1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   } else {
1002     const char* cwd = get_current_directory(NULL, 0);
1003     int pid = current_process_id();
1004     if (cwd != NULL) {
1005       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1006     } else {
1007       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1008     }
1009 
1010     if (dumpFile == NULL &&
1011        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1012                  == INVALID_HANDLE_VALUE) {
1013       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1014       status = false;
1015     }
1016   }
1017   VMError::record_coredump_status(buffer, status);
1018 }
1019 
1020 void os::abort(bool dump_core, void* siginfo, void* context) {
1021   HINSTANCE dbghelp;
1022   EXCEPTION_POINTERS ep;
1023   MINIDUMP_EXCEPTION_INFORMATION mei;
1024   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1025 
1026   HANDLE hProcess = GetCurrentProcess();
1027   DWORD processId = GetCurrentProcessId();
1028   MINIDUMP_TYPE dumpType;
1029 
1030   shutdown();
1031   if (!dump_core || dumpFile == NULL) {
1032     if (dumpFile != NULL) {
1033       CloseHandle(dumpFile);
1034     }
1035     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1036   }
1037 
1038   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1039 
1040   if (dbghelp == NULL) {
1041     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1042     CloseHandle(dumpFile);
1043     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1044   }
1045 
1046   _MiniDumpWriteDump =
1047       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1048                                     PMINIDUMP_EXCEPTION_INFORMATION,
1049                                     PMINIDUMP_USER_STREAM_INFORMATION,
1050                                     PMINIDUMP_CALLBACK_INFORMATION),
1051                                     GetProcAddress(dbghelp,
1052                                     "MiniDumpWriteDump"));
1053 
1054   if (_MiniDumpWriteDump == NULL) {
1055     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1056     CloseHandle(dumpFile);
1057     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1058   }
1059 
1060   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1061 
1062   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1063   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1064 #if API_VERSION_NUMBER >= 11
1065   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1066                              MiniDumpWithUnloadedModules);
1067 #endif
1068 
1069   if (siginfo != NULL && context != NULL) {
1070     ep.ContextRecord = (PCONTEXT) context;
1071     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1072 
1073     mei.ThreadId = GetCurrentThreadId();
1074     mei.ExceptionPointers = &ep;
1075     pmei = &mei;
1076   } else {
1077     pmei = NULL;
1078   }
1079 
1080   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1081   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1082   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1083       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1084     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1085   }
1086   CloseHandle(dumpFile);
1087   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1088 }
1089 
1090 void os::abort(bool dump_core) {
1091   abort(dump_core, NULL, NULL);
1092 }
1093 
1094 // Die immediately, no exit hook, no abort hook, no cleanup.
1095 void os::die() {
1096   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1097 }
1098 
1099 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1100 //  * dirent_md.c       1.15 00/02/02
1101 //
1102 // The declarations for DIR and struct dirent are in jvm_win32.h.
1103 
1104 // Caller must have already run dirname through JVM_NativePath, which removes
1105 // duplicate slashes and converts all instances of '/' into '\\'.
1106 
1107 DIR * os::opendir(const char *dirname) {
1108   assert(dirname != NULL, "just checking");   // hotspot change
1109   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1110   DWORD fattr;                                // hotspot change
1111   char alt_dirname[4] = { 0, 0, 0, 0 };
1112 
1113   if (dirp == 0) {
1114     errno = ENOMEM;
1115     return 0;
1116   }
1117 
1118   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1119   // as a directory in FindFirstFile().  We detect this case here and
1120   // prepend the current drive name.
1121   //
1122   if (dirname[1] == '\0' && dirname[0] == '\\') {
1123     alt_dirname[0] = _getdrive() + 'A' - 1;
1124     alt_dirname[1] = ':';
1125     alt_dirname[2] = '\\';
1126     alt_dirname[3] = '\0';
1127     dirname = alt_dirname;
1128   }
1129 
1130   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1131   if (dirp->path == 0) {
1132     free(dirp);
1133     errno = ENOMEM;
1134     return 0;
1135   }
1136   strcpy(dirp->path, dirname);
1137 
1138   fattr = GetFileAttributes(dirp->path);
1139   if (fattr == 0xffffffff) {
1140     free(dirp->path);
1141     free(dirp);
1142     errno = ENOENT;
1143     return 0;
1144   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOTDIR;
1148     return 0;
1149   }
1150 
1151   // Append "*.*", or possibly "\\*.*", to path
1152   if (dirp->path[1] == ':' &&
1153       (dirp->path[2] == '\0' ||
1154       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1155     // No '\\' needed for cases like "Z:" or "Z:\"
1156     strcat(dirp->path, "*.*");
1157   } else {
1158     strcat(dirp->path, "\\*.*");
1159   }
1160 
1161   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1162   if (dirp->handle == INVALID_HANDLE_VALUE) {
1163     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1164       free(dirp->path);
1165       free(dirp);
1166       errno = EACCES;
1167       return 0;
1168     }
1169   }
1170   return dirp;
1171 }
1172 
1173 // parameter dbuf unused on Windows
1174 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1175   assert(dirp != NULL, "just checking");      // hotspot change
1176   if (dirp->handle == INVALID_HANDLE_VALUE) {
1177     return 0;
1178   }
1179 
1180   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1181 
1182   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1183     if (GetLastError() == ERROR_INVALID_HANDLE) {
1184       errno = EBADF;
1185       return 0;
1186     }
1187     FindClose(dirp->handle);
1188     dirp->handle = INVALID_HANDLE_VALUE;
1189   }
1190 
1191   return &dirp->dirent;
1192 }
1193 
1194 int os::closedir(DIR *dirp) {
1195   assert(dirp != NULL, "just checking");      // hotspot change
1196   if (dirp->handle != INVALID_HANDLE_VALUE) {
1197     if (!FindClose(dirp->handle)) {
1198       errno = EBADF;
1199       return -1;
1200     }
1201     dirp->handle = INVALID_HANDLE_VALUE;
1202   }
1203   free(dirp->path);
1204   free(dirp);
1205   return 0;
1206 }
1207 
1208 // This must be hard coded because it's the system's temporary
1209 // directory not the java application's temp directory, ala java.io.tmpdir.
1210 const char* os::get_temp_directory() {
1211   static char path_buf[MAX_PATH];
1212   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1213     return path_buf;
1214   } else {
1215     path_buf[0] = '\0';
1216     return path_buf;
1217   }
1218 }
1219 
1220 static bool file_exists(const char* filename) {
1221   if (filename == NULL || strlen(filename) == 0) {
1222     return false;
1223   }
1224   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1225 }
1226 
1227 bool os::dll_build_name(char *buffer, size_t buflen,
1228                         const char* pname, const char* fname) {
1229   bool retval = false;
1230   const size_t pnamelen = pname ? strlen(pname) : 0;
1231   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1232 
1233   // Return error on buffer overflow.
1234   if (pnamelen + strlen(fname) + 10 > buflen) {
1235     return retval;
1236   }
1237 
1238   if (pnamelen == 0) {
1239     jio_snprintf(buffer, buflen, "%s.dll", fname);
1240     retval = true;
1241   } else if (c == ':' || c == '\\') {
1242     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1243     retval = true;
1244   } else if (strchr(pname, *os::path_separator()) != NULL) {
1245     int n;
1246     char** pelements = split_path(pname, &n);
1247     if (pelements == NULL) {
1248       return false;
1249     }
1250     for (int i = 0; i < n; i++) {
1251       char* path = pelements[i];
1252       // Really shouldn't be NULL, but check can't hurt
1253       size_t plen = (path == NULL) ? 0 : strlen(path);
1254       if (plen == 0) {
1255         continue; // skip the empty path values
1256       }
1257       const char lastchar = path[plen - 1];
1258       if (lastchar == ':' || lastchar == '\\') {
1259         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1260       } else {
1261         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1262       }
1263       if (file_exists(buffer)) {
1264         retval = true;
1265         break;
1266       }
1267     }
1268     // release the storage
1269     for (int i = 0; i < n; i++) {
1270       if (pelements[i] != NULL) {
1271         FREE_C_HEAP_ARRAY(char, pelements[i]);
1272       }
1273     }
1274     if (pelements != NULL) {
1275       FREE_C_HEAP_ARRAY(char*, pelements);
1276     }
1277   } else {
1278     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1279     retval = true;
1280   }
1281   return retval;
1282 }
1283 
1284 // Needs to be in os specific directory because windows requires another
1285 // header file <direct.h>
1286 const char* os::get_current_directory(char *buf, size_t buflen) {
1287   int n = static_cast<int>(buflen);
1288   if (buflen > INT_MAX)  n = INT_MAX;
1289   return _getcwd(buf, n);
1290 }
1291 
1292 //-----------------------------------------------------------
1293 // Helper functions for fatal error handler
1294 #ifdef _WIN64
1295 // Helper routine which returns true if address in
1296 // within the NTDLL address space.
1297 //
1298 static bool _addr_in_ntdll(address addr) {
1299   HMODULE hmod;
1300   MODULEINFO minfo;
1301 
1302   hmod = GetModuleHandle("NTDLL.DLL");
1303   if (hmod == NULL) return false;
1304   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1305                                           &minfo, sizeof(MODULEINFO))) {
1306     return false;
1307   }
1308 
1309   if ((addr >= minfo.lpBaseOfDll) &&
1310       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1311     return true;
1312   } else {
1313     return false;
1314   }
1315 }
1316 #endif
1317 
1318 struct _modinfo {
1319   address addr;
1320   char*   full_path;   // point to a char buffer
1321   int     buflen;      // size of the buffer
1322   address base_addr;
1323 };
1324 
1325 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1326                                   address top_address, void * param) {
1327   struct _modinfo *pmod = (struct _modinfo *)param;
1328   if (!pmod) return -1;
1329 
1330   if (base_addr   <= pmod->addr &&
1331       top_address > pmod->addr) {
1332     // if a buffer is provided, copy path name to the buffer
1333     if (pmod->full_path) {
1334       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1335     }
1336     pmod->base_addr = base_addr;
1337     return 1;
1338   }
1339   return 0;
1340 }
1341 
1342 bool os::dll_address_to_library_name(address addr, char* buf,
1343                                      int buflen, int* offset) {
1344   // buf is not optional, but offset is optional
1345   assert(buf != NULL, "sanity check");
1346 
1347 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1348 //       return the full path to the DLL file, sometimes it returns path
1349 //       to the corresponding PDB file (debug info); sometimes it only
1350 //       returns partial path, which makes life painful.
