1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   } else {
1002     const char* cwd = get_current_directory(NULL, 0);
1003     int pid = current_process_id();
1004     if (cwd != NULL) {
1005       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1006     } else {
1007       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1008     }
1009 
1010     if (dumpFile == NULL &&
1011        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1012                  == INVALID_HANDLE_VALUE) {
1013       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1014       status = false;
1015     }
1016   }
1017   VMError::record_coredump_status(buffer, status);
1018 }
1019 
1020 void os::abort(bool dump_core, void* siginfo, void* context) {
1021   HINSTANCE dbghelp;
1022   EXCEPTION_POINTERS ep;
1023   MINIDUMP_EXCEPTION_INFORMATION mei;
1024   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1025 
1026   HANDLE hProcess = GetCurrentProcess();
1027   DWORD processId = GetCurrentProcessId();
1028   MINIDUMP_TYPE dumpType;
1029 
1030   shutdown();
1031   if (!dump_core || dumpFile == NULL) {
1032     if (dumpFile != NULL) {
1033       CloseHandle(dumpFile);
1034     }
1035     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1036   }
1037 
1038   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1039 
1040   if (dbghelp == NULL) {
1041     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1042     CloseHandle(dumpFile);
1043     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1044   }
1045 
1046   _MiniDumpWriteDump =
1047       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1048                                     PMINIDUMP_EXCEPTION_INFORMATION,
1049                                     PMINIDUMP_USER_STREAM_INFORMATION,
1050                                     PMINIDUMP_CALLBACK_INFORMATION),
1051                                     GetProcAddress(dbghelp,
1052                                     "MiniDumpWriteDump"));
1053 
1054   if (_MiniDumpWriteDump == NULL) {
1055     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1056     CloseHandle(dumpFile);
1057     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1058   }
1059 
1060   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1061 
1062   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1063   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1064 #if API_VERSION_NUMBER >= 11
1065   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1066                              MiniDumpWithUnloadedModules);
1067 #endif
1068 
1069   if (siginfo != NULL && context != NULL) {
1070     ep.ContextRecord = (PCONTEXT) context;
1071     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1072 
1073     mei.ThreadId = GetCurrentThreadId();
1074     mei.ExceptionPointers = &ep;
1075     pmei = &mei;
1076   } else {
1077     pmei = NULL;
1078   }
1079 
1080   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1081   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1082   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1083       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1084     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1085   }
1086   CloseHandle(dumpFile);
1087   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1088 }
1089 
1090 void os::abort(bool dump_core) {
1091   abort(dump_core, NULL, NULL);
1092 }
1093 
1094 // Die immediately, no exit hook, no abort hook, no cleanup.
1095 void os::die() {
1096   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1097 }
1098 
1099 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1100 //  * dirent_md.c       1.15 00/02/02
1101 //
1102 // The declarations for DIR and struct dirent are in jvm_win32.h.
1103 
1104 // Caller must have already run dirname through JVM_NativePath, which removes
1105 // duplicate slashes and converts all instances of '/' into '\\'.
1106 
1107 DIR * os::opendir(const char *dirname) {
1108   assert(dirname != NULL, "just checking");   // hotspot change
1109   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1110   DWORD fattr;                                // hotspot change
1111   char alt_dirname[4] = { 0, 0, 0, 0 };
1112 
1113   if (dirp == 0) {
1114     errno = ENOMEM;
1115     return 0;
1116   }
1117 
1118   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1119   // as a directory in FindFirstFile().  We detect this case here and
1120   // prepend the current drive name.
1121   //
1122   if (dirname[1] == '\0' && dirname[0] == '\\') {
1123     alt_dirname[0] = _getdrive() + 'A' - 1;
1124     alt_dirname[1] = ':';
1125     alt_dirname[2] = '\\';
1126     alt_dirname[3] = '\0';
1127     dirname = alt_dirname;
1128   }
1129 
1130   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1131   if (dirp->path == 0) {
1132     free(dirp);
1133     errno = ENOMEM;
1134     return 0;
1135   }
1136   strcpy(dirp->path, dirname);
1137 
1138   fattr = GetFileAttributes(dirp->path);
1139   if (fattr == 0xffffffff) {
1140     free(dirp->path);
1141     free(dirp);
1142     errno = ENOENT;
1143     return 0;
1144   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOTDIR;
1148     return 0;
1149   }
1150 
1151   // Append "*.*", or possibly "\\*.*", to path
1152   if (dirp->path[1] == ':' &&
1153       (dirp->path[2] == '\0' ||
1154       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1155     // No '\\' needed for cases like "Z:" or "Z:\"
1156     strcat(dirp->path, "*.*");
1157   } else {
1158     strcat(dirp->path, "\\*.*");
1159   }
1160 
1161   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1162   if (dirp->handle == INVALID_HANDLE_VALUE) {
1163     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1164       free(dirp->path);
1165       free(dirp);
1166       errno = EACCES;
1167       return 0;
1168     }
1169   }
1170   return dirp;
1171 }
1172 
1173 // parameter dbuf unused on Windows
1174 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1175   assert(dirp != NULL, "just checking");      // hotspot change
1176   if (dirp->handle == INVALID_HANDLE_VALUE) {
1177     return 0;
1178   }
1179 
1180   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1181 
1182   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1183     if (GetLastError() == ERROR_INVALID_HANDLE) {
1184       errno = EBADF;
1185       return 0;
1186     }
1187     FindClose(dirp->handle);
1188     dirp->handle = INVALID_HANDLE_VALUE;
1189   }
1190 
1191   return &dirp->dirent;
1192 }
1193 
1194 int os::closedir(DIR *dirp) {
1195   assert(dirp != NULL, "just checking");      // hotspot change
1196   if (dirp->handle != INVALID_HANDLE_VALUE) {
1197     if (!FindClose(dirp->handle)) {
1198       errno = EBADF;
1199       return -1;
1200     }
1201     dirp->handle = INVALID_HANDLE_VALUE;
1202   }
1203   free(dirp->path);
1204   free(dirp);
1205   return 0;
1206 }
1207 
1208 // This must be hard coded because it's the system's temporary
1209 // directory not the java application's temp directory, ala java.io.tmpdir.
1210 const char* os::get_temp_directory() {
1211   static char path_buf[MAX_PATH];
1212   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1213     return path_buf;
1214   } else {
1215     path_buf[0] = '\0';
1216     return path_buf;
1217   }
1218 }
1219 
1220 static bool file_exists(const char* filename) {
1221   if (filename == NULL || strlen(filename) == 0) {
1222     return false;
1223   }
1224   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1225 }
1226 
1227 bool os::dll_build_name(char *buffer, size_t buflen,
1228                         const char* pname, const char* fname) {
1229   bool retval = false;
1230   const size_t pnamelen = pname ? strlen(pname) : 0;
1231   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1232 
1233   // Return error on buffer overflow.
1234   if (pnamelen + strlen(fname) + 10 > buflen) {
1235     return retval;
1236   }
1237 
1238   if (pnamelen == 0) {
1239     jio_snprintf(buffer, buflen, "%s.dll", fname);
1240     retval = true;
1241   } else if (c == ':' || c == '\\') {
1242     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1243     retval = true;
1244   } else if (strchr(pname, *os::path_separator()) != NULL) {
1245     int n;
1246     char** pelements = split_path(pname, &n);
1247     if (pelements == NULL) {
1248       return false;
1249     }
1250     for (int i = 0; i < n; i++) {
1251       char* path = pelements[i];
1252       // Really shouldn't be NULL, but check can't hurt
1253       size_t plen = (path == NULL) ? 0 : strlen(path);
1254       if (plen == 0) {
1255         continue; // skip the empty path values
1256       }
1257       const char lastchar = path[plen - 1];
1258       if (lastchar == ':' || lastchar == '\\') {
1259         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1260       } else {
1261         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1262       }
1263       if (file_exists(buffer)) {
1264         retval = true;
1265         break;
1266       }
1267     }
1268     // release the storage
1269     for (int i = 0; i < n; i++) {
1270       if (pelements[i] != NULL) {
1271         FREE_C_HEAP_ARRAY(char, pelements[i]);
1272       }
1273     }
1274     if (pelements != NULL) {
1275       FREE_C_HEAP_ARRAY(char*, pelements);
1276     }
1277   } else {
1278     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1279     retval = true;
1280   }
1281   return retval;
1282 }
1283 
1284 // Needs to be in os specific directory because windows requires another
1285 // header file <direct.h>
1286 const char* os::get_current_directory(char *buf, size_t buflen) {
1287   int n = static_cast<int>(buflen);
1288   if (buflen > INT_MAX)  n = INT_MAX;
1289   return _getcwd(buf, n);
1290 }
1291 
1292 //-----------------------------------------------------------
1293 // Helper functions for fatal error handler
1294 #ifdef _WIN64
1295 // Helper routine which returns true if address in
1296 // within the NTDLL address space.
1297 //
1298 static bool _addr_in_ntdll(address addr) {
1299   HMODULE hmod;
1300   MODULEINFO minfo;
1301 
1302   hmod = GetModuleHandle("NTDLL.DLL");
1303   if (hmod == NULL) return false;
1304   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1305                                           &minfo, sizeof(MODULEINFO))) {
1306     return false;
1307   }
1308 
1309   if ((addr >= minfo.lpBaseOfDll) &&
1310       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1311     return true;
1312   } else {
1313     return false;
1314   }
1315 }
1316 #endif
1317 
1318 struct _modinfo {
1319   address addr;
1320   char*   full_path;   // point to a char buffer
1321   int     buflen;      // size of the buffer
1322   address base_addr;
1323 };
1324 
1325 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1326                                   address top_address, void * param) {
1327   struct _modinfo *pmod = (struct _modinfo *)param;
1328   if (!pmod) return -1;
1329 
1330   if (base_addr   <= pmod->addr &&
1331       top_address > pmod->addr) {
1332     // if a buffer is provided, copy path name to the buffer
1333     if (pmod->full_path) {
1334       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1335     }
1336     pmod->base_addr = base_addr;
1337     return 1;
1338   }
1339   return 0;
1340 }
1341 
1342 bool os::dll_address_to_library_name(address addr, char* buf,
1343                                      int buflen, int* offset) {
1344   // buf is not optional, but offset is optional
1345   assert(buf != NULL, "sanity check");
1346 
1347 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1348 //       return the full path to the DLL file, sometimes it returns path
1349 //       to the corresponding PDB file (debug info); sometimes it only
1350 //       returns partial path, which makes life painful.
1351 
1352   struct _modinfo mi;
1353   mi.addr      = addr;
1354   mi.full_path = buf;
1355   mi.buflen    = buflen;
1356   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1357     // buf already contains path name
1358     if (offset) *offset = addr - mi.base_addr;
1359     return true;
1360   }
1361 
1362   buf[0] = '\0';
1363   if (offset) *offset = -1;
1364   return false;
1365 }
1366 
1367 bool os::dll_address_to_function_name(address addr, char *buf,
1368                                       int buflen, int *offset) {
1369   // buf is not optional, but offset is optional
1370   assert(buf != NULL, "sanity check");
1371 
1372   if (Decoder::decode(addr, buf, buflen, offset)) {
1373     return true;
1374   }
1375   if (offset != NULL)  *offset  = -1;
1376   buf[0] = '\0';
1377   return false;
1378 }
1379 
1380 // save the start and end address of jvm.dll into param[0] and param[1]
1381 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1382                            address top_address, void * param) {
1383   if (!param) return -1;
1384 
1385   if (base_addr   <= (address)_locate_jvm_dll &&
1386       top_address > (address)_locate_jvm_dll) {
1387     ((address*)param)[0] = base_addr;
1388     ((address*)param)[1] = top_address;
1389     return 1;
1390   }
1391   return 0;
1392 }
1393 
1394 address vm_lib_location[2];    // start and end address of jvm.dll
1395 
1396 // check if addr is inside jvm.dll
1397 bool os::address_is_in_vm(address addr) {
1398   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1399     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1400       assert(false, "Can't find jvm module.");
1401       return false;
1402     }
1403   }
1404 
1405   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1406 }
1407 
1408 // print module info; param is outputStream*
1409 static int _print_module(const char* fname, address base_address,
1410                          address top_address, void* param) {
1411   if (!param) return -1;
1412 
1413   outputStream* st = (outputStream*)param;
1414 
1415   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1416   return 0;
1417 }
1418 
1419 // Loads .dll/.so and
1420 // in case of error it checks if .dll/.so was built for the
1421 // same architecture as Hotspot is running on
1422 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1423   void * result = LoadLibrary(name);
1424   if (result != NULL) {
1425     return result;
1426   }
1427 
1428   DWORD errcode = GetLastError();
1429   if (errcode == ERROR_MOD_NOT_FOUND) {
1430     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1431     ebuf[ebuflen - 1] = '\0';
1432     return NULL;
1433   }
1434 
1435   // Parsing dll below
1436   // If we can read dll-info and find that dll was built
1437   // for an architecture other than Hotspot is running in
1438   // - then print to buffer "DLL was built for a different architecture"
1439   // else call os::lasterror to obtain system error message
1440 
1441   // Read system error message into ebuf
1442   // It may or may not be overwritten below (in the for loop and just above)
1443   lasterror(ebuf, (size_t) ebuflen);
1444   ebuf[ebuflen - 1] = '\0';
1445   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1446   if (fd < 0) {
1447     return NULL;
1448   }
1449 
1450   uint32_t signature_offset;
1451   uint16_t lib_arch = 0;
1452   bool failed_to_get_lib_arch =
1453     ( // Go to position 3c in the dll
1454      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1455      ||
1456      // Read location of signature
1457      (sizeof(signature_offset) !=
1458      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1459      ||
1460      // Go to COFF File Header in dll
1461      // that is located after "signature" (4 bytes long)
1462      (os::seek_to_file_offset(fd,
1463      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1464      ||
1465      // Read field that contains code of architecture
1466      // that dll was built for
1467      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1468     );
1469 
1470   ::close(fd);
1471   if (failed_to_get_lib_arch) {
1472     // file i/o error - report os::lasterror(...) msg
1473     return NULL;
1474   }
1475 
1476   typedef struct {
1477     uint16_t arch_code;
1478     char* arch_name;
1479   } arch_t;
1480 
1481   static const arch_t arch_array[] = {
1482     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1483     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1484     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1485   };
1486 #if   (defined _M_IA64)
1487   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1488 #elif (defined _M_AMD64)
1489   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1490 #elif (defined _M_IX86)
1491   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1492 #else
1493   #error Method os::dll_load requires that one of following \
1494          is defined :_M_IA64,_M_AMD64 or _M_IX86
1495 #endif
1496 
1497 
1498   // Obtain a string for printf operation
1499   // lib_arch_str shall contain string what platform this .dll was built for
1500   // running_arch_str shall string contain what platform Hotspot was built for
1501   char *running_arch_str = NULL, *lib_arch_str = NULL;
1502   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1503     if (lib_arch == arch_array[i].arch_code) {
1504       lib_arch_str = arch_array[i].arch_name;
1505     }
1506     if (running_arch == arch_array[i].arch_code) {
1507       running_arch_str = arch_array[i].arch_name;
1508     }
1509   }
1510 
1511   assert(running_arch_str,
1512          "Didn't find running architecture code in arch_array");
1513 
1514   // If the architecture is right
1515   // but some other error took place - report os::lasterror(...) msg
1516   if (lib_arch == running_arch) {
1517     return NULL;
1518   }
1519 
1520   if (lib_arch_str != NULL) {
1521     ::_snprintf(ebuf, ebuflen - 1,
1522                 "Can't load %s-bit .dll on a %s-bit platform",
1523                 lib_arch_str, running_arch_str);
1524   } else {
1525     // don't know what architecture this dll was build for
1526     ::_snprintf(ebuf, ebuflen - 1,
1527                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1528                 lib_arch, running_arch_str);
1529   }
1530 
1531   return NULL;
1532 }
1533 
1534 void os::print_dll_info(outputStream *st) {
1535   st->print_cr("Dynamic libraries:");
1536   get_loaded_modules_info(_print_module, (void *)st);
1537 }
1538 
1539 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1540   HANDLE   hProcess;
1541 
1542 # define MAX_NUM_MODULES 128
1543   HMODULE     modules[MAX_NUM_MODULES];
1544   static char filename[MAX_PATH];
1545   int         result = 0;
1546 
1547   if (!os::PSApiDll::PSApiAvailable()) {
1548     return 0;
1549   }
1550 
1551   int pid = os::current_process_id();
1552   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1553                          FALSE, pid);
1554   if (hProcess == NULL) return 0;
1555 
1556   DWORD size_needed;
1557   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1558                                         sizeof(modules), &size_needed)) {
1559     CloseHandle(hProcess);
1560     return 0;
1561   }
1562 
1563   // number of modules that are currently loaded
1564   int num_modules = size_needed / sizeof(HMODULE);
1565 
1566   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1567     // Get Full pathname:
1568     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1569                                            filename, sizeof(filename))) {
1570       filename[0] = '\0';
1571     }
1572 
1573     MODULEINFO modinfo;
1574     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1575                                             &modinfo, sizeof(modinfo))) {
1576       modinfo.lpBaseOfDll = NULL;
1577       modinfo.SizeOfImage = 0;
1578     }
1579 
1580     // Invoke callback function
1581     result = callback(filename, (address)modinfo.lpBaseOfDll,
1582                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1583     if (result) break;
1584   }
1585 
1586   CloseHandle(hProcess);
1587   return result;
1588 }
1589 
1590 void os::print_os_info_brief(outputStream* st) {
1591   os::print_os_info(st);
1592 }
1593 
1594 void os::print_os_info(outputStream* st) {
1595 #ifdef ASSERT
1596   char buffer[1024];
1597   DWORD size = sizeof(buffer);
1598   st->print(" HostName: ");
1599   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1600     st->print("%s", buffer);
1601   } else {
1602     st->print("N/A");
1603   }
1604 #endif
1605   st->print(" OS:");
1606   os::win32::print_windows_version(st);
1607 }
1608 
1609 void os::win32::print_windows_version(outputStream* st) {
1610   OSVERSIONINFOEX osvi;
1611   VS_FIXEDFILEINFO *file_info;
1612   TCHAR kernel32_path[MAX_PATH];
1613   UINT len, ret;
1614 
1615   // Use the GetVersionEx information to see if we're on a server or
1616   // workstation edition of Windows. Starting with Windows 8.1 we can't
1617   // trust the OS version information returned by this API.
