirname != NULL, "just checking");   // hotspot change
1109   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1110   DWORD fattr;                                // hotspot change
1111   char alt_dirname[4] = { 0, 0, 0, 0 };
1112 
1113   if (dirp == 0) {
1114     errno = ENOMEM;
1115     return 0;
1116   }
1117 
1118   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1119   // as a directory in FindFirstFile().  We detect this case here and
1120   // prepend the current drive name.
1121   //
1122   if (dirname[1] == '\0' && dirname[0] == '\\') {
1123     alt_dirname[0] = _getdrive() + 'A' - 1;
1124     alt_dirname[1] = ':';
1125     alt_dirname[2] = '\\';
1126     alt_dirname[3] = '\0';
1127     dirname = alt_dirname;
1128   }
1129 
1130   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1131   if (dirp->path == 0) {
1132     free(dirp);
1133     errno = ENOMEM;
1134     return 0;
1135   }
1136   strcpy(dirp->path, dirname);
1137 
1138   fattr = GetFileAttributes(dirp->path);
1139   if (fattr == 0xffffffff) {
1140     free(dirp->path);
1141     free(dirp);
1142     errno = ENOENT;
1143     return 0;
1144   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOTDIR;
1148     return 0;
1149   }
1150 
1151   // Append "*.*", or possibly "\\*.*", to path
1152   if (dirp->path[1] == ':' &&
1153       (dirp->path[2] == '\0' ||
1154       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1155     // No '\\' needed for cases like "Z:" or "Z:\"
1156     strcat(dirp->path, "*.*");
1157   } else {
1158     strcat(dirp->path, "\\*.*");
1159   }
1160 
1161   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1162   if (dirp->handle == INVALID_HANDLE_VALUE) {
1163     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1164       free(dirp->path);
1165       free(dirp);
1166       errno = EACCES;
1167       return 0;
1168     }
1169   }
1170   return dirp;
1171 }
1172 
1173 // parameter dbuf unused on Windows
1174 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1175   assert(dirp != NULL, "just checking");      // hotspot change
1176   if (dirp->handle == INVALID_HANDLE_VALUE) {
1177     return 0;
1178   }
1179 
1180   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1181 
1182   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1183     if (GetLastError() == ERROR_INVALID_HANDLE) {
1184       errno = EBADF;
1185       return 0;
1186     }
1187     FindClose(dirp->handle);
1188     dirp->handle = INVALID_HANDLE_VALUE;
1189   }
1190 
1191   return &dirp->dirent;
1192 }
1193 
1194 int os::closedir(DIR *dirp) {
1195   assert(dirp != NULL, "just checking");      // hotspot change
1196   if (dirp->handle != INVALID_HANDLE_VALUE) {
1197     if (!FindClose(dirp->handle)) {
1198       errno = EBADF;
1199       return -1;
1200     }
1201     dirp->handle = INVALID_HANDLE_VALUE;
1202   }
1203   free(dirp->path);
1204   free(dirp);
1205   return 0;
1206 }
1207 
1208 // This must be hard coded because it's the system's temporary
1209 // directory not the java application's temp directory, ala java.io.tmpdir.
1210 const char* os::get_temp_directory() {
1211   static char path_buf[MAX_PATH];
1212   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1213     return path_buf;
1214   } else {
1215     path_buf[0] = '\0';
1216     return path_buf;
1217   }
1218 }
1219 
1220 static bool file_exists(const char* filename) {
1221   if (filename == NULL || strlen(filename) == 0) {
1222     return false;
1223   }
1224   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1225 }
1226 
1227 bool os::dll_build_name(char *buffer, size_t buflen,
1228                         const char* pname, const char* fname) {
1229   bool retval = false;
1230   const size_t pnamelen = pname ? strlen(pname) : 0;
1231   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1232 
1233   // Return error on buffer overflow.
1234   if (pnamelen + strlen(fname) + 10 > buflen) {
1235     return retval;
1236   }
1237 
1238   if (pnamelen == 0) {
1239     jio_snprintf(buffer, buflen, "%s.dll", fname);
1240     retval = true;
1241   } else if (c == ':' || c == '\\') {
1242     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1243     retval = true;
1244   } else if (strchr(pname, *os::path_separator()) != NULL) {
1245     int n;
1246     char** pelements = split_path(pname, &n);
1247     if (pelements == NULL) {
1248       return false;
1249     }
1250     for (int i = 0; i < n; i++) {
1251       char* path = pelements[i];
1252       // Really shouldn't be NULL, but check can't hurt
1253       size_t plen = (path == NULL) ? 0 : strlen(path);
1254       if (plen == 0) {
1255         continue; // skip the empty path values
1256       }
1257       const char lastchar = path[plen - 1];
1258       if (lastchar == ':' || lastchar == '\\') {
1259         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1260       } else {
1261         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1262       }
1263       if (file_exists(buffer)) {
1264         retval = true;
1265         break;
1266       }
1267     }
1268     // release the storage
1269     for (int i = 0; i < n; i++) {
1270       if (pelements[i] != NULL) {
1271         FREE_C_HEAP_ARRAY(char, pelements[i]);
1272       }
1273     }
1274     if (pelements != NULL) {
1275       FREE_C_HEAP_ARRAY(char*, pelements);
1276     }
1277   } else {
1278     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1279     retval = true;
1280   }
1281   return retval;
1282 }
1283 
1284 // Needs to be in os specific directory because windows requires another
1285 // header file <direct.h>
1286 const char* os::get_current_directory(char *buf, size_t buflen) {
1287   int n = static_cast<int>(buflen);
1288   if (buflen > INT_MAX)  n = INT_MAX;
1289   return _getcwd(buf, n);
1290 }
1291 
1292 //-----------------------------------------------------------
1293 // Helper functions for fatal error handler
1294 #ifdef _WIN64
1295 // Helper routine which returns true if address in
1296 // within the NTDLL address space.
1297 //
1298 static bool _addr_in_ntdll(address addr) {
1299   HMODULE hmod;
1300   MODULEINFO minfo;
1301 
1302   hmod = GetModuleHandle("NTDLL.DLL");
1303   if (hmod == NULL) return false;
1304   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1305                                           &minfo, sizeof(MODULEINFO))) {
1306     return false;
1307   }
1308 
1309   if ((addr >= minfo.lpBaseOfDll) &&
1310       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1311     return true;
1312   } else {
1313     return false;
1314   }
1315 }
1316 #endif
1317 
1318 struct _modinfo {
1319   address addr;
1320   char*   full_path;   // point to a char buffer
1321   int     buflen;      // size of the buffer
1322   address base_addr;
1323 };
1324 
1325 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1326                                   address top_address, void * param) {
1327   struct _modinfo *pmod = (struct _modinfo *)param;
1328   if (!pmod) return -1;
1329 
1330   if (base_addr   <= pmod->addr &&
1331       top_address > pmod->addr) {
1332     // if a buffer is provided, copy path name to the buffer
1333     if (pmod->full_path) {
1334       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1335     }
1336     pmod->base_addr = base_addr;
1337     return 1;
1338   }
1339   return 0;
1340 }
1341 
1342 bool os::dll_address_to_library_name(address addr, char* buf,
1343                                      int buflen, int* offset) {
1344   // buf is not optional, but offset is optional
1345   assert(buf != NULL, "sanity check");
1346 
1347 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1348 //       return the full path to the DLL file, sometimes it returns path
1349 //       to the corresponding PDB file (debug info); sometimes it only
1350 //       returns partial path, which makes life painful.
1351 
1352   struct _modinfo mi;
1353   mi.addr      = addr;
1354   mi.full_path = buf;
1355   mi.buflen    = buflen;
1356   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1357     // buf already contains path name
1358     if (offset) *offset = addr - mi.base_addr;
1359     return true;
1360   }
1361 
1362   buf[0] = '\0';
1363   if (offset) *offset = -1;
1364   return false;
1365 }
1366 
1367 bool os::dll_address_to_function_name(address addr, char *buf,
1368                                       int buflen, int *offset) {
1369   // buf is not optional, but offset is optional
1370   assert(buf != NULL, "sanity check");
1371 
1372   if (Decoder::decode(addr, buf, buflen, offset)) {
1373     return true;
1374   }
1375   if (offset != NULL)  *offset  = -1;
1376   buf[0] = '\0';
1377   return false;
1378 }
1379 
1380 // save the start and end address of jvm.dll into param[0] and param[1]
1381 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1382                            address top_address, void * param) {
1383   if (!param) return -1;
1384 
1385   if (base_addr   <= (address)_locate_jvm_dll &&
1386       top_address > (address)_locate_jvm_dll) {
1387     ((address*)param)[0] = base_addr;
1388     ((address*)param)[1] = top_address;
1389     return 1;
1390   }
1391   return 0;
1392 }
1393 
1394 address vm_lib_location[2];    // start and end address of jvm.dll
1395 
1396 // check if addr is inside jvm.dll
1397 bool os::address_is_in_vm(address addr) {
1398   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1399     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1400       assert(false, "Can't find jvm module.");
1401       return false;
1402     }
1403   }
1404 
1405   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1406 }
1407 
1408 // print module info; param is outputStream*
1409 static int _print_module(const char* fname, address base_address,
1410                          address top_address, void* param) {
1411   if (!param) return -1;
1412 
1413   outputStream* st = (outputStream*)param;
1414 
1415   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1416   return 0;
1417 }
1418 
1419 // Loads .dll/.so and
1420 // in case of error it checks if .dll/.so was built for the
1421 // same architecture as Hotspot is running on
1422 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1423   void * result = LoadLibrary(name);
1424   if (result != NULL) {
1425     return result;
1426   }
1427 
1428   DWORD errcode = GetLastError();
1429   if (errcode == ERROR_MOD_NOT_FOUND) {
1430     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1431     ebuf[ebuflen - 1] = '\0';
1432     return NULL;
1433   }
1434 
1435   // Parsing dll below
1436   // If we can read dll-info and find that dll was built
1437   // for an architecture other than Hotspot is running in
1438   // - then print to buffer "DLL was built for a different architecture"
1439   // else call os::lasterror to obtain system error message
1440 
1441   // Read system error message into ebuf
1442   // It may or may not be overwritten below (in the for loop and just above)
1443   lasterror(ebuf, (size_t) ebuflen);
1444   ebuf[ebuflen - 1] = '\0';
1445   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1446   if (fd < 0) {
1447     return NULL;
1448   }
1449 
1450   uint32_t signature_offset;
1451   uint16_t lib_arch = 0;
1452   bool failed_to_get_lib_arch =
1453     ( // Go to position 3c in the dll
1454      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1455      ||
1456      // Read location of signature
1457      (sizeof(signature_offset) !=
1458      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1459      ||
1460      // Go to COFF File Header in dll
1461      // that is located after "signature" (4 bytes long)
1462      (os::seek_to_file_offset(fd,
1463      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1464      ||
1465      // Read field that contains code of architecture
1466      // that dll was built for
1467      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1468     );
1469 
1470   ::close(fd);
1471   if (failed_to_get_lib_arch) {
1472     // file i/o error - report os::lasterror(...) msg
1473     return NULL;
1474   }
1475 
1476   typedef struct {
1477     uint16_t arch_code;
1478     char* arch_name;
1479   } arch_t;
1480 
1481   static const arch_t arch_array[] = {
1482     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1483     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1484     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1485   };
1486 #if   (defined _M_IA64)
1487   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1488 #elif (defined _M_AMD64)
1489   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1490 #elif (defined _M_IX86)
1491   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1492 #else
1493   #error Method os::dll_load requires that one of following \
1494          is defined :_M_IA64,_M_AMD64 or _M_IX86
1495 #endif
1496 
1497 
1498   // Obtain a string for printf operation
1499   // lib_arch_str shall contain string what platform this .dll was built for
1500   // running_arch_str shall string contain what platform Hotspot was built for
1501   char *running_arch_str = NULL, *lib_arch_str = NULL;
1502   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1503     if (lib_arch == arch_array[i].arch_code) {
1504       lib_arch_str = arch_array[i].arch_name;
1505     }
1506     if (running_arch == arch_array[i].arch_code) {
1507       running_arch_str = arch_array[i].arch_name;
1508     }
1509   }
1510 
1511   assert(running_arch_str,
1512          "Didn't find running architecture code in arch_array");
1513 
1514   // If the architecture is right
1515   // but some other error took place - report os::lasterror(...) msg
1516   if (lib_arch == running_arch) {
1517     return NULL;
1518   }
1519 
1520   if (lib_arch_str != NULL) {
1521     ::_snprintf(ebuf, ebuflen - 1,
1522                 "Can't load %s-bit .dll on a %s-bit platform",
1523                 lib_arch_str, running_arch_str);
1524   } else {
1525     // don't know what architecture this dll was build for
1526     ::_snprintf(ebuf, ebuflen - 1,
1527                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1528                 lib_arch, running_arch_str);
1529   }
1530 
1531   return NULL;
1532 }
1533 
1534 void os::print_dll_info(outputStream *st) {
1535   st->print_cr("Dynamic libraries:");
1536   get_loaded_modules_info(_print_module, (void *)st);
1537 }
1538 
1539 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1540   HANDLE   hProcess;
1541 
1542 # define MAX_NUM_MODULES 128
1543   HMODULE     modules[MAX_NUM_MODULES];
1544   static char filename[MAX_PATH];
1545   int         result = 0;
1546 
1547   if (!os::PSApiDll::PSApiAvailable()) {
1548     return 0;
1549   }
1550 
1551   int pid = os::current_process_id();
1552   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1553                          FALSE, pid);
1554   if (hProcess == NULL) return 0;
1555 
1556   DWORD size_needed;
1557   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1558                                         sizeof(modules), &size_needed)) {
1559     CloseHandle(hProcess);
1560     return 0;
1561   }
1562 
1563   // number of modules that are currently loaded
1564   int num_modules = size_needed / sizeof(HMODULE);
1565 
1566   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1567     // Get Full pathname:
1568     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1569                                            filename, sizeof(filename))) {
1570       filename[0] = '\0';
1571     }
1572 
1573     MODULEINFO modinfo;
1574     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1575                                             &modinfo, sizeof(modinfo))) {
1576       modinfo.lpBaseOfDll = NULL;
1577       modinfo.SizeOfImage = 0;
1578     }
1579 
1580     // Invoke callback function
1581     result = callback(filename, (address)modinfo.lpBaseOfDll,
1582                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1583     if (result) break;
1584   }
1585 
1586   CloseHandle(hProcess);
1587   return result;
1588 }
1589 
1590 void os::print_os_info_brief(outputStream* st) {
1591   os::print_os_info(st);
1592 }
1593 
1594 void os::print_os_info(outputStream* st) {
1595 #ifdef ASSERT
1596   char buffer[1024];
1597   DWORD size = sizeof(buffer);
1598   st->print(" HostName: ");
1599   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1600     st->print("%s", buffer);
1601   } else {
1602     st->print("N/A");
1603   }
1604 #endif
1605   st->print(" OS:");
1606   os::win32::print_windows_version(st);
1607 }
1608 
1609 void os::win32::print_windows_version(outputStream* st) {
1610   OSVERSIONINFOEX osvi;
1611   VS_FIXEDFILEINFO *file_info;
1612   TCHAR kernel32_path[MAX_PATH];
1613   UINT len, ret;
1614 
1615   // Use the GetVersionEx information to see if we're on a server or
1616   // workstation edition of Windows. Starting with Windows 8.1 we can't
1617   // trust the OS version information returned by this API.
1618   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1619   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1620   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1621     st->print_cr("Call to GetVersionEx failed");
1622     return;
1623   }
1624   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1625 
1626   // Get the full path to \Windows\System32\kernel32.dll and use that for
1627   // determining what version of Windows we're running on.
1628   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1629   ret = GetSystemDirectory(kernel32_path, len);
1630   if (ret == 0 || ret > len) {
1631     st->print_cr("Call to GetSystemDirectory failed");
1632     return;
1633   }
1634   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1635 
1636   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1637   if (version_size == 0) {
1638     st->print_cr("Call to GetFileVersionInfoSize failed");
1639     return;
1640   }
1641 
1642   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1643   if (version_info == NULL) {
1644     st->print_cr("Failed to allocate version_info");
1645     return;
1646   }
1647 
1648   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1649     os::free(version_info);
1650     st->print_cr("Call to GetFileVersionInfo failed");
1651     return;
1652   }
1653 
1654   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1655     os::free(version_info);
1656     st->print_cr("Call to VerQueryValue failed");
1657     return;
1658   }
1659 
1660   int major_version = HIWORD(file_info->dwProductVersionMS);
1661   int minor_version = LOWORD(file_info->dwProductVersionMS);
1662   int build_number = HIWORD(file_info->dwProductVersionLS);
1663   int build_minor = LOWORD(file_info->dwProductVersionLS);
1664   int os_vers = major_version * 1000 + minor_version;
1665   os::free(version_info);
1666 
1667   st->print(" Windows ");
1668   switch (os_vers) {
1669 
1670   case 6000:
1671     if (is_workstation) {
1672       st->print("Vista");
1673     } else {
1674       st->print("Server 2008");
1675     }
1676     break;
1677 
1678   case 6001:
1679     if (is_workstation) {
1680       st->print("7");
1681     } else {
1682       st->print("Server 2008 R2");
1683     }
1684     break;
1685 
1686   case 6002:
1687     if (is_workstation) {
1688       st->print("8");
1689     } else {
1690       st->print("Server 2012");
1691     }
1692     break;
1693 
1694   case 6003:
1695     if (is_workstation) {
1696       st->print("8.1");
1697     } else {
1698       st->print("Server 2012 R2");
1699     }
1700     break;
1701 
1702   case 10000:
1703     if (is_workstation) {
1704       st->print("10");
1705     } else {
1706       // The server version name of Windows 10 is not known at this time
1707       st->print("%d.%d", major_version, minor_version);
1708     }
1709     break;
1710 
1711   default:
1712     // Unrecognized windows, print out its major and minor versions
1713     st->print("%d.%d", major_version, minor_version);
1714     break;
1715   }
1716 
1717   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1718   // find out whether we are running on 64 bit processor or not
1719   SYSTEM_INFO si;
1720   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1721   os::Kernel32Dll::GetNativeSystemInfo(&si);
1722   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1723     st->print(" , 64 bit");
1724   }
1725 
1726   st->print(" Build %d", build_number);
1727   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1728   st->cr();
1729 }
1730 
1731 void os::pd_print_cpu_info(outputStream* st) {
1732   // Nothing to do for now.