1351 
1352   struct _modinfo mi;
1353   mi.addr      = addr;
1354   mi.full_path = buf;
1355   mi.buflen    = buflen;
1356   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1357     // buf already contains path name
1358     if (offset) *offset = addr - mi.base_addr;
1359     return true;
1360   }
1361 
1362   buf[0] = '\0';
1363   if (offset) *offset = -1;
1364   return false;
1365 }
1366 
1367 bool os::dll_address_to_function_name(address addr, char *buf,
1368                                       int buflen, int *offset) {
1369   // buf is not optional, but offset is optional
1370   assert(buf != NULL, "sanity check");
1371 
1372   if (Decoder::decode(addr, buf, buflen, offset)) {
1373     return true;
1374   }
1375   if (offset != NULL)  *offset  = -1;
1376   buf[0] = '\0';
1377   return false;
1378 }
1379 
1380 // save the start and end address of jvm.dll into param[0] and param[1]
1381 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1382                            address top_address, void * param) {
1383   if (!param) return -1;
1384 
1385   if (base_addr   <= (address)_locate_jvm_dll &&
1386       top_address > (address)_locate_jvm_dll) {
1387     ((address*)param)[0] = base_addr;
1388     ((address*)param)[1] = top_address;
1389     return 1;
1390   }
1391   return 0;
1392 }
1393 
1394 address vm_lib_location[2];    // start and end address of jvm.dll
1395 
1396 // check if addr is inside jvm.dll
1397 bool os::address_is_in_vm(address addr) {
1398   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1399     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1400       assert(false, "Can't find jvm module.");
1401       return false;
1402     }
1403   }
1404 
1405   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1406 }
1407 
1408 // print module info; param is outputStream*
1409 static int _print_module(const char* fname, address base_address,
1410                          address top_address, void* param) {
1411   if (!param) return -1;
1412 
1413   outputStream* st = (outputStream*)param;
1414 
1415   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1416   return 0;
1417 }
1418 
1419 // Loads .dll/.so and
1420 // in case of error it checks if .dll/.so was built for the
1421 // same architecture as Hotspot is running on
1422 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1423   void * result = LoadLibrary(name);
1424   if (result != NULL) {
1425     return result;
1426   }
1427 
1428   DWORD errcode = GetLastError();
1429   if (errcode == ERROR_MOD_NOT_FOUND) {
1430     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1431     ebuf[ebuflen - 1] = '\0';
1432     return NULL;
1433   }
1434 
1435   // Parsing dll below
1436   // If we can read dll-info and find that dll was built
1437   // for an architecture other than Hotspot is running in
1438   // - then print to buffer "DLL was built for a different architecture"
1439   // else call os::lasterror to obtain system error message
1440 
1441   // Read system error message into ebuf
1442   // It may or may not be overwritten below (in the for loop and just above)
1443   lasterror(ebuf, (size_t) ebuflen);
1444   ebuf[ebuflen - 1] = '\0';
1445   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1446   if (fd < 0) {
1447     return NULL;
1448   }
1449 
1450   uint32_t signature_offset;
1451   uint16_t lib_arch = 0;
1452   bool failed_to_get_lib_arch =
1453     ( // Go to position 3c in the dll
1454      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1455      ||
1456      // Read location of signature
1457      (sizeof(signature_offset) !=
1458      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1459      ||
1460      // Go to COFF File Header in dll
1461      // that is located after "signature" (4 bytes long)
1462      (os::seek_to_file_offset(fd,
1463      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1464      ||
1465      // Read field that contains code of architecture
1466      // that dll was built for
1467      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1468     );
1469 
1470   ::close(fd);
1471   if (failed_to_get_lib_arch) {
1472     // file i/o error - report os::lasterror(...) msg
1473     return NULL;
1474   }
1475 
1476   typedef struct {
1477     uint16_t arch_code;
1478     char* arch_name;
1479   } arch_t;
1480 
1481   static const arch_t arch_array[] = {
1482     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1483     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1484     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1485   };
1486 #if   (defined _M_IA64)
1487   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1488 #elif (defined _M_AMD64)
1489   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1490 #elif (defined _M_IX86)
1491   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1492 #else
1493   #error Method os::dll_load requires that one of following \
1494          is defined :_M_IA64,_M_AMD64 or _M_IX86
1495 #endif
1496 
1497 
1498   // Obtain a string for printf operation
1499   // lib_arch_str shall contain string what platform this .dll was built for
1500   // running_arch_str shall string contain what platform Hotspot was built for
1501   char *running_arch_str = NULL, *lib_arch_str = NULL;
1502   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1503     if (lib_arch == arch_array[i].arch_code) {
1504       lib_arch_str = arch_array[i].arch_name;
1505     }
1506     if (running_arch == arch_array[i].arch_code) {
1507       running_arch_str = arch_array[i].arch_name;
1508     }
1509   }
1510 
1511   assert(running_arch_str,
1512          "Didn't find running architecture code in arch_array");
1513 
1514   // If the architecture is right
1515   // but some other error took place - report os::lasterror(...) msg
1516   if (lib_arch == running_arch) {
1517     return NULL;
1518   }
1519 
1520   if (lib_arch_str != NULL) {
1521     ::_snprintf(ebuf, ebuflen - 1,
1522                 "Can't load %s-bit .dll on a %s-bit platform",
1523                 lib_arch_str, running_arch_str);
1524   } else {
1525     // don't know what architecture this dll was build for
1526     ::_snprintf(ebuf, ebuflen - 1,
1527                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1528                 lib_arch, running_arch_str);
1529   }
1530 
1531   return NULL;
1532 }
1533 
1534 void os::print_dll_info(outputStream *st) {
1535   st->print_cr("Dynamic libraries:");
1536   get_loaded_modules_info(_print_module, (void *)st);
1537 }
1538 
1539 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1540   HANDLE   hProcess;
1541 
1542 # define MAX_NUM_MODULES 128
1543   HMODULE     modules[MAX_NUM_MODULES];
1544   static char filename[MAX_PATH];
1545   int         result = 0;
1546 
1547   if (!os::PSApiDll::PSApiAvailable()) {
1548     return 0;
1549   }
1550 
1551   int pid = os::current_process_id();
1552   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1553                          FALSE, pid);
1554   if (hProcess == NULL) return 0;
1555 
1556   DWORD size_needed;
1557   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1558                                         sizeof(modules), &size_needed)) {
1559     CloseHandle(hProcess);
1560     return 0;
1561   }
1562 
1563   // number of modules that are currently loaded
1564   int num_modules = size_needed / sizeof(HMODULE);
1565 
1566   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1567     // Get Full pathname:
1568     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1569                                            filename, sizeof(filename))) {
1570       filename[0] = '\0';
1571     }
1572 
1573     MODULEINFO modinfo;
1574     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1575                                             &modinfo, sizeof(modinfo))) {
1576       modinfo.lpBaseOfDll = NULL;
1577       modinfo.SizeOfImage = 0;
1578     }
1579 
1580     // Invoke callback function
1581     result = callback(filename, (address)modinfo.lpBaseOfDll,
1582                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1583     if (result) break;
1584   }
1585 
1586   CloseHandle(hProcess);
1587   return result;
1588 }
1589 
1590 void os::print_os_info_brief(outputStream* st) {
1591   os::print_os_info(st);
1592 }
1593 
1594 void os::print_os_info(outputStream* st) {
1595 #ifdef ASSERT
1596   char buffer[1024];
1597   DWORD size = sizeof(buffer);
1598   st->print(" HostName: ");
1599   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1600     st->print("%s", buffer);
1601   } else {
1602     st->print("N/A");
1603   }
1604 #endif
1605   st->print(" OS:");
1606   os::win32::print_windows_version(st);
1607 }
1608 
1609 void os::win32::print_windows_version(outputStream* st) {
1610   OSVERSIONINFOEX osvi;
1611   VS_FIXEDFILEINFO *file_info;
1612   TCHAR kernel32_path[MAX_PATH];
1613   UINT len, ret;
1614 
1615   // Use the GetVersionEx information to see if we're on a server or
1616   // workstation edition of Windows. Starting with Windows 8.1 we can't
1617   // trust the OS version information returned by this API.
1618   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1619   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1620   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1621     st->print_cr("Call to GetVersionEx failed");
1622     return;
1623   }
1624   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1625 
1626   // Get the full path to \Windows\System32\kernel32.dll and use that for
1627   // determining what version of Windows we're running on.
1628   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1629   ret = GetSystemDirectory(kernel32_path, len);
1630   if (ret == 0 || ret > len) {
1631     st->print_cr("Call to GetSystemDirectory failed");
1632     return;
1633   }
1634   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1635 
1636   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1637   if (version_size == 0) {
1638     st->print_cr("Call to GetFileVersionInfoSize failed");
1639     return;
1640   }
1641 
1642   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1643   if (version_info == NULL) {
1644     st->print_cr("Failed to allocate version_info");
1645     return;
1646   }
1647 
1648   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1649     os::free(version_info);
1650     st->print_cr("Call to GetFileVersionInfo failed");
1651     return;
1652   }
1653 
1654   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1655     os::free(version_info);
1656     st->print_cr("Call to VerQueryValue failed");
1657     return;
1658   }
1659 
1660   int major_version = HIWORD(file_info->dwProductVersionMS);
1661   int minor_version = LOWORD(file_info->dwProductVersionMS);
1662   int build_number = HIWORD(file_info->dwProductVersionLS);
1663   int build_minor = LOWORD(file_info->dwProductVersionLS);
1664   int os_vers = major_version * 1000 + minor_version;
1665   os::free(version_info);
1666 
1667   st->print(" Windows ");
1668   switch (os_vers) {
1669 
1670   case 6000:
1671     if (is_workstation) {
1672       st->print("Vista");
1673     } else {
1674       st->print("Server 2008");
1675     }
1676     break;
1677 
1678   case 6001:
1679     if (is_workstation) {
1680       st->print("7");
1681     } else {
1682       st->print("Server 2008 R2");
1683     }
1684     break;
1685 
1686   case 6002:
1687     if (is_workstation) {
1688       st->print("8");
1689     } else {
1690       st->print("Server 2012");
1691     }
1692     break;
1693 
1694   case 6003:
1695     if (is_workstation) {
1696       st->print("8.1");
1697     } else {
1698       st->print("Server 2012 R2");
1699     }
1700     break;
1701 
1702   case 10000:
1703     if (is_workstation) {
1704       st->print("10");
1705     } else {
1706       // The server version name of Windows 10 is not known at this time
1707       st->print("%d.%d", major_version, minor_version);
1708     }
1709     break;
1710 
1711   default:
1712     // Unrecognized windows, print out its major and minor versions
1713     st->print("%d.%d", major_version, minor_version);
1714     break;
1715   }
1716 
1717   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1718   // find out whether we are running on 64 bit processor or not
1719   SYSTEM_INFO si;
1720   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1721   os::Kernel32Dll::GetNativeSystemInfo(&si);
1722   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1723     st->print(" , 64 bit");
1724   }
1725 
1726   st->print(" Build %d", build_number);
1727   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1728   st->cr();
1729 }
1730 
1731 void os::pd_print_cpu_info(outputStream* st) {
1732   // Nothing to do for now.
1733 }
1734 
1735 void os::print_memory_info(outputStream* st) {
1736   st->print("Memory:");
1737   st->print(" %dk page", os::vm_page_size()>>10);
1738 
1739   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1740   // value if total memory is larger than 4GB
1741   MEMORYSTATUSEX ms;
1742   ms.dwLength = sizeof(ms);
1743   GlobalMemoryStatusEx(&ms);
1744 
1745   st->print(", physical %uk", os::physical_memory() >> 10);
1746   st->print("(%uk free)", os::available_memory() >> 10);
1747 
1748   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1749   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1750   st->cr();
1751 }
1752 
1753 void os::print_siginfo(outputStream *st, void *siginfo) {
1754   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1755   st->print("siginfo:");
1756   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1757 
1758   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1759       er->NumberParameters >= 2) {
1760     switch (er->ExceptionInformation[0]) {
1761     case 0: st->print(", reading address"); break;
1762     case 1: st->print(", writing address"); break;
1763     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1764                        er->ExceptionInformation[0]);
1765     }
1766     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1767   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1768              er->NumberParameters >= 2 && UseSharedSpaces) {
1769     FileMapInfo* mapinfo = FileMapInfo::current_info();
1770     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1771       st->print("\n\nError accessing class data sharing archive."       \
1772                 " Mapped file inaccessible during execution, "          \
1773                 " possible disk/network problem.");
1774     }
1775   } else {
1776     int num = er->NumberParameters;
1777     if (num > 0) {
1778       st->print(", ExceptionInformation=");
1779       for (int i = 0; i < num; i++) {
1780         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1781       }
1782     }
1783   }
1784   st->cr();
1785 }
1786 
1787 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1788   // do nothing
1789 }
1790 
1791 static char saved_jvm_path[MAX_PATH] = {0};
1792 
1793 // Find the full path to the current module, jvm.dll
1794 void os::jvm_path(char *buf, jint buflen) {
1795   // Error checking.
1796   if (buflen < MAX_PATH) {
1797     assert(false, "must use a large-enough buffer");
1798     buf[0] = '\0';
1799     return;
1800   }
1801   // Lazy resolve the path to current module.
1802   if (saved_jvm_path[0] != 0) {
1803     strcpy(buf, saved_jvm_path);
1804     return;
1805   }
1806 
1807   buf[0] = '\0';
1808   if (Arguments::sun_java_launcher_is_altjvm()) {
1809     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1810     // for a JAVA_HOME environment variable and fix up the path so it
1811     // looks like jvm.dll is installed there (append a fake suffix
1812     // hotspot/jvm.dll).
