1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Declarations
 162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 // Return true if user is running as root.
 185 
 186 bool os::have_special_privileges() {
 187   static bool init = false;
 188   static bool privileges = false;
 189   if (!init) {
 190     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 191     init = true;
 192   }
 193   return privileges;
 194 }
 195 
 196 
 197 #ifndef SYS_gettid
 198 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 199   #ifdef __ia64__
 200     #define SYS_gettid 1105
 201   #else
 202     #ifdef __i386__
 203       #define SYS_gettid 224
 204     #else
 205       #ifdef __amd64__
 206         #define SYS_gettid 186
 207       #else
 208         #ifdef __sparc__
 209           #define SYS_gettid 143
 210         #else
 211           #error define gettid for the arch
 212         #endif
 213       #endif
 214     #endif
 215   #endif
 216 #endif
 217 
 218 // Cpu architecture string
 219 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 220 
 221 
 222 // pid_t gettid()
 223 //
 224 // Returns the kernel thread id of the currently running thread. Kernel
 225 // thread id is used to access /proc.
 226 //
 227 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 228 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 229 //
 230 pid_t os::Linux::gettid() {
 231   int rslt = syscall(SYS_gettid);
 232   if (rslt == -1) {
 233     // old kernel, no NPTL support
 234     return getpid();
 235   } else {
 236     return (pid_t)rslt;
 237   }
 238 }
 239 
 240 // Most versions of linux have a bug where the number of processors are
 241 // determined by looking at the /proc file system.  In a chroot environment,
 242 // the system call returns 1.  This causes the VM to act as if it is
 243 // a single processor and elide locking (see is_MP() call).
 244 static bool unsafe_chroot_detected = false;
 245 static const char *unstable_chroot_error = "/proc file system not found.\n"
 246                      "Java may be unstable running multithreaded in a chroot "
 247                      "environment on Linux when /proc filesystem is not mounted.";
 248 
 249 void os::Linux::initialize_system_info() {
 250   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 251   if (processor_count() == 1) {
 252     pid_t pid = os::Linux::gettid();
 253     char fname[32];
 254     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 255     FILE *fp = fopen(fname, "r");
 256     if (fp == NULL) {
 257       unsafe_chroot_detected = true;
 258     } else {
 259       fclose(fp);
 260     }
 261   }
 262   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 263   assert(processor_count() > 0, "linux error");
 264 }
 265 
 266 void os::init_system_properties_values() {
 267   // The next steps are taken in the product version:
 268   //
 269   // Obtain the JAVA_HOME value from the location of libjvm.so.
 270   // This library should be located at:
 271   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 272   //
 273   // If "/jre/lib/" appears at the right place in the path, then we
 274   // assume libjvm.so is installed in a JDK and we use this path.
 275   //
 276   // Otherwise exit with message: "Could not create the Java virtual machine."
 277   //
 278   // The following extra steps are taken in the debugging version:
 279   //
 280   // If "/jre/lib/" does NOT appear at the right place in the path
 281   // instead of exit check for $JAVA_HOME environment variable.
 282   //
 283   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 284   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 285   // it looks like libjvm.so is installed there
 286   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 287   //
 288   // Otherwise exit.
 289   //
 290   // Important note: if the location of libjvm.so changes this
 291   // code needs to be changed accordingly.
 292 
 293   // See ld(1):
 294   //      The linker uses the following search paths to locate required
 295   //      shared libraries:
 296   //        1: ...
 297   //        ...
 298   //        7: The default directories, normally /lib and /usr/lib.
 299 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 300   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 301 #else
 302   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 303 #endif
 304 
 305 // Base path of extensions installed on the system.
 306 #define SYS_EXT_DIR     "/usr/java/packages"
 307 #define EXTENSIONS_DIR  "/lib/ext"
 308 
 309   // Buffer that fits several sprintfs.
 310   // Note that the space for the colon and the trailing null are provided
 311   // by the nulls included by the sizeof operator.
 312   const size_t bufsize =
 313     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 314          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 315   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 316 
 317   // sysclasspath, java_home, dll_dir
 318   {
 319     char *pslash;
 320     os::jvm_path(buf, bufsize);
 321 
 322     // Found the full path to libjvm.so.
 323     // Now cut the path to <java_home>/jre if we can.
 324     pslash = strrchr(buf, '/');
 325     if (pslash != NULL) {
 326       *pslash = '\0';            // Get rid of /libjvm.so.
 327     }
 328     pslash = strrchr(buf, '/');
 329     if (pslash != NULL) {
 330       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 331     }
 332     Arguments::set_dll_dir(buf);
 333 
 334     if (pslash != NULL) {
 335       pslash = strrchr(buf, '/');
 336       if (pslash != NULL) {
 337         *pslash = '\0';          // Get rid of /<arch>.
 338         pslash = strrchr(buf, '/');
 339         if (pslash != NULL) {
 340           *pslash = '\0';        // Get rid of /lib.
 341         }
 342       }
 343     }
 344     Arguments::set_java_home(buf);
 345     set_boot_path('/', ':');
 346   }
 347 
 348   // Where to look for native libraries.
 349   //
 350   // Note: Due to a legacy implementation, most of the library path
 351   // is set in the launcher. This was to accomodate linking restrictions
 352   // on legacy Linux implementations (which are no longer supported).
 353   // Eventually, all the library path setting will be done here.
 354   //
 355   // However, to prevent the proliferation of improperly built native
 356   // libraries, the new path component /usr/java/packages is added here.
 357   // Eventually, all the library path setting will be done here.
 358   {
 359     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 360     // should always exist (until the legacy problem cited above is
 361     // addressed).
 362     const char *v = ::getenv("LD_LIBRARY_PATH");
 363     const char *v_colon = ":";
 364     if (v == NULL) { v = ""; v_colon = ""; }
 365     // That's +1 for the colon and +1 for the trailing '\0'.
 366     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 367                                                      strlen(v) + 1 +
 368                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 369                                                      mtInternal);
 370     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 371     Arguments::set_library_path(ld_library_path);
 372     FREE_C_HEAP_ARRAY(char, ld_library_path);
 373   }
 374 
 375   // Extensions directories.
 376   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 377   Arguments::set_ext_dirs(buf);
 378 
 379   FREE_C_HEAP_ARRAY(char, buf);
 380 
 381 #undef DEFAULT_LIBPATH
 382 #undef SYS_EXT_DIR
 383 #undef EXTENSIONS_DIR
 384 }
 385 
 386 ////////////////////////////////////////////////////////////////////////////////
 387 // breakpoint support
 388 
 389 void os::breakpoint() {
 390   BREAKPOINT;
 391 }
 392 
 393 extern "C" void breakpoint() {
 394   // use debugger to set breakpoint here
 395 }
 396 
 397 ////////////////////////////////////////////////////////////////////////////////
 398 // signal support
 399 
 400 debug_only(static bool signal_sets_initialized = false);
 401 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 402 
 403 bool os::Linux::is_sig_ignored(int sig) {
 404   struct sigaction oact;
 405   sigaction(sig, (struct sigaction*)NULL, &oact);
 406   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 407                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 408   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 409     return true;
 410   } else {
 411     return false;
 412   }
 413 }
 414 
 415 void os::Linux::signal_sets_init() {
 416   // Should also have an assertion stating we are still single-threaded.
 417   assert(!signal_sets_initialized, "Already initialized");
 418   // Fill in signals that are necessarily unblocked for all threads in
 419   // the VM. Currently, we unblock the following signals:
 420   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 421   //                         by -Xrs (=ReduceSignalUsage));
 422   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 423   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 424   // the dispositions or masks wrt these signals.
 425   // Programs embedding the VM that want to use the above signals for their
 426   // own purposes must, at this time, use the "-Xrs" option to prevent
 427   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 428   // (See bug 4345157, and other related bugs).
 429   // In reality, though, unblocking these signals is really a nop, since
 430   // these signals are not blocked by default.
 431   sigemptyset(&unblocked_sigs);
 432   sigemptyset(&allowdebug_blocked_sigs);
 433   sigaddset(&unblocked_sigs, SIGILL);
 434   sigaddset(&unblocked_sigs, SIGSEGV);
 435   sigaddset(&unblocked_sigs, SIGBUS);
 436   sigaddset(&unblocked_sigs, SIGFPE);
 437 #if defined(PPC64)
 438   sigaddset(&unblocked_sigs, SIGTRAP);
 439 #endif
 440   sigaddset(&unblocked_sigs, SR_signum);
 441 
 442   if (!ReduceSignalUsage) {
 443     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 444       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 445       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 446     }
 447     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 448       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 449       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 450     }
 451     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 452       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 453       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 454     }
 455   }
 456   // Fill in signals that are blocked by all but the VM thread.
 457   sigemptyset(&vm_sigs);
 458   if (!ReduceSignalUsage) {
 459     sigaddset(&vm_sigs, BREAK_SIGNAL);
 460   }
 461   debug_only(signal_sets_initialized = true);
 462 
 463 }
 464 
 465 // These are signals that are unblocked while a thread is running Java.
 466 // (For some reason, they get blocked by default.)
 467 sigset_t* os::Linux::unblocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &unblocked_sigs;
 470 }
 471 
 472 // These are the signals that are blocked while a (non-VM) thread is
 473 // running Java. Only the VM thread handles these signals.
 474 sigset_t* os::Linux::vm_signals() {
 475   assert(signal_sets_initialized, "Not initialized");
 476   return &vm_sigs;
 477 }
 478 
 479 // These are signals that are blocked during cond_wait to allow debugger in
 480 sigset_t* os::Linux::allowdebug_blocked_signals() {
 481   assert(signal_sets_initialized, "Not initialized");
 482   return &allowdebug_blocked_sigs;
 483 }
 484 
 485 void os::Linux::hotspot_sigmask(Thread* thread) {
 486 
 487   //Save caller's signal mask before setting VM signal mask
 488   sigset_t caller_sigmask;
 489   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 490 
 491   OSThread* osthread = thread->osthread();
 492   osthread->set_caller_sigmask(caller_sigmask);
 493 
 494   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 495 
 496   if (!ReduceSignalUsage) {
 497     if (thread->is_VM_thread()) {
 498       // Only the VM thread handles BREAK_SIGNAL ...
 499       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 500     } else {
 501       // ... all other threads block BREAK_SIGNAL
 502       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 503     }
 504   }
 505 }
 506 
 507 //////////////////////////////////////////////////////////////////////////////
 508 // detecting pthread library
 509 
 510 void os::Linux::libpthread_init() {
 511   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 512   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 513   // generic name for earlier versions.
 514   // Define macros here so we can build HotSpot on old systems.
 515 #ifndef _CS_GNU_LIBC_VERSION
 516   #define _CS_GNU_LIBC_VERSION 2
 517 #endif
 518 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 519   #define _CS_GNU_LIBPTHREAD_VERSION 3
 520 #endif
 521 
 522   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 523   if (n > 0) {
 524     char *str = (char *)malloc(n, mtInternal);
 525     confstr(_CS_GNU_LIBC_VERSION, str, n);
 526     os::Linux::set_glibc_version(str);
 527   } else {
 528     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 529     static char _gnu_libc_version[32];
 530     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 531                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 532     os::Linux::set_glibc_version(_gnu_libc_version);
 533   }
 534 
 535   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 536   if (n > 0) {
 537     char *str = (char *)malloc(n, mtInternal);
 538     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 539     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 540     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 541     // is the case. LinuxThreads has a hard limit on max number of threads.
 542     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 543     // On the other hand, NPTL does not have such a limit, sysconf()
 544     // will return -1 and errno is not changed. Check if it is really NPTL.
 545     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 546         strstr(str, "NPTL") &&
 547         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 548       free(str);
 549       os::Linux::set_libpthread_version("linuxthreads");
 550     } else {
 551       os::Linux::set_libpthread_version(str);
 552     }
 553   } else {
 554     // glibc before 2.3.2 only has LinuxThreads.
 555     os::Linux::set_libpthread_version("linuxthreads");
 556   }
 557 
 558   if (strstr(libpthread_version(), "NPTL")) {
 559     os::Linux::set_is_NPTL();
 560   } else {
 561     os::Linux::set_is_LinuxThreads();
 562   }
 563 
 564   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 565   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 566   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 567     os::Linux::set_is_floating_stack();
 568   }
 569 }
 570 
 571 /////////////////////////////////////////////////////////////////////////////
 572 // thread stack
 573 
 574 // Force Linux kernel to expand current thread stack. If "bottom" is close
 575 // to the stack guard, caller should block all signals.
 576 //
 577 // MAP_GROWSDOWN:
 578 //   A special mmap() flag that is used to implement thread stacks. It tells
 579 //   kernel that the memory region should extend downwards when needed. This
 580 //   allows early versions of LinuxThreads to only mmap the first few pages
 581 //   when creating a new thread. Linux kernel will automatically expand thread
 582 //   stack as needed (on page faults).
 583 //
 584 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 585 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 586 //   region, it's hard to tell if the fault is due to a legitimate stack
 587 //   access or because of reading/writing non-exist memory (e.g. buffer
 588 //   overrun). As a rule, if the fault happens below current stack pointer,
 589 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 590 //   application (see Linux kernel fault.c).
 591 //
 592 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 593 //   stack overflow detection.
 594 //
 595 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 596 //   not use this flag. However, the stack of initial thread is not created
 597 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 598 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 599 //   and then attach the thread to JVM.
 600 //
 601 // To get around the problem and allow stack banging on Linux, we need to
 602 // manually expand thread stack after receiving the SIGSEGV.
 603 //
 604 // There are two ways to expand thread stack to address "bottom", we used
 605 // both of them in JVM before 1.5:
 606 //   1. adjust stack pointer first so that it is below "bottom", and then
 607 //      touch "bottom"
 608 //   2. mmap() the page in question
 609 //
 610 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 611 // if current sp is already near the lower end of page 101, and we need to
 612 // call mmap() to map page 100, it is possible that part of the mmap() frame
 613 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 614 // That will destroy the mmap() frame and cause VM to crash.
 615 //
 616 // The following code works by adjusting sp first, then accessing the "bottom"
 617 // page to force a page fault. Linux kernel will then automatically expand the
 618 // stack mapping.
 619 //
 620 // _expand_stack_to() assumes its frame size is less than page size, which
 621 // should always be true if the function is not inlined.
 622 
 623 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 624   #define NOINLINE
 625 #else
 626   #define NOINLINE __attribute__ ((noinline))
 627 #endif
 628 
 629 static void _expand_stack_to(address bottom) NOINLINE;
 630 
 631 static void _expand_stack_to(address bottom) {
 632   address sp;
 633   size_t size;
 634   volatile char *p;
 635 
 636   // Adjust bottom to point to the largest address within the same page, it
 637   // gives us a one-page buffer if alloca() allocates slightly more memory.
 638   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 639   bottom += os::Linux::page_size() - 1;
 640 
 641   // sp might be slightly above current stack pointer; if that's the case, we
 642   // will alloca() a little more space than necessary, which is OK. Don't use
 643   // os::current_stack_pointer(), as its result can be slightly below current
 644   // stack pointer, causing us to not alloca enough to reach "bottom".
 645   sp = (address)&sp;
 646 
 647   if (sp > bottom) {
 648     size = sp - bottom;
 649     p = (volatile char *)alloca(size);
 650     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 651     p[0] = '\0';
 652   }
 653 }
 654 
 655 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 656   assert(t!=NULL, "just checking");
 657   assert(t->osthread()->expanding_stack(), "expand should be set");
 658   assert(t->stack_base() != NULL, "stack_base was not initialized");
 659 
 660   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 661     sigset_t mask_all, old_sigset;
 662     sigfillset(&mask_all);
 663     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 664     _expand_stack_to(addr);
 665     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 666     return true;
 667   }
 668   return false;
 669 }
 670 
 671 //////////////////////////////////////////////////////////////////////////////
 672 // create new thread
 673 
 674 static address highest_vm_reserved_address();
 675 
 676 // check if it's safe to start a new thread
 677 static bool _thread_safety_check(Thread* thread) {
 678   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 679     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 680     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 681     //   allocated (MAP_FIXED) from high address space. Every thread stack
 682     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 683     //   it to other values if they rebuild LinuxThreads).
 684     //
 685     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 686     // the memory region has already been mmap'ed. That means if we have too
 687     // many threads and/or very large heap, eventually thread stack will
 688     // collide with heap.
 689     //
 690     // Here we try to prevent heap/stack collision by comparing current
 691     // stack bottom with the highest address that has been mmap'ed by JVM
 692     // plus a safety margin for memory maps created by native code.
 693     //
 694     // This feature can be disabled by setting ThreadSafetyMargin to 0
 695     //
 696     if (ThreadSafetyMargin > 0) {
 697       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 698 
 699       // not safe if our stack extends below the safety margin
 700       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 701     } else {
 702       return true;
 703     }
 704   } else {
 705     // Floating stack LinuxThreads or NPTL:
 706     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 707     //   there's not enough space left, pthread_create() will fail. If we come
 708     //   here, that means enough space has been reserved for stack.
 709     return true;
 710   }
 711 }
 712 
 713 // Thread start routine for all newly created threads
 714 static void *java_start(Thread *thread) {
 715   // Try to randomize the cache line index of hot stack frames.
 716   // This helps when threads of the same stack traces evict each other's
 717   // cache lines. The threads can be either from the same JVM instance, or
 718   // from different JVM instances. The benefit is especially true for
 719   // processors with hyperthreading technology.
 720   static int counter = 0;
 721   int pid = os::current_process_id();
 722   alloca(((pid ^ counter++) & 7) * 128);
 723 
 724   ThreadLocalStorage::set_thread(thread);
 725 
 726   OSThread* osthread = thread->osthread();
 727   Monitor* sync = osthread->startThread_lock();
 728 
 729   // non floating stack LinuxThreads needs extra check, see above
 730   if (!_thread_safety_check(thread)) {
 731     // notify parent thread
 732     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 733     osthread->set_state(ZOMBIE);
 734     sync->notify_all();
 735     return NULL;
 736   }
 737 
 738   // thread_id is kernel thread id (similar to Solaris LWP id)
 739   osthread->set_thread_id(os::Linux::gettid());
 740 
 741   if (UseNUMA) {
 742     int lgrp_id = os::numa_get_group_id();
 743     if (lgrp_id != -1) {
 744       thread->set_lgrp_id(lgrp_id);
 745     }
 746   }
 747   // initialize signal mask for this thread
 748   os::Linux::hotspot_sigmask(thread);
 749 
 750   // initialize floating point control register
 751   os::Linux::init_thread_fpu_state();
 752 
 753   // handshaking with parent thread
 754   {
 755     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 756 
 757     // notify parent thread
 758     osthread->set_state(INITIALIZED);
 759     sync->notify_all();
 760 
 761     // wait until os::start_thread()
 762     while (osthread->get_state() == INITIALIZED) {
 763       sync->wait(Mutex::_no_safepoint_check_flag);
 764     }
 765   }
 766 
 767   // call one more level start routine
 768   thread->run();
 769 
 770   return 0;
 771 }
 772 
 773 bool os::create_thread(Thread* thread, ThreadType thr_type,
 774                        size_t stack_size) {
 775   assert(thread->osthread() == NULL, "caller responsible");
 776 
 777   // Allocate the OSThread object
 778   OSThread* osthread = new OSThread(NULL, NULL);
 779   if (osthread == NULL) {
 780     return false;
 781   }
 782 
 783   // set the correct thread state
 784   osthread->set_thread_type(thr_type);
 785 
 786   // Initial state is ALLOCATED but not INITIALIZED
 787   osthread->set_state(ALLOCATED);
 788 
 789   thread->set_osthread(osthread);
 790 
 791   // init thread attributes
 792   pthread_attr_t attr;
 793   pthread_attr_init(&attr);
 794   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 795 
 796   // stack size
 797   if (os::Linux::supports_variable_stack_size()) {
 798     // calculate stack size if it's not specified by caller
 799     if (stack_size == 0) {
 800       stack_size = os::Linux::default_stack_size(thr_type);
 801 
 802       switch (thr_type) {
 803       case os::java_thread:
 804         // Java threads use ThreadStackSize which default value can be
 805         // changed with the flag -Xss
 806         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 807         stack_size = JavaThread::stack_size_at_create();
 808         break;
 809       case os::compiler_thread:
 810         if (CompilerThreadStackSize > 0) {
 811           stack_size = (size_t)(CompilerThreadStackSize * K);
 812           break;
 813         } // else fall through:
 814           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 815       case os::vm_thread:
 816       case os::pgc_thread:
 817       case os::cgc_thread:
 818       case os::watcher_thread:
 819         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 820         break;
 821       }
 822     }
 823 
 824     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 825     pthread_attr_setstacksize(&attr, stack_size);
 826   } else {
 827     // let pthread_create() pick the default value.
 828   }
 829 
 830   // glibc guard page
 831   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 832 
 833   ThreadState state;
 834 
 835   {
 836     // Serialize thread creation if we are running with fixed stack LinuxThreads
 837     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 838     if (lock) {
 839       os::Linux::createThread_lock()->lock_without_safepoint_check();
 840     }
 841 
 842     pthread_t tid;
 843     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 844 
 845     pthread_attr_destroy(&attr);
 846 
 847     if (ret != 0) {
 848       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 849         perror("pthread_create()");
 850       }
 851       // Need to clean up stuff we've allocated so far
 852       thread->set_osthread(NULL);
 853       delete osthread;
 854       if (lock) os::Linux::createThread_lock()->unlock();
 855       return false;
 856     }
 857 
 858     // Store pthread info into the OSThread
 859     osthread->set_pthread_id(tid);
 860 
 861     // Wait until child thread is either initialized or aborted
 862     {
 863       Monitor* sync_with_child = osthread->startThread_lock();
 864       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 865       while ((state = osthread->get_state()) == ALLOCATED) {
 866         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 867       }
 868     }
 869 
 870     if (lock) {
 871       os::Linux::createThread_lock()->unlock();
 872     }
 873   }
 874 
 875   // Aborted due to thread limit being reached
 876   if (state == ZOMBIE) {
 877     thread->set_osthread(NULL);
 878     delete osthread;
 879     return false;
 880   }
 881 
 882   // The thread is returned suspended (in state INITIALIZED),
 883   // and is started higher up in the call chain
 884   assert(state == INITIALIZED, "race condition");
 885   return true;
 886 }
 887 
 888 /////////////////////////////////////////////////////////////////////////////
 889 // attach existing thread
 890 
 891 // bootstrap the main thread
 892 bool os::create_main_thread(JavaThread* thread) {
 893   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 894   return create_attached_thread(thread);
 895 }
 896 
 897 bool os::create_attached_thread(JavaThread* thread) {
 898 #ifdef ASSERT
 899   thread->verify_not_published();
 900 #endif
 901 
 902   // Allocate the OSThread object
 903   OSThread* osthread = new OSThread(NULL, NULL);
 904 
 905   if (osthread == NULL) {
 906     return false;
 907   }
 908 
 909   // Store pthread info into the OSThread
 910   osthread->set_thread_id(os::Linux::gettid());
 911   osthread->set_pthread_id(::pthread_self());
 912 
 913   // initialize floating point control register
 914   os::Linux::init_thread_fpu_state();
 915 
 916   // Initial thread state is RUNNABLE
 917   osthread->set_state(RUNNABLE);
 918 
 919   thread->set_osthread(osthread);
 920 
 921   if (UseNUMA) {
 922     int lgrp_id = os::numa_get_group_id();
 923     if (lgrp_id != -1) {
 924       thread->set_lgrp_id(lgrp_id);
 925     }
 926   }
 927 
 928   if (os::Linux::is_initial_thread()) {
 929     // If current thread is initial thread, its stack is mapped on demand,
 930     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 931     // the entire stack region to avoid SEGV in stack banging.