1733 }
1734 
1735 void os::print_memory_info(outputStream* st) {
1736   st->print("Memory:");
1737   st->print(" %dk page", os::vm_page_size()>>10);
1738 
1739   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1740   // value if total memory is larger than 4GB
1741   MEMORYSTATUSEX ms;
1742   ms.dwLength = sizeof(ms);
1743   GlobalMemoryStatusEx(&ms);
1744 
1745   st->print(", physical %uk", os::physical_memory() >> 10);
1746   st->print("(%uk free)", os::available_memory() >> 10);
1747 
1748   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1749   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1750   st->cr();
1751 }
1752 
1753 void os::print_siginfo(outputStream *st, void *siginfo) {
1754   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1755   st->print("siginfo:");
1756   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1757 
1758   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1759       er->NumberParameters >= 2) {
1760     switch (er->ExceptionInformation[0]) {
1761     case 0: st->print(", reading address"); break;
1762     case 1: st->print(", writing address"); break;
1763     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1764                        er->ExceptionInformation[0]);
1765     }
1766     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1767   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1768              er->NumberParameters >= 2 && UseSharedSpaces) {
1769     FileMapInfo* mapinfo = FileMapInfo::current_info();
1770     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1771       st->print("\n\nError accessing class data sharing archive."       \
1772                 " Mapped file inaccessible during execution, "          \
1773                 " possible disk/network problem.");
1774     }
1775   } else {
1776     int num = er->NumberParameters;
1777     if (num > 0) {
1778       st->print(", ExceptionInformation=");
1779       for (int i = 0; i < num; i++) {
1780         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1781       }
1782     }
1783   }
1784   st->cr();
1785 }
1786 
1787 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1788   // do nothing
1789 }
1790 
1791 static char saved_jvm_path[MAX_PATH] = {0};
1792 
1793 // Find the full path to the current module, jvm.dll
1794 void os::jvm_path(char *buf, jint buflen) {
1795   // Error checking.
1796   if (buflen < MAX_PATH) {
1797     assert(false, "must use a large-enough buffer");
1798     buf[0] = '\0';
1799     return;
1800   }
1801   // Lazy resolve the path to current module.
1802   if (saved_jvm_path[0] != 0) {
1803     strcpy(buf, saved_jvm_path);
1804     return;
1805   }
1806 
1807   buf[0] = '\0';
1808   if (Arguments::sun_java_launcher_is_altjvm()) {
1809     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1810     // for a JAVA_HOME environment variable and fix up the path so it
1811     // looks like jvm.dll is installed there (append a fake suffix
1812     // hotspot/jvm.dll).
1813     char* java_home_var = ::getenv("JAVA_HOME");
1814     if (java_home_var != NULL && java_home_var[0] != 0 &&
1815         strlen(java_home_var) < (size_t)buflen) {
1816       strncpy(buf, java_home_var, buflen);
1817 
1818       // determine if this is a legacy image or modules image
1819       // modules image doesn't have "jre" subdirectory
1820       size_t len = strlen(buf);
1821       char* jrebin_p = buf + len;
1822       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1823       if (0 != _access(buf, 0)) {
1824         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1825       }
1826       len = strlen(buf);
1827       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1828     }
1829   }
1830 
1831   if (buf[0] == '\0') {
1832     GetModuleFileName(vm_lib_handle, buf, buflen);
1833   }
1834   strncpy(saved_jvm_path, buf, MAX_PATH);
1835   saved_jvm_path[MAX_PATH - 1] = '\0';
1836 }
1837 
1838 
1839 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1840 #ifndef _WIN64
1841   st->print("_");
1842 #endif
1843 }
1844 
1845 
1846 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1847 #ifndef _WIN64
1848   st->print("@%d", args_size  * sizeof(int));
1849 #endif
1850 }
1851 
1852 // This method is a copy of JDK's sysGetLastErrorString
1853 // from src/windows/hpi/src/system_md.c
1854 
1855 size_t os::lasterror(char* buf, size_t len) {
1856   DWORD errval;
1857 
1858   if ((errval = GetLastError()) != 0) {
1859     // DOS error
1860     size_t n = (size_t)FormatMessage(
1861                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1862                                      NULL,
1863                                      errval,
1864                                      0,
1865                                      buf,
1866                                      (DWORD)len,
1867                                      NULL);
1868     if (n > 3) {
1869       // Drop final '.', CR, LF
1870       if (buf[n - 1] == '\n') n--;
1871       if (buf[n - 1] == '\r') n--;
1872       if (buf[n - 1] == '.') n--;
1873       buf[n] = '\0';
1874     }
1875     return n;
1876   }
1877 
1878   if (errno != 0) {
1879     // C runtime error that has no corresponding DOS error code
1880     const char* s = strerror(errno);
1881     size_t n = strlen(s);
1882     if (n >= len) n = len - 1;
1883     strncpy(buf, s, n);
1884     buf[n] = '\0';
1885     return n;
1886   }
1887 
1888   return 0;
1889 }
1890 
1891 int os::get_last_error() {
1892   DWORD error = GetLastError();
1893   if (error == 0) {
1894     error = errno;
1895   }
1896   return (int)error;
1897 }
1898 
1899 Semaphore::Semaphore(uint value) {
1900   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1901 
1902   assert(_semaphore != NULL, err_msg("CreateSemaphore failed: %ld", GetLastError()));
1903 }
1904 
1905 Semaphore::~Semaphore() {
1906   if (_semaphore != NULL) {
1907     ::CloseHandle(_semaphore);
1908   }
1909 }
1910 
1911 void Semaphore::signal(uint count) {
1912   BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1913 
1914   assert(ret != 0, err_msg("ReleaseSemaphore failed: %d", GetLastError()));
1915 }
1916 
1917 void Semaphore::signal() {
1918   signal(1);
1919 }
1920 
1921 void Semaphore::wait() {
1922   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1923   assert(ret == WAIT_OBJECT_0, err_msg("WaitForSingleObject failed: %d", GetLastError()));
1924 }
1925 
1926 // sun.misc.Signal
1927 // NOTE that this is a workaround for an apparent kernel bug where if
1928 // a signal handler for SIGBREAK is installed then that signal handler
1929 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1930 // See bug 4416763.
1931 static void (*sigbreakHandler)(int) = NULL;
1932 
1933 static void UserHandler(int sig, void *siginfo, void *context) {
1934   os::signal_notify(sig);
1935   // We need to reinstate the signal handler each time...
1936   os::signal(sig, (void*)UserHandler);
1937 }
1938 
1939 void* os::user_handler() {
1940   return (void*) UserHandler;
1941 }
1942 
1943 void* os::signal(int signal_number, void* handler) {
1944   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1945     void (*oldHandler)(int) = sigbreakHandler;
1946     sigbreakHandler = (void (*)(int)) handler;
1947     return (void*) oldHandler;
1948   } else {
1949     return (void*)::signal(signal_number, (void (*)(int))handler);
1950   }
1951 }
1952 
1953 void os::signal_raise(int signal_number) {
1954   raise(signal_number);
1955 }
1956 
1957 // The Win32 C runtime library maps all console control events other than ^C
1958 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1959 // logoff, and shutdown events.  We therefore install our own console handler
1960 // that raises SIGTERM for the latter cases.
1961 //
1962 static BOOL WINAPI consoleHandler(DWORD event) {
1963   switch (event) {
1964   case CTRL_C_EVENT:
1965     if (is_error_reported()) {
1966       // Ctrl-C is pressed during error reporting, likely because the error
1967       // handler fails to abort. Let VM die immediately.
1968       os::die();
1969     }
1970 
1971     os::signal_raise(SIGINT);
1972     return TRUE;
1973     break;
1974   case CTRL_BREAK_EVENT:
1975     if (sigbreakHandler != NULL) {
1976       (*sigbreakHandler)(SIGBREAK);
1977     }
1978     return TRUE;
1979     break;
1980   case CTRL_LOGOFF_EVENT: {
1981     // Don't terminate JVM if it is running in a non-interactive session,
1982     // such as a service process.
1983     USEROBJECTFLAGS flags;
1984     HANDLE handle = GetProcessWindowStation();
1985     if (handle != NULL &&
1986         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1987         sizeof(USEROBJECTFLAGS), NULL)) {
1988       // If it is a non-interactive session, let next handler to deal
1989       // with it.
1990       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1991         return FALSE;
1992       }
1993     }
1994   }
1995   case CTRL_CLOSE_EVENT:
1996   case CTRL_SHUTDOWN_EVENT:
1997     os::signal_raise(SIGTERM);
1998     return TRUE;
1999     break;
2000   default:
2001     break;
2002   }
2003   return FALSE;
2004 }
2005 
2006 // The following code is moved from os.cpp for making this
2007 // code platform specific, which it is by its very nature.
2008 
2009 // Return maximum OS signal used + 1 for internal use only
2010 // Used as exit signal for signal_thread
2011 int os::sigexitnum_pd() {
2012   return NSIG;
2013 }
2014 
2015 // a counter for each possible signal value, including signal_thread exit signal
2016 static volatile jint pending_signals[NSIG+1] = { 0 };
2017 static HANDLE sig_sem = NULL;
2018 
2019 void os::signal_init_pd() {
2020   // Initialize signal structures
2021   memset((void*)pending_signals, 0, sizeof(pending_signals));
2022 
2023   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2024 
2025   // Programs embedding the VM do not want it to attempt to receive
2026   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2027   // shutdown hooks mechanism introduced in 1.3.  For example, when
2028   // the VM is run as part of a Windows NT service (i.e., a servlet
2029   // engine in a web server), the correct behavior is for any console
2030   // control handler to return FALSE, not TRUE, because the OS's
2031   // "final" handler for such events allows the process to continue if
2032   // it is a service (while terminating it if it is not a service).
2033   // To make this behavior uniform and the mechanism simpler, we
2034   // completely disable the VM's usage of these console events if -Xrs
2035   // (=ReduceSignalUsage) is specified.  This means, for example, that
2036   // the CTRL-BREAK thread dump mechanism is also disabled in this
2037   // case.  See bugs 4323062, 4345157, and related bugs.
2038 
2039   if (!ReduceSignalUsage) {
2040     // Add a CTRL-C handler
2041     SetConsoleCtrlHandler(consoleHandler, TRUE);
2042   }
2043 }
2044 
2045 void os::signal_notify(int signal_number) {
2046   BOOL ret;
2047   if (sig_sem != NULL) {
2048     Atomic::inc(&pending_signals[signal_number]);
2049     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2050     assert(ret != 0, "ReleaseSemaphore() failed");
2051   }
2052 }
2053 
2054 static int check_pending_signals(bool wait_for_signal) {
2055   DWORD ret;
2056   while (true) {
2057     for (int i = 0; i < NSIG + 1; i++) {
2058       jint n = pending_signals[i];
2059       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2060         return i;
2061       }
2062     }
2063     if (!wait_for_signal) {
2064       return -1;
2065     }
2066 
2067     JavaThread *thread = JavaThread::current();
2068 
2069     ThreadBlockInVM tbivm(thread);
2070 
2071     bool threadIsSuspended;
2072     do {
2073       thread->set_suspend_equivalent();
2074       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2075       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2076       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2077 
2078       // were we externally suspended while we were waiting?
2079       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2080       if (threadIsSuspended) {
2081         // The semaphore has been incremented, but while we were waiting
2082         // another thread suspended us. We don't want to continue running
2083         // while suspended because that would surprise the thread that
2084         // suspended us.
2085         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2086         assert(ret != 0, "ReleaseSemaphore() failed");
2087 
2088         thread->java_suspend_self();
2089       }
2090     } while (threadIsSuspended);
2091   }
2092 }
2093 
2094 int os::signal_lookup() {
2095   return check_pending_signals(false);
2096 }
2097 
2098 int os::signal_wait() {
2099   return check_pending_signals(true);
2100 }
2101 
2102 // Implicit OS exception handling
2103 
2104 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2105                       address handler) {
2106   JavaThread* thread = JavaThread::current();
2107   // Save pc in thread
2108 #ifdef _M_IA64
2109   // Do not blow up if no thread info available.
2110   if (thread) {
2111     // Saving PRECISE pc (with slot information) in thread.
2112     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2113     // Convert precise PC into "Unix" format
2114     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2115     thread->set_saved_exception_pc((address)precise_pc);
2116   }
2117   // Set pc to handler
2118   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2119   // Clear out psr.ri (= Restart Instruction) in order to continue
2120   // at the beginning of the target bundle.
2121   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2122   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2123 #else
2124   #ifdef _M_AMD64
2125   // Do not blow up if no thread info available.
2126   if (thread) {
2127     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2128   }
2129   // Set pc to handler
2130   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2131   #else
2132   // Do not blow up if no thread info available.
2133   if (thread) {
2134     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2135   }
2136   // Set pc to handler
2137   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2138   #endif
2139 #endif
2140 
2141   // Continue the execution
2142   return EXCEPTION_CONTINUE_EXECUTION;
2143 }
2144 
2145 
2146 // Used for PostMortemDump
2147 extern "C" void safepoints();
2148 extern "C" void find(int x);
2149 extern "C" void events();
2150 
2151 // According to Windows API documentation, an illegal instruction sequence should generate
2152 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2153 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2154 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2155 
2156 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2157 
2158 // From "Execution Protection in the Windows Operating System" draft 0.35
2159 // Once a system header becomes available, the "real" define should be
2160 // included or copied here.
2161 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2162 
2163 // Handle NAT Bit consumption on IA64.
2164 #ifdef _M_IA64
2165   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2166 #endif
2167 
2168 // Windows Vista/2008 heap corruption check
2169 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2170 
2171 #define def_excpt(val) #val, val
2172 
2173 struct siglabel {
2174   char *name;
2175   int   number;
2176 };
2177 
2178 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2179 // C++ compiler contain this error code. Because this is a compiler-generated
2180 // error, the code is not listed in the Win32 API header files.
2181 // The code is actually a cryptic mnemonic device, with the initial "E"
2182 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2183 // ASCII values of "msc".
2184 
2185 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2186 
2187 
2188 struct siglabel exceptlabels[] = {
2189     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2190     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2191     def_excpt(EXCEPTION_BREAKPOINT),
2192     def_excpt(EXCEPTION_SINGLE_STEP),
2193     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2194     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2195     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2196     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2197     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2198     def_excpt(EXCEPTION_FLT_OVERFLOW),
2199     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2200     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2201     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2202     def_excpt(EXCEPTION_INT_OVERFLOW),
2203     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2204     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2205     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2206     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2207     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2208     def_excpt(EXCEPTION_STACK_OVERFLOW),
2209     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2210     def_excpt(EXCEPTION_GUARD_PAGE),
2211     def_excpt(EXCEPTION_INVALID_HANDLE),
2212     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2213     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2214 #ifdef _M_IA64
2215     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2216 #endif
2217     NULL, 0
2218 };
2219 
2220 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2221   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2222     if (exceptlabels[i].number == exception_code) {
2223       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2224       return buf;
2225     }
2226   }
2227 
2228   return NULL;
2229 }
2230 
2231 //-----------------------------------------------------------------------------
2232 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2233   // handle exception caused by idiv; should only happen for -MinInt/-1
2234   // (division by zero is handled explicitly)
2235 #ifdef _M_IA64
2236   assert(0, "Fix Handle_IDiv_Exception");
2237 #else
2238   #ifdef  _M_AMD64
2239   PCONTEXT ctx = exceptionInfo->ContextRecord;
2240   address pc = (address)ctx->Rip;
2241   assert(pc[0] == 0xF7, "not an idiv opcode");
2242   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2243   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2244   // set correct result values and continue after idiv instruction
2245   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2246   ctx->Rax = (DWORD)min_jint;      // result
2247   ctx->Rdx = (DWORD)0;             // remainder
2248   // Continue the execution
2249   #else
2250   PCONTEXT ctx = exceptionInfo->ContextRecord;
2251   address pc = (address)ctx->Eip;
2252   assert(pc[0] == 0xF7, "not an idiv opcode");
2253   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2254   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2255   // set correct result values and continue after idiv instruction
2256   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2257   ctx->Eax = (DWORD)min_jint;      // result
2258   ctx->Edx = (DWORD)0;             // remainder
2259   // Continue the execution
2260   #endif
2261 #endif
2262   return EXCEPTION_CONTINUE_EXECUTION;
2263 }
2264 
2265 //-----------------------------------------------------------------------------
2266 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2267   PCONTEXT ctx = exceptionInfo->ContextRecord;
2268 #ifndef  _WIN64
2269   // handle exception caused by native method modifying control word
2270   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2271 
2272   switch (exception_code) {
2273   case EXCEPTION_FLT_DENORMAL_OPERAND:
2274   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2275   case EXCEPTION_FLT_INEXACT_RESULT:
2276   case EXCEPTION_FLT_INVALID_OPERATION:
2277   case EXCEPTION_FLT_OVERFLOW:
2278   case EXCEPTION_FLT_STACK_CHECK:
2279   case EXCEPTION_FLT_UNDERFLOW:
2280     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2281     if (fp_control_word != ctx->FloatSave.ControlWord) {
2282       // Restore FPCW and mask out FLT exceptions
2283       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2284       // Mask out pending FLT exceptions
2285       ctx->FloatSave.StatusWord &=  0xffffff00;
2286       return EXCEPTION_CONTINUE_EXECUTION;
2287     }
2288   }
2289 
2290   if (prev_uef_handler != NULL) {
2291     // We didn't handle this exception so pass it to the previous
2292     // UnhandledExceptionFilter.