1813     char* java_home_var = ::getenv("JAVA_HOME");
1814     if (java_home_var != NULL && java_home_var[0] != 0 &&
1815         strlen(java_home_var) < (size_t)buflen) {
1816       strncpy(buf, java_home_var, buflen);
1817 
1818       // determine if this is a legacy image or modules image
1819       // modules image doesn't have "jre" subdirectory
1820       size_t len = strlen(buf);
1821       char* jrebin_p = buf + len;
1822       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1823       if (0 != _access(buf, 0)) {
1824         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1825       }
1826       len = strlen(buf);
1827       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1828     }
1829   }
1830 
1831   if (buf[0] == '\0') {
1832     GetModuleFileName(vm_lib_handle, buf, buflen);
1833   }
1834   strncpy(saved_jvm_path, buf, MAX_PATH);
1835   saved_jvm_path[MAX_PATH - 1] = '\0';
1836 }
1837 
1838 
1839 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1840 #ifndef _WIN64
1841   st->print("_");
1842 #endif
1843 }
1844 
1845 
1846 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1847 #ifndef _WIN64
1848   st->print("@%d", args_size  * sizeof(int));
1849 #endif
1850 }
1851 
1852 // This method is a copy of JDK's sysGetLastErrorString
1853 // from src/windows/hpi/src/system_md.c
1854 
1855 size_t os::lasterror(char* buf, size_t len) {
1856   DWORD errval;
1857 
1858   if ((errval = GetLastError()) != 0) {
1859     // DOS error
1860     size_t n = (size_t)FormatMessage(
1861                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1862                                      NULL,
1863                                      errval,
1864                                      0,
1865                                      buf,
1866                                      (DWORD)len,
1867                                      NULL);
1868     if (n > 3) {
1869       // Drop final '.', CR, LF
1870       if (buf[n - 1] == '\n') n--;
1871       if (buf[n - 1] == '\r') n--;
1872       if (buf[n - 1] == '.') n--;
1873       buf[n] = '\0';
1874     }
1875     return n;
1876   }
1877 
1878   if (errno != 0) {
1879     // C runtime error that has no corresponding DOS error code
1880     const char* s = strerror(errno);
1881     size_t n = strlen(s);
1882     if (n >= len) n = len - 1;
1883     strncpy(buf, s, n);
1884     buf[n] = '\0';
1885     return n;
1886   }
1887 
1888   return 0;
1889 }
1890 
1891 int os::get_last_error() {
1892   DWORD error = GetLastError();
1893   if (error == 0) {
1894     error = errno;
1895   }
1896   return (int)error;
1897 }
1898 
1899 WindowsSemaphore::WindowsSemaphore(uint value) {
1900   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1901 
1902   guarantee(_semaphore != NULL, err_msg("CreateSemaphore failed with error code: %lu", GetLastError()));
1903 }
1904 
1905 WindowsSemaphore::~WindowsSemaphore() {
1906   ::CloseHandle(_semaphore);
1907 }
1908 
1909 void WindowsSemaphore::signal(uint count) {
1910   if (count > 0) {
1911     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1912 
1913     assert(ret != 0, err_msg("ReleaseSemaphore failed with error code: %lu", GetLastError()));
1914   }
1915 }
1916 
1917 void WindowsSemaphore::wait() {
1918   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1919   assert(ret != WAIT_FAILED,   err_msg("WaitForSingleObject failed with error code: %lu", GetLastError()));
1920   assert(ret == WAIT_OBJECT_0, err_msg("WaitForSingleObject failed with return value: %lu", ret));
1921 }
1922 
1923 // sun.misc.Signal
1924 // NOTE that this is a workaround for an apparent kernel bug where if
1925 // a signal handler for SIGBREAK is installed then that signal handler
1926 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1927 // See bug 4416763.
1928 static void (*sigbreakHandler)(int) = NULL;
1929 
1930 static void UserHandler(int sig, void *siginfo, void *context) {
1931   os::signal_notify(sig);
1932   // We need to reinstate the signal handler each time...
1933   os::signal(sig, (void*)UserHandler);
1934 }
1935 
1936 void* os::user_handler() {
1937   return (void*) UserHandler;
1938 }
1939 
1940 void* os::signal(int signal_number, void* handler) {
1941   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1942     void (*oldHandler)(int) = sigbreakHandler;
1943     sigbreakHandler = (void (*)(int)) handler;
1944     return (void*) oldHandler;
1945   } else {
1946     return (void*)::signal(signal_number, (void (*)(int))handler);
1947   }
1948 }
1949 
1950 void os::signal_raise(int signal_number) {
1951   raise(signal_number);
1952 }
1953 
1954 // The Win32 C runtime library maps all console control events other than ^C
1955 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1956 // logoff, and shutdown events.  We therefore install our own console handler
1957 // that raises SIGTERM for the latter cases.
1958 //
1959 static BOOL WINAPI consoleHandler(DWORD event) {
1960   switch (event) {
1961   case CTRL_C_EVENT:
1962     if (is_error_reported()) {
1963       // Ctrl-C is pressed during error reporting, likely because the error
1964       // handler fails to abort. Let VM die immediately.
1965       os::die();
1966     }
1967 
1968     os::signal_raise(SIGINT);
1969     return TRUE;
1970     break;
1971   case CTRL_BREAK_EVENT:
1972     if (sigbreakHandler != NULL) {
1973       (*sigbreakHandler)(SIGBREAK);
1974     }
1975     return TRUE;
1976     break;
1977   case CTRL_LOGOFF_EVENT: {
1978     // Don't terminate JVM if it is running in a non-interactive session,
1979     // such as a service process.
1980     USEROBJECTFLAGS flags;
1981     HANDLE handle = GetProcessWindowStation();
1982     if (handle != NULL &&
1983         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1984         sizeof(USEROBJECTFLAGS), NULL)) {
1985       // If it is a non-interactive session, let next handler to deal
1986       // with it.
1987       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1988         return FALSE;
1989       }
1990     }
1991   }
1992   case CTRL_CLOSE_EVENT:
1993   case CTRL_SHUTDOWN_EVENT:
1994     os::signal_raise(SIGTERM);
1995     return TRUE;
1996     break;
1997   default:
1998     break;
1999   }
2000   return FALSE;
2001 }
2002 
2003 // The following code is moved from os.cpp for making this
2004 // code platform specific, which it is by its very nature.
2005 
2006 // Return maximum OS signal used + 1 for internal use only
2007 // Used as exit signal for signal_thread
2008 int os::sigexitnum_pd() {
2009   return NSIG;
2010 }
2011 
2012 // a counter for each possible signal value, including signal_thread exit signal
2013 static volatile jint pending_signals[NSIG+1] = { 0 };
2014 static HANDLE sig_sem = NULL;
2015 
2016 void os::signal_init_pd() {
2017   // Initialize signal structures
2018   memset((void*)pending_signals, 0, sizeof(pending_signals));
2019 
2020   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2021 
2022   // Programs embedding the VM do not want it to attempt to receive
2023   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2024   // shutdown hooks mechanism introduced in 1.3.  For example, when
2025   // the VM is run as part of a Windows NT service (i.e., a servlet
2026   // engine in a web server), the correct behavior is for any console
2027   // control handler to return FALSE, not TRUE, because the OS's
2028   // "final" handler for such events allows the process to continue if
2029   // it is a service (while terminating it if it is not a service).
2030   // To make this behavior uniform and the mechanism simpler, we
2031   // completely disable the VM's usage of these console events if -Xrs
2032   // (=ReduceSignalUsage) is specified.  This means, for example, that
2033   // the CTRL-BREAK thread dump mechanism is also disabled in this
2034   // case.  See bugs 4323062, 4345157, and related bugs.
2035 
2036   if (!ReduceSignalUsage) {
2037     // Add a CTRL-C handler
2038     SetConsoleCtrlHandler(consoleHandler, TRUE);
2039   }
2040 }
2041 
2042 void os::signal_notify(int signal_number) {
2043   BOOL ret;
2044   if (sig_sem != NULL) {
2045     Atomic::inc(&pending_signals[signal_number]);
2046     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2047     assert(ret != 0, "ReleaseSemaphore() failed");
2048   }
2049 }
2050 
2051 static int check_pending_signals(bool wait_for_signal) {
2052   DWORD ret;
2053   while (true) {
2054     for (int i = 0; i < NSIG + 1; i++) {
2055       jint n = pending_signals[i];
2056       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2057         return i;
2058       }
2059     }
2060     if (!wait_for_signal) {
2061       return -1;
2062     }
2063 
2064     JavaThread *thread = JavaThread::current();
2065 
2066     ThreadBlockInVM tbivm(thread);
2067 
2068     bool threadIsSuspended;
2069     do {
2070       thread->set_suspend_equivalent();
2071       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2072       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2073       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2074 
2075       // were we externally suspended while we were waiting?
2076       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2077       if (threadIsSuspended) {
2078         // The semaphore has been incremented, but while we were waiting
2079         // another thread suspended us. We don't want to continue running
2080         // while suspended because that would surprise the thread that
2081         // suspended us.
2082         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2083         assert(ret != 0, "ReleaseSemaphore() failed");
2084 
2085         thread->java_suspend_self();
2086       }
2087     } while (threadIsSuspended);
2088   }
2089 }
2090 
2091 int os::signal_lookup() {
2092   return check_pending_signals(false);
2093 }
2094 
2095 int os::signal_wait() {
2096   return check_pending_signals(true);
2097 }
2098 
2099 // Implicit OS exception handling
2100 
2101 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2102                       address handler) {
2103   JavaThread* thread = JavaThread::current();
2104   // Save pc in thread
2105 #ifdef _M_IA64
2106   // Do not blow up if no thread info available.
2107   if (thread) {
2108     // Saving PRECISE pc (with slot information) in thread.
2109     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2110     // Convert precise PC into "Unix" format
2111     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2112     thread->set_saved_exception_pc((address)precise_pc);
2113   }
2114   // Set pc to handler
2115   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2116   // Clear out psr.ri (= Restart Instruction) in order to continue
2117   // at the beginning of the target bundle.
2118   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2119   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2120 #else
2121   #ifdef _M_AMD64
2122   // Do not blow up if no thread info available.
2123   if (thread) {
2124     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2125   }
2126   // Set pc to handler
2127   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2128   #else
2129   // Do not blow up if no thread info available.
2130   if (thread) {
2131     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2132   }
2133   // Set pc to handler
2134   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2135   #endif
2136 #endif
2137 
2138   // Continue the execution
2139   return EXCEPTION_CONTINUE_EXECUTION;
2140 }
2141 
2142 
2143 // Used for PostMortemDump
2144 extern "C" void safepoints();
2145 extern "C" void find(int x);
2146 extern "C" void events();
2147 
2148 // According to Windows API documentation, an illegal instruction sequence should generate
2149 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2150 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2151 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2152 
2153 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2154 
2155 // From "Execution Protection in the Windows Operating System" draft 0.35
2156 // Once a system header becomes available, the "real" define should be
2157 // included or copied here.
2158 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2159 
2160 // Handle NAT Bit consumption on IA64.
2161 #ifdef _M_IA64
2162   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2163 #endif
2164 
2165 // Windows Vista/2008 heap corruption check
2166 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2167 
2168 #define def_excpt(val) #val, val
2169 
2170 struct siglabel {
2171   char *name;
2172   int   number;
2173 };
2174 
2175 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2176 // C++ compiler contain this error code. Because this is a compiler-generated
2177 // error, the code is not listed in the Win32 API header files.
2178 // The code is actually a cryptic mnemonic device, with the initial "E"
2179 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2180 // ASCII values of "msc".
2181 
2182 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2183 
2184 
2185 struct siglabel exceptlabels[] = {
2186     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2187     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2188     def_excpt(EXCEPTION_BREAKPOINT),
2189     def_excpt(EXCEPTION_SINGLE_STEP),
2190     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2191     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2192     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2193     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2194     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2195     def_excpt(EXCEPTION_FLT_OVERFLOW),
2196     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2197     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2198     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2199     def_excpt(EXCEPTION_INT_OVERFLOW),
2200     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2201     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2202     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2203     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2204     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2205     def_excpt(EXCEPTION_STACK_OVERFLOW),
2206     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2207     def_excpt(EXCEPTION_GUARD_PAGE),
2208     def_excpt(EXCEPTION_INVALID_HANDLE),
2209     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2210     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2211 #ifdef _M_IA64
2212     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2213 #endif
2214     NULL, 0
2215 };
2216 
2217 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2218   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2219     if (exceptlabels[i].number == exception_code) {
2220       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2221       return buf;
2222     }
2223   }
2224 
2225   return NULL;
2226 }
2227 
2228 //-----------------------------------------------------------------------------
2229 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2230   // handle exception caused by idiv; should only happen for -MinInt/-1
2231   // (division by zero is handled explicitly)
2232 #ifdef _M_IA64
2233   assert(0, "Fix Handle_IDiv_Exception");
2234 #else
2235   #ifdef  _M_AMD64
2236   PCONTEXT ctx = exceptionInfo->ContextRecord;
2237   address pc = (address)ctx->Rip;
2238   assert(pc[0] == 0xF7, "not an idiv opcode");
2239   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2240   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2241   // set correct result values and continue after idiv instruction
2242   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2243   ctx->Rax = (DWORD)min_jint;      // result
2244   ctx->Rdx = (DWORD)0;             // remainder
2245   // Continue the execution
2246   #else
2247   PCONTEXT ctx = exceptionInfo->ContextRecord;
2248   address pc = (address)ctx->Eip;
2249   assert(pc[0] == 0xF7, "not an idiv opcode");
2250   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2251   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2252   // set correct result values and continue after idiv instruction
2253   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2254   ctx->Eax = (DWORD)min_jint;      // result
2255   ctx->Edx = (DWORD)0;             // remainder
2256   // Continue the execution
2257   #endif
2258 #endif
2259   return EXCEPTION_CONTINUE_EXECUTION;
2260 }
2261 
2262 //-----------------------------------------------------------------------------
2263 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2264   PCONTEXT ctx = exceptionInfo->ContextRecord;
2265 #ifndef  _WIN64
2266   // handle exception caused by native method modifying control word
2267   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2268 
2269   switch (exception_code) {
2270   case EXCEPTION_FLT_DENORMAL_OPERAND:
2271   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2272   case EXCEPTION_FLT_INEXACT_RESULT:
2273   case EXCEPTION_FLT_INVALID_OPERATION:
2274   case EXCEPTION_FLT_OVERFLOW:
2275   case EXCEPTION_FLT_STACK_CHECK:
2276   case EXCEPTION_FLT_UNDERFLOW:
2277     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2278     if (fp_control_word != ctx->FloatSave.ControlWord) {
2279       // Restore FPCW and mask out FLT exceptions
2280       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2281       // Mask out pending FLT exceptions
2282       ctx->FloatSave.StatusWord &=  0xffffff00;
2283       return EXCEPTION_CONTINUE_EXECUTION;
2284     }
2285   }
2286 
2287   if (prev_uef_handler != NULL) {
2288     // We didn't handle this exception so pass it to the previous
2289     // UnhandledExceptionFilter.
