1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Declarations
 162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 // Return true if user is running as root.
 185 
 186 bool os::have_special_privileges() {
 187   static bool init = false;
 188   static bool privileges = false;
 189   if (!init) {
 190     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 191     init = true;
 192   }
 193   return privileges;
 194 }
 195 
 196 
 197 #ifndef SYS_gettid
 198 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 199   #ifdef __ia64__
 200     #define SYS_gettid 1105
 201   #else
 202     #ifdef __i386__
 203       #define SYS_gettid 224
 204     #else
 205       #ifdef __amd64__
 206         #define SYS_gettid 186
 207       #else
 208         #ifdef __sparc__
 209           #define SYS_gettid 143
 210         #else
 211           #error define gettid for the arch
 212         #endif
 213       #endif
 214     #endif
 215   #endif
 216 #endif
 217 
 218 // Cpu architecture string
 219 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 220 
 221 
 222 // pid_t gettid()
 223 //
 224 // Returns the kernel thread id of the currently running thread. Kernel
 225 // thread id is used to access /proc.
 226 //
 227 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 228 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 229 //
 230 pid_t os::Linux::gettid() {
 231   int rslt = syscall(SYS_gettid);
 232   if (rslt == -1) {
 233     // old kernel, no NPTL support
 234     return getpid();
 235   } else {
 236     return (pid_t)rslt;
 237   }
 238 }
 239 
 240 // Most versions of linux have a bug where the number of processors are
 241 // determined by looking at the /proc file system.  In a chroot environment,
 242 // the system call returns 1.  This causes the VM to act as if it is
 243 // a single processor and elide locking (see is_MP() call).
 244 static bool unsafe_chroot_detected = false;
 245 static const char *unstable_chroot_error = "/proc file system not found.\n"
 246                      "Java may be unstable running multithreaded in a chroot "
 247                      "environment on Linux when /proc filesystem is not mounted.";
 248 
 249 void os::Linux::initialize_system_info() {
 250   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 251   if (processor_count() == 1) {
 252     pid_t pid = os::Linux::gettid();
 253     char fname[32];
 254     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 255     FILE *fp = fopen(fname, "r");
 256     if (fp == NULL) {
 257       unsafe_chroot_detected = true;
 258     } else {
 259       fclose(fp);
 260     }
 261   }
 262   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 263   assert(processor_count() > 0, "linux error");
 264 }
 265 
 266 void os::init_system_properties_values() {
 267   // The next steps are taken in the product version:
 268   //
 269   // Obtain the JAVA_HOME value from the location of libjvm.so.
 270   // This library should be located at:
 271   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 272   //
 273   // If "/jre/lib/" appears at the right place in the path, then we
 274   // assume libjvm.so is installed in a JDK and we use this path.
 275   //
 276   // Otherwise exit with message: "Could not create the Java virtual machine."
 277   //
 278   // The following extra steps are taken in the debugging version:
 279   //
 280   // If "/jre/lib/" does NOT appear at the right place in the path
 281   // instead of exit check for $JAVA_HOME environment variable.
 282   //
 283   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 284   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 285   // it looks like libjvm.so is installed there
 286   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 287   //
 288   // Otherwise exit.
 289   //
 290   // Important note: if the location of libjvm.so changes this
 291   // code needs to be changed accordingly.
 292 
 293   // See ld(1):
 294   //      The linker uses the following search paths to locate required
 295   //      shared libraries:
 296   //        1: ...
 297   //        ...
 298   //        7: The default directories, normally /lib and /usr/lib.
 299 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 300   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 301 #else
 302   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 303 #endif
 304 
 305 // Base path of extensions installed on the system.
 306 #define SYS_EXT_DIR     "/usr/java/packages"
 307 #define EXTENSIONS_DIR  "/lib/ext"
 308 
 309   // Buffer that fits several sprintfs.
 310   // Note that the space for the colon and the trailing null are provided
 311   // by the nulls included by the sizeof operator.
 312   const size_t bufsize =
 313     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 314          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 315   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 316 
 317   // sysclasspath, java_home, dll_dir
 318   {
 319     char *pslash;
 320     os::jvm_path(buf, bufsize);
 321 
 322     // Found the full path to libjvm.so.
 323     // Now cut the path to <java_home>/jre if we can.
 324     pslash = strrchr(buf, '/');
 325     if (pslash != NULL) {
 326       *pslash = '\0';            // Get rid of /libjvm.so.
 327     }
 328     pslash = strrchr(buf, '/');
 329     if (pslash != NULL) {
 330       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 331     }
 332     Arguments::set_dll_dir(buf);
 333 
 334     if (pslash != NULL) {
 335       pslash = strrchr(buf, '/');
 336       if (pslash != NULL) {
 337         *pslash = '\0';          // Get rid of /<arch>.
 338         pslash = strrchr(buf, '/');
 339         if (pslash != NULL) {
 340           *pslash = '\0';        // Get rid of /lib.
 341         }
 342       }
 343     }
 344     Arguments::set_java_home(buf);
 345     set_boot_path('/', ':');
 346   }
 347 
 348   // Where to look for native libraries.
 349   //
 350   // Note: Due to a legacy implementation, most of the library path
 351   // is set in the launcher. This was to accomodate linking restrictions
 352   // on legacy Linux implementations (which are no longer supported).
 353   // Eventually, all the library path setting will be done here.
 354   //
 355   // However, to prevent the proliferation of improperly built native
 356   // libraries, the new path component /usr/java/packages is added here.
 357   // Eventually, all the library path setting will be done here.
 358   {
 359     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 360     // should always exist (until the legacy problem cited above is
 361     // addressed).
 362     const char *v = ::getenv("LD_LIBRARY_PATH");
 363     const char *v_colon = ":";
 364     if (v == NULL) { v = ""; v_colon = ""; }
 365     // That's +1 for the colon and +1 for the trailing '\0'.
 366     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 367                                                      strlen(v) + 1 +
 368                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 369                                                      mtInternal);
 370     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 371     Arguments::set_library_path(ld_library_path);
 372     FREE_C_HEAP_ARRAY(char, ld_library_path);
 373   }
 374 
 375   // Extensions directories.
 376   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 377   Arguments::set_ext_dirs(buf);
 378 
 379   FREE_C_HEAP_ARRAY(char, buf);
 380 
 381 #undef DEFAULT_LIBPATH
 382 #undef SYS_EXT_DIR
 383 #undef EXTENSIONS_DIR
 384 }
 385 
 386 ////////////////////////////////////////////////////////////////////////////////
 387 // breakpoint support
 388 
 389 void os::breakpoint() {
 390   BREAKPOINT;
 391 }
 392 
 393 extern "C" void breakpoint() {
 394   // use debugger to set breakpoint here
 395 }
 396 
 397 ////////////////////////////////////////////////////////////////////////////////
 398 // signal support
 399 
 400 debug_only(static bool signal_sets_initialized = false);
 401 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 402 
 403 bool os::Linux::is_sig_ignored(int sig) {
 404   struct sigaction oact;
 405   sigaction(sig, (struct sigaction*)NULL, &oact);
 406   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 407                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 408   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 409     return true;
 410   } else {
 411     return false;
 412   }
 413 }
 414 
 415 void os::Linux::signal_sets_init() {
 416   // Should also have an assertion stating we are still single-threaded.
 417   assert(!signal_sets_initialized, "Already initialized");
 418   // Fill in signals that are necessarily unblocked for all threads in
 419   // the VM. Currently, we unblock the following signals:
 420   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 421   //                         by -Xrs (=ReduceSignalUsage));
 422   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 423   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 424   // the dispositions or masks wrt these signals.
 425   // Programs embedding the VM that want to use the above signals for their
 426   // own purposes must, at this time, use the "-Xrs" option to prevent
 427   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 428   // (See bug 4345157, and other related bugs).
 429   // In reality, though, unblocking these signals is really a nop, since
 430   // these signals are not blocked by default.
 431   sigemptyset(&unblocked_sigs);
 432   sigemptyset(&allowdebug_blocked_sigs);
 433   sigaddset(&unblocked_sigs, SIGILL);
 434   sigaddset(&unblocked_sigs, SIGSEGV);
 435   sigaddset(&unblocked_sigs, SIGBUS);
 436   sigaddset(&unblocked_sigs, SIGFPE);
 437 #if defined(PPC64)
 438   sigaddset(&unblocked_sigs, SIGTRAP);
 439 #endif
 440   sigaddset(&unblocked_sigs, SR_signum);
 441 
 442   if (!ReduceSignalUsage) {
 443     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 444       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 445       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 446     }
 447     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 448       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 449       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 450     }
 451     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 452       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 453       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 454     }
 455   }
 456   // Fill in signals that are blocked by all but the VM thread.
 457   sigemptyset(&vm_sigs);
 458   if (!ReduceSignalUsage) {
 459     sigaddset(&vm_sigs, BREAK_SIGNAL);
 460   }
 461   debug_only(signal_sets_initialized = true);
 462 
 463 }
 464 
 465 // These are signals that are unblocked while a thread is running Java.
 466 // (For some reason, they get blocked by default.)
 467 sigset_t* os::Linux::unblocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &unblocked_sigs;
 470 }
 471 
 472 // These are the signals that are blocked while a (non-VM) thread is
 473 // running Java. Only the VM thread handles these signals.
 474 sigset_t* os::Linux::vm_signals() {
 475   assert(signal_sets_initialized, "Not initialized");
 476   return &vm_sigs;
 477 }
 478 
 479 // These are signals that are blocked during cond_wait to allow debugger in
 480 sigset_t* os::Linux::allowdebug_blocked_signals() {
 481   assert(signal_sets_initialized, "Not initialized");
 482   return &allowdebug_blocked_sigs;
 483 }
 484 
 485 void os::Linux::hotspot_sigmask(Thread* thread) {
 486 
 487   //Save caller's signal mask before setting VM signal mask
 488   sigset_t caller_sigmask;
 489   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 490 
 491   OSThread* osthread = thread->osthread();
 492   osthread->set_caller_sigmask(caller_sigmask);
 493 
 494   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 495 
 496   if (!ReduceSignalUsage) {
 497     if (thread->is_VM_thread()) {
 498       // Only the VM thread handles BREAK_SIGNAL ...
 499       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 500     } else {
 501       // ... all other threads block BREAK_SIGNAL
 502       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 503     }
 504   }
 505 }
 506 
 507 //////////////////////////////////////////////////////////////////////////////
 508 // detecting pthread library
 509 
 510 void os::Linux::libpthread_init() {
 511   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 512   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 513   // generic name for earlier versions.
 514   // Define macros here so we can build HotSpot on old systems.
 515 #ifndef _CS_GNU_LIBC_VERSION
 516   #define _CS_GNU_LIBC_VERSION 2
 517 #endif
 518 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 519   #define _CS_GNU_LIBPTHREAD_VERSION 3
 520 #endif
 521 
 522   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 523   if (n > 0) {
 524     char *str = (char *)malloc(n, mtInternal);
 525     confstr(_CS_GNU_LIBC_VERSION, str, n);
 526     os::Linux::set_glibc_version(str);
 527   } else {
 528     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 529     static char _gnu_libc_version[32];
 530     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 531                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 532     os::Linux::set_glibc_version(_gnu_libc_version);
 533   }
 534 
 535   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 536   if (n > 0) {
 537     char *str = (char *)malloc(n, mtInternal);
 538     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 539     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 540     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 541     // is the case. LinuxThreads has a hard limit on max number of threads.
 542     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 543     // On the other hand, NPTL does not have such a limit, sysconf()
 544     // will return -1 and errno is not changed. Check if it is really NPTL.
 545     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 546         strstr(str, "NPTL") &&
 547         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 548       free(str);
 549       os::Linux::set_libpthread_version("linuxthreads");
 550     } else {
 551       os::Linux::set_libpthread_version(str);
 552     }
 553   } else {
 554     // glibc before 2.3.2 only has LinuxThreads.
 555     os::Linux::set_libpthread_version("linuxthreads");
 556   }
 557 
 558   if (strstr(libpthread_version(), "NPTL")) {
 559     os::Linux::set_is_NPTL();
 560   } else {
 561     os::Linux::set_is_LinuxThreads();
 562   }
 563 
 564   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 565   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 566   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 567     os::Linux::set_is_floating_stack();
 568   }
 569 }
 570 
 571 /////////////////////////////////////////////////////////////////////////////
 572 // thread stack
 573 
 574 // Force Linux kernel to expand current thread stack. If "bottom" is close
 575 // to the stack guard, caller should block all signals.
 576 //
 577 // MAP_GROWSDOWN:
 578 //   A special mmap() flag that is used to implement thread stacks. It tells
 579 //   kernel that the memory region should extend downwards when needed. This
 580 //   allows early versions of LinuxThreads to only mmap the first few pages
 581 //   when creating a new thread. Linux kernel will automatically expand thread
 582 //   stack as needed (on page faults).
 583 //
 584 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 585 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 586 //   region, it's hard to tell if the fault is due to a legitimate stack
 587 //   access or because of reading/writing non-exist memory (e.g. buffer
 588 //   overrun). As a rule, if the fault happens below current stack pointer,
 589 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 590 //   application (see Linux kernel fault.c).
 591 //
 592 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 593 //   stack overflow detection.
 594 //
 595 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 596 //   not use this flag. However, the stack of initial thread is not created
 597 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 598 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 599 //   and then attach the thread to JVM.
 600 //
 601 // To get around the problem and allow stack banging on Linux, we need to
 602 // manually expand thread stack after receiving the SIGSEGV.
 603 //
 604 // There are two ways to expand thread stack to address "bottom", we used
 605 // both of them in JVM before 1.5:
 606 //   1. adjust stack pointer first so that it is below "bottom", and then
 607 //      touch "bottom"
 608 //   2. mmap() the page in question
 609 //
 610 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 611 // if current sp is already near the lower end of page 101, and we need to
 612 // call mmap() to map page 100, it is possible that part of the mmap() frame
 613 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 614 // That will destroy the mmap() frame and cause VM to crash.
 615 //
 616 // The following code works by adjusting sp first, then accessing the "bottom"
 617 // page to force a page fault. Linux kernel will then automatically expand the
 618 // stack mapping.
 619 //
 620 // _expand_stack_to() assumes its frame size is less than page size, which
 621 // should always be true if the function is not inlined.
 622 
 623 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 624   #define NOINLINE
 625 #else
 626   #define NOINLINE __attribute__ ((noinline))
 627 #endif
 628 
 629 static void _expand_stack_to(address bottom) NOINLINE;
 630 
 631 static void _expand_stack_to(address bottom) {
 632   address sp;
 633   size_t size;
 634   volatile char *p;
 635 
 636   // Adjust bottom to point to the largest address within the same page, it
 637   // gives us a one-page buffer if alloca() allocates slightly more memory.
 638   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 639   bottom += os::Linux::page_size() - 1;
 640 
 641   // sp might be slightly above current stack pointer; if that's the case, we
 642   // will alloca() a little more space than necessary, which is OK. Don't use
 643   // os::current_stack_pointer(), as its result can be slightly below current
 644   // stack pointer, causing us to not alloca enough to reach "bottom".
 645   sp = (address)&sp;
 646 
 647   if (sp > bottom) {
 648     size = sp - bottom;
 649     p = (volatile char *)alloca(size);
 650     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 651     p[0] = '\0';
 652   }
 653 }
 654 
 655 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 656   assert(t!=NULL, "just checking");
 657   assert(t->osthread()->expanding_stack(), "expand should be set");
 658   assert(t->stack_base() != NULL, "stack_base was not initialized");
 659 
 660   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 661     sigset_t mask_all, old_sigset;
 662     sigfillset(&mask_all);
 663     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 664     _expand_stack_to(addr);
 665     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 666     return true;
 667   }
 668   return false;
 669 }
 670 
 671 //////////////////////////////////////////////////////////////////////////////
 672 // create new thread
 673 
 674 static address highest_vm_reserved_address();
 675 
 676 // check if it's safe to start a new thread
 677 static bool _thread_safety_check(Thread* thread) {
 678   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 679     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 680     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 681     //   allocated (MAP_FIXED) from high address space. Every thread stack
 682     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 683     //   it to other values if they rebuild LinuxThreads).
 684     //
 685     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 686     // the memory region has already been mmap'ed. That means if we have too
 687     // many threads and/or very large heap, eventually thread stack will
 688     // collide with heap.
 689     //
 690     // Here we try to prevent heap/stack collision by comparing current
 691     // stack bottom with the highest address that has been mmap'ed by JVM
 692     // plus a safety margin for memory maps created by native code.
 693     //
 694     // This feature can be disabled by setting ThreadSafetyMargin to 0
 695     //
 696     if (ThreadSafetyMargin > 0) {
 697       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 698 
 699       // not safe if our stack extends below the safety margin
 700       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 701     } else {
 702       return true;
 703     }
 704   } else {
 705     // Floating stack LinuxThreads or NPTL:
 706     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 707     //   there's not enough space left, pthread_create() will fail. If we come
 708     //   here, that means enough space has been reserved for stack.
 709     return true;
 710   }
 711 }
 712 
 713 // Thread start routine for all newly created threads
 714 static void *java_start(Thread *thread) {
 715   // Try to randomize the cache line index of hot stack frames.
 716   // This helps when threads of the same stack traces evict each other's
 717   // cache lines. The threads can be either from the same JVM instance, or
 718   // from different JVM instances. The benefit is especially true for
 719   // processors with hyperthreading technology.
 720   static int counter = 0;
 721   int pid = os::current_process_id();
 722   alloca(((pid ^ counter++) & 7) * 128);
 723 
 724   ThreadLocalStorage::set_thread(thread);
 725 
 726   OSThread* osthread = thread->osthread();
 727   Monitor* sync = osthread->startThread_lock();
 728 
 729   // non floating stack LinuxThreads needs extra check, see above
 730   if (!_thread_safety_check(thread)) {
 731     // notify parent thread
 732     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 733     osthread->set_state(ZOMBIE);
 734     sync->notify_all();
 735     return NULL;
 736   }
 737 
 738   // thread_id is kernel thread id (similar to Solaris LWP id)
 739   osthread->set_thread_id(os::Linux::gettid());
 740 
 741   if (UseNUMA) {
 742     int lgrp_id = os::numa_get_group_id();
 743     if (lgrp_id != -1) {
 744       thread->set_lgrp_id(lgrp_id);
 745     }
 746   }
 747   // initialize signal mask for this thread
 748   os::Linux::hotspot_sigmask(thread);
 749 
 750   // initialize floating point control register
 751   os::Linux::init_thread_fpu_state();
 752 
 753   // handshaking with parent thread
 754   {
 755     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 756 
 757     // notify parent thread
 758     osthread->set_state(INITIALIZED);
 759     sync->notify_all();
 760 
 761     // wait until os::start_thread()
 762     while (osthread->get_state() == INITIALIZED) {
 763       sync->wait(Mutex::_no_safepoint_check_flag);
 764     }
 765   }
 766 
 767   // call one more level start routine
 768   thread->run();
 769 
 770   return 0;
 771 }
 772 
 773 bool os::create_thread(Thread* thread, ThreadType thr_type,
 774                        size_t stack_size) {
 775   assert(thread->osthread() == NULL, "caller responsible");
 776 
 777   // Allocate the OSThread object
 778   OSThread* osthread = new OSThread(NULL, NULL);
 779   if (osthread == NULL) {
 780     return false;
 781   }
 782 
 783   // set the correct thread state
 784   osthread->set_thread_type(thr_type);
 785 
 786   // Initial state is ALLOCATED but not INITIALIZED
 787   osthread->set_state(ALLOCATED);
 788 
 789   thread->set_osthread(osthread);
 790 
 791   // init thread attributes
 792   pthread_attr_t attr;
 793   pthread_attr_init(&attr);
 794   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 795 
 796   // stack size
 797   if (os::Linux::supports_variable_stack_size()) {
 798     // calculate stack size if it's not specified by caller
 799     if (stack_size == 0) {
 800       stack_size = os::Linux::default_stack_size(thr_type);
 801 
 802       switch (thr_type) {
 803       case os::java_thread:
 804         // Java threads use ThreadStackSize which default value can be
 805         // changed with the flag -Xss
 806         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 807         stack_size = JavaThread::stack_size_at_create();
 808         break;
 809       case os::compiler_thread:
 810         if (CompilerThreadStackSize > 0) {
 811           stack_size = (size_t)(CompilerThreadStackSize * K);
 812           break;
 813         } // else fall through:
 814           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 815       case os::vm_thread:
 816       case os::pgc_thread:
 817       case os::cgc_thread:
 818       case os::watcher_thread:
 819         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 820         break;
 821       }
 822     }
 823 
 824     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 825     pthread_attr_setstacksize(&attr, stack_size);
 826   } else {
 827     // let pthread_create() pick the default value.
 828   }
 829 
 830   // glibc guard page
 831   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 832 
 833   ThreadState state;
 834 
 835   {
 836     // Serialize thread creation if we are running with fixed stack LinuxThreads
 837     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 838     if (lock) {
 839       os::Linux::createThread_lock()->lock_without_safepoint_check();
 840     }
 841 
 842     pthread_t tid;
 843     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 844 
 845     pthread_attr_destroy(&attr);
 846 
 847     if (ret != 0) {
 848       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 849         perror("pthread_create()");
 850       }
 851       // Need to clean up stuff we've allocated so far
 852       thread->set_osthread(NULL);
 853       delete osthread;
 854       if (lock) os::Linux::createThread_lock()->unlock();
 855       return false;
 856     }
 857 
 858     // Store pthread info into the OSThread
 859     osthread->set_pthread_id(tid);
 860 
 861     // Wait until child thread is either initialized or aborted
 862     {
 863       Monitor* sync_with_child = osthread->startThread_lock();
 864       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 865       while ((state = osthread->get_state()) == ALLOCATED) {
 866         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 867       }
 868     }
 869 
 870     if (lock) {
 871       os::Linux::createThread_lock()->unlock();
 872     }
 873   }
 874 
 875   // Aborted due to thread limit being reached
 876   if (state == ZOMBIE) {
 877     thread->set_osthread(NULL);
 878     delete osthread;
 879     return false;
 880   }
 881 
 882   // The thread is returned suspended (in state INITIALIZED),
 883   // and is started higher up in the call chain
 884   assert(state == INITIALIZED, "race condition");
 885   return true;
 886 }
 887 
 888 /////////////////////////////////////////////////////////////////////////////
 889 // attach existing thread
 890 
 891 // bootstrap the main thread
 892 bool os::create_main_thread(JavaThread* thread) {
 893   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 894   return create_attached_thread(thread);
 895 }
 896 
 897 bool os::create_attached_thread(JavaThread* thread) {
 898 #ifdef ASSERT
 899   thread->verify_not_published();
 900 #endif
 901 
 902   // Allocate the OSThread object
 903   OSThread* osthread = new OSThread(NULL, NULL);
 904 
 905   if (osthread == NULL) {
 906     return false;
 907   }
 908 
 909   // Store pthread info into the OSThread
 910   osthread->set_thread_id(os::Linux::gettid());
 911   osthread->set_pthread_id(::pthread_self());
 912 
 913   // initialize floating point control register
 914   os::Linux::init_thread_fpu_state();
 915 
 916   // Initial thread state is RUNNABLE
 917   osthread->set_state(RUNNABLE);
 918 
 919   thread->set_osthread(osthread);
 920 
 921   if (UseNUMA) {
 922     int lgrp_id = os::numa_get_group_id();
 923     if (lgrp_id != -1) {
 924       thread->set_lgrp_id(lgrp_id);
 925     }
 926   }
 927 
 928   if (os::Linux::is_initial_thread()) {
 929     // If current thread is initial thread, its stack is mapped on demand,
 930     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 931     // the entire stack region to avoid SEGV in stack banging.