2293     return (prev_uef_handler)(exceptionInfo);
2294   }
2295 #else // !_WIN64
2296   // On Windows, the mxcsr control bits are non-volatile across calls
2297   // See also CR 6192333
2298   //
2299   jint MxCsr = INITIAL_MXCSR;
2300   // we can't use StubRoutines::addr_mxcsr_std()
2301   // because in Win64 mxcsr is not saved there
2302   if (MxCsr != ctx->MxCsr) {
2303     ctx->MxCsr = MxCsr;
2304     return EXCEPTION_CONTINUE_EXECUTION;
2305   }
2306 #endif // !_WIN64
2307 
2308   return EXCEPTION_CONTINUE_SEARCH;
2309 }
2310 
2311 static inline void report_error(Thread* t, DWORD exception_code,
2312                                 address addr, void* siginfo, void* context) {
2313   VMError err(t, exception_code, addr, siginfo, context);
2314   err.report_and_die();
2315 
2316   // If UseOsErrorReporting, this will return here and save the error file
2317   // somewhere where we can find it in the minidump.
2318 }
2319 
2320 //-----------------------------------------------------------------------------
2321 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2322   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2323   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2324 #ifdef _M_IA64
2325   // On Itanium, we need the "precise pc", which has the slot number coded
2326   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2327   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2328   // Convert the pc to "Unix format", which has the slot number coded
2329   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2330   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2331   // information is saved in the Unix format.
2332   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2333 #else
2334   #ifdef _M_AMD64
2335   address pc = (address) exceptionInfo->ContextRecord->Rip;
2336   #else
2337   address pc = (address) exceptionInfo->ContextRecord->Eip;
2338   #endif
2339 #endif
2340   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2341 
2342   // Handle SafeFetch32 and SafeFetchN exceptions.
2343   if (StubRoutines::is_safefetch_fault(pc)) {
2344     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2345   }
2346 
2347 #ifndef _WIN64
2348   // Execution protection violation - win32 running on AMD64 only
2349   // Handled first to avoid misdiagnosis as a "normal" access violation;
2350   // This is safe to do because we have a new/unique ExceptionInformation
2351   // code for this condition.
2352   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2353     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2354     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2355     address addr = (address) exceptionRecord->ExceptionInformation[1];
2356 
2357     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2358       int page_size = os::vm_page_size();
2359 
2360       // Make sure the pc and the faulting address are sane.
2361       //
2362       // If an instruction spans a page boundary, and the page containing
2363       // the beginning of the instruction is executable but the following
2364       // page is not, the pc and the faulting address might be slightly
2365       // different - we still want to unguard the 2nd page in this case.
2366       //
2367       // 15 bytes seems to be a (very) safe value for max instruction size.
2368       bool pc_is_near_addr =
2369         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2370       bool instr_spans_page_boundary =
2371         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2372                          (intptr_t) page_size) > 0);
2373 
2374       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2375         static volatile address last_addr =
2376           (address) os::non_memory_address_word();
2377 
2378         // In conservative mode, don't unguard unless the address is in the VM
2379         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2380             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2381 
2382           // Set memory to RWX and retry
2383           address page_start =
2384             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2385           bool res = os::protect_memory((char*) page_start, page_size,
2386                                         os::MEM_PROT_RWX);
2387 
2388           if (PrintMiscellaneous && Verbose) {
2389             char buf[256];
2390             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2391                          "at " INTPTR_FORMAT
2392                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2393                          page_start, (res ? "success" : strerror(errno)));
2394             tty->print_raw_cr(buf);
2395           }
2396 
2397           // Set last_addr so if we fault again at the same address, we don't
2398           // end up in an endless loop.
2399           //
2400           // There are two potential complications here.  Two threads trapping
2401           // at the same address at the same time could cause one of the
2402           // threads to think it already unguarded, and abort the VM.  Likely
2403           // very rare.
2404           //
2405           // The other race involves two threads alternately trapping at
2406           // different addresses and failing to unguard the page, resulting in
2407           // an endless loop.  This condition is probably even more unlikely
2408           // than the first.
2409           //
2410           // Although both cases could be avoided by using locks or thread
2411           // local last_addr, these solutions are unnecessary complication:
2412           // this handler is a best-effort safety net, not a complete solution.
2413           // It is disabled by default and should only be used as a workaround
2414           // in case we missed any no-execute-unsafe VM code.
2415 
2416           last_addr = addr;
2417 
2418           return EXCEPTION_CONTINUE_EXECUTION;
2419         }
2420       }
2421 
2422       // Last unguard failed or not unguarding
2423       tty->print_raw_cr("Execution protection violation");
2424       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2425                    exceptionInfo->ContextRecord);
2426       return EXCEPTION_CONTINUE_SEARCH;
2427     }
2428   }
2429 #endif // _WIN64
2430 
2431   // Check to see if we caught the safepoint code in the
2432   // process of write protecting the memory serialization page.
2433   // It write enables the page immediately after protecting it
2434   // so just return.
2435   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2436     JavaThread* thread = (JavaThread*) t;
2437     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2438     address addr = (address) exceptionRecord->ExceptionInformation[1];
2439     if (os::is_memory_serialize_page(thread, addr)) {
2440       // Block current thread until the memory serialize page permission restored.
2441       os::block_on_serialize_page_trap();
2442       return EXCEPTION_CONTINUE_EXECUTION;
2443     }
2444   }
2445 
2446   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2447       VM_Version::is_cpuinfo_segv_addr(pc)) {
2448     // Verify that OS save/restore AVX registers.
2449     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2450   }
2451 
2452   if (t != NULL && t->is_Java_thread()) {
2453     JavaThread* thread = (JavaThread*) t;
2454     bool in_java = thread->thread_state() == _thread_in_Java;
2455 
2456     // Handle potential stack overflows up front.
2457     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2458       if (os::uses_stack_guard_pages()) {
2459 #ifdef _M_IA64
2460         // Use guard page for register stack.
2461         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2462         address addr = (address) exceptionRecord->ExceptionInformation[1];
2463         // Check for a register stack overflow on Itanium
2464         if (thread->addr_inside_register_stack_red_zone(addr)) {
2465           // Fatal red zone violation happens if the Java program
2466           // catches a StackOverflow error and does so much processing
2467           // that it runs beyond the unprotected yellow guard zone. As
2468           // a result, we are out of here.
2469           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2470         } else if(thread->addr_inside_register_stack(addr)) {
2471           // Disable the yellow zone which sets the state that
2472           // we've got a stack overflow problem.
2473           if (thread->stack_yellow_zone_enabled()) {
2474             thread->disable_stack_yellow_zone();
2475           }
2476           // Give us some room to process the exception.
2477           thread->disable_register_stack_guard();
2478           // Tracing with +Verbose.
2479           if (Verbose) {
2480             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2481             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2482             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2483             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2484                           thread->register_stack_base(),
2485                           thread->register_stack_base() + thread->stack_size());
2486           }
2487 
2488           // Reguard the permanent register stack red zone just to be sure.
2489           // We saw Windows silently disabling this without telling us.
2490           thread->enable_register_stack_red_zone();
2491 
2492           return Handle_Exception(exceptionInfo,
2493                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2494         }
2495 #endif
2496         if (thread->stack_yellow_zone_enabled()) {
2497           // Yellow zone violation.  The o/s has unprotected the first yellow
2498           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2499           // update the enabled status, even if the zone contains only one page.
2500           thread->disable_stack_yellow_zone();
2501           // If not in java code, return and hope for the best.
2502           return in_java
2503               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2504               :  EXCEPTION_CONTINUE_EXECUTION;
2505         } else {
2506           // Fatal red zone violation.
2507           thread->disable_stack_red_zone();
2508           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2509           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2510                        exceptionInfo->ContextRecord);
2511           return EXCEPTION_CONTINUE_SEARCH;
2512         }
2513       } else if (in_java) {
2514         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2515         // a one-time-only guard page, which it has released to us.  The next
2516         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2517         return Handle_Exception(exceptionInfo,
2518                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2519       } else {
2520         // Can only return and hope for the best.  Further stack growth will
2521         // result in an ACCESS_VIOLATION.
2522         return EXCEPTION_CONTINUE_EXECUTION;
2523       }
2524     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2525       // Either stack overflow or null pointer exception.
2526       if (in_java) {
2527         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2528         address addr = (address) exceptionRecord->ExceptionInformation[1];
2529         address stack_end = thread->stack_base() - thread->stack_size();
2530         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2531           // Stack overflow.
2532           assert(!os::uses_stack_guard_pages(),
2533                  "should be caught by red zone code above.");
2534           return Handle_Exception(exceptionInfo,
2535                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2536         }
2537         // Check for safepoint polling and implicit null
2538         // We only expect null pointers in the stubs (vtable)
2539         // the rest are checked explicitly now.
2540         CodeBlob* cb = CodeCache::find_blob(pc);
2541         if (cb != NULL) {
2542           if (os::is_poll_address(addr)) {
2543             address stub = SharedRuntime::get_poll_stub(pc);
2544             return Handle_Exception(exceptionInfo, stub);
2545           }
2546         }
2547         {
2548 #ifdef _WIN64
2549           // If it's a legal stack address map the entire region in
2550           //
2551           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2552           address addr = (address) exceptionRecord->ExceptionInformation[1];
2553           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2554             addr = (address)((uintptr_t)addr &
2555                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2556             os::commit_memory((char *)addr, thread->stack_base() - addr,
2557                               !ExecMem);
2558             return EXCEPTION_CONTINUE_EXECUTION;
2559           } else
2560 #endif
2561           {
2562             // Null pointer exception.
2563 #ifdef _M_IA64
2564             // Process implicit null checks in compiled code. Note: Implicit null checks
2565             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2566             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2567               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2568               // Handle implicit null check in UEP method entry
2569               if (cb && (cb->is_frame_complete_at(pc) ||
2570                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2571                 if (Verbose) {
2572                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2573                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2574                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2575                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2576                                 *(bundle_start + 1), *bundle_start);
2577                 }
2578                 return Handle_Exception(exceptionInfo,
2579                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2580               }
2581             }
2582 
2583             // Implicit null checks were processed above.  Hence, we should not reach
2584             // here in the usual case => die!
2585             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2586             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2587                          exceptionInfo->ContextRecord);
2588             return EXCEPTION_CONTINUE_SEARCH;
2589 
2590 #else // !IA64
2591 
2592             // Windows 98 reports faulting addresses incorrectly
2593             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2594                 !os::win32::is_nt()) {
2595               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2596               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2597             }
2598             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2599                          exceptionInfo->ContextRecord);
2600             return EXCEPTION_CONTINUE_SEARCH;
2601 #endif
2602           }
2603         }
2604       }
2605 
2606 #ifdef _WIN64
2607       // Special care for fast JNI field accessors.
2608       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2609       // in and the heap gets shrunk before the field access.
2610       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2611         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2612         if (addr != (address)-1) {
2613           return Handle_Exception(exceptionInfo, addr);
2614         }
2615       }
2616 #endif
2617 
2618       // Stack overflow or null pointer exception in native code.
2619       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2620                    exceptionInfo->ContextRecord);
2621       return EXCEPTION_CONTINUE_SEARCH;
2622     } // /EXCEPTION_ACCESS_VIOLATION
2623     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2624 #if defined _M_IA64
2625     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2626               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2627       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2628 
2629       // Compiled method patched to be non entrant? Following conditions must apply:
2630       // 1. must be first instruction in bundle
2631       // 2. must be a break instruction with appropriate code
2632       if ((((uint64_t) pc & 0x0F) == 0) &&
2633           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2634         return Handle_Exception(exceptionInfo,
2635                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2636       }
2637     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2638 #endif
2639 
2640 
2641     if (in_java) {
2642       switch (exception_code) {
2643       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2644         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2645 
2646       case EXCEPTION_INT_OVERFLOW:
2647         return Handle_IDiv_Exception(exceptionInfo);
2648 
2649       } // switch
2650     }
2651     if (((thread->thread_state() == _thread_in_Java) ||
2652          (thread->thread_state() == _thread_in_native)) &&
2653          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2654       LONG result=Handle_FLT_Exception(exceptionInfo);
2655       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2656     }
2657   }
2658 
2659   if (exception_code != EXCEPTION_BREAKPOINT) {
2660     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2661                  exceptionInfo->ContextRecord);
2662   }
2663   return EXCEPTION_CONTINUE_SEARCH;
2664 }
2665 
2666 #ifndef _WIN64
2667 // Special care for fast JNI accessors.
2668 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2669 // the heap gets shrunk before the field access.
2670 // Need to install our own structured exception handler since native code may
2671 // install its own.
2672 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2673   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2674   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2675     address pc = (address) exceptionInfo->ContextRecord->Eip;
2676     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2677     if (addr != (address)-1) {
2678       return Handle_Exception(exceptionInfo, addr);
2679     }
2680   }
2681   return EXCEPTION_CONTINUE_SEARCH;
2682 }
2683 
2684 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2685   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2686                                                      jobject obj,           \
2687                                                      jfieldID fieldID) {    \
2688     __try {                                                                 \
2689       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2690                                                                  obj,       \
2691                                                                  fieldID);  \
2692     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2693                                               _exception_info())) {         \
2694     }                                                                       \
2695     return 0;                                                               \
2696   }
2697 
2698 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2699 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2700 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2701 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2702 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2703 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2704 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2705 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2706 
2707 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2708   switch (type) {
2709   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2710   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2711   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2712   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2713   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2714   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2715   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2716   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2717   default:        ShouldNotReachHere();
2718   }
2719   return (address)-1;
2720 }
2721 #endif
2722 
2723 // Virtual Memory
2724 
2725 int os::vm_page_size() { return os::win32::vm_page_size(); }
2726 int os::vm_allocation_granularity() {
2727   return os::win32::vm_allocation_granularity();
2728 }
2729 
2730 // Windows large page support is available on Windows 2003. In order to use
2731 // large page memory, the administrator must first assign additional privilege
2732 // to the user:
2733 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2734 //   + select Local Policies -> User Rights Assignment
2735 //   + double click "Lock pages in memory", add users and/or groups
2736 //   + reboot
2737 // Note the above steps are needed for administrator as well, as administrators
2738 // by default do not have the privilege to lock pages in memory.
2739 //
2740 // Note about Windows 2003: although the API supports committing large page
2741 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2742 // scenario, I found through experiment it only uses large page if the entire
2743 // memory region is reserved and committed in a single VirtualAlloc() call.
2744 // This makes Windows large page support more or less like Solaris ISM, in
2745 // that the entire heap must be committed upfront. This probably will change
2746 // in the future, if so the code below needs to be revisited.
2747 
2748 #ifndef MEM_LARGE_PAGES
2749   #define MEM_LARGE_PAGES 0x20000000
2750 #endif
2751 
2752 static HANDLE    _hProcess;
2753 static HANDLE    _hToken;
2754 
2755 // Container for NUMA node list info
2756 class NUMANodeListHolder {
2757  private:
2758   int *_numa_used_node_list;  // allocated below
2759   int _numa_used_node_count;
2760 
2761   void free_node_list() {
2762     if (_numa_used_node_list != NULL) {
2763       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2764     }
2765   }
2766 
2767  public:
2768   NUMANodeListHolder() {
2769     _numa_used_node_count = 0;
2770     _numa_used_node_list = NULL;
2771     // do rest of initialization in build routine (after function pointers are set up)
2772   }
2773 
2774   ~NUMANodeListHolder() {
2775     free_node_list();
2776   }
2777 
2778   bool build() {
2779     DWORD_PTR proc_aff_mask;
2780     DWORD_PTR sys_aff_mask;
2781     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2782     ULONG highest_node_number;
2783     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2784     free_node_list();
2785     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2786     for (unsigned int i = 0; i <= highest_node_number; i++) {
2787       ULONGLONG proc_mask_numa_node;
2788       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2789       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2790         _numa_used_node_list[_numa_used_node_count++] = i;
2791       }
2792     }
2793     return (_numa_used_node_count > 1);
2794   }
2795 
2796   int get_count() { return _numa_used_node_count; }
2797   int get_node_list_entry(int n) {
2798     // for indexes out of range, returns -1
2799     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2800   }
2801 
2802 } numa_node_list_holder;
2803 
2804 
2805 
2806 static size_t _large_page_size = 0;
2807 
2808 static bool resolve_functions_for_large_page_init() {
2809   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2810     os::Advapi32Dll::AdvapiAvailable();
2811 }
2812 
2813 static bool request_lock_memory_privilege() {
2814   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2815                           os::current_process_id());
2816 
2817   LUID luid;
2818   if (_hProcess != NULL &&
2819       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2820       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2821 
2822     TOKEN_PRIVILEGES tp;
2823     tp.PrivilegeCount = 1;
2824     tp.Privileges[0].Luid = luid;
2825     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2826 
2827     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2828     // privilege. Check GetLastError() too. See MSDN document.
2829     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2830         (GetLastError() == ERROR_SUCCESS)) {
2831       return true;
2832     }
2833   }
2834 
2835   return false;
2836 }
2837 
2838 static void cleanup_after_large_page_init() {
2839   if (_hProcess) CloseHandle(_hProcess);
2840   _hProcess = NULL;
2841   if (_hToken) CloseHandle(_hToken);
2842   _hToken = NULL;
2843 }
2844 
2845 static bool numa_interleaving_init() {
2846   bool success = false;
2847   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2848 
2849   // print a warning if UseNUMAInterleaving flag is specified on command line
2850   bool warn_on_failure = use_numa_interleaving_specified;
2851 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2852 
2853   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2854   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2855   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2856 
2857   if (os::Kernel32Dll::NumaCallsAvailable()) {
2858     if (numa_node_list_holder.build()) {
2859       if (PrintMiscellaneous && Verbose) {
2860         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2861         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2862           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2863         }
2864         tty->print("\n");
2865       }
2866       success = true;
2867     } else {
2868       WARN("Process does not cover multiple NUMA nodes.");
2869     }
2870   } else {
2871     WARN("NUMA Interleaving is not supported by the operating system.");
2872   }
2873   if (!success) {
2874     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2875   }
2876   return success;
2877 #undef WARN
2878 }
2879 
2880 // this routine is used whenever we need to reserve a contiguous VA range
2881 // but we need to make separate VirtualAlloc calls for each piece of the range
2882 // Reasons for doing this:
2883 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2884 //  * UseNUMAInterleaving requires a separate node for each piece
2885 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2886                                          DWORD prot,
2887                                          bool should_inject_error = false) {
2888   char * p_buf;
2889   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2890   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2891   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2892 
2893   // first reserve enough address space in advance since we want to be
2894   // able to break a single contiguous virtual address range into multiple
2895   // large page commits but WS2003 does not allow reserving large page space
2896   // so we just use 4K pages for reserve, this gives us a legal contiguous
2897   // address space. then we will deallocate that reservation, and re alloc
2898   // using large pages
2899   const size_t size_of_reserve = bytes + chunk_size;
2900   if (bytes > size_of_reserve) {
2901     // Overflowed.