2290     return (prev_uef_handler)(exceptionInfo);
2291   }
2292 #else // !_WIN64
2293   // On Windows, the mxcsr control bits are non-volatile across calls
2294   // See also CR 6192333
2295   //
2296   jint MxCsr = INITIAL_MXCSR;
2297   // we can't use StubRoutines::addr_mxcsr_std()
2298   // because in Win64 mxcsr is not saved there
2299   if (MxCsr != ctx->MxCsr) {
2300     ctx->MxCsr = MxCsr;
2301     return EXCEPTION_CONTINUE_EXECUTION;
2302   }
2303 #endif // !_WIN64
2304 
2305   return EXCEPTION_CONTINUE_SEARCH;
2306 }
2307 
2308 static inline void report_error(Thread* t, DWORD exception_code,
2309                                 address addr, void* siginfo, void* context) {
2310   VMError err(t, exception_code, addr, siginfo, context);
2311   err.report_and_die();
2312 
2313   // If UseOsErrorReporting, this will return here and save the error file
2314   // somewhere where we can find it in the minidump.
2315 }
2316 
2317 //-----------------------------------------------------------------------------
2318 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2319   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2320   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2321 #ifdef _M_IA64
2322   // On Itanium, we need the "precise pc", which has the slot number coded
2323   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2324   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2325   // Convert the pc to "Unix format", which has the slot number coded
2326   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2327   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2328   // information is saved in the Unix format.
2329   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2330 #else
2331   #ifdef _M_AMD64
2332   address pc = (address) exceptionInfo->ContextRecord->Rip;
2333   #else
2334   address pc = (address) exceptionInfo->ContextRecord->Eip;
2335   #endif
2336 #endif
2337   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2338 
2339   // Handle SafeFetch32 and SafeFetchN exceptions.
2340   if (StubRoutines::is_safefetch_fault(pc)) {
2341     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2342   }
2343 
2344 #ifndef _WIN64
2345   // Execution protection violation - win32 running on AMD64 only
2346   // Handled first to avoid misdiagnosis as a "normal" access violation;
2347   // This is safe to do because we have a new/unique ExceptionInformation
2348   // code for this condition.
2349   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2350     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2351     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2352     address addr = (address) exceptionRecord->ExceptionInformation[1];
2353 
2354     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2355       int page_size = os::vm_page_size();
2356 
2357       // Make sure the pc and the faulting address are sane.
2358       //
2359       // If an instruction spans a page boundary, and the page containing
2360       // the beginning of the instruction is executable but the following
2361       // page is not, the pc and the faulting address might be slightly
2362       // different - we still want to unguard the 2nd page in this case.
2363       //
2364       // 15 bytes seems to be a (very) safe value for max instruction size.
2365       bool pc_is_near_addr =
2366         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2367       bool instr_spans_page_boundary =
2368         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2369                          (intptr_t) page_size) > 0);
2370 
2371       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2372         static volatile address last_addr =
2373           (address) os::non_memory_address_word();
2374 
2375         // In conservative mode, don't unguard unless the address is in the VM
2376         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2377             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2378 
2379           // Set memory to RWX and retry
2380           address page_start =
2381             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2382           bool res = os::protect_memory((char*) page_start, page_size,
2383                                         os::MEM_PROT_RWX);
2384 
2385           if (PrintMiscellaneous && Verbose) {
2386             char buf[256];
2387             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2388                          "at " INTPTR_FORMAT
2389                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2390                          page_start, (res ? "success" : strerror(errno)));
2391             tty->print_raw_cr(buf);
2392           }
2393 
2394           // Set last_addr so if we fault again at the same address, we don't
2395           // end up in an endless loop.
2396           //
2397           // There are two potential complications here.  Two threads trapping
2398           // at the same address at the same time could cause one of the
2399           // threads to think it already unguarded, and abort the VM.  Likely
2400           // very rare.
2401           //
2402           // The other race involves two threads alternately trapping at
2403           // different addresses and failing to unguard the page, resulting in
2404           // an endless loop.  This condition is probably even more unlikely
2405           // than the first.
2406           //
2407           // Although both cases could be avoided by using locks or thread
2408           // local last_addr, these solutions are unnecessary complication:
2409           // this handler is a best-effort safety net, not a complete solution.
2410           // It is disabled by default and should only be used as a workaround
2411           // in case we missed any no-execute-unsafe VM code.
2412 
2413           last_addr = addr;
2414 
2415           return EXCEPTION_CONTINUE_EXECUTION;
2416         }
2417       }
2418 
2419       // Last unguard failed or not unguarding
2420       tty->print_raw_cr("Execution protection violation");
2421       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2422                    exceptionInfo->ContextRecord);
2423       return EXCEPTION_CONTINUE_SEARCH;
2424     }
2425   }
2426 #endif // _WIN64
2427 
2428   // Check to see if we caught the safepoint code in the
2429   // process of write protecting the memory serialization page.
2430   // It write enables the page immediately after protecting it
2431   // so just return.
2432   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2433     JavaThread* thread = (JavaThread*) t;
2434     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2435     address addr = (address) exceptionRecord->ExceptionInformation[1];
2436     if (os::is_memory_serialize_page(thread, addr)) {
2437       // Block current thread until the memory serialize page permission restored.
2438       os::block_on_serialize_page_trap();
2439       return EXCEPTION_CONTINUE_EXECUTION;
2440     }
2441   }
2442 
2443   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2444       VM_Version::is_cpuinfo_segv_addr(pc)) {
2445     // Verify that OS save/restore AVX registers.
2446     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2447   }
2448 
2449   if (t != NULL && t->is_Java_thread()) {
2450     JavaThread* thread = (JavaThread*) t;
2451     bool in_java = thread->thread_state() == _thread_in_Java;
2452 
2453     // Handle potential stack overflows up front.
2454     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2455       if (os::uses_stack_guard_pages()) {
2456 #ifdef _M_IA64
2457         // Use guard page for register stack.
2458         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2459         address addr = (address) exceptionRecord->ExceptionInformation[1];
2460         // Check for a register stack overflow on Itanium
2461         if (thread->addr_inside_register_stack_red_zone(addr)) {
2462           // Fatal red zone violation happens if the Java program
2463           // catches a StackOverflow error and does so much processing
2464           // that it runs beyond the unprotected yellow guard zone. As
2465           // a result, we are out of here.
2466           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2467         } else if(thread->addr_inside_register_stack(addr)) {
2468           // Disable the yellow zone which sets the state that
2469           // we've got a stack overflow problem.
2470           if (thread->stack_yellow_zone_enabled()) {
2471             thread->disable_stack_yellow_zone();
2472           }
2473           // Give us some room to process the exception.
2474           thread->disable_register_stack_guard();
2475           // Tracing with +Verbose.
2476           if (Verbose) {
2477             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2478             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2479             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2480             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2481                           thread->register_stack_base(),
2482                           thread->register_stack_base() + thread->stack_size());
2483           }
2484 
2485           // Reguard the permanent register stack red zone just to be sure.
2486           // We saw Windows silently disabling this without telling us.
2487           thread->enable_register_stack_red_zone();
2488 
2489           return Handle_Exception(exceptionInfo,
2490                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2491         }
2492 #endif
2493         if (thread->stack_yellow_zone_enabled()) {
2494           // Yellow zone violation.  The o/s has unprotected the first yellow
2495           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2496           // update the enabled status, even if the zone contains only one page.
2497           thread->disable_stack_yellow_zone();
2498           // If not in java code, return and hope for the best.
2499           return in_java
2500               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2501               :  EXCEPTION_CONTINUE_EXECUTION;
2502         } else {
2503           // Fatal red zone violation.
2504           thread->disable_stack_red_zone();
2505           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2506           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2507                        exceptionInfo->ContextRecord);
2508           return EXCEPTION_CONTINUE_SEARCH;
2509         }
2510       } else if (in_java) {
2511         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2512         // a one-time-only guard page, which it has released to us.  The next
2513         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2514         return Handle_Exception(exceptionInfo,
2515                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2516       } else {
2517         // Can only return and hope for the best.  Further stack growth will
2518         // result in an ACCESS_VIOLATION.
2519         return EXCEPTION_CONTINUE_EXECUTION;
2520       }
2521     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2522       // Either stack overflow or null pointer exception.
2523       if (in_java) {
2524         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2525         address addr = (address) exceptionRecord->ExceptionInformation[1];
2526         address stack_end = thread->stack_base() - thread->stack_size();
2527         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2528           // Stack overflow.
2529           assert(!os::uses_stack_guard_pages(),
2530                  "should be caught by red zone code above.");
2531           return Handle_Exception(exceptionInfo,
2532                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2533         }
2534         // Check for safepoint polling and implicit null
2535         // We only expect null pointers in the stubs (vtable)
2536         // the rest are checked explicitly now.
2537         CodeBlob* cb = CodeCache::find_blob(pc);
2538         if (cb != NULL) {
2539           if (os::is_poll_address(addr)) {
2540             address stub = SharedRuntime::get_poll_stub(pc);
2541             return Handle_Exception(exceptionInfo, stub);
2542           }
2543         }
2544         {
2545 #ifdef _WIN64
2546           // If it's a legal stack address map the entire region in
2547           //
2548           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2549           address addr = (address) exceptionRecord->ExceptionInformation[1];
2550           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2551             addr = (address)((uintptr_t)addr &
2552                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2553             os::commit_memory((char *)addr, thread->stack_base() - addr,
2554                               !ExecMem);
2555             return EXCEPTION_CONTINUE_EXECUTION;
2556           } else
2557 #endif
2558           {
2559             // Null pointer exception.
2560 #ifdef _M_IA64
2561             // Process implicit null checks in compiled code. Note: Implicit null checks
2562             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2563             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2564               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2565               // Handle implicit null check in UEP method entry
2566               if (cb && (cb->is_frame_complete_at(pc) ||
2567                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2568                 if (Verbose) {
2569                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2570                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2571                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2572                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2573                                 *(bundle_start + 1), *bundle_start);
2574                 }
2575                 return Handle_Exception(exceptionInfo,
2576                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2577               }
2578             }
2579 
2580             // Implicit null checks were processed above.  Hence, we should not reach
2581             // here in the usual case => die!
2582             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2583             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2584                          exceptionInfo->ContextRecord);
2585             return EXCEPTION_CONTINUE_SEARCH;
2586 
2587 #else // !IA64
2588 
2589             // Windows 98 reports faulting addresses incorrectly
2590             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2591                 !os::win32::is_nt()) {
2592               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2593               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2594             }
2595             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2596                          exceptionInfo->ContextRecord);
2597             return EXCEPTION_CONTINUE_SEARCH;
2598 #endif
2599           }
2600         }
2601       }
2602 
2603 #ifdef _WIN64
2604       // Special care for fast JNI field accessors.
2605       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2606       // in and the heap gets shrunk before the field access.