 932     // It is also useful to get around the heap-stack-gap problem on SuSE
 933     // kernel (see 4821821 for details). We first expand stack to the top
 934     // of yellow zone, then enable stack yellow zone (order is significant,
 935     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 936     // is no gap between the last two virtual memory regions.
 937 
 938     JavaThread *jt = (JavaThread *)thread;
 939     address addr = jt->stack_yellow_zone_base();
 940     assert(addr != NULL, "initialization problem?");
 941     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 942 
 943     osthread->set_expanding_stack();
 944     os::Linux::manually_expand_stack(jt, addr);
 945     osthread->clear_expanding_stack();
 946   }
 947 
 948   // initialize signal mask for this thread
 949   // and save the caller's signal mask
 950   os::Linux::hotspot_sigmask(thread);
 951 
 952   return true;
 953 }
 954 
 955 void os::pd_start_thread(Thread* thread) {
 956   OSThread * osthread = thread->osthread();
 957   assert(osthread->get_state() != INITIALIZED, "just checking");
 958   Monitor* sync_with_child = osthread->startThread_lock();
 959   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960   sync_with_child->notify();
 961 }
 962 
 963 // Free Linux resources related to the OSThread
 964 void os::free_thread(OSThread* osthread) {
 965   assert(osthread != NULL, "osthread not set");
 966 
 967   if (Thread::current()->osthread() == osthread) {
 968     // Restore caller's signal mask
 969     sigset_t sigmask = osthread->caller_sigmask();
 970     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 971   }
 972 
 973   delete osthread;
 974 }
 975 
 976 //////////////////////////////////////////////////////////////////////////////
 977 // thread local storage
 978 
 979 // Restore the thread pointer if the destructor is called. This is in case
 980 // someone from JNI code sets up a destructor with pthread_key_create to run
 981 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 982 // will hang or crash. When detachCurrentThread is called the key will be set
 983 // to null and we will not be called again. If detachCurrentThread is never
 984 // called we could loop forever depending on the pthread implementation.
 985 static void restore_thread_pointer(void* p) {
 986   Thread* thread = (Thread*) p;
 987   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 988 }
 989 
 990 int os::allocate_thread_local_storage() {
 991   pthread_key_t key;
 992   int rslt = pthread_key_create(&key, restore_thread_pointer);
 993   assert(rslt == 0, "cannot allocate thread local storage");
 994   return (int)key;
 995 }
 996 
 997 // Note: This is currently not used by VM, as we don't destroy TLS key
 998 // on VM exit.
 999 void os::free_thread_local_storage(int index) {
1000   int rslt = pthread_key_delete((pthread_key_t)index);
1001   assert(rslt == 0, "invalid index");
1002 }
1003 
1004 void os::thread_local_storage_at_put(int index, void* value) {
1005   int rslt = pthread_setspecific((pthread_key_t)index, value);
1006   assert(rslt == 0, "pthread_setspecific failed");
1007 }
1008 
1009 extern "C" Thread* get_thread() {
1010   return ThreadLocalStorage::thread();
1011 }
1012 
1013 //////////////////////////////////////////////////////////////////////////////
1014 // initial thread
1015 
1016 // Check if current thread is the initial thread, similar to Solaris thr_main.
1017 bool os::Linux::is_initial_thread(void) {
1018   char dummy;
1019   // If called before init complete, thread stack bottom will be null.
1020   // Can be called if fatal error occurs before initialization.
1021   if (initial_thread_stack_bottom() == NULL) return false;
1022   assert(initial_thread_stack_bottom() != NULL &&
1023          initial_thread_stack_size()   != 0,
1024          "os::init did not locate initial thread's stack region");
1025   if ((address)&dummy >= initial_thread_stack_bottom() &&
1026       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1027     return true;
1028   } else {
1029     return false;
1030   }
1031 }
1032 
1033 // Find the virtual memory area that contains addr
1034 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1035   FILE *fp = fopen("/proc/self/maps", "r");
1036   if (fp) {
1037     address low, high;
1038     while (!feof(fp)) {
1039       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1040         if (low <= addr && addr < high) {
1041           if (vma_low)  *vma_low  = low;
1042           if (vma_high) *vma_high = high;
1043           fclose(fp);
1044           return true;
1045         }
1046       }
1047       for (;;) {
1048         int ch = fgetc(fp);
1049         if (ch == EOF || ch == (int)'\n') break;
1050       }
1051     }
1052     fclose(fp);
1053   }
1054   return false;
1055 }
1056 
1057 // Locate initial thread stack. This special handling of initial thread stack
1058 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1059 // bogus value for initial thread.
1060 void os::Linux::capture_initial_stack(size_t max_size) {
1061   // stack size is the easy part, get it from RLIMIT_STACK
1062   size_t stack_size;
1063   struct rlimit rlim;
1064   getrlimit(RLIMIT_STACK, &rlim);
1065   stack_size = rlim.rlim_cur;
1066 
1067   // 6308388: a bug in ld.so will relocate its own .data section to the
1068   //   lower end of primordial stack; reduce ulimit -s value a little bit
1069   //   so we won't install guard page on ld.so's data section.
1070   stack_size -= 2 * page_size();
1071 
1072   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1073   //   7.1, in both cases we will get 2G in return value.
1074   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1075   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1076   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1077   //   in case other parts in glibc still assumes 2M max stack size.
1078   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1079   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1080   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1081     stack_size = 2 * K * K IA64_ONLY(*2);
1082   }
1083   // Try to figure out where the stack base (top) is. This is harder.
1084   //
1085   // When an application is started, glibc saves the initial stack pointer in
1086   // a global variable "__libc_stack_end", which is then used by system
1087   // libraries. __libc_stack_end should be pretty close to stack top. The
1088   // variable is available since the very early days. However, because it is
1089   // a private interface, it could disappear in the future.
1090   //
1091   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1092   // to __libc_stack_end, it is very close to stack top, but isn't the real
1093   // stack top. Note that /proc may not exist if VM is running as a chroot
1094   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1095   // /proc/<pid>/stat could change in the future (though unlikely).
1096   //
1097   // We try __libc_stack_end first. If that doesn't work, look for
1098   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1099   // as a hint, which should work well in most cases.
1100 
1101   uintptr_t stack_start;
1102 
1103   // try __libc_stack_end first
1104   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1105   if (p && *p) {
1106     stack_start = *p;
1107   } else {
1108     // see if we can get the start_stack field from /proc/self/stat
1109     FILE *fp;
1110     int pid;
1111     char state;
1112     int ppid;
1113     int pgrp;
1114     int session;
1115     int nr;
1116     int tpgrp;
1117     unsigned long flags;
1118     unsigned long minflt;
1119     unsigned long cminflt;
1120     unsigned long majflt;
1121     unsigned long cmajflt;
1122     unsigned long utime;
1123     unsigned long stime;
1124     long cutime;
1125     long cstime;
1126     long prio;
1127     long nice;
1128     long junk;
1129     long it_real;
1130     uintptr_t start;
1131     uintptr_t vsize;
1132     intptr_t rss;
1133     uintptr_t rsslim;
1134     uintptr_t scodes;
1135     uintptr_t ecode;
1136     int i;
1137 
1138     // Figure what the primordial thread stack base is. Code is inspired
1139     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1140     // followed by command name surrounded by parentheses, state, etc.
1141     char stat[2048];
1142     int statlen;
1143 
1144     fp = fopen("/proc/self/stat", "r");
1145     if (fp) {
1146       statlen = fread(stat, 1, 2047, fp);
1147       stat[statlen] = '\0';
1148       fclose(fp);
1149 
1150       // Skip pid and the command string. Note that we could be dealing with
1151       // weird command names, e.g. user could decide to rename java launcher
1152       // to "java 1.4.2 :)", then the stat file would look like
1153       //                1234 (java 1.4.2 :)) R ... ...
1154       // We don't really need to know the command string, just find the last
1155       // occurrence of ")" and then start parsing from there. See bug 4726580.
1156       char * s = strrchr(stat, ')');
1157 
1158       i = 0;
1159       if (s) {
1160         // Skip blank chars
1161         do { s++; } while (s && isspace(*s));
1162 
1163 #define _UFM UINTX_FORMAT
1164 #define _DFM INTX_FORMAT
1165 
1166         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1167         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1168         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1169                    &state,          // 3  %c
1170                    &ppid,           // 4  %d
1171                    &pgrp,           // 5  %d
1172                    &session,        // 6  %d
1173                    &nr,             // 7  %d
1174                    &tpgrp,          // 8  %d
1175                    &flags,          // 9  %lu
1176                    &minflt,         // 10 %lu
1177                    &cminflt,        // 11 %lu
1178                    &majflt,         // 12 %lu
1179                    &cmajflt,        // 13 %lu
1180                    &utime,          // 14 %lu
1181                    &stime,          // 15 %lu
1182                    &cutime,         // 16 %ld
1183                    &cstime,         // 17 %ld
1184                    &prio,           // 18 %ld
1185                    &nice,           // 19 %ld
1186                    &junk,           // 20 %ld
1187                    &it_real,        // 21 %ld
1188                    &start,          // 22 UINTX_FORMAT
1189                    &vsize,          // 23 UINTX_FORMAT
1190                    &rss,            // 24 INTX_FORMAT
1191                    &rsslim,         // 25 UINTX_FORMAT
1192                    &scodes,         // 26 UINTX_FORMAT
1193                    &ecode,          // 27 UINTX_FORMAT
1194                    &stack_start);   // 28 UINTX_FORMAT
1195       }
1196 
1197 #undef _UFM
1198 #undef _DFM
1199 
1200       if (i != 28 - 2) {
1201         assert(false, "Bad conversion from /proc/self/stat");
1202         // product mode - assume we are the initial thread, good luck in the
1203         // embedded case.
1204         warning("Can't detect initial thread stack location - bad conversion");
1205         stack_start = (uintptr_t) &rlim;
1206       }
1207     } else {
1208       // For some reason we can't open /proc/self/stat (for example, running on
1209       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1210       // most cases, so don't abort:
1211       warning("Can't detect initial thread stack location - no /proc/self/stat");
1212       stack_start = (uintptr_t) &rlim;
1213     }
1214   }
1215 
1216   // Now we have a pointer (stack_start) very close to the stack top, the
1217   // next thing to do is to figure out the exact location of stack top. We
1218   // can find out the virtual memory area that contains stack_start by
1219   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1220   // and its upper limit is the real stack top. (again, this would fail if
1221   // running inside chroot, because /proc may not exist.)
1222 
1223   uintptr_t stack_top;
1224   address low, high;
1225   if (find_vma((address)stack_start, &low, &high)) {
1226     // success, "high" is the true stack top. (ignore "low", because initial
1227     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1228     stack_top = (uintptr_t)high;
1229   } else {
1230     // failed, likely because /proc/self/maps does not exist
1231     warning("Can't detect initial thread stack location - find_vma failed");
1232     // best effort: stack_start is normally within a few pages below the real
1233     // stack top, use it as stack top, and reduce stack size so we won't put
1234     // guard page outside stack.
1235     stack_top = stack_start;
1236     stack_size -= 16 * page_size();
1237   }
1238 
1239   // stack_top could be partially down the page so align it
1240   stack_top = align_size_up(stack_top, page_size());
1241 
1242   if (max_size && stack_size > max_size) {
1243     _initial_thread_stack_size = max_size;
1244   } else {
1245     _initial_thread_stack_size = stack_size;
1246   }
1247 
1248   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1249   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1250 }
1251 
1252 ////////////////////////////////////////////////////////////////////////////////
1253 // time support
1254 
1255 // Time since start-up in seconds to a fine granularity.
1256 // Used by VMSelfDestructTimer and the MemProfiler.
1257 double os::elapsedTime() {
1258 
1259   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1260 }
1261 
1262 jlong os::elapsed_counter() {
1263   return javaTimeNanos() - initial_time_count;
1264 }
1265 
1266 jlong os::elapsed_frequency() {
1267   return NANOSECS_PER_SEC; // nanosecond resolution
1268 }
1269 
1270 bool os::supports_vtime() { return true; }
1271 bool os::enable_vtime()   { return false; }
1272 bool os::vtime_enabled()  { return false; }
1273 
1274 double os::elapsedVTime() {
1275   struct rusage usage;
1276   int retval = getrusage(RUSAGE_THREAD, &usage);
1277   if (retval == 0) {
1278     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1279   } else {
1280     // better than nothing, but not much
1281     return elapsedTime();
1282   }
1283 }
1284 
1285 jlong os::javaTimeMillis() {
1286   timeval time;
1287   int status = gettimeofday(&time, NULL);
1288   assert(status != -1, "linux error");
1289   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1290 }
1291 
1292 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1293   timeval time;
1294   int status = gettimeofday(&time, NULL);
1295   assert(status != -1, "linux error");
1296   seconds = jlong(time.tv_sec);
1297   nanos = jlong(time.tv_usec) * 1000;
1298 }
1299 
1300 
1301 #ifndef CLOCK_MONOTONIC
1302   #define CLOCK_MONOTONIC (1)
1303 #endif
1304 
1305 void os::Linux::clock_init() {
1306   // we do dlopen's in this particular order due to bug in linux
1307   // dynamical loader (see 6348968) leading to crash on exit
1308   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1309   if (handle == NULL) {
1310     handle = dlopen("librt.so", RTLD_LAZY);
1311   }
1312 
1313   if (handle) {
1314     int (*clock_getres_func)(clockid_t, struct timespec*) =
1315            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1316     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1317            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1318     if (clock_getres_func && clock_gettime_func) {
1319       // See if monotonic clock is supported by the kernel. Note that some
1320       // early implementations simply return kernel jiffies (updated every
1321       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1322       // for nano time (though the monotonic property is still nice to have).
1323       // It's fixed in newer kernels, however clock_getres() still returns
1324       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1325       // resolution for now. Hopefully as people move to new kernels, this
1326       // won't be a problem.
1327       struct timespec res;
1328       struct timespec tp;
1329       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1330           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1331         // yes, monotonic clock is supported
1332         _clock_gettime = clock_gettime_func;
1333         return;
1334       } else {
1335         // close librt if there is no monotonic clock
1336         dlclose(handle);
1337       }
1338     }
1339   }
1340   warning("No monotonic clock was available - timed services may " \
1341           "be adversely affected if the time-of-day clock changes");
1342 }
1343 
1344 #ifndef SYS_clock_getres
1345   #if defined(IA32) || defined(AMD64)
1346     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1347     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1348   #else
1349     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1350     #define sys_clock_getres(x,y)  -1
1351   #endif
1352 #else
1353   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1354 #endif
1355 
1356 void os::Linux::fast_thread_clock_init() {
1357   if (!UseLinuxPosixThreadCPUClocks) {
1358     return;
1359   }
1360   clockid_t clockid;
1361   struct timespec tp;
1362   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1363       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1364 
1365   // Switch to using fast clocks for thread cpu time if
1366   // the sys_clock_getres() returns 0 error code.
1367   // Note, that some kernels may support the current thread
1368   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1369   // returned by the pthread_getcpuclockid().
1370   // If the fast Posix clocks are supported then the sys_clock_getres()
1371   // must return at least tp.tv_sec == 0 which means a resolution
1372   // better than 1 sec. This is extra check for reliability.
1373 
1374   if (pthread_getcpuclockid_func &&
1375       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1376       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1377     _supports_fast_thread_cpu_time = true;
1378     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1379   }
1380 }
1381 
1382 jlong os::javaTimeNanos() {
1383   if (os::supports_monotonic_clock()) {
1384     struct timespec tp;
1385     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1386     assert(status == 0, "gettime error");
1387     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1388     return result;
1389   } else {
1390     timeval time;
1391     int status = gettimeofday(&time, NULL);
1392     assert(status != -1, "linux error");
1393     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1394     return 1000 * usecs;
1395   }
1396 }
1397 
1398 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1399   if (os::supports_monotonic_clock()) {
1400     info_ptr->max_value = ALL_64_BITS;
1401 
1402     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1403     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1404     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1405   } else {
1406     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1407     info_ptr->max_value = ALL_64_BITS;
1408 
1409     // gettimeofday is a real time clock so it skips
1410     info_ptr->may_skip_backward = true;
1411     info_ptr->may_skip_forward = true;
1412   }
1413 
1414   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1415 }
1416 
1417 // Return the real, user, and system times in seconds from an
1418 // arbitrary fixed point in the past.
1419 bool os::getTimesSecs(double* process_real_time,
1420                       double* process_user_time,
1421                       double* process_system_time) {
1422   struct tms ticks;
1423   clock_t real_ticks = times(&ticks);
1424 
1425   if (real_ticks == (clock_t) (-1)) {
1426     return false;
1427   } else {
1428     double ticks_per_second = (double) clock_tics_per_sec;
1429     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1430     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1431     *process_real_time = ((double) real_ticks) / ticks_per_second;
1432 
1433     return true;
1434   }
1435 }
1436 
1437 
1438 char * os::local_time_string(char *buf, size_t buflen) {
1439   struct tm t;
1440   time_t long_time;
1441   time(&long_time);
1442   localtime_r(&long_time, &t);
1443   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1444                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1445                t.tm_hour, t.tm_min, t.tm_sec);
1446   return buf;
1447 }
1448 
1449 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1450   return localtime_r(clock, res);
1451 }
1452 
1453 ////////////////////////////////////////////////////////////////////////////////
1454 // runtime exit support
1455 
1456 // Note: os::shutdown() might be called very early during initialization, or
1457 // called from signal handler. Before adding something to os::shutdown(), make
1458 // sure it is async-safe and can handle partially initialized VM.
1459 void os::shutdown() {
1460 
1461   // allow PerfMemory to attempt cleanup of any persistent resources
1462   perfMemory_exit();
1463 
1464   // needs to remove object in file system
1465   AttachListener::abort();
1466 
1467   // flush buffered output, finish log files
1468   ostream_abort();
1469 
1470   // Check for abort hook
1471   abort_hook_t abort_hook = Arguments::abort_hook();
1472   if (abort_hook != NULL) {
1473     abort_hook();
1474   }
1475 
1476 }
1477 
1478 // Note: os::abort() might be called very early during initialization, or
1479 // called from signal handler. Before adding something to os::abort(), make
1480 // sure it is async-safe and can handle partially initialized VM.
1481 void os::abort(bool dump_core) {
1482   abort(dump_core, NULL, NULL);
1483 }
1484 
1485 void os::abort(bool dump_core, void* siginfo, void* context) {
1486   os::shutdown();
1487   if (dump_core) {
1488 #ifndef PRODUCT
1489     fdStream out(defaultStream::output_fd());
1490     out.print_raw("Current thread is ");
1491     char buf[16];
1492     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1493     out.print_raw_cr(buf);
1494     out.print_raw_cr("Dumping core ...");
1495 #endif
1496     ::abort(); // dump core
1497   }
1498 
1499   ::exit(1);
1500 }
1501 
1502 // Die immediately, no exit hook, no abort hook, no cleanup.
1503 void os::die() {
1504   // _exit() on LinuxThreads only kills current thread
1505   ::abort();
1506 }
1507 
1508 
1509 // This method is a copy of JDK's sysGetLastErrorString
1510 // from src/solaris/hpi/src/system_md.c
1511 
1512 size_t os::lasterror(char *buf, size_t len) {
1513   if (errno == 0)  return 0;
1514 
1515   const char *s = ::strerror(errno);
1516   size_t n = ::strlen(s);
1517   if (n >= len) {
1518     n = len - 1;
1519   }
1520   ::strncpy(buf, s, n);
1521   buf[n] = '\0';
1522   return n;
1523 }
1524 
1525 intx os::current_thread_id() { return (intx)pthread_self(); }
1526 int os::current_process_id() {
1527 
1528   // Under the old linux thread library, linux gives each thread
1529   // its own process id. Because of this each thread will return
1530   // a different pid if this method were to return the result
1531   // of getpid(2). Linux provides no api that returns the pid
1532   // of the launcher thread for the vm. This implementation
1533   // returns a unique pid, the pid of the launcher thread
1534   // that starts the vm 'process'.
1535 
1536   // Under the NPTL, getpid() returns the same pid as the
1537   // launcher thread rather than a unique pid per thread.
1538   // Use gettid() if you want the old pre NPTL behaviour.
1539 
1540   // if you are looking for the result of a call to getpid() that
1541   // returns a unique pid for the calling thread, then look at the
1542   // OSThread::thread_id() method in osThread_linux.hpp file
1543 
1544   return (int)(_initial_pid ? _initial_pid : getpid());
1545 }
1546 
1547 // DLL functions
1548 
1549 const char* os::dll_file_extension() { return ".so"; }
1550 
1551 // This must be hard coded because it's the system's temporary
1552 // directory not the java application's temp directory, ala java.io.tmpdir.
1553 const char* os::get_temp_directory() { return "/tmp"; }
1554 
1555 static bool file_exists(const char* filename) {
1556   struct stat statbuf;
1557   if (filename == NULL || strlen(filename) == 0) {
1558     return false;
1559   }
1560   return os::stat(filename, &statbuf) == 0;
1561 }
1562 
1563 bool os::dll_build_name(char* buffer, size_t buflen,
1564                         const char* pname, const char* fname) {
1565   bool retval = false;
1566   // Copied from libhpi
1567   const size_t pnamelen = pname ? strlen(pname) : 0;
1568 
1569   // Return error on buffer overflow.