 932     // It is also useful to get around the heap-stack-gap problem on SuSE
 933     // kernel (see 4821821 for details). We first expand stack to the top
 934     // of yellow zone, then enable stack yellow zone (order is significant,
 935     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 936     // is no gap between the last two virtual memory regions.
 937 
 938     JavaThread *jt = (JavaThread *)thread;
 939     address addr = jt->stack_yellow_zone_base();
 940     assert(addr != NULL, "initialization problem?");
 941     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 942 
 943     osthread->set_expanding_stack();
 944     os::Linux::manually_expand_stack(jt, addr);
 945     osthread->clear_expanding_stack();
 946   }
 947 
 948   // initialize signal mask for this thread
 949   // and save the caller's signal mask
 950   os::Linux::hotspot_sigmask(thread);
 951 
 952   return true;
 953 }
 954 
 955 void os::pd_start_thread(Thread* thread) {
 956   OSThread * osthread = thread->osthread();
 957   assert(osthread->get_state() != INITIALIZED, "just checking");
 958   Monitor* sync_with_child = osthread->startThread_lock();
 959   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960   sync_with_child->notify();
 961 }
 962 
 963 // Free Linux resources related to the OSThread
 964 void os::free_thread(OSThread* osthread) {
 965   assert(osthread != NULL, "osthread not set");
 966 
 967   if (Thread::current()->osthread() == osthread) {
 968     // Restore caller's signal mask
 969     sigset_t sigmask = osthread->caller_sigmask();
 970     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 971   }
 972 
 973   delete osthread;
 974 }
 975 
 976 //////////////////////////////////////////////////////////////////////////////
 977 // thread local storage
 978 
 979 // Restore the thread pointer if the destructor is called. This is in case
 980 // someone from JNI code sets up a destructor with pthread_key_create to run
 981 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 982 // will hang or crash. When detachCurrentThread is called the key will be set
 983 // to null and we will not be called again. If detachCurrentThread is never
 984 // called we could loop forever depending on the pthread implementation.
 985 static void restore_thread_pointer(void* p) {
 986   Thread* thread = (Thread*) p;
 987   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 988 }
 989 
 990 int os::allocate_thread_local_storage() {
 991   pthread_key_t key;
 992   int rslt = pthread_key_create(&key, restore_thread_pointer);
 993   assert(rslt == 0, "cannot allocate thread local storage");
 994   return (int)key;
 995 }
 996 
 997 // Note: This is currently not used by VM, as we don't destroy TLS key
 998 // on VM exit.
 999 void os::free_thread_local_storage(int index) {
1000   int rslt = pthread_key_delete((pthread_key_t)index);
1001   assert(rslt == 0, "invalid index");
1002 }
1003 
1004 void os::thread_local_storage_at_put(int index, void* value) {
1005   int rslt = pthread_setspecific((pthread_key_t)index, value);
1006   assert(rslt == 0, "pthread_setspecific failed");
1007 }
1008 
1009 extern "C" Thread* get_thread() {
1010   return ThreadLocalStorage::thread();
1011 }
1012 
1013 //////////////////////////////////////////////////////////////////////////////
1014 // initial thread
1015 
1016 // Check if current thread is the initial thread, similar to Solaris thr_main.
1017 bool os::Linux::is_initial_thread(void) {
1018   char dummy;
1019   // If called before init complete, thread stack bottom will be null.
1020   // Can be called if fatal error occurs before initialization.
1021   if (initial_thread_stack_bottom() == NULL) return false;
1022   assert(initial_thread_stack_bottom() != NULL &&
1023          initial_thread_stack_size()   != 0,
1024          "os::init did not locate initial thread's stack region");
1025   if ((address)&dummy >= initial_thread_stack_bottom() &&
1026       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1027     return true;
1028   } else {
1029     return false;
1030   }
1031 }
1032 
1033 // Find the virtual memory area that contains addr
1034 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1035   FILE *fp = fopen("/proc/self/maps", "r");
1036   if (fp) {
1037     address low, high;
1038     while (!feof(fp)) {
1039       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1040         if (low <= addr && addr < high) {
1041           if (vma_low)  *vma_low  = low;
1042           if (vma_high) *vma_high = high;
1043           fclose(fp);
1044           return true;
1045         }
1046       }
1047       for (;;) {
1048         int ch = fgetc(fp);
1049         if (ch == EOF || ch == (int)'\n') break;
1050       }
1051     }
1052     fclose(fp);
1053   }
1054   return false;
1055 }
1056 
1057 // Locate initial thread stack. This special handling of initial thread stack
1058 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1059 // bogus value for initial thread.
1060 void os::Linux::capture_initial_stack(size_t max_size) {
1061   // stack size is the easy part, get it from RLIMIT_STACK
1062   size_t stack_size;
1063   struct rlimit rlim;
1064   getrlimit(RLIMIT_STACK, &rlim);
1065   stack_size = rlim.rlim_cur;
1066 
1067   // 6308388: a bug in ld.so will relocate its own .data section to the
1068   //   lower end of primordial stack; reduce ulimit -s value a little bit
1069   //   so we won't install guard page on ld.so's data section.
1070   stack_size -= 2 * page_size();
1071 
1072   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1073   //   7.1, in both cases we will get 2G in return value.
1074   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1075   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1076   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1077   //   in case other parts in glibc still assumes 2M max stack size.
1078   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1079   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1080   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1081     stack_size = 2 * K * K IA64_ONLY(*2);
1082   }
1083   // Try to figure out where the stack base (top) is. This is harder.
1084   //
1085   // When an application is started, glibc saves the initial stack pointer in
1086   // a global variable "__libc_stack_end", which is then used by system
1087   // libraries. __libc_stack_end should be pretty close to stack top. The
1088   // variable is available since the very early days. However, because it is
1089   // a private interface, it could disappear in the future.
1090   //
1091   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1092   // to __libc_stack_end, it is very close to stack top, but isn't the real
1093   // stack top. Note that /proc may not exist if VM is running as a chroot
1094   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1095   // /proc/<pid>/stat could change in the future (though unlikely).
1096   //
1097   // We try __libc_stack_end first. If that doesn't work, look for
1098   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1099   // as a hint, which should work well in most cases.
1100 
1101   uintptr_t stack_start;
1102 
1103   // try __libc_stack_end first
1104   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1105   if (p && *p) {
1106     stack_start = *p;
1107   } else {
1108     // see if we can get the start_stack field from /proc/self/stat
1109     FILE *fp;
1110     int pid;
1111     char state;
1112     int ppid;
1113     int pgrp;
1114     int session;
1115     int nr;
1116     int tpgrp;
1117     unsigned long flags;
1118     unsigned long minflt;
1119     unsigned long cminflt;
1120     unsigned long majflt;
1121     unsigned long cmajflt;
1122     unsigned long utime;
1123     unsigned long stime;
1124     long cutime;
1125     long cstime;
1126     long prio;
1127     long nice;
1128     long junk;
1129     long it_real;
1130     uintptr_t start;
1131     uintptr_t vsize;
1132     intptr_t rss;
1133     uintptr_t rsslim;
1134     uintptr_t scodes;
1135     uintptr_t ecode;
1136     int i;
1137 
1138     // Figure what the primordial thread stack base is. Code is inspired
1139     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1140     // followed by command name surrounded by parentheses, state, etc.
1141     char stat[2048];
1142     int statlen;
1143 
1144     fp = fopen("/proc/self/stat", "r");
1145     if (fp) {
1146       statlen = fread(stat, 1, 2047, fp);
1147       stat[statlen] = '\0';
1148       fclose(fp);
1149 
1150       // Skip pid and the command string. Note that we could be dealing with
1151       // weird command names, e.g. user could decide to rename java launcher
1152       // to "java 1.4.2 :)", then the stat file would look like
1153       //                1234 (java 1.4.2 :)) R ... ...
1154       // We don't really need to know the command string, just find the last
1155       // occurrence of ")" and then start parsing from there. See bug 4726580.
1156       char * s = strrchr(stat, ')');
1157 
1158       i = 0;
1159       if (s) {
1160         // Skip blank chars
1161         do { s++; } while (s && isspace(*s));
1162 
1163 #define _UFM UINTX_FORMAT
1164 #define _DFM INTX_FORMAT
1165 
1166         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1167         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1168         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1169                    &state,          // 3  %c
1170                    &ppid,           // 4  %d
1171                    &pgrp,           // 5  %d
1172                    &session,        // 6  %d
1173                    &nr,             // 7  %d
1174                    &tpgrp,          // 8  %d
1175                    &flags,          // 9  %lu
1176                    &minflt,         // 10 %lu
1177                    &cminflt,        // 11 %lu
1178                    &majflt,         // 12 %lu
1179                    &cmajflt,        // 13 %lu
1180                    &utime,          // 14 %lu
1181                    &stime,          // 15 %lu
1182                    &cutime,         // 16 %ld
1183                    &cstime,         // 17 %ld
1184                    &prio,           // 18 %ld
1185                    &nice,           // 19 %ld
1186                    &junk,           // 20 %ld
1187                    &it_real,        // 21 %ld
1188                    &start,          // 22 UINTX_FORMAT
1189                    &vsize,          // 23 UINTX_FORMAT
1190                    &rss,            // 24 INTX_FORMAT
1191                    &rsslim,         // 25 UINTX_FORMAT
1192                    &scodes,         // 26 UINTX_FORMAT
1193                    &ecode,          // 27 UINTX_FORMAT
1194                    &stack_start);   // 28 UINTX_FORMAT
1195       }
1196 
1197 #undef _UFM
1198 #undef _DFM
1199 
1200       if (i != 28 - 2) {
1201         assert(false, "Bad conversion from /proc/self/stat");
1202         // product mode - assume we are the initial thread, good luck in the
1203         // embedded case.
1204         warning("Can't detect initial thread stack location - bad conversion");
1205         stack_start = (uintptr_t) &rlim;
1206       }
1207     } else {
1208       // For some reason we can't open /proc/self/stat (for example, running on
1209       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1210       // most cases, so don't abort:
1211       warning("Can't detect initial thread stack location - no /proc/self/stat");
1212       stack_start = (uintptr_t) &rlim;
1213     }
1214   }
1215 
1216   // Now we have a pointer (stack_start) very close to the stack top, the
1217   // next thing to do is to figure out the exact location of stack top. We
1218   // can find out the virtual memory area that contains stack_start by
1219   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1220   // and its upper limit is the real stack top. (again, this would fail if
1221   // running inside chroot, because /proc may not exist.)
1222 
1223   uintptr_t stack_top;
1224   address low, high;
1225   if (find_vma((address)stack_start, &low, &high)) {
1226     // success, "high" is the true stack top. (ignore "low", because initial
1227     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1228     stack_top = (uintptr_t)high;
1229   } else {
1230     // failed, likely because /proc/self/maps does not exist
1231     warning("Can't detect initial thread stack location - find_vma failed");
1232     // best effort: stack_start is normally within a few pages below the real
1233     // stack top, use it as stack top, and reduce stack size so we won't put
1234     // guard page outside stack.
1235     stack_top = stack_start;
1236     stack_size -= 16 * page_size();
1237   }
1238 
1239   // stack_top could be partially down the page so align it
1240   stack_top = align_size_up(stack_top, page_size());
1241 
1242   if (max_size && stack_size > max_size) {
1243     _initial_thread_stack_size = max_size;
1244   } else {
1245     _initial_thread_stack_size = stack_size;
1246   }
1247 
1248   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1249   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1250 }
1251 
1252 ////////////////////////////////////////////////////////////////////////////////
1253 // time support
1254 
1255 // Time since start-up in seconds to a fine granularity.
1256 // Used by VMSelfDestructTimer and the MemProfiler.
1257 double os::elapsedTime() {
1258 
1259   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1260 }
1261 
1262 jlong os::elapsed_counter() {
1263   return javaTimeNanos() - initial_time_count;
1264 }
1265 
1266 jlong os::elapsed_frequency() {
1267   return NANOSECS_PER_SEC; // nanosecond resolution
1268 }
1269 
1270 bool os::supports_vtime() { return true; }
1271 bool os::enable_vtime()   { return false; }
1272 bool os::vtime_enabled()  { return false; }
1273 
1274 double os::elapsedVTime() {
1275   struct rusage usage;
1276   int retval = getrusage(RUSAGE_THREAD, &usage);
1277   if (retval == 0) {
1278     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1279   } else {
1280     // better than nothing, but not much
1281     return elapsedTime();
1282   }
1283 }
1284 
1285 jlong os::javaTimeMillis() {
1286   timeval time;
1287   int status = gettimeofday(&time, NULL);
1288   assert(status != -1, "linux error");
1289   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1290 }
1291 
1292 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1293   timeval time;
1294   int status = gettimeofday(&time, NULL);
1295   assert(status != -1, "linux error");
1296   seconds = jlong(time.tv_sec);
1297   nanos = jlong(time.tv_usec) * 1000;
1298 }
1299 
1300 
1301 #ifndef CLOCK_MONOTONIC
1302   #define CLOCK_MONOTONIC (1)
1303 #endif
1304 
1305 void os::Linux::clock_init() {
1306   // we do dlopen's in this particular order due to bug in linux
1307   // dynamical loader (see 6348968) leading to crash on exit
1308   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1309   if (handle == NULL) {
1310     handle = dlopen("librt.so", RTLD_LAZY);
1311   }
1312 
1313   if (handle) {
1314     int (*clock_getres_func)(clockid_t, struct timespec*) =
1315            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1316     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1317            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1318     if (clock_getres_func && clock_gettime_func) {
1319       // See if monotonic clock is supported by the kernel. Note that some
1320       // early implementations simply return kernel jiffies (updated every
1321       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1322       // for nano time (though the monotonic property is still nice to have).
1323       // It's fixed in newer kernels, however clock_getres() still returns
1324       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1325       // resolution for now. Hopefully as people move to new kernels, this
1326       // won't be a problem.
1327       struct timespec res;
1328       struct timespec tp;
1329       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1330           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1331         // yes, monotonic clock is supported
1332         _clock_gettime = clock_gettime_func;
1333         return;
1334       } else {
1335         // close librt if there is no monotonic clock
1336         dlclose(handle);
1337       }
1338     }
1339   }
1340   warning("No monotonic clock was available - timed services may " \
1341           "be adversely affected if the time-of-day clock changes");
1342 }
1343 
1344 #ifndef SYS_clock_getres
1345   #if defined(IA32) || defined(AMD64)
1346     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1347     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1348   #else
1349     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1350     #define sys_clock_getres(x,y)  -1
1351   #endif
1352 #else
1353   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1354 #endif
1355 
1356 void os::Linux::fast_thread_clock_init() {
1357   if (!UseLinuxPosixThreadCPUClocks) {
1358     return;
1359   }
1360   clockid_t clockid;
1361   struct timespec tp;
1362   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1363       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1364 
1365   // Switch to using fast clocks for thread cpu time if
1366   // the sys_clock_getres() returns 0 error code.
1367   // Note, that some kernels may support the current thread
1368   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1369   // returned by the pthread_getcpuclockid().
1370   // If the fast Posix clocks are supported then the sys_clock_getres()
1371   // must return at least tp.tv_sec == 0 which means a resolution
1372   // better than 1 sec. This is extra check for reliability.
1373 
1374   if (pthread_getcpuclockid_func &&
1375       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1376       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1377     _supports_fast_thread_cpu_time = true;
1378     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1379   }
1380 }
1381 
1382 jlong os::javaTimeNanos() {
1383   if (os::supports_monotonic_clock()) {
1384     struct timespec tp;
1385     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1386     assert(status == 0, "gettime error");
1387     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1388     return result;
1389   } else {
1390     timeval time;
1391     int status = gettimeofday(&time, NULL);
1392     assert(status != -1, "linux error");
1393     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1394     return 1000 * usecs;
1395   }
1396 }
1397 
1398 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1399   if (os::supports_monotonic_clock()) {
1400     info_ptr->max_value = ALL_64_BITS;
1401 
1402     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1403     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1404     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1405   } else {
1406     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1407     info_ptr->max_value = ALL_64_BITS;
1408 
1409     // gettimeofday is a real time clock so it skips
1410     info_ptr->may_skip_backward = true;
1411     info_ptr->may_skip_forward = true;
1412   }
1413 
1414   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1415 }
1416 
1417 // Return the real, user, and system times in seconds from an
1418 // arbitrary fixed point in the past.
1419 bool os::getTimesSecs(double* process_real_time,
1420                       double* process_user_time,
1421                       double* process_system_time) {
1422   struct tms ticks;
1423   clock_t real_ticks = times(&ticks);
1424 
1425   if (real_ticks == (clock_t) (-1)) {
1426     return false;
1427   } else {
1428     double ticks_per_second = (double) clock_tics_per_sec;
1429     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1430     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1431     *process_real_time = ((double) real_ticks) / ticks_per_second;
1432 
1433     return true;
1434   }
1435 }
1436 
1437 
1438 char * os::local_time_string(char *buf, size_t buflen) {
1439   struct tm t;
1440   time_t long_time;
1441   time(&long_time);
1442   localtime_r(&long_time, &t);
1443   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1444                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1445                t.tm_hour, t.tm_min, t.tm_sec);
1446   return buf;
1447 }
1448 
1449 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1450   return localtime_r(clock, res);
1451 }
1452 
1453 ////////////////////////////////////////////////////////////////////////////////
1454 // runtime exit support
1455 
1456 // Note: os::shutdown() might be called very early during initialization, or
1457 // called from signal handler. Before adding something to os::shutdown(), make
1458 // sure it is async-safe and can handle partially initialized VM.
1459 void os::shutdown() {
1460 
1461   // allow PerfMemory to attempt cleanup of any persistent resources
1462   perfMemory_exit();
1463 
1464   // needs to remove object in file system
1465   AttachListener::abort();
1466 
1467   // flush buffered output, finish log files
1468   ostream_abort();
1469 
1470   // Check for abort hook
1471   abort_hook_t abort_hook = Arguments::abort_hook();
1472   if (abort_hook != NULL) {
1473     abort_hook();
1474   }
1475 
1476 }
1477 
1478 // Note: os::abort() might be called very early during initialization, or
1479 // called from signal handler. Before adding something to os::abort(), make
1480 // sure it is async-safe and can handle partially initialized VM.
1481 void os::abort(bool dump_core) {
1482   abort(dump_core, NULL, NULL);
1483 }
1484 
1485 void os::abort(bool dump_core, void* siginfo, void* context) {
1486   os::shutdown();
1487   if (dump_core) {
1488 #ifndef PRODUCT
1489     fdStream out(defaultStream::output_fd());
1490     out.print_raw("Current thread is ");
1491     char buf[16];
1492     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1493     out.print_raw_cr(buf);
1494     out.print_raw_cr("Dumping core ...");
1495 #endif
1496     ::abort(); // dump core
1497   }
1498 
1499   ::exit(1);
1500 }
1501 
1502 // Die immediately, no exit hook, no abort hook, no cleanup.
1503 void os::die() {
1504   // _exit() on LinuxThreads only kills current thread
1505   ::abort();
1506 }
1507 
1508 
1509 // This method is a copy of JDK's sysGetLastErrorString
1510 // from src/solaris/hpi/src/system_md.c
1511 
1512 size_t os::lasterror(char *buf, size_t len) {
1513   if (errno == 0)  return 0;
1514 
1515   const char *s = ::strerror(errno);
1516   size_t n = ::strlen(s);
1517   if (n >= len) {
1518     n = len - 1;
1519   }
1520   ::strncpy(buf, s, n);
1521   buf[n] = '\0';
1522   return n;
1523 }
1524 
1525 intx os::current_thread_id() { return (intx)pthread_self(); }
1526 int os::current_process_id() {
1527 
1528   // Under the old linux thread library, linux gives each thread
1529   // its own process id. Because of this each thread will return
1530   // a different pid if this method were to return the result
1531   // of getpid(2). Linux provides no api that returns the pid
1532   // of the launcher thread for the vm. This implementation
1533   // returns a unique pid, the pid of the launcher thread
1534   // that starts the vm 'process'.
1535 
1536   // Under the NPTL, getpid() returns the same pid as the
1537   // launcher thread rather than a unique pid per thread.
1538   // Use gettid() if you want the old pre NPTL behaviour.
1539 
1540   // if you are looking for the result of a call to getpid() that
1541   // returns a unique pid for the calling thread, then look at the
1542   // OSThread::thread_id() method in osThread_linux.hpp file
1543 
1544   return (int)(_initial_pid ? _initial_pid : getpid());
1545 }
1546 
1547 // DLL functions
1548 
1549 const char* os::dll_file_extension() { return ".so"; }
1550 
1551 // This must be hard coded because it's the system's temporary
1552 // directory not the java application's temp directory, ala java.io.tmpdir.
1553 const char* os::get_temp_directory() { return "/tmp"; }
1554 
1555 static bool file_exists(const char* filename) {
1556   struct stat statbuf;
1557   if (filename == NULL || strlen(filename) == 0) {
1558     return false;
1559   }
1560   return os::stat(filename, &statbuf) == 0;
1561 }
1562 
1563 bool os::dll_build_name(char* buffer, size_t buflen,
1564                         const char* pname, const char* fname) {
1565   bool retval = false;
1566   // Copied from libhpi
1567   const size_t pnamelen = pname ? strlen(pname) : 0;
1568 
1569   // Return error on buffer overflow.