1618   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1619   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1620   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1621     st->print_cr("Call to GetVersionEx failed");
1622     return;
1623   }
1624   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1625 
1626   // Get the full path to \Windows\System32\kernel32.dll and use that for
1627   // determining what version of Windows we're running on.
1628   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1629   ret = GetSystemDirectory(kernel32_path, len);
1630   if (ret == 0 || ret > len) {
1631     st->print_cr("Call to GetSystemDirectory failed");
1632     return;
1633   }
1634   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1635 
1636   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1637   if (version_size == 0) {
1638     st->print_cr("Call to GetFileVersionInfoSize failed");
1639     return;
1640   }
1641 
1642   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1643   if (version_info == NULL) {
1644     st->print_cr("Failed to allocate version_info");
1645     return;
1646   }
1647 
1648   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1649     os::free(version_info);
1650     st->print_cr("Call to GetFileVersionInfo failed");
1651     return;
1652   }
1653 
1654   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1655     os::free(version_info);
1656     st->print_cr("Call to VerQueryValue failed");
1657     return;
1658   }
1659 
1660   int major_version = HIWORD(file_info->dwProductVersionMS);
1661   int minor_version = LOWORD(file_info->dwProductVersionMS);
1662   int build_number = HIWORD(file_info->dwProductVersionLS);
1663   int build_minor = LOWORD(file_info->dwProductVersionLS);
1664   int os_vers = major_version * 1000 + minor_version;
1665   os::free(version_info);
1666 
1667   st->print(" Windows ");
1668   switch (os_vers) {
1669 
1670   case 6000:
1671     if (is_workstation) {
1672       st->print("Vista");
1673     } else {
1674       st->print("Server 2008");
1675     }
1676     break;
1677 
1678   case 6001:
1679     if (is_workstation) {
1680       st->print("7");
1681     } else {
1682       st->print("Server 2008 R2");
1683     }
1684     break;
1685 
1686   case 6002:
1687     if (is_workstation) {
1688       st->print("8");
1689     } else {
1690       st->print("Server 2012");
1691     }
1692     break;
1693 
1694   case 6003:
1695     if (is_workstation) {
1696       st->print("8.1");
1697     } else {
1698       st->print("Server 2012 R2");
1699     }
1700     break;
1701 
1702   case 10000:
1703     if (is_workstation) {
1704       st->print("10");
1705     } else {
1706       // The server version name of Windows 10 is not known at this time
1707       st->print("%d.%d", major_version, minor_version);
1708     }
1709     break;
1710 
1711   default:
1712     // Unrecognized windows, print out its major and minor versions
1713     st->print("%d.%d", major_version, minor_version);
1714     break;
1715   }
1716 
1717   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1718   // find out whether we are running on 64 bit processor or not
1719   SYSTEM_INFO si;
1720   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1721   os::Kernel32Dll::GetNativeSystemInfo(&si);
1722   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1723     st->print(" , 64 bit");
1724   }
1725 
1726   st->print(" Build %d", build_number);
1727   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1728   st->cr();
1729 }
1730 
1731 void os::pd_print_cpu_info(outputStream* st) {
1732   // Nothing to do for now.
1733 }
1734 
1735 void os::print_memory_info(outputStream* st) {
1736   st->print("Memory:");
1737   st->print(" %dk page", os::vm_page_size()>>10);
1738 
1739   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1740   // value if total memory is larger than 4GB
1741   MEMORYSTATUSEX ms;
1742   ms.dwLength = sizeof(ms);
1743   GlobalMemoryStatusEx(&ms);
1744 
1745   st->print(", physical %uk", os::physical_memory() >> 10);
1746   st->print("(%uk free)", os::available_memory() >> 10);
1747 
1748   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1749   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1750   st->cr();
1751 }
1752 
1753 void os::print_siginfo(outputStream *st, void *siginfo) {
1754   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1755   st->print("siginfo:");
1756   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1757 
1758   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1759       er->NumberParameters >= 2) {
1760     switch (er->ExceptionInformation[0]) {
1761     case 0: st->print(", reading address"); break;
1762     case 1: st->print(", writing address"); break;
1763     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1764                        er->ExceptionInformation[0]);
1765     }
1766     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1767   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1768              er->NumberParameters >= 2 && UseSharedSpaces) {
1769     FileMapInfo* mapinfo = FileMapInfo::current_info();
1770     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1771       st->print("\n\nError accessing class data sharing archive."       \
1772                 " Mapped file inaccessible during execution, "          \
1773                 " possible disk/network problem.");
1774     }
1775   } else {
1776     int num = er->NumberParameters;
1777     if (num > 0) {
1778       st->print(", ExceptionInformation=");
1779       for (int i = 0; i < num; i++) {
1780         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1781       }
1782     }
1783   }
1784   st->cr();
1785 }
1786 
1787 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1788   // do nothing
1789 }
1790 
1791 static char saved_jvm_path[MAX_PATH] = {0};
1792 
1793 // Find the full path to the current module, jvm.dll
1794 void os::jvm_path(char *buf, jint buflen) {
1795   // Error checking.
1796   if (buflen < MAX_PATH) {
1797     assert(false, "must use a large-enough buffer");
1798     buf[0] = '\0';
1799     return;
1800   }
1801   // Lazy resolve the path to current module.
1802   if (saved_jvm_path[0] != 0) {
1803     strcpy(buf, saved_jvm_path);
1804     return;
1805   }
1806 
1807   buf[0] = '\0';
1808   if (Arguments::sun_java_launcher_is_altjvm()) {
1809     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1810     // for a JAVA_HOME environment variable and fix up the path so it
1811     // looks like jvm.dll is installed there (append a fake suffix
1812     // hotspot/jvm.dll).
1813     char* java_home_var = ::getenv("JAVA_HOME");
1814     if (java_home_var != NULL && java_home_var[0] != 0 &&
1815         strlen(java_home_var) < (size_t)buflen) {
1816       strncpy(buf, java_home_var, buflen);
1817 
1818       // determine if this is a legacy image or modules image
1819       // modules image doesn't have "jre" subdirectory
1820       size_t len = strlen(buf);
1821       char* jrebin_p = buf + len;
1822       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1823       if (0 != _access(buf, 0)) {
1824         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1825       }
1826       len = strlen(buf);
1827       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1828     }
1829   }
1830 
1831   if (buf[0] == '\0') {
1832     GetModuleFileName(vm_lib_handle, buf, buflen);
1833   }
1834   strncpy(saved_jvm_path, buf, MAX_PATH);
1835   saved_jvm_path[MAX_PATH - 1] = '\0';
1836 }
1837 
1838 
1839 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1840 #ifndef _WIN64
1841   st->print("_");
1842 #endif
1843 }
1844 
1845 
1846 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1847 #ifndef _WIN64
1848   st->print("@%d", args_size  * sizeof(int));
1849 #endif
1850 }
1851 
1852 // This method is a copy of JDK's sysGetLastErrorString
1853 // from src/windows/hpi/src/system_md.c
1854 
1855 size_t os::lasterror(char* buf, size_t len) {
1856   DWORD errval;
1857 
1858   if ((errval = GetLastError()) != 0) {
1859     // DOS error
1860     size_t n = (size_t)FormatMessage(
1861                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1862                                      NULL,
1863                                      errval,
1864                                      0,
1865                                      buf,
1866                                      (DWORD)len,
1867                                      NULL);
1868     if (n > 3) {
1869       // Drop final '.', CR, LF
1870       if (buf[n - 1] == '\n') n--;
1871       if (buf[n - 1] == '\r') n--;
1872       if (buf[n - 1] == '.') n--;
1873       buf[n] = '\0';
1874     }
1875     return n;
1876   }
1877 
1878   if (errno != 0) {
1879     // C runtime error that has no corresponding DOS error code
1880     const char* s = strerror(errno);
1881     size_t n = strlen(s);
1882     if (n >= len) n = len - 1;
1883     strncpy(buf, s, n);
1884     buf[n] = '\0';
1885     return n;
1886   }
1887 
1888   return 0;
1889 }
1890 
1891 int os::get_last_error() {
1892   DWORD error = GetLastError();
1893   if (error == 0) {
1894     error = errno;
1895   }
1896   return (int)error;
1897 }
1898 
1899 WindowsSemaphore::WindowsSemaphore(uint value) {
1900   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1901 
1902   guarantee(_semaphore != NULL, err_msg("CreateSemaphore failed with error code: %lu", GetLastError()));
1903 }
1904 
1905 WindowsSemaphore::~WindowsSemaphore() {
1906   if (_semaphore != NULL) {
1907     ::CloseHandle(_semaphore);
1908   }
1909 }
1910 
1911 void WindowsSemaphore::signal(uint count) {
1912   if (count > 0) {
1913     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1914 
1915     assert(ret != 0, err_msg("ReleaseSemaphore failed with error code: %lu", GetLastError()));
1916   }
1917 }
1918 
1919 void WindowsSemaphore::wait() {
1920   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1921   assert(ret != WAIT_FAILED,   err_msg("WaitForSingleObject failed with error code: %lu", GetLastError()));
1922   assert(ret == WAIT_OBJECT_0, err_msg("WaitForSingleObject failed with return value: %lu", ret));
1923 }
1924 
1925 // sun.misc.Signal
1926 // NOTE that this is a workaround for an apparent kernel bug where if
1927 // a signal handler for SIGBREAK is installed then that signal handler
1928 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1929 // See bug 4416763.
1930 static void (*sigbreakHandler)(int) = NULL;
1931 
1932 static void UserHandler(int sig, void *siginfo, void *context) {
1933   os::signal_notify(sig);
1934   // We need to reinstate the signal handler each time...
1935   os::signal(sig, (void*)UserHandler);
1936 }
1937 
1938 void* os::user_handler() {
1939   return (void*) UserHandler;
1940 }
1941 
1942 void* os::signal(int signal_number, void* handler) {
1943   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1944     void (*oldHandler)(int) = sigbreakHandler;
1945     sigbreakHandler = (void (*)(int)) handler;
1946     return (void*) oldHandler;
1947   } else {
1948     return (void*)::signal(signal_number, (void (*)(int))handler);
1949   }
1950 }
1951 
1952 void os::signal_raise(int signal_number) {
1953   raise(signal_number);
1954 }
1955 
1956 // The Win32 C runtime library maps all console control events other than ^C
1957 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1958 // logoff, and shutdown events.  We therefore install our own console handler
1959 // that raises SIGTERM for the latter cases.
1960 //
1961 static BOOL WINAPI consoleHandler(DWORD event) {
1962   switch (event) {
1963   case CTRL_C_EVENT:
1964     if (is_error_reported()) {
1965       // Ctrl-C is pressed during error reporting, likely because the error
1966       // handler fails to abort. Let VM die immediately.
1967       os::die();
1968     }
1969 
1970     os::signal_raise(SIGINT);
1971     return TRUE;
1972     break;
1973   case CTRL_BREAK_EVENT:
1974     if (sigbreakHandler != NULL) {
1975       (*sigbreakHandler)(SIGBREAK);
1976     }
1977     return TRUE;
1978     break;
1979   case CTRL_LOGOFF_EVENT: {
1980     // Don't terminate JVM if it is running in a non-interactive session,
1981     // such as a service process.
1982     USEROBJECTFLAGS flags;
1983     HANDLE handle = GetProcessWindowStation();
1984     if (handle != NULL &&
1985         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1986         sizeof(USEROBJECTFLAGS), NULL)) {
1987       // If it is a non-interactive session, let next handler to deal
1988       // with it.
1989       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1990         return FALSE;
1991       }
1992     }
1993   }
1994   case CTRL_CLOSE_EVENT:
1995   case CTRL_SHUTDOWN_EVENT:
1996     os::signal_raise(SIGTERM);
1997     return TRUE;
1998     break;
1999   default:
2000     break;
2001   }
2002   return FALSE;
2003 }
2004 
2005 // The following code is moved from os.cpp for making this
2006 // code platform specific, which it is by its very nature.
2007 
2008 // Return maximum OS signal used + 1 for internal use only
2009 // Used as exit signal for signal_thread
2010 int os::sigexitnum_pd() {
2011   return NSIG;
2012 }
2013 
2014 // a counter for each possible signal value, including signal_thread exit signal
2015 static volatile jint pending_signals[NSIG+1] = { 0 };
2016 static HANDLE sig_sem = NULL;
2017 
2018 void os::signal_init_pd() {
2019   // Initialize signal structures
2020   memset((void*)pending_signals, 0, sizeof(pending_signals));
2021 
2022   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2023 
2024   // Programs embedding the VM do not want it to attempt to receive
2025   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2026   // shutdown hooks mechanism introduced in 1.3.  For example, when
2027   // the VM is run as part of a Windows NT service (i.e., a servlet
2028   // engine in a web server), the correct behavior is for any console
2029   // control handler to return FALSE, not TRUE, because the OS's
2030   // "final" handler for such events allows the process to continue if
2031   // it is a service (while terminating it if it is not a service).
2032   // To make this behavior uniform and the mechanism simpler, we
2033   // completely disable the VM's usage of these console events if -Xrs
2034   // (=ReduceSignalUsage) is specified.  This means, for example, that
2035   // the CTRL-BREAK thread dump mechanism is also disabled in this
2036   // case.  See bugs 4323062, 4345157, and related bugs.
2037 
2038   if (!ReduceSignalUsage) {
2039     // Add a CTRL-C handler
2040     SetConsoleCtrlHandler(consoleHandler, TRUE);
2041   }
2042 }
2043 
2044 void os::signal_notify(int signal_number) {
2045   BOOL ret;
2046   if (sig_sem != NULL) {
2047     Atomic::inc(&pending_signals[signal_number]);
2048     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2049     assert(ret != 0, "ReleaseSemaphore() failed");
2050   }
2051 }
2052 
2053 static int check_pending_signals(bool wait_for_signal) {
2054   DWORD ret;
2055   while (true) {
2056     for (int i = 0; i < NSIG + 1; i++) {
2057       jint n = pending_signals[i];
2058       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2059         return i;
2060       }
2061     }
2062     if (!wait_for_signal) {
2063       return -1;
2064     }
2065 
2066     JavaThread *thread = JavaThread::current();
2067 
2068     ThreadBlockInVM tbivm(thread);
2069 
2070     bool threadIsSuspended;
2071     do {
2072       thread->set_suspend_equivalent();
2073       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2074       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2075       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2076 
2077       // were we externally suspended while we were waiting?
2078       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2079       if (threadIsSuspended) {
2080         // The semaphore has been incremented, but while we were waiting
2081         // another thread suspended us. We don't want to continue running
2082         // while suspended because that would surprise the thread that
2083         // suspended us.
2084         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2085         assert(ret != 0, "ReleaseSemaphore() failed");
2086 
2087         thread->java_suspend_self();
2088       }
2089     } while (threadIsSuspended);
2090   }
2091 }
2092 
2093 int os::signal_lookup() {
2094   return check_pending_signals(false);
2095 }
2096 
2097 int os::signal_wait() {
2098   return check_pending_signals(true);
2099 }
2100 
2101 // Implicit OS exception handling
2102 
2103 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2104                       address handler) {
2105   JavaThread* thread = JavaThread::current();
2106   // Save pc in thread
2107 #ifdef _M_IA64
2108   // Do not blow up if no thread info available.
2109   if (thread) {
2110     // Saving PRECISE pc (with slot information) in thread.
2111     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2112     // Convert precise PC into "Unix" format
2113     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2114     thread->set_saved_exception_pc((address)precise_pc);
2115   }
2116   // Set pc to handler
2117   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2118   // Clear out psr.ri (= Restart Instruction) in order to continue
2119   // at the beginning of the target bundle.
2120   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2121   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2122 #else
2123   #ifdef _M_AMD64
2124   // Do not blow up if no thread info available.
2125   if (thread) {
2126     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2127   }
2128   // Set pc to handler
2129   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2130   #else
2131   // Do not blow up if no thread info available.
2132   if (thread) {
2133     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2134   }
2135   // Set pc to handler
2136   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2137   #endif
2138 #endif
2139 
2140   // Continue the execution
2141   return EXCEPTION_CONTINUE_EXECUTION;
2142 }
2143 
2144 
2145 // Used for PostMortemDump
2146 extern "C" void safepoints();
2147 extern "C" void find(int x);
2148 extern "C" void events();
2149 
2150 // According to Windows API documentation, an illegal instruction sequence should generate
2151 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2152 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2153 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2154 
2155 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2156 
2157 // From "Execution Protection in the Windows Operating System" draft 0.35
2158 // Once a system header becomes available, the "real" define should be
2159 // included or copied here.
2160 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2161 
2162 // Handle NAT Bit consumption on IA64.
2163 #ifdef _M_IA64
2164   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2165 #endif
2166 
2167 // Windows Vista/2008 heap corruption check
2168 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2169 
2170 #define def_excpt(val) #val, val
2171 
2172 struct siglabel {
2173   char *name;
2174   int   number;
2175 };
2176 
2177 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2178 // C++ compiler contain this error code. Because this is a compiler-generated
2179 // error, the code is not listed in the Win32 API header files.
2180 // The code is actually a cryptic mnemonic device, with the initial "E"
2181 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2182 // ASCII values of "msc".