1570   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1571     return retval;
1572   }
1573 
1574   if (pnamelen == 0) {
1575     snprintf(buffer, buflen, "lib%s.so", fname);
1576     retval = true;
1577   } else if (strchr(pname, *os::path_separator()) != NULL) {
1578     int n;
1579     char** pelements = split_path(pname, &n);
1580     if (pelements == NULL) {
1581       return false;
1582     }
1583     for (int i = 0; i < n; i++) {
1584       // Really shouldn't be NULL, but check can't hurt
1585       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1586         continue; // skip the empty path values
1587       }
1588       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1589       if (file_exists(buffer)) {
1590         retval = true;
1591         break;
1592       }
1593     }
1594     // release the storage
1595     for (int i = 0; i < n; i++) {
1596       if (pelements[i] != NULL) {
1597         FREE_C_HEAP_ARRAY(char, pelements[i]);
1598       }
1599     }
1600     if (pelements != NULL) {
1601       FREE_C_HEAP_ARRAY(char*, pelements);
1602     }
1603   } else {
1604     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1605     retval = true;
1606   }
1607   return retval;
1608 }
1609 
1610 // check if addr is inside libjvm.so
1611 bool os::address_is_in_vm(address addr) {
1612   static address libjvm_base_addr;
1613   Dl_info dlinfo;
1614 
1615   if (libjvm_base_addr == NULL) {
1616     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1617       libjvm_base_addr = (address)dlinfo.dli_fbase;
1618     }
1619     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1620   }
1621 
1622   if (dladdr((void *)addr, &dlinfo) != 0) {
1623     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1624   }
1625 
1626   return false;
1627 }
1628 
1629 bool os::dll_address_to_function_name(address addr, char *buf,
1630                                       int buflen, int *offset) {
1631   // buf is not optional, but offset is optional
1632   assert(buf != NULL, "sanity check");
1633 
1634   Dl_info dlinfo;
1635 
1636   if (dladdr((void*)addr, &dlinfo) != 0) {
1637     // see if we have a matching symbol
1638     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1639       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1640         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1641       }
1642       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1643       return true;
1644     }
1645     // no matching symbol so try for just file info
1646     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1647       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1648                           buf, buflen, offset, dlinfo.dli_fname)) {
1649         return true;
1650       }
1651     }
1652   }
1653 
1654   buf[0] = '\0';
1655   if (offset != NULL) *offset = -1;
1656   return false;
1657 }
1658 
1659 struct _address_to_library_name {
1660   address addr;          // input : memory address
1661   size_t  buflen;        //         size of fname
1662   char*   fname;         // output: library name
1663   address base;          //         library base addr
1664 };
1665 
1666 static int address_to_library_name_callback(struct dl_phdr_info *info,
1667                                             size_t size, void *data) {
1668   int i;
1669   bool found = false;
1670   address libbase = NULL;
1671   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1672 
1673   // iterate through all loadable segments
1674   for (i = 0; i < info->dlpi_phnum; i++) {
1675     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1676     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1677       // base address of a library is the lowest address of its loaded
1678       // segments.
1679       if (libbase == NULL || libbase > segbase) {
1680         libbase = segbase;
1681       }
1682       // see if 'addr' is within current segment
1683       if (segbase <= d->addr &&
1684           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1685         found = true;
1686       }
1687     }
1688   }
1689 
1690   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1691   // so dll_address_to_library_name() can fall through to use dladdr() which
1692   // can figure out executable name from argv[0].
1693   if (found && info->dlpi_name && info->dlpi_name[0]) {
1694     d->base = libbase;
1695     if (d->fname) {
1696       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1697     }
1698     return 1;
1699   }
1700   return 0;
1701 }
1702 
1703 bool os::dll_address_to_library_name(address addr, char* buf,
1704                                      int buflen, int* offset) {
1705   // buf is not optional, but offset is optional
1706   assert(buf != NULL, "sanity check");
1707 
1708   Dl_info dlinfo;
1709   struct _address_to_library_name data;
1710 
1711   // There is a bug in old glibc dladdr() implementation that it could resolve
1712   // to wrong library name if the .so file has a base address != NULL. Here
1713   // we iterate through the program headers of all loaded libraries to find
1714   // out which library 'addr' really belongs to. This workaround can be
1715   // removed once the minimum requirement for glibc is moved to 2.3.x.
1716   data.addr = addr;
1717   data.fname = buf;
1718   data.buflen = buflen;
1719   data.base = NULL;
1720   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1721 
1722   if (rslt) {
1723     // buf already contains library name
1724     if (offset) *offset = addr - data.base;
1725     return true;
1726   }
1727   if (dladdr((void*)addr, &dlinfo) != 0) {
1728     if (dlinfo.dli_fname != NULL) {
1729       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1730     }
1731     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1732       *offset = addr - (address)dlinfo.dli_fbase;
1733     }
1734     return true;
1735   }
1736 
1737   buf[0] = '\0';
1738   if (offset) *offset = -1;
1739   return false;
1740 }
1741 
1742 // Loads .dll/.so and
1743 // in case of error it checks if .dll/.so was built for the
1744 // same architecture as Hotspot is running on
1745 
1746 
1747 // Remember the stack's state. The Linux dynamic linker will change
1748 // the stack to 'executable' at most once, so we must safepoint only once.
1749 bool os::Linux::_stack_is_executable = false;
1750 
1751 // VM operation that loads a library.  This is necessary if stack protection
1752 // of the Java stacks can be lost during loading the library.  If we
1753 // do not stop the Java threads, they can stack overflow before the stacks
1754 // are protected again.
1755 class VM_LinuxDllLoad: public VM_Operation {
1756  private:
1757   const char *_filename;
1758   char *_ebuf;
1759   int _ebuflen;
1760   void *_lib;
1761  public:
1762   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1763     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1764   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1765   void doit() {
1766     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1767     os::Linux::_stack_is_executable = true;
1768   }
1769   void* loaded_library() { return _lib; }
1770 };
1771 
1772 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1773   void * result = NULL;
1774   bool load_attempted = false;
1775 
1776   // Check whether the library to load might change execution rights
1777   // of the stack. If they are changed, the protection of the stack
1778   // guard pages will be lost. We need a safepoint to fix this.
1779   //
1780   // See Linux man page execstack(8) for more info.
1781   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1782     ElfFile ef(filename);
1783     if (!ef.specifies_noexecstack()) {
1784       if (!is_init_completed()) {
1785         os::Linux::_stack_is_executable = true;
1786         // This is OK - No Java threads have been created yet, and hence no
1787         // stack guard pages to fix.
1788         //
1789         // This should happen only when you are building JDK7 using a very
1790         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1791         //
1792         // Dynamic loader will make all stacks executable after
1793         // this function returns, and will not do that again.
1794         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1795       } else {
1796         warning("You have loaded library %s which might have disabled stack guard. "
1797                 "The VM will try to fix the stack guard now.\n"
1798                 "It's highly recommended that you fix the library with "
1799                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1800                 filename);
1801 
1802         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1803         JavaThread *jt = JavaThread::current();
1804         if (jt->thread_state() != _thread_in_native) {
1805           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1806           // that requires ExecStack. Cannot enter safe point. Let's give up.
1807           warning("Unable to fix stack guard. Giving up.");
1808         } else {
1809           if (!LoadExecStackDllInVMThread) {
1810             // This is for the case where the DLL has an static
1811             // constructor function that executes JNI code. We cannot
1812             // load such DLLs in the VMThread.
1813             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1814           }
1815 
1816           ThreadInVMfromNative tiv(jt);
1817           debug_only(VMNativeEntryWrapper vew;)
1818 
1819           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1820           VMThread::execute(&op);
1821           if (LoadExecStackDllInVMThread) {
1822             result = op.loaded_library();
1823           }
1824           load_attempted = true;
1825         }
1826       }
1827     }
1828   }
1829 
1830   if (!load_attempted) {
1831     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1832   }
1833 
1834   if (result != NULL) {
1835     // Successful loading
1836     return result;
1837   }
1838 
1839   Elf32_Ehdr elf_head;
1840   int diag_msg_max_length=ebuflen-strlen(ebuf);
1841   char* diag_msg_buf=ebuf+strlen(ebuf);
1842 
1843   if (diag_msg_max_length==0) {
1844     // No more space in ebuf for additional diagnostics message
1845     return NULL;
1846   }
1847 
1848 
1849   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1850 
1851   if (file_descriptor < 0) {
1852     // Can't open library, report dlerror() message
1853     return NULL;
1854   }
1855 
1856   bool failed_to_read_elf_head=
1857     (sizeof(elf_head)!=
1858      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1859 
1860   ::close(file_descriptor);
1861   if (failed_to_read_elf_head) {
1862     // file i/o error - report dlerror() msg
1863     return NULL;
1864   }
1865 
1866   typedef struct {
1867     Elf32_Half  code;         // Actual value as defined in elf.h
1868     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1869     char        elf_class;    // 32 or 64 bit
1870     char        endianess;    // MSB or LSB
1871     char*       name;         // String representation
1872   } arch_t;
1873 
1874 #ifndef EM_486
1875   #define EM_486          6               /* Intel 80486 */
1876 #endif
1877 #ifndef EM_AARCH64
1878   #define EM_AARCH64    183               /* ARM AARCH64 */
1879 #endif
1880 
1881   static const arch_t arch_array[]={
1882     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1883     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1884     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1885     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1886     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1887     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1888     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1889     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1890 #if defined(VM_LITTLE_ENDIAN)
1891     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1892 #else
1893     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1894 #endif
1895     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1896     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1897     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1898     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1899     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1900     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1901     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1902     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1903   };
1904 
1905 #if  (defined IA32)
1906   static  Elf32_Half running_arch_code=EM_386;
1907 #elif   (defined AMD64)
1908   static  Elf32_Half running_arch_code=EM_X86_64;
1909 #elif  (defined IA64)
1910   static  Elf32_Half running_arch_code=EM_IA_64;
1911 #elif  (defined __sparc) && (defined _LP64)
1912   static  Elf32_Half running_arch_code=EM_SPARCV9;
1913 #elif  (defined __sparc) && (!defined _LP64)
1914   static  Elf32_Half running_arch_code=EM_SPARC;
1915 #elif  (defined __powerpc64__)
1916   static  Elf32_Half running_arch_code=EM_PPC64;
1917 #elif  (defined __powerpc__)
1918   static  Elf32_Half running_arch_code=EM_PPC;
1919 #elif  (defined ARM)
1920   static  Elf32_Half running_arch_code=EM_ARM;
1921 #elif  (defined S390)
1922   static  Elf32_Half running_arch_code=EM_S390;
1923 #elif  (defined ALPHA)
1924   static  Elf32_Half running_arch_code=EM_ALPHA;
1925 #elif  (defined MIPSEL)
1926   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1927 #elif  (defined PARISC)
1928   static  Elf32_Half running_arch_code=EM_PARISC;
1929 #elif  (defined MIPS)
1930   static  Elf32_Half running_arch_code=EM_MIPS;
1931 #elif  (defined M68K)
1932   static  Elf32_Half running_arch_code=EM_68K;
1933 #elif  (defined AARCH64)
1934   static  Elf32_Half running_arch_code=EM_AARCH64;
1935 #else
1936     #error Method os::dll_load requires that one of following is defined:\
1937          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1938 #endif
1939 
1940   // Identify compatability class for VM's architecture and library's architecture
1941   // Obtain string descriptions for architectures
1942 
1943   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1944   int running_arch_index=-1;
1945 
1946   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1947     if (running_arch_code == arch_array[i].code) {
1948       running_arch_index    = i;
1949     }
1950     if (lib_arch.code == arch_array[i].code) {
1951       lib_arch.compat_class = arch_array[i].compat_class;
1952       lib_arch.name         = arch_array[i].name;
1953     }
1954   }
1955 
1956   assert(running_arch_index != -1,
1957          "Didn't find running architecture code (running_arch_code) in arch_array");
1958   if (running_arch_index == -1) {
1959     // Even though running architecture detection failed
1960     // we may still continue with reporting dlerror() message
1961     return NULL;
1962   }
1963 
1964   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1965     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1966     return NULL;
1967   }
1968 
1969 #ifndef S390
1970   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1971     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1972     return NULL;
1973   }
1974 #endif // !S390
1975 
1976   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1977     if (lib_arch.name!=NULL) {
1978       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1979                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1980                  lib_arch.name, arch_array[running_arch_index].name);
1981     } else {
1982       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1983                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1984                  lib_arch.code,
1985                  arch_array[running_arch_index].name);
1986     }
1987   }
1988 
1989   return NULL;
1990 }
1991 
1992 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1993                                 int ebuflen) {
1994   void * result = ::dlopen(filename, RTLD_LAZY);
1995   if (result == NULL) {
1996     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1997     ebuf[ebuflen-1] = '\0';
1998   }
1999   return result;
2000 }
2001 
2002 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2003                                        int ebuflen) {
2004   void * result = NULL;
2005   if (LoadExecStackDllInVMThread) {
2006     result = dlopen_helper(filename, ebuf, ebuflen);
2007   }
2008 
2009   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2010   // library that requires an executable stack, or which does not have this
2011   // stack attribute set, dlopen changes the stack attribute to executable. The
2012   // read protection of the guard pages gets lost.
2013   //
2014   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2015   // may have been queued at the same time.
2016 
2017   if (!_stack_is_executable) {
2018     JavaThread *jt = Threads::first();
2019 
2020     while (jt) {
2021       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2022           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2023         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2024                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2025           warning("Attempt to reguard stack yellow zone failed.");
2026         }
2027       }
2028       jt = jt->next();
2029     }
2030   }
2031 
2032   return result;
2033 }
2034 
2035 void* os::dll_lookup(void* handle, const char* name) {
2036   void* res = dlsym(handle, name);
2037   return res;
2038 }
2039 
2040 void* os::get_default_process_handle() {
2041   return (void*)::dlopen(NULL, RTLD_LAZY);
2042 }
2043 
2044 static bool _print_ascii_file(const char* filename, outputStream* st) {
2045   int fd = ::open(filename, O_RDONLY);
2046   if (fd == -1) {
2047     return false;
2048   }
2049 
2050   char buf[32];
2051   int bytes;
2052   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2053     st->print_raw(buf, bytes);
2054   }
2055 
2056   ::close(fd);
2057 
2058   return true;
2059 }
2060 
2061 void os::print_dll_info(outputStream *st) {
2062   st->print_cr("Dynamic libraries:");
2063 
2064   char fname[32];
2065   pid_t pid = os::Linux::gettid();
2066 
2067   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2068 
2069   if (!_print_ascii_file(fname, st)) {
2070     st->print("Can not get library information for pid = %d\n", pid);
2071   }
2072 }
2073 
2074 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2075   FILE *procmapsFile = NULL;
2076 
2077   // Open the procfs maps file for the current process
2078   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2079     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2080     char line[PATH_MAX + 100];
2081 
2082     // Read line by line from 'file'
2083     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2084       u8 base, top, offset, inode;
2085       char permissions[5];
2086       char device[6];
2087       char name[PATH_MAX + 1];
2088 
2089       // Parse fields from line
2090       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2091 
2092       // Filter by device id '00:00' so that we only get file system mapped files.
2093       if (strcmp(device, "00:00") != 0) {
2094 
2095         // Call callback with the fields of interest
2096         if(callback(name, (address)base, (address)top, param)) {
2097           // Oops abort, callback aborted
2098           fclose(procmapsFile);
2099           return 1;
2100         }
2101       }
2102     }
2103     fclose(procmapsFile);
2104   }
2105   return 0;
2106 }
2107 
2108 void os::print_os_info_brief(outputStream* st) {
2109   os::Linux::print_distro_info(st);
2110 
2111   os::Posix::print_uname_info(st);
2112 
2113   os::Linux::print_libversion_info(st);
2114 
2115 }
2116 
2117 void os::print_os_info(outputStream* st) {
2118   st->print("OS:");
2119 
2120   os::Linux::print_distro_info(st);
2121 
2122   os::Posix::print_uname_info(st);
2123 
2124   // Print warning if unsafe chroot environment detected
2125   if (unsafe_chroot_detected) {
2126     st->print("WARNING!! ");
2127     st->print_cr("%s", unstable_chroot_error);
2128   }
2129 
2130   os::Linux::print_libversion_info(st);
2131 
2132   os::Posix::print_rlimit_info(st);
2133 
2134   os::Posix::print_load_average(st);
2135 
2136   os::Linux::print_full_memory_info(st);
2137 }
2138 
2139 // Try to identify popular distros.
2140 // Most Linux distributions have a /etc/XXX-release file, which contains
2141 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2142 // file that also contains the OS version string. Some have more than one
2143 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2144 // /etc/redhat-release.), so the order is important.
2145 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2146 // their own specific XXX-release file as well as a redhat-release file.
2147 // Because of this the XXX-release file needs to be searched for before the
2148 // redhat-release file.
2149 // Since Red Hat has a lsb-release file that is not very descriptive the
2150 // search for redhat-release needs to be before lsb-release.
2151 // Since the lsb-release file is the new standard it needs to be searched
2152 // before the older style release files.
2153 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2154 // next to last resort.  The os-release file is a new standard that contains
2155 // distribution information and the system-release file seems to be an old
2156 // standard that has been replaced by the lsb-release and os-release files.
2157 // Searching for the debian_version file is the last resort.  It contains
2158 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2159 // "Debian " is printed before the contents of the debian_version file.
2160 void os::Linux::print_distro_info(outputStream* st) {
2161   if (!_print_ascii_file("/etc/oracle-release", st) &&
2162       !_print_ascii_file("/etc/mandriva-release", st) &&
2163       !_print_ascii_file("/etc/mandrake-release", st) &&
2164       !_print_ascii_file("/etc/sun-release", st) &&
2165       !_print_ascii_file("/etc/redhat-release", st) &&
2166       !_print_ascii_file("/etc/lsb-release", st) &&
2167       !_print_ascii_file("/etc/SuSE-release", st) &&
2168       !_print_ascii_file("/etc/turbolinux-release", st) &&
2169       !_print_ascii_file("/etc/gentoo-release", st) &&
2170       !_print_ascii_file("/etc/ltib-release", st) &&
2171       !_print_ascii_file("/etc/angstrom-version", st) &&
2172       !_print_ascii_file("/etc/system-release", st) &&
2173       !_print_ascii_file("/etc/os-release", st)) {
2174 
2175     if (file_exists("/etc/debian_version")) {
2176       st->print("Debian ");
2177       _print_ascii_file("/etc/debian_version", st);
2178     } else {
2179       st->print("Linux");
2180     }
2181   }
2182   st->cr();
2183 }
2184 
2185 void os::Linux::print_libversion_info(outputStream* st) {
2186   // libc, pthread
2187   st->print("libc:");
2188   st->print("%s ", os::Linux::glibc_version());
2189   st->print("%s ", os::Linux::libpthread_version());
2190   if (os::Linux::is_LinuxThreads()) {
2191     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2192   }
2193   st->cr();
2194 }
2195 
2196 void os::Linux::print_full_memory_info(outputStream* st) {
2197   st->print("\n/proc/meminfo:\n");
2198   _print_ascii_file("/proc/meminfo", st);
2199   st->cr();
2200 }
2201 
2202 void os::print_memory_info(outputStream* st) {
2203 
2204   st->print("Memory:");
2205   st->print(" %dk page", os::vm_page_size()>>10);
2206 
2207   // values in struct sysinfo are "unsigned long"
2208   struct sysinfo si;
2209   sysinfo(&si);
2210 
2211   st->print(", physical " UINT64_FORMAT "k",
2212             os::physical_memory() >> 10);
2213   st->print("(" UINT64_FORMAT "k free)",
2214             os::available_memory() >> 10);
2215   st->print(", swap " UINT64_FORMAT "k",
2216             ((jlong)si.totalswap * si.mem_unit) >> 10);
2217   st->print("(" UINT64_FORMAT "k free)",
2218             ((jlong)si.freeswap * si.mem_unit) >> 10);
2219   st->cr();
2220 }
2221 
2222 void os::pd_print_cpu_info(outputStream* st) {
2223   st->print("\n/proc/cpuinfo:\n");
2224   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2225     st->print("  <Not Available>");
2226   }
2227   st->cr();
2228 }
2229 
2230 void os::print_siginfo(outputStream* st, void* siginfo) {
2231   const siginfo_t* si = (const siginfo_t*)siginfo;
2232 
2233   os::Posix::print_siginfo_brief(st, si);
2234 #if INCLUDE_CDS
2235   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2236       UseSharedSpaces) {
2237     FileMapInfo* mapinfo = FileMapInfo::current_info();
2238     if (mapinfo->is_in_shared_space(si->si_addr)) {
2239       st->print("\n\nError accessing class data sharing archive."   \
2240                 " Mapped file inaccessible during execution, "      \
2241                 " possible disk/network problem.");
2242     }
2243   }
2244 #endif
2245   st->cr();
2246 }
2247 
2248 
2249 static void print_signal_handler(outputStream* st, int sig,
2250                                  char* buf, size_t buflen);
2251 
2252 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2253   st->print_cr("Signal Handlers:");
2254   print_signal_handler(st, SIGSEGV, buf, buflen);
2255   print_signal_handler(st, SIGBUS , buf, buflen);
2256   print_signal_handler(st, SIGFPE , buf, buflen);
2257   print_signal_handler(st, SIGPIPE, buf, buflen);
2258   print_signal_handler(st, SIGXFSZ, buf, buflen);
2259   print_signal_handler(st, SIGILL , buf, buflen);
2260   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2261   print_signal_handler(st, SR_signum, buf, buflen);
2262   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2263   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2264   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2265   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2266 #if defined(PPC64)
2267   print_signal_handler(st, SIGTRAP, buf, buflen);
2268 #endif
2269 }
2270 
2271 static char saved_jvm_path[MAXPATHLEN] = {0};
2272 
2273 // Find the full path to the current module, libjvm.so
2274 void os::jvm_path(char *buf, jint buflen) {
2275   // Error checking.
2276   if (buflen < MAXPATHLEN) {
2277     assert(false, "must use a large-enough buffer");
2278     buf[0] = '\0';
2279     return;
2280   }
2281   // Lazy resolve the path to current module.
2282   if (saved_jvm_path[0] != 0) {
2283     strcpy(buf, saved_jvm_path);
2284     return;
2285   }
2286 
2287   char dli_fname[MAXPATHLEN];
2288   bool ret = dll_address_to_library_name(
2289                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2290                                          dli_fname, sizeof(dli_fname), NULL);
2291   assert(ret, "cannot locate libjvm");
2292   char *rp = NULL;
2293   if (ret && dli_fname[0] != '\0') {
2294     rp = realpath(dli_fname, buf);
2295   }
2296   if (rp == NULL) {
2297     return;
2298   }
2299 
2300   if (Arguments::sun_java_launcher_is_altjvm()) {
2301     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2302     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2303     // If "/jre/lib/" appears at the right place in the string, then
2304     // assume we are installed in a JDK and we're done. Otherwise, check
2305     // for a JAVA_HOME environment variable and fix up the path so it
2306     // looks like libjvm.so is installed there (append a fake suffix
2307     // hotspot/libjvm.so).
2308     const char *p = buf + strlen(buf) - 1;
2309     for (int count = 0; p > buf && count < 5; ++count) {
2310       for (--p; p > buf && *p != '/'; --p)
2311         /* empty */ ;
2312     }
2313 
2314     if (strncmp(p, "/jre/lib/", 9) != 0) {
2315       // Look for JAVA_HOME in the environment.
2316       char* java_home_var = ::getenv("JAVA_HOME");
2317       if (java_home_var != NULL && java_home_var[0] != 0) {
2318         char* jrelib_p;
2319         int len;
2320 
2321         // Check the current module name "libjvm.so".