2902     return NULL;
2903   }
2904   p_buf = (char *) VirtualAlloc(addr,
2905                                 size_of_reserve,  // size of Reserve
2906                                 MEM_RESERVE,
2907                                 PAGE_READWRITE);
2908   // If reservation failed, return NULL
2909   if (p_buf == NULL) return NULL;
2910   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2911   os::release_memory(p_buf, bytes + chunk_size);
2912 
2913   // we still need to round up to a page boundary (in case we are using large pages)
2914   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2915   // instead we handle this in the bytes_to_rq computation below
2916   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2917 
2918   // now go through and allocate one chunk at a time until all bytes are
2919   // allocated
2920   size_t  bytes_remaining = bytes;
2921   // An overflow of align_size_up() would have been caught above
2922   // in the calculation of size_of_reserve.
2923   char * next_alloc_addr = p_buf;
2924   HANDLE hProc = GetCurrentProcess();
2925 
2926 #ifdef ASSERT
2927   // Variable for the failure injection
2928   long ran_num = os::random();
2929   size_t fail_after = ran_num % bytes;
2930 #endif
2931 
2932   int count=0;
2933   while (bytes_remaining) {
2934     // select bytes_to_rq to get to the next chunk_size boundary
2935 
2936     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2937     // Note allocate and commit
2938     char * p_new;
2939 
2940 #ifdef ASSERT
2941     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2942 #else
2943     const bool inject_error_now = false;
2944 #endif
2945 
2946     if (inject_error_now) {
2947       p_new = NULL;
2948     } else {
2949       if (!UseNUMAInterleaving) {
2950         p_new = (char *) VirtualAlloc(next_alloc_addr,
2951                                       bytes_to_rq,
2952                                       flags,
2953                                       prot);
2954       } else {
2955         // get the next node to use from the used_node_list
2956         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2957         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2958         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2959                                                             next_alloc_addr,
2960                                                             bytes_to_rq,
2961                                                             flags,
2962                                                             prot,
2963                                                             node);
2964       }
2965     }
2966 
2967     if (p_new == NULL) {
2968       // Free any allocated pages
2969       if (next_alloc_addr > p_buf) {
2970         // Some memory was committed so release it.
2971         size_t bytes_to_release = bytes - bytes_remaining;
2972         // NMT has yet to record any individual blocks, so it
2973         // need to create a dummy 'reserve' record to match
2974         // the release.
2975         MemTracker::record_virtual_memory_reserve((address)p_buf,
2976                                                   bytes_to_release, CALLER_PC);
2977         os::release_memory(p_buf, bytes_to_release);
2978       }
2979 #ifdef ASSERT
2980       if (should_inject_error) {
2981         if (TracePageSizes && Verbose) {
2982           tty->print_cr("Reserving pages individually failed.");
2983         }
2984       }
2985 #endif
2986       return NULL;
2987     }
2988 
2989     bytes_remaining -= bytes_to_rq;
2990     next_alloc_addr += bytes_to_rq;
2991     count++;
2992   }
2993   // Although the memory is allocated individually, it is returned as one.
2994   // NMT records it as one block.
2995   if ((flags & MEM_COMMIT) != 0) {
2996     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2997   } else {
2998     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2999   }
3000 
3001   // made it this far, success
3002   return p_buf;
3003 }
3004 
3005 
3006 
3007 void os::large_page_init() {
3008   if (!UseLargePages) return;
3009 
3010   // print a warning if any large page related flag is specified on command line
3011   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3012                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3013   bool success = false;
3014 
3015 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3016   if (resolve_functions_for_large_page_init()) {
3017     if (request_lock_memory_privilege()) {
3018       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3019       if (s) {
3020 #if defined(IA32) || defined(AMD64)
3021         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3022           WARN("JVM cannot use large pages bigger than 4mb.");
3023         } else {
3024 #endif
3025           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3026             _large_page_size = LargePageSizeInBytes;
3027           } else {
3028             _large_page_size = s;
3029           }
3030           success = true;
3031 #if defined(IA32) || defined(AMD64)
3032         }
3033 #endif
3034       } else {
3035         WARN("Large page is not supported by the processor.");
3036       }
3037     } else {
3038       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3039     }
3040   } else {
3041     WARN("Large page is not supported by the operating system.");
3042   }
3043 #undef WARN
3044 
3045   const size_t default_page_size = (size_t) vm_page_size();
3046   if (success && _large_page_size > default_page_size) {
3047     _page_sizes[0] = _large_page_size;
3048     _page_sizes[1] = default_page_size;
3049     _page_sizes[2] = 0;
3050   }
3051 
3052   cleanup_after_large_page_init();
3053   UseLargePages = success;
3054 }
3055 
3056 // On win32, one cannot release just a part of reserved memory, it's an
3057 // all or nothing deal.  When we split a reservation, we must break the
3058 // reservation into two reservations.
3059 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3060                                   bool realloc) {
3061   if (size > 0) {
3062     release_memory(base, size);
3063     if (realloc) {
3064       reserve_memory(split, base);
3065     }
3066     if (size != split) {
3067       reserve_memory(size - split, base + split);
3068     }
3069   }
3070 }
3071 
3072 // Multiple threads can race in this code but it's not possible to unmap small sections of
3073 // virtual space to get requested alignment, like posix-like os's.
3074 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3075 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3076   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3077          "Alignment must be a multiple of allocation granularity (page size)");
3078   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3079 
3080   size_t extra_size = size + alignment;
3081   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3082 
3083   char* aligned_base = NULL;
3084 
3085   do {
3086     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3087     if (extra_base == NULL) {
3088       return NULL;
3089     }
3090     // Do manual alignment
3091     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3092 
3093     os::release_memory(extra_base, extra_size);
3094 
3095     aligned_base = os::reserve_memory(size, aligned_base);
3096 
3097   } while (aligned_base == NULL);
3098 
3099   return aligned_base;
3100 }
3101 
3102 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3103   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3104          "reserve alignment");
3105   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3106   char* res;
3107   // note that if UseLargePages is on, all the areas that require interleaving
3108   // will go thru reserve_memory_special rather than thru here.
3109   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3110   if (!use_individual) {
3111     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3112   } else {
3113     elapsedTimer reserveTimer;
3114     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3115     // in numa interleaving, we have to allocate pages individually
3116     // (well really chunks of NUMAInterleaveGranularity size)
3117     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3118     if (res == NULL) {
3119       warning("NUMA page allocation failed");
3120     }
3121     if (Verbose && PrintMiscellaneous) {
3122       reserveTimer.stop();
3123       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3124                     reserveTimer.milliseconds(), reserveTimer.ticks());
3125     }
3126   }
3127   assert(res == NULL || addr == NULL || addr == res,
3128          "Unexpected address from reserve.");
3129 
3130   return res;
3131 }
3132 
3133 // Reserve memory at an arbitrary address, only if that area is
3134 // available (and not reserved for something else).
3135 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3136   // Windows os::reserve_memory() fails of the requested address range is
3137   // not avilable.
3138   return reserve_memory(bytes, requested_addr);
3139 }
3140 
3141 size_t os::large_page_size() {
3142   return _large_page_size;
3143 }
3144 
3145 bool os::can_commit_large_page_memory() {
3146   // Windows only uses large page memory when the entire region is reserved
3147   // and committed in a single VirtualAlloc() call. This may change in the
3148   // future, but with Windows 2003 it's not possible to commit on demand.
3149   return false;
3150 }
3151 
3152 bool os::can_execute_large_page_memory() {
3153   return true;
3154 }
3155 
3156 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3157                                  bool exec) {
3158   assert(UseLargePages, "only for large pages");
3159 
3160   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3161     return NULL; // Fallback to small pages.
3162   }
3163 
3164   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3165   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3166 
3167   // with large pages, there are two cases where we need to use Individual Allocation
3168   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3169   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3170   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3171     if (TracePageSizes && Verbose) {
3172       tty->print_cr("Reserving large pages individually.");
3173     }
3174     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3175     if (p_buf == NULL) {
3176       // give an appropriate warning message
3177       if (UseNUMAInterleaving) {
3178         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3179       }
3180       if (UseLargePagesIndividualAllocation) {
3181         warning("Individually allocated large pages failed, "
3182                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3183       }
3184       return NULL;
3185     }
3186 
3187     return p_buf;
3188 
3189   } else {
3190     if (TracePageSizes && Verbose) {
3191       tty->print_cr("Reserving large pages in a single large chunk.");
3192     }
3193     // normal policy just allocate it all at once
3194     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3195     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3196     if (res != NULL) {
3197       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3198     }
3199 
3200     return res;
3201   }
3202 }
3203 
3204 bool os::release_memory_special(char* base, size_t bytes) {
3205   assert(base != NULL, "Sanity check");
3206   return release_memory(base, bytes);
3207 }
3208 
3209 void os::print_statistics() {
3210 }
3211 
3212 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3213   int err = os::get_last_error();
3214   char buf[256];
3215   size_t buf_len = os::lasterror(buf, sizeof(buf));
3216   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3217           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3218           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3219 }
3220 
3221 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3222   if (bytes == 0) {
3223     // Don't bother the OS with noops.
3224     return true;
3225   }
3226   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3227   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3228   // Don't attempt to print anything if the OS call fails. We're
3229   // probably low on resources, so the print itself may cause crashes.
3230 
3231   // unless we have NUMAInterleaving enabled, the range of a commit
3232   // is always within a reserve covered by a single VirtualAlloc
3233   // in that case we can just do a single commit for the requested size
3234   if (!UseNUMAInterleaving) {
3235     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3236       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3237       return false;
3238     }
3239     if (exec) {
3240       DWORD oldprot;
3241       // Windows doc says to use VirtualProtect to get execute permissions
3242       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3243         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3244         return false;
3245       }
3246     }
3247     return true;
3248   } else {
3249 
3250     // when NUMAInterleaving is enabled, the commit might cover a range that
3251     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3252     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3253     // returns represents the number of bytes that can be committed in one step.
3254     size_t bytes_remaining = bytes;
3255     char * next_alloc_addr = addr;
3256     while (bytes_remaining > 0) {
3257       MEMORY_BASIC_INFORMATION alloc_info;
3258       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3259       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3260       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3261                        PAGE_READWRITE) == NULL) {
3262         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3263                                             exec);)
3264         return false;
3265       }
3266       if (exec) {
3267         DWORD oldprot;
3268         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3269                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3270           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3271                                               exec);)
3272           return false;
3273         }
3274       }
3275       bytes_remaining -= bytes_to_rq;
3276       next_alloc_addr += bytes_to_rq;
3277     }
3278   }
3279   // if we made it this far, return true
3280   return true;
3281 }
3282 
3283 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3284                           bool exec) {
3285   // alignment_hint is ignored on this OS
3286   return pd_commit_memory(addr, size, exec);
3287 }
3288 
3289 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3290                                   const char* mesg) {
3291   assert(mesg != NULL, "mesg must be specified");
3292   if (!pd_commit_memory(addr, size, exec)) {
3293     warn_fail_commit_memory(addr, size, exec);
3294     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3295   }
3296 }
3297 
3298 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3299                                   size_t alignment_hint, bool exec,
3300                                   const char* mesg) {
3301   // alignment_hint is ignored on this OS
3302   pd_commit_memory_or_exit(addr, size, exec, mesg);
3303 }
3304 
3305 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3306   if (bytes == 0) {
3307     // Don't bother the OS with noops.
3308     return true;
3309   }
3310   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3311   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3312   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3313 }
3314 
3315 bool os::pd_release_memory(char* addr, size_t bytes) {
3316   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3317 }
3318 
3319 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3320   return os::commit_memory(addr, size, !ExecMem);
3321 }
3322 
3323 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3324   return os::uncommit_memory(addr, size);
3325 }
3326 
3327 // Set protections specified
3328 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3329                         bool is_committed) {
3330   unsigned int p = 0;
3331   switch (prot) {
3332   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3333   case MEM_PROT_READ: p = PAGE_READONLY; break;
3334   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3335   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3336   default:
3337     ShouldNotReachHere();
3338   }
3339 
3340   DWORD old_status;
3341 
3342   // Strange enough, but on Win32 one can change protection only for committed
3343   // memory, not a big deal anyway, as bytes less or equal than 64K
3344   if (!is_committed) {
3345     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3346                           "cannot commit protection page");
3347   }
3348   // One cannot use os::guard_memory() here, as on Win32 guard page
3349   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3350   //
3351   // Pages in the region become guard pages. Any attempt to access a guard page
3352   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3353   // the guard page status. Guard pages thus act as a one-time access alarm.
3354   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3355 }
3356 
3357 bool os::guard_memory(char* addr, size_t bytes) {
3358   DWORD old_status;
3359   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3360 }
3361 
3362 bool os::unguard_memory(char* addr, size_t bytes) {
3363   DWORD old_status;
3364   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3365 }
3366 
3367 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3368 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3369 void os::numa_make_global(char *addr, size_t bytes)    { }
3370 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3371 bool os::numa_topology_changed()                       { return false; }
3372 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3373 int os::numa_get_group_id()                            { return 0; }
3374 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3375   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3376     // Provide an answer for UMA systems
3377     ids[0] = 0;
3378     return 1;
3379   } else {
3380     // check for size bigger than actual groups_num
3381     size = MIN2(size, numa_get_groups_num());
3382     for (int i = 0; i < (int)size; i++) {
3383       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3384     }
3385     return size;
3386   }
3387 }
3388 
3389 bool os::get_page_info(char *start, page_info* info) {
3390   return false;
3391 }
3392 
3393 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3394                      page_info* page_found) {
3395   return end;
3396 }
3397 
3398 char* os::non_memory_address_word() {
3399   // Must never look like an address returned by reserve_memory,
3400   // even in its subfields (as defined by the CPU immediate fields,
3401   // if the CPU splits constants across multiple instructions).
3402   return (char*)-1;
3403 }
3404 
3405 #define MAX_ERROR_COUNT 100
3406 #define SYS_THREAD_ERROR 0xffffffffUL
3407 
3408 void os::pd_start_thread(Thread* thread) {
3409   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3410   // Returns previous suspend state:
3411   // 0:  Thread was not suspended
3412   // 1:  Thread is running now
3413   // >1: Thread is still suspended.
3414   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3415 }
3416 
3417 class HighResolutionInterval : public CHeapObj<mtThread> {
3418   // The default timer resolution seems to be 10 milliseconds.
3419   // (Where is this written down?)
3420   // If someone wants to sleep for only a fraction of the default,
3421   // then we set the timer resolution down to 1 millisecond for
3422   // the duration of their interval.
3423   // We carefully set the resolution back, since otherwise we
3424   // seem to incur an overhead (3%?) that we don't need.
3425   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3426   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3427   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3428   // timeBeginPeriod() if the relative error exceeded some threshold.
3429   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3430   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3431   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3432   // resolution timers running.
3433  private:
3434   jlong resolution;
3435  public:
3436   HighResolutionInterval(jlong ms) {
3437     resolution = ms % 10L;
3438     if (resolution != 0) {
3439       MMRESULT result = timeBeginPeriod(1L);
3440     }
3441   }
3442   ~HighResolutionInterval() {
3443     if (resolution != 0) {
3444       MMRESULT result = timeEndPeriod(1L);
3445     }
3446     resolution = 0L;
3447   }
3448 };
3449 
3450 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3451   jlong limit = (jlong) MAXDWORD;
3452 
3453   while (ms > limit) {
3454     int res;
3455     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3456       return res;
3457     }
3458     ms -= limit;
3459   }
3460 
3461   assert(thread == Thread::current(), "thread consistency check");
3462   OSThread* osthread = thread->osthread();
3463   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3464   int result;
3465   if (interruptable) {
3466     assert(thread->is_Java_thread(), "must be java thread");
3467     JavaThread *jt = (JavaThread *) thread;
3468     ThreadBlockInVM tbivm(jt);
3469 
3470     jt->set_suspend_equivalent();
3471     // cleared by handle_special_suspend_equivalent_condition() or
3472     // java_suspend_self() via check_and_wait_while_suspended()
3473 
3474     HANDLE events[1];
3475     events[0] = osthread->interrupt_event();
3476     HighResolutionInterval *phri=NULL;
3477     if (!ForceTimeHighResolution) {
3478       phri = new HighResolutionInterval(ms);
3479     }
3480     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3481       result = OS_TIMEOUT;
3482     } else {
3483       ResetEvent(osthread->interrupt_event());
3484       osthread->set_interrupted(false);
3485       result = OS_INTRPT;
3486     }
3487     delete phri; //if it is NULL, harmless
3488 
3489     // were we externally suspended while we were waiting?
3490     jt->check_and_wait_while_suspended();
3491   } else {
3492     assert(!thread->is_Java_thread(), "must not be java thread");
3493     Sleep((long) ms);
3494     result = OS_TIMEOUT;
3495   }
3496   return result;
3497 }
3498 
3499 // Short sleep, direct OS call.
3500 //
3501 // ms = 0, means allow others (if any) to run.
3502 //
3503 void os::naked_short_sleep(jlong ms) {
3504   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3505   Sleep(ms);
3506 }
3507 
3508 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3509 void os::infinite_sleep() {
3510   while (true) {    // sleep forever ...
3511     Sleep(100000);  // ... 100 seconds at a time
3512   }
3513 }
3514 
3515 typedef BOOL (WINAPI * STTSignature)(void);
3516 
3517 void os::naked_yield() {
3518   // Use either SwitchToThread() or Sleep(0)
3519   // Consider passing back the return value from SwitchToThread().