2183 
2184 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2185 
2186 
2187 struct siglabel exceptlabels[] = {
2188     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2189     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2190     def_excpt(EXCEPTION_BREAKPOINT),
2191     def_excpt(EXCEPTION_SINGLE_STEP),
2192     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2193     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2194     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2195     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2196     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2197     def_excpt(EXCEPTION_FLT_OVERFLOW),
2198     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2199     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2200     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2201     def_excpt(EXCEPTION_INT_OVERFLOW),
2202     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2203     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2204     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2205     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2206     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2207     def_excpt(EXCEPTION_STACK_OVERFLOW),
2208     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2209     def_excpt(EXCEPTION_GUARD_PAGE),
2210     def_excpt(EXCEPTION_INVALID_HANDLE),
2211     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2212     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2213 #ifdef _M_IA64
2214     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2215 #endif
2216     NULL, 0
2217 };
2218 
2219 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2220   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2221     if (exceptlabels[i].number == exception_code) {
2222       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2223       return buf;
2224     }
2225   }
2226 
2227   return NULL;
2228 }
2229 
2230 //-----------------------------------------------------------------------------
2231 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2232   // handle exception caused by idiv; should only happen for -MinInt/-1
2233   // (division by zero is handled explicitly)
2234 #ifdef _M_IA64
2235   assert(0, "Fix Handle_IDiv_Exception");
2236 #else
2237   #ifdef  _M_AMD64
2238   PCONTEXT ctx = exceptionInfo->ContextRecord;
2239   address pc = (address)ctx->Rip;
2240   assert(pc[0] == 0xF7, "not an idiv opcode");
2241   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2242   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2243   // set correct result values and continue after idiv instruction
2244   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2245   ctx->Rax = (DWORD)min_jint;      // result
2246   ctx->Rdx = (DWORD)0;             // remainder
2247   // Continue the execution
2248   #else
2249   PCONTEXT ctx = exceptionInfo->ContextRecord;
2250   address pc = (address)ctx->Eip;
2251   assert(pc[0] == 0xF7, "not an idiv opcode");
2252   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2253   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2254   // set correct result values and continue after idiv instruction
2255   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2256   ctx->Eax = (DWORD)min_jint;      // result
2257   ctx->Edx = (DWORD)0;             // remainder
2258   // Continue the execution
2259   #endif
2260 #endif
2261   return EXCEPTION_CONTINUE_EXECUTION;
2262 }
2263 
2264 //-----------------------------------------------------------------------------
2265 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2266   PCONTEXT ctx = exceptionInfo->ContextRecord;
2267 #ifndef  _WIN64
2268   // handle exception caused by native method modifying control word
2269   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2270 
2271   switch (exception_code) {
2272   case EXCEPTION_FLT_DENORMAL_OPERAND:
2273   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2274   case EXCEPTION_FLT_INEXACT_RESULT:
2275   case EXCEPTION_FLT_INVALID_OPERATION:
2276   case EXCEPTION_FLT_OVERFLOW:
2277   case EXCEPTION_FLT_STACK_CHECK:
2278   case EXCEPTION_FLT_UNDERFLOW:
2279     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2280     if (fp_control_word != ctx->FloatSave.ControlWord) {
2281       // Restore FPCW and mask out FLT exceptions
2282       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2283       // Mask out pending FLT exceptions
2284       ctx->FloatSave.StatusWord &=  0xffffff00;
2285       return EXCEPTION_CONTINUE_EXECUTION;
2286     }
2287   }
2288 
2289   if (prev_uef_handler != NULL) {
2290     // We didn't handle this exception so pass it to the previous
2291     // UnhandledExceptionFilter.
2292     return (prev_uef_handler)(exceptionInfo);
2293   }
2294 #else // !_WIN64
2295   // On Windows, the mxcsr control bits are non-volatile across calls
2296   // See also CR 6192333
2297   //
2298   jint MxCsr = INITIAL_MXCSR;
2299   // we can't use StubRoutines::addr_mxcsr_std()
2300   // because in Win64 mxcsr is not saved there
2301   if (MxCsr != ctx->MxCsr) {
2302     ctx->MxCsr = MxCsr;
2303     return EXCEPTION_CONTINUE_EXECUTION;
2304   }
2305 #endif // !_WIN64
2306 
2307   return EXCEPTION_CONTINUE_SEARCH;
2308 }
2309 
2310 static inline void report_error(Thread* t, DWORD exception_code,
2311                                 address addr, void* siginfo, void* context) {
2312   VMError err(t, exception_code, addr, siginfo, context);
2313   err.report_and_die();
2314 
2315   // If UseOsErrorReporting, this will return here and save the error file
2316   // somewhere where we can find it in the minidump.
2317 }
2318 
2319 //-----------------------------------------------------------------------------
2320 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2321   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2322   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2323 #ifdef _M_IA64
2324   // On Itanium, we need the "precise pc", which has the slot number coded
2325   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2326   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2327   // Convert the pc to "Unix format", which has the slot number coded
2328   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2329   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2330   // information is saved in the Unix format.
2331   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2332 #else
2333   #ifdef _M_AMD64
2334   address pc = (address) exceptionInfo->ContextRecord->Rip;
2335   #else
2336   address pc = (address) exceptionInfo->ContextRecord->Eip;
2337   #endif
2338 #endif
2339   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2340 
2341   // Handle SafeFetch32 and SafeFetchN exceptions.
2342   if (StubRoutines::is_safefetch_fault(pc)) {
2343     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2344   }
2345 
2346 #ifndef _WIN64
2347   // Execution protection violation - win32 running on AMD64 only
2348   // Handled first to avoid misdiagnosis as a "normal" access violation;
2349   // This is safe to do because we have a new/unique ExceptionInformation
2350   // code for this condition.
2351   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2352     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2353     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2354     address addr = (address) exceptionRecord->ExceptionInformation[1];
2355 
2356     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2357       int page_size = os::vm_page_size();
2358 
2359       // Make sure the pc and the faulting address are sane.
2360       //
2361       // If an instruction spans a page boundary, and the page containing
2362       // the beginning of the instruction is executable but the following
2363       // page is not, the pc and the faulting address might be slightly
2364       // different - we still want to unguard the 2nd page in this case.
2365       //
2366       // 15 bytes seems to be a (very) safe value for max instruction size.
2367       bool pc_is_near_addr =
2368         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2369       bool instr_spans_page_boundary =
2370         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2371                          (intptr_t) page_size) > 0);
2372 
2373       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2374         static volatile address last_addr =
2375           (address) os::non_memory_address_word();
2376 
2377         // In conservative mode, don't unguard unless the address is in the VM
2378         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2379             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2380 
2381           // Set memory to RWX and retry
2382           address page_start =
2383             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2384           bool res = os::protect_memory((char*) page_start, page_size,
2385                                         os::MEM_PROT_RWX);
2386 
2387           if (PrintMiscellaneous && Verbose) {
2388             char buf[256];
2389             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2390                          "at " INTPTR_FORMAT
2391                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2392                          page_start, (res ? "success" : strerror(errno)));
2393             tty->print_raw_cr(buf);
2394           }
2395 
2396           // Set last_addr so if we fault again at the same address, we don't
2397           // end up in an endless loop.
2398           //
2399           // There are two potential complications here.  Two threads trapping
2400           // at the same address at the same time could cause one of the
2401           // threads to think it already unguarded, and abort the VM.  Likely
2402           // very rare.
2403           //
2404           // The other race involves two threads alternately trapping at
2405           // different addresses and failing to unguard the page, resulting in
2406           // an endless loop.  This condition is probably even more unlikely
2407           // than the first.
2408           //
2409           // Although both cases could be avoided by using locks or thread
2410           // local last_addr, these solutions are unnecessary complication:
2411           // this handler is a best-effort safety net, not a complete solution.
2412           // It is disabled by default and should only be used as a workaround
2413           // in case we missed any no-execute-unsafe VM code.
2414 
2415           last_addr = addr;
2416 
2417           return EXCEPTION_CONTINUE_EXECUTION;
2418         }
2419       }
2420 
2421       // Last unguard failed or not unguarding
2422       tty->print_raw_cr("Execution protection violation");
2423       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2424                    exceptionInfo->ContextRecord);
2425       return EXCEPTION_CONTINUE_SEARCH;
2426     }
2427   }
2428 #endif // _WIN64
2429 
2430   // Check to see if we caught the safepoint code in the
2431   // process of write protecting the memory serialization page.
2432   // It write enables the page immediately after protecting it
2433   // so just return.
2434   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2435     JavaThread* thread = (JavaThread*) t;
2436     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2437     address addr = (address) exceptionRecord->ExceptionInformation[1];
2438     if (os::is_memory_serialize_page(thread, addr)) {
2439       // Block current thread until the memory serialize page permission restored.
2440       os::block_on_serialize_page_trap();
2441       return EXCEPTION_CONTINUE_EXECUTION;
2442     }
2443   }
2444 
2445   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2446       VM_Version::is_cpuinfo_segv_addr(pc)) {
2447     // Verify that OS save/restore AVX registers.
2448     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2449   }
2450 
2451   if (t != NULL && t->is_Java_thread()) {
2452     JavaThread* thread = (JavaThread*) t;
2453     bool in_java = thread->thread_state() == _thread_in_Java;
2454 
2455     // Handle potential stack overflows up front.
2456     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2457       if (os::uses_stack_guard_pages()) {
2458 #ifdef _M_IA64
2459         // Use guard page for register stack.
2460         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2461         address addr = (address) exceptionRecord->ExceptionInformation[1];
2462         // Check for a register stack overflow on Itanium
2463         if (thread->addr_inside_register_stack_red_zone(addr)) {
2464           // Fatal red zone violation happens if the Java program
2465           // catches a StackOverflow error and does so much processing
2466           // that it runs beyond the unprotected yellow guard zone. As
2467           // a result, we are out of here.
2468           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2469         } else if(thread->addr_inside_register_stack(addr)) {
2470           // Disable the yellow zone which sets the state that
2471           // we've got a stack overflow problem.
2472           if (thread->stack_yellow_zone_enabled()) {
2473             thread->disable_stack_yellow_zone();
2474           }
2475           // Give us some room to process the exception.
2476           thread->disable_register_stack_guard();
2477           // Tracing with +Verbose.
2478           if (Verbose) {
2479             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2480             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2481             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2482             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2483                           thread->register_stack_base(),
2484                           thread->register_stack_base() + thread->stack_size());
2485           }
2486 
2487           // Reguard the permanent register stack red zone just to be sure.
2488           // We saw Windows silently disabling this without telling us.
2489           thread->enable_register_stack_red_zone();
2490 
2491           return Handle_Exception(exceptionInfo,
2492                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2493         }
2494 #endif
2495         if (thread->stack_yellow_zone_enabled()) {
2496           // Yellow zone violation.  The o/s has unprotected the first yellow
2497           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2498           // update the enabled status, even if the zone contains only one page.
2499           thread->disable_stack_yellow_zone();
2500           // If not in java code, return and hope for the best.
2501           return in_java
2502               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2503               :  EXCEPTION_CONTINUE_EXECUTION;
2504         } else {
2505           // Fatal red zone violation.
2506           thread->disable_stack_red_zone();
2507           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2508           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2509                        exceptionInfo->ContextRecord);
2510           return EXCEPTION_CONTINUE_SEARCH;
2511         }
2512       } else if (in_java) {
2513         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2514         // a one-time-only guard page, which it has released to us.  The next
2515         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2516         return Handle_Exception(exceptionInfo,
2517                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2518       } else {
2519         // Can only return and hope for the best.  Further stack growth will
2520         // result in an ACCESS_VIOLATION.
2521         return EXCEPTION_CONTINUE_EXECUTION;
2522       }
2523     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2524       // Either stack overflow or null pointer exception.
2525       if (in_java) {
2526         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2527         address addr = (address) exceptionRecord->ExceptionInformation[1];
2528         address stack_end = thread->stack_base() - thread->stack_size();
2529         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2530           // Stack overflow.
2531           assert(!os::uses_stack_guard_pages(),
2532                  "should be caught by red zone code above.");
2533           return Handle_Exception(exceptionInfo,
2534                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2535         }
2536         // Check for safepoint polling and implicit null
2537         // We only expect null pointers in the stubs (vtable)
2538         // the rest are checked explicitly now.
2539         CodeBlob* cb = CodeCache::find_blob(pc);
2540         if (cb != NULL) {
2541           if (os::is_poll_address(addr)) {
2542             address stub = SharedRuntime::get_poll_stub(pc);
2543             return Handle_Exception(exceptionInfo, stub);
2544           }
2545         }
2546         {
2547 #ifdef _WIN64
2548           // If it's a legal stack address map the entire region in
2549           //
2550           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2551           address addr = (address) exceptionRecord->ExceptionInformation[1];
2552           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2553             addr = (address)((uintptr_t)addr &
2554                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2555             os::commit_memory((char *)addr, thread->stack_base() - addr,
2556                               !ExecMem);
2557             return EXCEPTION_CONTINUE_EXECUTION;
2558           } else
2559 #endif
2560           {
2561             // Null pointer exception.
2562 #ifdef _M_IA64
2563             // Process implicit null checks in compiled code. Note: Implicit null checks
2564             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2565             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2566               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2567               // Handle implicit null check in UEP method entry
2568               if (cb && (cb->is_frame_complete_at(pc) ||
2569                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2570                 if (Verbose) {
2571                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2572                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2573                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2574                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2575                                 *(bundle_start + 1), *bundle_start);
2576                 }
2577                 return Handle_Exception(exceptionInfo,
2578                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2579               }
2580             }
2581 
2582             // Implicit null checks were processed above.  Hence, we should not reach
2583             // here in the usual case => die!
2584             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2585             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2586                          exceptionInfo->ContextRecord);
2587             return EXCEPTION_CONTINUE_SEARCH;
2588 
2589 #else // !IA64
2590 
2591             // Windows 98 reports faulting addresses incorrectly
2592             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2593                 !os::win32::is_nt()) {
2594               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2595               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2596             }
2597             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2598                          exceptionInfo->ContextRecord);
2599             return EXCEPTION_CONTINUE_SEARCH;
2600 #endif
2601           }
2602         }
2603       }
2604 
2605 #ifdef _WIN64
2606       // Special care for fast JNI field accessors.
2607       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2608       // in and the heap gets shrunk before the field access.
2609       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2610         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2611         if (addr != (address)-1) {
2612           return Handle_Exception(exceptionInfo, addr);
2613         }
2614       }
2615 #endif
2616 
2617       // Stack overflow or null pointer exception in native code.
2618       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2619                    exceptionInfo->ContextRecord);
2620       return EXCEPTION_CONTINUE_SEARCH;
2621     } // /EXCEPTION_ACCESS_VIOLATION
2622     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2623 #if defined _M_IA64
2624     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2625               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2626       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2627 
2628       // Compiled method patched to be non entrant? Following conditions must apply:
2629       // 1. must be first instruction in bundle
2630       // 2. must be a break instruction with appropriate code
2631       if ((((uint64_t) pc & 0x0F) == 0) &&
2632           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2633         return Handle_Exception(exceptionInfo,
2634                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2635       }
2636     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2637 #endif
2638 
2639 
2640     if (in_java) {
2641       switch (exception_code) {
2642       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2643         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2644 
2645       case EXCEPTION_INT_OVERFLOW:
2646         return Handle_IDiv_Exception(exceptionInfo);
2647 
2648       } // switch
2649     }
2650     if (((thread->thread_state() == _thread_in_Java) ||
2651          (thread->thread_state() == _thread_in_native)) &&
2652          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2653       LONG result=Handle_FLT_Exception(exceptionInfo);
2654       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2655     }
2656   }
2657 
2658   if (exception_code != EXCEPTION_BREAKPOINT) {
2659     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2660                  exceptionInfo->ContextRecord);
2661   }
2662   return EXCEPTION_CONTINUE_SEARCH;
2663 }
2664 
2665 #ifndef _WIN64
2666 // Special care for fast JNI accessors.
2667 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2668 // the heap gets shrunk before the field access.
2669 // Need to install our own structured exception handler since native code may
2670 // install its own.
2671 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2672   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2673   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2674     address pc = (address) exceptionInfo->ContextRecord->Eip;
2675     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2676     if (addr != (address)-1) {
2677       return Handle_Exception(exceptionInfo, addr);
2678     }
2679   }
2680   return EXCEPTION_CONTINUE_SEARCH;
2681 }
2682 
2683 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2684   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2685                                                      jobject obj,           \
2686                                                      jfieldID fieldID) {    \
2687     __try {                                                                 \
2688       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2689                                                                  obj,       \
2690                                                                  fieldID);  \
2691     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2692                                               _exception_info())) {         \
2693     }                                                                       \
2694     return 0;                                                               \
2695   }
2696 
2697 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2698 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2699 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2700 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2701 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2702 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2703 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2704 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2705 
2706 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2707   switch (type) {
2708   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2709   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2710   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2711   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2712   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2713   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2714   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2715   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2716   default:        ShouldNotReachHere();
2717   }
2718   return (address)-1;
2719 }
2720 #endif
2721 
2722 // Virtual Memory
2723 
2724 int os::vm_page_size() { return os::win32::vm_page_size(); }
2725 int os::vm_allocation_granularity() {
2726   return os::win32::vm_allocation_granularity();
2727 }
2728 
2729 // Windows large page support is available on Windows 2003. In order to use
2730 // large page memory, the administrator must first assign additional privilege
2731 // to the user:
2732 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2733 //   + select Local Policies -> User Rights Assignment
2734 //   + double click "Lock pages in memory", add users and/or groups
2735 //   + reboot
2736 // Note the above steps are needed for administrator as well, as administrators
2737 // by default do not have the privilege to lock pages in memory.
2738 //
2739 // Note about Windows 2003: although the API supports committing large page
2740 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2741 // scenario, I found through experiment it only uses large page if the entire
2742 // memory region is reserved and committed in a single VirtualAlloc() call.
2743 // This makes Windows large page support more or less like Solaris ISM, in
2744 // that the entire heap must be committed upfront. This probably will change
2745 // in the future, if so the code below needs to be revisited.
2746 
2747 #ifndef MEM_LARGE_PAGES
2748   #define MEM_LARGE_PAGES 0x20000000
2749 #endif
2750 
2751 static HANDLE    _hProcess;
2752 static HANDLE    _hToken;
2753 
2754 // Container for NUMA node list info
2755 class NUMANodeListHolder {
2756  private:
2757   int *_numa_used_node_list;  // allocated below
2758   int _numa_used_node_count;
2759 
2760   void free_node_list() {
2761     if (_numa_used_node_list != NULL) {
2762       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2763     }
2764   }
2765 
2766  public:
2767   NUMANodeListHolder() {
2768     _numa_used_node_count = 0;
2769     _numa_used_node_list = NULL;
2770     // do rest of initialization in build routine (after function pointers are set up)
2771   }
2772 
2773   ~NUMANodeListHolder() {
2774     free_node_list();
2775   }
2776 
2777   bool build() {
2778     DWORD_PTR proc_aff_mask;
2779     DWORD_PTR sys_aff_mask;
2780     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2781     ULONG highest_node_number;
2782     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2783     free_node_list();
2784     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2785     for (unsigned int i = 0; i <= highest_node_number; i++) {
2786       ULONGLONG proc_mask_numa_node;
2787       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2788       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2789         _numa_used_node_list[_numa_used_node_count++] = i;
2790       }
2791     }
2792     return (_numa_used_node_count > 1);
2793   }
2794 
2795   int get_count() { return _numa_used_node_count; }
2796   int get_node_list_entry(int n) {
2797     // for indexes out of range, returns -1
2798     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2799   }
2800 
2801 } numa_node_list_holder;
2802 
2803 
2804 
2805 static size_t _large_page_size = 0;
2806 
2807 static bool resolve_functions_for_large_page_init() {
2808   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2809     os::Advapi32Dll::AdvapiAvailable();
2810 }
2811 
2812 static bool request_lock_memory_privilege() {
2813   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2814                           os::current_process_id());
2815 
2816   LUID luid;
2817   if (_hProcess != NULL &&
2818       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2819       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2820 
2821     TOKEN_PRIVILEGES tp;
2822     tp.PrivilegeCount = 1;
2823     tp.Privileges[0].Luid = luid;
2824     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2825 
2826     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2827     // privilege. Check GetLastError() too. See MSDN document.