1570   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1571     return retval;
1572   }
1573 
1574   if (pnamelen == 0) {
1575     snprintf(buffer, buflen, "lib%s.so", fname);
1576     retval = true;
1577   } else if (strchr(pname, *os::path_separator()) != NULL) {
1578     int n;
1579     char** pelements = split_path(pname, &n);
1580     if (pelements == NULL) {
1581       return false;
1582     }
1583     for (int i = 0; i < n; i++) {
1584       // Really shouldn't be NULL, but check can't hurt
1585       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1586         continue; // skip the empty path values
1587       }
1588       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1589       if (file_exists(buffer)) {
1590         retval = true;
1591         break;
1592       }
1593     }
1594     // release the storage
1595     for (int i = 0; i < n; i++) {
1596       if (pelements[i] != NULL) {
1597         FREE_C_HEAP_ARRAY(char, pelements[i]);
1598       }
1599     }
1600     if (pelements != NULL) {
1601       FREE_C_HEAP_ARRAY(char*, pelements);
1602     }
1603   } else {
1604     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1605     retval = true;
1606   }
1607   return retval;
1608 }
1609 
1610 // check if addr is inside libjvm.so
1611 bool os::address_is_in_vm(address addr) {
1612   static address libjvm_base_addr;
1613   Dl_info dlinfo;
1614 
1615   if (libjvm_base_addr == NULL) {
1616     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1617       libjvm_base_addr = (address)dlinfo.dli_fbase;
1618     }
1619     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1620   }
1621 
1622   if (dladdr((void *)addr, &dlinfo) != 0) {
1623     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1624   }
1625 
1626   return false;
1627 }
1628 
1629 bool os::dll_address_to_function_name(address addr, char *buf,
1630                                       int buflen, int *offset) {
1631   // buf is not optional, but offset is optional
1632   assert(buf != NULL, "sanity check");
1633 
1634   Dl_info dlinfo;
1635 
1636   if (dladdr((void*)addr, &dlinfo) != 0) {
1637     // see if we have a matching symbol
1638     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1639       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1640         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1641       }
1642       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1643       return true;
1644     }
1645     // no matching symbol so try for just file info
1646     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1647       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1648                           buf, buflen, offset, dlinfo.dli_fname)) {
1649         return true;
1650       }
1651     }
1652   }
1653 
1654   buf[0] = '\0';
1655   if (offset != NULL) *offset = -1;
1656   return false;
1657 }
1658 
1659 struct _address_to_library_name {
1660   address addr;          // input : memory address
1661   size_t  buflen;        //         size of fname
1662   char*   fname;         // output: library name
1663   address base;          //         library base addr
1664 };
1665 
1666 static int address_to_library_name_callback(struct dl_phdr_info *info,
1667                                             size_t size, void *data) {
1668   int i;
1669   bool found = false;
1670   address libbase = NULL;
1671   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1672 
1673   // iterate through all loadable segments
1674   for (i = 0; i < info->dlpi_phnum; i++) {
1675     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1676     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1677       // base address of a library is the lowest address of its loaded
1678       // segments.
1679       if (libbase == NULL || libbase > segbase) {
1680         libbase = segbase;
1681       }
1682       // see if 'addr' is within current segment
1683       if (segbase <= d->addr &&
1684           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1685         found = true;
1686       }
1687     }
1688   }
1689 
1690   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1691   // so dll_address_to_library_name() can fall through to use dladdr() which
1692   // can figure out executable name from argv[0].
1693   if (found && info->dlpi_name && info->dlpi_name[0]) {
1694     d->base = libbase;
1695     if (d->fname) {
1696       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1697     }
1698     return 1;
1699   }
1700   return 0;
1701 }
1702 
1703 bool os::dll_address_to_library_name(address addr, char* buf,
1704                                      int buflen, int* offset) {
1705   // buf is not optional, but offset is optional
1706   assert(buf != NULL, "sanity check");
1707 
1708   Dl_info dlinfo;
1709   struct _address_to_library_name data;
1710 
1711   // There is a bug in old glibc dladdr() implementation that it could resolve
1712   // to wrong library name if the .so file has a base address != NULL. Here
1713   // we iterate through the program headers of all loaded libraries to find
1714   // out which library 'addr' really belongs to. This workaround can be
1715   // removed once the minimum requirement for glibc is moved to 2.3.x.
1716   data.addr = addr;
1717   data.fname = buf;
1718   data.buflen = buflen;
1719   data.base = NULL;
1720   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1721 
1722   if (rslt) {
1723     // buf already contains library name
1724     if (offset) *offset = addr - data.base;
1725     return true;
1726   }
1727   if (dladdr((void*)addr, &dlinfo) != 0) {
1728     if (dlinfo.dli_fname != NULL) {
1729       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1730     }
1731     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1732       *offset = addr - (address)dlinfo.dli_fbase;
1733     }
1734     return true;
1735   }
1736 
1737   buf[0] = '\0';
1738   if (offset) *offset = -1;
1739   return false;
1740 }
1741 
1742 // Loads .dll/.so and
1743 // in case of error it checks if .dll/.so was built for the
1744 // same architecture as Hotspot is running on
1745 
1746 
1747 // Remember the stack's state. The Linux dynamic linker will change
1748 // the stack to 'executable' at most once, so we must safepoint only once.
1749 bool os::Linux::_stack_is_executable = false;
1750 
1751 // VM operation that loads a library.  This is necessary if stack protection
1752 // of the Java stacks can be lost during loading the library.  If we
1753 // do not stop the Java threads, they can stack overflow before the stacks
1754 // are protected again.
1755 class VM_LinuxDllLoad: public VM_Operation {
1756  private:
1757   const char *_filename;
1758   char *_ebuf;
1759   int _ebuflen;
1760   void *_lib;
1761  public:
1762   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1763     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1764   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1765   void doit() {
1766     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1767     os::Linux::_stack_is_executable = true;
1768   }
1769   void* loaded_library() { return _lib; }
1770 };
1771 
1772 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1773   void * result = NULL;
1774   bool load_attempted = false;
1775 
1776   // Check whether the library to load might change execution rights
1777   // of the stack. If they are changed, the protection of the stack
1778   // guard pages will be lost. We need a safepoint to fix this.
1779   //
1780   // See Linux man page execstack(8) for more info.
1781   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1782     ElfFile ef(filename);
1783     if (!ef.specifies_noexecstack()) {
1784       if (!is_init_completed()) {
1785         os::Linux::_stack_is_executable = true;
1786         // This is OK - No Java threads have been created yet, and hence no
1787         // stack guard pages to fix.
1788         //
1789         // This should happen only when you are building JDK7 using a very
1790         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1791         //
1792         // Dynamic loader will make all stacks executable after
1793         // this function returns, and will not do that again.
1794         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1795       } else {
1796         warning("You have loaded library %s which might have disabled stack guard. "
1797                 "The VM will try to fix the stack guard now.\n"
1798                 "It's highly recommended that you fix the library with "
1799                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1800                 filename);
1801 
1802         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1803         JavaThread *jt = JavaThread::current();
1804         if (jt->thread_state() != _thread_in_native) {
1805           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1806           // that requires ExecStack. Cannot enter safe point. Let's give up.
1807           warning("Unable to fix stack guard. Giving up.");
1808         } else {
1809           if (!LoadExecStackDllInVMThread) {
1810             // This is for the case where the DLL has an static
1811             // constructor function that executes JNI code. We cannot
1812             // load such DLLs in the VMThread.
1813             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1814           }
1815 
1816           ThreadInVMfromNative tiv(jt);
1817           debug_only(VMNativeEntryWrapper vew;)
1818 
1819           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1820           VMThread::execute(&op);
1821           if (LoadExecStackDllInVMThread) {
1822             result = op.loaded_library();
1823           }
1824           load_attempted = true;
1825         }
1826       }
1827     }
1828   }
1829 
1830   if (!load_attempted) {
1831     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1832   }
1833 
1834   if (result != NULL) {
1835     // Successful loading
1836     return result;
1837   }
1838 
1839   Elf32_Ehdr elf_head;
1840   int diag_msg_max_length=ebuflen-strlen(ebuf);
1841   char* diag_msg_buf=ebuf+strlen(ebuf);
1842 
1843   if (diag_msg_max_length==0) {
1844     // No more space in ebuf for additional diagnostics message
1845     return NULL;
1846   }
1847 
1848 
1849   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1850 
1851   if (file_descriptor < 0) {
1852     // Can't open library, report dlerror() message
1853     return NULL;
1854   }
1855 
1856   bool failed_to_read_elf_head=
1857     (sizeof(elf_head)!=
1858      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1859 
1860   ::close(file_descriptor);
1861   if (failed_to_read_elf_head) {
1862     // file i/o error - report dlerror() msg
1863     return NULL;
1864   }
1865 
1866   typedef struct {
1867     Elf32_Half  code;         // Actual value as defined in elf.h
1868     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1869     char        elf_class;    // 32 or 64 bit
1870     char        endianess;    // MSB or LSB
1871     char*       name;         // String representation
1872   } arch_t;
1873 
1874 #ifndef EM_486
1875   #define EM_486          6               /* Intel 80486 */
1876 #endif
1877 #ifndef EM_AARCH64
1878   #define EM_AARCH64    183               /* ARM AARCH64 */
1879 #endif
1880 
1881   static const arch_t arch_array[]={
1882     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1883     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1884     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1885     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1886     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1887     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1888     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1889     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1890 #if defined(VM_LITTLE_ENDIAN)
1891     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1892 #else
1893     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1894 #endif
1895     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1896     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1897     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1898     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1899     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1900     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1901     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1902     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1903   };
1904 
1905 #if  (defined IA32)
1906   static  Elf32_Half running_arch_code=EM_386;
1907 #elif   (defined AMD64)
1908   static  Elf32_Half running_arch_code=EM_X86_64;
1909 #elif  (defined IA64)
1910   static  Elf32_Half running_arch_code=EM_IA_64;
1911 #elif  (defined __sparc) && (defined _LP64)
1912   static  Elf32_Half running_arch_code=EM_SPARCV9;
1913 #elif  (defined __sparc) && (!defined _LP64)
1914   static  Elf32_Half running_arch_code=EM_SPARC;
1915 #elif  (defined __powerpc64__)
1916   static  Elf32_Half running_arch_code=EM_PPC64;
1917 #elif  (defined __powerpc__)
1918   static  Elf32_Half running_arch_code=EM_PPC;
1919 #elif  (defined ARM)
1920   static  Elf32_Half running_arch_code=EM_ARM;
1921 #elif  (defined S390)
1922   static  Elf32_Half running_arch_code=EM_S390;
1923 #elif  (defined ALPHA)
1924   static  Elf32_Half running_arch_code=EM_ALPHA;
1925 #elif  (defined MIPSEL)
1926   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1927 #elif  (defined PARISC)
1928   static  Elf32_Half running_arch_code=EM_PARISC;
1929 #elif  (defined MIPS)
1930   static  Elf32_Half running_arch_code=EM_MIPS;
1931 #elif  (defined M68K)
1932   static  Elf32_Half running_arch_code=EM_68K;
1933 #elif  (defined AARCH64)
1934   static  Elf32_Half running_arch_code=EM_AARCH64;
1935 #else
1936     #error Method os::dll_load requires that one of following is defined:\
1937          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1938 #endif
1939 
1940   // Identify compatability class for VM's architecture and library's architecture
1941   // Obtain string descriptions for architectures
1942 
1943   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1944   int running_arch_index=-1;
1945 
1946   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1947     if (running_arch_code == arch_array[i].code) {
1948       running_arch_index    = i;
1949     }
1950     if (lib_arch.code == arch_array[i].code) {
1951       lib_arch.compat_class = arch_array[i].compat_class;
1952       lib_arch.name         = arch_array[i].name;
1953     }
1954   }
1955 
1956   assert(running_arch_index != -1,
1957          "Didn't find running architecture code (running_arch_code) in arch_array");
1958   if (running_arch_index == -1) {
1959     // Even though running architecture detection failed
1960     // we may still continue with reporting dlerror() message
1961     return NULL;
1962   }
1963 
1964   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1965     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1966     return NULL;
1967   }
1968 
1969 #ifndef S390
1970   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1971     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1972     return NULL;
1973   }
1974 #endif // !S390
1975 
1976   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1977     if (lib_arch.name!=NULL) {
1978       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1979                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1980                  lib_arch.name, arch_array[running_arch_index].name);
1981     } else {
1982       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1983                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1984                  lib_arch.code,
1985                  arch_array[running_arch_index].name);
1986     }
1987   }
1988 
1989   return NULL;
1990 }
1991 
1992 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1993                                 int ebuflen) {
1994   void * result = ::dlopen(filename, RTLD_LAZY);
1995   if (result == NULL) {
1996     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1997     ebuf[ebuflen-1] = '\0';
1998   }
1999   return result;
2000 }
2001 
2002 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2003                                        int ebuflen) {
2004   void * result = NULL;
2005   if (LoadExecStackDllInVMThread) {
2006     result = dlopen_helper(filename, ebuf, ebuflen);
2007   }
2008 
2009   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2010   // library that requires an executable stack, or which does not have this
2011   // stack attribute set, dlopen changes the stack attribute to executable. The
2012   // read protection of the guard pages gets lost.
2013   //
2014   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2015   // may have been queued at the same time.
2016 
2017   if (!_stack_is_executable) {
2018     JavaThread *jt = Threads::first();
2019 
2020     while (jt) {
2021       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2022           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2023         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2024                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2025           warning("Attempt to reguard stack yellow zone failed.");
2026         }
2027       }
2028       jt = jt->next();
2029     }
2030   }
2031 
2032   return result;
2033 }
2034 
2035 void* os::dll_lookup(void* handle, const char* name) {
2036   void* res = dlsym(handle, name);
2037   return res;
2038 }
2039 
2040 void* os::get_default_process_handle() {
2041   return (void*)::dlopen(NULL, RTLD_LAZY);
2042 }
2043 
2044 static bool _print_ascii_file(const char* filename, outputStream* st) {
2045   int fd = ::open(filename, O_RDONLY);
2046   if (fd == -1) {
2047     return false;
2048   }
2049 
2050   char buf[32];
2051   int bytes;
2052   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2053     st->print_raw(buf, bytes);
2054   }
2055 
2056   ::close(fd);
2057 
2058   return true;
2059 }
2060 
2061 void os::print_dll_info(outputStream *st) {
2062   st->print_cr("Dynamic libraries:");
2063 
2064   char fname[32];
2065   pid_t pid = os::Linux::gettid();
2066 
2067   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2068 
2069   if (!_print_ascii_file(fname, st)) {
2070     st->print("Can not get library information for pid = %d\n", pid);
2071   }
2072 }
2073 
2074 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2075   FILE *procmapsFile = NULL;
2076 
2077   // Open the procfs maps file for the current process
2078   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2079     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2080     char line[PATH_MAX + 100];
2081 
2082     // Read line by line from 'file'
2083     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2084       u8 base, top, offset, inode;
2085       char permissions[5];
2086       char device[6];
2087       char name[PATH_MAX + 1];
2088 
2089       // Parse fields from line
2090       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2091 
2092       // Filter by device id '00:00' so that we only get file system mapped files.
2093       if (strcmp(device, "00:00") != 0) {
2094 
2095         // Call callback with the fields of interest
2096         if(callback(name, (address)base, (address)top, param)) {
2097           // Oops abort, callback aborted
2098           fclose(procmapsFile);
2099           return 1;
2100         }
2101       }
2102     }
2103     fclose(procmapsFile);
2104   }
2105   return 0;
2106 }
2107 
2108 void os::print_os_info_brief(outputStream* st) {
2109   os::Linux::print_distro_info(st);
2110 
2111   os::Posix::print_uname_info(st);
2112 
2113   os::Linux::print_libversion_info(st);
2114 
2115 }
2116 
2117 void os::print_os_info(outputStream* st) {
2118   st->print("OS:");
2119 
2120   os::Linux::print_distro_info(st);
2121 
2122   os::Posix::print_uname_info(st);
2123 
2124   // Print warning if unsafe chroot environment detected
2125   if (unsafe_chroot_detected) {
2126     st->print("WARNING!! ");
2127     st->print_cr("%s", unstable_chroot_error);
2128   }
2129 
2130   os::Linux::print_libversion_info(st);
2131 
2132   os::Posix::print_rlimit_info(st);
2133 
2134   os::Posix::print_load_average(st);
2135 
2136   os::Linux::print_full_memory_info(st);
2137 }
2138 
2139 // Try to identify popular distros.
2140 // Most Linux distributions have a /etc/XXX-release file, which contains
2141 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2142 // file that also contains the OS version string. Some have more than one
2143 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2144 // /etc/redhat-release.), so the order is important.
2145 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2146 // their own specific XXX-release file as well as a redhat-release file.
2147 // Because of this the XXX-release file needs to be searched for before the
2148 // redhat-release file.
2149 // Since Red Hat has a lsb-release file that is not very descriptive the
2150 // search for redhat-release needs to be before lsb-release.
2151 // Since the lsb-release file is the new standard it needs to be searched
2152 // before the older style release files.
2153 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2154 // next to last resort.  The os-release file is a new standard that contains
2155 // distribution information and the system-release file seems to be an old
2156 // standard that has been replaced by the lsb-release and os-release files.
2157 // Searching for the debian_version file is the last resort.  It contains
2158 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2159 // "Debian " is printed before the contents of the debian_version file.
2160 void os::Linux::print_distro_info(outputStream* st) {
2161   if (!_print_ascii_file("/etc/oracle-release", st) &&
2162       !_print_ascii_file("/etc/mandriva-release", st) &&
2163       !_print_ascii_file("/etc/mandrake-release", st) &&
2164       !_print_ascii_file("/etc/sun-release", st) &&
2165       !_print_ascii_file("/etc/redhat-release", st) &&
2166       !_print_ascii_file("/etc/lsb-release", st) &&
2167       !_print_ascii_file("/etc/SuSE-release", st) &&
2168       !_print_ascii_file("/etc/turbolinux-release", st) &&
2169       !_print_ascii_file("/etc/gentoo-release", st) &&
2170       !_print_ascii_file("/etc/ltib-release", st) &&
2171       !_print_ascii_file("/etc/angstrom-version", st) &&
2172       !_print_ascii_file("/etc/system-release", st) &&
2173       !_print_ascii_file("/etc/os-release", st)) {
2174 
2175     if (file_exists("/etc/debian_version")) {
2176       st->print("Debian ");
2177       _print_ascii_file("/etc/debian_version", st);
2178     } else {
2179       st->print("Linux");
2180     }
2181   }
2182   st->cr();
2183 }
2184 
2185 void os::Linux::print_libversion_info(outputStream* st) {
2186   // libc, pthread
2187   st->print("libc:");
2188   st->print("%s ", os::Linux::glibc_version());
2189   st->print("%s ", os::Linux::libpthread_version());
2190   if (os::Linux::is_LinuxThreads()) {
2191     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2192   }
2193   st->cr();
2194 }
2195 
2196 void os::Linux::print_full_memory_info(outputStream* st) {
2197   st->print("\n/proc/meminfo:\n");
2198   _print_ascii_file("/proc/meminfo", st);
2199   st->cr();
2200 }
2201 
2202 void os::print_memory_info(outputStream* st) {
2203 
2204   st->print("Memory:");
2205   st->print(" %dk page", os::vm_page_size()>>10);
2206 
2207   // values in struct sysinfo are "unsigned long"
2208   struct sysinfo si;
2209   sysinfo(&si);
2210 
2211   st->print(", physical " UINT64_FORMAT "k",
2212             os::physical_memory() >> 10);
2213   st->print("(" UINT64_FORMAT "k free)",
2214             os::available_memory() >> 10);
2215   st->print(", swap " UINT64_FORMAT "k",
2216             ((jlong)si.totalswap * si.mem_unit) >> 10);
2217   st->print("(" UINT64_FORMAT "k free)",
2218             ((jlong)si.freeswap * si.mem_unit) >> 10);
2219   st->cr();
2220 }
2221 
2222 void os::pd_print_cpu_info(outputStream* st) {
2223   st->print("\n/proc/cpuinfo:\n");
2224   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2225     st->print("  <Not Available>");
2226   }
2227   st->cr();
2228 }
2229 
2230 void os::print_siginfo(outputStream* st, void* siginfo) {
2231   const siginfo_t* si = (const siginfo_t*)siginfo;
2232 
2233   os::Posix::print_siginfo_brief(st, si);
2234 #if INCLUDE_CDS
2235   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2236       UseSharedSpaces) {
2237     FileMapInfo* mapinfo = FileMapInfo::current_info();
2238     if (mapinfo->is_in_shared_space(si->si_addr)) {
2239       st->print("\n\nError accessing class data sharing archive."   \
2240                 " Mapped file inaccessible during execution, "      \
2241                 " possible disk/network problem.");
2242     }
2243   }
2244 #endif
2245   st->cr();
2246 }
2247 
2248 
2249 static void print_signal_handler(outputStream* st, int sig,
2250                                  char* buf, size_t buflen);
2251 
2252 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2253   st->print_cr("Signal Handlers:");
2254   print_signal_handler(st, SIGSEGV, buf, buflen);
2255   print_signal_handler(st, SIGBUS , buf, buflen);
2256   print_signal_handler(st, SIGFPE , buf, buflen);
2257   print_signal_handler(st, SIGPIPE, buf, buflen);
2258   print_signal_handler(st, SIGXFSZ, buf, buflen);
2259   print_signal_handler(st, SIGILL , buf, buflen);
2260   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2261   print_signal_handler(st, SR_signum, buf, buflen);
2262   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2263   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2264   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2265   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2266 #if defined(PPC64)
2267   print_signal_handler(st, SIGTRAP, buf, buflen);
2268 #endif
2269 }
2270 
2271 static char saved_jvm_path[MAXPATHLEN] = {0};
2272 
2273 // Find the full path to the current module, libjvm.so
2274 void os::jvm_path(char *buf, jint buflen) {
2275   // Error checking.
2276   if (buflen < MAXPATHLEN) {
2277     assert(false, "must use a large-enough buffer");
2278     buf[0] = '\0';
2279     return;
2280   }
2281   // Lazy resolve the path to current module.
2282   if (saved_jvm_path[0] != 0) {
2283     strcpy(buf, saved_jvm_path);
2284     return;
2285   }
2286 
2287   char dli_fname[MAXPATHLEN];
2288   bool ret = dll_address_to_library_name(
2289                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2290                                          dli_fname, sizeof(dli_fname), NULL);
2291   assert(ret, "cannot locate libjvm");
2292   char *rp = NULL;
2293   if (ret && dli_fname[0] != '\0') {
2294     rp = realpath(dli_fname, buf);
2295   }
2296   if (rp == NULL) {
2297     return;
2298   }
2299 
2300   if (Arguments::sun_java_launcher_is_altjvm()) {
2301     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2302     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2303     // If "/jre/lib/" appears at the right place in the string, then
2304     // assume we are installed in a JDK and we're done. Otherwise, check
2305     // for a JAVA_HOME environment variable and fix up the path so it
2306     // looks like libjvm.so is installed there (append a fake suffix
2307     // hotspot/libjvm.so).
2308     const char *p = buf + strlen(buf) - 1;
2309     for (int count = 0; p > buf && count < 5; ++count) {
2310       for (--p; p > buf && *p != '/'; --p)
2311         /* empty */ ;
2312     }
2313 
2314     if (strncmp(p, "/jre/lib/", 9) != 0) {
2315       // Look for JAVA_HOME in the environment.
2316       char* java_home_var = ::getenv("JAVA_HOME");
2317       if (java_home_var != NULL && java_home_var[0] != 0) {
2318         char* jrelib_p;
2319         int len;
2320 
2321         // Check the current module name "libjvm.so".
2322         p = strrchr(buf, '/');
2323         if (p == NULL) {
2324           return;
2325         }
2326         assert(strstr(p, "/libjvm") == p, "invalid library name");
2327 
2328         rp = realpath(java_home_var, buf);
2329         if (rp == NULL) {
2330           return;
2331         }
2332 
2333         // determine if this is a legacy image or modules image
2334         // modules image doesn't have "jre" subdirectory
2335         len = strlen(buf);
2336         assert(len < buflen, "Ran out of buffer room");
2337         jrelib_p = buf + len;
2338         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2339         if (0 != access(buf, F_OK)) {
2340           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2341         }
2342 
2343         if (0 == access(buf, F_OK)) {
2344           // Use current module name "libjvm.so"
2345           len = strlen(buf);
2346           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2347         } else {
2348           // Go back to path of .so
2349           rp = realpath(dli_fname, buf);
2350           if (rp == NULL) {
2351             return;
2352           }
2353         }
2354       }
2355     }
2356   }
2357 
2358   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2359   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2360 }
2361 
2362 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2363   // no prefix required, not even "_"
2364 }
2365 
2366 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2367   // no suffix required
2368 }
2369 
2370 ////////////////////////////////////////////////////////////////////////////////
2371 // sun.misc.Signal support
2372 
2373 static volatile jint sigint_count = 0;
2374 
2375 static void UserHandler(int sig, void *siginfo, void *context) {
2376   // 4511530 - sem_post is serialized and handled by the manager thread. When
2377   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2378   // don't want to flood the manager thread with sem_post requests.