2322         p = strrchr(buf, '/');
2323         if (p == NULL) {
2324           return;
2325         }
2326         assert(strstr(p, "/libjvm") == p, "invalid library name");
2327 
2328         rp = realpath(java_home_var, buf);
2329         if (rp == NULL) {
2330           return;
2331         }
2332 
2333         // determine if this is a legacy image or modules image
2334         // modules image doesn't have "jre" subdirectory
2335         len = strlen(buf);
2336         assert(len < buflen, "Ran out of buffer room");
2337         jrelib_p = buf + len;
2338         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2339         if (0 != access(buf, F_OK)) {
2340           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2341         }
2342 
2343         if (0 == access(buf, F_OK)) {
2344           // Use current module name "libjvm.so"
2345           len = strlen(buf);
2346           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2347         } else {
2348           // Go back to path of .so
2349           rp = realpath(dli_fname, buf);
2350           if (rp == NULL) {
2351             return;
2352           }
2353         }
2354       }
2355     }
2356   }
2357 
2358   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2359   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2360 }
2361 
2362 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2363   // no prefix required, not even "_"
2364 }
2365 
2366 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2367   // no suffix required
2368 }
2369 
2370 ////////////////////////////////////////////////////////////////////////////////
2371 // sun.misc.Signal support
2372 
2373 static volatile jint sigint_count = 0;
2374 
2375 static void UserHandler(int sig, void *siginfo, void *context) {
2376   // 4511530 - sem_post is serialized and handled by the manager thread. When
2377   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2378   // don't want to flood the manager thread with sem_post requests.
2379   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2380     return;
2381   }
2382 
2383   // Ctrl-C is pressed during error reporting, likely because the error
2384   // handler fails to abort. Let VM die immediately.
2385   if (sig == SIGINT && is_error_reported()) {
2386     os::die();
2387   }
2388 
2389   os::signal_notify(sig);
2390 }
2391 
2392 void* os::user_handler() {
2393   return CAST_FROM_FN_PTR(void*, UserHandler);
2394 }
2395 
2396 struct timespec os::PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2397   struct timespec ts;
2398   // Semaphore's are always associated with CLOCK_REALTIME
2399   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2400   // see unpackTime for discussion on overflow checking
2401   if (sec >= MAX_SECS) {
2402     ts.tv_sec += MAX_SECS;
2403     ts.tv_nsec = 0;
2404   } else {
2405     ts.tv_sec += sec;
2406     ts.tv_nsec += nsec;
2407     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2408       ts.tv_nsec -= NANOSECS_PER_SEC;
2409       ++ts.tv_sec; // note: this must be <= max_secs
2410     }
2411   }
2412 
2413   return ts;
2414 }
2415 
2416 extern "C" {
2417   typedef void (*sa_handler_t)(int);
2418   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2419 }
2420 
2421 void* os::signal(int signal_number, void* handler) {
2422   struct sigaction sigAct, oldSigAct;
2423 
2424   sigfillset(&(sigAct.sa_mask));
2425   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2426   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2427 
2428   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2429     // -1 means registration failed
2430     return (void *)-1;
2431   }
2432 
2433   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2434 }
2435 
2436 void os::signal_raise(int signal_number) {
2437   ::raise(signal_number);
2438 }
2439 
2440 // The following code is moved from os.cpp for making this
2441 // code platform specific, which it is by its very nature.
2442 
2443 // Will be modified when max signal is changed to be dynamic
2444 int os::sigexitnum_pd() {
2445   return NSIG;
2446 }
2447 
2448 // a counter for each possible signal value
2449 static volatile jint pending_signals[NSIG+1] = { 0 };
2450 
2451 // Linux(POSIX) specific hand shaking semaphore.
2452 static sem_t sig_sem;
2453 static os::PosixSemaphore sr_semaphore;
2454 
2455 void os::signal_init_pd() {
2456   // Initialize signal structures
2457   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2458 
2459   // Initialize signal semaphore
2460   ::sem_init(&sig_sem, 0, 0);
2461 }
2462 
2463 void os::signal_notify(int sig) {
2464   Atomic::inc(&pending_signals[sig]);
2465   ::sem_post(&sig_sem);
2466 }
2467 
2468 static int check_pending_signals(bool wait) {
2469   Atomic::store(0, &sigint_count);
2470   for (;;) {
2471     for (int i = 0; i < NSIG + 1; i++) {
2472       jint n = pending_signals[i];
2473       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2474         return i;
2475       }
2476     }
2477     if (!wait) {
2478       return -1;
2479     }
2480     JavaThread *thread = JavaThread::current();
2481     ThreadBlockInVM tbivm(thread);
2482 
2483     bool threadIsSuspended;
2484     do {
2485       thread->set_suspend_equivalent();
2486       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2487       ::sem_wait(&sig_sem);
2488 
2489       // were we externally suspended while we were waiting?
2490       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2491       if (threadIsSuspended) {
2492         // The semaphore has been incremented, but while we were waiting
2493         // another thread suspended us. We don't want to continue running
2494         // while suspended because that would surprise the thread that
2495         // suspended us.
2496         ::sem_post(&sig_sem);
2497 
2498         thread->java_suspend_self();
2499       }
2500     } while (threadIsSuspended);
2501   }
2502 }
2503 
2504 int os::signal_lookup() {
2505   return check_pending_signals(false);
2506 }
2507 
2508 int os::signal_wait() {
2509   return check_pending_signals(true);
2510 }
2511 
2512 ////////////////////////////////////////////////////////////////////////////////
2513 // Virtual Memory
2514 
2515 int os::vm_page_size() {
2516   // Seems redundant as all get out
2517   assert(os::Linux::page_size() != -1, "must call os::init");
2518   return os::Linux::page_size();
2519 }
2520 
2521 // Solaris allocates memory by pages.
2522 int os::vm_allocation_granularity() {
2523   assert(os::Linux::page_size() != -1, "must call os::init");
2524   return os::Linux::page_size();
2525 }
2526 
2527 // Rationale behind this function:
2528 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2529 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2530 //  samples for JITted code. Here we create private executable mapping over the code cache
2531 //  and then we can use standard (well, almost, as mapping can change) way to provide
2532 //  info for the reporting script by storing timestamp and location of symbol
2533 void linux_wrap_code(char* base, size_t size) {
2534   static volatile jint cnt = 0;
2535 
2536   if (!UseOprofile) {
2537     return;
2538   }
2539 
2540   char buf[PATH_MAX+1];
2541   int num = Atomic::add(1, &cnt);
2542 
2543   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2544            os::get_temp_directory(), os::current_process_id(), num);
2545   unlink(buf);
2546 
2547   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2548 
2549   if (fd != -1) {
2550     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2551     if (rv != (off_t)-1) {
2552       if (::write(fd, "", 1) == 1) {
2553         mmap(base, size,
2554              PROT_READ|PROT_WRITE|PROT_EXEC,
2555              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2556       }
2557     }
2558     ::close(fd);
2559     unlink(buf);
2560   }
2561 }
2562 
2563 static bool recoverable_mmap_error(int err) {
2564   // See if the error is one we can let the caller handle. This
2565   // list of errno values comes from JBS-6843484. I can't find a
2566   // Linux man page that documents this specific set of errno
2567   // values so while this list currently matches Solaris, it may
2568   // change as we gain experience with this failure mode.
2569   switch (err) {
2570   case EBADF:
2571   case EINVAL:
2572   case ENOTSUP:
2573     // let the caller deal with these errors
2574     return true;
2575 
2576   default:
2577     // Any remaining errors on this OS can cause our reserved mapping
2578     // to be lost. That can cause confusion where different data
2579     // structures think they have the same memory mapped. The worst
2580     // scenario is if both the VM and a library think they have the
2581     // same memory mapped.
2582     return false;
2583   }
2584 }
2585 
2586 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2587                                     int err) {
2588   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2589           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2590           strerror(err), err);
2591 }
2592 
2593 static void warn_fail_commit_memory(char* addr, size_t size,
2594                                     size_t alignment_hint, bool exec,
2595                                     int err) {
2596   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2597           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2598           alignment_hint, exec, strerror(err), err);
2599 }
2600 
2601 // NOTE: Linux kernel does not really reserve the pages for us.
2602 //       All it does is to check if there are enough free pages
2603 //       left at the time of mmap(). This could be a potential
2604 //       problem.
2605 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2606   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2607   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2608                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2609   if (res != (uintptr_t) MAP_FAILED) {
2610     if (UseNUMAInterleaving) {
2611       numa_make_global(addr, size);
2612     }
2613     return 0;
2614   }
2615 
2616   int err = errno;  // save errno from mmap() call above
2617 
2618   if (!recoverable_mmap_error(err)) {
2619     warn_fail_commit_memory(addr, size, exec, err);
2620     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2621   }
2622 
2623   return err;
2624 }
2625 
2626 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2627   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2628 }
2629 
2630 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2631                                   const char* mesg) {
2632   assert(mesg != NULL, "mesg must be specified");
2633   int err = os::Linux::commit_memory_impl(addr, size, exec);
2634   if (err != 0) {
2635     // the caller wants all commit errors to exit with the specified mesg:
2636     warn_fail_commit_memory(addr, size, exec, err);
2637     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2638   }
2639 }
2640 
2641 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2642 #ifndef MAP_HUGETLB
2643   #define MAP_HUGETLB 0x40000
2644 #endif
2645 
2646 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2647 #ifndef MADV_HUGEPAGE
2648   #define MADV_HUGEPAGE 14
2649 #endif
2650 
2651 int os::Linux::commit_memory_impl(char* addr, size_t size,
2652                                   size_t alignment_hint, bool exec) {
2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
2654   if (err == 0) {
2655     realign_memory(addr, size, alignment_hint);
2656   }
2657   return err;
2658 }
2659 
2660 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2661                           bool exec) {
2662   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2663 }
2664 
2665 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2666                                   size_t alignment_hint, bool exec,
2667                                   const char* mesg) {
2668   assert(mesg != NULL, "mesg must be specified");
2669   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2670   if (err != 0) {
2671     // the caller wants all commit errors to exit with the specified mesg:
2672     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2673     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2674   }
2675 }
2676 
2677 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2678   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2679     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2680     // be supported or the memory may already be backed by huge pages.
2681     ::madvise(addr, bytes, MADV_HUGEPAGE);
2682   }
2683 }
2684 
2685 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2686   // This method works by doing an mmap over an existing mmaping and effectively discarding
2687   // the existing pages. However it won't work for SHM-based large pages that cannot be
2688   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2689   // small pages on top of the SHM segment. This method always works for small pages, so we
2690   // allow that in any case.
2691   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2692     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2693   }
2694 }
2695 
2696 void os::numa_make_global(char *addr, size_t bytes) {
2697   Linux::numa_interleave_memory(addr, bytes);
2698 }
2699 
2700 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2701 // bind policy to MPOL_PREFERRED for the current thread.
2702 #define USE_MPOL_PREFERRED 0
2703 
2704 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2705   // To make NUMA and large pages more robust when both enabled, we need to ease
2706   // the requirements on where the memory should be allocated. MPOL_BIND is the
2707   // default policy and it will force memory to be allocated on the specified
2708   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2709   // the specified node, but will not force it. Using this policy will prevent
2710   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2711   // free large pages.
2712   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2713   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2714 }
2715 
2716 bool os::numa_topology_changed() { return false; }
2717 
2718 size_t os::numa_get_groups_num() {
2719   int max_node = Linux::numa_max_node();
2720   return max_node > 0 ? max_node + 1 : 1;
2721 }
2722 
2723 int os::numa_get_group_id() {
2724   int cpu_id = Linux::sched_getcpu();
2725   if (cpu_id != -1) {
2726     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2727     if (lgrp_id != -1) {
2728       return lgrp_id;
2729     }
2730   }
2731   return 0;
2732 }
2733 
2734 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2735   for (size_t i = 0; i < size; i++) {
2736     ids[i] = i;
2737   }
2738   return size;
2739 }
2740 
2741 bool os::get_page_info(char *start, page_info* info) {
2742   return false;
2743 }
2744 
2745 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2746                      page_info* page_found) {
2747   return end;
2748 }
2749 
2750 
2751 int os::Linux::sched_getcpu_syscall(void) {
2752   unsigned int cpu;
2753   int retval = -1;
2754 
2755 #if defined(IA32)
2756   #ifndef SYS_getcpu
2757     #define SYS_getcpu 318
2758   #endif
2759   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2760 #elif defined(AMD64)
2761 // Unfortunately we have to bring all these macros here from vsyscall.h
2762 // to be able to compile on old linuxes.
2763   #define __NR_vgetcpu 2
2764   #define VSYSCALL_START (-10UL << 20)
2765   #define VSYSCALL_SIZE 1024
2766   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2767   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2768   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2769   retval = vgetcpu(&cpu, NULL, NULL);
2770 #endif
2771 
2772   return (retval == -1) ? retval : cpu;
2773 }
2774 
2775 // Something to do with the numa-aware allocator needs these symbols
2776 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2777 extern "C" JNIEXPORT void numa_error(char *where) { }
2778 extern "C" JNIEXPORT int fork1() { return fork(); }
2779 
2780 
2781 // If we are running with libnuma version > 2, then we should
2782 // be trying to use symbols with versions 1.1
2783 // If we are running with earlier version, which did not have symbol versions,
2784 // we should use the base version.
2785 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2786   void *f = dlvsym(handle, name, "libnuma_1.1");
2787   if (f == NULL) {
2788     f = dlsym(handle, name);
2789   }
2790   return f;
2791 }
2792 
2793 bool os::Linux::libnuma_init() {
2794   // sched_getcpu() should be in libc.
2795   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2796                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2797 
2798   // If it's not, try a direct syscall.
2799   if (sched_getcpu() == -1) {
2800     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2801                                     (void*)&sched_getcpu_syscall));
2802   }
2803 
2804   if (sched_getcpu() != -1) { // Does it work?
2805     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2806     if (handle != NULL) {
2807       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2808                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2809       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2810                                        libnuma_dlsym(handle, "numa_max_node")));
2811       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2812                                         libnuma_dlsym(handle, "numa_available")));
2813       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2814                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2815       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2816                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2817       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2818                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2819 
2820 
2821       if (numa_available() != -1) {
2822         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2823         // Create a cpu -> node mapping
2824         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2825         rebuild_cpu_to_node_map();
2826         return true;
2827       }
2828     }
2829   }
2830   return false;
2831 }
2832 
2833 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2834 // The table is later used in get_node_by_cpu().
2835 void os::Linux::rebuild_cpu_to_node_map() {
2836   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2837                               // in libnuma (possible values are starting from 16,
2838                               // and continuing up with every other power of 2, but less
2839                               // than the maximum number of CPUs supported by kernel), and
2840                               // is a subject to change (in libnuma version 2 the requirements
2841                               // are more reasonable) we'll just hardcode the number they use
2842                               // in the library.
2843   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2844 
2845   size_t cpu_num = os::active_processor_count();
2846   size_t cpu_map_size = NCPUS / BitsPerCLong;
2847   size_t cpu_map_valid_size =
2848     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2849 
2850   cpu_to_node()->clear();
2851   cpu_to_node()->at_grow(cpu_num - 1);
2852   size_t node_num = numa_get_groups_num();
2853 
2854   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2855   for (size_t i = 0; i < node_num; i++) {
2856     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2857       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2858         if (cpu_map[j] != 0) {
2859           for (size_t k = 0; k < BitsPerCLong; k++) {
2860             if (cpu_map[j] & (1UL << k)) {
2861               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2862             }
2863           }
2864         }
2865       }
2866     }
2867   }
2868   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2869 }
2870 
2871 int os::Linux::get_node_by_cpu(int cpu_id) {
2872   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2873     return cpu_to_node()->at(cpu_id);
2874   }
2875   return -1;
2876 }
2877 
2878 GrowableArray<int>* os::Linux::_cpu_to_node;
2879 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2880 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2881 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2882 os::Linux::numa_available_func_t os::Linux::_numa_available;
2883 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2884 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2885 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2886 unsigned long* os::Linux::_numa_all_nodes;
2887 
2888 bool os::pd_uncommit_memory(char* addr, size_t size) {
2889   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2890                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2891   return res  != (uintptr_t) MAP_FAILED;
2892 }
2893 
2894 static address get_stack_commited_bottom(address bottom, size_t size) {
2895   address nbot = bottom;
2896   address ntop = bottom + size;
2897 
2898   size_t page_sz = os::vm_page_size();
2899   unsigned pages = size / page_sz;
2900 
2901   unsigned char vec[1];
2902   unsigned imin = 1, imax = pages + 1, imid;
2903   int mincore_return_value = 0;
2904 
2905   assert(imin <= imax, "Unexpected page size");
2906 
2907   while (imin < imax) {
2908     imid = (imax + imin) / 2;
2909     nbot = ntop - (imid * page_sz);
2910 
2911     // Use a trick with mincore to check whether the page is mapped or not.
2912     // mincore sets vec to 1 if page resides in memory and to 0 if page
2913     // is swapped output but if page we are asking for is unmapped
2914     // it returns -1,ENOMEM
2915     mincore_return_value = mincore(nbot, page_sz, vec);
2916 
2917     if (mincore_return_value == -1) {
2918       // Page is not mapped go up
2919       // to find first mapped page
2920       if (errno != EAGAIN) {
2921         assert(errno == ENOMEM, "Unexpected mincore errno");
2922         imax = imid;
2923       }
2924     } else {
2925       // Page is mapped go down
2926       // to find first not mapped page
2927       imin = imid + 1;
2928     }
2929   }
2930 
2931   nbot = nbot + page_sz;
2932 
2933   // Adjust stack bottom one page up if last checked page is not mapped
2934   if (mincore_return_value == -1) {
2935     nbot = nbot + page_sz;
2936   }
2937 
2938   return nbot;
2939 }
2940 
2941 
2942 // Linux uses a growable mapping for the stack, and if the mapping for
2943 // the stack guard pages is not removed when we detach a thread the
2944 // stack cannot grow beyond the pages where the stack guard was
2945 // mapped.  If at some point later in the process the stack expands to
2946 // that point, the Linux kernel cannot expand the stack any further
2947 // because the guard pages are in the way, and a segfault occurs.
2948 //
2949 // However, it's essential not to split the stack region by unmapping
2950 // a region (leaving a hole) that's already part of the stack mapping,
2951 // so if the stack mapping has already grown beyond the guard pages at
2952 // the time we create them, we have to truncate the stack mapping.
2953 // So, we need to know the extent of the stack mapping when
2954 // create_stack_guard_pages() is called.
2955 
2956 // We only need this for stacks that are growable: at the time of
2957 // writing thread stacks don't use growable mappings (i.e. those
2958 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2959 // only applies to the main thread.
2960 
2961 // If the (growable) stack mapping already extends beyond the point
2962 // where we're going to put our guard pages, truncate the mapping at
2963 // that point by munmap()ping it.  This ensures that when we later
2964 // munmap() the guard pages we don't leave a hole in the stack
2965 // mapping. This only affects the main/initial thread
2966 
2967 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2968   if (os::Linux::is_initial_thread()) {
2969     // As we manually grow stack up to bottom inside create_attached_thread(),
2970     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2971     // we don't need to do anything special.
2972     // Check it first, before calling heavy function.
2973     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2974     unsigned char vec[1];
2975 
2976     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2977       // Fallback to slow path on all errors, including EAGAIN
2978       stack_extent = (uintptr_t) get_stack_commited_bottom(
2979                                                            os::Linux::initial_thread_stack_bottom(),
2980                                                            (size_t)addr - stack_extent);
2981     }
2982 
2983     if (stack_extent < (uintptr_t)addr) {
2984       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2985     }
2986   }
2987 
2988   return os::commit_memory(addr, size, !ExecMem);
2989 }
2990 
2991 // If this is a growable mapping, remove the guard pages entirely by
2992 // munmap()ping them.  If not, just call uncommit_memory(). This only
2993 // affects the main/initial thread, but guard against future OS changes
2994 // It's safe to always unmap guard pages for initial thread because we
2995 // always place it right after end of the mapped region
2996 
2997 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2998   uintptr_t stack_extent, stack_base;
2999 
3000   if (os::Linux::is_initial_thread()) {
3001     return ::munmap(addr, size) == 0;
3002   }
3003 
3004   return os::uncommit_memory(addr, size);
3005 }
3006 
3007 static address _highest_vm_reserved_address = NULL;
3008 
3009 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3010 // at 'requested_addr'. If there are existing memory mappings at the same
3011 // location, however, they will be overwritten. If 'fixed' is false,
3012 // 'requested_addr' is only treated as a hint, the return value may or
3013 // may not start from the requested address. Unlike Linux mmap(), this
3014 // function returns NULL to indicate failure.
3015 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3016   char * addr;
3017   int flags;
3018 
3019   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3020   if (fixed) {
3021     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3022     flags |= MAP_FIXED;
3023   }
3024 
3025   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3026   // touch an uncommitted page. Otherwise, the read/write might
3027   // succeed if we have enough swap space to back the physical page.
3028   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3029                        flags, -1, 0);
3030 
3031   if (addr != MAP_FAILED) {
3032     // anon_mmap() should only get called during VM initialization,
3033     // don't need lock (actually we can skip locking even it can be called
3034     // from multiple threads, because _highest_vm_reserved_address is just a
3035     // hint about the upper limit of non-stack memory regions.)
3036     if ((address)addr + bytes > _highest_vm_reserved_address) {
3037       _highest_vm_reserved_address = (address)addr + bytes;
3038     }
3039   }
3040 
3041   return addr == MAP_FAILED ? NULL : addr;
3042 }
3043 
3044 // Don't update _highest_vm_reserved_address, because there might be memory
3045 // regions above addr + size. If so, releasing a memory region only creates
3046 // a hole in the address space, it doesn't help prevent heap-stack collision.
3047 //
3048 static int anon_munmap(char * addr, size_t size) {
3049   return ::munmap(addr, size) == 0;
3050 }
3051 
3052 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3053                             size_t alignment_hint) {
3054   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3055 }
3056 
3057 bool os::pd_release_memory(char* addr, size_t size) {
3058   return anon_munmap(addr, size);
3059 }
3060 
3061 static address highest_vm_reserved_address() {
3062   return _highest_vm_reserved_address;
3063 }
3064 
3065 static bool linux_mprotect(char* addr, size_t size, int prot) {
3066   // Linux wants the mprotect address argument to be page aligned.
3067   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3068 
3069   // According to SUSv3, mprotect() should only be used with mappings
3070   // established by mmap(), and mmap() always maps whole pages. Unaligned
3071   // 'addr' likely indicates problem in the VM (e.g. trying to change
3072   // protection of malloc'ed or statically allocated memory). Check the
3073   // caller if you hit this assert.
3074   assert(addr == bottom, "sanity check");
3075 
3076   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3077   return ::mprotect(bottom, size, prot) == 0;
3078 }
3079 
3080 // Set protections specified
3081 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3082                         bool is_committed) {
3083   unsigned int p = 0;
3084   switch (prot) {
3085   case MEM_PROT_NONE: p = PROT_NONE; break;
3086   case MEM_PROT_READ: p = PROT_READ; break;
3087   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3088   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3089   default:
3090     ShouldNotReachHere();
3091   }
3092   // is_committed is unused.