2607       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2608         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2609         if (addr != (address)-1) {
2610           return Handle_Exception(exceptionInfo, addr);
2611         }
2612       }
2613 #endif
2614 
2615       // Stack overflow or null pointer exception in native code.
2616       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2617                    exceptionInfo->ContextRecord);
2618       return EXCEPTION_CONTINUE_SEARCH;
2619     } // /EXCEPTION_ACCESS_VIOLATION
2620     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2621 #if defined _M_IA64
2622     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2623               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2624       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2625 
2626       // Compiled method patched to be non entrant? Following conditions must apply:
2627       // 1. must be first instruction in bundle
2628       // 2. must be a break instruction with appropriate code
2629       if ((((uint64_t) pc & 0x0F) == 0) &&
2630           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2631         return Handle_Exception(exceptionInfo,
2632                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2633       }
2634     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2635 #endif
2636 
2637 
2638     if (in_java) {
2639       switch (exception_code) {
2640       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2641         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2642 
2643       case EXCEPTION_INT_OVERFLOW:
2644         return Handle_IDiv_Exception(exceptionInfo);
2645 
2646       } // switch
2647     }
2648     if (((thread->thread_state() == _thread_in_Java) ||
2649          (thread->thread_state() == _thread_in_native)) &&
2650          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2651       LONG result=Handle_FLT_Exception(exceptionInfo);
2652       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2653     }
2654   }
2655 
2656   if (exception_code != EXCEPTION_BREAKPOINT) {
2657     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2658                  exceptionInfo->ContextRecord);
2659   }
2660   return EXCEPTION_CONTINUE_SEARCH;
2661 }
2662 
2663 #ifndef _WIN64
2664 // Special care for fast JNI accessors.
2665 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2666 // the heap gets shrunk before the field access.
2667 // Need to install our own structured exception handler since native code may
2668 // install its own.
2669 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2670   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2671   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2672     address pc = (address) exceptionInfo->ContextRecord->Eip;
2673     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2674     if (addr != (address)-1) {
2675       return Handle_Exception(exceptionInfo, addr);
2676     }
2677   }
2678   return EXCEPTION_CONTINUE_SEARCH;
2679 }
2680 
2681 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2682   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2683                                                      jobject obj,           \
2684                                                      jfieldID fieldID) {    \
2685     __try {                                                                 \
2686       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2687                                                                  obj,       \
2688                                                                  fieldID);  \
2689     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2690                                               _exception_info())) {         \
2691     }                                                                       \
2692     return 0;                                                               \
2693   }
2694 
2695 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2696 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2697 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2698 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2699 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2700 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2701 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2702 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2703 
2704 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2705   switch (type) {
2706   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2707   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2708   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2709   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2710   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2711   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2712   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2713   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2714   default:        ShouldNotReachHere();
2715   }
2716   return (address)-1;
2717 }
2718 #endif
2719 
2720 // Virtual Memory
2721 
2722 int os::vm_page_size() { return os::win32::vm_page_size(); }
2723 int os::vm_allocation_granularity() {
2724   return os::win32::vm_allocation_granularity();
2725 }
2726 
2727 // Windows large page support is available on Windows 2003. In order to use
2728 // large page memory, the administrator must first assign additional privilege
2729 // to the user:
2730 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2731 //   + select Local Policies -> User Rights Assignment
2732 //   + double click "Lock pages in memory", add users and/or groups
2733 //   + reboot
2734 // Note the above steps are needed for administrator as well, as administrators
2735 // by default do not have the privilege to lock pages in memory.
2736 //
2737 // Note about Windows 2003: although the API supports committing large page
2738 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2739 // scenario, I found through experiment it only uses large page if the entire
2740 // memory region is reserved and committed in a single VirtualAlloc() call.
2741 // This makes Windows large page support more or less like Solaris ISM, in
2742 // that the entire heap must be committed upfront. This probably will change
2743 // in the future, if so the code below needs to be revisited.
2744 
2745 #ifndef MEM_LARGE_PAGES
2746   #define MEM_LARGE_PAGES 0x20000000
2747 #endif
2748 
2749 static HANDLE    _hProcess;
2750 static HANDLE    _hToken;
2751 
2752 // Container for NUMA node list info
2753 class NUMANodeListHolder {
2754  private:
2755   int *_numa_used_node_list;  // allocated below
2756   int _numa_used_node_count;
2757 
2758   void free_node_list() {
2759     if (_numa_used_node_list != NULL) {
2760       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2761     }
2762   }
2763 
2764  public:
2765   NUMANodeListHolder() {
2766     _numa_used_node_count = 0;
2767     _numa_used_node_list = NULL;
2768     // do rest of initialization in build routine (after function pointers are set up)
2769   }
2770 
2771   ~NUMANodeListHolder() {
2772     free_node_list();
2773   }
2774 
2775   bool build() {
2776     DWORD_PTR proc_aff_mask;
2777     DWORD_PTR sys_aff_mask;
2778     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2779     ULONG highest_node_number;
2780     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2781     free_node_list();
2782     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2783     for (unsigned int i = 0; i <= highest_node_number; i++) {
2784       ULONGLONG proc_mask_numa_node;
2785       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2786       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2787         _numa_used_node_list[_numa_used_node_count++] = i;
2788       }
2789     }
2790     return (_numa_used_node_count > 1);
2791   }
2792 
2793   int get_count() { return _numa_used_node_count; }
2794   int get_node_list_entry(int n) {
2795     // for indexes out of range, returns -1
2796     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2797   }
2798 
2799 } numa_node_list_holder;
2800 
2801 
2802 
2803 static size_t _large_page_size = 0;
2804 
2805 static bool resolve_functions_for_large_page_init() {
2806   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2807     os::Advapi32Dll::AdvapiAvailable();
2808 }
2809 
2810 static bool request_lock_memory_privilege() {
2811   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2812                           os::current_process_id());
2813 
2814   LUID luid;
2815   if (_hProcess != NULL &&
2816       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2817       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2818 
2819     TOKEN_PRIVILEGES tp;
2820     tp.PrivilegeCount = 1;
2821     tp.Privileges[0].Luid = luid;
2822     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2823 
2824     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2825     // privilege. Check GetLastError() too. See MSDN document.
2826     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2827         (GetLastError() == ERROR_SUCCESS)) {
2828       return true;
2829     }
2830   }
2831 
2832   return false;
2833 }
2834 
2835 static void cleanup_after_large_page_init() {
2836   if (_hProcess) CloseHandle(_hProcess);
2837   _hProcess = NULL;
2838   if (_hToken) CloseHandle(_hToken);
2839   _hToken = NULL;
2840 }
2841 
2842 static bool numa_interleaving_init() {
2843   bool success = false;
2844   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2845 
2846   // print a warning if UseNUMAInterleaving flag is specified on command line
2847   bool warn_on_failure = use_numa_interleaving_specified;
2848 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2849 
2850   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2851   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2852   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2853 
2854   if (os::Kernel32Dll::NumaCallsAvailable()) {
2855     if (numa_node_list_holder.build()) {
2856       if (PrintMiscellaneous && Verbose) {
2857         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2858         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2859           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2860         }
2861         tty->print("\n");
2862       }
2863       success = true;
2864     } else {
2865       WARN("Process does not cover multiple NUMA nodes.");
2866     }
2867   } else {
2868     WARN("NUMA Interleaving is not supported by the operating system.");
2869   }
2870   if (!success) {
2871     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2872   }
2873   return success;
2874 #undef WARN
2875 }
2876 
2877 // this routine is used whenever we need to reserve a contiguous VA range
2878 // but we need to make separate VirtualAlloc calls for each piece of the range
2879 // Reasons for doing this:
2880 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2881 //  * UseNUMAInterleaving requires a separate node for each piece
2882 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2883                                          DWORD prot,
2884                                          bool should_inject_error = false) {
2885   char * p_buf;
2886   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2887   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2888   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2889 
2890   // first reserve enough address space in advance since we want to be
2891   // able to break a single contiguous virtual address range into multiple
2892   // large page commits but WS2003 does not allow reserving large page space
2893   // so we just use 4K pages for reserve, this gives us a legal contiguous
2894   // address space. then we will deallocate that reservation, and re alloc
2895   // using large pages
2896   const size_t size_of_reserve = bytes + chunk_size;
2897   if (bytes > size_of_reserve) {
2898     // Overflowed.
2899     return NULL;
2900   }
2901   p_buf = (char *) VirtualAlloc(addr,
2902                                 size_of_reserve,  // size of Reserve
2903                                 MEM_RESERVE,
2904                                 PAGE_READWRITE);
2905   // If reservation failed, return NULL
2906   if (p_buf == NULL) return NULL;
2907   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2908   os::release_memory(p_buf, bytes + chunk_size);
2909 
2910   // we still need to round up to a page boundary (in case we are using large pages)
2911   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2912   // instead we handle this in the bytes_to_rq computation below
2913   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2914 
2915   // now go through and allocate one chunk at a time until all bytes are
2916   // allocated
2917   size_t  bytes_remaining = bytes;
2918   // An overflow of align_size_up() would have been caught above
2919   // in the calculation of size_of_reserve.
2920   char * next_alloc_addr = p_buf;
2921   HANDLE hProc = GetCurrentProcess();
2922 
2923 #ifdef ASSERT
2924   // Variable for the failure injection
2925   long ran_num = os::random();
2926   size_t fail_after = ran_num % bytes;
2927 #endif
2928 
2929   int count=0;
2930   while (bytes_remaining) {
2931     // select bytes_to_rq to get to the next chunk_size boundary
2932 
2933     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2934     // Note allocate and commit
2935     char * p_new;
2936 
2937 #ifdef ASSERT
2938     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2939 #else
2940     const bool inject_error_now = false;
2941 #endif
2942 
2943     if (inject_error_now) {
2944       p_new = NULL;
2945     } else {
2946       if (!UseNUMAInterleaving) {
2947         p_new = (char *) VirtualAlloc(next_alloc_addr,
2948                                       bytes_to_rq,
2949                                       flags,
2950                                       prot);
2951       } else {
2952         // get the next node to use from the used_node_list
2953         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2954         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2955         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2956                                                             next_alloc_addr,
2957                                                             bytes_to_rq,
2958                                                             flags,
2959                                                             prot,
2960                                                             node);
2961       }
2962     }
2963 
2964     if (p_new == NULL) {
2965       // Free any allocated pages
2966       if (next_alloc_addr > p_buf) {
2967         // Some memory was committed so release it.
2968         size_t bytes_to_release = bytes - bytes_remaining;
2969         // NMT has yet to record any individual blocks, so it
2970         // need to create a dummy 'reserve' record to match
2971         // the release.
2972         MemTracker::record_virtual_memory_reserve((address)p_buf,
2973                                                   bytes_to_release, CALLER_PC);
2974         os::release_memory(p_buf, bytes_to_release);
2975       }
2976 #ifdef ASSERT
2977       if (should_inject_error) {
2978         if (TracePageSizes && Verbose) {
2979           tty->print_cr("Reserving pages individually failed.");
2980         }
2981       }
2982 #endif
2983       return NULL;
2984     }
2985 
2986     bytes_remaining -= bytes_to_rq;
2987     next_alloc_addr += bytes_to_rq;
2988     count++;
2989   }
2990   // Although the memory is allocated individually, it is returned as one.
2991   // NMT records it as one block.
2992   if ((flags & MEM_COMMIT) != 0) {
2993     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2994   } else {
2995     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2996   }
2997 
2998   // made it this far, success
2999   return p_buf;
3000 }
3001 
3002 
3003 
3004 void os::large_page_init() {
3005   if (!UseLargePages) return;
3006 
3007   // print a warning if any large page related flag is specified on command line
3008   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3009                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3010   bool success = false;
3011 
3012 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3013   if (resolve_functions_for_large_page_init()) {
3014     if (request_lock_memory_privilege()) {
3015       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3016       if (s) {
3017 #if defined(IA32) || defined(AMD64)
3018         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3019           WARN("JVM cannot use large pages bigger than 4mb.");
3020         } else {
3021 #endif
3022           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3023             _large_page_size = LargePageSizeInBytes;
3024           } else {
3025             _large_page_size = s;
3026           }
3027           success = true;
3028 #if defined(IA32) || defined(AMD64)
3029         }
3030 #endif
3031       } else {
3032         WARN("Large page is not supported by the processor.");
3033       }
3034     } else {
3035       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3036     }
3037   } else {
3038     WARN("Large page is not supported by the operating system.");
3039   }
3040 #undef WARN
3041 
3042   const size_t default_page_size = (size_t) vm_page_size();
3043   if (success && _large_page_size > default_page_size) {
3044     _page_sizes[0] = _large_page_size;
3045     _page_sizes[1] = default_page_size;
3046     _page_sizes[2] = 0;
3047   }
3048 
3049   cleanup_after_large_page_init();
3050   UseLargePages = success;
3051 }
3052 
3053 // On win32, one cannot release just a part of reserved memory, it's an
3054 // all or nothing deal.  When we split a reservation, we must break the
3055 // reservation into two reservations.