2379   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2380     return;
2381   }
2382 
2383   // Ctrl-C is pressed during error reporting, likely because the error
2384   // handler fails to abort. Let VM die immediately.
2385   if (sig == SIGINT && is_error_reported()) {
2386     os::die();
2387   }
2388 
2389   os::signal_notify(sig);
2390 }
2391 
2392 void* os::user_handler() {
2393   return CAST_FROM_FN_PTR(void*, UserHandler);
2394 }
2395 
2396 class Semaphore : public StackObj {
2397  public:
2398   Semaphore();
2399   ~Semaphore();
2400   void signal();
2401   void wait();
2402   bool trywait();
2403   bool timedwait(unsigned int sec, int nsec);
2404  private:
2405   sem_t _semaphore;
2406 };
2407 
2408 Semaphore::Semaphore() {
2409   sem_init(&_semaphore, 0, 0);
2410 }
2411 
2412 Semaphore::~Semaphore() {
2413   sem_destroy(&_semaphore);
2414 }
2415 
2416 void Semaphore::signal() {
2417   sem_post(&_semaphore);
2418 }
2419 
2420 void Semaphore::wait() {
2421   sem_wait(&_semaphore);
2422 }
2423 
2424 bool Semaphore::trywait() {
2425   return sem_trywait(&_semaphore) == 0;
2426 }
2427 
2428 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2429 
2430   struct timespec ts;
2431   // Semaphore's are always associated with CLOCK_REALTIME
2432   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2433   // see unpackTime for discussion on overflow checking
2434   if (sec >= MAX_SECS) {
2435     ts.tv_sec += MAX_SECS;
2436     ts.tv_nsec = 0;
2437   } else {
2438     ts.tv_sec += sec;
2439     ts.tv_nsec += nsec;
2440     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2441       ts.tv_nsec -= NANOSECS_PER_SEC;
2442       ++ts.tv_sec; // note: this must be <= max_secs
2443     }
2444   }
2445 
2446   while (1) {
2447     int result = sem_timedwait(&_semaphore, &ts);
2448     if (result == 0) {
2449       return true;
2450     } else if (errno == EINTR) {
2451       continue;
2452     } else if (errno == ETIMEDOUT) {
2453       return false;
2454     } else {
2455       return false;
2456     }
2457   }
2458 }
2459 
2460 extern "C" {
2461   typedef void (*sa_handler_t)(int);
2462   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2463 }
2464 
2465 void* os::signal(int signal_number, void* handler) {
2466   struct sigaction sigAct, oldSigAct;
2467 
2468   sigfillset(&(sigAct.sa_mask));
2469   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2470   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2471 
2472   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2473     // -1 means registration failed
2474     return (void *)-1;
2475   }
2476 
2477   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2478 }
2479 
2480 void os::signal_raise(int signal_number) {
2481   ::raise(signal_number);
2482 }
2483 
2484 // The following code is moved from os.cpp for making this
2485 // code platform specific, which it is by its very nature.
2486 
2487 // Will be modified when max signal is changed to be dynamic
2488 int os::sigexitnum_pd() {
2489   return NSIG;
2490 }
2491 
2492 // a counter for each possible signal value
2493 static volatile jint pending_signals[NSIG+1] = { 0 };
2494 
2495 // Linux(POSIX) specific hand shaking semaphore.
2496 static sem_t sig_sem;
2497 static Semaphore sr_semaphore;
2498 
2499 void os::signal_init_pd() {
2500   // Initialize signal structures
2501   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2502 
2503   // Initialize signal semaphore
2504   ::sem_init(&sig_sem, 0, 0);
2505 }
2506 
2507 void os::signal_notify(int sig) {
2508   Atomic::inc(&pending_signals[sig]);
2509   ::sem_post(&sig_sem);
2510 }
2511 
2512 static int check_pending_signals(bool wait) {
2513   Atomic::store(0, &sigint_count);
2514   for (;;) {
2515     for (int i = 0; i < NSIG + 1; i++) {
2516       jint n = pending_signals[i];
2517       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2518         return i;
2519       }
2520     }
2521     if (!wait) {
2522       return -1;
2523     }
2524     JavaThread *thread = JavaThread::current();
2525     ThreadBlockInVM tbivm(thread);
2526 
2527     bool threadIsSuspended;
2528     do {
2529       thread->set_suspend_equivalent();
2530       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2531       ::sem_wait(&sig_sem);
2532 
2533       // were we externally suspended while we were waiting?
2534       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2535       if (threadIsSuspended) {
2536         // The semaphore has been incremented, but while we were waiting
2537         // another thread suspended us. We don't want to continue running
2538         // while suspended because that would surprise the thread that
2539         // suspended us.
2540         ::sem_post(&sig_sem);
2541 
2542         thread->java_suspend_self();
2543       }
2544     } while (threadIsSuspended);
2545   }
2546 }
2547 
2548 int os::signal_lookup() {
2549   return check_pending_signals(false);
2550 }
2551 
2552 int os::signal_wait() {
2553   return check_pending_signals(true);
2554 }
2555 
2556 ////////////////////////////////////////////////////////////////////////////////
2557 // Virtual Memory
2558 
2559 int os::vm_page_size() {
2560   // Seems redundant as all get out
2561   assert(os::Linux::page_size() != -1, "must call os::init");
2562   return os::Linux::page_size();
2563 }
2564 
2565 // Solaris allocates memory by pages.
2566 int os::vm_allocation_granularity() {
2567   assert(os::Linux::page_size() != -1, "must call os::init");
2568   return os::Linux::page_size();
2569 }
2570 
2571 // Rationale behind this function:
2572 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2573 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2574 //  samples for JITted code. Here we create private executable mapping over the code cache
2575 //  and then we can use standard (well, almost, as mapping can change) way to provide
2576 //  info for the reporting script by storing timestamp and location of symbol
2577 void linux_wrap_code(char* base, size_t size) {
2578   static volatile jint cnt = 0;
2579 
2580   if (!UseOprofile) {
2581     return;
2582   }
2583 
2584   char buf[PATH_MAX+1];
2585   int num = Atomic::add(1, &cnt);
2586 
2587   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2588            os::get_temp_directory(), os::current_process_id(), num);
2589   unlink(buf);
2590 
2591   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2592 
2593   if (fd != -1) {
2594     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2595     if (rv != (off_t)-1) {
2596       if (::write(fd, "", 1) == 1) {
2597         mmap(base, size,
2598              PROT_READ|PROT_WRITE|PROT_EXEC,
2599              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2600       }
2601     }
2602     ::close(fd);
2603     unlink(buf);
2604   }
2605 }
2606 
2607 static bool recoverable_mmap_error(int err) {
2608   // See if the error is one we can let the caller handle. This
2609   // list of errno values comes from JBS-6843484. I can't find a
2610   // Linux man page that documents this specific set of errno
2611   // values so while this list currently matches Solaris, it may
2612   // change as we gain experience with this failure mode.
2613   switch (err) {
2614   case EBADF:
2615   case EINVAL:
2616   case ENOTSUP:
2617     // let the caller deal with these errors
2618     return true;
2619 
2620   default:
2621     // Any remaining errors on this OS can cause our reserved mapping
2622     // to be lost. That can cause confusion where different data
2623     // structures think they have the same memory mapped. The worst
2624     // scenario is if both the VM and a library think they have the
2625     // same memory mapped.
2626     return false;
2627   }
2628 }
2629 
2630 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2631                                     int err) {
2632   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2633           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2634           strerror(err), err);
2635 }
2636 
2637 static void warn_fail_commit_memory(char* addr, size_t size,
2638                                     size_t alignment_hint, bool exec,
2639                                     int err) {
2640   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2641           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2642           alignment_hint, exec, strerror(err), err);
2643 }
2644 
2645 // NOTE: Linux kernel does not really reserve the pages for us.
2646 //       All it does is to check if there are enough free pages
2647 //       left at the time of mmap(). This could be a potential
2648 //       problem.
2649 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2650   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2651   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2652                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2653   if (res != (uintptr_t) MAP_FAILED) {
2654     if (UseNUMAInterleaving) {
2655       numa_make_global(addr, size);
2656     }
2657     return 0;
2658   }
2659 
2660   int err = errno;  // save errno from mmap() call above
2661 
2662   if (!recoverable_mmap_error(err)) {
2663     warn_fail_commit_memory(addr, size, exec, err);
2664     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2665   }
2666 
2667   return err;
2668 }
2669 
2670 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2671   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2672 }
2673 
2674 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2675                                   const char* mesg) {
2676   assert(mesg != NULL, "mesg must be specified");
2677   int err = os::Linux::commit_memory_impl(addr, size, exec);
2678   if (err != 0) {
2679     // the caller wants all commit errors to exit with the specified mesg:
2680     warn_fail_commit_memory(addr, size, exec, err);
2681     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2682   }
2683 }
2684 
2685 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2686 #ifndef MAP_HUGETLB
2687   #define MAP_HUGETLB 0x40000
2688 #endif
2689 
2690 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2691 #ifndef MADV_HUGEPAGE
2692   #define MADV_HUGEPAGE 14
2693 #endif
2694 
2695 int os::Linux::commit_memory_impl(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec) {
2697   int err = os::Linux::commit_memory_impl(addr, size, exec);
2698   if (err == 0) {
2699     realign_memory(addr, size, alignment_hint);
2700   }
2701   return err;
2702 }
2703 
2704 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2705                           bool exec) {
2706   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2707 }
2708 
2709 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2710                                   size_t alignment_hint, bool exec,
2711                                   const char* mesg) {
2712   assert(mesg != NULL, "mesg must be specified");
2713   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2714   if (err != 0) {
2715     // the caller wants all commit errors to exit with the specified mesg:
2716     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2717     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2718   }
2719 }
2720 
2721 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2722   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2723     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2724     // be supported or the memory may already be backed by huge pages.
2725     ::madvise(addr, bytes, MADV_HUGEPAGE);
2726   }
2727 }
2728 
2729 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2730   // This method works by doing an mmap over an existing mmaping and effectively discarding
2731   // the existing pages. However it won't work for SHM-based large pages that cannot be
2732   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2733   // small pages on top of the SHM segment. This method always works for small pages, so we
2734   // allow that in any case.
2735   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2736     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2737   }
2738 }
2739 
2740 void os::numa_make_global(char *addr, size_t bytes) {
2741   Linux::numa_interleave_memory(addr, bytes);
2742 }
2743 
2744 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2745 // bind policy to MPOL_PREFERRED for the current thread.
2746 #define USE_MPOL_PREFERRED 0
2747 
2748 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2749   // To make NUMA and large pages more robust when both enabled, we need to ease
2750   // the requirements on where the memory should be allocated. MPOL_BIND is the
2751   // default policy and it will force memory to be allocated on the specified
2752   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2753   // the specified node, but will not force it. Using this policy will prevent
2754   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2755   // free large pages.
2756   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2757   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2758 }
2759 
2760 bool os::numa_topology_changed() { return false; }
2761 
2762 size_t os::numa_get_groups_num() {
2763   int max_node = Linux::numa_max_node();
2764   return max_node > 0 ? max_node + 1 : 1;
2765 }
2766 
2767 int os::numa_get_group_id() {
2768   int cpu_id = Linux::sched_getcpu();
2769   if (cpu_id != -1) {
2770     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2771     if (lgrp_id != -1) {
2772       return lgrp_id;
2773     }
2774   }
2775   return 0;
2776 }
2777 
2778 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2779   for (size_t i = 0; i < size; i++) {
2780     ids[i] = i;
2781   }
2782   return size;
2783 }
2784 
2785 bool os::get_page_info(char *start, page_info* info) {
2786   return false;
2787 }
2788 
2789 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2790                      page_info* page_found) {
2791   return end;
2792 }
2793 
2794 
2795 int os::Linux::sched_getcpu_syscall(void) {
2796   unsigned int cpu;
2797   int retval = -1;
2798 
2799 #if defined(IA32)
2800   #ifndef SYS_getcpu
2801     #define SYS_getcpu 318
2802   #endif
2803   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2804 #elif defined(AMD64)
2805 // Unfortunately we have to bring all these macros here from vsyscall.h
2806 // to be able to compile on old linuxes.
2807   #define __NR_vgetcpu 2
2808   #define VSYSCALL_START (-10UL << 20)
2809   #define VSYSCALL_SIZE 1024
2810   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2811   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2812   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2813   retval = vgetcpu(&cpu, NULL, NULL);
2814 #endif
2815 
2816   return (retval == -1) ? retval : cpu;
2817 }
2818 
2819 // Something to do with the numa-aware allocator needs these symbols
2820 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2821 extern "C" JNIEXPORT void numa_error(char *where) { }
2822 extern "C" JNIEXPORT int fork1() { return fork(); }
2823 
2824 
2825 // If we are running with libnuma version > 2, then we should
2826 // be trying to use symbols with versions 1.1
2827 // If we are running with earlier version, which did not have symbol versions,
2828 // we should use the base version.
2829 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2830   void *f = dlvsym(handle, name, "libnuma_1.1");
2831   if (f == NULL) {
2832     f = dlsym(handle, name);
2833   }
2834   return f;
2835 }
2836 
2837 bool os::Linux::libnuma_init() {
2838   // sched_getcpu() should be in libc.
2839   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2840                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2841 
2842   // If it's not, try a direct syscall.
2843   if (sched_getcpu() == -1) {
2844     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2845                                     (void*)&sched_getcpu_syscall));
2846   }
2847 
2848   if (sched_getcpu() != -1) { // Does it work?
2849     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2850     if (handle != NULL) {
2851       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2852                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2853       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2854                                        libnuma_dlsym(handle, "numa_max_node")));
2855       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2856                                         libnuma_dlsym(handle, "numa_available")));
2857       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2858                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2859       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2860                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2861       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2862                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2863 
2864 
2865       if (numa_available() != -1) {
2866         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2867         // Create a cpu -> node mapping
2868         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2869         rebuild_cpu_to_node_map();
2870         return true;
2871       }
2872     }
2873   }
2874   return false;
2875 }
2876 
2877 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2878 // The table is later used in get_node_by_cpu().
2879 void os::Linux::rebuild_cpu_to_node_map() {
2880   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2881                               // in libnuma (possible values are starting from 16,
2882                               // and continuing up with every other power of 2, but less
2883                               // than the maximum number of CPUs supported by kernel), and
2884                               // is a subject to change (in libnuma version 2 the requirements
2885                               // are more reasonable) we'll just hardcode the number they use
2886                               // in the library.
2887   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2888 
2889   size_t cpu_num = os::active_processor_count();
2890   size_t cpu_map_size = NCPUS / BitsPerCLong;
2891   size_t cpu_map_valid_size =
2892     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2893 
2894   cpu_to_node()->clear();
2895   cpu_to_node()->at_grow(cpu_num - 1);
2896   size_t node_num = numa_get_groups_num();
2897 
2898   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2899   for (size_t i = 0; i < node_num; i++) {
2900     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2901       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2902         if (cpu_map[j] != 0) {
2903           for (size_t k = 0; k < BitsPerCLong; k++) {
2904             if (cpu_map[j] & (1UL << k)) {
2905               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2906             }
2907           }
2908         }
2909       }
2910     }
2911   }
2912   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2913 }
2914 
2915 int os::Linux::get_node_by_cpu(int cpu_id) {
2916   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2917     return cpu_to_node()->at(cpu_id);
2918   }
2919   return -1;
2920 }
2921 
2922 GrowableArray<int>* os::Linux::_cpu_to_node;
2923 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2924 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2925 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2926 os::Linux::numa_available_func_t os::Linux::_numa_available;
2927 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2928 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2929 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2930 unsigned long* os::Linux::_numa_all_nodes;
2931 
2932 bool os::pd_uncommit_memory(char* addr, size_t size) {
2933   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2934                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2935   return res  != (uintptr_t) MAP_FAILED;
2936 }
2937 
2938 static address get_stack_commited_bottom(address bottom, size_t size) {
2939   address nbot = bottom;
2940   address ntop = bottom + size;
2941 
2942   size_t page_sz = os::vm_page_size();
2943   unsigned pages = size / page_sz;
2944 
2945   unsigned char vec[1];
2946   unsigned imin = 1, imax = pages + 1, imid;
2947   int mincore_return_value = 0;
2948 
2949   assert(imin <= imax, "Unexpected page size");
2950 
2951   while (imin < imax) {
2952     imid = (imax + imin) / 2;
2953     nbot = ntop - (imid * page_sz);
2954 
2955     // Use a trick with mincore to check whether the page is mapped or not.
2956     // mincore sets vec to 1 if page resides in memory and to 0 if page
2957     // is swapped output but if page we are asking for is unmapped
2958     // it returns -1,ENOMEM
2959     mincore_return_value = mincore(nbot, page_sz, vec);
2960 
2961     if (mincore_return_value == -1) {
2962       // Page is not mapped go up
2963       // to find first mapped page
2964       if (errno != EAGAIN) {
2965         assert(errno == ENOMEM, "Unexpected mincore errno");
2966         imax = imid;
2967       }
2968     } else {
2969       // Page is mapped go down
2970       // to find first not mapped page
2971       imin = imid + 1;
2972     }
2973   }
2974 
2975   nbot = nbot + page_sz;
2976 
2977   // Adjust stack bottom one page up if last checked page is not mapped
2978   if (mincore_return_value == -1) {
2979     nbot = nbot + page_sz;
2980   }
2981 
2982   return nbot;
2983 }
2984 
2985 
2986 // Linux uses a growable mapping for the stack, and if the mapping for
2987 // the stack guard pages is not removed when we detach a thread the
2988 // stack cannot grow beyond the pages where the stack guard was
2989 // mapped.  If at some point later in the process the stack expands to
2990 // that point, the Linux kernel cannot expand the stack any further
2991 // because the guard pages are in the way, and a segfault occurs.
2992 //
2993 // However, it's essential not to split the stack region by unmapping
2994 // a region (leaving a hole) that's already part of the stack mapping,
2995 // so if the stack mapping has already grown beyond the guard pages at
2996 // the time we create them, we have to truncate the stack mapping.
2997 // So, we need to know the extent of the stack mapping when
2998 // create_stack_guard_pages() is called.
2999 
3000 // We only need this for stacks that are growable: at the time of
3001 // writing thread stacks don't use growable mappings (i.e. those
3002 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3003 // only applies to the main thread.
3004 
3005 // If the (growable) stack mapping already extends beyond the point
3006 // where we're going to put our guard pages, truncate the mapping at
3007 // that point by munmap()ping it.  This ensures that when we later
3008 // munmap() the guard pages we don't leave a hole in the stack
3009 // mapping. This only affects the main/initial thread
3010 
3011 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3012   if (os::Linux::is_initial_thread()) {
3013     // As we manually grow stack up to bottom inside create_attached_thread(),
3014     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3015     // we don't need to do anything special.
3016     // Check it first, before calling heavy function.
3017     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3018     unsigned char vec[1];
3019 
3020     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3021       // Fallback to slow path on all errors, including EAGAIN
3022       stack_extent = (uintptr_t) get_stack_commited_bottom(
3023                                                            os::Linux::initial_thread_stack_bottom(),
3024                                                            (size_t)addr - stack_extent);
3025     }
3026 
3027     if (stack_extent < (uintptr_t)addr) {
3028       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3029     }
3030   }
3031 
3032   return os::commit_memory(addr, size, !ExecMem);
3033 }
3034 
3035 // If this is a growable mapping, remove the guard pages entirely by
3036 // munmap()ping them.  If not, just call uncommit_memory(). This only
3037 // affects the main/initial thread, but guard against future OS changes
3038 // It's safe to always unmap guard pages for initial thread because we
3039 // always place it right after end of the mapped region
3040 
3041 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3042   uintptr_t stack_extent, stack_base;
3043 
3044   if (os::Linux::is_initial_thread()) {
3045     return ::munmap(addr, size) == 0;
3046   }
3047 
3048   return os::uncommit_memory(addr, size);
3049 }
3050 
3051 static address _highest_vm_reserved_address = NULL;
3052 
3053 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3054 // at 'requested_addr'. If there are existing memory mappings at the same
3055 // location, however, they will be overwritten. If 'fixed' is false,
3056 // 'requested_addr' is only treated as a hint, the return value may or
3057 // may not start from the requested address. Unlike Linux mmap(), this
3058 // function returns NULL to indicate failure.
3059 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3060   char * addr;
3061   int flags;
3062 
3063   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3064   if (fixed) {
3065     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3066     flags |= MAP_FIXED;
3067   }
3068 
3069   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3070   // touch an uncommitted page. Otherwise, the read/write might
3071   // succeed if we have enough swap space to back the physical page.
3072   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3073                        flags, -1, 0);
3074 
3075   if (addr != MAP_FAILED) {
3076     // anon_mmap() should only get called during VM initialization,
3077     // don't need lock (actually we can skip locking even it can be called
3078     // from multiple threads, because _highest_vm_reserved_address is just a
3079     // hint about the upper limit of non-stack memory regions.)
3080     if ((address)addr + bytes > _highest_vm_reserved_address) {
3081       _highest_vm_reserved_address = (address)addr + bytes;
3082     }
3083   }
3084 
3085   return addr == MAP_FAILED ? NULL : addr;
3086 }
3087 
3088 // Don't update _highest_vm_reserved_address, because there might be memory
3089 // regions above addr + size. If so, releasing a memory region only creates
3090 // a hole in the address space, it doesn't help prevent heap-stack collision.
3091 //
3092 static int anon_munmap(char * addr, size_t size) {
3093   return ::munmap(addr, size) == 0;
3094 }
3095 
3096 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3097                             size_t alignment_hint) {
3098   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3099 }
3100 
3101 bool os::pd_release_memory(char* addr, size_t size) {
3102   return anon_munmap(addr, size);
3103 }
3104 
3105 static address highest_vm_reserved_address() {
3106   return _highest_vm_reserved_address;
3107 }
3108 
3109 static bool linux_mprotect(char* addr, size_t size, int prot) {
3110   // Linux wants the mprotect address argument to be page aligned.
3111   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3112 
3113   // According to SUSv3, mprotect() should only be used with mappings
3114   // established by mmap(), and mmap() always maps whole pages. Unaligned
3115   // 'addr' likely indicates problem in the VM (e.g. trying to change
3116   // protection of malloc'ed or statically allocated memory). Check the
3117   // caller if you hit this assert.
3118   assert(addr == bottom, "sanity check");
3119 
3120   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3121   return ::mprotect(bottom, size, prot) == 0;
3122 }
3123 
3124 // Set protections specified
3125 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3126                         bool is_committed) {
3127   unsigned int p = 0;
3128   switch (prot) {
3129   case MEM_PROT_NONE: p = PROT_NONE; break;
3130   case MEM_PROT_READ: p = PROT_READ; break;
3131   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3132   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3133   default:
3134     ShouldNotReachHere();
3135   }
3136   // is_committed is unused.