3093   return linux_mprotect(addr, bytes, p);
3094 }
3095 
3096 bool os::guard_memory(char* addr, size_t size) {
3097   return linux_mprotect(addr, size, PROT_NONE);
3098 }
3099 
3100 bool os::unguard_memory(char* addr, size_t size) {
3101   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3102 }
3103 
3104 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3105                                                     size_t page_size) {
3106   bool result = false;
3107   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3108                  MAP_ANONYMOUS|MAP_PRIVATE,
3109                  -1, 0);
3110   if (p != MAP_FAILED) {
3111     void *aligned_p = align_ptr_up(p, page_size);
3112 
3113     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3114 
3115     munmap(p, page_size * 2);
3116   }
3117 
3118   if (warn && !result) {
3119     warning("TransparentHugePages is not supported by the operating system.");
3120   }
3121 
3122   return result;
3123 }
3124 
3125 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3126   bool result = false;
3127   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3128                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3129                  -1, 0);
3130 
3131   if (p != MAP_FAILED) {
3132     // We don't know if this really is a huge page or not.
3133     FILE *fp = fopen("/proc/self/maps", "r");
3134     if (fp) {
3135       while (!feof(fp)) {
3136         char chars[257];
3137         long x = 0;
3138         if (fgets(chars, sizeof(chars), fp)) {
3139           if (sscanf(chars, "%lx-%*x", &x) == 1
3140               && x == (long)p) {
3141             if (strstr (chars, "hugepage")) {
3142               result = true;
3143               break;
3144             }
3145           }
3146         }
3147       }
3148       fclose(fp);
3149     }
3150     munmap(p, page_size);
3151   }
3152 
3153   if (warn && !result) {
3154     warning("HugeTLBFS is not supported by the operating system.");
3155   }
3156 
3157   return result;
3158 }
3159 
3160 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3161 //
3162 // From the coredump_filter documentation:
3163 //
3164 // - (bit 0) anonymous private memory
3165 // - (bit 1) anonymous shared memory
3166 // - (bit 2) file-backed private memory
3167 // - (bit 3) file-backed shared memory
3168 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3169 //           effective only if the bit 2 is cleared)
3170 // - (bit 5) hugetlb private memory
3171 // - (bit 6) hugetlb shared memory
3172 //
3173 static void set_coredump_filter(void) {
3174   FILE *f;
3175   long cdm;
3176 
3177   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3178     return;
3179   }
3180 
3181   if (fscanf(f, "%lx", &cdm) != 1) {
3182     fclose(f);
3183     return;
3184   }
3185 
3186   rewind(f);
3187 
3188   if ((cdm & LARGEPAGES_BIT) == 0) {
3189     cdm |= LARGEPAGES_BIT;
3190     fprintf(f, "%#lx", cdm);
3191   }
3192 
3193   fclose(f);
3194 }
3195 
3196 // Large page support
3197 
3198 static size_t _large_page_size = 0;
3199 
3200 size_t os::Linux::find_large_page_size() {
3201   size_t large_page_size = 0;
3202 
3203   // large_page_size on Linux is used to round up heap size. x86 uses either
3204   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3205   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3206   // page as large as 256M.
3207   //
3208   // Here we try to figure out page size by parsing /proc/meminfo and looking
3209   // for a line with the following format:
3210   //    Hugepagesize:     2048 kB
3211   //
3212   // If we can't determine the value (e.g. /proc is not mounted, or the text
3213   // format has been changed), we'll use the largest page size supported by
3214   // the processor.
3215 
3216 #ifndef ZERO
3217   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3218                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3219 #endif // ZERO
3220 
3221   FILE *fp = fopen("/proc/meminfo", "r");
3222   if (fp) {
3223     while (!feof(fp)) {
3224       int x = 0;
3225       char buf[16];
3226       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3227         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3228           large_page_size = x * K;
3229           break;
3230         }
3231       } else {
3232         // skip to next line
3233         for (;;) {
3234           int ch = fgetc(fp);
3235           if (ch == EOF || ch == (int)'\n') break;
3236         }
3237       }
3238     }
3239     fclose(fp);
3240   }
3241 
3242   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3243     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3244             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3245             proper_unit_for_byte_size(large_page_size));
3246   }
3247 
3248   return large_page_size;
3249 }
3250 
3251 size_t os::Linux::setup_large_page_size() {
3252   _large_page_size = Linux::find_large_page_size();
3253   const size_t default_page_size = (size_t)Linux::page_size();
3254   if (_large_page_size > default_page_size) {
3255     _page_sizes[0] = _large_page_size;
3256     _page_sizes[1] = default_page_size;
3257     _page_sizes[2] = 0;
3258   }
3259 
3260   return _large_page_size;
3261 }
3262 
3263 bool os::Linux::setup_large_page_type(size_t page_size) {
3264   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3265       FLAG_IS_DEFAULT(UseSHM) &&
3266       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3267 
3268     // The type of large pages has not been specified by the user.
3269 
3270     // Try UseHugeTLBFS and then UseSHM.
3271     UseHugeTLBFS = UseSHM = true;
3272 
3273     // Don't try UseTransparentHugePages since there are known
3274     // performance issues with it turned on. This might change in the future.
3275     UseTransparentHugePages = false;
3276   }
3277 
3278   if (UseTransparentHugePages) {
3279     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3280     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3281       UseHugeTLBFS = false;
3282       UseSHM = false;
3283       return true;
3284     }
3285     UseTransparentHugePages = false;
3286   }
3287 
3288   if (UseHugeTLBFS) {
3289     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3290     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3291       UseSHM = false;
3292       return true;
3293     }
3294     UseHugeTLBFS = false;
3295   }
3296 
3297   return UseSHM;
3298 }
3299 
3300 void os::large_page_init() {
3301   if (!UseLargePages &&
3302       !UseTransparentHugePages &&
3303       !UseHugeTLBFS &&
3304       !UseSHM) {
3305     // Not using large pages.
3306     return;
3307   }
3308 
3309   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3310     // The user explicitly turned off large pages.
3311     // Ignore the rest of the large pages flags.
3312     UseTransparentHugePages = false;
3313     UseHugeTLBFS = false;
3314     UseSHM = false;
3315     return;
3316   }
3317 
3318   size_t large_page_size = Linux::setup_large_page_size();
3319   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3320 
3321   set_coredump_filter();
3322 }
3323 
3324 #ifndef SHM_HUGETLB
3325   #define SHM_HUGETLB 04000
3326 #endif
3327 
3328 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3329                                             char* req_addr, bool exec) {
3330   // "exec" is passed in but not used.  Creating the shared image for
3331   // the code cache doesn't have an SHM_X executable permission to check.
3332   assert(UseLargePages && UseSHM, "only for SHM large pages");
3333   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3334 
3335   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3336     return NULL; // Fallback to small pages.
3337   }
3338 
3339   key_t key = IPC_PRIVATE;
3340   char *addr;
3341 
3342   bool warn_on_failure = UseLargePages &&
3343                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3344                          !FLAG_IS_DEFAULT(UseSHM) ||
3345                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3346   char msg[128];
3347 
3348   // Create a large shared memory region to attach to based on size.
3349   // Currently, size is the total size of the heap
3350   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3351   if (shmid == -1) {
3352     // Possible reasons for shmget failure:
3353     // 1. shmmax is too small for Java heap.
3354     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3355     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3356     // 2. not enough large page memory.
3357     //    > check available large pages: cat /proc/meminfo
3358     //    > increase amount of large pages:
3359     //          echo new_value > /proc/sys/vm/nr_hugepages
3360     //      Note 1: different Linux may use different name for this property,
3361     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3362     //      Note 2: it's possible there's enough physical memory available but
3363     //            they are so fragmented after a long run that they can't
3364     //            coalesce into large pages. Try to reserve large pages when
3365     //            the system is still "fresh".
3366     if (warn_on_failure) {
3367       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3368       warning("%s", msg);
3369     }
3370     return NULL;
3371   }
3372 
3373   // attach to the region
3374   addr = (char*)shmat(shmid, req_addr, 0);
3375   int err = errno;
3376 
3377   // Remove shmid. If shmat() is successful, the actual shared memory segment
3378   // will be deleted when it's detached by shmdt() or when the process
3379   // terminates. If shmat() is not successful this will remove the shared
3380   // segment immediately.
3381   shmctl(shmid, IPC_RMID, NULL);
3382 
3383   if ((intptr_t)addr == -1) {
3384     if (warn_on_failure) {
3385       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3386       warning("%s", msg);
3387     }
3388     return NULL;
3389   }
3390 
3391   return addr;
3392 }
3393 
3394 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3395                                         int error) {
3396   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3397 
3398   bool warn_on_failure = UseLargePages &&
3399       (!FLAG_IS_DEFAULT(UseLargePages) ||
3400        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3401        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3402 
3403   if (warn_on_failure) {
3404     char msg[128];
3405     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3406                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3407     warning("%s", msg);
3408   }
3409 }
3410 
3411 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3412                                                         char* req_addr,
3413                                                         bool exec) {
3414   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3415   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3416   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3417 
3418   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3419   char* addr = (char*)::mmap(req_addr, bytes, prot,
3420                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3421                              -1, 0);
3422 
3423   if (addr == MAP_FAILED) {
3424     warn_on_large_pages_failure(req_addr, bytes, errno);
3425     return NULL;
3426   }
3427 
3428   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3429 
3430   return addr;
3431 }
3432 
3433 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3434 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3435 //   (req_addr != NULL) or with a given alignment.
3436 //  - bytes shall be a multiple of alignment.
3437 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3438 //  - alignment sets the alignment at which memory shall be allocated.
3439 //     It must be a multiple of allocation granularity.
3440 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3441 //  req_addr or NULL.
3442 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3443 
3444   size_t extra_size = bytes;
3445   if (req_addr == NULL && alignment > 0) {
3446     extra_size += alignment;
3447   }
3448 
3449   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3450     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3451     -1, 0);
3452   if (start == MAP_FAILED) {
3453     start = NULL;
3454   } else {
3455     if (req_addr != NULL) {
3456       if (start != req_addr) {
3457         ::munmap(start, extra_size);
3458         start = NULL;
3459       }
3460     } else {
3461       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3462       char* const end_aligned = start_aligned + bytes;
3463       char* const end = start + extra_size;
3464       if (start_aligned > start) {
3465         ::munmap(start, start_aligned - start);
3466       }
3467       if (end_aligned < end) {
3468         ::munmap(end_aligned, end - end_aligned);
3469       }
3470       start = start_aligned;
3471     }
3472   }
3473   return start;
3474 
3475 }
3476 
3477 // Reserve memory using mmap(MAP_HUGETLB).
3478 //  - bytes shall be a multiple of alignment.
3479 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3480 //  - alignment sets the alignment at which memory shall be allocated.
3481 //     It must be a multiple of allocation granularity.
3482 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3483 //  req_addr or NULL.
3484 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3485                                                          size_t alignment,
3486                                                          char* req_addr,
3487                                                          bool exec) {
3488   size_t large_page_size = os::large_page_size();
3489   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3490 
3491   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3492   assert(is_size_aligned(bytes, alignment), "Must be");
3493 
3494   // First reserve - but not commit - the address range in small pages.
3495   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3496 
3497   if (start == NULL) {
3498     return NULL;
3499   }
3500 
3501   assert(is_ptr_aligned(start, alignment), "Must be");
3502 
3503   char* end = start + bytes;
3504 
3505   // Find the regions of the allocated chunk that can be promoted to large pages.
3506   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3507   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3508 
3509   size_t lp_bytes = lp_end - lp_start;
3510 
3511   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3512 
3513   if (lp_bytes == 0) {
3514     // The mapped region doesn't even span the start and the end of a large page.
3515     // Fall back to allocate a non-special area.
3516     ::munmap(start, end - start);
3517     return NULL;
3518   }
3519 
3520   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3521 
3522   void* result;
3523 
3524   // Commit small-paged leading area.
3525   if (start != lp_start) {
3526     result = ::mmap(start, lp_start - start, prot,
3527                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3528                     -1, 0);
3529     if (result == MAP_FAILED) {
3530       ::munmap(lp_start, end - lp_start);
3531       return NULL;
3532     }
3533   }
3534 
3535   // Commit large-paged area.
3536   result = ::mmap(lp_start, lp_bytes, prot,
3537                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3538                   -1, 0);
3539   if (result == MAP_FAILED) {
3540     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3541     // If the mmap above fails, the large pages region will be unmapped and we
3542     // have regions before and after with small pages. Release these regions.
3543     //
3544     // |  mapped  |  unmapped  |  mapped  |
3545     // ^          ^            ^          ^
3546     // start      lp_start     lp_end     end
3547     //
3548     ::munmap(start, lp_start - start);
3549     ::munmap(lp_end, end - lp_end);
3550     return NULL;
3551   }
3552 
3553   // Commit small-paged trailing area.
3554   if (lp_end != end) {
3555     result = ::mmap(lp_end, end - lp_end, prot,
3556                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3557                     -1, 0);
3558     if (result == MAP_FAILED) {
3559       ::munmap(start, lp_end - start);
3560       return NULL;
3561     }
3562   }
3563 
3564   return start;
3565 }
3566 
3567 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3568                                                    size_t alignment,
3569                                                    char* req_addr,
3570                                                    bool exec) {
3571   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3572   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3573   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3574   assert(is_power_of_2(os::large_page_size()), "Must be");
3575   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3576 
3577   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3578     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3579   } else {
3580     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3581   }
3582 }
3583 
3584 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3585                                  char* req_addr, bool exec) {
3586   assert(UseLargePages, "only for large pages");
3587 
3588   char* addr;
3589   if (UseSHM) {
3590     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3591   } else {
3592     assert(UseHugeTLBFS, "must be");
3593     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3594   }
3595 
3596   if (addr != NULL) {
3597     if (UseNUMAInterleaving) {
3598       numa_make_global(addr, bytes);
3599     }
3600 
3601     // The memory is committed
3602     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3603   }
3604 
3605   return addr;
3606 }
3607 
3608 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3609   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3610   return shmdt(base) == 0;
3611 }
3612 
3613 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3614   return pd_release_memory(base, bytes);
3615 }
3616 
3617 bool os::release_memory_special(char* base, size_t bytes) {
3618   bool res;
3619   if (MemTracker::tracking_level() > NMT_minimal) {
3620     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3621     res = os::Linux::release_memory_special_impl(base, bytes);
3622     if (res) {
3623       tkr.record((address)base, bytes);
3624     }
3625 
3626   } else {
3627     res = os::Linux::release_memory_special_impl(base, bytes);
3628   }
3629   return res;
3630 }
3631 
3632 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3633   assert(UseLargePages, "only for large pages");
3634   bool res;
3635 
3636   if (UseSHM) {
3637     res = os::Linux::release_memory_special_shm(base, bytes);
3638   } else {
3639     assert(UseHugeTLBFS, "must be");
3640     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3641   }
3642   return res;
3643 }
3644 
3645 size_t os::large_page_size() {
3646   return _large_page_size;
3647 }
3648 
3649 // With SysV SHM the entire memory region must be allocated as shared
3650 // memory.
3651 // HugeTLBFS allows application to commit large page memory on demand.
3652 // However, when committing memory with HugeTLBFS fails, the region
3653 // that was supposed to be committed will lose the old reservation
3654 // and allow other threads to steal that memory region. Because of this
3655 // behavior we can't commit HugeTLBFS memory.
3656 bool os::can_commit_large_page_memory() {
3657   return UseTransparentHugePages;
3658 }
3659 
3660 bool os::can_execute_large_page_memory() {
3661   return UseTransparentHugePages || UseHugeTLBFS;
3662 }
3663 
3664 // Reserve memory at an arbitrary address, only if that area is
3665 // available (and not reserved for something else).
3666 
3667 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3668   const int max_tries = 10;
3669   char* base[max_tries];
3670   size_t size[max_tries];
3671   const size_t gap = 0x000000;
3672 
3673   // Assert only that the size is a multiple of the page size, since
3674   // that's all that mmap requires, and since that's all we really know
3675   // about at this low abstraction level.  If we need higher alignment,
3676   // we can either pass an alignment to this method or verify alignment
3677   // in one of the methods further up the call chain.  See bug 5044738.
3678   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3679 
3680   // Repeatedly allocate blocks until the block is allocated at the
3681   // right spot. Give up after max_tries. Note that reserve_memory() will
3682   // automatically update _highest_vm_reserved_address if the call is
3683   // successful. The variable tracks the highest memory address every reserved
3684   // by JVM. It is used to detect heap-stack collision if running with
3685   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3686   // space than needed, it could confuse the collision detecting code. To
3687   // solve the problem, save current _highest_vm_reserved_address and
3688   // calculate the correct value before return.
3689   address old_highest = _highest_vm_reserved_address;
3690 
3691   // Linux mmap allows caller to pass an address as hint; give it a try first,
3692   // if kernel honors the hint then we can return immediately.
3693   char * addr = anon_mmap(requested_addr, bytes, false);
3694   if (addr == requested_addr) {
3695     return requested_addr;
3696   }
3697 
3698   if (addr != NULL) {
3699     // mmap() is successful but it fails to reserve at the requested address
3700     anon_munmap(addr, bytes);
3701   }
3702 
3703   int i;
3704   for (i = 0; i < max_tries; ++i) {
3705     base[i] = reserve_memory(bytes);
3706 
3707     if (base[i] != NULL) {
3708       // Is this the block we wanted?
3709       if (base[i] == requested_addr) {
3710         size[i] = bytes;
3711         break;
3712       }
3713 
3714       // Does this overlap the block we wanted? Give back the overlapped
3715       // parts and try again.
3716 
3717       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3718       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3719         unmap_memory(base[i], top_overlap);
3720         base[i] += top_overlap;
3721         size[i] = bytes - top_overlap;
3722       } else {
3723         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3724         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3725           unmap_memory(requested_addr, bottom_overlap);
3726           size[i] = bytes - bottom_overlap;
3727         } else {
3728           size[i] = bytes;
3729         }
3730       }
3731     }
3732   }
3733 
3734   // Give back the unused reserved pieces.
3735 
3736   for (int j = 0; j < i; ++j) {
3737     if (base[j] != NULL) {
3738       unmap_memory(base[j], size[j]);
3739     }
3740   }
3741 
3742   if (i < max_tries) {
3743     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3744     return requested_addr;
3745   } else {
3746     _highest_vm_reserved_address = old_highest;
3747     return NULL;
3748   }
3749 }
3750 
3751 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3752   return ::read(fd, buf, nBytes);
3753 }
3754 
3755 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3756   return ::pread(fd, buf, nBytes, offset);
3757 }
3758 
3759 // Short sleep, direct OS call.
3760 //
3761 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3762 // sched_yield(2) will actually give up the CPU:
3763 //
3764 //   * Alone on this pariticular CPU, keeps running.
3765 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3766 //     (pre 2.6.39).
3767 //
3768 // So calling this with 0 is an alternative.
3769 //
3770 void os::naked_short_sleep(jlong ms) {
3771   struct timespec req;
3772 
3773   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3774   req.tv_sec = 0;
3775   if (ms > 0) {
3776     req.tv_nsec = (ms % 1000) * 1000000;
3777   } else {
3778     req.tv_nsec = 1;
3779   }
3780 
3781   nanosleep(&req, NULL);
3782 
3783   return;
3784 }
3785 
3786 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3787 void os::infinite_sleep() {
3788   while (true) {    // sleep forever ...
3789     ::sleep(100);   // ... 100 seconds at a time
3790   }
3791 }
3792 
3793 // Used to convert frequent JVM_Yield() to nops
3794 bool os::dont_yield() {
3795   return DontYieldALot;
3796 }
3797 
3798 void os::naked_yield() {
3799   sched_yield();
3800 }
3801 
3802 ////////////////////////////////////////////////////////////////////////////////
3803 // thread priority support
3804 
3805 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3806 // only supports dynamic priority, static priority must be zero. For real-time
3807 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3808 // However, for large multi-threaded applications, SCHED_RR is not only slower
3809 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3810 // of 5 runs - Sep 2005).
3811 //
3812 // The following code actually changes the niceness of kernel-thread/LWP. It
3813 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3814 // not the entire user process, and user level threads are 1:1 mapped to kernel
3815 // threads. It has always been the case, but could change in the future. For
3816 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3817 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3818 
3819 int os::java_to_os_priority[CriticalPriority + 1] = {
3820   19,              // 0 Entry should never be used
3821 
3822    4,              // 1 MinPriority
3823    3,              // 2
3824    2,              // 3
3825 
3826    1,              // 4
3827    0,              // 5 NormPriority
3828   -1,              // 6
3829 
3830   -2,              // 7
3831   -3,              // 8
3832   -4,              // 9 NearMaxPriority
3833 
3834   -5,              // 10 MaxPriority
3835 
3836   -5               // 11 CriticalPriority
3837 };
3838 
3839 static int prio_init() {
3840   if (ThreadPriorityPolicy == 1) {
3841     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3842     // if effective uid is not root. Perhaps, a more elegant way of doing
3843     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3844     if (geteuid() != 0) {
3845       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3846         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3847       }
3848       ThreadPriorityPolicy = 0;
3849     }
3850   }
3851   if (UseCriticalJavaThreadPriority) {
3852     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3853   }
3854   return 0;
3855 }
3856 
3857 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3858   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3859 
3860   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3861   return (ret == 0) ? OS_OK : OS_ERR;
3862 }
3863 
3864 OSReturn os::get_native_priority(const Thread* const thread,
3865                                  int *priority_ptr) {
3866   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3867     *priority_ptr = java_to_os_priority[NormPriority];
3868     return OS_OK;
3869   }
3870 
3871   errno = 0;
3872   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3873   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3874 }
3875 
3876 // Hint to the underlying OS that a task switch would not be good.
3877 // Void return because it's a hint and can fail.
3878 void os::hint_no_preempt() {}
3879 
3880 ////////////////////////////////////////////////////////////////////////////////
3881 // suspend/resume support
3882 
3883 //  the low-level signal-based suspend/resume support is a remnant from the
3884 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3885 //  within hotspot. Now there is a single use-case for this:
3886 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3887 //      that runs in the watcher thread.
3888 //  The remaining code is greatly simplified from the more general suspension
3889 //  code that used to be used.
3890 //
3891 //  The protocol is quite simple:
3892 //  - suspend:
3893 //      - sends a signal to the target thread
3894 //      - polls the suspend state of the osthread using a yield loop
3895 //      - target thread signal handler (SR_handler) sets suspend state
3896 //        and blocks in sigsuspend until continued
3897 //  - resume:
3898 //      - sets target osthread state to continue
3899 //      - sends signal to end the sigsuspend loop in the SR_handler
3900 //
3901 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3902 
3903 static void resume_clear_context(OSThread *osthread) {
3904   osthread->set_ucontext(NULL);
3905   osthread->set_siginfo(NULL);
3906 }
3907 
3908 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3909                                  ucontext_t* context) {
3910   osthread->set_ucontext(context);
3911   osthread->set_siginfo(siginfo);
3912 }
3913 
3914 // Handler function invoked when a thread's execution is suspended or
3915 // resumed. We have to be careful that only async-safe functions are
3916 // called here (Note: most pthread functions are not async safe and
3917 // should be avoided.)
3918 //
3919 // Note: sigwait() is a more natural fit than sigsuspend() from an
3920 // interface point of view, but sigwait() prevents the signal hander
3921 // from being run. libpthread would get very confused by not having
3922 // its signal handlers run and prevents sigwait()'s use with the
3923 // mutex granting granting signal.