3056 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3057                                   bool realloc) {
3058   if (size > 0) {
3059     release_memory(base, size);
3060     if (realloc) {
3061       reserve_memory(split, base);
3062     }
3063     if (size != split) {
3064       reserve_memory(size - split, base + split);
3065     }
3066   }
3067 }
3068 
3069 // Multiple threads can race in this code but it's not possible to unmap small sections of
3070 // virtual space to get requested alignment, like posix-like os's.
3071 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3072 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3073   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3074          "Alignment must be a multiple of allocation granularity (page size)");
3075   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3076 
3077   size_t extra_size = size + alignment;
3078   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3079 
3080   char* aligned_base = NULL;
3081 
3082   do {
3083     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3084     if (extra_base == NULL) {
3085       return NULL;
3086     }
3087     // Do manual alignment
3088     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3089 
3090     os::release_memory(extra_base, extra_size);
3091 
3092     aligned_base = os::reserve_memory(size, aligned_base);
3093 
3094   } while (aligned_base == NULL);
3095 
3096   return aligned_base;
3097 }
3098 
3099 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3100   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3101          "reserve alignment");
3102   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3103   char* res;
3104   // note that if UseLargePages is on, all the areas that require interleaving
3105   // will go thru reserve_memory_special rather than thru here.
3106   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3107   if (!use_individual) {
3108     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3109   } else {
3110     elapsedTimer reserveTimer;
3111     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3112     // in numa interleaving, we have to allocate pages individually
3113     // (well really chunks of NUMAInterleaveGranularity size)
3114     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3115     if (res == NULL) {
3116       warning("NUMA page allocation failed");
3117     }
3118     if (Verbose && PrintMiscellaneous) {
3119       reserveTimer.stop();
3120       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3121                     reserveTimer.milliseconds(), reserveTimer.ticks());
3122     }
3123   }
3124   assert(res == NULL || addr == NULL || addr == res,
3125          "Unexpected address from reserve.");
3126 
3127   return res;
3128 }
3129 
3130 // Reserve memory at an arbitrary address, only if that area is
3131 // available (and not reserved for something else).
3132 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3133   // Windows os::reserve_memory() fails of the requested address range is
3134   // not avilable.
3135   return reserve_memory(bytes, requested_addr);
3136 }
3137 
3138 size_t os::large_page_size() {
3139   return _large_page_size;
3140 }
3141 
3142 bool os::can_commit_large_page_memory() {
3143   // Windows only uses large page memory when the entire region is reserved
3144   // and committed in a single VirtualAlloc() call. This may change in the
3145   // future, but with Windows 2003 it's not possible to commit on demand.
3146   return false;
3147 }
3148 
3149 bool os::can_execute_large_page_memory() {
3150   return true;
3151 }
3152 
3153 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3154                                  bool exec) {
3155   assert(UseLargePages, "only for large pages");
3156 
3157   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3158     return NULL; // Fallback to small pages.
3159   }
3160 
3161   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3162   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3163 
3164   // with large pages, there are two cases where we need to use Individual Allocation
3165   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3166   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3167   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3168     if (TracePageSizes && Verbose) {
3169       tty->print_cr("Reserving large pages individually.");
3170     }
3171     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3172     if (p_buf == NULL) {
3173       // give an appropriate warning message
3174       if (UseNUMAInterleaving) {
3175         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3176       }
3177       if (UseLargePagesIndividualAllocation) {
3178         warning("Individually allocated large pages failed, "
3179                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3180       }
3181       return NULL;
3182     }
3183 
3184     return p_buf;
3185 
3186   } else {
3187     if (TracePageSizes && Verbose) {
3188       tty->print_cr("Reserving large pages in a single large chunk.");
3189     }
3190     // normal policy just allocate it all at once
3191     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3192     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3193     if (res != NULL) {
3194       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3195     }
3196 
3197     return res;
3198   }
3199 }
3200 
3201 bool os::release_memory_special(char* base, size_t bytes) {
3202   assert(base != NULL, "Sanity check");
3203   return release_memory(base, bytes);
3204 }
3205 
3206 void os::print_statistics() {
3207 }
3208 
3209 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3210   int err = os::get_last_error();
3211   char buf[256];
3212   size_t buf_len = os::lasterror(buf, sizeof(buf));
3213   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3214           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3215           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3216 }
3217 
3218 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3219   if (bytes == 0) {
3220     // Don't bother the OS with noops.
3221     return true;
3222   }
3223   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3224   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3225   // Don't attempt to print anything if the OS call fails. We're
3226   // probably low on resources, so the print itself may cause crashes.
3227 
3228   // unless we have NUMAInterleaving enabled, the range of a commit
3229   // is always within a reserve covered by a single VirtualAlloc
3230   // in that case we can just do a single commit for the requested size
3231   if (!UseNUMAInterleaving) {
3232     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3233       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3234       return false;
3235     }
3236     if (exec) {
3237       DWORD oldprot;
3238       // Windows doc says to use VirtualProtect to get execute permissions
3239       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3240         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3241         return false;
3242       }
3243     }
3244     return true;
3245   } else {
3246 
3247     // when NUMAInterleaving is enabled, the commit might cover a range that
3248     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3249     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3250     // returns represents the number of bytes that can be committed in one step.
3251     size_t bytes_remaining = bytes;
3252     char * next_alloc_addr = addr;
3253     while (bytes_remaining > 0) {
3254       MEMORY_BASIC_INFORMATION alloc_info;
3255       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3256       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3257       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3258                        PAGE_READWRITE) == NULL) {
3259         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3260                                             exec);)
3261         return false;
3262       }
3263       if (exec) {
3264         DWORD oldprot;
3265         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3266                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3267           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3268                                               exec);)
3269           return false;
3270         }
3271       }
3272       bytes_remaining -= bytes_to_rq;
3273       next_alloc_addr += bytes_to_rq;
3274     }
3275   }
3276   // if we made it this far, return true
3277   return true;
3278 }
3279 
3280 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3281                           bool exec) {
3282   // alignment_hint is ignored on this OS
3283   return pd_commit_memory(addr, size, exec);
3284 }
3285 
3286 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3287                                   const char* mesg) {
3288   assert(mesg != NULL, "mesg must be specified");
3289   if (!pd_commit_memory(addr, size, exec)) {
3290     warn_fail_commit_memory(addr, size, exec);
3291     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3292   }
3293 }
3294 
3295 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3296                                   size_t alignment_hint, bool exec,
3297                                   const char* mesg) {
3298   // alignment_hint is ignored on this OS
3299   pd_commit_memory_or_exit(addr, size, exec, mesg);
3300 }
3301 
3302 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3303   if (bytes == 0) {
3304     // Don't bother the OS with noops.
3305     return true;
3306   }
3307   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3308   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3309   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3310 }
3311 
3312 bool os::pd_release_memory(char* addr, size_t bytes) {
3313   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3314 }
3315 
3316 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3317   return os::commit_memory(addr, size, !ExecMem);
3318 }
3319 
3320 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3321   return os::uncommit_memory(addr, size);
3322 }
3323 
3324 // Set protections specified
3325 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3326                         bool is_committed) {
3327   unsigned int p = 0;
3328   switch (prot) {
3329   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3330   case MEM_PROT_READ: p = PAGE_READONLY; break;
3331   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3332   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3333   default:
3334     ShouldNotReachHere();
3335   }
3336 
3337   DWORD old_status;
3338 
3339   // Strange enough, but on Win32 one can change protection only for committed
3340   // memory, not a big deal anyway, as bytes less or equal than 64K
3341   if (!is_committed) {
3342     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3343                           "cannot commit protection page");
3344   }
3345   // One cannot use os::guard_memory() here, as on Win32 guard page
3346   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3347   //
3348   // Pages in the region become guard pages. Any attempt to access a guard page
3349   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3350   // the guard page status. Guard pages thus act as a one-time access alarm.
3351   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3352 }
3353 
3354 bool os::guard_memory(char* addr, size_t bytes) {
3355   DWORD old_status;
3356   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3357 }
3358 
3359 bool os::unguard_memory(char* addr, size_t bytes) {
3360   DWORD old_status;
3361   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3362 }
3363 
3364 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3365 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3366 void os::numa_make_global(char *addr, size_t bytes)    { }
3367 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3368 bool os::numa_topology_changed()                       { return false; }
3369 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3370 int os::numa_get_group_id()                            { return 0; }
3371 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3372   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3373     // Provide an answer for UMA systems
3374     ids[0] = 0;
3375     return 1;
3376   } else {
3377     // check for size bigger than actual groups_num
3378     size = MIN2(size, numa_get_groups_num());
3379     for (int i = 0; i < (int)size; i++) {
3380       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3381     }
3382     return size;
3383   }
3384 }
3385 
3386 bool os::get_page_info(char *start, page_info* info) {
3387   return false;
3388 }
3389 
3390 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3391                      page_info* page_found) {
3392   return end;
3393 }
3394 
3395 char* os::non_memory_address_word() {
3396   // Must never look like an address returned by reserve_memory,
3397   // even in its subfields (as defined by the CPU immediate fields,
3398   // if the CPU splits constants across multiple instructions).
3399   return (char*)-1;
3400 }
3401 
3402 #define MAX_ERROR_COUNT 100
3403 #define SYS_THREAD_ERROR 0xffffffffUL
3404 
3405 void os::pd_start_thread(Thread* thread) {
3406   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3407   // Returns previous suspend state:
3408   // 0:  Thread was not suspended
3409   // 1:  Thread is running now
3410   // >1: Thread is still suspended.
3411   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3412 }
3413 
3414 class HighResolutionInterval : public CHeapObj<mtThread> {
3415   // The default timer resolution seems to be 10 milliseconds.
3416   // (Where is this written down?)
3417   // If someone wants to sleep for only a fraction of the default,
3418   // then we set the timer resolution down to 1 millisecond for
3419   // the duration of their interval.
3420   // We carefully set the resolution back, since otherwise we
3421   // seem to incur an overhead (3%?) that we don't need.
3422   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3423   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3424   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3425   // timeBeginPeriod() if the relative error exceeded some threshold.
3426   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3427   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3428   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3429   // resolution timers running.
3430  private:
3431   jlong resolution;
3432  public:
3433   HighResolutionInterval(jlong ms) {
3434     resolution = ms % 10L;
3435     if (resolution != 0) {
3436       MMRESULT result = timeBeginPeriod(1L);
3437     }
3438   }
3439   ~HighResolutionInterval() {
3440     if (resolution != 0) {
3441       MMRESULT result = timeEndPeriod(1L);
3442     }
3443     resolution = 0L;
3444   }
3445 };
3446 
3447 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3448   jlong limit = (jlong) MAXDWORD;
3449 
3450   while (ms > limit) {
3451     int res;
3452     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3453       return res;
3454     }
3455     ms -= limit;
3456   }
3457 
3458   assert(thread == Thread::current(), "thread consistency check");
3459   OSThread* osthread = thread->osthread();
3460   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3461   int result;
3462   if (interruptable) {
3463     assert(thread->is_Java_thread(), "must be java thread");
3464     JavaThread *jt = (JavaThread *) thread;
3465     ThreadBlockInVM tbivm(jt);
3466 
3467     jt->set_suspend_equivalent();
3468     // cleared by handle_special_suspend_equivalent_condition() or
3469     // java_suspend_self() via check_and_wait_while_suspended()
3470 
3471     HANDLE events[1];
3472     events[0] = osthread->interrupt_event();
3473     HighResolutionInterval *phri=NULL;
3474     if (!ForceTimeHighResolution) {
3475       phri = new HighResolutionInterval(ms);
3476     }
3477     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3478       result = OS_TIMEOUT;
3479     } else {
3480       ResetEvent(osthread->interrupt_event());
3481       osthread->set_interrupted(false);
3482       result = OS_INTRPT;
3483     }
3484     delete phri; //if it is NULL, harmless
3485 
3486     // were we externally suspended while we were waiting?
3487     jt->check_and_wait_while_suspended();
3488   } else {
3489     assert(!thread->is_Java_thread(), "must not be java thread");
3490     Sleep((long) ms);
3491     result = OS_TIMEOUT;
3492   }
3493   return result;
3494 }
3495 
3496 // Short sleep, direct OS call.