3137   return linux_mprotect(addr, bytes, p);
3138 }
3139 
3140 bool os::guard_memory(char* addr, size_t size) {
3141   return linux_mprotect(addr, size, PROT_NONE);
3142 }
3143 
3144 bool os::unguard_memory(char* addr, size_t size) {
3145   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3146 }
3147 
3148 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3149                                                     size_t page_size) {
3150   bool result = false;
3151   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3152                  MAP_ANONYMOUS|MAP_PRIVATE,
3153                  -1, 0);
3154   if (p != MAP_FAILED) {
3155     void *aligned_p = align_ptr_up(p, page_size);
3156 
3157     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3158 
3159     munmap(p, page_size * 2);
3160   }
3161 
3162   if (warn && !result) {
3163     warning("TransparentHugePages is not supported by the operating system.");
3164   }
3165 
3166   return result;
3167 }
3168 
3169 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3170   bool result = false;
3171   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3172                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3173                  -1, 0);
3174 
3175   if (p != MAP_FAILED) {
3176     // We don't know if this really is a huge page or not.
3177     FILE *fp = fopen("/proc/self/maps", "r");
3178     if (fp) {
3179       while (!feof(fp)) {
3180         char chars[257];
3181         long x = 0;
3182         if (fgets(chars, sizeof(chars), fp)) {
3183           if (sscanf(chars, "%lx-%*x", &x) == 1
3184               && x == (long)p) {
3185             if (strstr (chars, "hugepage")) {
3186               result = true;
3187               break;
3188             }
3189           }
3190         }
3191       }
3192       fclose(fp);
3193     }
3194     munmap(p, page_size);
3195   }
3196 
3197   if (warn && !result) {
3198     warning("HugeTLBFS is not supported by the operating system.");
3199   }
3200 
3201   return result;
3202 }
3203 
3204 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3205 //
3206 // From the coredump_filter documentation:
3207 //
3208 // - (bit 0) anonymous private memory
3209 // - (bit 1) anonymous shared memory
3210 // - (bit 2) file-backed private memory
3211 // - (bit 3) file-backed shared memory
3212 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3213 //           effective only if the bit 2 is cleared)
3214 // - (bit 5) hugetlb private memory
3215 // - (bit 6) hugetlb shared memory
3216 //
3217 static void set_coredump_filter(void) {
3218   FILE *f;
3219   long cdm;
3220 
3221   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3222     return;
3223   }
3224 
3225   if (fscanf(f, "%lx", &cdm) != 1) {
3226     fclose(f);
3227     return;
3228   }
3229 
3230   rewind(f);
3231 
3232   if ((cdm & LARGEPAGES_BIT) == 0) {
3233     cdm |= LARGEPAGES_BIT;
3234     fprintf(f, "%#lx", cdm);
3235   }
3236 
3237   fclose(f);
3238 }
3239 
3240 // Large page support
3241 
3242 static size_t _large_page_size = 0;
3243 
3244 size_t os::Linux::find_large_page_size() {
3245   size_t large_page_size = 0;
3246 
3247   // large_page_size on Linux is used to round up heap size. x86 uses either
3248   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3249   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3250   // page as large as 256M.
3251   //
3252   // Here we try to figure out page size by parsing /proc/meminfo and looking
3253   // for a line with the following format:
3254   //    Hugepagesize:     2048 kB
3255   //
3256   // If we can't determine the value (e.g. /proc is not mounted, or the text
3257   // format has been changed), we'll use the largest page size supported by
3258   // the processor.
3259 
3260 #ifndef ZERO
3261   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3262                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3263 #endif // ZERO
3264 
3265   FILE *fp = fopen("/proc/meminfo", "r");
3266   if (fp) {
3267     while (!feof(fp)) {
3268       int x = 0;
3269       char buf[16];
3270       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3271         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3272           large_page_size = x * K;
3273           break;
3274         }
3275       } else {
3276         // skip to next line
3277         for (;;) {
3278           int ch = fgetc(fp);
3279           if (ch == EOF || ch == (int)'\n') break;
3280         }
3281       }
3282     }
3283     fclose(fp);
3284   }
3285 
3286   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3287     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3288             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3289             proper_unit_for_byte_size(large_page_size));
3290   }
3291 
3292   return large_page_size;
3293 }
3294 
3295 size_t os::Linux::setup_large_page_size() {
3296   _large_page_size = Linux::find_large_page_size();
3297   const size_t default_page_size = (size_t)Linux::page_size();
3298   if (_large_page_size > default_page_size) {
3299     _page_sizes[0] = _large_page_size;
3300     _page_sizes[1] = default_page_size;
3301     _page_sizes[2] = 0;
3302   }
3303 
3304   return _large_page_size;
3305 }
3306 
3307 bool os::Linux::setup_large_page_type(size_t page_size) {
3308   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3309       FLAG_IS_DEFAULT(UseSHM) &&
3310       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3311 
3312     // The type of large pages has not been specified by the user.
3313 
3314     // Try UseHugeTLBFS and then UseSHM.
3315     UseHugeTLBFS = UseSHM = true;
3316 
3317     // Don't try UseTransparentHugePages since there are known
3318     // performance issues with it turned on. This might change in the future.
3319     UseTransparentHugePages = false;
3320   }
3321 
3322   if (UseTransparentHugePages) {
3323     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3324     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3325       UseHugeTLBFS = false;
3326       UseSHM = false;
3327       return true;
3328     }
3329     UseTransparentHugePages = false;
3330   }
3331 
3332   if (UseHugeTLBFS) {
3333     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3334     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3335       UseSHM = false;
3336       return true;
3337     }
3338     UseHugeTLBFS = false;
3339   }
3340 
3341   return UseSHM;
3342 }
3343 
3344 void os::large_page_init() {
3345   if (!UseLargePages &&
3346       !UseTransparentHugePages &&
3347       !UseHugeTLBFS &&
3348       !UseSHM) {
3349     // Not using large pages.
3350     return;
3351   }
3352 
3353   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3354     // The user explicitly turned off large pages.
3355     // Ignore the rest of the large pages flags.
3356     UseTransparentHugePages = false;
3357     UseHugeTLBFS = false;
3358     UseSHM = false;
3359     return;
3360   }
3361 
3362   size_t large_page_size = Linux::setup_large_page_size();
3363   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3364 
3365   set_coredump_filter();
3366 }
3367 
3368 #ifndef SHM_HUGETLB
3369   #define SHM_HUGETLB 04000
3370 #endif
3371 
3372 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3373                                             char* req_addr, bool exec) {
3374   // "exec" is passed in but not used.  Creating the shared image for
3375   // the code cache doesn't have an SHM_X executable permission to check.
3376   assert(UseLargePages && UseSHM, "only for SHM large pages");
3377   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3378 
3379   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3380     return NULL; // Fallback to small pages.
3381   }
3382 
3383   key_t key = IPC_PRIVATE;
3384   char *addr;
3385 
3386   bool warn_on_failure = UseLargePages &&
3387                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3388                          !FLAG_IS_DEFAULT(UseSHM) ||
3389                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3390   char msg[128];
3391 
3392   // Create a large shared memory region to attach to based on size.
3393   // Currently, size is the total size of the heap
3394   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3395   if (shmid == -1) {
3396     // Possible reasons for shmget failure:
3397     // 1. shmmax is too small for Java heap.
3398     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3399     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3400     // 2. not enough large page memory.
3401     //    > check available large pages: cat /proc/meminfo
3402     //    > increase amount of large pages:
3403     //          echo new_value > /proc/sys/vm/nr_hugepages
3404     //      Note 1: different Linux may use different name for this property,
3405     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3406     //      Note 2: it's possible there's enough physical memory available but
3407     //            they are so fragmented after a long run that they can't
3408     //            coalesce into large pages. Try to reserve large pages when
3409     //            the system is still "fresh".
3410     if (warn_on_failure) {
3411       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3412       warning("%s", msg);
3413     }
3414     return NULL;
3415   }
3416 
3417   // attach to the region
3418   addr = (char*)shmat(shmid, req_addr, 0);
3419   int err = errno;
3420 
3421   // Remove shmid. If shmat() is successful, the actual shared memory segment
3422   // will be deleted when it's detached by shmdt() or when the process
3423   // terminates. If shmat() is not successful this will remove the shared
3424   // segment immediately.
3425   shmctl(shmid, IPC_RMID, NULL);
3426 
3427   if ((intptr_t)addr == -1) {
3428     if (warn_on_failure) {
3429       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3430       warning("%s", msg);
3431     }
3432     return NULL;
3433   }
3434 
3435   return addr;
3436 }
3437 
3438 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3439                                         int error) {
3440   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3441 
3442   bool warn_on_failure = UseLargePages &&
3443       (!FLAG_IS_DEFAULT(UseLargePages) ||
3444        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3445        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3446 
3447   if (warn_on_failure) {
3448     char msg[128];
3449     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3450                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3451     warning("%s", msg);
3452   }
3453 }
3454 
3455 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3456                                                         char* req_addr,
3457                                                         bool exec) {
3458   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3459   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3460   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3461 
3462   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3463   char* addr = (char*)::mmap(req_addr, bytes, prot,
3464                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3465                              -1, 0);
3466 
3467   if (addr == MAP_FAILED) {
3468     warn_on_large_pages_failure(req_addr, bytes, errno);
3469     return NULL;
3470   }
3471 
3472   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3473 
3474   return addr;
3475 }
3476 
3477 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3478 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3479 //   (req_addr != NULL) or with a given alignment.
3480 //  - bytes shall be a multiple of alignment.
3481 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3482 //  - alignment sets the alignment at which memory shall be allocated.
3483 //     It must be a multiple of allocation granularity.
3484 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3485 //  req_addr or NULL.
3486 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3487 
3488   size_t extra_size = bytes;
3489   if (req_addr == NULL && alignment > 0) {
3490     extra_size += alignment;
3491   }
3492 
3493   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3494     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3495     -1, 0);
3496   if (start == MAP_FAILED) {
3497     start = NULL;
3498   } else {
3499     if (req_addr != NULL) {
3500       if (start != req_addr) {
3501         ::munmap(start, extra_size);
3502         start = NULL;
3503       }
3504     } else {
3505       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3506       char* const end_aligned = start_aligned + bytes;
3507       char* const end = start + extra_size;
3508       if (start_aligned > start) {
3509         ::munmap(start, start_aligned - start);
3510       }
3511       if (end_aligned < end) {
3512         ::munmap(end_aligned, end - end_aligned);
3513       }
3514       start = start_aligned;
3515     }
3516   }
3517   return start;
3518 
3519 }
3520 
3521 // Reserve memory using mmap(MAP_HUGETLB).
3522 //  - bytes shall be a multiple of alignment.
3523 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3524 //  - alignment sets the alignment at which memory shall be allocated.
3525 //     It must be a multiple of allocation granularity.
3526 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3527 //  req_addr or NULL.
3528 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3529                                                          size_t alignment,
3530                                                          char* req_addr,
3531                                                          bool exec) {
3532   size_t large_page_size = os::large_page_size();
3533   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3534 
3535   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3536   assert(is_size_aligned(bytes, alignment), "Must be");
3537 
3538   // First reserve - but not commit - the address range in small pages.
3539   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3540 
3541   if (start == NULL) {
3542     return NULL;
3543   }
3544 
3545   assert(is_ptr_aligned(start, alignment), "Must be");
3546 
3547   char* end = start + bytes;
3548 
3549   // Find the regions of the allocated chunk that can be promoted to large pages.
3550   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3551   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3552 
3553   size_t lp_bytes = lp_end - lp_start;
3554 
3555   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3556 
3557   if (lp_bytes == 0) {
3558     // The mapped region doesn't even span the start and the end of a large page.
3559     // Fall back to allocate a non-special area.
3560     ::munmap(start, end - start);
3561     return NULL;
3562   }
3563 
3564   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3565 
3566   void* result;
3567 
3568   // Commit small-paged leading area.
3569   if (start != lp_start) {
3570     result = ::mmap(start, lp_start - start, prot,
3571                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3572                     -1, 0);
3573     if (result == MAP_FAILED) {
3574       ::munmap(lp_start, end - lp_start);
3575       return NULL;
3576     }
3577   }
3578 
3579   // Commit large-paged area.
3580   result = ::mmap(lp_start, lp_bytes, prot,
3581                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3582                   -1, 0);
3583   if (result == MAP_FAILED) {
3584     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3585     // If the mmap above fails, the large pages region will be unmapped and we
3586     // have regions before and after with small pages. Release these regions.
3587     //
3588     // |  mapped  |  unmapped  |  mapped  |
3589     // ^          ^            ^          ^
3590     // start      lp_start     lp_end     end
3591     //
3592     ::munmap(start, lp_start - start);
3593     ::munmap(lp_end, end - lp_end);
3594     return NULL;
3595   }
3596 
3597   // Commit small-paged trailing area.
3598   if (lp_end != end) {
3599     result = ::mmap(lp_end, end - lp_end, prot,
3600                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3601                     -1, 0);
3602     if (result == MAP_FAILED) {
3603       ::munmap(start, lp_end - start);
3604       return NULL;
3605     }
3606   }
3607 
3608   return start;
3609 }
3610 
3611 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3612                                                    size_t alignment,
3613                                                    char* req_addr,
3614                                                    bool exec) {
3615   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3616   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3617   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3618   assert(is_power_of_2(os::large_page_size()), "Must be");
3619   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3620 
3621   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3622     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3623   } else {
3624     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3625   }
3626 }
3627 
3628 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3629                                  char* req_addr, bool exec) {
3630   assert(UseLargePages, "only for large pages");
3631 
3632   char* addr;
3633   if (UseSHM) {
3634     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3635   } else {
3636     assert(UseHugeTLBFS, "must be");
3637     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3638   }
3639 
3640   if (addr != NULL) {
3641     if (UseNUMAInterleaving) {
3642       numa_make_global(addr, bytes);
3643     }
3644 
3645     // The memory is committed
3646     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3647   }
3648 
3649   return addr;
3650 }
3651 
3652 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3653   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3654   return shmdt(base) == 0;
3655 }
3656 
3657 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3658   return pd_release_memory(base, bytes);
3659 }
3660 
3661 bool os::release_memory_special(char* base, size_t bytes) {
3662   bool res;
3663   if (MemTracker::tracking_level() > NMT_minimal) {
3664     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3665     res = os::Linux::release_memory_special_impl(base, bytes);
3666     if (res) {
3667       tkr.record((address)base, bytes);
3668     }
3669 
3670   } else {
3671     res = os::Linux::release_memory_special_impl(base, bytes);
3672   }
3673   return res;
3674 }
3675 
3676 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3677   assert(UseLargePages, "only for large pages");
3678   bool res;
3679 
3680   if (UseSHM) {
3681     res = os::Linux::release_memory_special_shm(base, bytes);
3682   } else {
3683     assert(UseHugeTLBFS, "must be");
3684     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3685   }
3686   return res;
3687 }
3688 
3689 size_t os::large_page_size() {
3690   return _large_page_size;
3691 }
3692 
3693 // With SysV SHM the entire memory region must be allocated as shared
3694 // memory.
3695 // HugeTLBFS allows application to commit large page memory on demand.
3696 // However, when committing memory with HugeTLBFS fails, the region
3697 // that was supposed to be committed will lose the old reservation
3698 // and allow other threads to steal that memory region. Because of this
3699 // behavior we can't commit HugeTLBFS memory.
3700 bool os::can_commit_large_page_memory() {
3701   return UseTransparentHugePages;
3702 }
3703 
3704 bool os::can_execute_large_page_memory() {
3705   return UseTransparentHugePages || UseHugeTLBFS;
3706 }
3707 
3708 // Reserve memory at an arbitrary address, only if that area is
3709 // available (and not reserved for something else).
3710 
3711 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3712   const int max_tries = 10;
3713   char* base[max_tries];
3714   size_t size[max_tries];
3715   const size_t gap = 0x000000;
3716 
3717   // Assert only that the size is a multiple of the page size, since
3718   // that's all that mmap requires, and since that's all we really know
3719   // about at this low abstraction level.  If we need higher alignment,
3720   // we can either pass an alignment to this method or verify alignment
3721   // in one of the methods further up the call chain.  See bug 5044738.
3722   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3723 
3724   // Repeatedly allocate blocks until the block is allocated at the
3725   // right spot. Give up after max_tries. Note that reserve_memory() will
3726   // automatically update _highest_vm_reserved_address if the call is
3727   // successful. The variable tracks the highest memory address every reserved
3728   // by JVM. It is used to detect heap-stack collision if running with
3729   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3730   // space than needed, it could confuse the collision detecting code. To
3731   // solve the problem, save current _highest_vm_reserved_address and
3732   // calculate the correct value before return.
3733   address old_highest = _highest_vm_reserved_address;
3734 
3735   // Linux mmap allows caller to pass an address as hint; give it a try first,
3736   // if kernel honors the hint then we can return immediately.
3737   char * addr = anon_mmap(requested_addr, bytes, false);
3738   if (addr == requested_addr) {
3739     return requested_addr;
3740   }
3741 
3742   if (addr != NULL) {
3743     // mmap() is successful but it fails to reserve at the requested address
3744     anon_munmap(addr, bytes);
3745   }
3746 
3747   int i;
3748   for (i = 0; i < max_tries; ++i) {
3749     base[i] = reserve_memory(bytes);
3750 
3751     if (base[i] != NULL) {
3752       // Is this the block we wanted?
3753       if (base[i] == requested_addr) {
3754         size[i] = bytes;
3755         break;
3756       }
3757 
3758       // Does this overlap the block we wanted? Give back the overlapped
3759       // parts and try again.
3760 
3761       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3762       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3763         unmap_memory(base[i], top_overlap);
3764         base[i] += top_overlap;
3765         size[i] = bytes - top_overlap;
3766       } else {
3767         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3768         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3769           unmap_memory(requested_addr, bottom_overlap);
3770           size[i] = bytes - bottom_overlap;
3771         } else {
3772           size[i] = bytes;
3773         }
3774       }
3775     }
3776   }
3777 
3778   // Give back the unused reserved pieces.
3779 
3780   for (int j = 0; j < i; ++j) {
3781     if (base[j] != NULL) {
3782       unmap_memory(base[j], size[j]);
3783     }
3784   }
3785 
3786   if (i < max_tries) {
3787     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3788     return requested_addr;
3789   } else {
3790     _highest_vm_reserved_address = old_highest;
3791     return NULL;
3792   }
3793 }
3794 
3795 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3796   return ::read(fd, buf, nBytes);
3797 }
3798 
3799 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3800   return ::pread(fd, buf, nBytes, offset);
3801 }
3802 
3803 // Short sleep, direct OS call.
3804 //
3805 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3806 // sched_yield(2) will actually give up the CPU:
3807 //
3808 //   * Alone on this pariticular CPU, keeps running.
3809 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3810 //     (pre 2.6.39).
3811 //
3812 // So calling this with 0 is an alternative.
3813 //
3814 void os::naked_short_sleep(jlong ms) {
3815   struct timespec req;
3816 
3817   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3818   req.tv_sec = 0;
3819   if (ms > 0) {
3820     req.tv_nsec = (ms % 1000) * 1000000;
3821   } else {
3822     req.tv_nsec = 1;
3823   }
3824 
3825   nanosleep(&req, NULL);
3826 
3827   return;
3828 }
3829 
3830 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3831 void os::infinite_sleep() {
3832   while (true) {    // sleep forever ...
3833     ::sleep(100);   // ... 100 seconds at a time
3834   }
3835 }
3836 
3837 // Used to convert frequent JVM_Yield() to nops
3838 bool os::dont_yield() {
3839   return DontYieldALot;
3840 }
3841 
3842 void os::naked_yield() {
3843   sched_yield();
3844 }
3845 
3846 ////////////////////////////////////////////////////////////////////////////////
3847 // thread priority support
3848 
3849 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3850 // only supports dynamic priority, static priority must be zero. For real-time
3851 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3852 // However, for large multi-threaded applications, SCHED_RR is not only slower
3853 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3854 // of 5 runs - Sep 2005).
3855 //
3856 // The following code actually changes the niceness of kernel-thread/LWP. It
3857 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3858 // not the entire user process, and user level threads are 1:1 mapped to kernel
3859 // threads. It has always been the case, but could change in the future. For
3860 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3861 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3862 
3863 int os::java_to_os_priority[CriticalPriority + 1] = {
3864   19,              // 0 Entry should never be used
3865 
3866    4,              // 1 MinPriority
3867    3,              // 2
3868    2,              // 3
3869 
3870    1,              // 4
3871    0,              // 5 NormPriority
3872   -1,              // 6
3873 
3874   -2,              // 7
3875   -3,              // 8
3876   -4,              // 9 NearMaxPriority
3877 
3878   -5,              // 10 MaxPriority
3879 
3880   -5               // 11 CriticalPriority
3881 };
3882 
3883 static int prio_init() {
3884   if (ThreadPriorityPolicy == 1) {
3885     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3886     // if effective uid is not root. Perhaps, a more elegant way of doing
3887     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3888     if (geteuid() != 0) {
3889       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3890         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3891       }
3892       ThreadPriorityPolicy = 0;
3893     }
3894   }
3895   if (UseCriticalJavaThreadPriority) {
3896     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3897   }
3898   return 0;
3899 }
3900 
3901 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3902   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3903 
3904   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3905   return (ret == 0) ? OS_OK : OS_ERR;
3906 }
3907 
3908 OSReturn os::get_native_priority(const Thread* const thread,
3909                                  int *priority_ptr) {
3910   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3911     *priority_ptr = java_to_os_priority[NormPriority];
3912     return OS_OK;
3913   }
3914 
3915   errno = 0;
3916   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3917   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3918 }
3919 
3920 // Hint to the underlying OS that a task switch would not be good.
3921 // Void return because it's a hint and can fail.
3922 void os::hint_no_preempt() {}
3923 
3924 ////////////////////////////////////////////////////////////////////////////////
3925 // suspend/resume support
3926 
3927 //  the low-level signal-based suspend/resume support is a remnant from the
3928 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3929 //  within hotspot. Now there is a single use-case for this:
3930 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3931 //      that runs in the watcher thread.
3932 //  The remaining code is greatly simplified from the more general suspension
3933 //  code that used to be used.
3934 //
3935 //  The protocol is quite simple:
3936 //  - suspend:
3937 //      - sends a signal to the target thread
3938 //      - polls the suspend state of the osthread using a yield loop
3939 //      - target thread signal handler (SR_handler) sets suspend state
3940 //        and blocks in sigsuspend until continued
3941 //  - resume:
3942 //      - sets target osthread state to continue
3943 //      - sends signal to end the sigsuspend loop in the SR_handler
3944 //
3945 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3946 
3947 static void resume_clear_context(OSThread *osthread) {
3948   osthread->set_ucontext(NULL);
3949   osthread->set_siginfo(NULL);
3950 }
3951 
3952 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3953                                  ucontext_t* context) {
3954   osthread->set_ucontext(context);
3955   osthread->set_siginfo(siginfo);
3956 }
3957 
3958 // Handler function invoked when a thread's execution is suspended or
3959 // resumed. We have to be careful that only async-safe functions are
3960 // called here (Note: most pthread functions are not async safe and
3961 // should be avoided.)