3924 //
3925 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3926 //
3927 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3928   // Save and restore errno to avoid confusing native code with EINTR
3929   // after sigsuspend.
3930   int old_errno = errno;
3931 
3932   Thread* thread = Thread::current();
3933   OSThread* osthread = thread->osthread();
3934   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3935 
3936   os::SuspendResume::State current = osthread->sr.state();
3937   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3938     suspend_save_context(osthread, siginfo, context);
3939 
3940     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3941     os::SuspendResume::State state = osthread->sr.suspended();
3942     if (state == os::SuspendResume::SR_SUSPENDED) {
3943       sigset_t suspend_set;  // signals for sigsuspend()
3944 
3945       // get current set of blocked signals and unblock resume signal
3946       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3947       sigdelset(&suspend_set, SR_signum);
3948 
3949       sr_semaphore.signal();
3950       // wait here until we are resumed
3951       while (1) {
3952         sigsuspend(&suspend_set);
3953 
3954         os::SuspendResume::State result = osthread->sr.running();
3955         if (result == os::SuspendResume::SR_RUNNING) {
3956           sr_semaphore.signal();
3957           break;
3958         }
3959       }
3960 
3961     } else if (state == os::SuspendResume::SR_RUNNING) {
3962       // request was cancelled, continue
3963     } else {
3964       ShouldNotReachHere();
3965     }
3966 
3967     resume_clear_context(osthread);
3968   } else if (current == os::SuspendResume::SR_RUNNING) {
3969     // request was cancelled, continue
3970   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3971     // ignore
3972   } else {
3973     // ignore
3974   }
3975 
3976   errno = old_errno;
3977 }
3978 
3979 
3980 static int SR_initialize() {
3981   struct sigaction act;
3982   char *s;
3983   // Get signal number to use for suspend/resume
3984   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3985     int sig = ::strtol(s, 0, 10);
3986     if (sig > 0 || sig < _NSIG) {
3987       SR_signum = sig;
3988     }
3989   }
3990 
3991   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3992          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3993 
3994   sigemptyset(&SR_sigset);
3995   sigaddset(&SR_sigset, SR_signum);
3996 
3997   // Set up signal handler for suspend/resume
3998   act.sa_flags = SA_RESTART|SA_SIGINFO;
3999   act.sa_handler = (void (*)(int)) SR_handler;
4000 
4001   // SR_signum is blocked by default.
4002   // 4528190 - We also need to block pthread restart signal (32 on all
4003   // supported Linux platforms). Note that LinuxThreads need to block
4004   // this signal for all threads to work properly. So we don't have
4005   // to use hard-coded signal number when setting up the mask.
4006   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4007 
4008   if (sigaction(SR_signum, &act, 0) == -1) {
4009     return -1;
4010   }
4011 
4012   // Save signal flag
4013   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4014   return 0;
4015 }
4016 
4017 static int sr_notify(OSThread* osthread) {
4018   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4019   assert_status(status == 0, status, "pthread_kill");
4020   return status;
4021 }
4022 
4023 // "Randomly" selected value for how long we want to spin
4024 // before bailing out on suspending a thread, also how often
4025 // we send a signal to a thread we want to resume
4026 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4027 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4028 
4029 // returns true on success and false on error - really an error is fatal
4030 // but this seems the normal response to library errors
4031 static bool do_suspend(OSThread* osthread) {
4032   assert(osthread->sr.is_running(), "thread should be running");
4033   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4034 
4035   // mark as suspended and send signal
4036   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4037     // failed to switch, state wasn't running?
4038     ShouldNotReachHere();
4039     return false;
4040   }
4041 
4042   if (sr_notify(osthread) != 0) {
4043     ShouldNotReachHere();
4044   }
4045 
4046   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4047   while (true) {
4048     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4049       break;
4050     } else {
4051       // timeout
4052       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4053       if (cancelled == os::SuspendResume::SR_RUNNING) {
4054         return false;
4055       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4056         // make sure that we consume the signal on the semaphore as well
4057         sr_semaphore.wait();
4058         break;
4059       } else {
4060         ShouldNotReachHere();
4061         return false;
4062       }
4063     }
4064   }
4065 
4066   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4067   return true;
4068 }
4069 
4070 static void do_resume(OSThread* osthread) {
4071   assert(osthread->sr.is_suspended(), "thread should be suspended");
4072   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4073 
4074   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4075     // failed to switch to WAKEUP_REQUEST
4076     ShouldNotReachHere();
4077     return;
4078   }
4079 
4080   while (true) {
4081     if (sr_notify(osthread) == 0) {
4082       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4083         if (osthread->sr.is_running()) {
4084           return;
4085         }
4086       }
4087     } else {
4088       ShouldNotReachHere();
4089     }
4090   }
4091 
4092   guarantee(osthread->sr.is_running(), "Must be running!");
4093 }
4094 
4095 ///////////////////////////////////////////////////////////////////////////////////
4096 // signal handling (except suspend/resume)
4097 
4098 // This routine may be used by user applications as a "hook" to catch signals.
4099 // The user-defined signal handler must pass unrecognized signals to this
4100 // routine, and if it returns true (non-zero), then the signal handler must
4101 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4102 // routine will never retun false (zero), but instead will execute a VM panic
4103 // routine kill the process.
4104 //
4105 // If this routine returns false, it is OK to call it again.  This allows
4106 // the user-defined signal handler to perform checks either before or after
4107 // the VM performs its own checks.  Naturally, the user code would be making
4108 // a serious error if it tried to handle an exception (such as a null check
4109 // or breakpoint) that the VM was generating for its own correct operation.
4110 //
4111 // This routine may recognize any of the following kinds of signals:
4112 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4113 // It should be consulted by handlers for any of those signals.
4114 //
4115 // The caller of this routine must pass in the three arguments supplied
4116 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4117 // field of the structure passed to sigaction().  This routine assumes that
4118 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4119 //
4120 // Note that the VM will print warnings if it detects conflicting signal
4121 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4122 //
4123 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4124                                                  siginfo_t* siginfo,
4125                                                  void* ucontext,
4126                                                  int abort_if_unrecognized);
4127 
4128 void signalHandler(int sig, siginfo_t* info, void* uc) {
4129   assert(info != NULL && uc != NULL, "it must be old kernel");
4130   int orig_errno = errno;  // Preserve errno value over signal handler.
4131   JVM_handle_linux_signal(sig, info, uc, true);
4132   errno = orig_errno;
4133 }
4134 
4135 
4136 // This boolean allows users to forward their own non-matching signals
4137 // to JVM_handle_linux_signal, harmlessly.
4138 bool os::Linux::signal_handlers_are_installed = false;
4139 
4140 // For signal-chaining
4141 struct sigaction os::Linux::sigact[MAXSIGNUM];
4142 unsigned int os::Linux::sigs = 0;
4143 bool os::Linux::libjsig_is_loaded = false;
4144 typedef struct sigaction *(*get_signal_t)(int);
4145 get_signal_t os::Linux::get_signal_action = NULL;
4146 
4147 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4148   struct sigaction *actp = NULL;
4149 
4150   if (libjsig_is_loaded) {
4151     // Retrieve the old signal handler from libjsig
4152     actp = (*get_signal_action)(sig);
4153   }
4154   if (actp == NULL) {
4155     // Retrieve the preinstalled signal handler from jvm
4156     actp = get_preinstalled_handler(sig);
4157   }
4158 
4159   return actp;
4160 }
4161 
4162 static bool call_chained_handler(struct sigaction *actp, int sig,
4163                                  siginfo_t *siginfo, void *context) {
4164   // Call the old signal handler
4165   if (actp->sa_handler == SIG_DFL) {
4166     // It's more reasonable to let jvm treat it as an unexpected exception
4167     // instead of taking the default action.
4168     return false;
4169   } else if (actp->sa_handler != SIG_IGN) {
4170     if ((actp->sa_flags & SA_NODEFER) == 0) {
4171       // automaticlly block the signal
4172       sigaddset(&(actp->sa_mask), sig);
4173     }
4174 
4175     sa_handler_t hand;
4176     sa_sigaction_t sa;
4177     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4178     // retrieve the chained handler
4179     if (siginfo_flag_set) {
4180       sa = actp->sa_sigaction;
4181     } else {
4182       hand = actp->sa_handler;
4183     }
4184 
4185     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4186       actp->sa_handler = SIG_DFL;
4187     }
4188 
4189     // try to honor the signal mask
4190     sigset_t oset;
4191     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4192 
4193     // call into the chained handler
4194     if (siginfo_flag_set) {
4195       (*sa)(sig, siginfo, context);
4196     } else {
4197       (*hand)(sig);
4198     }
4199 
4200     // restore the signal mask
4201     pthread_sigmask(SIG_SETMASK, &oset, 0);
4202   }
4203   // Tell jvm's signal handler the signal is taken care of.
4204   return true;
4205 }
4206 
4207 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4208   bool chained = false;
4209   // signal-chaining
4210   if (UseSignalChaining) {
4211     struct sigaction *actp = get_chained_signal_action(sig);
4212     if (actp != NULL) {
4213       chained = call_chained_handler(actp, sig, siginfo, context);
4214     }
4215   }
4216   return chained;
4217 }
4218 
4219 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4220   if ((((unsigned int)1 << sig) & sigs) != 0) {
4221     return &sigact[sig];
4222   }
4223   return NULL;
4224 }
4225 
4226 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4227   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4228   sigact[sig] = oldAct;
4229   sigs |= (unsigned int)1 << sig;
4230 }
4231 
4232 // for diagnostic
4233 int os::Linux::sigflags[MAXSIGNUM];
4234 
4235 int os::Linux::get_our_sigflags(int sig) {
4236   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4237   return sigflags[sig];
4238 }
4239 
4240 void os::Linux::set_our_sigflags(int sig, int flags) {
4241   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4242   sigflags[sig] = flags;
4243 }
4244 
4245 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4246   // Check for overwrite.
4247   struct sigaction oldAct;
4248   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4249 
4250   void* oldhand = oldAct.sa_sigaction
4251                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4252                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4253   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4254       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4255       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4256     if (AllowUserSignalHandlers || !set_installed) {
4257       // Do not overwrite; user takes responsibility to forward to us.
4258       return;
4259     } else if (UseSignalChaining) {
4260       // save the old handler in jvm
4261       save_preinstalled_handler(sig, oldAct);
4262       // libjsig also interposes the sigaction() call below and saves the
4263       // old sigaction on it own.
4264     } else {
4265       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4266                     "%#lx for signal %d.", (long)oldhand, sig));
4267     }
4268   }
4269 
4270   struct sigaction sigAct;
4271   sigfillset(&(sigAct.sa_mask));
4272   sigAct.sa_handler = SIG_DFL;
4273   if (!set_installed) {
4274     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4275   } else {
4276     sigAct.sa_sigaction = signalHandler;
4277     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4278   }
4279   // Save flags, which are set by ours
4280   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4281   sigflags[sig] = sigAct.sa_flags;
4282 
4283   int ret = sigaction(sig, &sigAct, &oldAct);
4284   assert(ret == 0, "check");
4285 
4286   void* oldhand2  = oldAct.sa_sigaction
4287                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4288                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4289   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4290 }
4291 
4292 // install signal handlers for signals that HotSpot needs to
4293 // handle in order to support Java-level exception handling.
4294 
4295 void os::Linux::install_signal_handlers() {
4296   if (!signal_handlers_are_installed) {
4297     signal_handlers_are_installed = true;
4298 
4299     // signal-chaining
4300     typedef void (*signal_setting_t)();
4301     signal_setting_t begin_signal_setting = NULL;
4302     signal_setting_t end_signal_setting = NULL;
4303     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4304                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4305     if (begin_signal_setting != NULL) {
4306       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4307                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4308       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4309                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4310       libjsig_is_loaded = true;
4311       assert(UseSignalChaining, "should enable signal-chaining");
4312     }
4313     if (libjsig_is_loaded) {
4314       // Tell libjsig jvm is setting signal handlers
4315       (*begin_signal_setting)();
4316     }
4317 
4318     set_signal_handler(SIGSEGV, true);
4319     set_signal_handler(SIGPIPE, true);
4320     set_signal_handler(SIGBUS, true);
4321     set_signal_handler(SIGILL, true);
4322     set_signal_handler(SIGFPE, true);
4323 #if defined(PPC64)
4324     set_signal_handler(SIGTRAP, true);
4325 #endif
4326     set_signal_handler(SIGXFSZ, true);
4327 
4328     if (libjsig_is_loaded) {
4329       // Tell libjsig jvm finishes setting signal handlers
4330       (*end_signal_setting)();
4331     }
4332 
4333     // We don't activate signal checker if libjsig is in place, we trust ourselves
4334     // and if UserSignalHandler is installed all bets are off.
4335     // Log that signal checking is off only if -verbose:jni is specified.
4336     if (CheckJNICalls) {
4337       if (libjsig_is_loaded) {
4338         if (PrintJNIResolving) {
4339           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4340         }
4341         check_signals = false;
4342       }
4343       if (AllowUserSignalHandlers) {
4344         if (PrintJNIResolving) {
4345           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4346         }
4347         check_signals = false;
4348       }
4349     }
4350   }
4351 }
4352 
4353 // This is the fastest way to get thread cpu time on Linux.
4354 // Returns cpu time (user+sys) for any thread, not only for current.
4355 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4356 // It might work on 2.6.10+ with a special kernel/glibc patch.
4357 // For reference, please, see IEEE Std 1003.1-2004:
4358 //   http://www.unix.org/single_unix_specification
4359 
4360 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4361   struct timespec tp;
4362   int rc = os::Linux::clock_gettime(clockid, &tp);
4363   assert(rc == 0, "clock_gettime is expected to return 0 code");
4364 
4365   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4366 }
4367 
4368 /////
4369 // glibc on Linux platform uses non-documented flag
4370 // to indicate, that some special sort of signal
4371 // trampoline is used.
4372 // We will never set this flag, and we should
4373 // ignore this flag in our diagnostic
4374 #ifdef SIGNIFICANT_SIGNAL_MASK
4375   #undef SIGNIFICANT_SIGNAL_MASK
4376 #endif
4377 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4378 
4379 static const char* get_signal_handler_name(address handler,
4380                                            char* buf, int buflen) {
4381   int offset;
4382   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4383   if (found) {
4384     // skip directory names
4385     const char *p1, *p2;
4386     p1 = buf;
4387     size_t len = strlen(os::file_separator());
4388     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4389     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4390   } else {
4391     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4392   }
4393   return buf;
4394 }
4395 
4396 static void print_signal_handler(outputStream* st, int sig,
4397                                  char* buf, size_t buflen) {
4398   struct sigaction sa;
4399 
4400   sigaction(sig, NULL, &sa);
4401 
4402   // See comment for SIGNIFICANT_SIGNAL_MASK define
4403   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4404 
4405   st->print("%s: ", os::exception_name(sig, buf, buflen));
4406 
4407   address handler = (sa.sa_flags & SA_SIGINFO)
4408     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4409     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4410 
4411   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4412     st->print("SIG_DFL");
4413   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4414     st->print("SIG_IGN");
4415   } else {
4416     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4417   }
4418 
4419   st->print(", sa_mask[0]=");
4420   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4421 
4422   address rh = VMError::get_resetted_sighandler(sig);
4423   // May be, handler was resetted by VMError?
4424   if (rh != NULL) {
4425     handler = rh;
4426     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4427   }
4428 
4429   st->print(", sa_flags=");
4430   os::Posix::print_sa_flags(st, sa.sa_flags);
4431 
4432   // Check: is it our handler?
4433   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4434       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4435     // It is our signal handler
4436     // check for flags, reset system-used one!
4437     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4438       st->print(
4439                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4440                 os::Linux::get_our_sigflags(sig));
4441     }
4442   }
4443   st->cr();
4444 }
4445 
4446 
4447 #define DO_SIGNAL_CHECK(sig)                      \
4448   do {                                            \
4449     if (!sigismember(&check_signal_done, sig)) {  \
4450       os::Linux::check_signal_handler(sig);       \
4451     }                                             \
4452   } while (0)
4453 
4454 // This method is a periodic task to check for misbehaving JNI applications
4455 // under CheckJNI, we can add any periodic checks here
4456 
4457 void os::run_periodic_checks() {
4458   if (check_signals == false) return;
4459 
4460   // SEGV and BUS if overridden could potentially prevent
4461   // generation of hs*.log in the event of a crash, debugging
4462   // such a case can be very challenging, so we absolutely
4463   // check the following for a good measure:
4464   DO_SIGNAL_CHECK(SIGSEGV);
4465   DO_SIGNAL_CHECK(SIGILL);
4466   DO_SIGNAL_CHECK(SIGFPE);
4467   DO_SIGNAL_CHECK(SIGBUS);
4468   DO_SIGNAL_CHECK(SIGPIPE);
4469   DO_SIGNAL_CHECK(SIGXFSZ);
4470 #if defined(PPC64)
4471   DO_SIGNAL_CHECK(SIGTRAP);
4472 #endif
4473 
4474   // ReduceSignalUsage allows the user to override these handlers
4475   // see comments at the very top and jvm_solaris.h
4476   if (!ReduceSignalUsage) {
4477     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4478     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4479     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4480     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4481   }
4482 
4483   DO_SIGNAL_CHECK(SR_signum);
4484   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4485 }
4486 
4487 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4488 
4489 static os_sigaction_t os_sigaction = NULL;
4490 
4491 void os::Linux::check_signal_handler(int sig) {
4492   char buf[O_BUFLEN];
4493   address jvmHandler = NULL;
4494 
4495 
4496   struct sigaction act;
4497   if (os_sigaction == NULL) {
4498     // only trust the default sigaction, in case it has been interposed
4499     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4500     if (os_sigaction == NULL) return;
4501   }
4502 
4503   os_sigaction(sig, (struct sigaction*)NULL, &act);
4504 
4505 
4506   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4507 
4508   address thisHandler = (act.sa_flags & SA_SIGINFO)
4509     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4510     : CAST_FROM_FN_PTR(address, act.sa_handler);
4511 
4512 
4513   switch (sig) {
4514   case SIGSEGV:
4515   case SIGBUS:
4516   case SIGFPE:
4517   case SIGPIPE:
4518   case SIGILL:
4519   case SIGXFSZ:
4520     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4521     break;
4522 
4523   case SHUTDOWN1_SIGNAL:
4524   case SHUTDOWN2_SIGNAL:
4525   case SHUTDOWN3_SIGNAL:
4526   case BREAK_SIGNAL:
4527     jvmHandler = (address)user_handler();
4528     break;
4529 
4530   case INTERRUPT_SIGNAL:
4531     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4532     break;
4533 
4534   default:
4535     if (sig == SR_signum) {
4536       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4537     } else {
4538       return;
4539     }
4540     break;
4541   }
4542 
4543   if (thisHandler != jvmHandler) {
4544     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4545     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4546     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4547     // No need to check this sig any longer
4548     sigaddset(&check_signal_done, sig);
4549     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4550     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4551       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4552                     exception_name(sig, buf, O_BUFLEN));
4553     }
4554   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4555     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4556     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4557     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4558     // No need to check this sig any longer
4559     sigaddset(&check_signal_done, sig);
4560   }
4561 
4562   // Dump all the signal
4563   if (sigismember(&check_signal_done, sig)) {
4564     print_signal_handlers(tty, buf, O_BUFLEN);
4565   }
4566 }
4567 
4568 extern void report_error(char* file_name, int line_no, char* title,
4569                          char* format, ...);
4570 
4571 extern bool signal_name(int signo, char* buf, size_t len);
4572 
4573 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4574   if (0 < exception_code && exception_code <= SIGRTMAX) {
4575     // signal
4576     if (!signal_name(exception_code, buf, size)) {
4577       jio_snprintf(buf, size, "SIG%d", exception_code);
4578     }
4579     return buf;
4580   } else {
4581     return NULL;
4582   }
4583 }
4584 
4585 // this is called _before_ the most of global arguments have been parsed
4586 void os::init(void) {
4587   char dummy;   // used to get a guess on initial stack address
4588 //  first_hrtime = gethrtime();
4589 
4590   // With LinuxThreads the JavaMain thread pid (primordial thread)
4591   // is different than the pid of the java launcher thread.
4592   // So, on Linux, the launcher thread pid is passed to the VM
4593   // via the sun.java.launcher.pid property.
4594   // Use this property instead of getpid() if it was correctly passed.
4595   // See bug 6351349.
4596   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4597 
4598   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4599 
4600   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4601 
4602   init_random(1234567);
4603 
4604   ThreadCritical::initialize();
4605 
4606   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4607   if (Linux::page_size() == -1) {
4608     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4609                   strerror(errno)));
4610   }
4611   init_page_sizes((size_t) Linux::page_size());
4612 
4613   Linux::initialize_system_info();
4614 
4615   // main_thread points to the aboriginal thread
4616   Linux::_main_thread = pthread_self();
4617 
4618   Linux::clock_init();
4619   initial_time_count = javaTimeNanos();
4620 
4621   // pthread_condattr initialization for monotonic clock
4622   int status;
4623   pthread_condattr_t* _condattr = os::Linux::condAttr();
4624   if ((status = pthread_condattr_init(_condattr)) != 0) {
4625     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4626   }
4627   // Only set the clock if CLOCK_MONOTONIC is available
4628   if (os::supports_monotonic_clock()) {
4629     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4630       if (status == EINVAL) {
4631         warning("Unable to use monotonic clock with relative timed-waits" \
4632                 " - changes to the time-of-day clock may have adverse affects");
4633       } else {
4634         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4635       }
4636     }
4637   }
4638   // else it defaults to CLOCK_REALTIME
4639 
4640   // If the pagesize of the VM is greater than 8K determine the appropriate
4641   // number of initial guard pages.  The user can change this with the
4642   // command line arguments, if needed.
4643   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4644     StackYellowPages = 1;
4645     StackRedPages = 1;
4646     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4647   }
4648 
4649   // retrieve entry point for pthread_setname_np
4650   Linux::_pthread_setname_np =
4651     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4652 
4653 }
4654 
4655 // To install functions for atexit system call
4656 extern "C" {
4657   static void perfMemory_exit_helper() {
4658     perfMemory_exit();
4659   }
4660 }
4661 
4662 // this is called _after_ the global arguments have been parsed
4663 jint os::init_2(void) {
4664   Linux::fast_thread_clock_init();
4665 
4666   // Allocate a single page and mark it as readable for safepoint polling
4667   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4668   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4669 
4670   os::set_polling_page(polling_page);
4671 
4672 #ifndef PRODUCT
4673   if (Verbose && PrintMiscellaneous) {
4674     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4675                (intptr_t)polling_page);
4676   }
4677 #endif
4678 
4679   if (!UseMembar) {
4680     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4681     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4682     os::set_memory_serialize_page(mem_serialize_page);
4683 
4684 #ifndef PRODUCT
4685     if (Verbose && PrintMiscellaneous) {
4686       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4687                  (intptr_t)mem_serialize_page);
4688     }
4689 #endif
4690   }
4691 
4692   // initialize suspend/resume support - must do this before signal_sets_init()
4693   if (SR_initialize() != 0) {
4694     perror("SR_initialize failed");
4695     return JNI_ERR;
4696   }
4697 
4698   Linux::signal_sets_init();
4699   Linux::install_signal_handlers();
4700 
4701   // Check minimum allowable stack size for thread creation and to initialize
4702   // the java system classes, including StackOverflowError - depends on page
4703   // size.  Add a page for compiler2 recursion in main thread.