3497 //
3498 // ms = 0, means allow others (if any) to run.
3499 //
3500 void os::naked_short_sleep(jlong ms) {
3501   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3502   Sleep(ms);
3503 }
3504 
3505 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3506 void os::infinite_sleep() {
3507   while (true) {    // sleep forever ...
3508     Sleep(100000);  // ... 100 seconds at a time
3509   }
3510 }
3511 
3512 typedef BOOL (WINAPI * STTSignature)(void);
3513 
3514 void os::naked_yield() {
3515   // Use either SwitchToThread() or Sleep(0)
3516   // Consider passing back the return value from SwitchToThread().
3517   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3518     SwitchToThread();
3519   } else {
3520     Sleep(0);
3521   }
3522 }
3523 
3524 // Win32 only gives you access to seven real priorities at a time,
3525 // so we compress Java's ten down to seven.  It would be better
3526 // if we dynamically adjusted relative priorities.
3527 
3528 int os::java_to_os_priority[CriticalPriority + 1] = {
3529   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3530   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3531   THREAD_PRIORITY_LOWEST,                       // 2
3532   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3533   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3534   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3535   THREAD_PRIORITY_NORMAL,                       // 6
3536   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3537   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3538   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3539   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3540   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3541 };
3542 
3543 int prio_policy1[CriticalPriority + 1] = {
3544   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3545   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3546   THREAD_PRIORITY_LOWEST,                       // 2
3547   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3548   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3549   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3550   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3551   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3552   THREAD_PRIORITY_HIGHEST,                      // 8
3553   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3554   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3555   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3556 };
3557 
3558 static int prio_init() {
3559   // If ThreadPriorityPolicy is 1, switch tables
3560   if (ThreadPriorityPolicy == 1) {
3561     int i;
3562     for (i = 0; i < CriticalPriority + 1; i++) {
3563       os::java_to_os_priority[i] = prio_policy1[i];
3564     }
3565   }
3566   if (UseCriticalJavaThreadPriority) {
3567     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3568   }
3569   return 0;
3570 }
3571 
3572 OSReturn os::set_native_priority(Thread* thread, int priority) {
3573   if (!UseThreadPriorities) return OS_OK;
3574   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3575   return ret ? OS_OK : OS_ERR;
3576 }
3577 
3578 OSReturn os::get_native_priority(const Thread* const thread,
3579                                  int* priority_ptr) {
3580   if (!UseThreadPriorities) {
3581     *priority_ptr = java_to_os_priority[NormPriority];
3582     return OS_OK;
3583   }
3584   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3585   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3586     assert(false, "GetThreadPriority failed");
3587     return OS_ERR;
3588   }
3589   *priority_ptr = os_prio;
3590   return OS_OK;
3591 }
3592 
3593 
3594 // Hint to the underlying OS that a task switch would not be good.
3595 // Void return because it's a hint and can fail.
3596 void os::hint_no_preempt() {}
3597 
3598 void os::interrupt(Thread* thread) {
3599   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3600          Threads_lock->owned_by_self(),
3601          "possibility of dangling Thread pointer");
3602 
3603   OSThread* osthread = thread->osthread();
3604   osthread->set_interrupted(true);
3605   // More than one thread can get here with the same value of osthread,
3606   // resulting in multiple notifications.  We do, however, want the store
3607   // to interrupted() to be visible to other threads before we post
3608   // the interrupt event.
3609   OrderAccess::release();
3610   SetEvent(osthread->interrupt_event());
3611   // For JSR166:  unpark after setting status
3612   if (thread->is_Java_thread()) {
3613     ((JavaThread*)thread)->parker()->unpark();
3614   }
3615 
3616   ParkEvent * ev = thread->_ParkEvent;
3617   if (ev != NULL) ev->unpark();
3618 }
3619 
3620 
3621 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3622   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3623          "possibility of dangling Thread pointer");
3624 
3625   OSThread* osthread = thread->osthread();
3626   // There is no synchronization between the setting of the interrupt
3627   // and it being cleared here. It is critical - see 6535709 - that
3628   // we only clear the interrupt state, and reset the interrupt event,
3629   // if we are going to report that we were indeed interrupted - else
3630   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3631   // depending on the timing. By checking thread interrupt event to see
3632   // if the thread gets real interrupt thus prevent spurious wakeup.
3633   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3634   if (interrupted && clear_interrupted) {
3635     osthread->set_interrupted(false);
3636     ResetEvent(osthread->interrupt_event());
3637   } // Otherwise leave the interrupted state alone
3638 
3639   return interrupted;
3640 }
3641 
3642 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3643 ExtendedPC os::get_thread_pc(Thread* thread) {
3644   CONTEXT context;
3645   context.ContextFlags = CONTEXT_CONTROL;
3646   HANDLE handle = thread->osthread()->thread_handle();
3647 #ifdef _M_IA64
3648   assert(0, "Fix get_thread_pc");
3649   return ExtendedPC(NULL);
3650 #else
3651   if (GetThreadContext(handle, &context)) {
3652 #ifdef _M_AMD64
3653     return ExtendedPC((address) context.Rip);
3654 #else
3655     return ExtendedPC((address) context.Eip);
3656 #endif
3657   } else {
3658     return ExtendedPC(NULL);
3659   }
3660 #endif
3661 }
3662 
3663 // GetCurrentThreadId() returns DWORD
3664 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3665 
3666 static int _initial_pid = 0;
3667 
3668 int os::current_process_id() {
3669   return (_initial_pid ? _initial_pid : _getpid());
3670 }
3671 
3672 int    os::win32::_vm_page_size              = 0;
3673 int    os::win32::_vm_allocation_granularity = 0;
3674 int    os::win32::_processor_type            = 0;
3675 // Processor level is not available on non-NT systems, use vm_version instead
3676 int    os::win32::_processor_level           = 0;
3677 julong os::win32::_physical_memory           = 0;
3678 size_t os::win32::_default_stack_size        = 0;
3679 
3680 intx          os::win32::_os_thread_limit    = 0;
3681 volatile intx os::win32::_os_thread_count    = 0;
3682 
3683 bool   os::win32::_is_nt                     = false;
3684 bool   os::win32::_is_windows_2003           = false;
3685 bool   os::win32::_is_windows_server         = false;
3686 
3687 // 6573254
3688 // Currently, the bug is observed across all the supported Windows releases,
3689 // including the latest one (as of this writing - Windows Server 2012 R2)
3690 bool   os::win32::_has_exit_bug              = true;
3691 bool   os::win32::_has_performance_count     = 0;
3692 
3693 void os::win32::initialize_system_info() {
3694   SYSTEM_INFO si;
3695   GetSystemInfo(&si);
3696   _vm_page_size    = si.dwPageSize;
3697   _vm_allocation_granularity = si.dwAllocationGranularity;
3698   _processor_type  = si.dwProcessorType;
3699   _processor_level = si.wProcessorLevel;
3700   set_processor_count(si.dwNumberOfProcessors);
3701 
3702   MEMORYSTATUSEX ms;
3703   ms.dwLength = sizeof(ms);
3704 
3705   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3706   // dwMemoryLoad (% of memory in use)
3707   GlobalMemoryStatusEx(&ms);
3708   _physical_memory = ms.ullTotalPhys;
3709 
3710   OSVERSIONINFOEX oi;
3711   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3712   GetVersionEx((OSVERSIONINFO*)&oi);
3713   switch (oi.dwPlatformId) {
3714   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3715   case VER_PLATFORM_WIN32_NT:
3716     _is_nt = true;
3717     {
3718       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3719       if (os_vers == 5002) {
3720         _is_windows_2003 = true;
3721       }
3722       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3723           oi.wProductType == VER_NT_SERVER) {
3724         _is_windows_server = true;
3725       }
3726     }
3727     break;
3728   default: fatal("Unknown platform");
3729   }
3730 
3731   _default_stack_size = os::current_stack_size();
3732   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3733   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3734          "stack size not a multiple of page size");
3735 
3736   initialize_performance_counter();
3737 
3738   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3739   // known to deadlock the system, if the VM issues to thread operations with
3740   // a too high frequency, e.g., such as changing the priorities.
3741   // The 6000 seems to work well - no deadlocks has been notices on the test
3742   // programs that we have seen experience this problem.
3743   if (!os::win32::is_nt()) {
3744     StarvationMonitorInterval = 6000;
3745   }
3746 }
3747 
3748 
3749 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3750                                       int ebuflen) {
3751   char path[MAX_PATH];
3752   DWORD size;
3753   DWORD pathLen = (DWORD)sizeof(path);
3754   HINSTANCE result = NULL;
3755 
3756   // only allow library name without path component
3757   assert(strchr(name, '\\') == NULL, "path not allowed");
3758   assert(strchr(name, ':') == NULL, "path not allowed");
3759   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3760     jio_snprintf(ebuf, ebuflen,
3761                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3762     return NULL;
3763   }
3764 
3765   // search system directory
3766   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3767     if (size >= pathLen) {
3768       return NULL; // truncated
3769     }
3770     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3771       return NULL; // truncated
3772     }
3773     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3774       return result;
3775     }
3776   }
3777 
3778   // try Windows directory
3779   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3780     if (size >= pathLen) {
3781       return NULL; // truncated
3782     }
3783     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3784       return NULL; // truncated
3785     }
3786     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3787       return result;
3788     }
3789   }
3790 
3791   jio_snprintf(ebuf, ebuflen,
3792                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3793   return NULL;
3794 }
3795 
3796 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3797 
3798 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3799   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3800   return TRUE;
3801 }
3802 
3803 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3804   // Basic approach:
3805   //  - Each exiting thread registers its intent to exit and then does so.
3806   //  - A thread trying to terminate the process must wait for all
3807   //    threads currently exiting to complete their exit.
3808 
3809   if (os::win32::has_exit_bug()) {
3810     // The array holds handles of the threads that have started exiting by calling
3811     // _endthreadex().
3812     // Should be large enough to avoid blocking the exiting thread due to lack of
3813     // a free slot.
3814     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3815     static int handle_count = 0;
3816 
3817     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3818     static CRITICAL_SECTION crit_sect;
3819     static volatile jint process_exiting = 0;
3820     int i, j;
3821     DWORD res;
3822     HANDLE hproc, hthr;
3823 
3824     // The first thread that reached this point, initializes the critical section.
3825     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3826       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3827     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3828       EnterCriticalSection(&crit_sect);
3829 
3830       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3831         // Remove from the array those handles of the threads that have completed exiting.
3832         for (i = 0, j = 0; i < handle_count; ++i) {
3833           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3834           if (res == WAIT_TIMEOUT) {
3835             handles[j++] = handles[i];
3836           } else {
3837             if (res == WAIT_FAILED) {
3838               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3839                       GetLastError(), __FILE__, __LINE__);
3840             }
3841             // Don't keep the handle, if we failed waiting for it.
3842             CloseHandle(handles[i]);
3843           }
3844         }
3845 
3846         // If there's no free slot in the array of the kept handles, we'll have to
3847         // wait until at least one thread completes exiting.
3848         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3849           // Raise the priority of the oldest exiting thread to increase its chances
3850           // to complete sooner.
3851           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3852           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3853           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3854             i = (res - WAIT_OBJECT_0);
3855             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3856             for (; i < handle_count; ++i) {
3857               handles[i] = handles[i + 1];
3858             }
3859           } else {
3860             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3861                     (res == WAIT_FAILED ? "failed" : "timed out"),
3862                     GetLastError(), __FILE__, __LINE__);
3863             // Don't keep handles, if we failed waiting for them.
3864             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3865               CloseHandle(handles[i]);
3866             }
3867             handle_count = 0;
3868           }
3869         }
3870 
3871         // Store a duplicate of the current thread handle in the array of handles.
3872         hproc = GetCurrentProcess();
3873         hthr = GetCurrentThread();
3874         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3875                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3876           warning("DuplicateHandle failed (%u) in %s: %d\n",
3877                   GetLastError(), __FILE__, __LINE__);
3878         } else {
3879           ++handle_count;
3880         }
3881 
3882         // The current exiting thread has stored its handle in the array, and now
3883         // should leave the critical section before calling _endthreadex().
3884 
3885       } else if (what != EPT_THREAD) {
3886         if (handle_count > 0) {
3887           // Before ending the process, make sure all the threads that had called
3888           // _endthreadex() completed.
3889 
3890           // Set the priority level of the current thread to the same value as
3891           // the priority level of exiting threads.
3892           // This is to ensure it will be given a fair chance to execute if
3893           // the timeout expires.