3962 //
3963 // Note: sigwait() is a more natural fit than sigsuspend() from an
3964 // interface point of view, but sigwait() prevents the signal hander
3965 // from being run. libpthread would get very confused by not having
3966 // its signal handlers run and prevents sigwait()'s use with the
3967 // mutex granting granting signal.
3968 //
3969 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3970 //
3971 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3972   // Save and restore errno to avoid confusing native code with EINTR
3973   // after sigsuspend.
3974   int old_errno = errno;
3975 
3976   Thread* thread = Thread::current();
3977   OSThread* osthread = thread->osthread();
3978   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3979 
3980   os::SuspendResume::State current = osthread->sr.state();
3981   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3982     suspend_save_context(osthread, siginfo, context);
3983 
3984     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3985     os::SuspendResume::State state = osthread->sr.suspended();
3986     if (state == os::SuspendResume::SR_SUSPENDED) {
3987       sigset_t suspend_set;  // signals for sigsuspend()
3988 
3989       // get current set of blocked signals and unblock resume signal
3990       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3991       sigdelset(&suspend_set, SR_signum);
3992 
3993       sr_semaphore.signal();
3994       // wait here until we are resumed
3995       while (1) {
3996         sigsuspend(&suspend_set);
3997 
3998         os::SuspendResume::State result = osthread->sr.running();
3999         if (result == os::SuspendResume::SR_RUNNING) {
4000           sr_semaphore.signal();
4001           break;
4002         }
4003       }
4004 
4005     } else if (state == os::SuspendResume::SR_RUNNING) {
4006       // request was cancelled, continue
4007     } else {
4008       ShouldNotReachHere();
4009     }
4010 
4011     resume_clear_context(osthread);
4012   } else if (current == os::SuspendResume::SR_RUNNING) {
4013     // request was cancelled, continue
4014   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4015     // ignore
4016   } else {
4017     // ignore
4018   }
4019 
4020   errno = old_errno;
4021 }
4022 
4023 
4024 static int SR_initialize() {
4025   struct sigaction act;
4026   char *s;
4027   // Get signal number to use for suspend/resume
4028   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4029     int sig = ::strtol(s, 0, 10);
4030     if (sig > 0 || sig < _NSIG) {
4031       SR_signum = sig;
4032     }
4033   }
4034 
4035   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4036          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4037 
4038   sigemptyset(&SR_sigset);
4039   sigaddset(&SR_sigset, SR_signum);
4040 
4041   // Set up signal handler for suspend/resume
4042   act.sa_flags = SA_RESTART|SA_SIGINFO;
4043   act.sa_handler = (void (*)(int)) SR_handler;
4044 
4045   // SR_signum is blocked by default.
4046   // 4528190 - We also need to block pthread restart signal (32 on all
4047   // supported Linux platforms). Note that LinuxThreads need to block
4048   // this signal for all threads to work properly. So we don't have
4049   // to use hard-coded signal number when setting up the mask.
4050   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4051 
4052   if (sigaction(SR_signum, &act, 0) == -1) {
4053     return -1;
4054   }
4055 
4056   // Save signal flag
4057   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4058   return 0;
4059 }
4060 
4061 static int sr_notify(OSThread* osthread) {
4062   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4063   assert_status(status == 0, status, "pthread_kill");
4064   return status;
4065 }
4066 
4067 // "Randomly" selected value for how long we want to spin
4068 // before bailing out on suspending a thread, also how often
4069 // we send a signal to a thread we want to resume
4070 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4071 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4072 
4073 // returns true on success and false on error - really an error is fatal
4074 // but this seems the normal response to library errors
4075 static bool do_suspend(OSThread* osthread) {
4076   assert(osthread->sr.is_running(), "thread should be running");
4077   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4078 
4079   // mark as suspended and send signal
4080   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4081     // failed to switch, state wasn't running?
4082     ShouldNotReachHere();
4083     return false;
4084   }
4085 
4086   if (sr_notify(osthread) != 0) {
4087     ShouldNotReachHere();
4088   }
4089 
4090   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4091   while (true) {
4092     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4093       break;
4094     } else {
4095       // timeout
4096       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4097       if (cancelled == os::SuspendResume::SR_RUNNING) {
4098         return false;
4099       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4100         // make sure that we consume the signal on the semaphore as well
4101         sr_semaphore.wait();
4102         break;
4103       } else {
4104         ShouldNotReachHere();
4105         return false;
4106       }
4107     }
4108   }
4109 
4110   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4111   return true;
4112 }
4113 
4114 static void do_resume(OSThread* osthread) {
4115   assert(osthread->sr.is_suspended(), "thread should be suspended");
4116   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4117 
4118   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4119     // failed to switch to WAKEUP_REQUEST
4120     ShouldNotReachHere();
4121     return;
4122   }
4123 
4124   while (true) {
4125     if (sr_notify(osthread) == 0) {
4126       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4127         if (osthread->sr.is_running()) {
4128           return;
4129         }
4130       }
4131     } else {
4132       ShouldNotReachHere();
4133     }
4134   }
4135 
4136   guarantee(osthread->sr.is_running(), "Must be running!");
4137 }
4138 
4139 ///////////////////////////////////////////////////////////////////////////////////
4140 // signal handling (except suspend/resume)
4141 
4142 // This routine may be used by user applications as a "hook" to catch signals.
4143 // The user-defined signal handler must pass unrecognized signals to this
4144 // routine, and if it returns true (non-zero), then the signal handler must
4145 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4146 // routine will never retun false (zero), but instead will execute a VM panic
4147 // routine kill the process.
4148 //
4149 // If this routine returns false, it is OK to call it again.  This allows
4150 // the user-defined signal handler to perform checks either before or after
4151 // the VM performs its own checks.  Naturally, the user code would be making
4152 // a serious error if it tried to handle an exception (such as a null check
4153 // or breakpoint) that the VM was generating for its own correct operation.
4154 //
4155 // This routine may recognize any of the following kinds of signals:
4156 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4157 // It should be consulted by handlers for any of those signals.
4158 //
4159 // The caller of this routine must pass in the three arguments supplied
4160 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4161 // field of the structure passed to sigaction().  This routine assumes that
4162 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4163 //
4164 // Note that the VM will print warnings if it detects conflicting signal
4165 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4166 //
4167 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4168                                                  siginfo_t* siginfo,
4169                                                  void* ucontext,
4170                                                  int abort_if_unrecognized);
4171 
4172 void signalHandler(int sig, siginfo_t* info, void* uc) {
4173   assert(info != NULL && uc != NULL, "it must be old kernel");
4174   int orig_errno = errno;  // Preserve errno value over signal handler.
4175   JVM_handle_linux_signal(sig, info, uc, true);
4176   errno = orig_errno;
4177 }
4178 
4179 
4180 // This boolean allows users to forward their own non-matching signals
4181 // to JVM_handle_linux_signal, harmlessly.
4182 bool os::Linux::signal_handlers_are_installed = false;
4183 
4184 // For signal-chaining
4185 struct sigaction os::Linux::sigact[MAXSIGNUM];
4186 unsigned int os::Linux::sigs = 0;
4187 bool os::Linux::libjsig_is_loaded = false;
4188 typedef struct sigaction *(*get_signal_t)(int);
4189 get_signal_t os::Linux::get_signal_action = NULL;
4190 
4191 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4192   struct sigaction *actp = NULL;
4193 
4194   if (libjsig_is_loaded) {
4195     // Retrieve the old signal handler from libjsig
4196     actp = (*get_signal_action)(sig);
4197   }
4198   if (actp == NULL) {
4199     // Retrieve the preinstalled signal handler from jvm
4200     actp = get_preinstalled_handler(sig);
4201   }
4202 
4203   return actp;
4204 }
4205 
4206 static bool call_chained_handler(struct sigaction *actp, int sig,
4207                                  siginfo_t *siginfo, void *context) {
4208   // Call the old signal handler
4209   if (actp->sa_handler == SIG_DFL) {
4210     // It's more reasonable to let jvm treat it as an unexpected exception
4211     // instead of taking the default action.
4212     return false;
4213   } else if (actp->sa_handler != SIG_IGN) {
4214     if ((actp->sa_flags & SA_NODEFER) == 0) {
4215       // automaticlly block the signal
4216       sigaddset(&(actp->sa_mask), sig);
4217     }
4218 
4219     sa_handler_t hand;
4220     sa_sigaction_t sa;
4221     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4222     // retrieve the chained handler
4223     if (siginfo_flag_set) {
4224       sa = actp->sa_sigaction;
4225     } else {
4226       hand = actp->sa_handler;
4227     }
4228 
4229     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4230       actp->sa_handler = SIG_DFL;
4231     }
4232 
4233     // try to honor the signal mask
4234     sigset_t oset;
4235     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4236 
4237     // call into the chained handler
4238     if (siginfo_flag_set) {
4239       (*sa)(sig, siginfo, context);
4240     } else {
4241       (*hand)(sig);
4242     }
4243 
4244     // restore the signal mask
4245     pthread_sigmask(SIG_SETMASK, &oset, 0);
4246   }
4247   // Tell jvm's signal handler the signal is taken care of.
4248   return true;
4249 }
4250 
4251 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4252   bool chained = false;
4253   // signal-chaining
4254   if (UseSignalChaining) {
4255     struct sigaction *actp = get_chained_signal_action(sig);
4256     if (actp != NULL) {
4257       chained = call_chained_handler(actp, sig, siginfo, context);
4258     }
4259   }
4260   return chained;
4261 }
4262 
4263 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4264   if ((((unsigned int)1 << sig) & sigs) != 0) {
4265     return &sigact[sig];
4266   }
4267   return NULL;
4268 }
4269 
4270 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4271   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4272   sigact[sig] = oldAct;
4273   sigs |= (unsigned int)1 << sig;
4274 }
4275 
4276 // for diagnostic
4277 int os::Linux::sigflags[MAXSIGNUM];
4278 
4279 int os::Linux::get_our_sigflags(int sig) {
4280   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4281   return sigflags[sig];
4282 }
4283 
4284 void os::Linux::set_our_sigflags(int sig, int flags) {
4285   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4286   sigflags[sig] = flags;
4287 }
4288 
4289 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4290   // Check for overwrite.
4291   struct sigaction oldAct;
4292   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4293 
4294   void* oldhand = oldAct.sa_sigaction
4295                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4296                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4297   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4298       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4299       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4300     if (AllowUserSignalHandlers || !set_installed) {
4301       // Do not overwrite; user takes responsibility to forward to us.
4302       return;
4303     } else if (UseSignalChaining) {
4304       // save the old handler in jvm
4305       save_preinstalled_handler(sig, oldAct);
4306       // libjsig also interposes the sigaction() call below and saves the
4307       // old sigaction on it own.
4308     } else {
4309       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4310                     "%#lx for signal %d.", (long)oldhand, sig));
4311     }
4312   }
4313 
4314   struct sigaction sigAct;
4315   sigfillset(&(sigAct.sa_mask));
4316   sigAct.sa_handler = SIG_DFL;
4317   if (!set_installed) {
4318     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4319   } else {
4320     sigAct.sa_sigaction = signalHandler;
4321     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4322   }
4323   // Save flags, which are set by ours
4324   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4325   sigflags[sig] = sigAct.sa_flags;
4326 
4327   int ret = sigaction(sig, &sigAct, &oldAct);
4328   assert(ret == 0, "check");
4329 
4330   void* oldhand2  = oldAct.sa_sigaction
4331                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4332                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4333   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4334 }
4335 
4336 // install signal handlers for signals that HotSpot needs to
4337 // handle in order to support Java-level exception handling.
4338 
4339 void os::Linux::install_signal_handlers() {
4340   if (!signal_handlers_are_installed) {
4341     signal_handlers_are_installed = true;
4342 
4343     // signal-chaining
4344     typedef void (*signal_setting_t)();
4345     signal_setting_t begin_signal_setting = NULL;
4346     signal_setting_t end_signal_setting = NULL;
4347     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4348                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4349     if (begin_signal_setting != NULL) {
4350       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4351                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4352       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4353                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4354       libjsig_is_loaded = true;
4355       assert(UseSignalChaining, "should enable signal-chaining");
4356     }
4357     if (libjsig_is_loaded) {
4358       // Tell libjsig jvm is setting signal handlers
4359       (*begin_signal_setting)();
4360     }
4361 
4362     set_signal_handler(SIGSEGV, true);
4363     set_signal_handler(SIGPIPE, true);
4364     set_signal_handler(SIGBUS, true);
4365     set_signal_handler(SIGILL, true);
4366     set_signal_handler(SIGFPE, true);
4367 #if defined(PPC64)
4368     set_signal_handler(SIGTRAP, true);
4369 #endif
4370     set_signal_handler(SIGXFSZ, true);
4371 
4372     if (libjsig_is_loaded) {
4373       // Tell libjsig jvm finishes setting signal handlers
4374       (*end_signal_setting)();
4375     }
4376 
4377     // We don't activate signal checker if libjsig is in place, we trust ourselves
4378     // and if UserSignalHandler is installed all bets are off.
4379     // Log that signal checking is off only if -verbose:jni is specified.
4380     if (CheckJNICalls) {
4381       if (libjsig_is_loaded) {
4382         if (PrintJNIResolving) {
4383           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4384         }
4385         check_signals = false;
4386       }
4387       if (AllowUserSignalHandlers) {
4388         if (PrintJNIResolving) {
4389           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4390         }
4391         check_signals = false;
4392       }
4393     }
4394   }
4395 }
4396 
4397 // This is the fastest way to get thread cpu time on Linux.
4398 // Returns cpu time (user+sys) for any thread, not only for current.
4399 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4400 // It might work on 2.6.10+ with a special kernel/glibc patch.
4401 // For reference, please, see IEEE Std 1003.1-2004:
4402 //   http://www.unix.org/single_unix_specification
4403 
4404 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4405   struct timespec tp;
4406   int rc = os::Linux::clock_gettime(clockid, &tp);
4407   assert(rc == 0, "clock_gettime is expected to return 0 code");
4408 
4409   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4410 }
4411 
4412 /////
4413 // glibc on Linux platform uses non-documented flag
4414 // to indicate, that some special sort of signal
4415 // trampoline is used.
4416 // We will never set this flag, and we should
4417 // ignore this flag in our diagnostic
4418 #ifdef SIGNIFICANT_SIGNAL_MASK
4419   #undef SIGNIFICANT_SIGNAL_MASK
4420 #endif
4421 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4422 
4423 static const char* get_signal_handler_name(address handler,
4424                                            char* buf, int buflen) {
4425   int offset;
4426   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4427   if (found) {
4428     // skip directory names
4429     const char *p1, *p2;
4430     p1 = buf;
4431     size_t len = strlen(os::file_separator());
4432     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4433     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4434   } else {
4435     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4436   }
4437   return buf;
4438 }
4439 
4440 static void print_signal_handler(outputStream* st, int sig,
4441                                  char* buf, size_t buflen) {
4442   struct sigaction sa;
4443 
4444   sigaction(sig, NULL, &sa);
4445 
4446   // See comment for SIGNIFICANT_SIGNAL_MASK define
4447   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4448 
4449   st->print("%s: ", os::exception_name(sig, buf, buflen));
4450 
4451   address handler = (sa.sa_flags & SA_SIGINFO)
4452     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4453     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4454 
4455   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4456     st->print("SIG_DFL");
4457   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4458     st->print("SIG_IGN");
4459   } else {
4460     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4461   }
4462 
4463   st->print(", sa_mask[0]=");
4464   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4465 
4466   address rh = VMError::get_resetted_sighandler(sig);
4467   // May be, handler was resetted by VMError?
4468   if (rh != NULL) {
4469     handler = rh;
4470     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4471   }
4472 
4473   st->print(", sa_flags=");
4474   os::Posix::print_sa_flags(st, sa.sa_flags);
4475 
4476   // Check: is it our handler?
4477   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4478       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4479     // It is our signal handler
4480     // check for flags, reset system-used one!
4481     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4482       st->print(
4483                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4484                 os::Linux::get_our_sigflags(sig));
4485     }
4486   }
4487   st->cr();
4488 }
4489 
4490 
4491 #define DO_SIGNAL_CHECK(sig)                      \
4492   do {                                            \
4493     if (!sigismember(&check_signal_done, sig)) {  \
4494       os::Linux::check_signal_handler(sig);       \
4495     }                                             \
4496   } while (0)
4497 
4498 // This method is a periodic task to check for misbehaving JNI applications
4499 // under CheckJNI, we can add any periodic checks here
4500 
4501 void os::run_periodic_checks() {
4502   if (check_signals == false) return;
4503 
4504   // SEGV and BUS if overridden could potentially prevent
4505   // generation of hs*.log in the event of a crash, debugging
4506   // such a case can be very challenging, so we absolutely
4507   // check the following for a good measure:
4508   DO_SIGNAL_CHECK(SIGSEGV);
4509   DO_SIGNAL_CHECK(SIGILL);
4510   DO_SIGNAL_CHECK(SIGFPE);
4511   DO_SIGNAL_CHECK(SIGBUS);
4512   DO_SIGNAL_CHECK(SIGPIPE);
4513   DO_SIGNAL_CHECK(SIGXFSZ);
4514 #if defined(PPC64)
4515   DO_SIGNAL_CHECK(SIGTRAP);
4516 #endif
4517 
4518   // ReduceSignalUsage allows the user to override these handlers
4519   // see comments at the very top and jvm_solaris.h
4520   if (!ReduceSignalUsage) {
4521     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4522     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4523     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4524     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4525   }
4526 
4527   DO_SIGNAL_CHECK(SR_signum);
4528   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4529 }
4530 
4531 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4532 
4533 static os_sigaction_t os_sigaction = NULL;
4534 
4535 void os::Linux::check_signal_handler(int sig) {
4536   char buf[O_BUFLEN];
4537   address jvmHandler = NULL;
4538 
4539 
4540   struct sigaction act;
4541   if (os_sigaction == NULL) {
4542     // only trust the default sigaction, in case it has been interposed
4543     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4544     if (os_sigaction == NULL) return;
4545   }
4546 
4547   os_sigaction(sig, (struct sigaction*)NULL, &act);
4548 
4549 
4550   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4551 
4552   address thisHandler = (act.sa_flags & SA_SIGINFO)
4553     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4554     : CAST_FROM_FN_PTR(address, act.sa_handler);
4555 
4556 
4557   switch (sig) {
4558   case SIGSEGV:
4559   case SIGBUS:
4560   case SIGFPE:
4561   case SIGPIPE:
4562   case SIGILL:
4563   case SIGXFSZ:
4564     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4565     break;
4566 
4567   case SHUTDOWN1_SIGNAL:
4568   case SHUTDOWN2_SIGNAL:
4569   case SHUTDOWN3_SIGNAL:
4570   case BREAK_SIGNAL:
4571     jvmHandler = (address)user_handler();
4572     break;
4573 
4574   case INTERRUPT_SIGNAL:
4575     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4576     break;
4577 
4578   default:
4579     if (sig == SR_signum) {
4580       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4581     } else {
4582       return;
4583     }
4584     break;
4585   }
4586 
4587   if (thisHandler != jvmHandler) {
4588     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4589     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4590     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4591     // No need to check this sig any longer
4592     sigaddset(&check_signal_done, sig);
4593     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4594     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4595       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4596                     exception_name(sig, buf, O_BUFLEN));
4597     }
4598   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4599     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4600     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4601     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4602     // No need to check this sig any longer
4603     sigaddset(&check_signal_done, sig);
4604   }
4605 
4606   // Dump all the signal
4607   if (sigismember(&check_signal_done, sig)) {
4608     print_signal_handlers(tty, buf, O_BUFLEN);
4609   }
4610 }
4611 
4612 extern void report_error(char* file_name, int line_no, char* title,
4613                          char* format, ...);
4614 
4615 extern bool signal_name(int signo, char* buf, size_t len);
4616 
4617 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4618   if (0 < exception_code && exception_code <= SIGRTMAX) {
4619     // signal
4620     if (!signal_name(exception_code, buf, size)) {
4621       jio_snprintf(buf, size, "SIG%d", exception_code);
4622     }
4623     return buf;
4624   } else {
4625     return NULL;
4626   }
4627 }
4628 
4629 // this is called _before_ the most of global arguments have been parsed
4630 void os::init(void) {
4631   char dummy;   // used to get a guess on initial stack address
4632 //  first_hrtime = gethrtime();
4633 
4634   // With LinuxThreads the JavaMain thread pid (primordial thread)
4635   // is different than the pid of the java launcher thread.
4636   // So, on Linux, the launcher thread pid is passed to the VM
4637   // via the sun.java.launcher.pid property.
4638   // Use this property instead of getpid() if it was correctly passed.
4639   // See bug 6351349.
4640   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4641 
4642   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4643 
4644   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4645 
4646   init_random(1234567);
4647 
4648   ThreadCritical::initialize();
4649 
4650   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4651   if (Linux::page_size() == -1) {
4652     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4653                   strerror(errno)));
4654   }
4655   init_page_sizes((size_t) Linux::page_size());
4656 
4657   Linux::initialize_system_info();
4658 
4659   // main_thread points to the aboriginal thread
4660   Linux::_main_thread = pthread_self();
4661 
4662   Linux::clock_init();
4663   initial_time_count = javaTimeNanos();
4664 
4665   // pthread_condattr initialization for monotonic clock
4666   int status;
4667   pthread_condattr_t* _condattr = os::Linux::condAttr();
4668   if ((status = pthread_condattr_init(_condattr)) != 0) {
4669     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4670   }
4671   // Only set the clock if CLOCK_MONOTONIC is available
4672   if (os::supports_monotonic_clock()) {
4673     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4674       if (status == EINVAL) {
4675         warning("Unable to use monotonic clock with relative timed-waits" \
4676                 " - changes to the time-of-day clock may have adverse affects");
4677       } else {
4678         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4679       }
4680     }
4681   }
4682   // else it defaults to CLOCK_REALTIME
4683 
4684   // If the pagesize of the VM is greater than 8K determine the appropriate
4685   // number of initial guard pages.  The user can change this with the
4686   // command line arguments, if needed.
4687   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4688     StackYellowPages = 1;
4689     StackRedPages = 1;
4690     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4691   }
4692 
4693   // retrieve entry point for pthread_setname_np
4694   Linux::_pthread_setname_np =
4695     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4696 
4697 }
4698 
4699 // To install functions for atexit system call
4700 extern "C" {
4701   static void perfMemory_exit_helper() {
4702     perfMemory_exit();
4703   }
4704 }
4705 
4706 // this is called _after_ the global arguments have been parsed
4707 jint os::init_2(void) {
4708   Linux::fast_thread_clock_init();
4709 
4710   // Allocate a single page and mark it as readable for safepoint polling
4711   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4712   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4713 
4714   os::set_polling_page(polling_page);
4715 
4716 #ifndef PRODUCT
4717   if (Verbose && PrintMiscellaneous) {
4718     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4719                (intptr_t)polling_page);
4720   }
4721 #endif
4722 
4723   if (!UseMembar) {
4724     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4725     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4726     os::set_memory_serialize_page(mem_serialize_page);
4727 
4728 #ifndef PRODUCT
4729     if (Verbose && PrintMiscellaneous) {
4730       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4731                  (intptr_t)mem_serialize_page);
4732     }
4733 #endif
4734   }
4735 
4736   // initialize suspend/resume support - must do this before signal_sets_init()
4737   if (SR_initialize() != 0) {
4738     perror("SR_initialize failed");
4739     return JNI_ERR;
4740   }
4741 
4742   Linux::signal_sets_init();
4743   Linux::install_signal_handlers();
4744 
4745   // Check minimum allowable stack size for thread creation and to initialize
4746   // the java system classes, including StackOverflowError - depends on page
4747   // size.  Add a page for compiler2 recursion in main thread.