2828     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2829         (GetLastError() == ERROR_SUCCESS)) {
2830       return true;
2831     }
2832   }
2833 
2834   return false;
2835 }
2836 
2837 static void cleanup_after_large_page_init() {
2838   if (_hProcess) CloseHandle(_hProcess);
2839   _hProcess = NULL;
2840   if (_hToken) CloseHandle(_hToken);
2841   _hToken = NULL;
2842 }
2843 
2844 static bool numa_interleaving_init() {
2845   bool success = false;
2846   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2847 
2848   // print a warning if UseNUMAInterleaving flag is specified on command line
2849   bool warn_on_failure = use_numa_interleaving_specified;
2850 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2851 
2852   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2853   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2854   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2855 
2856   if (os::Kernel32Dll::NumaCallsAvailable()) {
2857     if (numa_node_list_holder.build()) {
2858       if (PrintMiscellaneous && Verbose) {
2859         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2860         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2861           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2862         }
2863         tty->print("\n");
2864       }
2865       success = true;
2866     } else {
2867       WARN("Process does not cover multiple NUMA nodes.");
2868     }
2869   } else {
2870     WARN("NUMA Interleaving is not supported by the operating system.");
2871   }
2872   if (!success) {
2873     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2874   }
2875   return success;
2876 #undef WARN
2877 }
2878 
2879 // this routine is used whenever we need to reserve a contiguous VA range
2880 // but we need to make separate VirtualAlloc calls for each piece of the range
2881 // Reasons for doing this:
2882 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2883 //  * UseNUMAInterleaving requires a separate node for each piece
2884 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2885                                          DWORD prot,
2886                                          bool should_inject_error = false) {
2887   char * p_buf;
2888   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2889   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2890   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2891 
2892   // first reserve enough address space in advance since we want to be
2893   // able to break a single contiguous virtual address range into multiple
2894   // large page commits but WS2003 does not allow reserving large page space
2895   // so we just use 4K pages for reserve, this gives us a legal contiguous
2896   // address space. then we will deallocate that reservation, and re alloc
2897   // using large pages
2898   const size_t size_of_reserve = bytes + chunk_size;
2899   if (bytes > size_of_reserve) {
2900     // Overflowed.
2901     return NULL;
2902   }
2903   p_buf = (char *) VirtualAlloc(addr,
2904                                 size_of_reserve,  // size of Reserve
2905                                 MEM_RESERVE,
2906                                 PAGE_READWRITE);
2907   // If reservation failed, return NULL
2908   if (p_buf == NULL) return NULL;
2909   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2910   os::release_memory(p_buf, bytes + chunk_size);
2911 
2912   // we still need to round up to a page boundary (in case we are using large pages)
2913   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2914   // instead we handle this in the bytes_to_rq computation below
2915   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2916 
2917   // now go through and allocate one chunk at a time until all bytes are
2918   // allocated
2919   size_t  bytes_remaining = bytes;
2920   // An overflow of align_size_up() would have been caught above
2921   // in the calculation of size_of_reserve.
2922   char * next_alloc_addr = p_buf;
2923   HANDLE hProc = GetCurrentProcess();
2924 
2925 #ifdef ASSERT
2926   // Variable for the failure injection
2927   long ran_num = os::random();
2928   size_t fail_after = ran_num % bytes;
2929 #endif
2930 
2931   int count=0;
2932   while (bytes_remaining) {
2933     // select bytes_to_rq to get to the next chunk_size boundary
2934 
2935     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2936     // Note allocate and commit
2937     char * p_new;
2938 
2939 #ifdef ASSERT
2940     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2941 #else
2942     const bool inject_error_now = false;
2943 #endif
2944 
2945     if (inject_error_now) {
2946       p_new = NULL;
2947     } else {
2948       if (!UseNUMAInterleaving) {
2949         p_new = (char *) VirtualAlloc(next_alloc_addr,
2950                                       bytes_to_rq,
2951                                       flags,
2952                                       prot);
2953       } else {
2954         // get the next node to use from the used_node_list
2955         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2956         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2957         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2958                                                             next_alloc_addr,
2959                                                             bytes_to_rq,
2960                                                             flags,
2961                                                             prot,
2962                                                             node);
2963       }
2964     }
2965 
2966     if (p_new == NULL) {
2967       // Free any allocated pages
2968       if (next_alloc_addr > p_buf) {
2969         // Some memory was committed so release it.
2970         size_t bytes_to_release = bytes - bytes_remaining;
2971         // NMT has yet to record any individual blocks, so it
2972         // need to create a dummy 'reserve' record to match
2973         // the release.
2974         MemTracker::record_virtual_memory_reserve((address)p_buf,
2975                                                   bytes_to_release, CALLER_PC);
2976         os::release_memory(p_buf, bytes_to_release);
2977       }
2978 #ifdef ASSERT
2979       if (should_inject_error) {
2980         if (TracePageSizes && Verbose) {
2981           tty->print_cr("Reserving pages individually failed.");
2982         }
2983       }
2984 #endif
2985       return NULL;
2986     }
2987 
2988     bytes_remaining -= bytes_to_rq;
2989     next_alloc_addr += bytes_to_rq;
2990     count++;
2991   }
2992   // Although the memory is allocated individually, it is returned as one.
2993   // NMT records it as one block.
2994   if ((flags & MEM_COMMIT) != 0) {
2995     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2996   } else {
2997     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2998   }
2999 
3000   // made it this far, success
3001   return p_buf;
3002 }
3003 
3004 
3005 
3006 void os::large_page_init() {
3007   if (!UseLargePages) return;
3008 
3009   // print a warning if any large page related flag is specified on command line
3010   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3011                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3012   bool success = false;
3013 
3014 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3015   if (resolve_functions_for_large_page_init()) {
3016     if (request_lock_memory_privilege()) {
3017       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3018       if (s) {
3019 #if defined(IA32) || defined(AMD64)
3020         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3021           WARN("JVM cannot use large pages bigger than 4mb.");
3022         } else {
3023 #endif
3024           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3025             _large_page_size = LargePageSizeInBytes;
3026           } else {
3027             _large_page_size = s;
3028           }
3029           success = true;
3030 #if defined(IA32) || defined(AMD64)
3031         }
3032 #endif
3033       } else {
3034         WARN("Large page is not supported by the processor.");
3035       }
3036     } else {
3037       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3038     }
3039   } else {
3040     WARN("Large page is not supported by the operating system.");
3041   }
3042 #undef WARN
3043 
3044   const size_t default_page_size = (size_t) vm_page_size();
3045   if (success && _large_page_size > default_page_size) {
3046     _page_sizes[0] = _large_page_size;
3047     _page_sizes[1] = default_page_size;
3048     _page_sizes[2] = 0;
3049   }
3050 
3051   cleanup_after_large_page_init();
3052   UseLargePages = success;
3053 }
3054 
3055 // On win32, one cannot release just a part of reserved memory, it's an
3056 // all or nothing deal.  When we split a reservation, we must break the
3057 // reservation into two reservations.
3058 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3059                                   bool realloc) {
3060   if (size > 0) {
3061     release_memory(base, size);
3062     if (realloc) {
3063       reserve_memory(split, base);
3064     }
3065     if (size != split) {
3066       reserve_memory(size - split, base + split);
3067     }
3068   }
3069 }
3070 
3071 // Multiple threads can race in this code but it's not possible to unmap small sections of
3072 // virtual space to get requested alignment, like posix-like os's.
3073 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3074 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3075   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3076          "Alignment must be a multiple of allocation granularity (page size)");
3077   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3078 
3079   size_t extra_size = size + alignment;
3080   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3081 
3082   char* aligned_base = NULL;
3083 
3084   do {
3085     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3086     if (extra_base == NULL) {
3087       return NULL;
3088     }
3089     // Do manual alignment
3090     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3091 
3092     os::release_memory(extra_base, extra_size);
3093 
3094     aligned_base = os::reserve_memory(size, aligned_base);
3095 
3096   } while (aligned_base == NULL);
3097 
3098   return aligned_base;
3099 }
3100 
3101 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3102   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3103          "reserve alignment");
3104   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3105   char* res;
3106   // note that if UseLargePages is on, all the areas that require interleaving
3107   // will go thru reserve_memory_special rather than thru here.
3108   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3109   if (!use_individual) {
3110     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3111   } else {
3112     elapsedTimer reserveTimer;
3113     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3114     // in numa interleaving, we have to allocate pages individually
3115     // (well really chunks of NUMAInterleaveGranularity size)
3116     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3117     if (res == NULL) {
3118       warning("NUMA page allocation failed");
3119     }
3120     if (Verbose && PrintMiscellaneous) {
3121       reserveTimer.stop();
3122       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3123                     reserveTimer.milliseconds(), reserveTimer.ticks());
3124     }
3125   }
3126   assert(res == NULL || addr == NULL || addr == res,
3127          "Unexpected address from reserve.");
3128 
3129   return res;
3130 }
3131 
3132 // Reserve memory at an arbitrary address, only if that area is
3133 // available (and not reserved for something else).
3134 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3135   // Windows os::reserve_memory() fails of the requested address range is
3136   // not avilable.
3137   return reserve_memory(bytes, requested_addr);
3138 }
3139 
3140 size_t os::large_page_size() {
3141   return _large_page_size;
3142 }
3143 
3144 bool os::can_commit_large_page_memory() {
3145   // Windows only uses large page memory when the entire region is reserved
3146   // and committed in a single VirtualAlloc() call. This may change in the
3147   // future, but with Windows 2003 it's not possible to commit on demand.
3148   return false;
3149 }
3150 
3151 bool os::can_execute_large_page_memory() {
3152   return true;
3153 }
3154 
3155 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3156                                  bool exec) {
3157   assert(UseLargePages, "only for large pages");
3158 
3159   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3160     return NULL; // Fallback to small pages.
3161   }
3162 
3163   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3164   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3165 
3166   // with large pages, there are two cases where we need to use Individual Allocation
3167   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3168   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3169   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3170     if (TracePageSizes && Verbose) {
3171       tty->print_cr("Reserving large pages individually.");
3172     }
3173     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3174     if (p_buf == NULL) {
3175       // give an appropriate warning message
3176       if (UseNUMAInterleaving) {
3177         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3178       }
3179       if (UseLargePagesIndividualAllocation) {
3180         warning("Individually allocated large pages failed, "
3181                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3182       }
3183       return NULL;
3184     }
3185 
3186     return p_buf;
3187 
3188   } else {
3189     if (TracePageSizes && Verbose) {
3190       tty->print_cr("Reserving large pages in a single large chunk.");
3191     }
3192     // normal policy just allocate it all at once
3193     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3194     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3195     if (res != NULL) {
3196       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3197     }
3198 
3199     return res;
3200   }
3201 }
3202 
3203 bool os::release_memory_special(char* base, size_t bytes) {
3204   assert(base != NULL, "Sanity check");
3205   return release_memory(base, bytes);
3206 }
3207 
3208 void os::print_statistics() {
3209 }
3210 
3211 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3212   int err = os::get_last_error();
3213   char buf[256];
3214   size_t buf_len = os::lasterror(buf, sizeof(buf));
3215   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3216           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3217           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3218 }
3219 
3220 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3221   if (bytes == 0) {
3222     // Don't bother the OS with noops.
3223     return true;
3224   }
3225   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3226   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3227   // Don't attempt to print anything if the OS call fails. We're
3228   // probably low on resources, so the print itself may cause crashes.
3229 
3230   // unless we have NUMAInterleaving enabled, the range of a commit
3231   // is always within a reserve covered by a single VirtualAlloc
3232   // in that case we can just do a single commit for the requested size
3233   if (!UseNUMAInterleaving) {
3234     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3235       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3236       return false;
3237     }
3238     if (exec) {
3239       DWORD oldprot;
3240       // Windows doc says to use VirtualProtect to get execute permissions
3241       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3242         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3243         return false;
3244       }
3245     }
3246     return true;
3247   } else {
3248 
3249     // when NUMAInterleaving is enabled, the commit might cover a range that
3250     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3251     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3252     // returns represents the number of bytes that can be committed in one step.
3253     size_t bytes_remaining = bytes;
3254     char * next_alloc_addr = addr;
3255     while (bytes_remaining > 0) {
3256       MEMORY_BASIC_INFORMATION alloc_info;
3257       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3258       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3259       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3260                        PAGE_READWRITE) == NULL) {
3261         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3262                                             exec);)
3263         return false;
3264       }
3265       if (exec) {
3266         DWORD oldprot;
3267         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3268                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3269           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3270                                               exec);)
3271           return false;
3272         }
3273       }
3274       bytes_remaining -= bytes_to_rq;
3275       next_alloc_addr += bytes_to_rq;
3276     }
3277   }
3278   // if we made it this far, return true
3279   return true;
3280 }
3281 
3282 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3283                           bool exec) {
3284   // alignment_hint is ignored on this OS
3285   return pd_commit_memory(addr, size, exec);
3286 }
3287 
3288 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3289                                   const char* mesg) {
3290   assert(mesg != NULL, "mesg must be specified");
3291   if (!pd_commit_memory(addr, size, exec)) {
3292     warn_fail_commit_memory(addr, size, exec);
3293     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3294   }
3295 }
3296 
3297 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3298                                   size_t alignment_hint, bool exec,
3299                                   const char* mesg) {
3300   // alignment_hint is ignored on this OS
3301   pd_commit_memory_or_exit(addr, size, exec, mesg);
3302 }
3303 
3304 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3305   if (bytes == 0) {
3306     // Don't bother the OS with noops.
3307     return true;
3308   }
3309   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3310   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3311   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3312 }
3313 
3314 bool os::pd_release_memory(char* addr, size_t bytes) {
3315   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3316 }
3317 
3318 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3319   return os::commit_memory(addr, size, !ExecMem);
3320 }
3321 
3322 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3323   return os::uncommit_memory(addr, size);
3324 }
3325 
3326 // Set protections specified
3327 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3328                         bool is_committed) {
3329   unsigned int p = 0;
3330   switch (prot) {
3331   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3332   case MEM_PROT_READ: p = PAGE_READONLY; break;
3333   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3334   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3335   default:
3336     ShouldNotReachHere();
3337   }
3338 
3339   DWORD old_status;
3340 
3341   // Strange enough, but on Win32 one can change protection only for committed
3342   // memory, not a big deal anyway, as bytes less or equal than 64K
3343   if (!is_committed) {
3344     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3345                           "cannot commit protection page");
3346   }
3347   // One cannot use os::guard_memory() here, as on Win32 guard page
3348   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3349   //
3350   // Pages in the region become guard pages. Any attempt to access a guard page
3351   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3352   // the guard page status. Guard pages thus act as a one-time access alarm.
3353   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3354 }
3355 
3356 bool os::guard_memory(char* addr, size_t bytes) {
3357   DWORD old_status;
3358   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3359 }
3360 
3361 bool os::unguard_memory(char* addr, size_t bytes) {
3362   DWORD old_status;
3363   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3364 }
3365 
3366 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3367 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3368 void os::numa_make_global(char *addr, size_t bytes)    { }
3369 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3370 bool os::numa_topology_changed()                       { return false; }
3371 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3372 int os::numa_get_group_id()                            { return 0; }
3373 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3374   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3375     // Provide an answer for UMA systems
3376     ids[0] = 0;
3377     return 1;
3378   } else {
3379     // check for size bigger than actual groups_num
3380     size = MIN2(size, numa_get_groups_num());
3381     for (int i = 0; i < (int)size; i++) {
3382       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3383     }
3384     return size;
3385   }
3386 }
3387 
3388 bool os::get_page_info(char *start, page_info* info) {
3389   return false;
3390 }
3391 
3392 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3393                      page_info* page_found) {
3394   return end;
3395 }
3396 
3397 char* os::non_memory_address_word() {
3398   // Must never look like an address returned by reserve_memory,
3399   // even in its subfields (as defined by the CPU immediate fields,
3400   // if the CPU splits constants across multiple instructions).
3401   return (char*)-1;
3402 }
3403 
3404 #define MAX_ERROR_COUNT 100
3405 #define SYS_THREAD_ERROR 0xffffffffUL
3406 
3407 void os::pd_start_thread(Thread* thread) {
3408   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3409   // Returns previous suspend state:
3410   // 0:  Thread was not suspended
3411   // 1:  Thread is running now
3412   // >1: Thread is still suspended.
3413   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3414 }
3415 
3416 class HighResolutionInterval : public CHeapObj<mtThread> {
3417   // The default timer resolution seems to be 10 milliseconds.
3418   // (Where is this written down?)
3419   // If someone wants to sleep for only a fraction of the default,
3420   // then we set the timer resolution down to 1 millisecond for
3421   // the duration of their interval.
3422   // We carefully set the resolution back, since otherwise we
3423   // seem to incur an overhead (3%?) that we don't need.
3424   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3425   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3426   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3427   // timeBeginPeriod() if the relative error exceeded some threshold.
3428   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3429   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3430   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3431   // resolution timers running.
3432  private:
3433   jlong resolution;
3434  public:
3435   HighResolutionInterval(jlong ms) {
3436     resolution = ms % 10L;
3437     if (resolution != 0) {
3438       MMRESULT result = timeBeginPeriod(1L);
3439     }
3440   }
3441   ~HighResolutionInterval() {
3442     if (resolution != 0) {
3443       MMRESULT result = timeEndPeriod(1L);
3444     }
3445     resolution = 0L;
3446   }
3447 };
3448 
3449 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3450   jlong limit = (jlong) MAXDWORD;
3451 
3452   while (ms > limit) {
3453     int res;
3454     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3455       return res;
3456     }
3457     ms -= limit;
3458   }
3459 
3460   assert(thread == Thread::current(), "thread consistency check");
3461   OSThread* osthread = thread->osthread();
3462   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3463   int result;
3464   if (interruptable) {
3465     assert(thread->is_Java_thread(), "must be java thread");
3466     JavaThread *jt = (JavaThread *) thread;
3467     ThreadBlockInVM tbivm(jt);
3468 
3469     jt->set_suspend_equivalent();
3470     // cleared by handle_special_suspend_equivalent_condition() or
3471     // java_suspend_self() via check_and_wait_while_suspended()
3472 
3473     HANDLE events[1];
3474     events[0] = osthread->interrupt_event();
3475     HighResolutionInterval *phri=NULL;
3476     if (!ForceTimeHighResolution) {
3477       phri = new HighResolutionInterval(ms);
3478     }
3479     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3480       result = OS_TIMEOUT;
3481     } else {
3482       ResetEvent(osthread->interrupt_event());
3483       osthread->set_interrupted(false);
3484       result = OS_INTRPT;
3485     }
3486     delete phri; //if it is NULL, harmless
3487 
3488     // were we externally suspended while we were waiting?