4704   // Add in 2*BytesPerWord times page size to account for VM stack during
4705   // class initialization depending on 32 or 64 bit VM.
4706   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4707                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4708                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4709 
4710   size_t threadStackSizeInBytes = ThreadStackSize * K;
4711   if (threadStackSizeInBytes != 0 &&
4712       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4713     tty->print_cr("\nThe stack size specified is too small, "
4714                   "Specify at least %dk",
4715                   os::Linux::min_stack_allowed/ K);
4716     return JNI_ERR;
4717   }
4718 
4719   // Make the stack size a multiple of the page size so that
4720   // the yellow/red zones can be guarded.
4721   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4722                                                 vm_page_size()));
4723 
4724   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4725 
4726 #if defined(IA32)
4727   workaround_expand_exec_shield_cs_limit();
4728 #endif
4729 
4730   Linux::libpthread_init();
4731   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4732     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4733                   Linux::glibc_version(), Linux::libpthread_version(),
4734                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4735   }
4736 
4737   if (UseNUMA) {
4738     if (!Linux::libnuma_init()) {
4739       UseNUMA = false;
4740     } else {
4741       if ((Linux::numa_max_node() < 1)) {
4742         // There's only one node(they start from 0), disable NUMA.
4743         UseNUMA = false;
4744       }
4745     }
4746     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4747     // we can make the adaptive lgrp chunk resizing work. If the user specified
4748     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4749     // disable adaptive resizing.
4750     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4751       if (FLAG_IS_DEFAULT(UseNUMA)) {
4752         UseNUMA = false;
4753       } else {
4754         if (FLAG_IS_DEFAULT(UseLargePages) &&
4755             FLAG_IS_DEFAULT(UseSHM) &&
4756             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4757           UseLargePages = false;
4758         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4759           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4760           UseAdaptiveSizePolicy = false;
4761           UseAdaptiveNUMAChunkSizing = false;
4762         }
4763       }
4764     }
4765     if (!UseNUMA && ForceNUMA) {
4766       UseNUMA = true;
4767     }
4768   }
4769 
4770   if (MaxFDLimit) {
4771     // set the number of file descriptors to max. print out error
4772     // if getrlimit/setrlimit fails but continue regardless.
4773     struct rlimit nbr_files;
4774     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4775     if (status != 0) {
4776       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4777         perror("os::init_2 getrlimit failed");
4778       }
4779     } else {
4780       nbr_files.rlim_cur = nbr_files.rlim_max;
4781       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4782       if (status != 0) {
4783         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4784           perror("os::init_2 setrlimit failed");
4785         }
4786       }
4787     }
4788   }
4789 
4790   // Initialize lock used to serialize thread creation (see os::create_thread)
4791   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4792 
4793   // at-exit methods are called in the reverse order of their registration.
4794   // atexit functions are called on return from main or as a result of a
4795   // call to exit(3C). There can be only 32 of these functions registered
4796   // and atexit() does not set errno.
4797 
4798   if (PerfAllowAtExitRegistration) {
4799     // only register atexit functions if PerfAllowAtExitRegistration is set.
4800     // atexit functions can be delayed until process exit time, which
4801     // can be problematic for embedded VM situations. Embedded VMs should
4802     // call DestroyJavaVM() to assure that VM resources are released.
4803 
4804     // note: perfMemory_exit_helper atexit function may be removed in
4805     // the future if the appropriate cleanup code can be added to the
4806     // VM_Exit VMOperation's doit method.
4807     if (atexit(perfMemory_exit_helper) != 0) {
4808       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4809     }
4810   }
4811 
4812   // initialize thread priority policy
4813   prio_init();
4814 
4815   return JNI_OK;
4816 }
4817 
4818 // Mark the polling page as unreadable
4819 void os::make_polling_page_unreadable(void) {
4820   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4821     fatal("Could not disable polling page");
4822   }
4823 }
4824 
4825 // Mark the polling page as readable
4826 void os::make_polling_page_readable(void) {
4827   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4828     fatal("Could not enable polling page");
4829   }
4830 }
4831 
4832 int os::active_processor_count() {
4833   // Linux doesn't yet have a (official) notion of processor sets,
4834   // so just return the number of online processors.
4835   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4836   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4837   return online_cpus;
4838 }
4839 
4840 void os::set_native_thread_name(const char *name) {
4841   if (Linux::_pthread_setname_np) {
4842     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4843     snprintf(buf, sizeof(buf), "%s", name);
4844     buf[sizeof(buf) - 1] = '\0';
4845     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4846     // ERANGE should not happen; all other errors should just be ignored.
4847     assert(rc != ERANGE, "pthread_setname_np failed");
4848   }
4849 }
4850 
4851 bool os::distribute_processes(uint length, uint* distribution) {
4852   // Not yet implemented.
4853   return false;
4854 }
4855 
4856 bool os::bind_to_processor(uint processor_id) {
4857   // Not yet implemented.
4858   return false;
4859 }
4860 
4861 ///
4862 
4863 void os::SuspendedThreadTask::internal_do_task() {
4864   if (do_suspend(_thread->osthread())) {
4865     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4866     do_task(context);
4867     do_resume(_thread->osthread());
4868   }
4869 }
4870 
4871 class PcFetcher : public os::SuspendedThreadTask {
4872  public:
4873   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4874   ExtendedPC result();
4875  protected:
4876   void do_task(const os::SuspendedThreadTaskContext& context);
4877  private:
4878   ExtendedPC _epc;
4879 };
4880 
4881 ExtendedPC PcFetcher::result() {
4882   guarantee(is_done(), "task is not done yet.");
4883   return _epc;
4884 }
4885 
4886 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4887   Thread* thread = context.thread();
4888   OSThread* osthread = thread->osthread();
4889   if (osthread->ucontext() != NULL) {
4890     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4891   } else {
4892     // NULL context is unexpected, double-check this is the VMThread
4893     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4894   }
4895 }
4896 
4897 // Suspends the target using the signal mechanism and then grabs the PC before
4898 // resuming the target. Used by the flat-profiler only
4899 ExtendedPC os::get_thread_pc(Thread* thread) {
4900   // Make sure that it is called by the watcher for the VMThread
4901   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4902   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4903 
4904   PcFetcher fetcher(thread);
4905   fetcher.run();
4906   return fetcher.result();
4907 }
4908 
4909 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4910                                    pthread_mutex_t *_mutex,
4911                                    const struct timespec *_abstime) {
4912   if (is_NPTL()) {
4913     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4914   } else {
4915     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4916     // word back to default 64bit precision if condvar is signaled. Java
4917     // wants 53bit precision.  Save and restore current value.
4918     int fpu = get_fpu_control_word();
4919     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4920     set_fpu_control_word(fpu);
4921     return status;
4922   }
4923 }
4924 
4925 ////////////////////////////////////////////////////////////////////////////////
4926 // debug support
4927 
4928 bool os::find(address addr, outputStream* st) {
4929   Dl_info dlinfo;
4930   memset(&dlinfo, 0, sizeof(dlinfo));
4931   if (dladdr(addr, &dlinfo) != 0) {
4932     st->print(PTR_FORMAT ": ", addr);
4933     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4934       st->print("%s+%#x", dlinfo.dli_sname,
4935                 addr - (intptr_t)dlinfo.dli_saddr);
4936     } else if (dlinfo.dli_fbase != NULL) {
4937       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4938     } else {
4939       st->print("<absolute address>");
4940     }
4941     if (dlinfo.dli_fname != NULL) {
4942       st->print(" in %s", dlinfo.dli_fname);
4943     }
4944     if (dlinfo.dli_fbase != NULL) {
4945       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4946     }
4947     st->cr();
4948 
4949     if (Verbose) {
4950       // decode some bytes around the PC
4951       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4952       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4953       address       lowest = (address) dlinfo.dli_sname;
4954       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4955       if (begin < lowest)  begin = lowest;
4956       Dl_info dlinfo2;
4957       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4958           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4959         end = (address) dlinfo2.dli_saddr;
4960       }
4961       Disassembler::decode(begin, end, st);
4962     }
4963     return true;
4964   }
4965   return false;
4966 }
4967 
4968 ////////////////////////////////////////////////////////////////////////////////
4969 // misc
4970 
4971 // This does not do anything on Linux. This is basically a hook for being
4972 // able to use structured exception handling (thread-local exception filters)
4973 // on, e.g., Win32.
4974 void
4975 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4976                          JavaCallArguments* args, Thread* thread) {
4977   f(value, method, args, thread);
4978 }
4979 
4980 void os::print_statistics() {
4981 }
4982 
4983 int os::message_box(const char* title, const char* message) {
4984   int i;
4985   fdStream err(defaultStream::error_fd());
4986   for (i = 0; i < 78; i++) err.print_raw("=");
4987   err.cr();
4988   err.print_raw_cr(title);
4989   for (i = 0; i < 78; i++) err.print_raw("-");
4990   err.cr();
4991   err.print_raw_cr(message);
4992   for (i = 0; i < 78; i++) err.print_raw("=");
4993   err.cr();
4994 
4995   char buf[16];
4996   // Prevent process from exiting upon "read error" without consuming all CPU
4997   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4998 
4999   return buf[0] == 'y' || buf[0] == 'Y';
5000 }
5001 
5002 int os::stat(const char *path, struct stat *sbuf) {
5003   char pathbuf[MAX_PATH];
5004   if (strlen(path) > MAX_PATH - 1) {
5005     errno = ENAMETOOLONG;
5006     return -1;
5007   }
5008   os::native_path(strcpy(pathbuf, path));
5009   return ::stat(pathbuf, sbuf);
5010 }
5011 
5012 bool os::check_heap(bool force) {
5013   return true;
5014 }
5015 
5016 // Is a (classpath) directory empty?
5017 bool os::dir_is_empty(const char* path) {
5018   DIR *dir = NULL;
5019   struct dirent *ptr;
5020 
5021   dir = opendir(path);
5022   if (dir == NULL) return true;
5023 
5024   // Scan the directory
5025   bool result = true;
5026   char buf[sizeof(struct dirent) + MAX_PATH];
5027   while (result && (ptr = ::readdir(dir)) != NULL) {
5028     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5029       result = false;
5030     }
5031   }
5032   closedir(dir);
5033   return result;
5034 }
5035 
5036 // This code originates from JDK's sysOpen and open64_w
5037 // from src/solaris/hpi/src/system_md.c
5038 
5039 int os::open(const char *path, int oflag, int mode) {
5040   if (strlen(path) > MAX_PATH - 1) {
5041     errno = ENAMETOOLONG;
5042     return -1;
5043   }
5044 
5045   // All file descriptors that are opened in the Java process and not
5046   // specifically destined for a subprocess should have the close-on-exec
5047   // flag set.  If we don't set it, then careless 3rd party native code
5048   // might fork and exec without closing all appropriate file descriptors
5049   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5050   // turn might:
5051   //
5052   // - cause end-of-file to fail to be detected on some file
5053   //   descriptors, resulting in mysterious hangs, or
5054   //
5055   // - might cause an fopen in the subprocess to fail on a system
5056   //   suffering from bug 1085341.
5057   //
5058   // (Yes, the default setting of the close-on-exec flag is a Unix
5059   // design flaw)
5060   //
5061   // See:
5062   // 1085341: 32-bit stdio routines should support file descriptors >255
5063   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5064   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5065   //
5066   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5067   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5068   // because it saves a system call and removes a small window where the flag
5069   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5070   // and we fall back to using FD_CLOEXEC (see below).
5071 #ifdef O_CLOEXEC
5072   oflag |= O_CLOEXEC;
5073 #endif
5074 
5075   int fd = ::open64(path, oflag, mode);
5076   if (fd == -1) return -1;
5077 
5078   //If the open succeeded, the file might still be a directory
5079   {
5080     struct stat64 buf64;
5081     int ret = ::fstat64(fd, &buf64);
5082     int st_mode = buf64.st_mode;
5083 
5084     if (ret != -1) {
5085       if ((st_mode & S_IFMT) == S_IFDIR) {
5086         errno = EISDIR;
5087         ::close(fd);
5088         return -1;
5089       }
5090     } else {
5091       ::close(fd);
5092       return -1;
5093     }
5094   }
5095 
5096 #ifdef FD_CLOEXEC
5097   // Validate that the use of the O_CLOEXEC flag on open above worked.
5098   // With recent kernels, we will perform this check exactly once.
5099   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5100   if (!O_CLOEXEC_is_known_to_work) {
5101     int flags = ::fcntl(fd, F_GETFD);
5102     if (flags != -1) {
5103       if ((flags & FD_CLOEXEC) != 0)
5104         O_CLOEXEC_is_known_to_work = 1;
5105       else
5106         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5107     }
5108   }
5109 #endif
5110 
5111   return fd;
5112 }
5113 
5114 
5115 // create binary file, rewriting existing file if required
5116 int os::create_binary_file(const char* path, bool rewrite_existing) {
5117   int oflags = O_WRONLY | O_CREAT;
5118   if (!rewrite_existing) {
5119     oflags |= O_EXCL;
5120   }
5121   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5122 }
5123 
5124 // return current position of file pointer
5125 jlong os::current_file_offset(int fd) {
5126   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5127 }
5128 
5129 // move file pointer to the specified offset
5130 jlong os::seek_to_file_offset(int fd, jlong offset) {
5131   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5132 }
5133 
5134 // This code originates from JDK's sysAvailable
5135 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5136 
5137 int os::available(int fd, jlong *bytes) {
5138   jlong cur, end;
5139   int mode;
5140   struct stat64 buf64;
5141 
5142   if (::fstat64(fd, &buf64) >= 0) {
5143     mode = buf64.st_mode;
5144     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5145       // XXX: is the following call interruptible? If so, this might
5146       // need to go through the INTERRUPT_IO() wrapper as for other
5147       // blocking, interruptible calls in this file.
5148       int n;
5149       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5150         *bytes = n;
5151         return 1;
5152       }
5153     }
5154   }
5155   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5156     return 0;
5157   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5158     return 0;
5159   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5160     return 0;
5161   }
5162   *bytes = end - cur;
5163   return 1;
5164 }
5165 
5166 // Map a block of memory.
5167 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5168                         char *addr, size_t bytes, bool read_only,
5169                         bool allow_exec) {
5170   int prot;
5171   int flags = MAP_PRIVATE;
5172 
5173   if (read_only) {
5174     prot = PROT_READ;
5175   } else {
5176     prot = PROT_READ | PROT_WRITE;
5177   }
5178 
5179   if (allow_exec) {
5180     prot |= PROT_EXEC;
5181   }
5182 
5183   if (addr != NULL) {
5184     flags |= MAP_FIXED;
5185   }
5186 
5187   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5188                                      fd, file_offset);
5189   if (mapped_address == MAP_FAILED) {
5190     return NULL;
5191   }
5192   return mapped_address;
5193 }
5194 
5195 
5196 // Remap a block of memory.
5197 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5198                           char *addr, size_t bytes, bool read_only,
5199                           bool allow_exec) {
5200   // same as map_memory() on this OS
5201   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5202                         allow_exec);
5203 }
5204 
5205 
5206 // Unmap a block of memory.
5207 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5208   return munmap(addr, bytes) == 0;
5209 }
5210 
5211 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5212 
5213 static clockid_t thread_cpu_clockid(Thread* thread) {
5214   pthread_t tid = thread->osthread()->pthread_id();
5215   clockid_t clockid;
5216 
5217   // Get thread clockid
5218   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5219   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5220   return clockid;
5221 }
5222 
5223 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5224 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5225 // of a thread.
5226 //
5227 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5228 // the fast estimate available on the platform.
5229 
5230 jlong os::current_thread_cpu_time() {
5231   if (os::Linux::supports_fast_thread_cpu_time()) {
5232     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5233   } else {
5234     // return user + sys since the cost is the same
5235     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5236   }
5237 }
5238 
5239 jlong os::thread_cpu_time(Thread* thread) {
5240   // consistent with what current_thread_cpu_time() returns
5241   if (os::Linux::supports_fast_thread_cpu_time()) {
5242     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5243   } else {
5244     return slow_thread_cpu_time(thread, true /* user + sys */);
5245   }
5246 }
5247 
5248 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5249   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5250     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5251   } else {
5252     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5253   }
5254 }
5255 
5256 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5257   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5258     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5259   } else {
5260     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5261   }
5262 }
5263 
5264 //  -1 on error.
5265 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5266   pid_t  tid = thread->osthread()->thread_id();
5267   char *s;
5268   char stat[2048];
5269   int statlen;
5270   char proc_name[64];
5271   int count;
5272   long sys_time, user_time;
5273   char cdummy;
5274   int idummy;
5275   long ldummy;
5276   FILE *fp;
5277 
5278   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5279   fp = fopen(proc_name, "r");
5280   if (fp == NULL) return -1;
5281   statlen = fread(stat, 1, 2047, fp);
5282   stat[statlen] = '\0';
5283   fclose(fp);
5284 
5285   // Skip pid and the command string. Note that we could be dealing with
5286   // weird command names, e.g. user could decide to rename java launcher
5287   // to "java 1.4.2 :)", then the stat file would look like
5288   //                1234 (java 1.4.2 :)) R ... ...
5289   // We don't really need to know the command string, just find the last
5290   // occurrence of ")" and then start parsing from there. See bug 4726580.
5291   s = strrchr(stat, ')');
5292   if (s == NULL) return -1;
5293 
5294   // Skip blank chars
5295   do { s++; } while (s && isspace(*s));
5296 
5297   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5298                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5299                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5300                  &user_time, &sys_time);
5301   if (count != 13) return -1;
5302   if (user_sys_cpu_time) {
5303     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5304   } else {
5305     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5306   }
5307 }
5308 
5309 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5310   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5311   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5312   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5313   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5314 }
5315 
5316 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5317   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5318   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5319   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5320   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5321 }
5322 
5323 bool os::is_thread_cpu_time_supported() {
5324   return true;
5325 }
5326 
5327 // System loadavg support.  Returns -1 if load average cannot be obtained.
5328 // Linux doesn't yet have a (official) notion of processor sets,
5329 // so just return the system wide load average.
5330 int os::loadavg(double loadavg[], int nelem) {
5331   return ::getloadavg(loadavg, nelem);
5332 }
5333 
5334 void os::pause() {
5335   char filename[MAX_PATH];
5336   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5337     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5338   } else {
5339     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5340   }
5341 
5342   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5343   if (fd != -1) {
5344     struct stat buf;
5345     ::close(fd);
5346     while (::stat(filename, &buf) == 0) {
5347       (void)::poll(NULL, 0, 100);
5348     }
5349   } else {
5350     jio_fprintf(stderr,
5351                 "Could not open pause file '%s', continuing immediately.\n", filename);
5352   }
5353 }
5354 
5355 
5356 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5357 // comment paragraphs are worth repeating here:
5358 //
5359 // Assumption:
5360 //    Only one parker can exist on an event, which is why we allocate
5361 //    them per-thread. Multiple unparkers can coexist.
5362 //
5363 // _Event serves as a restricted-range semaphore.
5364 //   -1 : thread is blocked, i.e. there is a waiter
5365 //    0 : neutral: thread is running or ready,
5366 //        could have been signaled after a wait started
5367 //    1 : signaled - thread is running or ready
5368 //
5369 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5370 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5371 // For specifics regarding the bug see GLIBC BUGID 261237 :
5372 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5373 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5374 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5375 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5376 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5377 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5378 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5379 // of libpthread avoids the problem, but isn't practical.
5380 //
5381 // Possible remedies:
5382 //
5383 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5384 //      This is palliative and probabilistic, however.  If the thread is preempted
5385 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5386 //      than the minimum period may have passed, and the abstime may be stale (in the
5387 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5388 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5389 //
5390 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5391 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5392 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5393 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5394 //      thread.
5395 //
5396 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5397 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5398 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5399 //      This also works well.  In fact it avoids kernel-level scalability impediments
5400 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5401 //      timers in a graceful fashion.
5402 //
5403 // 4.   When the abstime value is in the past it appears that control returns
5404 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5405 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5406 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5407 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5408 //      It may be possible to avoid reinitialization by checking the return
5409 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5410 //      condvar we must establish the invariant that cond_signal() is only called
5411 //      within critical sections protected by the adjunct mutex.  This prevents
5412 //      cond_signal() from "seeing" a condvar that's in the midst of being
5413 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5414 //      desirable signal-after-unlock optimization that avoids futile context switching.
5415 //
5416 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5417 //      structure when a condvar is used or initialized.  cond_destroy()  would
5418 //      release the helper structure.  Our reinitialize-after-timedwait fix
5419 //      put excessive stress on malloc/free and locks protecting the c-heap.
5420 //
5421 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5422 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5423 // and only enabling the work-around for vulnerable environments.
5424 
5425 // utility to compute the abstime argument to timedwait:
5426 // millis is the relative timeout time
5427 // abstime will be the absolute timeout time
5428 // TODO: replace compute_abstime() with unpackTime()
5429 
5430 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5431   if (millis < 0)  millis = 0;
5432 
5433   jlong seconds = millis / 1000;
5434   millis %= 1000;
5435   if (seconds > 50000000) { // see man cond_timedwait(3T)
5436     seconds = 50000000;
5437   }
5438 
5439   if (os::supports_monotonic_clock()) {
5440     struct timespec now;
5441     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5442     assert_status(status == 0, status, "clock_gettime");
5443     abstime->tv_sec = now.tv_sec  + seconds;
5444     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5445     if (nanos >= NANOSECS_PER_SEC) {
5446       abstime->tv_sec += 1;
5447       nanos -= NANOSECS_PER_SEC;
5448     }
5449     abstime->tv_nsec = nanos;
5450   } else {
5451     struct timeval now;
5452     int status = gettimeofday(&now, NULL);
5453     assert(status == 0, "gettimeofday");
5454     abstime->tv_sec = now.tv_sec  + seconds;
5455     long usec = now.tv_usec + millis * 1000;
5456     if (usec >= 1000000) {
5457       abstime->tv_sec += 1;
5458       usec -= 1000000;
5459     }
5460     abstime->tv_nsec = usec * 1000;
5461   }
5462   return abstime;
5463 }
5464 
5465 void os::PlatformEvent::park() {       // AKA "down()"
5466   // Transitions for _Event:
5467   //   -1 => -1 : illegal
5468   //    1 =>  0 : pass - return immediately
5469   //    0 => -1 : block; then set _Event to 0 before returning
5470 
5471   // Invariant: Only the thread associated with the Event/PlatformEvent
5472   // may call park().
5473   // TODO: assert that _Assoc != NULL or _Assoc == Self
5474   assert(_nParked == 0, "invariant");
5475 
5476   int v;
5477   for (;;) {
5478     v = _Event;
5479     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5480   }
5481   guarantee(v >= 0, "invariant");
5482   if (v == 0) {
5483     // Do this the hard way by blocking ...