4748   // Add in 2*BytesPerWord times page size to account for VM stack during
4749   // class initialization depending on 32 or 64 bit VM.
4750   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4751                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4752                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4753 
4754   size_t threadStackSizeInBytes = ThreadStackSize * K;
4755   if (threadStackSizeInBytes != 0 &&
4756       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4757     tty->print_cr("\nThe stack size specified is too small, "
4758                   "Specify at least %dk",
4759                   os::Linux::min_stack_allowed/ K);
4760     return JNI_ERR;
4761   }
4762 
4763   // Make the stack size a multiple of the page size so that
4764   // the yellow/red zones can be guarded.
4765   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4766                                                 vm_page_size()));
4767 
4768   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4769 
4770 #if defined(IA32)
4771   workaround_expand_exec_shield_cs_limit();
4772 #endif
4773 
4774   Linux::libpthread_init();
4775   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4776     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4777                   Linux::glibc_version(), Linux::libpthread_version(),
4778                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4779   }
4780 
4781   if (UseNUMA) {
4782     if (!Linux::libnuma_init()) {
4783       UseNUMA = false;
4784     } else {
4785       if ((Linux::numa_max_node() < 1)) {
4786         // There's only one node(they start from 0), disable NUMA.
4787         UseNUMA = false;
4788       }
4789     }
4790     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4791     // we can make the adaptive lgrp chunk resizing work. If the user specified
4792     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4793     // disable adaptive resizing.
4794     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4795       if (FLAG_IS_DEFAULT(UseNUMA)) {
4796         UseNUMA = false;
4797       } else {
4798         if (FLAG_IS_DEFAULT(UseLargePages) &&
4799             FLAG_IS_DEFAULT(UseSHM) &&
4800             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4801           UseLargePages = false;
4802         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4803           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4804           UseAdaptiveSizePolicy = false;
4805           UseAdaptiveNUMAChunkSizing = false;
4806         }
4807       }
4808     }
4809     if (!UseNUMA && ForceNUMA) {
4810       UseNUMA = true;
4811     }
4812   }
4813 
4814   if (MaxFDLimit) {
4815     // set the number of file descriptors to max. print out error
4816     // if getrlimit/setrlimit fails but continue regardless.
4817     struct rlimit nbr_files;
4818     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4819     if (status != 0) {
4820       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4821         perror("os::init_2 getrlimit failed");
4822       }
4823     } else {
4824       nbr_files.rlim_cur = nbr_files.rlim_max;
4825       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4826       if (status != 0) {
4827         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4828           perror("os::init_2 setrlimit failed");
4829         }
4830       }
4831     }
4832   }
4833 
4834   // Initialize lock used to serialize thread creation (see os::create_thread)
4835   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4836 
4837   // at-exit methods are called in the reverse order of their registration.
4838   // atexit functions are called on return from main or as a result of a
4839   // call to exit(3C). There can be only 32 of these functions registered
4840   // and atexit() does not set errno.
4841 
4842   if (PerfAllowAtExitRegistration) {
4843     // only register atexit functions if PerfAllowAtExitRegistration is set.
4844     // atexit functions can be delayed until process exit time, which
4845     // can be problematic for embedded VM situations. Embedded VMs should
4846     // call DestroyJavaVM() to assure that VM resources are released.
4847 
4848     // note: perfMemory_exit_helper atexit function may be removed in
4849     // the future if the appropriate cleanup code can be added to the
4850     // VM_Exit VMOperation's doit method.
4851     if (atexit(perfMemory_exit_helper) != 0) {
4852       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4853     }
4854   }
4855 
4856   // initialize thread priority policy
4857   prio_init();
4858 
4859   return JNI_OK;
4860 }
4861 
4862 // Mark the polling page as unreadable
4863 void os::make_polling_page_unreadable(void) {
4864   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4865     fatal("Could not disable polling page");
4866   }
4867 }
4868 
4869 // Mark the polling page as readable
4870 void os::make_polling_page_readable(void) {
4871   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4872     fatal("Could not enable polling page");
4873   }
4874 }
4875 
4876 int os::active_processor_count() {
4877   // Linux doesn't yet have a (official) notion of processor sets,
4878   // so just return the number of online processors.
4879   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4880   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4881   return online_cpus;
4882 }
4883 
4884 void os::set_native_thread_name(const char *name) {
4885   if (Linux::_pthread_setname_np) {
4886     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4887     snprintf(buf, sizeof(buf), "%s", name);
4888     buf[sizeof(buf) - 1] = '\0';
4889     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4890     // ERANGE should not happen; all other errors should just be ignored.
4891     assert(rc != ERANGE, "pthread_setname_np failed");
4892   }
4893 }
4894 
4895 bool os::distribute_processes(uint length, uint* distribution) {
4896   // Not yet implemented.
4897   return false;
4898 }
4899 
4900 bool os::bind_to_processor(uint processor_id) {
4901   // Not yet implemented.
4902   return false;
4903 }
4904 
4905 ///
4906 
4907 void os::SuspendedThreadTask::internal_do_task() {
4908   if (do_suspend(_thread->osthread())) {
4909     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4910     do_task(context);
4911     do_resume(_thread->osthread());
4912   }
4913 }
4914 
4915 class PcFetcher : public os::SuspendedThreadTask {
4916  public:
4917   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4918   ExtendedPC result();
4919  protected:
4920   void do_task(const os::SuspendedThreadTaskContext& context);
4921  private:
4922   ExtendedPC _epc;
4923 };
4924 
4925 ExtendedPC PcFetcher::result() {
4926   guarantee(is_done(), "task is not done yet.");
4927   return _epc;
4928 }
4929 
4930 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4931   Thread* thread = context.thread();
4932   OSThread* osthread = thread->osthread();
4933   if (osthread->ucontext() != NULL) {
4934     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4935   } else {
4936     // NULL context is unexpected, double-check this is the VMThread
4937     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4938   }
4939 }
4940 
4941 // Suspends the target using the signal mechanism and then grabs the PC before
4942 // resuming the target. Used by the flat-profiler only
4943 ExtendedPC os::get_thread_pc(Thread* thread) {
4944   // Make sure that it is called by the watcher for the VMThread
4945   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4946   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4947 
4948   PcFetcher fetcher(thread);
4949   fetcher.run();
4950   return fetcher.result();
4951 }
4952 
4953 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4954                                    pthread_mutex_t *_mutex,
4955                                    const struct timespec *_abstime) {
4956   if (is_NPTL()) {
4957     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4958   } else {
4959     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4960     // word back to default 64bit precision if condvar is signaled. Java
4961     // wants 53bit precision.  Save and restore current value.
4962     int fpu = get_fpu_control_word();
4963     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4964     set_fpu_control_word(fpu);
4965     return status;
4966   }
4967 }
4968 
4969 ////////////////////////////////////////////////////////////////////////////////
4970 // debug support
4971 
4972 bool os::find(address addr, outputStream* st) {
4973   Dl_info dlinfo;
4974   memset(&dlinfo, 0, sizeof(dlinfo));
4975   if (dladdr(addr, &dlinfo) != 0) {
4976     st->print(PTR_FORMAT ": ", addr);
4977     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4978       st->print("%s+%#x", dlinfo.dli_sname,
4979                 addr - (intptr_t)dlinfo.dli_saddr);
4980     } else if (dlinfo.dli_fbase != NULL) {
4981       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4982     } else {
4983       st->print("<absolute address>");
4984     }
4985     if (dlinfo.dli_fname != NULL) {
4986       st->print(" in %s", dlinfo.dli_fname);
4987     }
4988     if (dlinfo.dli_fbase != NULL) {
4989       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4990     }
4991     st->cr();
4992 
4993     if (Verbose) {
4994       // decode some bytes around the PC
4995       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4996       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4997       address       lowest = (address) dlinfo.dli_sname;
4998       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4999       if (begin < lowest)  begin = lowest;
5000       Dl_info dlinfo2;
5001       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5002           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5003         end = (address) dlinfo2.dli_saddr;
5004       }
5005       Disassembler::decode(begin, end, st);
5006     }
5007     return true;
5008   }
5009   return false;
5010 }
5011 
5012 ////////////////////////////////////////////////////////////////////////////////
5013 // misc
5014 
5015 // This does not do anything on Linux. This is basically a hook for being
5016 // able to use structured exception handling (thread-local exception filters)
5017 // on, e.g., Win32.
5018 void
5019 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5020                          JavaCallArguments* args, Thread* thread) {
5021   f(value, method, args, thread);
5022 }
5023 
5024 void os::print_statistics() {
5025 }
5026 
5027 int os::message_box(const char* title, const char* message) {
5028   int i;
5029   fdStream err(defaultStream::error_fd());
5030   for (i = 0; i < 78; i++) err.print_raw("=");
5031   err.cr();
5032   err.print_raw_cr(title);
5033   for (i = 0; i < 78; i++) err.print_raw("-");
5034   err.cr();
5035   err.print_raw_cr(message);
5036   for (i = 0; i < 78; i++) err.print_raw("=");
5037   err.cr();
5038 
5039   char buf[16];
5040   // Prevent process from exiting upon "read error" without consuming all CPU
5041   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5042 
5043   return buf[0] == 'y' || buf[0] == 'Y';
5044 }
5045 
5046 int os::stat(const char *path, struct stat *sbuf) {
5047   char pathbuf[MAX_PATH];
5048   if (strlen(path) > MAX_PATH - 1) {
5049     errno = ENAMETOOLONG;
5050     return -1;
5051   }
5052   os::native_path(strcpy(pathbuf, path));
5053   return ::stat(pathbuf, sbuf);
5054 }
5055 
5056 bool os::check_heap(bool force) {
5057   return true;
5058 }
5059 
5060 // Is a (classpath) directory empty?
5061 bool os::dir_is_empty(const char* path) {
5062   DIR *dir = NULL;
5063   struct dirent *ptr;
5064 
5065   dir = opendir(path);
5066   if (dir == NULL) return true;
5067 
5068   // Scan the directory
5069   bool result = true;
5070   char buf[sizeof(struct dirent) + MAX_PATH];
5071   while (result && (ptr = ::readdir(dir)) != NULL) {
5072     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5073       result = false;
5074     }
5075   }
5076   closedir(dir);
5077   return result;
5078 }
5079 
5080 // This code originates from JDK's sysOpen and open64_w
5081 // from src/solaris/hpi/src/system_md.c
5082 
5083 int os::open(const char *path, int oflag, int mode) {
5084   if (strlen(path) > MAX_PATH - 1) {
5085     errno = ENAMETOOLONG;
5086     return -1;
5087   }
5088 
5089   // All file descriptors that are opened in the Java process and not
5090   // specifically destined for a subprocess should have the close-on-exec
5091   // flag set.  If we don't set it, then careless 3rd party native code
5092   // might fork and exec without closing all appropriate file descriptors
5093   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5094   // turn might:
5095   //
5096   // - cause end-of-file to fail to be detected on some file
5097   //   descriptors, resulting in mysterious hangs, or
5098   //
5099   // - might cause an fopen in the subprocess to fail on a system
5100   //   suffering from bug 1085341.
5101   //
5102   // (Yes, the default setting of the close-on-exec flag is a Unix
5103   // design flaw)
5104   //
5105   // See:
5106   // 1085341: 32-bit stdio routines should support file descriptors >255
5107   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5108   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5109   //
5110   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5111   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5112   // because it saves a system call and removes a small window where the flag
5113   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5114   // and we fall back to using FD_CLOEXEC (see below).
5115 #ifdef O_CLOEXEC
5116   oflag |= O_CLOEXEC;
5117 #endif
5118 
5119   int fd = ::open64(path, oflag, mode);
5120   if (fd == -1) return -1;
5121 
5122   //If the open succeeded, the file might still be a directory
5123   {
5124     struct stat64 buf64;
5125     int ret = ::fstat64(fd, &buf64);
5126     int st_mode = buf64.st_mode;
5127 
5128     if (ret != -1) {
5129       if ((st_mode & S_IFMT) == S_IFDIR) {
5130         errno = EISDIR;
5131         ::close(fd);
5132         return -1;
5133       }
5134     } else {
5135       ::close(fd);
5136       return -1;
5137     }
5138   }
5139 
5140 #ifdef FD_CLOEXEC
5141   // Validate that the use of the O_CLOEXEC flag on open above worked.
5142   // With recent kernels, we will perform this check exactly once.
5143   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5144   if (!O_CLOEXEC_is_known_to_work) {
5145     int flags = ::fcntl(fd, F_GETFD);
5146     if (flags != -1) {
5147       if ((flags & FD_CLOEXEC) != 0)
5148         O_CLOEXEC_is_known_to_work = 1;
5149       else
5150         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5151     }
5152   }
5153 #endif
5154 
5155   return fd;
5156 }
5157 
5158 
5159 // create binary file, rewriting existing file if required
5160 int os::create_binary_file(const char* path, bool rewrite_existing) {
5161   int oflags = O_WRONLY | O_CREAT;
5162   if (!rewrite_existing) {
5163     oflags |= O_EXCL;
5164   }
5165   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5166 }
5167 
5168 // return current position of file pointer
5169 jlong os::current_file_offset(int fd) {
5170   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5171 }
5172 
5173 // move file pointer to the specified offset
5174 jlong os::seek_to_file_offset(int fd, jlong offset) {
5175   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5176 }
5177 
5178 // This code originates from JDK's sysAvailable
5179 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5180 
5181 int os::available(int fd, jlong *bytes) {
5182   jlong cur, end;
5183   int mode;
5184   struct stat64 buf64;
5185 
5186   if (::fstat64(fd, &buf64) >= 0) {
5187     mode = buf64.st_mode;
5188     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5189       // XXX: is the following call interruptible? If so, this might
5190       // need to go through the INTERRUPT_IO() wrapper as for other
5191       // blocking, interruptible calls in this file.
5192       int n;
5193       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5194         *bytes = n;
5195         return 1;
5196       }
5197     }
5198   }
5199   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5200     return 0;
5201   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5202     return 0;
5203   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5204     return 0;
5205   }
5206   *bytes = end - cur;
5207   return 1;
5208 }
5209 
5210 // Map a block of memory.
5211 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5212                         char *addr, size_t bytes, bool read_only,
5213                         bool allow_exec) {
5214   int prot;
5215   int flags = MAP_PRIVATE;
5216 
5217   if (read_only) {
5218     prot = PROT_READ;
5219   } else {
5220     prot = PROT_READ | PROT_WRITE;
5221   }
5222 
5223   if (allow_exec) {
5224     prot |= PROT_EXEC;
5225   }
5226 
5227   if (addr != NULL) {
5228     flags |= MAP_FIXED;
5229   }
5230 
5231   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5232                                      fd, file_offset);
5233   if (mapped_address == MAP_FAILED) {
5234     return NULL;
5235   }
5236   return mapped_address;
5237 }
5238 
5239 
5240 // Remap a block of memory.
5241 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5242                           char *addr, size_t bytes, bool read_only,
5243                           bool allow_exec) {
5244   // same as map_memory() on this OS
5245   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5246                         allow_exec);
5247 }
5248 
5249 
5250 // Unmap a block of memory.
5251 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5252   return munmap(addr, bytes) == 0;
5253 }
5254 
5255 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5256 
5257 static clockid_t thread_cpu_clockid(Thread* thread) {
5258   pthread_t tid = thread->osthread()->pthread_id();
5259   clockid_t clockid;
5260 
5261   // Get thread clockid
5262   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5263   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5264   return clockid;
5265 }
5266 
5267 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5268 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5269 // of a thread.
5270 //
5271 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5272 // the fast estimate available on the platform.
5273 
5274 jlong os::current_thread_cpu_time() {
5275   if (os::Linux::supports_fast_thread_cpu_time()) {
5276     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5277   } else {
5278     // return user + sys since the cost is the same
5279     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5280   }
5281 }
5282 
5283 jlong os::thread_cpu_time(Thread* thread) {
5284   // consistent with what current_thread_cpu_time() returns
5285   if (os::Linux::supports_fast_thread_cpu_time()) {
5286     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5287   } else {
5288     return slow_thread_cpu_time(thread, true /* user + sys */);
5289   }
5290 }
5291 
5292 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5293   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5294     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5295   } else {
5296     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5297   }
5298 }
5299 
5300 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5301   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5302     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5303   } else {
5304     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5305   }
5306 }
5307 
5308 //  -1 on error.
5309 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5310   pid_t  tid = thread->osthread()->thread_id();
5311   char *s;
5312   char stat[2048];
5313   int statlen;
5314   char proc_name[64];
5315   int count;
5316   long sys_time, user_time;
5317   char cdummy;
5318   int idummy;
5319   long ldummy;
5320   FILE *fp;
5321 
5322   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5323   fp = fopen(proc_name, "r");
5324   if (fp == NULL) return -1;
5325   statlen = fread(stat, 1, 2047, fp);
5326   stat[statlen] = '\0';
5327   fclose(fp);
5328 
5329   // Skip pid and the command string. Note that we could be dealing with
5330   // weird command names, e.g. user could decide to rename java launcher
5331   // to "java 1.4.2 :)", then the stat file would look like
5332   //                1234 (java 1.4.2 :)) R ... ...
5333   // We don't really need to know the command string, just find the last
5334   // occurrence of ")" and then start parsing from there. See bug 4726580.
5335   s = strrchr(stat, ')');
5336   if (s == NULL) return -1;
5337 
5338   // Skip blank chars
5339   do { s++; } while (s && isspace(*s));
5340 
5341   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5342                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5343                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5344                  &user_time, &sys_time);
5345   if (count != 13) return -1;
5346   if (user_sys_cpu_time) {
5347     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5348   } else {
5349     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5350   }
5351 }
5352 
5353 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5354   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5355   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5356   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5357   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5358 }
5359 
5360 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5361   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5362   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5363   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5364   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5365 }
5366 
5367 bool os::is_thread_cpu_time_supported() {
5368   return true;
5369 }
5370 
5371 // System loadavg support.  Returns -1 if load average cannot be obtained.
5372 // Linux doesn't yet have a (official) notion of processor sets,
5373 // so just return the system wide load average.
5374 int os::loadavg(double loadavg[], int nelem) {
5375   return ::getloadavg(loadavg, nelem);
5376 }
5377 
5378 void os::pause() {
5379   char filename[MAX_PATH];
5380   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5381     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5382   } else {
5383     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5384   }
5385 
5386   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5387   if (fd != -1) {
5388     struct stat buf;
5389     ::close(fd);
5390     while (::stat(filename, &buf) == 0) {
5391       (void)::poll(NULL, 0, 100);
5392     }
5393   } else {
5394     jio_fprintf(stderr,
5395                 "Could not open pause file '%s', continuing immediately.\n", filename);
5396   }
5397 }
5398 
5399 
5400 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5401 // comment paragraphs are worth repeating here:
5402 //
5403 // Assumption:
5404 //    Only one parker can exist on an event, which is why we allocate
5405 //    them per-thread. Multiple unparkers can coexist.
5406 //
5407 // _Event serves as a restricted-range semaphore.
5408 //   -1 : thread is blocked, i.e. there is a waiter
5409 //    0 : neutral: thread is running or ready,
5410 //        could have been signaled after a wait started
5411 //    1 : signaled - thread is running or ready
5412 //
5413 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5414 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5415 // For specifics regarding the bug see GLIBC BUGID 261237 :
5416 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5417 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5418 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5419 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5420 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5421 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5422 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5423 // of libpthread avoids the problem, but isn't practical.
5424 //
5425 // Possible remedies:
5426 //
5427 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5428 //      This is palliative and probabilistic, however.  If the thread is preempted
5429 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5430 //      than the minimum period may have passed, and the abstime may be stale (in the
5431 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5432 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5433 //
5434 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5435 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5436 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5437 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5438 //      thread.
5439 //
5440 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5441 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5442 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5443 //      This also works well.  In fact it avoids kernel-level scalability impediments
5444 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5445 //      timers in a graceful fashion.
5446 //
5447 // 4.   When the abstime value is in the past it appears that control returns
5448 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5449 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5450 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5451 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5452 //      It may be possible to avoid reinitialization by checking the return
5453 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5454 //      condvar we must establish the invariant that cond_signal() is only called
5455 //      within critical sections protected by the adjunct mutex.  This prevents
5456 //      cond_signal() from "seeing" a condvar that's in the midst of being
5457 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5458 //      desirable signal-after-unlock optimization that avoids futile context switching.
5459 //
5460 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5461 //      structure when a condvar is used or initialized.  cond_destroy()  would
5462 //      release the helper structure.  Our reinitialize-after-timedwait fix
5463 //      put excessive stress on malloc/free and locks protecting the c-heap.
5464 //
5465 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5466 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5467 // and only enabling the work-around for vulnerable environments.
5468 
5469 // utility to compute the abstime argument to timedwait:
5470 // millis is the relative timeout time
5471 // abstime will be the absolute timeout time
5472 // TODO: replace compute_abstime() with unpackTime()
5473 
5474 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5475   if (millis < 0)  millis = 0;
5476 
5477   jlong seconds = millis / 1000;
5478   millis %= 1000;
5479   if (seconds > 50000000) { // see man cond_timedwait(3T)
5480     seconds = 50000000;
5481   }
5482 
5483   if (os::supports_monotonic_clock()) {
5484     struct timespec now;
5485     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5486     assert_status(status == 0, status, "clock_gettime");
5487     abstime->tv_sec = now.tv_sec  + seconds;
5488     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5489     if (nanos >= NANOSECS_PER_SEC) {
5490       abstime->tv_sec += 1;
5491       nanos -= NANOSECS_PER_SEC;
5492     }
5493     abstime->tv_nsec = nanos;
5494   } else {
5495     struct timeval now;
5496     int status = gettimeofday(&now, NULL);
5497     assert(status == 0, "gettimeofday");
5498     abstime->tv_sec = now.tv_sec  + seconds;
5499     long usec = now.tv_usec + millis * 1000;
5500     if (usec >= 1000000) {
5501       abstime->tv_sec += 1;
5502       usec -= 1000000;
5503     }
5504     abstime->tv_nsec = usec * 1000;
5505   }
5506   return abstime;
5507 }
5508 
5509 void os::PlatformEvent::park() {       // AKA "down()"
5510   // Transitions for _Event:
5511   //   -1 => -1 : illegal
5512   //    1 =>  0 : pass - return immediately
5513   //    0 => -1 : block; then set _Event to 0 before returning
5514 
5515   // Invariant: Only the thread associated with the Event/PlatformEvent
5516   // may call park().
5517   // TODO: assert that _Assoc != NULL or _Assoc == Self
5518   assert(_nParked == 0, "invariant");
5519 
5520   int v;
5521   for (;;) {
5522     v = _Event;
5523     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5524   }
5525   guarantee(v >= 0, "invariant");
5526   if (v == 0) {
5527     // Do this the hard way by blocking ...