3489     jt->check_and_wait_while_suspended();
3490   } else {
3491     assert(!thread->is_Java_thread(), "must not be java thread");
3492     Sleep((long) ms);
3493     result = OS_TIMEOUT;
3494   }
3495   return result;
3496 }
3497 
3498 // Short sleep, direct OS call.
3499 //
3500 // ms = 0, means allow others (if any) to run.
3501 //
3502 void os::naked_short_sleep(jlong ms) {
3503   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3504   Sleep(ms);
3505 }
3506 
3507 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3508 void os::infinite_sleep() {
3509   while (true) {    // sleep forever ...
3510     Sleep(100000);  // ... 100 seconds at a time
3511   }
3512 }
3513 
3514 typedef BOOL (WINAPI * STTSignature)(void);
3515 
3516 void os::naked_yield() {
3517   // Use either SwitchToThread() or Sleep(0)
3518   // Consider passing back the return value from SwitchToThread().
3519   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3520     SwitchToThread();
3521   } else {
3522     Sleep(0);
3523   }
3524 }
3525 
3526 // Win32 only gives you access to seven real priorities at a time,
3527 // so we compress Java's ten down to seven.  It would be better
3528 // if we dynamically adjusted relative priorities.
3529 
3530 int os::java_to_os_priority[CriticalPriority + 1] = {
3531   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3532   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3533   THREAD_PRIORITY_LOWEST,                       // 2
3534   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3535   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3536   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3537   THREAD_PRIORITY_NORMAL,                       // 6
3538   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3539   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3540   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3541   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3542   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3543 };
3544 
3545 int prio_policy1[CriticalPriority + 1] = {
3546   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3547   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3548   THREAD_PRIORITY_LOWEST,                       // 2
3549   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3550   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3551   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3552   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3553   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3554   THREAD_PRIORITY_HIGHEST,                      // 8
3555   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3556   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3557   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3558 };
3559 
3560 static int prio_init() {
3561   // If ThreadPriorityPolicy is 1, switch tables
3562   if (ThreadPriorityPolicy == 1) {
3563     int i;
3564     for (i = 0; i < CriticalPriority + 1; i++) {
3565       os::java_to_os_priority[i] = prio_policy1[i];
3566     }
3567   }
3568   if (UseCriticalJavaThreadPriority) {
3569     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3570   }
3571   return 0;
3572 }
3573 
3574 OSReturn os::set_native_priority(Thread* thread, int priority) {
3575   if (!UseThreadPriorities) return OS_OK;
3576   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3577   return ret ? OS_OK : OS_ERR;
3578 }
3579 
3580 OSReturn os::get_native_priority(const Thread* const thread,
3581                                  int* priority_ptr) {
3582   if (!UseThreadPriorities) {
3583     *priority_ptr = java_to_os_priority[NormPriority];
3584     return OS_OK;
3585   }
3586   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3587   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3588     assert(false, "GetThreadPriority failed");
3589     return OS_ERR;
3590   }
3591   *priority_ptr = os_prio;
3592   return OS_OK;
3593 }
3594 
3595 
3596 // Hint to the underlying OS that a task switch would not be good.
3597 // Void return because it's a hint and can fail.
3598 void os::hint_no_preempt() {}
3599 
3600 void os::interrupt(Thread* thread) {
3601   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3602          Threads_lock->owned_by_self(),
3603          "possibility of dangling Thread pointer");
3604 
3605   OSThread* osthread = thread->osthread();
3606   osthread->set_interrupted(true);
3607   // More than one thread can get here with the same value of osthread,
3608   // resulting in multiple notifications.  We do, however, want the store
3609   // to interrupted() to be visible to other threads before we post
3610   // the interrupt event.
3611   OrderAccess::release();
3612   SetEvent(osthread->interrupt_event());
3613   // For JSR166:  unpark after setting status
3614   if (thread->is_Java_thread()) {
3615     ((JavaThread*)thread)->parker()->unpark();
3616   }
3617 
3618   ParkEvent * ev = thread->_ParkEvent;
3619   if (ev != NULL) ev->unpark();
3620 }
3621 
3622 
3623 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3624   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3625          "possibility of dangling Thread pointer");
3626 
3627   OSThread* osthread = thread->osthread();
3628   // There is no synchronization between the setting of the interrupt
3629   // and it being cleared here. It is critical - see 6535709 - that
3630   // we only clear the interrupt state, and reset the interrupt event,
3631   // if we are going to report that we were indeed interrupted - else
3632   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3633   // depending on the timing. By checking thread interrupt event to see
3634   // if the thread gets real interrupt thus prevent spurious wakeup.
3635   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3636   if (interrupted && clear_interrupted) {
3637     osthread->set_interrupted(false);
3638     ResetEvent(osthread->interrupt_event());
3639   } // Otherwise leave the interrupted state alone
3640 
3641   return interrupted;
3642 }
3643 
3644 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3645 ExtendedPC os::get_thread_pc(Thread* thread) {
3646   CONTEXT context;
3647   context.ContextFlags = CONTEXT_CONTROL;
3648   HANDLE handle = thread->osthread()->thread_handle();
3649 #ifdef _M_IA64
3650   assert(0, "Fix get_thread_pc");
3651   return ExtendedPC(NULL);
3652 #else
3653   if (GetThreadContext(handle, &context)) {
3654 #ifdef _M_AMD64
3655     return ExtendedPC((address) context.Rip);
3656 #else
3657     return ExtendedPC((address) context.Eip);
3658 #endif
3659   } else {
3660     return ExtendedPC(NULL);
3661   }
3662 #endif
3663 }
3664 
3665 // GetCurrentThreadId() returns DWORD
3666 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3667 
3668 static int _initial_pid = 0;
3669 
3670 int os::current_process_id() {
3671   return (_initial_pid ? _initial_pid : _getpid());
3672 }
3673 
3674 int    os::win32::_vm_page_size              = 0;
3675 int    os::win32::_vm_allocation_granularity = 0;
3676 int    os::win32::_processor_type            = 0;
3677 // Processor level is not available on non-NT systems, use vm_version instead
3678 int    os::win32::_processor_level           = 0;
3679 julong os::win32::_physical_memory           = 0;
3680 size_t os::win32::_default_stack_size        = 0;
3681 
3682 intx          os::win32::_os_thread_limit    = 0;
3683 volatile intx os::win32::_os_thread_count    = 0;
3684 
3685 bool   os::win32::_is_nt                     = false;
3686 bool   os::win32::_is_windows_2003           = false;
3687 bool   os::win32::_is_windows_server         = false;
3688 
3689 // 6573254
3690 // Currently, the bug is observed across all the supported Windows releases,
3691 // including the latest one (as of this writing - Windows Server 2012 R2)
3692 bool   os::win32::_has_exit_bug              = true;
3693 bool   os::win32::_has_performance_count     = 0;
3694 
3695 void os::win32::initialize_system_info() {
3696   SYSTEM_INFO si;
3697   GetSystemInfo(&si);
3698   _vm_page_size    = si.dwPageSize;
3699   _vm_allocation_granularity = si.dwAllocationGranularity;
3700   _processor_type  = si.dwProcessorType;
3701   _processor_level = si.wProcessorLevel;
3702   set_processor_count(si.dwNumberOfProcessors);
3703 
3704   MEMORYSTATUSEX ms;
3705   ms.dwLength = sizeof(ms);
3706 
3707   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3708   // dwMemoryLoad (% of memory in use)
3709   GlobalMemoryStatusEx(&ms);
3710   _physical_memory = ms.ullTotalPhys;
3711 
3712   OSVERSIONINFOEX oi;
3713   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3714   GetVersionEx((OSVERSIONINFO*)&oi);
3715   switch (oi.dwPlatformId) {
3716   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3717   case VER_PLATFORM_WIN32_NT:
3718     _is_nt = true;
3719     {
3720       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3721       if (os_vers == 5002) {
3722         _is_windows_2003 = true;
3723       }
3724       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3725           oi.wProductType == VER_NT_SERVER) {
3726         _is_windows_server = true;
3727       }
3728     }
3729     break;
3730   default: fatal("Unknown platform");
3731   }
3732 
3733   _default_stack_size = os::current_stack_size();
3734   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3735   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3736          "stack size not a multiple of page size");
3737 
3738   initialize_performance_counter();
3739 
3740   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3741   // known to deadlock the system, if the VM issues to thread operations with
3742   // a too high frequency, e.g., such as changing the priorities.
3743   // The 6000 seems to work well - no deadlocks has been notices on the test
3744   // programs that we have seen experience this problem.
3745   if (!os::win32::is_nt()) {
3746     StarvationMonitorInterval = 6000;
3747   }
3748 }
3749 
3750 
3751 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3752                                       int ebuflen) {
3753   char path[MAX_PATH];
3754   DWORD size;
3755   DWORD pathLen = (DWORD)sizeof(path);
3756   HINSTANCE result = NULL;
3757 
3758   // only allow library name without path component
3759   assert(strchr(name, '\\') == NULL, "path not allowed");
3760   assert(strchr(name, ':') == NULL, "path not allowed");
3761   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3762     jio_snprintf(ebuf, ebuflen,
3763                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3764     return NULL;
3765   }
3766 
3767   // search system directory
3768   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3769     if (size >= pathLen) {
3770       return NULL; // truncated
3771     }
3772     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3773       return NULL; // truncated
3774     }
3775     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3776       return result;
3777     }
3778   }
3779 
3780   // try Windows directory
3781   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3782     if (size >= pathLen) {
3783       return NULL; // truncated
3784     }
3785     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3786       return NULL; // truncated
3787     }
3788     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3789       return result;
3790     }
3791   }
3792 
3793   jio_snprintf(ebuf, ebuflen,
3794                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3795   return NULL;
3796 }
3797 
3798 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3799 
3800 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3801   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3802   return TRUE;
3803 }
3804 
3805 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3806   // Basic approach:
3807   //  - Each exiting thread registers its intent to exit and then does so.
3808   //  - A thread trying to terminate the process must wait for all
3809   //    threads currently exiting to complete their exit.
3810 
3811   if (os::win32::has_exit_bug()) {
3812     // The array holds handles of the threads that have started exiting by calling
3813     // _endthreadex().
3814     // Should be large enough to avoid blocking the exiting thread due to lack of
3815     // a free slot.
3816     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3817     static int handle_count = 0;
3818 
3819     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3820     static CRITICAL_SECTION crit_sect;
3821     static volatile jint process_exiting = 0;
3822     int i, j;
3823     DWORD res;
3824     HANDLE hproc, hthr;
3825 
3826     // The first thread that reached this point, initializes the critical section.
3827     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3828       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3829     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3830       EnterCriticalSection(&crit_sect);
3831 
3832       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3833         // Remove from the array those handles of the threads that have completed exiting.
3834         for (i = 0, j = 0; i < handle_count; ++i) {
3835           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3836           if (res == WAIT_TIMEOUT) {
3837             handles[j++] = handles[i];
3838           } else {
3839             if (res == WAIT_FAILED) {
3840               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3841                       GetLastError(), __FILE__, __LINE__);
3842             }
3843             // Don't keep the handle, if we failed waiting for it.
3844             CloseHandle(handles[i]);
3845           }
3846         }
3847 
3848         // If there's no free slot in the array of the kept handles, we'll have to
3849         // wait until at least one thread completes exiting.
3850         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3851           // Raise the priority of the oldest exiting thread to increase its chances
3852           // to complete sooner.
3853           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3854           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3855           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3856             i = (res - WAIT_OBJECT_0);
3857             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3858             for (; i < handle_count; ++i) {
3859               handles[i] = handles[i + 1];
3860             }
3861           } else {
3862             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3863                     (res == WAIT_FAILED ? "failed" : "timed out"),
3864                     GetLastError(), __FILE__, __LINE__);
3865             // Don't keep handles, if we failed waiting for them.
3866             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3867               CloseHandle(handles[i]);
3868             }
3869             handle_count = 0;
3870           }
3871         }
3872 
3873         // Store a duplicate of the current thread handle in the array of handles.
3874         hproc = GetCurrentProcess();
3875         hthr = GetCurrentThread();
3876         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3877                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3878           warning("DuplicateHandle failed (%u) in %s: %d\n",
3879                   GetLastError(), __FILE__, __LINE__);
3880         } else {
3881           ++handle_count;
3882         }
3883 
3884         // The current exiting thread has stored its handle in the array, and now
3885         // should leave the critical section before calling _endthreadex().
3886 
3887       } else if (what != EPT_THREAD) {
3888         if (handle_count > 0) {
3889           // Before ending the process, make sure all the threads that had called
3890           // _endthreadex() completed.
3891 
3892           // Set the priority level of the current thread to the same value as
3893           // the priority level of exiting threads.
3894           // This is to ensure it will be given a fair chance to execute if
3895           // the timeout expires.
3896           hthr = GetCurrentThread();
3897           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3898           for (i = 0; i < handle_count; ++i) {
3899             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3900           }
3901           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3902           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3903             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3904                     (res == WAIT_FAILED ? "failed" : "timed out"),
3905                     GetLastError(), __FILE__, __LINE__);
3906           }
3907           for (i = 0; i < handle_count; ++i) {
3908             CloseHandle(handles[i]);
3909           }
3910           handle_count = 0;
3911         }
3912 
3913         OrderAccess::release_store(&process_exiting, 1);
3914       }
3915 
3916       LeaveCriticalSection(&crit_sect);
3917     }
3918 
3919     if (what == EPT_THREAD) {
3920       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3921         // Some other thread is about to call exit(), so we
3922         // don't let the current thread proceed to _endthreadex()
3923         SuspendThread(GetCurrentThread());
3924         // Avoid busy-wait loop, if SuspendThread() failed.
3925         Sleep(EXIT_TIMEOUT);
3926       }
3927     }
3928   }
3929 
3930   // We are here if either
3931   // - there's no 'race at exit' bug on this OS release;
3932   // - initialization of the critical section failed (unlikely);
3933   // - the current thread has stored its handle and left the critical section;
3934   // - the process-exiting thread has raised the flag and left the critical section.
3935   if (what == EPT_THREAD) {
3936     _endthreadex((unsigned)exit_code);
3937   } else if (what == EPT_PROCESS) {
3938     ::exit(exit_code);
3939   } else {
3940     _exit(exit_code);
3941   }
3942 
3943   // Should not reach here
3944   return exit_code;
3945 }
3946 
3947 #undef EXIT_TIMEOUT
3948 
3949 void os::win32::setmode_streams() {
3950   _setmode(_fileno(stdin), _O_BINARY);
3951   _setmode(_fileno(stdout), _O_BINARY);
3952   _setmode(_fileno(stderr), _O_BINARY);
3953 }
3954 
3955 
3956 bool os::is_debugger_attached() {
3957   return IsDebuggerPresent() ? true : false;
3958 }
3959 
3960 
3961 void os::wait_for_keypress_at_exit(void) {
3962   if (PauseAtExit) {
3963     fprintf(stderr, "Press any key to continue...\n");
3964     fgetc(stdin);
3965   }
3966 }
3967 
3968 
3969 int os::message_box(const char* title, const char* message) {
3970   int result = MessageBox(NULL, message, title,
3971                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3972   return result == IDYES;
3973 }
3974 
3975 int os::allocate_thread_local_storage() {
3976   return TlsAlloc();
3977 }
3978 
3979 
3980 void os::free_thread_local_storage(int index) {
3981   TlsFree(index);
3982 }
3983 
3984 
3985 void os::thread_local_storage_at_put(int index, void* value) {
3986   TlsSetValue(index, value);
3987   assert(thread_local_storage_at(index) == value, "Just checking");
3988 }
3989 
3990 
3991 void* os::thread_local_storage_at(int index) {
3992   return TlsGetValue(index);
3993 }
3994 
3995 
3996 #ifndef PRODUCT
3997 #ifndef _WIN64
3998 // Helpers to check whether NX protection is enabled
3999 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4000   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4001       pex->ExceptionRecord->NumberParameters > 0 &&
4002       pex->ExceptionRecord->ExceptionInformation[0] ==
4003       EXCEPTION_INFO_EXEC_VIOLATION) {
4004     return EXCEPTION_EXECUTE_HANDLER;
4005   }
4006   return EXCEPTION_CONTINUE_SEARCH;
4007 }
4008 
4009 void nx_check_protection() {
4010   // If NX is enabled we'll get an exception calling into code on the stack
4011   char code[] = { (char)0xC3 }; // ret
4012   void *code_ptr = (void *)code;
4013   __try {
4014     __asm call code_ptr
4015   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4016     tty->print_raw_cr("NX protection detected.");
4017   }
4018 }
4019 #endif // _WIN64
4020 #endif // PRODUCT
4021 
4022 // this is called _before_ the global arguments have been parsed
4023 void os::init(void) {
4024   _initial_pid = _getpid();
4025 
4026   init_random(1234567);
4027 
4028   win32::initialize_system_info();
4029   win32::setmode_streams();
4030   init_page_sizes((size_t) win32::vm_page_size());
4031 
4032   // This may be overridden later when argument processing is done.