3520   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3521     SwitchToThread();
3522   } else {
3523     Sleep(0);
3524   }
3525 }
3526 
3527 // Win32 only gives you access to seven real priorities at a time,
3528 // so we compress Java's ten down to seven.  It would be better
3529 // if we dynamically adjusted relative priorities.
3530 
3531 int os::java_to_os_priority[CriticalPriority + 1] = {
3532   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3533   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3534   THREAD_PRIORITY_LOWEST,                       // 2
3535   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3536   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3537   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3538   THREAD_PRIORITY_NORMAL,                       // 6
3539   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3540   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3541   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3542   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3543   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3544 };
3545 
3546 int prio_policy1[CriticalPriority + 1] = {
3547   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3548   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3549   THREAD_PRIORITY_LOWEST,                       // 2
3550   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3551   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3552   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3553   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3554   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3555   THREAD_PRIORITY_HIGHEST,                      // 8
3556   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3557   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3558   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3559 };
3560 
3561 static int prio_init() {
3562   // If ThreadPriorityPolicy is 1, switch tables
3563   if (ThreadPriorityPolicy == 1) {
3564     int i;
3565     for (i = 0; i < CriticalPriority + 1; i++) {
3566       os::java_to_os_priority[i] = prio_policy1[i];
3567     }
3568   }
3569   if (UseCriticalJavaThreadPriority) {
3570     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3571   }
3572   return 0;
3573 }
3574 
3575 OSReturn os::set_native_priority(Thread* thread, int priority) {
3576   if (!UseThreadPriorities) return OS_OK;
3577   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3578   return ret ? OS_OK : OS_ERR;
3579 }
3580 
3581 OSReturn os::get_native_priority(const Thread* const thread,
3582                                  int* priority_ptr) {
3583   if (!UseThreadPriorities) {
3584     *priority_ptr = java_to_os_priority[NormPriority];
3585     return OS_OK;
3586   }
3587   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3588   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3589     assert(false, "GetThreadPriority failed");
3590     return OS_ERR;
3591   }
3592   *priority_ptr = os_prio;
3593   return OS_OK;
3594 }
3595 
3596 
3597 // Hint to the underlying OS that a task switch would not be good.
3598 // Void return because it's a hint and can fail.
3599 void os::hint_no_preempt() {}
3600 
3601 void os::interrupt(Thread* thread) {
3602   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3603          Threads_lock->owned_by_self(),
3604          "possibility of dangling Thread pointer");
3605 
3606   OSThread* osthread = thread->osthread();
3607   osthread->set_interrupted(true);
3608   // More than one thread can get here with the same value of osthread,
3609   // resulting in multiple notifications.  We do, however, want the store
3610   // to interrupted() to be visible to other threads before we post
3611   // the interrupt event.
3612   OrderAccess::release();
3613   SetEvent(osthread->interrupt_event());
3614   // For JSR166:  unpark after setting status
3615   if (thread->is_Java_thread()) {
3616     ((JavaThread*)thread)->parker()->unpark();
3617   }
3618 
3619   ParkEvent * ev = thread->_ParkEvent;
3620   if (ev != NULL) ev->unpark();
3621 }
3622 
3623 
3624 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3625   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3626          "possibility of dangling Thread pointer");
3627 
3628   OSThread* osthread = thread->osthread();
3629   // There is no synchronization between the setting of the interrupt
3630   // and it being cleared here. It is critical - see 6535709 - that
3631   // we only clear the interrupt state, and reset the interrupt event,
3632   // if we are going to report that we were indeed interrupted - else
3633   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3634   // depending on the timing. By checking thread interrupt event to see
3635   // if the thread gets real interrupt thus prevent spurious wakeup.
3636   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3637   if (interrupted && clear_interrupted) {
3638     osthread->set_interrupted(false);
3639     ResetEvent(osthread->interrupt_event());
3640   } // Otherwise leave the interrupted state alone
3641 
3642   return interrupted;
3643 }
3644 
3645 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3646 ExtendedPC os::get_thread_pc(Thread* thread) {
3647   CONTEXT context;
3648   context.ContextFlags = CONTEXT_CONTROL;
3649   HANDLE handle = thread->osthread()->thread_handle();
3650 #ifdef _M_IA64
3651   assert(0, "Fix get_thread_pc");
3652   return ExtendedPC(NULL);
3653 #else
3654   if (GetThreadContext(handle, &context)) {
3655 #ifdef _M_AMD64
3656     return ExtendedPC((address) context.Rip);
3657 #else
3658     return ExtendedPC((address) context.Eip);
3659 #endif
3660   } else {
3661     return ExtendedPC(NULL);
3662   }
3663 #endif
3664 }
3665 
3666 // GetCurrentThreadId() returns DWORD
3667 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3668 
3669 static int _initial_pid = 0;
3670 
3671 int os::current_process_id() {
3672   return (_initial_pid ? _initial_pid : _getpid());
3673 }
3674 
3675 int    os::win32::_vm_page_size              = 0;
3676 int    os::win32::_vm_allocation_granularity = 0;
3677 int    os::win32::_processor_type            = 0;
3678 // Processor level is not available on non-NT systems, use vm_version instead
3679 int    os::win32::_processor_level           = 0;
3680 julong os::win32::_physical_memory           = 0;
3681 size_t os::win32::_default_stack_size        = 0;
3682 
3683 intx          os::win32::_os_thread_limit    = 0;
3684 volatile intx os::win32::_os_thread_count    = 0;
3685 
3686 bool   os::win32::_is_nt                     = false;
3687 bool   os::win32::_is_windows_2003           = false;
3688 bool   os::win32::_is_windows_server         = false;
3689 
3690 // 6573254
3691 // Currently, the bug is observed across all the supported Windows releases,
3692 // including the latest one (as of this writing - Windows Server 2012 R2)
3693 bool   os::win32::_has_exit_bug              = true;
3694 bool   os::win32::_has_performance_count     = 0;
3695 
3696 void os::win32::initialize_system_info() {
3697   SYSTEM_INFO si;
3698   GetSystemInfo(&si);
3699   _vm_page_size    = si.dwPageSize;
3700   _vm_allocation_granularity = si.dwAllocationGranularity;
3701   _processor_type  = si.dwProcessorType;
3702   _processor_level = si.wProcessorLevel;
3703   set_processor_count(si.dwNumberOfProcessors);
3704 
3705   MEMORYSTATUSEX ms;
3706   ms.dwLength = sizeof(ms);
3707 
3708   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3709   // dwMemoryLoad (% of memory in use)
3710   GlobalMemoryStatusEx(&ms);
3711   _physical_memory = ms.ullTotalPhys;
3712 
3713   OSVERSIONINFOEX oi;
3714   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3715   GetVersionEx((OSVERSIONINFO*)&oi);
3716   switch (oi.dwPlatformId) {
3717   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3718   case VER_PLATFORM_WIN32_NT:
3719     _is_nt = true;
3720     {
3721       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3722       if (os_vers == 5002) {
3723         _is_windows_2003 = true;
3724       }
3725       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3726           oi.wProductType == VER_NT_SERVER) {
3727         _is_windows_server = true;
3728       }
3729     }
3730     break;
3731   default: fatal("Unknown platform");
3732   }
3733 
3734   _default_stack_size = os::current_stack_size();
3735   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3736   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3737          "stack size not a multiple of page size");
3738 
3739   initialize_performance_counter();
3740 
3741   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3742   // known to deadlock the system, if the VM issues to thread operations with
3743   // a too high frequency, e.g., such as changing the priorities.
3744   // The 6000 seems to work well - no deadlocks has been notices on the test
3745   // programs that we have seen experience this problem.
3746   if (!os::win32::is_nt()) {
3747     StarvationMonitorInterval = 6000;
3748   }
3749 }
3750 
3751 
3752 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3753                                       int ebuflen) {
3754   char path[MAX_PATH];
3755   DWORD size;
3756   DWORD pathLen = (DWORD)sizeof(path);
3757   HINSTANCE result = NULL;
3758 
3759   // only allow library name without path component
3760   assert(strchr(name, '\\') == NULL, "path not allowed");
3761   assert(strchr(name, ':') == NULL, "path not allowed");
3762   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3763     jio_snprintf(ebuf, ebuflen,
3764                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3765     return NULL;
3766   }
3767 
3768   // search system directory
3769   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3770     if (size >= pathLen) {
3771       return NULL; // truncated
3772     }
3773     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3774       return NULL; // truncated
3775     }
3776     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3777       return result;
3778     }
3779   }
3780 
3781   // try Windows directory
3782   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3783     if (size >= pathLen) {
3784       return NULL; // truncated
3785     }
3786     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3787       return NULL; // truncated
3788     }
3789     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3790       return result;
3791     }
3792   }
3793 
3794   jio_snprintf(ebuf, ebuflen,
3795                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3796   return NULL;
3797 }
3798 
3799 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3800 
3801 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3802   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3803   return TRUE;
3804 }
3805 
3806 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3807   // Basic approach:
3808   //  - Each exiting thread registers its intent to exit and then does so.
3809   //  - A thread trying to terminate the process must wait for all
3810   //    threads currently exiting to complete their exit.
3811 
3812   if (os::win32::has_exit_bug()) {
3813     // The array holds handles of the threads that have started exiting by calling
3814     // _endthreadex().
3815     // Should be large enough to avoid blocking the exiting thread due to lack of
3816     // a free slot.
3817     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3818     static int handle_count = 0;
3819 
3820     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3821     static CRITICAL_SECTION crit_sect;
3822     static volatile jint process_exiting = 0;
3823     int i, j;
3824     DWORD res;
3825     HANDLE hproc, hthr;
3826 
3827     // The first thread that reached this point, initializes the critical section.
3828     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3829       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3830     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3831       EnterCriticalSection(&crit_sect);
3832 
3833       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3834         // Remove from the array those handles of the threads that have completed exiting.
3835         for (i = 0, j = 0; i < handle_count; ++i) {
3836           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3837           if (res == WAIT_TIMEOUT) {
3838             handles[j++] = handles[i];
3839           } else {
3840             if (res == WAIT_FAILED) {
3841               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3842                       GetLastError(), __FILE__, __LINE__);
3843             }
3844             // Don't keep the handle, if we failed waiting for it.
3845             CloseHandle(handles[i]);
3846           }
3847         }
3848 
3849         // If there's no free slot in the array of the kept handles, we'll have to
3850         // wait until at least one thread completes exiting.
3851         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3852           // Raise the priority of the oldest exiting thread to increase its chances
3853           // to complete sooner.
3854           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3855           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3856           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3857             i = (res - WAIT_OBJECT_0);
3858             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3859             for (; i < handle_count; ++i) {
3860               handles[i] = handles[i + 1];
3861             }
3862           } else {
3863             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3864                     (res == WAIT_FAILED ? "failed" : "timed out"),
3865                     GetLastError(), __FILE__, __LINE__);
3866             // Don't keep handles, if we failed waiting for them.
3867             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3868               CloseHandle(handles[i]);
3869             }
3870             handle_count = 0;
3871           }
3872         }
3873 
3874         // Store a duplicate of the current thread handle in the array of handles.
3875         hproc = GetCurrentProcess();
3876         hthr = GetCurrentThread();
3877         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3878                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3879           warning("DuplicateHandle failed (%u) in %s: %d\n",
3880                   GetLastError(), __FILE__, __LINE__);
3881         } else {
3882           ++handle_count;
3883         }
3884 
3885         // The current exiting thread has stored its handle in the array, and now
3886         // should leave the critical section before calling _endthreadex().
3887 
3888       } else if (what != EPT_THREAD) {
3889         if (handle_count > 0) {
3890           // Before ending the process, make sure all the threads that had called
3891           // _endthreadex() completed.
3892 
3893           // Set the priority level of the current thread to the same value as
3894           // the priority level of exiting threads.
3895           // This is to ensure it will be given a fair chance to execute if
3896           // the timeout expires.
3897           hthr = GetCurrentThread();
3898           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3899           for (i = 0; i < handle_count; ++i) {
3900             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3901           }
3902           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3903           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3904             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3905                     (res == WAIT_FAILED ? "failed" : "timed out"),
3906                     GetLastError(), __FILE__, __LINE__);
3907           }
3908           for (i = 0; i < handle_count; ++i) {
3909             CloseHandle(handles[i]);
3910           }
3911           handle_count = 0;
3912         }
3913 
3914         OrderAccess::release_store(&process_exiting, 1);
3915       }
3916 
3917       LeaveCriticalSection(&crit_sect);
3918     }
3919 
3920     if (what == EPT_THREAD) {
3921       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3922         // Some other thread is about to call exit(), so we
3923         // don't let the current thread proceed to _endthreadex()
3924         SuspendThread(GetCurrentThread());
3925         // Avoid busy-wait loop, if SuspendThread() failed.
3926         Sleep(EXIT_TIMEOUT);
3927       }
3928     }
3929   }
3930 
3931   // We are here if either
3932   // - there's no 'race at exit' bug on this OS release;
3933   // - initialization of the critical section failed (unlikely);
3934   // - the current thread has stored its handle and left the critical section;
3935   // - the process-exiting thread has raised the flag and left the critical section.
3936   if (what == EPT_THREAD) {
3937     _endthreadex((unsigned)exit_code);
3938   } else if (what == EPT_PROCESS) {
3939     ::exit(exit_code);
3940   } else {
3941     _exit(exit_code);
3942   }
3943 
3944   // Should not reach here
3945   return exit_code;
3946 }
3947 
3948 #undef EXIT_TIMEOUT
3949 
3950 void os::win32::setmode_streams() {
3951   _setmode(_fileno(stdin), _O_BINARY);
3952   _setmode(_fileno(stdout), _O_BINARY);
3953   _setmode(_fileno(stderr), _O_BINARY);
3954 }
3955 
3956 
3957 bool os::is_debugger_attached() {
3958   return IsDebuggerPresent() ? true : false;
3959 }
3960 
3961 
3962 void os::wait_for_keypress_at_exit(void) {
3963   if (PauseAtExit) {
3964     fprintf(stderr, "Press any key to continue...\n");
3965     fgetc(stdin);
3966   }
3967 }
3968 
3969 
3970 int os::message_box(const char* title, const char* message) {
3971   int result = MessageBox(NULL, message, title,
3972                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3973   return result == IDYES;
3974 }
3975 
3976 int os::allocate_thread_local_storage() {
3977   return TlsAlloc();
3978 }
3979 
3980 
3981 void os::free_thread_local_storage(int index) {
3982   TlsFree(index);
3983 }
3984 
3985 
3986 void os::thread_local_storage_at_put(int index, void* value) {
3987   TlsSetValue(index, value);
3988   assert(thread_local_storage_at(index) == value, "Just checking");
3989 }
3990 
3991 
3992 void* os::thread_local_storage_at(int index) {
3993   return TlsGetValue(index);
3994 }
3995 
3996 
3997 #ifndef PRODUCT
3998 #ifndef _WIN64
3999 // Helpers to check whether NX protection is enabled
4000 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4001   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4002       pex->ExceptionRecord->NumberParameters > 0 &&
4003       pex->ExceptionRecord->ExceptionInformation[0] ==
4004       EXCEPTION_INFO_EXEC_VIOLATION) {
4005     return EXCEPTION_EXECUTE_HANDLER;
4006   }
4007   return EXCEPTION_CONTINUE_SEARCH;
4008 }
4009 
4010 void nx_check_protection() {
4011   // If NX is enabled we'll get an exception calling into code on the stack
4012   char code[] = { (char)0xC3 }; // ret
4013   void *code_ptr = (void *)code;
4014   __try {
4015     __asm call code_ptr
4016   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4017     tty->print_raw_cr("NX protection detected.");
4018   }
4019 }
4020 #endif // _WIN64
4021 #endif // PRODUCT
4022 
4023 // this is called _before_ the global arguments have been parsed
4024 void os::init(void) {
4025   _initial_pid = _getpid();
4026 
4027   init_random(1234567);
4028 
4029   win32::initialize_system_info();
4030   win32::setmode_streams();
4031   init_page_sizes((size_t) win32::vm_page_size());
4032 
4033   // This may be overridden later when argument processing is done.
4034   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4035                 os::win32::is_windows_2003());
4036 
4037   // Initialize main_process and main_thread
4038   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4039   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4040                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4041     fatal("DuplicateHandle failed\n");
4042   }
4043   main_thread_id = (int) GetCurrentThreadId();
4044 }
4045 
4046 // To install functions for atexit processing
4047 extern "C" {
4048   static void perfMemory_exit_helper() {
4049     perfMemory_exit();
4050   }
4051 }
4052 
4053 static jint initSock();
4054 
4055 // this is called _after_ the global arguments have been parsed
4056 jint os::init_2(void) {
4057   // Allocate a single page and mark it as readable for safepoint polling
4058   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4059   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4060 
4061   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4062   guarantee(return_page != NULL, "Commit Failed for polling page");
4063 
4064   os::set_polling_page(polling_page);
4065 
4066 #ifndef PRODUCT
4067   if (Verbose && PrintMiscellaneous) {
4068     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4069                (intptr_t)polling_page);
4070   }
4071 #endif
4072 
4073   if (!UseMembar) {
4074     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4075     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4076 
4077     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4078     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4079 
4080     os::set_memory_serialize_page(mem_serialize_page);
4081 
4082 #ifndef PRODUCT
4083     if (Verbose && PrintMiscellaneous) {
4084       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4085                  (intptr_t)mem_serialize_page);
4086     }
4087 #endif
4088   }
4089 
4090   // Setup Windows Exceptions
4091 
4092   // for debugging float code generation bugs
4093   if (ForceFloatExceptions) {
4094 #ifndef  _WIN64
4095     static long fp_control_word = 0;
4096     __asm { fstcw fp_control_word }
4097     // see Intel PPro Manual, Vol. 2, p 7-16
4098     const long precision = 0x20;
4099     const long underflow = 0x10;
4100     const long overflow  = 0x08;
4101     const long zero_div  = 0x04;
4102     const long denorm    = 0x02;
4103     const long invalid   = 0x01;
4104     fp_control_word |= invalid;
4105     __asm { fldcw fp_control_word }
4106 #endif
4107   }
4108 
4109   // If stack_commit_size is 0, windows will reserve the default size,
4110   // but only commit a small portion of it.