5484     int status = pthread_mutex_lock(_mutex);
5485     assert_status(status == 0, status, "mutex_lock");
5486     guarantee(_nParked == 0, "invariant");
5487     ++_nParked;
5488     while (_Event < 0) {
5489       status = pthread_cond_wait(_cond, _mutex);
5490       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5491       // Treat this the same as if the wait was interrupted
5492       if (status == ETIME) { status = EINTR; }
5493       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5494     }
5495     --_nParked;
5496 
5497     _Event = 0;
5498     status = pthread_mutex_unlock(_mutex);
5499     assert_status(status == 0, status, "mutex_unlock");
5500     // Paranoia to ensure our locked and lock-free paths interact
5501     // correctly with each other.
5502     OrderAccess::fence();
5503   }
5504   guarantee(_Event >= 0, "invariant");
5505 }
5506 
5507 int os::PlatformEvent::park(jlong millis) {
5508   // Transitions for _Event:
5509   //   -1 => -1 : illegal
5510   //    1 =>  0 : pass - return immediately
5511   //    0 => -1 : block; then set _Event to 0 before returning
5512 
5513   guarantee(_nParked == 0, "invariant");
5514 
5515   int v;
5516   for (;;) {
5517     v = _Event;
5518     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5519   }
5520   guarantee(v >= 0, "invariant");
5521   if (v != 0) return OS_OK;
5522 
5523   // We do this the hard way, by blocking the thread.
5524   // Consider enforcing a minimum timeout value.
5525   struct timespec abst;
5526   compute_abstime(&abst, millis);
5527 
5528   int ret = OS_TIMEOUT;
5529   int status = pthread_mutex_lock(_mutex);
5530   assert_status(status == 0, status, "mutex_lock");
5531   guarantee(_nParked == 0, "invariant");
5532   ++_nParked;
5533 
5534   // Object.wait(timo) will return because of
5535   // (a) notification
5536   // (b) timeout
5537   // (c) thread.interrupt
5538   //
5539   // Thread.interrupt and object.notify{All} both call Event::set.
5540   // That is, we treat thread.interrupt as a special case of notification.
5541   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5542   // We assume all ETIME returns are valid.
5543   //
5544   // TODO: properly differentiate simultaneous notify+interrupt.
5545   // In that case, we should propagate the notify to another waiter.
5546 
5547   while (_Event < 0) {
5548     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5549     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5550       pthread_cond_destroy(_cond);
5551       pthread_cond_init(_cond, os::Linux::condAttr());
5552     }
5553     assert_status(status == 0 || status == EINTR ||
5554                   status == ETIME || status == ETIMEDOUT,
5555                   status, "cond_timedwait");
5556     if (!FilterSpuriousWakeups) break;                 // previous semantics
5557     if (status == ETIME || status == ETIMEDOUT) break;
5558     // We consume and ignore EINTR and spurious wakeups.
5559   }
5560   --_nParked;
5561   if (_Event >= 0) {
5562     ret = OS_OK;
5563   }
5564   _Event = 0;
5565   status = pthread_mutex_unlock(_mutex);
5566   assert_status(status == 0, status, "mutex_unlock");
5567   assert(_nParked == 0, "invariant");
5568   // Paranoia to ensure our locked and lock-free paths interact
5569   // correctly with each other.
5570   OrderAccess::fence();
5571   return ret;
5572 }
5573 
5574 void os::PlatformEvent::unpark() {
5575   // Transitions for _Event:
5576   //    0 => 1 : just return
5577   //    1 => 1 : just return
5578   //   -1 => either 0 or 1; must signal target thread
5579   //         That is, we can safely transition _Event from -1 to either
5580   //         0 or 1.
5581   // See also: "Semaphores in Plan 9" by Mullender & Cox
5582   //
5583   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5584   // that it will take two back-to-back park() calls for the owning
5585   // thread to block. This has the benefit of forcing a spurious return
5586   // from the first park() call after an unpark() call which will help
5587   // shake out uses of park() and unpark() without condition variables.
5588 
5589   if (Atomic::xchg(1, &_Event) >= 0) return;
5590 
5591   // Wait for the thread associated with the event to vacate
5592   int status = pthread_mutex_lock(_mutex);
5593   assert_status(status == 0, status, "mutex_lock");
5594   int AnyWaiters = _nParked;
5595   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5596   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5597     AnyWaiters = 0;
5598     pthread_cond_signal(_cond);
5599   }
5600   status = pthread_mutex_unlock(_mutex);
5601   assert_status(status == 0, status, "mutex_unlock");
5602   if (AnyWaiters != 0) {
5603     // Note that we signal() *after* dropping the lock for "immortal" Events.
5604     // This is safe and avoids a common class of  futile wakeups.  In rare
5605     // circumstances this can cause a thread to return prematurely from
5606     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5607     // will simply re-test the condition and re-park itself.
5608     // This provides particular benefit if the underlying platform does not
5609     // provide wait morphing.
5610     status = pthread_cond_signal(_cond);
5611     assert_status(status == 0, status, "cond_signal");
5612   }
5613 }
5614 
5615 
5616 // JSR166
5617 // -------------------------------------------------------
5618 
5619 // The solaris and linux implementations of park/unpark are fairly
5620 // conservative for now, but can be improved. They currently use a
5621 // mutex/condvar pair, plus a a count.
5622 // Park decrements count if > 0, else does a condvar wait.  Unpark
5623 // sets count to 1 and signals condvar.  Only one thread ever waits
5624 // on the condvar. Contention seen when trying to park implies that someone
5625 // is unparking you, so don't wait. And spurious returns are fine, so there
5626 // is no need to track notifications.
5627 
5628 // This code is common to linux and solaris and will be moved to a
5629 // common place in dolphin.
5630 //
5631 // The passed in time value is either a relative time in nanoseconds
5632 // or an absolute time in milliseconds. Either way it has to be unpacked
5633 // into suitable seconds and nanoseconds components and stored in the
5634 // given timespec structure.
5635 // Given time is a 64-bit value and the time_t used in the timespec is only
5636 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5637 // overflow if times way in the future are given. Further on Solaris versions
5638 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5639 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5640 // As it will be 28 years before "now + 100000000" will overflow we can
5641 // ignore overflow and just impose a hard-limit on seconds using the value
5642 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5643 // years from "now".
5644 
5645 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5646   assert(time > 0, "convertTime");
5647   time_t max_secs = 0;
5648 
5649   if (!os::supports_monotonic_clock() || isAbsolute) {
5650     struct timeval now;
5651     int status = gettimeofday(&now, NULL);
5652     assert(status == 0, "gettimeofday");
5653 
5654     max_secs = now.tv_sec + MAX_SECS;
5655 
5656     if (isAbsolute) {
5657       jlong secs = time / 1000;
5658       if (secs > max_secs) {
5659         absTime->tv_sec = max_secs;
5660       } else {
5661         absTime->tv_sec = secs;
5662       }
5663       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5664     } else {
5665       jlong secs = time / NANOSECS_PER_SEC;
5666       if (secs >= MAX_SECS) {
5667         absTime->tv_sec = max_secs;
5668         absTime->tv_nsec = 0;
5669       } else {
5670         absTime->tv_sec = now.tv_sec + secs;
5671         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5672         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5673           absTime->tv_nsec -= NANOSECS_PER_SEC;
5674           ++absTime->tv_sec; // note: this must be <= max_secs
5675         }
5676       }
5677     }
5678   } else {
5679     // must be relative using monotonic clock
5680     struct timespec now;
5681     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5682     assert_status(status == 0, status, "clock_gettime");
5683     max_secs = now.tv_sec + MAX_SECS;
5684     jlong secs = time / NANOSECS_PER_SEC;
5685     if (secs >= MAX_SECS) {
5686       absTime->tv_sec = max_secs;
5687       absTime->tv_nsec = 0;
5688     } else {
5689       absTime->tv_sec = now.tv_sec + secs;
5690       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5691       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5692         absTime->tv_nsec -= NANOSECS_PER_SEC;
5693         ++absTime->tv_sec; // note: this must be <= max_secs
5694       }
5695     }
5696   }
5697   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5698   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5699   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5700   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5701 }
5702 
5703 void Parker::park(bool isAbsolute, jlong time) {
5704   // Ideally we'd do something useful while spinning, such
5705   // as calling unpackTime().
5706 
5707   // Optional fast-path check:
5708   // Return immediately if a permit is available.
5709   // We depend on Atomic::xchg() having full barrier semantics
5710   // since we are doing a lock-free update to _counter.
5711   if (Atomic::xchg(0, &_counter) > 0) return;
5712 
5713   Thread* thread = Thread::current();
5714   assert(thread->is_Java_thread(), "Must be JavaThread");
5715   JavaThread *jt = (JavaThread *)thread;
5716 
5717   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5718   // Check interrupt before trying to wait
5719   if (Thread::is_interrupted(thread, false)) {
5720     return;
5721   }
5722 
5723   // Next, demultiplex/decode time arguments
5724   timespec absTime;
5725   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5726     return;
5727   }
5728   if (time > 0) {
5729     unpackTime(&absTime, isAbsolute, time);
5730   }
5731 
5732 
5733   // Enter safepoint region
5734   // Beware of deadlocks such as 6317397.
5735   // The per-thread Parker:: mutex is a classic leaf-lock.
5736   // In particular a thread must never block on the Threads_lock while
5737   // holding the Parker:: mutex.  If safepoints are pending both the
5738   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5739   ThreadBlockInVM tbivm(jt);
5740 
5741   // Don't wait if cannot get lock since interference arises from
5742   // unblocking.  Also. check interrupt before trying wait
5743   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5744     return;
5745   }
5746 
5747   int status;
5748   if (_counter > 0)  { // no wait needed
5749     _counter = 0;
5750     status = pthread_mutex_unlock(_mutex);
5751     assert(status == 0, "invariant");
5752     // Paranoia to ensure our locked and lock-free paths interact
5753     // correctly with each other and Java-level accesses.
5754     OrderAccess::fence();
5755     return;
5756   }
5757 
5758 #ifdef ASSERT
5759   // Don't catch signals while blocked; let the running threads have the signals.
5760   // (This allows a debugger to break into the running thread.)
5761   sigset_t oldsigs;
5762   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5763   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5764 #endif
5765 
5766   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5767   jt->set_suspend_equivalent();
5768   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5769 
5770   assert(_cur_index == -1, "invariant");
5771   if (time == 0) {
5772     _cur_index = REL_INDEX; // arbitrary choice when not timed
5773     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5774   } else {
5775     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5776     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5777     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5778       pthread_cond_destroy(&_cond[_cur_index]);
5779       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5780     }
5781   }
5782   _cur_index = -1;
5783   assert_status(status == 0 || status == EINTR ||
5784                 status == ETIME || status == ETIMEDOUT,
5785                 status, "cond_timedwait");
5786 
5787 #ifdef ASSERT
5788   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5789 #endif
5790 
5791   _counter = 0;
5792   status = pthread_mutex_unlock(_mutex);
5793   assert_status(status == 0, status, "invariant");
5794   // Paranoia to ensure our locked and lock-free paths interact
5795   // correctly with each other and Java-level accesses.
5796   OrderAccess::fence();
5797 
5798   // If externally suspended while waiting, re-suspend
5799   if (jt->handle_special_suspend_equivalent_condition()) {
5800     jt->java_suspend_self();
5801   }
5802 }
5803 
5804 void Parker::unpark() {
5805   int status = pthread_mutex_lock(_mutex);
5806   assert(status == 0, "invariant");
5807   const int s = _counter;
5808   _counter = 1;
5809   if (s < 1) {
5810     // thread might be parked
5811     if (_cur_index != -1) {
5812       // thread is definitely parked
5813       if (WorkAroundNPTLTimedWaitHang) {
5814         status = pthread_cond_signal(&_cond[_cur_index]);
5815         assert(status == 0, "invariant");
5816         status = pthread_mutex_unlock(_mutex);
5817         assert(status == 0, "invariant");
5818       } else {
5819         status = pthread_mutex_unlock(_mutex);
5820         assert(status == 0, "invariant");
5821         status = pthread_cond_signal(&_cond[_cur_index]);
5822         assert(status == 0, "invariant");
5823       }
5824     } else {
5825       pthread_mutex_unlock(_mutex);
5826       assert(status == 0, "invariant");
5827     }
5828   } else {
5829     pthread_mutex_unlock(_mutex);
5830     assert(status == 0, "invariant");
5831   }
5832 }
5833 
5834 
5835 extern char** environ;
5836 
5837 // Run the specified command in a separate process. Return its exit value,
5838 // or -1 on failure (e.g. can't fork a new process).
5839 // Unlike system(), this function can be called from signal handler. It
5840 // doesn't block SIGINT et al.
5841 int os::fork_and_exec(char* cmd) {
5842   const char * argv[4] = {"sh", "-c", cmd, NULL};
5843 
5844   pid_t pid = fork();
5845 
5846   if (pid < 0) {
5847     // fork failed
5848     return -1;
5849 
5850   } else if (pid == 0) {
5851     // child process
5852 
5853     execve("/bin/sh", (char* const*)argv, environ);
5854 
5855     // execve failed
5856     _exit(-1);
5857 
5858   } else  {
5859     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5860     // care about the actual exit code, for now.
5861 
5862     int status;
5863 
5864     // Wait for the child process to exit.  This returns immediately if
5865     // the child has already exited. */
5866     while (waitpid(pid, &status, 0) < 0) {
5867       switch (errno) {
5868       case ECHILD: return 0;
5869       case EINTR: break;
5870       default: return -1;
5871       }
5872     }
5873 
5874     if (WIFEXITED(status)) {
5875       // The child exited normally; get its exit code.
5876       return WEXITSTATUS(status);
5877     } else if (WIFSIGNALED(status)) {
5878       // The child exited because of a signal
5879       // The best value to return is 0x80 + signal number,
5880       // because that is what all Unix shells do, and because
5881       // it allows callers to distinguish between process exit and
5882       // process death by signal.
5883       return 0x80 + WTERMSIG(status);
5884     } else {
5885       // Unknown exit code; pass it through
5886       return status;
5887     }
5888   }
5889 }
5890 
5891 // is_headless_jre()
5892 //
5893 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5894 // in order to report if we are running in a headless jre
5895 //
5896 // Since JDK8 xawt/libmawt.so was moved into the same directory
5897 // as libawt.so, and renamed libawt_xawt.so
5898 //
5899 bool os::is_headless_jre() {
5900   struct stat statbuf;
5901   char buf[MAXPATHLEN];
5902   char libmawtpath[MAXPATHLEN];
5903   const char *xawtstr  = "/xawt/libmawt.so";
5904   const char *new_xawtstr = "/libawt_xawt.so";
5905   char *p;
5906 
5907   // Get path to libjvm.so
5908   os::jvm_path(buf, sizeof(buf));
5909 
5910   // Get rid of libjvm.so
5911   p = strrchr(buf, '/');
5912   if (p == NULL) {
5913     return false;
5914   } else {
5915     *p = '\0';
5916   }
5917 
5918   // Get rid of client or server
5919   p = strrchr(buf, '/');
5920   if (p == NULL) {
5921     return false;
5922   } else {
5923     *p = '\0';
5924   }
5925 
5926   // check xawt/libmawt.so
5927   strcpy(libmawtpath, buf);
5928   strcat(libmawtpath, xawtstr);
5929   if (::stat(libmawtpath, &statbuf) == 0) return false;
5930 
5931   // check libawt_xawt.so
5932   strcpy(libmawtpath, buf);
5933   strcat(libmawtpath, new_xawtstr);
5934   if (::stat(libmawtpath, &statbuf) == 0) return false;
5935 
5936   return true;
5937 }
5938 
5939 // Get the default path to the core file
5940 // Returns the length of the string
5941 int os::get_core_path(char* buffer, size_t bufferSize) {
5942   /*
5943    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5944    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5945    */
5946   const int core_pattern_len = 129;
5947   char core_pattern[core_pattern_len] = {0};
5948 
5949   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5950   if (core_pattern_file != -1) {
5951     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5952     ::close(core_pattern_file);
5953 
5954     if (ret > 0) {
5955       char *last_char = core_pattern + strlen(core_pattern) - 1;
5956 
5957       if (*last_char == '\n') {
5958         *last_char = '\0';
5959       }
5960     }
5961   }
5962 
5963   if (strlen(core_pattern) == 0) {
5964     return -1;
5965   }
5966 
5967   char *pid_pos = strstr(core_pattern, "%p");
5968   int written;
5969 
5970   if (core_pattern[0] == '/') {
5971     written = jio_snprintf(buffer, bufferSize, core_pattern);
5972   } else {
5973     char cwd[PATH_MAX];
5974 
5975     const char* p = get_current_directory(cwd, PATH_MAX);
5976     if (p == NULL) {
5977       return -1;
5978     }
5979 
5980     if (core_pattern[0] == '|') {
5981       written = jio_snprintf(buffer, bufferSize,
5982                         "\"%s\" (or dumping to %s/core.%d)",
5983                                      &core_pattern[1], p, current_process_id());
5984     } else {
5985       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5986     }
5987   }
5988 
5989   if (written < 0) {
5990     return -1;
5991   }
5992 
5993   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5994     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5995 
5996     if (core_uses_pid_file != -1) {
5997       char core_uses_pid = 0;
5998       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5999       ::close(core_uses_pid_file);
6000 
6001       if (core_uses_pid == '1') {
6002         jio_snprintf(buffer + written, bufferSize - written,
6003                                           ".%d", current_process_id());
6004       }
6005     }
6006   }
6007 
6008   return strlen(buffer);
6009 }
6010 
6011 /////////////// Unit tests ///////////////
6012 
6013 #ifndef PRODUCT
6014 
6015 #define test_log(...)              \
6016   do {                             \
6017     if (VerboseInternalVMTests) {  \
6018       tty->print_cr(__VA_ARGS__);  \
6019       tty->flush();                \
6020     }                              \
6021   } while (false)
6022 
6023 class TestReserveMemorySpecial : AllStatic {
6024  public:
6025   static void small_page_write(void* addr, size_t size) {
6026     size_t page_size = os::vm_page_size();
6027 
6028     char* end = (char*)addr + size;
6029     for (char* p = (char*)addr; p < end; p += page_size) {
6030       *p = 1;
6031     }
6032   }
6033 
6034   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6035     if (!UseHugeTLBFS) {
6036       return;
6037     }
6038 
6039     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6040 
6041     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6042 
6043     if (addr != NULL) {
6044       small_page_write(addr, size);
6045 
6046       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6047     }
6048   }
6049 
6050   static void test_reserve_memory_special_huge_tlbfs_only() {
6051     if (!UseHugeTLBFS) {
6052       return;
6053     }
6054 
6055     size_t lp = os::large_page_size();
6056 
6057     for (size_t size = lp; size <= lp * 10; size += lp) {
6058       test_reserve_memory_special_huge_tlbfs_only(size);
6059     }
6060   }
6061 
6062   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6063     size_t lp = os::large_page_size();
6064     size_t ag = os::vm_allocation_granularity();
6065 
6066     // sizes to test
6067     const size_t sizes[] = {
6068       lp, lp + ag, lp + lp / 2, lp * 2,
6069       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6070       lp * 10, lp * 10 + lp / 2
6071     };
6072     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6073 
6074     // For each size/alignment combination, we test three scenarios:
6075     // 1) with req_addr == NULL
6076     // 2) with a non-null req_addr at which we expect to successfully allocate
6077     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6078     //    expect the allocation to either fail or to ignore req_addr
6079 
6080     // Pre-allocate two areas; they shall be as large as the largest allocation
6081     //  and aligned to the largest alignment we will be testing.
6082     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6083     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6084       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6085       -1, 0);
6086     assert(mapping1 != MAP_FAILED, "should work");
6087 
6088     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6089       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6090       -1, 0);
6091     assert(mapping2 != MAP_FAILED, "should work");
6092 
6093     // Unmap the first mapping, but leave the second mapping intact: the first
6094     // mapping will serve as a value for a "good" req_addr (case 2). The second
6095     // mapping, still intact, as "bad" req_addr (case 3).
6096     ::munmap(mapping1, mapping_size);
6097 
6098     // Case 1
6099     test_log("%s, req_addr NULL:", __FUNCTION__);
6100     test_log("size            align           result");
6101 
6102     for (int i = 0; i < num_sizes; i++) {
6103       const size_t size = sizes[i];
6104       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6105         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6106         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6107             size, alignment, p, (p != NULL ? "" : "(failed)"));
6108         if (p != NULL) {
6109           assert(is_ptr_aligned(p, alignment), "must be");
6110           small_page_write(p, size);
6111           os::Linux::release_memory_special_huge_tlbfs(p, size);
6112         }
6113       }
6114     }
6115 
6116     // Case 2
6117     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6118     test_log("size            align           req_addr         result");
6119 
6120     for (int i = 0; i < num_sizes; i++) {
6121       const size_t size = sizes[i];
6122       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6123         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6124         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6125         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6126             size, alignment, req_addr, p,
6127             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6128         if (p != NULL) {
6129           assert(p == req_addr, "must be");
6130           small_page_write(p, size);
6131           os::Linux::release_memory_special_huge_tlbfs(p, size);
6132         }
6133       }
6134     }
6135 
6136     // Case 3
6137     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6138     test_log("size            align           req_addr         result");
6139 
6140     for (int i = 0; i < num_sizes; i++) {
6141       const size_t size = sizes[i];
6142       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6143         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6144         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6145         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6146             size, alignment, req_addr, p,
6147             ((p != NULL ? "" : "(failed)")));
6148         // as the area around req_addr contains already existing mappings, the API should always
6149         // return NULL (as per contract, it cannot return another address)
6150         assert(p == NULL, "must be");
6151       }
6152     }
6153 
6154     ::munmap(mapping2, mapping_size);
6155 
6156   }
6157 
6158   static void test_reserve_memory_special_huge_tlbfs() {
6159     if (!UseHugeTLBFS) {
6160       return;
6161     }
6162 
6163     test_reserve_memory_special_huge_tlbfs_only();
6164     test_reserve_memory_special_huge_tlbfs_mixed();
6165   }
6166 
6167   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6168     if (!UseSHM) {
6169       return;
6170     }
6171 
6172     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6173 
6174     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6175 
6176     if (addr != NULL) {
6177       assert(is_ptr_aligned(addr, alignment), "Check");
6178       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6179 
6180       small_page_write(addr, size);
6181 
6182       os::Linux::release_memory_special_shm(addr, size);
6183     }
6184   }
6185 
6186   static void test_reserve_memory_special_shm() {
6187     size_t lp = os::large_page_size();
6188     size_t ag = os::vm_allocation_granularity();
6189 
6190     for (size_t size = ag; size < lp * 3; size += ag) {
6191       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6192         test_reserve_memory_special_shm(size, alignment);
6193       }
6194     }
6195   }
6196 
6197   static void test() {
6198     test_reserve_memory_special_huge_tlbfs();
6199     test_reserve_memory_special_shm();
6200   }
6201 };
6202 
6203 void TestReserveMemorySpecial_test() {
6204   TestReserveMemorySpecial::test();
6205 }
6206 
6207 #endif