4033   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4034                 os::win32::is_windows_2003());
4035 
4036   // Initialize main_process and main_thread
4037   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4038   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4039                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4040     fatal("DuplicateHandle failed\n");
4041   }
4042   main_thread_id = (int) GetCurrentThreadId();
4043 }
4044 
4045 // To install functions for atexit processing
4046 extern "C" {
4047   static void perfMemory_exit_helper() {
4048     perfMemory_exit();
4049   }
4050 }
4051 
4052 static jint initSock();
4053 
4054 // this is called _after_ the global arguments have been parsed
4055 jint os::init_2(void) {
4056   // Allocate a single page and mark it as readable for safepoint polling
4057   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4058   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4059 
4060   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4061   guarantee(return_page != NULL, "Commit Failed for polling page");
4062 
4063   os::set_polling_page(polling_page);
4064 
4065 #ifndef PRODUCT
4066   if (Verbose && PrintMiscellaneous) {
4067     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4068                (intptr_t)polling_page);
4069   }
4070 #endif
4071 
4072   if (!UseMembar) {
4073     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4074     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4075 
4076     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4077     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4078 
4079     os::set_memory_serialize_page(mem_serialize_page);
4080 
4081 #ifndef PRODUCT
4082     if (Verbose && PrintMiscellaneous) {
4083       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4084                  (intptr_t)mem_serialize_page);
4085     }
4086 #endif
4087   }
4088 
4089   // Setup Windows Exceptions
4090 
4091   // for debugging float code generation bugs
4092   if (ForceFloatExceptions) {
4093 #ifndef  _WIN64
4094     static long fp_control_word = 0;
4095     __asm { fstcw fp_control_word }
4096     // see Intel PPro Manual, Vol. 2, p 7-16
4097     const long precision = 0x20;
4098     const long underflow = 0x10;
4099     const long overflow  = 0x08;
4100     const long zero_div  = 0x04;
4101     const long denorm    = 0x02;
4102     const long invalid   = 0x01;
4103     fp_control_word |= invalid;
4104     __asm { fldcw fp_control_word }
4105 #endif
4106   }
4107 
4108   // If stack_commit_size is 0, windows will reserve the default size,
4109   // but only commit a small portion of it.
4110   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4111   size_t default_reserve_size = os::win32::default_stack_size();
4112   size_t actual_reserve_size = stack_commit_size;
4113   if (stack_commit_size < default_reserve_size) {
4114     // If stack_commit_size == 0, we want this too
4115     actual_reserve_size = default_reserve_size;
4116   }
4117 
4118   // Check minimum allowable stack size for thread creation and to initialize
4119   // the java system classes, including StackOverflowError - depends on page
4120   // size.  Add a page for compiler2 recursion in main thread.
4121   // Add in 2*BytesPerWord times page size to account for VM stack during
4122   // class initialization depending on 32 or 64 bit VM.
4123   size_t min_stack_allowed =
4124             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4125                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4126   if (actual_reserve_size < min_stack_allowed) {
4127     tty->print_cr("\nThe stack size specified is too small, "
4128                   "Specify at least %dk",
4129                   min_stack_allowed / K);
4130     return JNI_ERR;
4131   }
4132 
4133   JavaThread::set_stack_size_at_create(stack_commit_size);
4134 
4135   // Calculate theoretical max. size of Threads to guard gainst artifical
4136   // out-of-memory situations, where all available address-space has been
4137   // reserved by thread stacks.
4138   assert(actual_reserve_size != 0, "Must have a stack");
4139 
4140   // Calculate the thread limit when we should start doing Virtual Memory
4141   // banging. Currently when the threads will have used all but 200Mb of space.
4142   //
4143   // TODO: consider performing a similar calculation for commit size instead
4144   // as reserve size, since on a 64-bit platform we'll run into that more
4145   // often than running out of virtual memory space.  We can use the
4146   // lower value of the two calculations as the os_thread_limit.
4147   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4148   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4149 
4150   // at exit methods are called in the reverse order of their registration.
4151   // there is no limit to the number of functions registered. atexit does
4152   // not set errno.
4153 
4154   if (PerfAllowAtExitRegistration) {
4155     // only register atexit functions if PerfAllowAtExitRegistration is set.
4156     // atexit functions can be delayed until process exit time, which
4157     // can be problematic for embedded VM situations. Embedded VMs should
4158     // call DestroyJavaVM() to assure that VM resources are released.
4159 
4160     // note: perfMemory_exit_helper atexit function may be removed in
4161     // the future if the appropriate cleanup code can be added to the
4162     // VM_Exit VMOperation's doit method.
4163     if (atexit(perfMemory_exit_helper) != 0) {
4164       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4165     }
4166   }
4167 
4168 #ifndef _WIN64
4169   // Print something if NX is enabled (win32 on AMD64)
4170   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4171 #endif
4172 
4173   // initialize thread priority policy
4174   prio_init();
4175 
4176   if (UseNUMA && !ForceNUMA) {
4177     UseNUMA = false; // We don't fully support this yet
4178   }
4179 
4180   if (UseNUMAInterleaving) {
4181     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4182     bool success = numa_interleaving_init();
4183     if (!success) UseNUMAInterleaving = false;
4184   }
4185 
4186   if (initSock() != JNI_OK) {
4187     return JNI_ERR;
4188   }
4189 
4190   return JNI_OK;
4191 }
4192 
4193 // Mark the polling page as unreadable
4194 void os::make_polling_page_unreadable(void) {
4195   DWORD old_status;
4196   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4197                       PAGE_NOACCESS, &old_status)) {
4198     fatal("Could not disable polling page");
4199   }
4200 }
4201 
4202 // Mark the polling page as readable
4203 void os::make_polling_page_readable(void) {
4204   DWORD old_status;
4205   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4206                       PAGE_READONLY, &old_status)) {
4207     fatal("Could not enable polling page");
4208   }
4209 }
4210 
4211 
4212 int os::stat(const char *path, struct stat *sbuf) {
4213   char pathbuf[MAX_PATH];
4214   if (strlen(path) > MAX_PATH - 1) {
4215     errno = ENAMETOOLONG;
4216     return -1;
4217   }
4218   os::native_path(strcpy(pathbuf, path));
4219   int ret = ::stat(pathbuf, sbuf);
4220   if (sbuf != NULL && UseUTCFileTimestamp) {
4221     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4222     // the system timezone and so can return different values for the
4223     // same file if/when daylight savings time changes.  This adjustment
4224     // makes sure the same timestamp is returned regardless of the TZ.
4225     //
4226     // See:
4227     // http://msdn.microsoft.com/library/
4228     //   default.asp?url=/library/en-us/sysinfo/base/
4229     //   time_zone_information_str.asp
4230     // and
4231     // http://msdn.microsoft.com/library/default.asp?url=
4232     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4233     //
4234     // NOTE: there is a insidious bug here:  If the timezone is changed
4235     // after the call to stat() but before 'GetTimeZoneInformation()', then
4236     // the adjustment we do here will be wrong and we'll return the wrong
4237     // value (which will likely end up creating an invalid class data
4238     // archive).  Absent a better API for this, or some time zone locking
4239     // mechanism, we'll have to live with this risk.
4240     TIME_ZONE_INFORMATION tz;
4241     DWORD tzid = GetTimeZoneInformation(&tz);
4242     int daylightBias =
4243       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4244     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4245   }
4246   return ret;
4247 }
4248 
4249 
4250 #define FT2INT64(ft) \
4251   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4252 
4253 
4254 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4255 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4256 // of a thread.
4257 //
4258 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4259 // the fast estimate available on the platform.
4260 
4261 // current_thread_cpu_time() is not optimized for Windows yet
4262 jlong os::current_thread_cpu_time() {
4263   // return user + sys since the cost is the same
4264   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4265 }
4266 
4267 jlong os::thread_cpu_time(Thread* thread) {
4268   // consistent with what current_thread_cpu_time() returns.
4269   return os::thread_cpu_time(thread, true /* user+sys */);
4270 }
4271 
4272 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4273   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4274 }
4275 
4276 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4277   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4278   // If this function changes, os::is_thread_cpu_time_supported() should too
4279   if (os::win32::is_nt()) {
4280     FILETIME CreationTime;
4281     FILETIME ExitTime;
4282     FILETIME KernelTime;
4283     FILETIME UserTime;
4284 
4285     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4286                        &ExitTime, &KernelTime, &UserTime) == 0) {
4287       return -1;
4288     } else if (user_sys_cpu_time) {
4289       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4290     } else {
4291       return FT2INT64(UserTime) * 100;
4292     }
4293   } else {
4294     return (jlong) timeGetTime() * 1000000;
4295   }
4296 }
4297 
4298 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4299   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4300   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4301   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4302   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4303 }
4304 
4305 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4306   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4307   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4308   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4309   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4310 }
4311 
4312 bool os::is_thread_cpu_time_supported() {
4313   // see os::thread_cpu_time
4314   if (os::win32::is_nt()) {
4315     FILETIME CreationTime;
4316     FILETIME ExitTime;
4317     FILETIME KernelTime;
4318     FILETIME UserTime;
4319 
4320     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4321                        &KernelTime, &UserTime) == 0) {
4322       return false;
4323     } else {
4324       return true;
4325     }
4326   } else {
4327     return false;
4328   }
4329 }
4330 
4331 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4332 // It does have primitives (PDH API) to get CPU usage and run queue length.
4333 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4334 // If we wanted to implement loadavg on Windows, we have a few options:
4335 //
4336 // a) Query CPU usage and run queue length and "fake" an answer by
4337 //    returning the CPU usage if it's under 100%, and the run queue
4338 //    length otherwise.  It turns out that querying is pretty slow
4339 //    on Windows, on the order of 200 microseconds on a fast machine.
4340 //    Note that on the Windows the CPU usage value is the % usage
4341 //    since the last time the API was called (and the first call
4342 //    returns 100%), so we'd have to deal with that as well.
4343 //
4344 // b) Sample the "fake" answer using a sampling thread and store
4345 //    the answer in a global variable.  The call to loadavg would
4346 //    just return the value of the global, avoiding the slow query.
4347 //
4348 // c) Sample a better answer using exponential decay to smooth the
4349 //    value.  This is basically the algorithm used by UNIX kernels.
4350 //
4351 // Note that sampling thread starvation could affect both (b) and (c).
4352 int os::loadavg(double loadavg[], int nelem) {
4353   return -1;
4354 }
4355 
4356 
4357 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4358 bool os::dont_yield() {
4359   return DontYieldALot;
4360 }
4361 
4362 // This method is a slightly reworked copy of JDK's sysOpen
4363 // from src/windows/hpi/src/sys_api_md.c
4364 
4365 int os::open(const char *path, int oflag, int mode) {
4366   char pathbuf[MAX_PATH];
4367 
4368   if (strlen(path) > MAX_PATH - 1) {
4369     errno = ENAMETOOLONG;
4370     return -1;
4371   }
4372   os::native_path(strcpy(pathbuf, path));
4373   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4374 }
4375 
4376 FILE* os::open(int fd, const char* mode) {
4377   return ::_fdopen(fd, mode);
4378 }
4379 
4380 // Is a (classpath) directory empty?
4381 bool os::dir_is_empty(const char* path) {
4382   WIN32_FIND_DATA fd;
4383   HANDLE f = FindFirstFile(path, &fd);
4384   if (f == INVALID_HANDLE_VALUE) {
4385     return true;
4386   }
4387   FindClose(f);
4388   return false;
4389 }
4390 
4391 // create binary file, rewriting existing file if required
4392 int os::create_binary_file(const char* path, bool rewrite_existing) {
4393   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4394   if (!rewrite_existing) {
4395     oflags |= _O_EXCL;
4396   }
4397   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4398 }
4399 
4400 // return current position of file pointer
4401 jlong os::current_file_offset(int fd) {
4402   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4403 }
4404 
4405 // move file pointer to the specified offset
4406 jlong os::seek_to_file_offset(int fd, jlong offset) {
4407   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4408 }
4409 
4410 
4411 jlong os::lseek(int fd, jlong offset, int whence) {
4412   return (jlong) ::_lseeki64(fd, offset, whence);
4413 }
4414 
4415 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4416   OVERLAPPED ov;
4417   DWORD nread;
4418   BOOL result;
4419 
4420   ZeroMemory(&ov, sizeof(ov));
4421   ov.Offset = (DWORD)offset;
4422   ov.OffsetHigh = (DWORD)(offset >> 32);
4423 
4424   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4425 
4426   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4427 
4428   return result ? nread : 0;
4429 }
4430 
4431 
4432 // This method is a slightly reworked copy of JDK's sysNativePath
4433 // from src/windows/hpi/src/path_md.c
4434 
4435 // Convert a pathname to native format.  On win32, this involves forcing all
4436 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4437 // sometimes rejects '/') and removing redundant separators.  The input path is
4438 // assumed to have been converted into the character encoding used by the local
4439 // system.  Because this might be a double-byte encoding, care is taken to
4440 // treat double-byte lead characters correctly.
4441 //
4442 // This procedure modifies the given path in place, as the result is never
4443 // longer than the original.  There is no error return; this operation always
4444 // succeeds.
4445 char * os::native_path(char *path) {
4446   char *src = path, *dst = path, *end = path;
4447   char *colon = NULL;  // If a drive specifier is found, this will
4448                        // point to the colon following the drive letter
4449 
4450   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4451   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4452           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4453 
4454   // Check for leading separators
4455 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4456   while (isfilesep(*src)) {
4457     src++;
4458   }
4459 
4460   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4461     // Remove leading separators if followed by drive specifier.  This
4462     // hack is necessary to support file URLs containing drive
4463     // specifiers (e.g., "file://c:/path").  As a side effect,
4464     // "/c:/path" can be used as an alternative to "c:/path".
4465     *dst++ = *src++;
4466     colon = dst;
4467     *dst++ = ':';
4468     src++;
4469   } else {
4470     src = path;
4471     if (isfilesep(src[0]) && isfilesep(src[1])) {
4472       // UNC pathname: Retain first separator; leave src pointed at
4473       // second separator so that further separators will be collapsed
4474       // into the second separator.  The result will be a pathname
4475       // beginning with "\\\\" followed (most likely) by a host name.
4476       src = dst = path + 1;
4477       path[0] = '\\';     // Force first separator to '\\'
4478     }
4479   }
4480 
4481   end = dst;
4482 
4483   // Remove redundant separators from remainder of path, forcing all
4484   // separators to be '\\' rather than '/'. Also, single byte space
4485   // characters are removed from the end of the path because those
4486   // are not legal ending characters on this operating system.
4487   //
4488   while (*src != '\0') {
4489     if (isfilesep(*src)) {
4490       *dst++ = '\\'; src++;
4491       while (isfilesep(*src)) src++;
4492       if (*src == '\0') {
4493         // Check for trailing separator
4494         end = dst;
4495         if (colon == dst - 2) break;  // "z:\\"
4496         if (dst == path + 1) break;   // "\\"
4497         if (dst == path + 2 && isfilesep(path[0])) {
4498           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4499           // beginning of a UNC pathname.  Even though it is not, by
4500           // itself, a valid UNC pathname, we leave it as is in order
4501           // to be consistent with the path canonicalizer as well
4502           // as the win32 APIs, which treat this case as an invalid
4503           // UNC pathname rather than as an alias for the root
4504           // directory of the current drive.
4505           break;
4506         }
4507         end = --dst;  // Path does not denote a root directory, so
4508                       // remove trailing separator
4509         break;
4510       }
4511       end = dst;
4512     } else {
4513       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4514         *dst++ = *src++;
4515         if (*src) *dst++ = *src++;
4516         end = dst;
4517       } else {  // Copy a single-byte character
4518         char c = *src++;
4519         *dst++ = c;
4520         // Space is not a legal ending character
4521         if (c != ' ') end = dst;
4522       }
4523     }
4524   }
4525 
4526   *end = '\0';
4527 
4528   // For "z:", add "." to work around a bug in the C runtime library
4529   if (colon == dst - 1) {
4530     path[2] = '.';
4531     path[3] = '\0';
4532   }
4533 
4534   return path;
4535 }
4536 
4537 // This code is a copy of JDK's sysSetLength
4538 // from src/windows/hpi/src/sys_api_md.c
4539 
4540 int os::ftruncate(int fd, jlong length) {
4541   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4542   long high = (long)(length >> 32);
4543   DWORD ret;
4544 
4545   if (h == (HANDLE)(-1)) {
4546     return -1;
4547   }
4548 
4549   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4550   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4551     return -1;
4552   }
4553 
4554   if (::SetEndOfFile(h) == FALSE) {
4555     return -1;
4556   }
4557 
4558   return 0;
4559 }
4560 
4561 
4562 // This code is a copy of JDK's sysSync
4563 // from src/windows/hpi/src/sys_api_md.c
4564 // except for the legacy workaround for a bug in Win 98
4565 
4566 int os::fsync(int fd) {
4567   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4568 
4569   if ((!::FlushFileBuffers(handle)) &&
4570       (GetLastError() != ERROR_ACCESS_DENIED)) {
4571     // from winerror.h
4572     return -1;
4573   }
4574   return 0;
4575 }
4576 
4577 static int nonSeekAvailable(int, long *);
4578 static int stdinAvailable(int, long *);
4579 
4580 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4581 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4582 
4583 // This code is a copy of JDK's sysAvailable
4584 // from src/windows/hpi/src/sys_api_md.c
4585 
4586 int os::available(int fd, jlong *bytes) {
4587   jlong cur, end;
4588   struct _stati64 stbuf64;
4589 
4590   if (::_fstati64(fd, &stbuf64) >= 0) {
4591     int mode = stbuf64.st_mode;
4592     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4593       int ret;
4594       long lpbytes;
4595       if (fd == 0) {
4596         ret = stdinAvailable(fd, &lpbytes);
4597       } else {
4598         ret = nonSeekAvailable(fd, &lpbytes);
4599       }
4600       (*bytes) = (jlong)(lpbytes);
4601       return ret;
4602     }
4603     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4604       return FALSE;
4605     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4606       return FALSE;
4607     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4608       return FALSE;
4609     }
4610     *bytes = end - cur;
4611     return TRUE;
4612   } else {
4613     return FALSE;
4614   }
4615 }
4616 
4617 // This code is a copy of JDK's nonSeekAvailable
4618 // from src/windows/hpi/src/sys_api_md.c
4619 
4620 static int nonSeekAvailable(int fd, long *pbytes) {
4621   // This is used for available on non-seekable devices
4622   // (like both named and anonymous pipes, such as pipes
4623   //  connected to an exec'd process).
4624   // Standard Input is a special case.
4625   HANDLE han;
4626 
4627   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4628     return FALSE;
4629   }
4630 
4631   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4632     // PeekNamedPipe fails when at EOF.  In that case we
4633     // simply make *pbytes = 0 which is consistent with the
4634     // behavior we get on Solaris when an fd is at EOF.
4635     // The only alternative is to raise an Exception,
4636     // which isn't really warranted.