4111   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4112   size_t default_reserve_size = os::win32::default_stack_size();
4113   size_t actual_reserve_size = stack_commit_size;
4114   if (stack_commit_size < default_reserve_size) {
4115     // If stack_commit_size == 0, we want this too
4116     actual_reserve_size = default_reserve_size;
4117   }
4118 
4119   // Check minimum allowable stack size for thread creation and to initialize
4120   // the java system classes, including StackOverflowError - depends on page
4121   // size.  Add a page for compiler2 recursion in main thread.
4122   // Add in 2*BytesPerWord times page size to account for VM stack during
4123   // class initialization depending on 32 or 64 bit VM.
4124   size_t min_stack_allowed =
4125             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4126                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4127   if (actual_reserve_size < min_stack_allowed) {
4128     tty->print_cr("\nThe stack size specified is too small, "
4129                   "Specify at least %dk",
4130                   min_stack_allowed / K);
4131     return JNI_ERR;
4132   }
4133 
4134   JavaThread::set_stack_size_at_create(stack_commit_size);
4135 
4136   // Calculate theoretical max. size of Threads to guard gainst artifical
4137   // out-of-memory situations, where all available address-space has been
4138   // reserved by thread stacks.
4139   assert(actual_reserve_size != 0, "Must have a stack");
4140 
4141   // Calculate the thread limit when we should start doing Virtual Memory
4142   // banging. Currently when the threads will have used all but 200Mb of space.
4143   //
4144   // TODO: consider performing a similar calculation for commit size instead
4145   // as reserve size, since on a 64-bit platform we'll run into that more
4146   // often than running out of virtual memory space.  We can use the
4147   // lower value of the two calculations as the os_thread_limit.
4148   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4149   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4150 
4151   // at exit methods are called in the reverse order of their registration.
4152   // there is no limit to the number of functions registered. atexit does
4153   // not set errno.
4154 
4155   if (PerfAllowAtExitRegistration) {
4156     // only register atexit functions if PerfAllowAtExitRegistration is set.
4157     // atexit functions can be delayed until process exit time, which
4158     // can be problematic for embedded VM situations. Embedded VMs should
4159     // call DestroyJavaVM() to assure that VM resources are released.
4160 
4161     // note: perfMemory_exit_helper atexit function may be removed in
4162     // the future if the appropriate cleanup code can be added to the
4163     // VM_Exit VMOperation's doit method.
4164     if (atexit(perfMemory_exit_helper) != 0) {
4165       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4166     }
4167   }
4168 
4169 #ifndef _WIN64
4170   // Print something if NX is enabled (win32 on AMD64)
4171   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4172 #endif
4173 
4174   // initialize thread priority policy
4175   prio_init();
4176 
4177   if (UseNUMA && !ForceNUMA) {
4178     UseNUMA = false; // We don't fully support this yet
4179   }
4180 
4181   if (UseNUMAInterleaving) {
4182     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4183     bool success = numa_interleaving_init();
4184     if (!success) UseNUMAInterleaving = false;
4185   }
4186 
4187   if (initSock() != JNI_OK) {
4188     return JNI_ERR;
4189   }
4190 
4191   return JNI_OK;
4192 }
4193 
4194 // Mark the polling page as unreadable
4195 void os::make_polling_page_unreadable(void) {
4196   DWORD old_status;
4197   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4198                       PAGE_NOACCESS, &old_status)) {
4199     fatal("Could not disable polling page");
4200   }
4201 }
4202 
4203 // Mark the polling page as readable
4204 void os::make_polling_page_readable(void) {
4205   DWORD old_status;
4206   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4207                       PAGE_READONLY, &old_status)) {
4208     fatal("Could not enable polling page");
4209   }
4210 }
4211 
4212 
4213 int os::stat(const char *path, struct stat *sbuf) {
4214   char pathbuf[MAX_PATH];
4215   if (strlen(path) > MAX_PATH - 1) {
4216     errno = ENAMETOOLONG;
4217     return -1;
4218   }
4219   os::native_path(strcpy(pathbuf, path));
4220   int ret = ::stat(pathbuf, sbuf);
4221   if (sbuf != NULL && UseUTCFileTimestamp) {
4222     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4223     // the system timezone and so can return different values for the
4224     // same file if/when daylight savings time changes.  This adjustment
4225     // makes sure the same timestamp is returned regardless of the TZ.
4226     //
4227     // See:
4228     // http://msdn.microsoft.com/library/
4229     //   default.asp?url=/library/en-us/sysinfo/base/
4230     //   time_zone_information_str.asp
4231     // and
4232     // http://msdn.microsoft.com/library/default.asp?url=
4233     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4234     //
4235     // NOTE: there is a insidious bug here:  If the timezone is changed
4236     // after the call to stat() but before 'GetTimeZoneInformation()', then
4237     // the adjustment we do here will be wrong and we'll return the wrong
4238     // value (which will likely end up creating an invalid class data
4239     // archive).  Absent a better API for this, or some time zone locking
4240     // mechanism, we'll have to live with this risk.
4241     TIME_ZONE_INFORMATION tz;
4242     DWORD tzid = GetTimeZoneInformation(&tz);
4243     int daylightBias =
4244       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4245     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4246   }
4247   return ret;
4248 }
4249 
4250 
4251 #define FT2INT64(ft) \
4252   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4253 
4254 
4255 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4256 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4257 // of a thread.
4258 //
4259 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4260 // the fast estimate available on the platform.
4261 
4262 // current_thread_cpu_time() is not optimized for Windows yet
4263 jlong os::current_thread_cpu_time() {
4264   // return user + sys since the cost is the same
4265   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4266 }
4267 
4268 jlong os::thread_cpu_time(Thread* thread) {
4269   // consistent with what current_thread_cpu_time() returns.
4270   return os::thread_cpu_time(thread, true /* user+sys */);
4271 }
4272 
4273 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4274   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4275 }
4276 
4277 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4278   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4279   // If this function changes, os::is_thread_cpu_time_supported() should too
4280   if (os::win32::is_nt()) {
4281     FILETIME CreationTime;
4282     FILETIME ExitTime;
4283     FILETIME KernelTime;
4284     FILETIME UserTime;
4285 
4286     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4287                        &ExitTime, &KernelTime, &UserTime) == 0) {
4288       return -1;
4289     } else if (user_sys_cpu_time) {
4290       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4291     } else {
4292       return FT2INT64(UserTime) * 100;
4293     }
4294   } else {
4295     return (jlong) timeGetTime() * 1000000;
4296   }
4297 }
4298 
4299 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4300   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4301   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4302   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4303   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4304 }
4305 
4306 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4307   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4308   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4309   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4310   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4311 }
4312 
4313 bool os::is_thread_cpu_time_supported() {
4314   // see os::thread_cpu_time
4315   if (os::win32::is_nt()) {
4316     FILETIME CreationTime;
4317     FILETIME ExitTime;
4318     FILETIME KernelTime;
4319     FILETIME UserTime;
4320 
4321     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4322                        &KernelTime, &UserTime) == 0) {
4323       return false;
4324     } else {
4325       return true;
4326     }
4327   } else {
4328     return false;
4329   }
4330 }
4331 
4332 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4333 // It does have primitives (PDH API) to get CPU usage and run queue length.
4334 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4335 // If we wanted to implement loadavg on Windows, we have a few options:
4336 //
4337 // a) Query CPU usage and run queue length and "fake" an answer by
4338 //    returning the CPU usage if it's under 100%, and the run queue
4339 //    length otherwise.  It turns out that querying is pretty slow
4340 //    on Windows, on the order of 200 microseconds on a fast machine.
4341 //    Note that on the Windows the CPU usage value is the % usage
4342 //    since the last time the API was called (and the first call
4343 //    returns 100%), so we'd have to deal with that as well.
4344 //
4345 // b) Sample the "fake" answer using a sampling thread and store
4346 //    the answer in a global variable.  The call to loadavg would
4347 //    just return the value of the global, avoiding the slow query.
4348 //
4349 // c) Sample a better answer using exponential decay to smooth the
4350 //    value.  This is basically the algorithm used by UNIX kernels.
4351 //
4352 // Note that sampling thread starvation could affect both (b) and (c).
4353 int os::loadavg(double loadavg[], int nelem) {
4354   return -1;
4355 }
4356 
4357 
4358 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4359 bool os::dont_yield() {
4360   return DontYieldALot;
4361 }
4362 
4363 // This method is a slightly reworked copy of JDK's sysOpen
4364 // from src/windows/hpi/src/sys_api_md.c
4365 
4366 int os::open(const char *path, int oflag, int mode) {
4367   char pathbuf[MAX_PATH];
4368 
4369   if (strlen(path) > MAX_PATH - 1) {
4370     errno = ENAMETOOLONG;
4371     return -1;
4372   }
4373   os::native_path(strcpy(pathbuf, path));
4374   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4375 }
4376 
4377 FILE* os::open(int fd, const char* mode) {
4378   return ::_fdopen(fd, mode);
4379 }
4380 
4381 // Is a (classpath) directory empty?
4382 bool os::dir_is_empty(const char* path) {
4383   WIN32_FIND_DATA fd;
4384   HANDLE f = FindFirstFile(path, &fd);
4385   if (f == INVALID_HANDLE_VALUE) {
4386     return true;
4387   }
4388   FindClose(f);
4389   return false;
4390 }
4391 
4392 // create binary file, rewriting existing file if required
4393 int os::create_binary_file(const char* path, bool rewrite_existing) {
4394   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4395   if (!rewrite_existing) {
4396     oflags |= _O_EXCL;
4397   }
4398   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4399 }
4400 
4401 // return current position of file pointer
4402 jlong os::current_file_offset(int fd) {
4403   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4404 }
4405 
4406 // move file pointer to the specified offset
4407 jlong os::seek_to_file_offset(int fd, jlong offset) {
4408   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4409 }
4410 
4411 
4412 jlong os::lseek(int fd, jlong offset, int whence) {
4413   return (jlong) ::_lseeki64(fd, offset, whence);
4414 }
4415 
4416 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4417   OVERLAPPED ov;
4418   DWORD nread;
4419   BOOL result;
4420 
4421   ZeroMemory(&ov, sizeof(ov));
4422   ov.Offset = (DWORD)offset;
4423   ov.OffsetHigh = (DWORD)(offset >> 32);
4424 
4425   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4426 
4427   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4428 
4429   return result ? nread : 0;
4430 }
4431 
4432 
4433 // This method is a slightly reworked copy of JDK's sysNativePath
4434 // from src/windows/hpi/src/path_md.c
4435 
4436 // Convert a pathname to native format.  On win32, this involves forcing all
4437 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4438 // sometimes rejects '/') and removing redundant separators.  The input path is
4439 // assumed to have been converted into the character encoding used by the local
4440 // system.  Because this might be a double-byte encoding, care is taken to
4441 // treat double-byte lead characters correctly.
4442 //
4443 // This procedure modifies the given path in place, as the result is never
4444 // longer than the original.  There is no error return; this operation always
4445 // succeeds.
4446 char * os::native_path(char *path) {
4447   char *src = path, *dst = path, *end = path;
4448   char *colon = NULL;  // If a drive specifier is found, this will
4449                        // point to the colon following the drive letter
4450 
4451   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4452   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4453           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4454 
4455   // Check for leading separators
4456 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4457   while (isfilesep(*src)) {
4458     src++;
4459   }
4460 
4461   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4462     // Remove leading separators if followed by drive specifier.  This
4463     // hack is necessary to support file URLs containing drive
4464     // specifiers (e.g., "file://c:/path").  As a side effect,
4465     // "/c:/path" can be used as an alternative to "c:/path".
4466     *dst++ = *src++;
4467     colon = dst;
4468     *dst++ = ':';
4469     src++;
4470   } else {
4471     src = path;
4472     if (isfilesep(src[0]) && isfilesep(src[1])) {
4473       // UNC pathname: Retain first separator; leave src pointed at
4474       // second separator so that further separators will be collapsed
4475       // into the second separator.  The result will be a pathname
4476       // beginning with "\\\\" followed (most likely) by a host name.
4477       src = dst = path + 1;
4478       path[0] = '\\';     // Force first separator to '\\'
4479     }
4480   }
4481 
4482   end = dst;
4483 
4484   // Remove redundant separators from remainder of path, forcing all
4485   // separators to be '\\' rather than '/'. Also, single byte space
4486   // characters are removed from the end of the path because those
4487   // are not legal ending characters on this operating system.
4488   //
4489   while (*src != '\0') {
4490     if (isfilesep(*src)) {
4491       *dst++ = '\\'; src++;
4492       while (isfilesep(*src)) src++;
4493       if (*src == '\0') {
4494         // Check for trailing separator
4495         end = dst;
4496         if (colon == dst - 2) break;  // "z:\\"
4497         if (dst == path + 1) break;   // "\\"
4498         if (dst == path + 2 && isfilesep(path[0])) {
4499           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4500           // beginning of a UNC pathname.  Even though it is not, by
4501           // itself, a valid UNC pathname, we leave it as is in order
4502           // to be consistent with the path canonicalizer as well
4503           // as the win32 APIs, which treat this case as an invalid
4504           // UNC pathname rather than as an alias for the root
4505           // directory of the current drive.
4506           break;
4507         }
4508         end = --dst;  // Path does not denote a root directory, so
4509                       // remove trailing separator
4510         break;
4511       }
4512       end = dst;
4513     } else {
4514       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4515         *dst++ = *src++;
4516         if (*src) *dst++ = *src++;
4517         end = dst;
4518       } else {  // Copy a single-byte character
4519         char c = *src++;
4520         *dst++ = c;
4521         // Space is not a legal ending character
4522         if (c != ' ') end = dst;
4523       }
4524     }
4525   }
4526 
4527   *end = '\0';
4528 
4529   // For "z:", add "." to work around a bug in the C runtime library
4530   if (colon == dst - 1) {
4531     path[2] = '.';
4532     path[3] = '\0';
4533   }
4534 
4535   return path;
4536 }
4537 
4538 // This code is a copy of JDK's sysSetLength
4539 // from src/windows/hpi/src/sys_api_md.c
4540 
4541 int os::ftruncate(int fd, jlong length) {
4542   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4543   long high = (long)(length >> 32);
4544   DWORD ret;
4545 
4546   if (h == (HANDLE)(-1)) {
4547     return -1;
4548   }
4549 
4550   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4551   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4552     return -1;
4553   }
4554 
4555   if (::SetEndOfFile(h) == FALSE) {
4556     return -1;
4557   }
4558 
4559   return 0;
4560 }
4561 
4562 
4563 // This code is a copy of JDK's sysSync
4564 // from src/windows/hpi/src/sys_api_md.c
4565 // except for the legacy workaround for a bug in Win 98
4566 
4567 int os::fsync(int fd) {
4568   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4569 
4570   if ((!::FlushFileBuffers(handle)) &&
4571       (GetLastError() != ERROR_ACCESS_DENIED)) {
4572     // from winerror.h
4573     return -1;
4574   }
4575   return 0;
4576 }
4577 
4578 static int nonSeekAvailable(int, long *);
4579 static int stdinAvailable(int, long *);
4580 
4581 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4582 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4583 
4584 // This code is a copy of JDK's sysAvailable
4585 // from src/windows/hpi/src/sys_api_md.c
4586 
4587 int os::available(int fd, jlong *bytes) {
4588   jlong cur, end;
4589   struct _stati64 stbuf64;
4590 
4591   if (::_fstati64(fd, &stbuf64) >= 0) {
4592     int mode = stbuf64.st_mode;
4593     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4594       int ret;
4595       long lpbytes;
4596       if (fd == 0) {
4597         ret = stdinAvailable(fd, &lpbytes);
4598       } else {
4599         ret = nonSeekAvailable(fd, &lpbytes);
4600       }
4601       (*bytes) = (jlong)(lpbytes);
4602       return ret;
4603     }
4604     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4605       return FALSE;
4606     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4607       return FALSE;
4608     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4609       return FALSE;
4610     }
4611     *bytes = end - cur;
4612     return TRUE;
4613   } else {
4614     return FALSE;
4615   }
4616 }
4617 
4618 // This code is a copy of JDK's nonSeekAvailable
4619 // from src/windows/hpi/src/sys_api_md.c
4620 
4621 static int nonSeekAvailable(int fd, long *pbytes) {
4622   // This is used for available on non-seekable devices
4623   // (like both named and anonymous pipes, such as pipes
4624   //  connected to an exec'd process).
4625   // Standard Input is a special case.
4626   HANDLE han;
4627 
4628   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4629     return FALSE;
4630   }
4631 
4632   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4633     // PeekNamedPipe fails when at EOF.  In that case we
4634     // simply make *pbytes = 0 which is consistent with the
4635     // behavior we get on Solaris when an fd is at EOF.
4636     // The only alternative is to raise an Exception,
4637     // which isn't really warranted.