5528     int status = pthread_mutex_lock(_mutex);
5529     assert_status(status == 0, status, "mutex_lock");
5530     guarantee(_nParked == 0, "invariant");
5531     ++_nParked;
5532     while (_Event < 0) {
5533       status = pthread_cond_wait(_cond, _mutex);
5534       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5535       // Treat this the same as if the wait was interrupted
5536       if (status == ETIME) { status = EINTR; }
5537       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5538     }
5539     --_nParked;
5540 
5541     _Event = 0;
5542     status = pthread_mutex_unlock(_mutex);
5543     assert_status(status == 0, status, "mutex_unlock");
5544     // Paranoia to ensure our locked and lock-free paths interact
5545     // correctly with each other.
5546     OrderAccess::fence();
5547   }
5548   guarantee(_Event >= 0, "invariant");
5549 }
5550 
5551 int os::PlatformEvent::park(jlong millis) {
5552   // Transitions for _Event:
5553   //   -1 => -1 : illegal
5554   //    1 =>  0 : pass - return immediately
5555   //    0 => -1 : block; then set _Event to 0 before returning
5556 
5557   guarantee(_nParked == 0, "invariant");
5558 
5559   int v;
5560   for (;;) {
5561     v = _Event;
5562     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5563   }
5564   guarantee(v >= 0, "invariant");
5565   if (v != 0) return OS_OK;
5566 
5567   // We do this the hard way, by blocking the thread.
5568   // Consider enforcing a minimum timeout value.
5569   struct timespec abst;
5570   compute_abstime(&abst, millis);
5571 
5572   int ret = OS_TIMEOUT;
5573   int status = pthread_mutex_lock(_mutex);
5574   assert_status(status == 0, status, "mutex_lock");
5575   guarantee(_nParked == 0, "invariant");
5576   ++_nParked;
5577 
5578   // Object.wait(timo) will return because of
5579   // (a) notification
5580   // (b) timeout
5581   // (c) thread.interrupt
5582   //
5583   // Thread.interrupt and object.notify{All} both call Event::set.
5584   // That is, we treat thread.interrupt as a special case of notification.
5585   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5586   // We assume all ETIME returns are valid.
5587   //
5588   // TODO: properly differentiate simultaneous notify+interrupt.
5589   // In that case, we should propagate the notify to another waiter.
5590 
5591   while (_Event < 0) {
5592     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5593     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5594       pthread_cond_destroy(_cond);
5595       pthread_cond_init(_cond, os::Linux::condAttr());
5596     }
5597     assert_status(status == 0 || status == EINTR ||
5598                   status == ETIME || status == ETIMEDOUT,
5599                   status, "cond_timedwait");
5600     if (!FilterSpuriousWakeups) break;                 // previous semantics
5601     if (status == ETIME || status == ETIMEDOUT) break;
5602     // We consume and ignore EINTR and spurious wakeups.
5603   }
5604   --_nParked;
5605   if (_Event >= 0) {
5606     ret = OS_OK;
5607   }
5608   _Event = 0;
5609   status = pthread_mutex_unlock(_mutex);
5610   assert_status(status == 0, status, "mutex_unlock");
5611   assert(_nParked == 0, "invariant");
5612   // Paranoia to ensure our locked and lock-free paths interact
5613   // correctly with each other.
5614   OrderAccess::fence();
5615   return ret;
5616 }
5617 
5618 void os::PlatformEvent::unpark() {
5619   // Transitions for _Event:
5620   //    0 => 1 : just return
5621   //    1 => 1 : just return
5622   //   -1 => either 0 or 1; must signal target thread
5623   //         That is, we can safely transition _Event from -1 to either
5624   //         0 or 1.
5625   // See also: "Semaphores in Plan 9" by Mullender & Cox
5626   //
5627   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5628   // that it will take two back-to-back park() calls for the owning
5629   // thread to block. This has the benefit of forcing a spurious return
5630   // from the first park() call after an unpark() call which will help
5631   // shake out uses of park() and unpark() without condition variables.
5632 
5633   if (Atomic::xchg(1, &_Event) >= 0) return;
5634 
5635   // Wait for the thread associated with the event to vacate
5636   int status = pthread_mutex_lock(_mutex);
5637   assert_status(status == 0, status, "mutex_lock");
5638   int AnyWaiters = _nParked;
5639   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5640   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5641     AnyWaiters = 0;
5642     pthread_cond_signal(_cond);
5643   }
5644   status = pthread_mutex_unlock(_mutex);
5645   assert_status(status == 0, status, "mutex_unlock");
5646   if (AnyWaiters != 0) {
5647     // Note that we signal() *after* dropping the lock for "immortal" Events.
5648     // This is safe and avoids a common class of  futile wakeups.  In rare
5649     // circumstances this can cause a thread to return prematurely from
5650     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5651     // will simply re-test the condition and re-park itself.
5652     // This provides particular benefit if the underlying platform does not
5653     // provide wait morphing.
5654     status = pthread_cond_signal(_cond);
5655     assert_status(status == 0, status, "cond_signal");
5656   }
5657 }
5658 
5659 
5660 // JSR166
5661 // -------------------------------------------------------
5662 
5663 // The solaris and linux implementations of park/unpark are fairly
5664 // conservative for now, but can be improved. They currently use a
5665 // mutex/condvar pair, plus a a count.
5666 // Park decrements count if > 0, else does a condvar wait.  Unpark
5667 // sets count to 1 and signals condvar.  Only one thread ever waits
5668 // on the condvar. Contention seen when trying to park implies that someone
5669 // is unparking you, so don't wait. And spurious returns are fine, so there
5670 // is no need to track notifications.
5671 
5672 // This code is common to linux and solaris and will be moved to a
5673 // common place in dolphin.
5674 //
5675 // The passed in time value is either a relative time in nanoseconds
5676 // or an absolute time in milliseconds. Either way it has to be unpacked
5677 // into suitable seconds and nanoseconds components and stored in the
5678 // given timespec structure.
5679 // Given time is a 64-bit value and the time_t used in the timespec is only
5680 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5681 // overflow if times way in the future are given. Further on Solaris versions
5682 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5683 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5684 // As it will be 28 years before "now + 100000000" will overflow we can
5685 // ignore overflow and just impose a hard-limit on seconds using the value
5686 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5687 // years from "now".
5688 
5689 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5690   assert(time > 0, "convertTime");
5691   time_t max_secs = 0;
5692 
5693   if (!os::supports_monotonic_clock() || isAbsolute) {
5694     struct timeval now;
5695     int status = gettimeofday(&now, NULL);
5696     assert(status == 0, "gettimeofday");
5697 
5698     max_secs = now.tv_sec + MAX_SECS;
5699 
5700     if (isAbsolute) {
5701       jlong secs = time / 1000;
5702       if (secs > max_secs) {
5703         absTime->tv_sec = max_secs;
5704       } else {
5705         absTime->tv_sec = secs;
5706       }
5707       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5708     } else {
5709       jlong secs = time / NANOSECS_PER_SEC;
5710       if (secs >= MAX_SECS) {
5711         absTime->tv_sec = max_secs;
5712         absTime->tv_nsec = 0;
5713       } else {
5714         absTime->tv_sec = now.tv_sec + secs;
5715         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5716         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5717           absTime->tv_nsec -= NANOSECS_PER_SEC;
5718           ++absTime->tv_sec; // note: this must be <= max_secs
5719         }
5720       }
5721     }
5722   } else {
5723     // must be relative using monotonic clock
5724     struct timespec now;
5725     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5726     assert_status(status == 0, status, "clock_gettime");
5727     max_secs = now.tv_sec + MAX_SECS;
5728     jlong secs = time / NANOSECS_PER_SEC;
5729     if (secs >= MAX_SECS) {
5730       absTime->tv_sec = max_secs;
5731       absTime->tv_nsec = 0;
5732     } else {
5733       absTime->tv_sec = now.tv_sec + secs;
5734       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5735       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5736         absTime->tv_nsec -= NANOSECS_PER_SEC;
5737         ++absTime->tv_sec; // note: this must be <= max_secs
5738       }
5739     }
5740   }
5741   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5742   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5743   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5744   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5745 }
5746 
5747 void Parker::park(bool isAbsolute, jlong time) {
5748   // Ideally we'd do something useful while spinning, such
5749   // as calling unpackTime().
5750 
5751   // Optional fast-path check:
5752   // Return immediately if a permit is available.
5753   // We depend on Atomic::xchg() having full barrier semantics
5754   // since we are doing a lock-free update to _counter.
5755   if (Atomic::xchg(0, &_counter) > 0) return;
5756 
5757   Thread* thread = Thread::current();
5758   assert(thread->is_Java_thread(), "Must be JavaThread");
5759   JavaThread *jt = (JavaThread *)thread;
5760 
5761   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5762   // Check interrupt before trying to wait
5763   if (Thread::is_interrupted(thread, false)) {
5764     return;
5765   }
5766 
5767   // Next, demultiplex/decode time arguments
5768   timespec absTime;
5769   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5770     return;
5771   }
5772   if (time > 0) {
5773     unpackTime(&absTime, isAbsolute, time);
5774   }
5775 
5776 
5777   // Enter safepoint region
5778   // Beware of deadlocks such as 6317397.
5779   // The per-thread Parker:: mutex is a classic leaf-lock.
5780   // In particular a thread must never block on the Threads_lock while
5781   // holding the Parker:: mutex.  If safepoints are pending both the
5782   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5783   ThreadBlockInVM tbivm(jt);
5784 
5785   // Don't wait if cannot get lock since interference arises from
5786   // unblocking.  Also. check interrupt before trying wait
5787   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5788     return;
5789   }
5790 
5791   int status;
5792   if (_counter > 0)  { // no wait needed
5793     _counter = 0;
5794     status = pthread_mutex_unlock(_mutex);
5795     assert(status == 0, "invariant");
5796     // Paranoia to ensure our locked and lock-free paths interact
5797     // correctly with each other and Java-level accesses.
5798     OrderAccess::fence();
5799     return;
5800   }
5801 
5802 #ifdef ASSERT
5803   // Don't catch signals while blocked; let the running threads have the signals.
5804   // (This allows a debugger to break into the running thread.)
5805   sigset_t oldsigs;
5806   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5807   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5808 #endif
5809 
5810   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5811   jt->set_suspend_equivalent();
5812   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5813 
5814   assert(_cur_index == -1, "invariant");
5815   if (time == 0) {
5816     _cur_index = REL_INDEX; // arbitrary choice when not timed
5817     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5818   } else {
5819     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5820     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5821     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5822       pthread_cond_destroy(&_cond[_cur_index]);
5823       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5824     }
5825   }
5826   _cur_index = -1;
5827   assert_status(status == 0 || status == EINTR ||
5828                 status == ETIME || status == ETIMEDOUT,
5829                 status, "cond_timedwait");
5830 
5831 #ifdef ASSERT
5832   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5833 #endif
5834 
5835   _counter = 0;
5836   status = pthread_mutex_unlock(_mutex);
5837   assert_status(status == 0, status, "invariant");
5838   // Paranoia to ensure our locked and lock-free paths interact
5839   // correctly with each other and Java-level accesses.
5840   OrderAccess::fence();
5841 
5842   // If externally suspended while waiting, re-suspend
5843   if (jt->handle_special_suspend_equivalent_condition()) {
5844     jt->java_suspend_self();
5845   }
5846 }
5847 
5848 void Parker::unpark() {
5849   int status = pthread_mutex_lock(_mutex);
5850   assert(status == 0, "invariant");
5851   const int s = _counter;
5852   _counter = 1;
5853   if (s < 1) {
5854     // thread might be parked
5855     if (_cur_index != -1) {
5856       // thread is definitely parked
5857       if (WorkAroundNPTLTimedWaitHang) {
5858         status = pthread_cond_signal(&_cond[_cur_index]);
5859         assert(status == 0, "invariant");
5860         status = pthread_mutex_unlock(_mutex);
5861         assert(status == 0, "invariant");
5862       } else {
5863         status = pthread_mutex_unlock(_mutex);
5864         assert(status == 0, "invariant");
5865         status = pthread_cond_signal(&_cond[_cur_index]);
5866         assert(status == 0, "invariant");
5867       }
5868     } else {
5869       pthread_mutex_unlock(_mutex);
5870       assert(status == 0, "invariant");
5871     }
5872   } else {
5873     pthread_mutex_unlock(_mutex);
5874     assert(status == 0, "invariant");
5875   }
5876 }
5877 
5878 
5879 extern char** environ;
5880 
5881 // Run the specified command in a separate process. Return its exit value,
5882 // or -1 on failure (e.g. can't fork a new process).
5883 // Unlike system(), this function can be called from signal handler. It
5884 // doesn't block SIGINT et al.
5885 int os::fork_and_exec(char* cmd) {
5886   const char * argv[4] = {"sh", "-c", cmd, NULL};
5887 
5888   pid_t pid = fork();
5889 
5890   if (pid < 0) {
5891     // fork failed
5892     return -1;
5893 
5894   } else if (pid == 0) {
5895     // child process
5896 
5897     execve("/bin/sh", (char* const*)argv, environ);
5898 
5899     // execve failed
5900     _exit(-1);
5901 
5902   } else  {
5903     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5904     // care about the actual exit code, for now.
5905 
5906     int status;
5907 
5908     // Wait for the child process to exit.  This returns immediately if
5909     // the child has already exited. */
5910     while (waitpid(pid, &status, 0) < 0) {
5911       switch (errno) {
5912       case ECHILD: return 0;
5913       case EINTR: break;
5914       default: return -1;
5915       }
5916     }
5917 
5918     if (WIFEXITED(status)) {
5919       // The child exited normally; get its exit code.
5920       return WEXITSTATUS(status);
5921     } else if (WIFSIGNALED(status)) {
5922       // The child exited because of a signal
5923       // The best value to return is 0x80 + signal number,
5924       // because that is what all Unix shells do, and because
5925       // it allows callers to distinguish between process exit and
5926       // process death by signal.
5927       return 0x80 + WTERMSIG(status);
5928     } else {
5929       // Unknown exit code; pass it through
5930       return status;
5931     }
5932   }
5933 }
5934 
5935 // is_headless_jre()
5936 //
5937 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5938 // in order to report if we are running in a headless jre
5939 //
5940 // Since JDK8 xawt/libmawt.so was moved into the same directory
5941 // as libawt.so, and renamed libawt_xawt.so
5942 //
5943 bool os::is_headless_jre() {
5944   struct stat statbuf;
5945   char buf[MAXPATHLEN];
5946   char libmawtpath[MAXPATHLEN];
5947   const char *xawtstr  = "/xawt/libmawt.so";
5948   const char *new_xawtstr = "/libawt_xawt.so";
5949   char *p;
5950 
5951   // Get path to libjvm.so
5952   os::jvm_path(buf, sizeof(buf));
5953 
5954   // Get rid of libjvm.so
5955   p = strrchr(buf, '/');
5956   if (p == NULL) {
5957     return false;
5958   } else {
5959     *p = '\0';
5960   }
5961 
5962   // Get rid of client or server
5963   p = strrchr(buf, '/');
5964   if (p == NULL) {
5965     return false;
5966   } else {
5967     *p = '\0';
5968   }
5969 
5970   // check xawt/libmawt.so
5971   strcpy(libmawtpath, buf);
5972   strcat(libmawtpath, xawtstr);
5973   if (::stat(libmawtpath, &statbuf) == 0) return false;
5974 
5975   // check libawt_xawt.so
5976   strcpy(libmawtpath, buf);
5977   strcat(libmawtpath, new_xawtstr);
5978   if (::stat(libmawtpath, &statbuf) == 0) return false;
5979 
5980   return true;
5981 }
5982 
5983 // Get the default path to the core file
5984 // Returns the length of the string
5985 int os::get_core_path(char* buffer, size_t bufferSize) {
5986   /*
5987    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5988    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5989    */
5990   const int core_pattern_len = 129;
5991   char core_pattern[core_pattern_len] = {0};
5992 
5993   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5994   if (core_pattern_file != -1) {
5995     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5996     ::close(core_pattern_file);
5997 
5998     if (ret > 0) {
5999       char *last_char = core_pattern + strlen(core_pattern) - 1;
6000 
6001       if (*last_char == '\n') {
6002         *last_char = '\0';
6003       }
6004     }
6005   }
6006 
6007   if (strlen(core_pattern) == 0) {
6008     return -1;
6009   }
6010 
6011   char *pid_pos = strstr(core_pattern, "%p");
6012   int written;
6013 
6014   if (core_pattern[0] == '/') {
6015     written = jio_snprintf(buffer, bufferSize, core_pattern);
6016   } else {
6017     char cwd[PATH_MAX];
6018 
6019     const char* p = get_current_directory(cwd, PATH_MAX);
6020     if (p == NULL) {
6021       return -1;
6022     }
6023 
6024     if (core_pattern[0] == '|') {
6025       written = jio_snprintf(buffer, bufferSize,
6026                         "\"%s\" (or dumping to %s/core.%d)",
6027                                      &core_pattern[1], p, current_process_id());
6028     } else {
6029       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6030     }
6031   }
6032 
6033   if (written < 0) {
6034     return -1;
6035   }
6036 
6037   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6038     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6039 
6040     if (core_uses_pid_file != -1) {
6041       char core_uses_pid = 0;
6042       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6043       ::close(core_uses_pid_file);
6044 
6045       if (core_uses_pid == '1') {
6046         jio_snprintf(buffer + written, bufferSize - written,
6047                                           ".%d", current_process_id());
6048       }
6049     }
6050   }
6051 
6052   return strlen(buffer);
6053 }
6054 
6055 /////////////// Unit tests ///////////////
6056 
6057 #ifndef PRODUCT
6058 
6059 #define test_log(...)              \
6060   do {                             \
6061     if (VerboseInternalVMTests) {  \
6062       tty->print_cr(__VA_ARGS__);  \
6063       tty->flush();                \
6064     }                              \
6065   } while (false)
6066 
6067 class TestReserveMemorySpecial : AllStatic {
6068  public:
6069   static void small_page_write(void* addr, size_t size) {
6070     size_t page_size = os::vm_page_size();
6071 
6072     char* end = (char*)addr + size;
6073     for (char* p = (char*)addr; p < end; p += page_size) {
6074       *p = 1;
6075     }
6076   }
6077 
6078   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6079     if (!UseHugeTLBFS) {
6080       return;
6081     }
6082 
6083     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6084 
6085     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6086 
6087     if (addr != NULL) {
6088       small_page_write(addr, size);
6089 
6090       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6091     }
6092   }
6093 
6094   static void test_reserve_memory_special_huge_tlbfs_only() {
6095     if (!UseHugeTLBFS) {
6096       return;
6097     }
6098 
6099     size_t lp = os::large_page_size();
6100 
6101     for (size_t size = lp; size <= lp * 10; size += lp) {
6102       test_reserve_memory_special_huge_tlbfs_only(size);
6103     }
6104   }
6105 
6106   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6107     size_t lp = os::large_page_size();
6108     size_t ag = os::vm_allocation_granularity();
6109 
6110     // sizes to test
6111     const size_t sizes[] = {
6112       lp, lp + ag, lp + lp / 2, lp * 2,
6113       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6114       lp * 10, lp * 10 + lp / 2
6115     };
6116     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6117 
6118     // For each size/alignment combination, we test three scenarios:
6119     // 1) with req_addr == NULL
6120     // 2) with a non-null req_addr at which we expect to successfully allocate
6121     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6122     //    expect the allocation to either fail or to ignore req_addr
6123 
6124     // Pre-allocate two areas; they shall be as large as the largest allocation
6125     //  and aligned to the largest alignment we will be testing.
6126     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6127     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6128       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6129       -1, 0);
6130     assert(mapping1 != MAP_FAILED, "should work");
6131 
6132     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6133       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6134       -1, 0);
6135     assert(mapping2 != MAP_FAILED, "should work");
6136 
6137     // Unmap the first mapping, but leave the second mapping intact: the first
6138     // mapping will serve as a value for a "good" req_addr (case 2). The second
6139     // mapping, still intact, as "bad" req_addr (case 3).
6140     ::munmap(mapping1, mapping_size);
6141 
6142     // Case 1
6143     test_log("%s, req_addr NULL:", __FUNCTION__);
6144     test_log("size            align           result");
6145 
6146     for (int i = 0; i < num_sizes; i++) {
6147       const size_t size = sizes[i];
6148       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6149         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6150         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6151             size, alignment, p, (p != NULL ? "" : "(failed)"));
6152         if (p != NULL) {
6153           assert(is_ptr_aligned(p, alignment), "must be");
6154           small_page_write(p, size);
6155           os::Linux::release_memory_special_huge_tlbfs(p, size);
6156         }
6157       }
6158     }
6159 
6160     // Case 2
6161     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6162     test_log("size            align           req_addr         result");
6163 
6164     for (int i = 0; i < num_sizes; i++) {
6165       const size_t size = sizes[i];
6166       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6167         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6168         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6169         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6170             size, alignment, req_addr, p,
6171             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6172         if (p != NULL) {
6173           assert(p == req_addr, "must be");
6174           small_page_write(p, size);
6175           os::Linux::release_memory_special_huge_tlbfs(p, size);
6176         }
6177       }
6178     }
6179 
6180     // Case 3
6181     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6182     test_log("size            align           req_addr         result");
6183 
6184     for (int i = 0; i < num_sizes; i++) {
6185       const size_t size = sizes[i];
6186       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6187         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6188         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6189         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6190             size, alignment, req_addr, p,
6191             ((p != NULL ? "" : "(failed)")));
6192         // as the area around req_addr contains already existing mappings, the API should always
6193         // return NULL (as per contract, it cannot return another address)
6194         assert(p == NULL, "must be");
6195       }
6196     }
6197 
6198     ::munmap(mapping2, mapping_size);
6199 
6200   }
6201 
6202   static void test_reserve_memory_special_huge_tlbfs() {
6203     if (!UseHugeTLBFS) {
6204       return;
6205     }
6206 
6207     test_reserve_memory_special_huge_tlbfs_only();
6208     test_reserve_memory_special_huge_tlbfs_mixed();
6209   }
6210 
6211   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6212     if (!UseSHM) {
6213       return;
6214     }
6215 
6216     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6217 
6218     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6219 
6220     if (addr != NULL) {
6221       assert(is_ptr_aligned(addr, alignment), "Check");
6222       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6223 
6224       small_page_write(addr, size);
6225 
6226       os::Linux::release_memory_special_shm(addr, size);
6227     }
6228   }
6229 
6230   static void test_reserve_memory_special_shm() {
6231     size_t lp = os::large_page_size();
6232     size_t ag = os::vm_allocation_granularity();
6233 
6234     for (size_t size = ag; size < lp * 3; size += ag) {
6235       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6236         test_reserve_memory_special_shm(size, alignment);
6237       }
6238     }
6239   }
6240 
6241   static void test() {
6242     test_reserve_memory_special_huge_tlbfs();
6243     test_reserve_memory_special_shm();
6244   }
6245 };
6246 
6247 void TestReserveMemorySpecial_test() {
6248   TestReserveMemorySpecial::test();
6249 }
6250 
6251 #endif