4637     //
4638     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4639       return FALSE;
4640     }
4641     *pbytes = 0;
4642   }
4643   return TRUE;
4644 }
4645 
4646 #define MAX_INPUT_EVENTS 2000
4647 
4648 // This code is a copy of JDK's stdinAvailable
4649 // from src/windows/hpi/src/sys_api_md.c
4650 
4651 static int stdinAvailable(int fd, long *pbytes) {
4652   HANDLE han;
4653   DWORD numEventsRead = 0;  // Number of events read from buffer
4654   DWORD numEvents = 0;      // Number of events in buffer
4655   DWORD i = 0;              // Loop index
4656   DWORD curLength = 0;      // Position marker
4657   DWORD actualLength = 0;   // Number of bytes readable
4658   BOOL error = FALSE;       // Error holder
4659   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4660 
4661   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4662     return FALSE;
4663   }
4664 
4665   // Construct an array of input records in the console buffer
4666   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4667   if (error == 0) {
4668     return nonSeekAvailable(fd, pbytes);
4669   }
4670 
4671   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4672   if (numEvents > MAX_INPUT_EVENTS) {
4673     numEvents = MAX_INPUT_EVENTS;
4674   }
4675 
4676   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4677   if (lpBuffer == NULL) {
4678     return FALSE;
4679   }
4680 
4681   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4682   if (error == 0) {
4683     os::free(lpBuffer);
4684     return FALSE;
4685   }
4686 
4687   // Examine input records for the number of bytes available
4688   for (i=0; i<numEvents; i++) {
4689     if (lpBuffer[i].EventType == KEY_EVENT) {
4690 
4691       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4692                                       &(lpBuffer[i].Event);
4693       if (keyRecord->bKeyDown == TRUE) {
4694         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4695         curLength++;
4696         if (*keyPressed == '\r') {
4697           actualLength = curLength;
4698         }
4699       }
4700     }
4701   }
4702 
4703   if (lpBuffer != NULL) {
4704     os::free(lpBuffer);
4705   }
4706 
4707   *pbytes = (long) actualLength;
4708   return TRUE;
4709 }
4710 
4711 // Map a block of memory.
4712 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4713                         char *addr, size_t bytes, bool read_only,
4714                         bool allow_exec) {
4715   HANDLE hFile;
4716   char* base;
4717 
4718   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4719                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4720   if (hFile == NULL) {
4721     if (PrintMiscellaneous && Verbose) {
4722       DWORD err = GetLastError();
4723       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4724     }
4725     return NULL;
4726   }
4727 
4728   if (allow_exec) {
4729     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4730     // unless it comes from a PE image (which the shared archive is not.)
4731     // Even VirtualProtect refuses to give execute access to mapped memory
4732     // that was not previously executable.
4733     //
4734     // Instead, stick the executable region in anonymous memory.  Yuck.
4735     // Penalty is that ~4 pages will not be shareable - in the future
4736     // we might consider DLLizing the shared archive with a proper PE
4737     // header so that mapping executable + sharing is possible.
4738 
4739     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4740                                 PAGE_READWRITE);
4741     if (base == NULL) {
4742       if (PrintMiscellaneous && Verbose) {
4743         DWORD err = GetLastError();
4744         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4745       }
4746       CloseHandle(hFile);
4747       return NULL;
4748     }
4749 
4750     DWORD bytes_read;
4751     OVERLAPPED overlapped;
4752     overlapped.Offset = (DWORD)file_offset;
4753     overlapped.OffsetHigh = 0;
4754     overlapped.hEvent = NULL;
4755     // ReadFile guarantees that if the return value is true, the requested
4756     // number of bytes were read before returning.
4757     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4758     if (!res) {
4759       if (PrintMiscellaneous && Verbose) {
4760         DWORD err = GetLastError();
4761         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4762       }
4763       release_memory(base, bytes);
4764       CloseHandle(hFile);
4765       return NULL;
4766     }
4767   } else {
4768     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4769                                     NULL /* file_name */);
4770     if (hMap == NULL) {
4771       if (PrintMiscellaneous && Verbose) {
4772         DWORD err = GetLastError();
4773         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4774       }
4775       CloseHandle(hFile);
4776       return NULL;
4777     }
4778 
4779     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4780     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4781                                   (DWORD)bytes, addr);
4782     if (base == NULL) {
4783       if (PrintMiscellaneous && Verbose) {
4784         DWORD err = GetLastError();
4785         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4786       }
4787       CloseHandle(hMap);
4788       CloseHandle(hFile);
4789       return NULL;
4790     }
4791 
4792     if (CloseHandle(hMap) == 0) {
4793       if (PrintMiscellaneous && Verbose) {
4794         DWORD err = GetLastError();
4795         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4796       }
4797       CloseHandle(hFile);
4798       return base;
4799     }
4800   }
4801 
4802   if (allow_exec) {
4803     DWORD old_protect;
4804     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4805     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4806 
4807     if (!res) {
4808       if (PrintMiscellaneous && Verbose) {
4809         DWORD err = GetLastError();
4810         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4811       }
4812       // Don't consider this a hard error, on IA32 even if the
4813       // VirtualProtect fails, we should still be able to execute
4814       CloseHandle(hFile);
4815       return base;
4816     }
4817   }
4818 
4819   if (CloseHandle(hFile) == 0) {
4820     if (PrintMiscellaneous && Verbose) {
4821       DWORD err = GetLastError();
4822       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4823     }
4824     return base;
4825   }
4826 
4827   return base;
4828 }
4829 
4830 
4831 // Remap a block of memory.
4832 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4833                           char *addr, size_t bytes, bool read_only,
4834                           bool allow_exec) {
4835   // This OS does not allow existing memory maps to be remapped so we
4836   // have to unmap the memory before we remap it.
4837   if (!os::unmap_memory(addr, bytes)) {
4838     return NULL;
4839   }
4840 
4841   // There is a very small theoretical window between the unmap_memory()
4842   // call above and the map_memory() call below where a thread in native
4843   // code may be able to access an address that is no longer mapped.
4844 
4845   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4846                         read_only, allow_exec);
4847 }
4848 
4849 
4850 // Unmap a block of memory.
4851 // Returns true=success, otherwise false.
4852 
4853 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4854   BOOL result = UnmapViewOfFile(addr);
4855   if (result == 0) {
4856     if (PrintMiscellaneous && Verbose) {
4857       DWORD err = GetLastError();
4858       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4859     }
4860     return false;
4861   }
4862   return true;
4863 }
4864 
4865 void os::pause() {
4866   char filename[MAX_PATH];
4867   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4868     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4869   } else {
4870     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4871   }
4872 
4873   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4874   if (fd != -1) {
4875     struct stat buf;
4876     ::close(fd);
4877     while (::stat(filename, &buf) == 0) {
4878       Sleep(100);
4879     }
4880   } else {
4881     jio_fprintf(stderr,
4882                 "Could not open pause file '%s', continuing immediately.\n", filename);
4883   }
4884 }
4885 
4886 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4887   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4888 }
4889 
4890 // See the caveats for this class in os_windows.hpp
4891 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4892 // into this method and returns false. If no OS EXCEPTION was raised, returns
4893 // true.
4894 // The callback is supposed to provide the method that should be protected.
4895 //
4896 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4897   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4898   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4899          "crash_protection already set?");
4900 
4901   bool success = true;
4902   __try {
4903     WatcherThread::watcher_thread()->set_crash_protection(this);
4904     cb.call();
4905   } __except(EXCEPTION_EXECUTE_HANDLER) {
4906     // only for protection, nothing to do
4907     success = false;
4908   }
4909   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4910   return success;
4911 }
4912 
4913 // An Event wraps a win32 "CreateEvent" kernel handle.
4914 //
4915 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4916 //
4917 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4918 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4919 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4920 //     In addition, an unpark() operation might fetch the handle field, but the
4921 //     event could recycle between the fetch and the SetEvent() operation.
4922 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4923 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4924 //     on an stale but recycled handle would be harmless, but in practice this might
4925 //     confuse other non-Sun code, so it's not a viable approach.
4926 //
4927 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4928 //     with the Event.  The event handle is never closed.  This could be construed
4929 //     as handle leakage, but only up to the maximum # of threads that have been extant
4930 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4931 //     permit a process to have hundreds of thousands of open handles.
4932 //
4933 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4934 //     and release unused handles.
4935 //
4936 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4937 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4938 //
4939 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4940 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4941 //
4942 // We use (2).
4943 //
4944 // TODO-FIXME:
4945 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4946 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4947 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4948 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4949 //     into a single win32 CreateEvent() handle.
4950 //
4951 // Assumption:
4952 //    Only one parker can exist on an event, which is why we allocate
4953 //    them per-thread. Multiple unparkers can coexist.
4954 //
4955 // _Event transitions in park()
4956 //   -1 => -1 : illegal
4957 //    1 =>  0 : pass - return immediately
4958 //    0 => -1 : block; then set _Event to 0 before returning
4959 //
4960 // _Event transitions in unpark()
4961 //    0 => 1 : just return
4962 //    1 => 1 : just return
4963 //   -1 => either 0 or 1; must signal target thread
4964 //         That is, we can safely transition _Event from -1 to either
4965 //         0 or 1.
4966 //
4967 // _Event serves as a restricted-range semaphore.
4968 //   -1 : thread is blocked, i.e. there is a waiter
4969 //    0 : neutral: thread is running or ready,
4970 //        could have been signaled after a wait started
4971 //    1 : signaled - thread is running or ready
4972 //
4973 // Another possible encoding of _Event would be with
4974 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4975 //
4976 
4977 int os::PlatformEvent::park(jlong Millis) {
4978   // Transitions for _Event:
4979   //   -1 => -1 : illegal
4980   //    1 =>  0 : pass - return immediately
4981   //    0 => -1 : block; then set _Event to 0 before returning
4982 
4983   guarantee(_ParkHandle != NULL , "Invariant");
4984   guarantee(Millis > 0          , "Invariant");
4985 
4986   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4987   // the initial park() operation.
4988   // Consider: use atomic decrement instead of CAS-loop
4989 
4990   int v;
4991   for (;;) {
4992     v = _Event;
4993     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4994   }
4995   guarantee((v == 0) || (v == 1), "invariant");
4996   if (v != 0) return OS_OK;
4997 
4998   // Do this the hard way by blocking ...
4999   // TODO: consider a brief spin here, gated on the success of recent
5000   // spin attempts by this thread.
5001   //
5002   // We decompose long timeouts into series of shorter timed waits.
5003   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5004   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5005   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5006   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5007   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5008   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5009   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5010   // for the already waited time.  This policy does not admit any new outcomes.
5011   // In the future, however, we might want to track the accumulated wait time and
5012   // adjust Millis accordingly if we encounter a spurious wakeup.
5013 
5014   const int MAXTIMEOUT = 0x10000000;
5015   DWORD rv = WAIT_TIMEOUT;
5016   while (_Event < 0 && Millis > 0) {
5017     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5018     if (Millis > MAXTIMEOUT) {
5019       prd = MAXTIMEOUT;
5020     }
5021     rv = ::WaitForSingleObject(_ParkHandle, prd);
5022     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5023     if (rv == WAIT_TIMEOUT) {
5024       Millis -= prd;
5025     }
5026   }
5027   v = _Event;
5028   _Event = 0;
5029   // see comment at end of os::PlatformEvent::park() below:
5030   OrderAccess::fence();
5031   // If we encounter a nearly simultanous timeout expiry and unpark()
5032   // we return OS_OK indicating we awoke via unpark().
5033   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5034   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5035 }
5036 
5037 void os::PlatformEvent::park() {
5038   // Transitions for _Event:
5039   //   -1 => -1 : illegal
5040   //    1 =>  0 : pass - return immediately
5041   //    0 => -1 : block; then set _Event to 0 before returning
5042 
5043   guarantee(_ParkHandle != NULL, "Invariant");
5044   // Invariant: Only the thread associated with the Event/PlatformEvent
5045   // may call park().
5046   // Consider: use atomic decrement instead of CAS-loop
5047   int v;
5048   for (;;) {
5049     v = _Event;
5050     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5051   }
5052   guarantee((v == 0) || (v == 1), "invariant");
5053   if (v != 0) return;
5054 
5055   // Do this the hard way by blocking ...
5056   // TODO: consider a brief spin here, gated on the success of recent
5057   // spin attempts by this thread.
5058   while (_Event < 0) {
5059     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5060     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5061   }
5062 
5063   // Usually we'll find _Event == 0 at this point, but as
5064   // an optional optimization we clear it, just in case can
5065   // multiple unpark() operations drove _Event up to 1.
5066   _Event = 0;
5067   OrderAccess::fence();
5068   guarantee(_Event >= 0, "invariant");
5069 }
5070 
5071 void os::PlatformEvent::unpark() {
5072   guarantee(_ParkHandle != NULL, "Invariant");
5073 
5074   // Transitions for _Event:
5075   //    0 => 1 : just return
5076   //    1 => 1 : just return
5077   //   -1 => either 0 or 1; must signal target thread
5078   //         That is, we can safely transition _Event from -1 to either
5079   //         0 or 1.
5080   // See also: "Semaphores in Plan 9" by Mullender & Cox
5081   //
5082   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5083   // that it will take two back-to-back park() calls for the owning
5084   // thread to block. This has the benefit of forcing a spurious return
5085   // from the first park() call after an unpark() call which will help
5086   // shake out uses of park() and unpark() without condition variables.
5087 
5088   if (Atomic::xchg(1, &_Event) >= 0) return;
5089 
5090   ::SetEvent(_ParkHandle);
5091 }
5092 
5093 
5094 // JSR166
5095 // -------------------------------------------------------
5096 
5097 // The Windows implementation of Park is very straightforward: Basic
5098 // operations on Win32 Events turn out to have the right semantics to
5099 // use them directly. We opportunistically resuse the event inherited
5100 // from Monitor.
5101 
5102 void Parker::park(bool isAbsolute, jlong time) {
5103   guarantee(_ParkEvent != NULL, "invariant");
5104   // First, demultiplex/decode time arguments
5105   if (time < 0) { // don't wait
5106     return;
5107   } else if (time == 0 && !isAbsolute) {
5108     time = INFINITE;
5109   } else if (isAbsolute) {
5110     time -= os::javaTimeMillis(); // convert to relative time
5111     if (time <= 0) {  // already elapsed
5112       return;
5113     }
5114   } else { // relative
5115     time /= 1000000;  // Must coarsen from nanos to millis
5116     if (time == 0) {  // Wait for the minimal time unit if zero
5117       time = 1;
5118     }
5119   }
5120 
5121   JavaThread* thread = (JavaThread*)(Thread::current());
5122   assert(thread->is_Java_thread(), "Must be JavaThread");
5123   JavaThread *jt = (JavaThread *)thread;
5124 
5125   // Don't wait if interrupted or already triggered
5126   if (Thread::is_interrupted(thread, false) ||
5127       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5128     ResetEvent(_ParkEvent);
5129     return;
5130   } else {
5131     ThreadBlockInVM tbivm(jt);
5132     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5133     jt->set_suspend_equivalent();
5134 
5135     WaitForSingleObject(_ParkEvent, time);
5136     ResetEvent(_ParkEvent);
5137 
5138     // If externally suspended while waiting, re-suspend
5139     if (jt->handle_special_suspend_equivalent_condition()) {
5140       jt->java_suspend_self();
5141     }
5142   }
5143 }
5144 
5145 void Parker::unpark() {
5146   guarantee(_ParkEvent != NULL, "invariant");
5147   SetEvent(_ParkEvent);
5148 }
5149 
5150 // Run the specified command in a separate process. Return its exit value,
5151 // or -1 on failure (e.g. can't create a new process).
5152 int os::fork_and_exec(char* cmd) {
5153   STARTUPINFO si;
5154   PROCESS_INFORMATION pi;
5155 
5156   memset(&si, 0, sizeof(si));
5157   si.cb = sizeof(si);
5158   memset(&pi, 0, sizeof(pi));
5159   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5160                             cmd,    // command line
5161                             NULL,   // process security attribute
5162                             NULL,   // thread security attribute
5163                             TRUE,   // inherits system handles
5164                             0,      // no creation flags
5165                             NULL,   // use parent's environment block
5166                             NULL,   // use parent's starting directory
5167                             &si,    // (in) startup information
5168                             &pi);   // (out) process information
5169 
5170   if (rslt) {
5171     // Wait until child process exits.
5172     WaitForSingleObject(pi.hProcess, INFINITE);
5173 
5174     DWORD exit_code;
5175     GetExitCodeProcess(pi.hProcess, &exit_code);
5176 
5177     // Close process and thread handles.
5178     CloseHandle(pi.hProcess);
5179     CloseHandle(pi.hThread);
5180 
5181     return (int)exit_code;
5182   } else {
5183     return -1;
5184   }
5185 }
5186 
5187 //--------------------------------------------------------------------------------------------------
5188 // Non-product code
5189 
5190 static int mallocDebugIntervalCounter = 0;
5191 static int mallocDebugCounter = 0;
5192 bool os::check_heap(bool force) {
5193   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5194   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5195     // Note: HeapValidate executes two hardware breakpoints when it finds something
5196     // wrong; at these points, eax contains the address of the offending block (I think).
5197     // To get to the exlicit error message(s) below, just continue twice.
5198     HANDLE heap = GetProcessHeap();
5199 
5200     // If we fail to lock the heap, then gflags.exe has been used
5201     // or some other special heap flag has been set that prevents
5202     // locking. We don't try to walk a heap we can't lock.