4638     //
4639     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4640       return FALSE;
4641     }
4642     *pbytes = 0;
4643   }
4644   return TRUE;
4645 }
4646 
4647 #define MAX_INPUT_EVENTS 2000
4648 
4649 // This code is a copy of JDK's stdinAvailable
4650 // from src/windows/hpi/src/sys_api_md.c
4651 
4652 static int stdinAvailable(int fd, long *pbytes) {
4653   HANDLE han;
4654   DWORD numEventsRead = 0;  // Number of events read from buffer
4655   DWORD numEvents = 0;      // Number of events in buffer
4656   DWORD i = 0;              // Loop index
4657   DWORD curLength = 0;      // Position marker
4658   DWORD actualLength = 0;   // Number of bytes readable
4659   BOOL error = FALSE;       // Error holder
4660   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4661 
4662   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4663     return FALSE;
4664   }
4665 
4666   // Construct an array of input records in the console buffer
4667   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4668   if (error == 0) {
4669     return nonSeekAvailable(fd, pbytes);
4670   }
4671 
4672   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4673   if (numEvents > MAX_INPUT_EVENTS) {
4674     numEvents = MAX_INPUT_EVENTS;
4675   }
4676 
4677   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4678   if (lpBuffer == NULL) {
4679     return FALSE;
4680   }
4681 
4682   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4683   if (error == 0) {
4684     os::free(lpBuffer);
4685     return FALSE;
4686   }
4687 
4688   // Examine input records for the number of bytes available
4689   for (i=0; i<numEvents; i++) {
4690     if (lpBuffer[i].EventType == KEY_EVENT) {
4691 
4692       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4693                                       &(lpBuffer[i].Event);
4694       if (keyRecord->bKeyDown == TRUE) {
4695         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4696         curLength++;
4697         if (*keyPressed == '\r') {
4698           actualLength = curLength;
4699         }
4700       }
4701     }
4702   }
4703 
4704   if (lpBuffer != NULL) {
4705     os::free(lpBuffer);
4706   }
4707 
4708   *pbytes = (long) actualLength;
4709   return TRUE;
4710 }
4711 
4712 // Map a block of memory.
4713 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4714                         char *addr, size_t bytes, bool read_only,
4715                         bool allow_exec) {
4716   HANDLE hFile;
4717   char* base;
4718 
4719   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4720                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4721   if (hFile == NULL) {
4722     if (PrintMiscellaneous && Verbose) {
4723       DWORD err = GetLastError();
4724       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4725     }
4726     return NULL;
4727   }
4728 
4729   if (allow_exec) {
4730     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4731     // unless it comes from a PE image (which the shared archive is not.)
4732     // Even VirtualProtect refuses to give execute access to mapped memory
4733     // that was not previously executable.
4734     //
4735     // Instead, stick the executable region in anonymous memory.  Yuck.
4736     // Penalty is that ~4 pages will not be shareable - in the future
4737     // we might consider DLLizing the shared archive with a proper PE
4738     // header so that mapping executable + sharing is possible.
4739 
4740     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4741                                 PAGE_READWRITE);
4742     if (base == NULL) {
4743       if (PrintMiscellaneous && Verbose) {
4744         DWORD err = GetLastError();
4745         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4746       }
4747       CloseHandle(hFile);
4748       return NULL;
4749     }
4750 
4751     DWORD bytes_read;
4752     OVERLAPPED overlapped;
4753     overlapped.Offset = (DWORD)file_offset;
4754     overlapped.OffsetHigh = 0;
4755     overlapped.hEvent = NULL;
4756     // ReadFile guarantees that if the return value is true, the requested
4757     // number of bytes were read before returning.
4758     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4759     if (!res) {
4760       if (PrintMiscellaneous && Verbose) {
4761         DWORD err = GetLastError();
4762         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4763       }
4764       release_memory(base, bytes);
4765       CloseHandle(hFile);
4766       return NULL;
4767     }
4768   } else {
4769     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4770                                     NULL /* file_name */);
4771     if (hMap == NULL) {
4772       if (PrintMiscellaneous && Verbose) {
4773         DWORD err = GetLastError();
4774         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4775       }
4776       CloseHandle(hFile);
4777       return NULL;
4778     }
4779 
4780     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4781     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4782                                   (DWORD)bytes, addr);
4783     if (base == NULL) {
4784       if (PrintMiscellaneous && Verbose) {
4785         DWORD err = GetLastError();
4786         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4787       }
4788       CloseHandle(hMap);
4789       CloseHandle(hFile);
4790       return NULL;
4791     }
4792 
4793     if (CloseHandle(hMap) == 0) {
4794       if (PrintMiscellaneous && Verbose) {
4795         DWORD err = GetLastError();
4796         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4797       }
4798       CloseHandle(hFile);
4799       return base;
4800     }
4801   }
4802 
4803   if (allow_exec) {
4804     DWORD old_protect;
4805     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4806     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4807 
4808     if (!res) {
4809       if (PrintMiscellaneous && Verbose) {
4810         DWORD err = GetLastError();
4811         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4812       }
4813       // Don't consider this a hard error, on IA32 even if the
4814       // VirtualProtect fails, we should still be able to execute
4815       CloseHandle(hFile);
4816       return base;
4817     }
4818   }
4819 
4820   if (CloseHandle(hFile) == 0) {
4821     if (PrintMiscellaneous && Verbose) {
4822       DWORD err = GetLastError();
4823       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4824     }
4825     return base;
4826   }
4827 
4828   return base;
4829 }
4830 
4831 
4832 // Remap a block of memory.
4833 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4834                           char *addr, size_t bytes, bool read_only,
4835                           bool allow_exec) {
4836   // This OS does not allow existing memory maps to be remapped so we
4837   // have to unmap the memory before we remap it.
4838   if (!os::unmap_memory(addr, bytes)) {
4839     return NULL;
4840   }
4841 
4842   // There is a very small theoretical window between the unmap_memory()
4843   // call above and the map_memory() call below where a thread in native
4844   // code may be able to access an address that is no longer mapped.
4845 
4846   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4847                         read_only, allow_exec);
4848 }
4849 
4850 
4851 // Unmap a block of memory.
4852 // Returns true=success, otherwise false.
4853 
4854 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4855   BOOL result = UnmapViewOfFile(addr);
4856   if (result == 0) {
4857     if (PrintMiscellaneous && Verbose) {
4858       DWORD err = GetLastError();
4859       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4860     }
4861     return false;
4862   }
4863   return true;
4864 }
4865 
4866 void os::pause() {
4867   char filename[MAX_PATH];
4868   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4869     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4870   } else {
4871     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4872   }
4873 
4874   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4875   if (fd != -1) {
4876     struct stat buf;
4877     ::close(fd);
4878     while (::stat(filename, &buf) == 0) {
4879       Sleep(100);
4880     }
4881   } else {
4882     jio_fprintf(stderr,
4883                 "Could not open pause file '%s', continuing immediately.\n", filename);
4884   }
4885 }
4886 
4887 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4888   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4889 }
4890 
4891 // See the caveats for this class in os_windows.hpp
4892 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4893 // into this method and returns false. If no OS EXCEPTION was raised, returns
4894 // true.
4895 // The callback is supposed to provide the method that should be protected.
4896 //
4897 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4898   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4899   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4900          "crash_protection already set?");
4901 
4902   bool success = true;
4903   __try {
4904     WatcherThread::watcher_thread()->set_crash_protection(this);
4905     cb.call();
4906   } __except(EXCEPTION_EXECUTE_HANDLER) {
4907     // only for protection, nothing to do
4908     success = false;
4909   }
4910   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4911   return success;
4912 }
4913 
4914 // An Event wraps a win32 "CreateEvent" kernel handle.
4915 //
4916 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4917 //
4918 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4919 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4920 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4921 //     In addition, an unpark() operation might fetch the handle field, but the
4922 //     event could recycle between the fetch and the SetEvent() operation.
4923 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4924 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4925 //     on an stale but recycled handle would be harmless, but in practice this might
4926 //     confuse other non-Sun code, so it's not a viable approach.
4927 //
4928 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4929 //     with the Event.  The event handle is never closed.  This could be construed
4930 //     as handle leakage, but only up to the maximum # of threads that have been extant
4931 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4932 //     permit a process to have hundreds of thousands of open handles.
4933 //
4934 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4935 //     and release unused handles.
4936 //
4937 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4938 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4939 //
4940 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4941 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4942 //
4943 // We use (2).
4944 //
4945 // TODO-FIXME:
4946 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4947 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4948 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4949 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4950 //     into a single win32 CreateEvent() handle.
4951 //
4952 // Assumption:
4953 //    Only one parker can exist on an event, which is why we allocate
4954 //    them per-thread. Multiple unparkers can coexist.
4955 //
4956 // _Event transitions in park()
4957 //   -1 => -1 : illegal
4958 //    1 =>  0 : pass - return immediately
4959 //    0 => -1 : block; then set _Event to 0 before returning
4960 //
4961 // _Event transitions in unpark()
4962 //    0 => 1 : just return
4963 //    1 => 1 : just return
4964 //   -1 => either 0 or 1; must signal target thread
4965 //         That is, we can safely transition _Event from -1 to either
4966 //         0 or 1.
4967 //
4968 // _Event serves as a restricted-range semaphore.
4969 //   -1 : thread is blocked, i.e. there is a waiter
4970 //    0 : neutral: thread is running or ready,
4971 //        could have been signaled after a wait started
4972 //    1 : signaled - thread is running or ready
4973 //
4974 // Another possible encoding of _Event would be with
4975 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4976 //
4977 
4978 int os::PlatformEvent::park(jlong Millis) {
4979   // Transitions for _Event:
4980   //   -1 => -1 : illegal
4981   //    1 =>  0 : pass - return immediately
4982   //    0 => -1 : block; then set _Event to 0 before returning
4983 
4984   guarantee(_ParkHandle != NULL , "Invariant");
4985   guarantee(Millis > 0          , "Invariant");
4986 
4987   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4988   // the initial park() operation.
4989   // Consider: use atomic decrement instead of CAS-loop
4990 
4991   int v;
4992   for (;;) {
4993     v = _Event;
4994     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4995   }
4996   guarantee((v == 0) || (v == 1), "invariant");
4997   if (v != 0) return OS_OK;
4998 
4999   // Do this the hard way by blocking ...
5000   // TODO: consider a brief spin here, gated on the success of recent
5001   // spin attempts by this thread.
5002   //
5003   // We decompose long timeouts into series of shorter timed waits.
5004   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5005   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5006   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5007   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5008   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5009   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5010   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5011   // for the already waited time.  This policy does not admit any new outcomes.
5012   // In the future, however, we might want to track the accumulated wait time and
5013   // adjust Millis accordingly if we encounter a spurious wakeup.
5014 
5015   const int MAXTIMEOUT = 0x10000000;
5016   DWORD rv = WAIT_TIMEOUT;
5017   while (_Event < 0 && Millis > 0) {
5018     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5019     if (Millis > MAXTIMEOUT) {
5020       prd = MAXTIMEOUT;
5021     }
5022     rv = ::WaitForSingleObject(_ParkHandle, prd);
5023     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5024     if (rv == WAIT_TIMEOUT) {
5025       Millis -= prd;
5026     }
5027   }
5028   v = _Event;
5029   _Event = 0;
5030   // see comment at end of os::PlatformEvent::park() below:
5031   OrderAccess::fence();
5032   // If we encounter a nearly simultanous timeout expiry and unpark()
5033   // we return OS_OK indicating we awoke via unpark().
5034   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5035   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5036 }
5037 
5038 void os::PlatformEvent::park() {
5039   // Transitions for _Event:
5040   //   -1 => -1 : illegal
5041   //    1 =>  0 : pass - return immediately
5042   //    0 => -1 : block; then set _Event to 0 before returning
5043 
5044   guarantee(_ParkHandle != NULL, "Invariant");
5045   // Invariant: Only the thread associated with the Event/PlatformEvent
5046   // may call park().
5047   // Consider: use atomic decrement instead of CAS-loop
5048   int v;
5049   for (;;) {
5050     v = _Event;
5051     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5052   }
5053   guarantee((v == 0) || (v == 1), "invariant");
5054   if (v != 0) return;
5055 
5056   // Do this the hard way by blocking ...
5057   // TODO: consider a brief spin here, gated on the success of recent
5058   // spin attempts by this thread.
5059   while (_Event < 0) {
5060     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5061     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5062   }
5063 
5064   // Usually we'll find _Event == 0 at this point, but as
5065   // an optional optimization we clear it, just in case can
5066   // multiple unpark() operations drove _Event up to 1.
5067   _Event = 0;
5068   OrderAccess::fence();
5069   guarantee(_Event >= 0, "invariant");
5070 }
5071 
5072 void os::PlatformEvent::unpark() {
5073   guarantee(_ParkHandle != NULL, "Invariant");
5074 
5075   // Transitions for _Event:
5076   //    0 => 1 : just return
5077   //    1 => 1 : just return
5078   //   -1 => either 0 or 1; must signal target thread
5079   //         That is, we can safely transition _Event from -1 to either
5080   //         0 or 1.
5081   // See also: "Semaphores in Plan 9" by Mullender & Cox
5082   //
5083   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5084   // that it will take two back-to-back park() calls for the owning
5085   // thread to block. This has the benefit of forcing a spurious return
5086   // from the first park() call after an unpark() call which will help
5087   // shake out uses of park() and unpark() without condition variables.
5088 
5089   if (Atomic::xchg(1, &_Event) >= 0) return;
5090 
5091   ::SetEvent(_ParkHandle);
5092 }
5093 
5094 
5095 // JSR166
5096 // -------------------------------------------------------
5097 
5098 // The Windows implementation of Park is very straightforward: Basic
5099 // operations on Win32 Events turn out to have the right semantics to
5100 // use them directly. We opportunistically resuse the event inherited
5101 // from Monitor.
5102 
5103 void Parker::park(bool isAbsolute, jlong time) {
5104   guarantee(_ParkEvent != NULL, "invariant");
5105   // First, demultiplex/decode time arguments
5106   if (time < 0) { // don't wait
5107     return;
5108   } else if (time == 0 && !isAbsolute) {
5109     time = INFINITE;
5110   } else if (isAbsolute) {
5111     time -= os::javaTimeMillis(); // convert to relative time
5112     if (time <= 0) {  // already elapsed
5113       return;
5114     }
5115   } else { // relative
5116     time /= 1000000;  // Must coarsen from nanos to millis
5117     if (time == 0) {  // Wait for the minimal time unit if zero
5118       time = 1;
5119     }
5120   }
5121 
5122   JavaThread* thread = (JavaThread*)(Thread::current());
5123   assert(thread->is_Java_thread(), "Must be JavaThread");
5124   JavaThread *jt = (JavaThread *)thread;
5125 
5126   // Don't wait if interrupted or already triggered
5127   if (Thread::is_interrupted(thread, false) ||
5128       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5129     ResetEvent(_ParkEvent);
5130     return;
5131   } else {
5132     ThreadBlockInVM tbivm(jt);
5133     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5134     jt->set_suspend_equivalent();
5135 
5136     WaitForSingleObject(_ParkEvent, time);
5137     ResetEvent(_ParkEvent);
5138 
5139     // If externally suspended while waiting, re-suspend
5140     if (jt->handle_special_suspend_equivalent_condition()) {
5141       jt->java_suspend_self();
5142     }
5143   }
5144 }
5145 
5146 void Parker::unpark() {
5147   guarantee(_ParkEvent != NULL, "invariant");
5148   SetEvent(_ParkEvent);
5149 }
5150 
5151 // Run the specified command in a separate process. Return its exit value,
5152 // or -1 on failure (e.g. can't create a new process).
5153 int os::fork_and_exec(char* cmd) {
5154   STARTUPINFO si;
5155   PROCESS_INFORMATION pi;
5156 
5157   memset(&si, 0, sizeof(si));
5158   si.cb = sizeof(si);
5159   memset(&pi, 0, sizeof(pi));
5160   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5161                             cmd,    // command line
5162                             NULL,   // process security attribute
5163                             NULL,   // thread security attribute
5164                             TRUE,   // inherits system handles
5165                             0,      // no creation flags
5166                             NULL,   // use parent's environment block
5167                             NULL,   // use parent's starting directory
5168                             &si,    // (in) startup information
5169                             &pi);   // (out) process information
5170 
5171   if (rslt) {
5172     // Wait until child process exits.
5173     WaitForSingleObject(pi.hProcess, INFINITE);
5174 
5175     DWORD exit_code;
5176     GetExitCodeProcess(pi.hProcess, &exit_code);
5177 
5178     // Close process and thread handles.
5179     CloseHandle(pi.hProcess);
5180     CloseHandle(pi.hThread);
5181 
5182     return (int)exit_code;
5183   } else {
5184     return -1;
5185   }
5186 }
5187 
5188 //--------------------------------------------------------------------------------------------------
5189 // Non-product code
5190 
5191 static int mallocDebugIntervalCounter = 0;
5192 static int mallocDebugCounter = 0;
5193 bool os::check_heap(bool force) {
5194   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5195   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5196     // Note: HeapValidate executes two hardware breakpoints when it finds something
5197     // wrong; at these points, eax contains the address of the offending block (I think).
5198     // To get to the exlicit error message(s) below, just continue twice.
5199     HANDLE heap = GetProcessHeap();
5200 
5201     // If we fail to lock the heap, then gflags.exe has been used
5202     // or some other special heap flag has been set that prevents
5203     // locking. We don't try to walk a heap we can't lock.
5204     if (HeapLock(heap) != 0) {
5205       PROCESS_HEAP_ENTRY phe;
5206       phe.lpData = NULL;
5207       while (HeapWalk(heap, &phe) != 0) {
5208         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5209             !HeapValidate(heap, 0, phe.lpData)) {
5210           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5211           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5212           fatal("corrupted C heap");
5213         }
5214       }
5215       DWORD err = GetLastError();
5216       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5217         fatal(err_msg("heap walk aborted with error %d", err));
5218       }
5219       HeapUnlock(heap);
5220     }
5221     mallocDebugIntervalCounter = 0;
5222   }
5223   return true;
5224 }
5225 
5226 
5227 bool os::find(address addr, outputStream* st) {
5228   // Nothing yet
5229   return false;
5230 }
5231 
5232 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5233   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5234 
5235   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5236     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5237     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5238     address addr = (address) exceptionRecord->ExceptionInformation[1];
5239 
5240     if (os::is_memory_serialize_page(thread, addr)) {
5241       return EXCEPTION_CONTINUE_EXECUTION;
5242     }
5243   }
5244 
5245   return EXCEPTION_CONTINUE_SEARCH;
5246 }
5247 
5248 // We don't build a headless jre for Windows
5249 bool os::is_headless_jre() { return false; }
5250 
5251 static jint initSock() {
5252   WSADATA wsadata;
5253 
5254   if (!os::WinSock2Dll::WinSock2Available()) {
5255     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5256                 ::GetLastError());
5257     return JNI_ERR;
5258   }
5259 
5260   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5261     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5262                 ::GetLastError());
5263     return JNI_ERR;
5264   }
5265   return JNI_OK;
5266 }
5267 
5268 struct hostent* os::get_host_by_name(char* name) {
5269   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5270 }
5271 
5272 int os::socket_close(int fd) {
5273   return ::closesocket(fd);
5274 }
5275 
5276 int os::socket(int domain, int type, int protocol) {
5277   return ::socket(domain, type, protocol);
5278 }
5279 
5280 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5281   return ::connect(fd, him, len);
5282 }
5283 
5284 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5285   return ::recv(fd, buf, (int)nBytes, flags);
5286 }
5287 
5288 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5289   return ::send(fd, buf, (int)nBytes, flags);
5290 }
5291 
5292 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5293   return ::send(fd, buf, (int)nBytes, flags);
5294 }
5295 
5296 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5297 #if defined(IA32)
5298   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5299 #elif defined (AMD64)
5300   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5301 #endif
5302 
5303 // returns true if thread could be suspended,
5304 // false otherwise
5305 static bool do_suspend(HANDLE* h) {
5306   if (h != NULL) {
5307     if (SuspendThread(*h) != ~0) {
5308       return true;
5309     }
5310   }
5311   return false;
5312 }
5313 
5314 // resume the thread
5315 // calling resume on an active thread is a no-op
5316 static void do_resume(HANDLE* h) {
5317   if (h != NULL) {
5318     ResumeThread(*h);
5319   }
5320 }
5321 
5322 // retrieve a suspend/resume context capable handle
5323 // from the tid. Caller validates handle return value.
5324 void get_thread_handle_for_extended_context(HANDLE* h,
5325                                             OSThread::thread_id_t tid) {
5326   if (h != NULL) {
5327     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5328   }
5329 }
5330 
5331 // Thread sampling implementation
5332 //
5333 void os::SuspendedThreadTask::internal_do_task() {
5334   CONTEXT    ctxt;
5335   HANDLE     h = NULL;
5336 
5337   // get context capable handle for thread
5338   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5339 
5340   // sanity
5341   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5342     return;
5343   }
5344 
5345   // suspend the thread
5346   if (do_suspend(&h)) {
5347     ctxt.ContextFlags = sampling_context_flags;
5348     // get thread context
5349     GetThreadContext(h, &ctxt);
5350     SuspendedThreadTaskContext context(_thread, &ctxt);
5351     // pass context to Thread Sampling impl
5352     do_task(context);
5353     // resume thread
5354     do_resume(&h);
5355   }
5356 
5357   // close handle
5358   CloseHandle(h);
5359 }
5360 
5361 
5362 // Kernel32 API
5363 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5364 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5365 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5366 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5367 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5368 
5369 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5370 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5371 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5372 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5373 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5374 
5375 
5376 BOOL                        os::Kernel32Dll::initialized = FALSE;
5377 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5378   assert(initialized && _GetLargePageMinimum != NULL,
5379          "GetLargePageMinimumAvailable() not yet called");
5380   return _GetLargePageMinimum();
5381 }
5382 
5383 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5384   if (!initialized) {
5385     initialize();
5386   }
5387   return _GetLargePageMinimum != NULL;
5388 }
5389 
5390 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5391   if (!initialized) {
5392     initialize();
5393   }
5394   return _VirtualAllocExNuma != NULL;
5395 }
5396 
5397 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5398                                            SIZE_T bytes, DWORD flags,
5399                                            DWORD prot, DWORD node) {
5400   assert(initialized && _VirtualAllocExNuma != NULL,
5401          "NUMACallsAvailable() not yet called");
5402 
5403   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5404 }
5405 
5406 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5407   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5408          "NUMACallsAvailable() not yet called");
5409 
5410   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5411 }
5412 
5413 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5414                                                PULONGLONG proc_mask) {
5415   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5416          "NUMACallsAvailable() not yet called");
5417 
5418   return _GetNumaNodeProcessorMask(node, proc_mask);
5419 }
5420 
5421 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5422                                                  ULONG FrameToCapture,
5423                                                  PVOID* BackTrace,
5424                                                  PULONG BackTraceHash) {
5425   if (!initialized) {
5426     initialize();
5427   }
5428 
5429   if (_RtlCaptureStackBackTrace != NULL) {
5430     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5431                                      BackTrace, BackTraceHash);
5432   } else {
5433     return 0;
5434   }
5435 }
5436 
5437 void os::Kernel32Dll::initializeCommon() {
5438   if (!initialized) {
5439     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5440     assert(handle != NULL, "Just check");
5441     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5442     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5443     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5444     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5445     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5446     initialized = TRUE;
5447   }
5448 }
5449 
5450 
5451 
5452 #ifndef JDK6_OR_EARLIER
5453 
5454 void os::Kernel32Dll::initialize() {
5455   initializeCommon();
5456 }
5457 
5458 
5459 // Kernel32 API
5460 inline BOOL os::Kernel32Dll::SwitchToThread() {
5461   return ::SwitchToThread();
5462 }
5463 
5464 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5465   return true;
5466 }
5467 
5468 // Help tools
5469 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5470   return true;
5471 }
5472 
5473 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5474                                                         DWORD th32ProcessId) {
5475   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5476 }
5477 
5478 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5479                                            LPMODULEENTRY32 lpme) {
5480   return ::Module32First(hSnapshot, lpme);
5481 }
5482 
5483 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5484                                           LPMODULEENTRY32 lpme) {
5485   return ::Module32Next(hSnapshot, lpme);
5486 }
5487 
5488 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5489   ::GetNativeSystemInfo(lpSystemInfo);
5490 }
5491 
5492 // PSAPI API
5493 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5494                                              HMODULE *lpModule, DWORD cb,
5495                                              LPDWORD lpcbNeeded) {
5496   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5497 }
5498 
5499 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5500                                                HMODULE hModule,
5501                                                LPTSTR lpFilename,
5502                                                DWORD nSize) {
5503   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5504 }
5505 
5506 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5507                                                HMODULE hModule,
5508                                                LPMODULEINFO lpmodinfo,
5509                                                DWORD cb) {
5510   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5511 }
5512 
5513 inline BOOL os::PSApiDll::PSApiAvailable() {
5514   return true;
5515 }
5516 
5517 
5518 // WinSock2 API
5519 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5520                                         LPWSADATA lpWSAData) {
5521   return ::WSAStartup(wVersionRequested, lpWSAData);
5522 }
5523 
5524 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5525   return ::gethostbyname(name);
5526 }
5527 
5528 inline BOOL os::WinSock2Dll::WinSock2Available() {
5529   return true;
5530 }
5531 
5532 // Advapi API
5533 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5534                                                    BOOL DisableAllPrivileges,
5535                                                    PTOKEN_PRIVILEGES NewState,
5536                                                    DWORD BufferLength,
5537                                                    PTOKEN_PRIVILEGES PreviousState,
5538                                                    PDWORD ReturnLength) {
5539   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5540                                  BufferLength, PreviousState, ReturnLength);
5541 }
5542 
5543 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5544                                               DWORD DesiredAccess,
5545                                               PHANDLE TokenHandle) {
5546   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5547 }
5548 
5549 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5550                                                   LPCTSTR lpName,
5551                                                   PLUID lpLuid) {
5552   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5553 }
5554 
5555 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5556   return true;
5557 }
5558 
5559 void* os::get_default_process_handle() {
5560   return (void*)GetModuleHandle(NULL);
5561 }
5562 
5563 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5564 // which is used to find statically linked in agents.
5565 // Additionally for windows, takes into account __stdcall names.
5566 // Parameters:
5567 //            sym_name: Symbol in library we are looking for
5568 //            lib_name: Name of library to look in, NULL for shared libs.
5569 //            is_absolute_path == true if lib_name is absolute path to agent
5570 //                                     such as "C:/a/b/L.dll"
5571 //            == false if only the base name of the library is passed in
5572 //               such as "L"
5573 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5574                                     bool is_absolute_path) {
5575   char *agent_entry_name;
5576   size_t len;
5577   size_t name_len;
5578   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5579   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5580   const char *start;
5581 
5582   if (lib_name != NULL) {
5583     len = name_len = strlen(lib_name);
5584     if (is_absolute_path) {
5585       // Need to strip path, prefix and suffix
5586       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5587         lib_name = ++start;
5588       } else {
5589         // Need to check for drive prefix
5590         if ((start = strchr(lib_name, ':')) != NULL) {
5591           lib_name = ++start;
5592         }
5593       }
5594       if (len <= (prefix_len + suffix_len)) {
5595         return NULL;
5596       }
5597       lib_name += prefix_len;
5598       name_len = strlen(lib_name) - suffix_len;
5599     }
5600   }
5601   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5602   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5603   if (agent_entry_name == NULL) {
5604     return NULL;
5605   }
5606   if (lib_name != NULL) {
5607     const char *p = strrchr(sym_name, '@');
5608     if (p != NULL && p != sym_name) {
5609       // sym_name == _Agent_OnLoad@XX
5610       strncpy(agent_entry_name, sym_name, (p - sym_name));
5611       agent_entry_name[(p-sym_name)] = '\0';
5612       // agent_entry_name == _Agent_OnLoad
5613       strcat(agent_entry_name, "_");
5614       strncat(agent_entry_name, lib_name, name_len);
5615       strcat(agent_entry_name, p);
5616       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5617     } else {
5618       strcpy(agent_entry_name, sym_name);
5619       strcat(agent_entry_name, "_");
5620       strncat(agent_entry_name, lib_name, name_len);
5621     }
5622   } else {
5623     strcpy(agent_entry_name, sym_name);
5624   }
5625   return agent_entry_name;
5626 }
5627 
5628 #else
5629 // Kernel32 API
5630 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5631 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5632 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5633 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5634 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5635 
5636 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5637 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5638 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5639 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5640 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5641 
5642 void os::Kernel32Dll::initialize() {
5643   if (!initialized) {
5644     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5645     assert(handle != NULL, "Just check");
5646 
5647     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5648     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5649       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5650     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5651     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5652     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5653     initializeCommon();  // resolve the functions that always need resolving
5654 
5655     initialized = TRUE;
5656   }
5657 }
5658 
5659 BOOL os::Kernel32Dll::SwitchToThread() {
5660   assert(initialized && _SwitchToThread != NULL,
5661          "SwitchToThreadAvailable() not yet called");
5662   return _SwitchToThread();
5663 }
5664 
5665 
5666 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5667   if (!initialized) {
5668     initialize();
5669   }
5670   return _SwitchToThread != NULL;
5671 }
5672 
5673 // Help tools
5674 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5675   if (!initialized) {
5676     initialize();
5677   }
5678   return _CreateToolhelp32Snapshot != NULL &&
5679          _Module32First != NULL &&
5680          _Module32Next != NULL;
5681 }
5682 
5683 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5684                                                  DWORD th32ProcessId) {
5685   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5686          "HelpToolsAvailable() not yet called");
5687 
5688   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5689 }
5690 
5691 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5692   assert(initialized && _Module32First != NULL,
5693          "HelpToolsAvailable() not yet called");
5694 
5695   return _Module32First(hSnapshot, lpme);
5696 }
5697 
5698 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5699                                           LPMODULEENTRY32 lpme) {
5700   assert(initialized && _Module32Next != NULL,
5701          "HelpToolsAvailable() not yet called");
5702 
5703   return _Module32Next(hSnapshot, lpme);
5704 }
5705 
5706 
5707 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5708   if (!initialized) {
5709     initialize();
5710   }
5711   return _GetNativeSystemInfo != NULL;
5712 }
5713 
5714 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5715   assert(initialized && _GetNativeSystemInfo != NULL,
5716          "GetNativeSystemInfoAvailable() not yet called");
5717 
5718   _GetNativeSystemInfo(lpSystemInfo);
5719 }
5720 
5721 // PSAPI API
5722 
5723 
5724 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5725 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5726 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5727 
5728 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5729 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5730 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5731 BOOL                    os::PSApiDll::initialized = FALSE;
5732 
5733 void os::PSApiDll::initialize() {
5734   if (!initialized) {
5735     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5736     if (handle != NULL) {
5737       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5738                                                                     "EnumProcessModules");
5739       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5740                                                                       "GetModuleFileNameExA");
5741       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5742                                                                         "GetModuleInformation");
5743     }
5744     initialized = TRUE;
5745   }
5746 }
5747 
5748 
5749 
5750 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5751                                       DWORD cb, LPDWORD lpcbNeeded) {
5752   assert(initialized && _EnumProcessModules != NULL,
5753          "PSApiAvailable() not yet called");
5754   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5755 }
5756 
5757 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5758                                         LPTSTR lpFilename, DWORD nSize) {
5759   assert(initialized && _GetModuleFileNameEx != NULL,
5760          "PSApiAvailable() not yet called");
5761   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5762 }
5763 
5764 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5765                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5766   assert(initialized && _GetModuleInformation != NULL,
5767          "PSApiAvailable() not yet called");
5768   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5769 }
5770 
5771 BOOL os::PSApiDll::PSApiAvailable() {
5772   if (!initialized) {
5773     initialize();
5774   }
5775   return _EnumProcessModules != NULL &&
5776     _GetModuleFileNameEx != NULL &&
5777     _GetModuleInformation != NULL;
5778 }
5779 
5780 
5781 // WinSock2 API
5782 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5783 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5784 
5785 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5786 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5787 BOOL             os::WinSock2Dll::initialized = FALSE;
5788 
5789 void os::WinSock2Dll::initialize() {
5790   if (!initialized) {
5791     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5792     if (handle != NULL) {
5793       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5794       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5795     }
5796     initialized = TRUE;
5797   }
5798 }
5799 
5800 
5801 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5802   assert(initialized && _WSAStartup != NULL,
5803          "WinSock2Available() not yet called");
5804   return _WSAStartup(wVersionRequested, lpWSAData);
5805 }
5806 
5807 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5808   assert(initialized && _gethostbyname != NULL,
5809          "WinSock2Available() not yet called");
5810   return _gethostbyname(name);
5811 }
5812 
5813 BOOL os::WinSock2Dll::WinSock2Available() {
5814   if (!initialized) {
5815     initialize();
5816   }
5817   return _WSAStartup != NULL &&
5818     _gethostbyname != NULL;
5819 }
5820 
5821 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5822 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5823 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5824 
5825 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5826 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5827 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5828 BOOL                     os::Advapi32Dll::initialized = FALSE;
5829 
5830 void os::Advapi32Dll::initialize() {
5831   if (!initialized) {
5832     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5833     if (handle != NULL) {
5834       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5835                                                                           "AdjustTokenPrivileges");
5836       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5837                                                                 "OpenProcessToken");
5838       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5839                                                                         "LookupPrivilegeValueA");
5840     }
5841     initialized = TRUE;
5842   }
5843 }
5844 
5845 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5846                                             BOOL DisableAllPrivileges,
5847                                             PTOKEN_PRIVILEGES NewState,
5848                                             DWORD BufferLength,
5849                                             PTOKEN_PRIVILEGES PreviousState,
5850                                             PDWORD ReturnLength) {
5851   assert(initialized && _AdjustTokenPrivileges != NULL,
5852          "AdvapiAvailable() not yet called");
5853   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5854                                 BufferLength, PreviousState, ReturnLength);
5855 }
5856 
5857 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5858                                        DWORD DesiredAccess,
5859                                        PHANDLE TokenHandle) {
5860   assert(initialized && _OpenProcessToken != NULL,
5861          "AdvapiAvailable() not yet called");
5862   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5863 }
5864 
5865 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5866                                            LPCTSTR lpName, PLUID lpLuid) {
5867   assert(initialized && _LookupPrivilegeValue != NULL,
5868          "AdvapiAvailable() not yet called");
5869   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5870 }
5871 
5872 BOOL os::Advapi32Dll::AdvapiAvailable() {
5873   if (!initialized) {
5874     initialize();
5875   }
5876   return _AdjustTokenPrivileges != NULL &&
5877     _OpenProcessToken != NULL &&
5878     _LookupPrivilegeValue != NULL;
5879 }
5880 
5881 #endif
5882 
5883 #ifndef PRODUCT
5884 
5885 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5886 // contiguous memory block at a particular address.
5887 // The test first tries to find a good approximate address to allocate at by using the same
5888 // method to allocate some memory at any address. The test then tries to allocate memory in
5889 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5890 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5891 // the previously allocated memory is available for allocation. The only actual failure
5892 // that is reported is when the test tries to allocate at a particular location but gets a
5893 // different valid one. A NULL return value at this point is not considered an error but may
5894 // be legitimate.
5895 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5896 void TestReserveMemorySpecial_test() {
5897   if (!UseLargePages) {
5898     if (VerboseInternalVMTests) {
5899       gclog_or_tty->print("Skipping test because large pages are disabled");
5900     }
5901     return;
5902   }
5903   // save current value of globals
5904   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5905   bool old_use_numa_interleaving = UseNUMAInterleaving;
5906 
5907   // set globals to make sure we hit the correct code path
5908   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5909 
5910   // do an allocation at an address selected by the OS to get a good one.
5911   const size_t large_allocation_size = os::large_page_size() * 4;
5912   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5913   if (result == NULL) {
5914     if (VerboseInternalVMTests) {
5915       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5916                           large_allocation_size);
5917     }
5918   } else {
5919     os::release_memory_special(result, large_allocation_size);
5920 
5921     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5922     // we managed to get it once.
5923     const size_t expected_allocation_size = os::large_page_size();
5924     char* expected_location = result + os::large_page_size();
5925     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5926     if (actual_location == NULL) {
5927       if (VerboseInternalVMTests) {
5928         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5929                             expected_location, large_allocation_size);
5930       }
5931     } else {
5932       // release memory
5933       os::release_memory_special(actual_location, expected_allocation_size);
5934       // only now check, after releasing any memory to avoid any leaks.
5935       assert(actual_location == expected_location,
5936              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5937              expected_location, expected_allocation_size, actual_location));
5938     }
5939   }
5940 
5941   // restore globals
5942   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5943   UseNUMAInterleaving = old_use_numa_interleaving;
5944 }
5945 #endif // PRODUCT