5203     if (HeapLock(heap) != 0) {
5204       PROCESS_HEAP_ENTRY phe;
5205       phe.lpData = NULL;
5206       while (HeapWalk(heap, &phe) != 0) {
5207         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5208             !HeapValidate(heap, 0, phe.lpData)) {
5209           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5210           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5211           fatal("corrupted C heap");
5212         }
5213       }
5214       DWORD err = GetLastError();
5215       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5216         fatal(err_msg("heap walk aborted with error %d", err));
5217       }
5218       HeapUnlock(heap);
5219     }
5220     mallocDebugIntervalCounter = 0;
5221   }
5222   return true;
5223 }
5224 
5225 
5226 bool os::find(address addr, outputStream* st) {
5227   // Nothing yet
5228   return false;
5229 }
5230 
5231 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5232   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5233 
5234   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5235     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5236     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5237     address addr = (address) exceptionRecord->ExceptionInformation[1];
5238 
5239     if (os::is_memory_serialize_page(thread, addr)) {
5240       return EXCEPTION_CONTINUE_EXECUTION;
5241     }
5242   }
5243 
5244   return EXCEPTION_CONTINUE_SEARCH;
5245 }
5246 
5247 // We don't build a headless jre for Windows
5248 bool os::is_headless_jre() { return false; }
5249 
5250 static jint initSock() {
5251   WSADATA wsadata;
5252 
5253   if (!os::WinSock2Dll::WinSock2Available()) {
5254     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5255                 ::GetLastError());
5256     return JNI_ERR;
5257   }
5258 
5259   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5260     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5261                 ::GetLastError());
5262     return JNI_ERR;
5263   }
5264   return JNI_OK;
5265 }
5266 
5267 struct hostent* os::get_host_by_name(char* name) {
5268   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5269 }
5270 
5271 int os::socket_close(int fd) {
5272   return ::closesocket(fd);
5273 }
5274 
5275 int os::socket(int domain, int type, int protocol) {
5276   return ::socket(domain, type, protocol);
5277 }
5278 
5279 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5280   return ::connect(fd, him, len);
5281 }
5282 
5283 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5284   return ::recv(fd, buf, (int)nBytes, flags);
5285 }
5286 
5287 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5288   return ::send(fd, buf, (int)nBytes, flags);
5289 }
5290 
5291 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5292   return ::send(fd, buf, (int)nBytes, flags);
5293 }
5294 
5295 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5296 #if defined(IA32)
5297   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5298 #elif defined (AMD64)
5299   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5300 #endif
5301 
5302 // returns true if thread could be suspended,
5303 // false otherwise
5304 static bool do_suspend(HANDLE* h) {
5305   if (h != NULL) {
5306     if (SuspendThread(*h) != ~0) {
5307       return true;
5308     }
5309   }
5310   return false;
5311 }
5312 
5313 // resume the thread
5314 // calling resume on an active thread is a no-op
5315 static void do_resume(HANDLE* h) {
5316   if (h != NULL) {
5317     ResumeThread(*h);
5318   }
5319 }
5320 
5321 // retrieve a suspend/resume context capable handle
5322 // from the tid. Caller validates handle return value.
5323 void get_thread_handle_for_extended_context(HANDLE* h,
5324                                             OSThread::thread_id_t tid) {
5325   if (h != NULL) {
5326     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5327   }
5328 }
5329 
5330 // Thread sampling implementation
5331 //
5332 void os::SuspendedThreadTask::internal_do_task() {
5333   CONTEXT    ctxt;
5334   HANDLE     h = NULL;
5335 
5336   // get context capable handle for thread
5337   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5338 
5339   // sanity
5340   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5341     return;
5342   }
5343 
5344   // suspend the thread
5345   if (do_suspend(&h)) {
5346     ctxt.ContextFlags = sampling_context_flags;
5347     // get thread context
5348     GetThreadContext(h, &ctxt);
5349     SuspendedThreadTaskContext context(_thread, &ctxt);
5350     // pass context to Thread Sampling impl
5351     do_task(context);
5352     // resume thread
5353     do_resume(&h);
5354   }
5355 
5356   // close handle
5357   CloseHandle(h);
5358 }
5359 
5360 
5361 // Kernel32 API
5362 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5363 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5364 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5365 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5366 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5367 
5368 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5369 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5370 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5371 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5372 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5373 
5374 
5375 BOOL                        os::Kernel32Dll::initialized = FALSE;
5376 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5377   assert(initialized && _GetLargePageMinimum != NULL,
5378          "GetLargePageMinimumAvailable() not yet called");
5379   return _GetLargePageMinimum();
5380 }
5381 
5382 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5383   if (!initialized) {
5384     initialize();
5385   }
5386   return _GetLargePageMinimum != NULL;
5387 }
5388 
5389 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5390   if (!initialized) {
5391     initialize();
5392   }
5393   return _VirtualAllocExNuma != NULL;
5394 }
5395 
5396 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5397                                            SIZE_T bytes, DWORD flags,
5398                                            DWORD prot, DWORD node) {
5399   assert(initialized && _VirtualAllocExNuma != NULL,
5400          "NUMACallsAvailable() not yet called");
5401 
5402   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5403 }
5404 
5405 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5406   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5407          "NUMACallsAvailable() not yet called");
5408 
5409   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5410 }
5411 
5412 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5413                                                PULONGLONG proc_mask) {
5414   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5415          "NUMACallsAvailable() not yet called");
5416 
5417   return _GetNumaNodeProcessorMask(node, proc_mask);
5418 }
5419 
5420 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5421                                                  ULONG FrameToCapture,
5422                                                  PVOID* BackTrace,
5423                                                  PULONG BackTraceHash) {
5424   if (!initialized) {
5425     initialize();
5426   }
5427 
5428   if (_RtlCaptureStackBackTrace != NULL) {
5429     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5430                                      BackTrace, BackTraceHash);
5431   } else {
5432     return 0;
5433   }
5434 }
5435 
5436 void os::Kernel32Dll::initializeCommon() {
5437   if (!initialized) {
5438     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5439     assert(handle != NULL, "Just check");
5440     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5441     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5442     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5443     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5444     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5445     initialized = TRUE;
5446   }
5447 }
5448 
5449 
5450 
5451 #ifndef JDK6_OR_EARLIER
5452 
5453 void os::Kernel32Dll::initialize() {
5454   initializeCommon();
5455 }
5456 
5457 
5458 // Kernel32 API
5459 inline BOOL os::Kernel32Dll::SwitchToThread() {
5460   return ::SwitchToThread();
5461 }
5462 
5463 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5464   return true;
5465 }
5466 
5467 // Help tools
5468 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5469   return true;
5470 }
5471 
5472 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5473                                                         DWORD th32ProcessId) {
5474   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5475 }
5476 
5477 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5478                                            LPMODULEENTRY32 lpme) {
5479   return ::Module32First(hSnapshot, lpme);
5480 }
5481 
5482 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5483                                           LPMODULEENTRY32 lpme) {
5484   return ::Module32Next(hSnapshot, lpme);
5485 }
5486 
5487 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5488   ::GetNativeSystemInfo(lpSystemInfo);
5489 }
5490 
5491 // PSAPI API
5492 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5493                                              HMODULE *lpModule, DWORD cb,
5494                                              LPDWORD lpcbNeeded) {
5495   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5496 }
5497 
5498 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5499                                                HMODULE hModule,
5500                                                LPTSTR lpFilename,
5501                                                DWORD nSize) {
5502   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5503 }
5504 
5505 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5506                                                HMODULE hModule,
5507                                                LPMODULEINFO lpmodinfo,
5508                                                DWORD cb) {
5509   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5510 }
5511 
5512 inline BOOL os::PSApiDll::PSApiAvailable() {
5513   return true;
5514 }
5515 
5516 
5517 // WinSock2 API
5518 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5519                                         LPWSADATA lpWSAData) {
5520   return ::WSAStartup(wVersionRequested, lpWSAData);
5521 }
5522 
5523 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5524   return ::gethostbyname(name);
5525 }
5526 
5527 inline BOOL os::WinSock2Dll::WinSock2Available() {
5528   return true;
5529 }
5530 
5531 // Advapi API
5532 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5533                                                    BOOL DisableAllPrivileges,
5534                                                    PTOKEN_PRIVILEGES NewState,
5535                                                    DWORD BufferLength,
5536                                                    PTOKEN_PRIVILEGES PreviousState,
5537                                                    PDWORD ReturnLength) {
5538   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5539                                  BufferLength, PreviousState, ReturnLength);
5540 }
5541 
5542 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5543                                               DWORD DesiredAccess,
5544                                               PHANDLE TokenHandle) {
5545   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5546 }
5547 
5548 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5549                                                   LPCTSTR lpName,
5550                                                   PLUID lpLuid) {
5551   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5552 }
5553 
5554 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5555   return true;
5556 }
5557 
5558 void* os::get_default_process_handle() {
5559   return (void*)GetModuleHandle(NULL);
5560 }
5561 
5562 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5563 // which is used to find statically linked in agents.
5564 // Additionally for windows, takes into account __stdcall names.
5565 // Parameters:
5566 //            sym_name: Symbol in library we are looking for
5567 //            lib_name: Name of library to look in, NULL for shared libs.
5568 //            is_absolute_path == true if lib_name is absolute path to agent
5569 //                                     such as "C:/a/b/L.dll"
5570 //            == false if only the base name of the library is passed in
5571 //               such as "L"
5572 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5573                                     bool is_absolute_path) {
5574   char *agent_entry_name;
5575   size_t len;
5576   size_t name_len;
5577   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5578   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5579   const char *start;
5580 
5581   if (lib_name != NULL) {
5582     len = name_len = strlen(lib_name);
5583     if (is_absolute_path) {
5584       // Need to strip path, prefix and suffix
5585       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5586         lib_name = ++start;
5587       } else {
5588         // Need to check for drive prefix
5589         if ((start = strchr(lib_name, ':')) != NULL) {
5590           lib_name = ++start;
5591         }
5592       }
5593       if (len <= (prefix_len + suffix_len)) {
5594         return NULL;
5595       }
5596       lib_name += prefix_len;
5597       name_len = strlen(lib_name) - suffix_len;
5598     }
5599   }
5600   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5601   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5602   if (agent_entry_name == NULL) {
5603     return NULL;
5604   }
5605   if (lib_name != NULL) {
5606     const char *p = strrchr(sym_name, '@');
5607     if (p != NULL && p != sym_name) {
5608       // sym_name == _Agent_OnLoad@XX
5609       strncpy(agent_entry_name, sym_name, (p - sym_name));
5610       agent_entry_name[(p-sym_name)] = '\0';
5611       // agent_entry_name == _Agent_OnLoad
5612       strcat(agent_entry_name, "_");
5613       strncat(agent_entry_name, lib_name, name_len);
5614       strcat(agent_entry_name, p);
5615       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5616     } else {
5617       strcpy(agent_entry_name, sym_name);
5618       strcat(agent_entry_name, "_");
5619       strncat(agent_entry_name, lib_name, name_len);
5620     }
5621   } else {
5622     strcpy(agent_entry_name, sym_name);
5623   }
5624   return agent_entry_name;
5625 }
5626 
5627 #else
5628 // Kernel32 API
5629 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5630 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5631 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5632 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5633 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5634 
5635 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5636 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5637 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5638 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5639 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5640 
5641 void os::Kernel32Dll::initialize() {
5642   if (!initialized) {
5643     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5644     assert(handle != NULL, "Just check");
5645 
5646     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5647     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5648       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5649     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5650     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5651     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5652     initializeCommon();  // resolve the functions that always need resolving
5653 
5654     initialized = TRUE;
5655   }
5656 }
5657 
5658 BOOL os::Kernel32Dll::SwitchToThread() {
5659   assert(initialized && _SwitchToThread != NULL,
5660          "SwitchToThreadAvailable() not yet called");
5661   return _SwitchToThread();
5662 }
5663 
5664 
5665 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5666   if (!initialized) {
5667     initialize();
5668   }
5669   return _SwitchToThread != NULL;
5670 }
5671 
5672 // Help tools
5673 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5674   if (!initialized) {
5675     initialize();
5676   }
5677   return _CreateToolhelp32Snapshot != NULL &&
5678          _Module32First != NULL &&
5679          _Module32Next != NULL;
5680 }
5681 
5682 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5683                                                  DWORD th32ProcessId) {
5684   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5685          "HelpToolsAvailable() not yet called");
5686 
5687   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5688 }
5689 
5690 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5691   assert(initialized && _Module32First != NULL,
5692          "HelpToolsAvailable() not yet called");
5693 
5694   return _Module32First(hSnapshot, lpme);
5695 }
5696 
5697 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5698                                           LPMODULEENTRY32 lpme) {
5699   assert(initialized && _Module32Next != NULL,
5700          "HelpToolsAvailable() not yet called");
5701 
5702   return _Module32Next(hSnapshot, lpme);
5703 }
5704 
5705 
5706 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5707   if (!initialized) {
5708     initialize();
5709   }
5710   return _GetNativeSystemInfo != NULL;
5711 }
5712 
5713 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5714   assert(initialized && _GetNativeSystemInfo != NULL,
5715          "GetNativeSystemInfoAvailable() not yet called");
5716 
5717   _GetNativeSystemInfo(lpSystemInfo);
5718 }
5719 
5720 // PSAPI API
5721 
5722 
5723 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5724 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5725 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5726 
5727 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5728 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5729 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5730 BOOL                    os::PSApiDll::initialized = FALSE;
5731 
5732 void os::PSApiDll::initialize() {
5733   if (!initialized) {
5734     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5735     if (handle != NULL) {
5736       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5737                                                                     "EnumProcessModules");
5738       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5739                                                                       "GetModuleFileNameExA");
5740       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5741                                                                         "GetModuleInformation");
5742     }
5743     initialized = TRUE;
5744   }
5745 }
5746 
5747 
5748 
5749 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5750                                       DWORD cb, LPDWORD lpcbNeeded) {
5751   assert(initialized && _EnumProcessModules != NULL,
5752          "PSApiAvailable() not yet called");
5753   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5754 }
5755 
5756 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5757                                         LPTSTR lpFilename, DWORD nSize) {
5758   assert(initialized && _GetModuleFileNameEx != NULL,
5759          "PSApiAvailable() not yet called");
5760   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5761 }
5762 
5763 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5764                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5765   assert(initialized && _GetModuleInformation != NULL,
5766          "PSApiAvailable() not yet called");
5767   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5768 }
5769 
5770 BOOL os::PSApiDll::PSApiAvailable() {
5771   if (!initialized) {
5772     initialize();
5773   }
5774   return _EnumProcessModules != NULL &&
5775     _GetModuleFileNameEx != NULL &&
5776     _GetModuleInformation != NULL;
5777 }
5778 
5779 
5780 // WinSock2 API
5781 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5782 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5783 
5784 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5785 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5786 BOOL             os::WinSock2Dll::initialized = FALSE;
5787 
5788 void os::WinSock2Dll::initialize() {
5789   if (!initialized) {
5790     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5791     if (handle != NULL) {
5792       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5793       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5794     }
5795     initialized = TRUE;
5796   }
5797 }
5798 
5799 
5800 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5801   assert(initialized && _WSAStartup != NULL,
5802          "WinSock2Available() not yet called");
5803   return _WSAStartup(wVersionRequested, lpWSAData);
5804 }
5805 
5806 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5807   assert(initialized && _gethostbyname != NULL,
5808          "WinSock2Available() not yet called");
5809   return _gethostbyname(name);
5810 }
5811 
5812 BOOL os::WinSock2Dll::WinSock2Available() {
5813   if (!initialized) {
5814     initialize();
5815   }
5816   return _WSAStartup != NULL &&
5817     _gethostbyname != NULL;
5818 }
5819 
5820 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5821 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5822 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5823 
5824 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5825 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5826 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5827 BOOL                     os::Advapi32Dll::initialized = FALSE;
5828 
5829 void os::Advapi32Dll::initialize() {
5830   if (!initialized) {
5831     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5832     if (handle != NULL) {
5833       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5834                                                                           "AdjustTokenPrivileges");
5835       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5836                                                                 "OpenProcessToken");
5837       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5838                                                                         "LookupPrivilegeValueA");
5839     }
5840     initialized = TRUE;
5841   }
5842 }
5843 
5844 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5845                                             BOOL DisableAllPrivileges,
5846                                             PTOKEN_PRIVILEGES NewState,
5847                                             DWORD BufferLength,
5848                                             PTOKEN_PRIVILEGES PreviousState,
5849                                             PDWORD ReturnLength) {
5850   assert(initialized && _AdjustTokenPrivileges != NULL,
5851          "AdvapiAvailable() not yet called");
5852   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5853                                 BufferLength, PreviousState, ReturnLength);
5854 }
5855 
5856 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5857                                        DWORD DesiredAccess,
5858                                        PHANDLE TokenHandle) {
5859   assert(initialized && _OpenProcessToken != NULL,
5860          "AdvapiAvailable() not yet called");
5861   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5862 }
5863 
5864 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5865                                            LPCTSTR lpName, PLUID lpLuid) {
5866   assert(initialized && _LookupPrivilegeValue != NULL,
5867          "AdvapiAvailable() not yet called");
5868   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5869 }
5870 
5871 BOOL os::Advapi32Dll::AdvapiAvailable() {
5872   if (!initialized) {
5873     initialize();
5874   }
5875   return _AdjustTokenPrivileges != NULL &&
5876     _OpenProcessToken != NULL &&
5877     _LookupPrivilegeValue != NULL;
5878 }
5879 
5880 #endif
5881 
5882 #ifndef PRODUCT
5883 
5884 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5885 // contiguous memory block at a particular address.
5886 // The test first tries to find a good approximate address to allocate at by using the same
5887 // method to allocate some memory at any address. The test then tries to allocate memory in
5888 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5889 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5890 // the previously allocated memory is available for allocation. The only actual failure
5891 // that is reported is when the test tries to allocate at a particular location but gets a
5892 // different valid one. A NULL return value at this point is not considered an error but may
5893 // be legitimate.
5894 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5895 void TestReserveMemorySpecial_test() {
5896   if (!UseLargePages) {
5897     if (VerboseInternalVMTests) {
5898       gclog_or_tty->print("Skipping test because large pages are disabled");
5899     }
5900     return;
5901   }
5902   // save current value of globals
5903   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5904   bool old_use_numa_interleaving = UseNUMAInterleaving;
5905 
5906   // set globals to make sure we hit the correct code path
5907   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5908 
5909   // do an allocation at an address selected by the OS to get a good one.
5910   const size_t large_allocation_size = os::large_page_size() * 4;
5911   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5912   if (result == NULL) {
5913     if (VerboseInternalVMTests) {
5914       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5915                           large_allocation_size);
5916     }
5917   } else {
5918     os::release_memory_special(result, large_allocation_size);
5919 
5920     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5921     // we managed to get it once.
5922     const size_t expected_allocation_size = os::large_page_size();
5923     char* expected_location = result + os::large_page_size();
5924     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5925     if (actual_location == NULL) {
5926       if (VerboseInternalVMTests) {
5927         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5928                             expected_location, large_allocation_size);
5929       }
5930     } else {
5931       // release memory
5932       os::release_memory_special(actual_location, expected_allocation_size);
5933       // only now check, after releasing any memory to avoid any leaks.
5934       assert(actual_location == expected_location,
5935              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5936              expected_location, expected_allocation_size, actual_location));
5937     }
5938   }
5939 
5940   // restore globals
5941   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5942   UseNUMAInterleaving = old_use_numa_interleaving;
5943 }
5944 #endif // PRODUCT