3894           hthr = GetCurrentThread();
3895           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3896           for (i = 0; i < handle_count; ++i) {
3897             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3898           }
3899           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3900           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3901             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3902                     (res == WAIT_FAILED ? "failed" : "timed out"),
3903                     GetLastError(), __FILE__, __LINE__);
3904           }
3905           for (i = 0; i < handle_count; ++i) {
3906             CloseHandle(handles[i]);
3907           }
3908           handle_count = 0;
3909         }
3910 
3911         OrderAccess::release_store(&process_exiting, 1);
3912       }
3913 
3914       LeaveCriticalSection(&crit_sect);
3915     }
3916 
3917     if (what == EPT_THREAD) {
3918       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3919         // Some other thread is about to call exit(), so we
3920         // don't let the current thread proceed to _endthreadex()
3921         SuspendThread(GetCurrentThread());
3922         // Avoid busy-wait loop, if SuspendThread() failed.
3923         Sleep(EXIT_TIMEOUT);
3924       }
3925     }
3926   }
3927 
3928   // We are here if either
3929   // - there's no 'race at exit' bug on this OS release;
3930   // - initialization of the critical section failed (unlikely);
3931   // - the current thread has stored its handle and left the critical section;
3932   // - the process-exiting thread has raised the flag and left the critical section.
3933   if (what == EPT_THREAD) {
3934     _endthreadex((unsigned)exit_code);
3935   } else if (what == EPT_PROCESS) {
3936     ::exit(exit_code);
3937   } else {
3938     _exit(exit_code);
3939   }
3940 
3941   // Should not reach here
3942   return exit_code;
3943 }
3944 
3945 #undef EXIT_TIMEOUT
3946 
3947 void os::win32::setmode_streams() {
3948   _setmode(_fileno(stdin), _O_BINARY);
3949   _setmode(_fileno(stdout), _O_BINARY);
3950   _setmode(_fileno(stderr), _O_BINARY);
3951 }
3952 
3953 
3954 bool os::is_debugger_attached() {
3955   return IsDebuggerPresent() ? true : false;
3956 }
3957 
3958 
3959 void os::wait_for_keypress_at_exit(void) {
3960   if (PauseAtExit) {
3961     fprintf(stderr, "Press any key to continue...\n");
3962     fgetc(stdin);
3963   }
3964 }
3965 
3966 
3967 int os::message_box(const char* title, const char* message) {
3968   int result = MessageBox(NULL, message, title,
3969                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3970   return result == IDYES;
3971 }
3972 
3973 int os::allocate_thread_local_storage() {
3974   return TlsAlloc();
3975 }
3976 
3977 
3978 void os::free_thread_local_storage(int index) {
3979   TlsFree(index);
3980 }
3981 
3982 
3983 void os::thread_local_storage_at_put(int index, void* value) {
3984   TlsSetValue(index, value);
3985   assert(thread_local_storage_at(index) == value, "Just checking");
3986 }
3987 
3988 
3989 void* os::thread_local_storage_at(int index) {
3990   return TlsGetValue(index);
3991 }
3992 
3993 
3994 #ifndef PRODUCT
3995 #ifndef _WIN64
3996 // Helpers to check whether NX protection is enabled
3997 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3998   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3999       pex->ExceptionRecord->NumberParameters > 0 &&
4000       pex->ExceptionRecord->ExceptionInformation[0] ==
4001       EXCEPTION_INFO_EXEC_VIOLATION) {
4002     return EXCEPTION_EXECUTE_HANDLER;
4003   }
4004   return EXCEPTION_CONTINUE_SEARCH;
4005 }
4006 
4007 void nx_check_protection() {
4008   // If NX is enabled we'll get an exception calling into code on the stack
4009   char code[] = { (char)0xC3 }; // ret
4010   void *code_ptr = (void *)code;
4011   __try {
4012     __asm call code_ptr
4013   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4014     tty->print_raw_cr("NX protection detected.");
4015   }
4016 }
4017 #endif // _WIN64
4018 #endif // PRODUCT
4019 
4020 // this is called _before_ the global arguments have been parsed
4021 void os::init(void) {
4022   _initial_pid = _getpid();
4023 
4024   init_random(1234567);
4025 
4026   win32::initialize_system_info();
4027   win32::setmode_streams();
4028   init_page_sizes((size_t) win32::vm_page_size());
4029 
4030   // This may be overridden later when argument processing is done.
4031   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4032                 os::win32::is_windows_2003());
4033 
4034   // Initialize main_process and main_thread
4035   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4036   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4037                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4038     fatal("DuplicateHandle failed\n");
4039   }
4040   main_thread_id = (int) GetCurrentThreadId();
4041 }
4042 
4043 // To install functions for atexit processing
4044 extern "C" {
4045   static void perfMemory_exit_helper() {
4046     perfMemory_exit();
4047   }
4048 }
4049 
4050 static jint initSock();
4051 
4052 // this is called _after_ the global arguments have been parsed
4053 jint os::init_2(void) {
4054   // Allocate a single page and mark it as readable for safepoint polling
4055   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4056   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4057 
4058   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4059   guarantee(return_page != NULL, "Commit Failed for polling page");
4060 
4061   os::set_polling_page(polling_page);
4062 
4063 #ifndef PRODUCT
4064   if (Verbose && PrintMiscellaneous) {
4065     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4066                (intptr_t)polling_page);
4067   }
4068 #endif
4069 
4070   if (!UseMembar) {
4071     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4072     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4073 
4074     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4075     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4076 
4077     os::set_memory_serialize_page(mem_serialize_page);
4078 
4079 #ifndef PRODUCT
4080     if (Verbose && PrintMiscellaneous) {
4081       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4082                  (intptr_t)mem_serialize_page);
4083     }
4084 #endif
4085   }
4086 
4087   // Setup Windows Exceptions
4088 
4089   // for debugging float code generation bugs
4090   if (ForceFloatExceptions) {
4091 #ifndef  _WIN64
4092     static long fp_control_word = 0;
4093     __asm { fstcw fp_control_word }
4094     // see Intel PPro Manual, Vol. 2, p 7-16
4095     const long precision = 0x20;
4096     const long underflow = 0x10;
4097     const long overflow  = 0x08;
4098     const long zero_div  = 0x04;
4099     const long denorm    = 0x02;
4100     const long invalid   = 0x01;
4101     fp_control_word |= invalid;
4102     __asm { fldcw fp_control_word }
4103 #endif
4104   }
4105 
4106   // If stack_commit_size is 0, windows will reserve the default size,
4107   // but only commit a small portion of it.
4108   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4109   size_t default_reserve_size = os::win32::default_stack_size();
4110   size_t actual_reserve_size = stack_commit_size;
4111   if (stack_commit_size < default_reserve_size) {
4112     // If stack_commit_size == 0, we want this too
4113     actual_reserve_size = default_reserve_size;
4114   }
4115 
4116   // Check minimum allowable stack size for thread creation and to initialize
4117   // the java system classes, including StackOverflowError - depends on page
4118   // size.  Add a page for compiler2 recursion in main thread.
4119   // Add in 2*BytesPerWord times page size to account for VM stack during
4120   // class initialization depending on 32 or 64 bit VM.
4121   size_t min_stack_allowed =
4122             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4123                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4124   if (actual_reserve_size < min_stack_allowed) {
4125     tty->print_cr("\nThe stack size specified is too small, "
4126                   "Specify at least %dk",
4127                   min_stack_allowed / K);
4128     return JNI_ERR;
4129   }
4130 
4131   JavaThread::set_stack_size_at_create(stack_commit_size);
4132 
4133   // Calculate theoretical max. size of Threads to guard gainst artifical
4134   // out-of-memory situations, where all available address-space has been
4135   // reserved by thread stacks.
4136   assert(actual_reserve_size != 0, "Must have a stack");
4137 
4138   // Calculate the thread limit when we should start doing Virtual Memory
4139   // banging. Currently when the threads will have used all but 200Mb of space.
4140   //
4141   // TODO: consider performing a similar calculation for commit size instead
4142   // as reserve size, since on a 64-bit platform we'll run into that more
4143   // often than running out of virtual memory space.  We can use the
4144   // lower value of the two calculations as the os_thread_limit.
4145   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4146   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4147 
4148   // at exit methods are called in the reverse order of their registration.
4149   // there is no limit to the number of functions registered. atexit does
4150   // not set errno.
4151 
4152   if (PerfAllowAtExitRegistration) {
4153     // only register atexit functions if PerfAllowAtExitRegistration is set.
4154     // atexit functions can be delayed until process exit time, which
4155     // can be problematic for embedded VM situations. Embedded VMs should
4156     // call DestroyJavaVM() to assure that VM resources are released.
4157 
4158     // note: perfMemory_exit_helper atexit function may be removed in
4159     // the future if the appropriate cleanup code can be added to the
4160     // VM_Exit VMOperation's doit method.
4161     if (atexit(perfMemory_exit_helper) != 0) {
4162       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4163     }
4164   }
4165 
4166 #ifndef _WIN64
4167   // Print something if NX is enabled (win32 on AMD64)
4168   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4169 #endif
4170 
4171   // initialize thread priority policy
4172   prio_init();
4173 
4174   if (UseNUMA && !ForceNUMA) {
4175     UseNUMA = false; // We don't fully support this yet
4176   }
4177 
4178   if (UseNUMAInterleaving) {
4179     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4180     bool success = numa_interleaving_init();
4181     if (!success) UseNUMAInterleaving = false;
4182   }
4183 
4184   if (initSock() != JNI_OK) {
4185     return JNI_ERR;
4186   }
4187 
4188   return JNI_OK;
4189 }
4190 
4191 // Mark the polling page as unreadable
4192 void os::make_polling_page_unreadable(void) {
4193   DWORD old_status;
4194   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4195                       PAGE_NOACCESS, &old_status)) {
4196     fatal("Could not disable polling page");
4197   }
4198 }
4199 
4200 // Mark the polling page as readable
4201 void os::make_polling_page_readable(void) {
4202   DWORD old_status;
4203   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4204                       PAGE_READONLY, &old_status)) {
4205     fatal("Could not enable polling page");
4206   }
4207 }
4208 
4209 
4210 int os::stat(const char *path, struct stat *sbuf) {
4211   char pathbuf[MAX_PATH];
4212   if (strlen(path) > MAX_PATH - 1) {
4213     errno = ENAMETOOLONG;
4214     return -1;
4215   }
4216   os::native_path(strcpy(pathbuf, path));
4217   int ret = ::stat(pathbuf, sbuf);
4218   if (sbuf != NULL && UseUTCFileTimestamp) {
4219     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4220     // the system timezone and so can return different values for the
4221     // same file if/when daylight savings time changes.  This adjustment
4222     // makes sure the same timestamp is returned regardless of the TZ.
4223     //
4224     // See:
4225     // http://msdn.microsoft.com/library/
4226     //   default.asp?url=/library/en-us/sysinfo/base/
4227     //   time_zone_information_str.asp
4228     // and
4229     // http://msdn.microsoft.com/library/default.asp?url=
4230     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4231     //
4232     // NOTE: there is a insidious bug here:  If the timezone is changed
4233     // after the call to stat() but before 'GetTimeZoneInformation()', then
4234     // the adjustment we do here will be wrong and we'll return the wrong
4235     // value (which will likely end up creating an invalid class data
4236     // archive).  Absent a better API for this, or some time zone locking
4237     // mechanism, we'll have to live with this risk.
4238     TIME_ZONE_INFORMATION tz;
4239     DWORD tzid = GetTimeZoneInformation(&tz);
4240     int daylightBias =
4241       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4242     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4243   }
4244   return ret;
4245 }
4246 
4247 
4248 #define FT2INT64(ft) \
4249   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4250 
4251 
4252 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4253 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4254 // of a thread.
4255 //
4256 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4257 // the fast estimate available on the platform.
4258 
4259 // current_thread_cpu_time() is not optimized for Windows yet
4260 jlong os::current_thread_cpu_time() {
4261   // return user + sys since the cost is the same
4262   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4263 }
4264 
4265 jlong os::thread_cpu_time(Thread* thread) {
4266   // consistent with what current_thread_cpu_time() returns.
4267   return os::thread_cpu_time(thread, true /* user+sys */);
4268 }
4269 
4270 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4271   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4272 }
4273 
4274 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4275   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4276   // If this function changes, os::is_thread_cpu_time_supported() should too
4277   if (os::win32::is_nt()) {
4278     FILETIME CreationTime;
4279     FILETIME ExitTime;
4280     FILETIME KernelTime;
4281     FILETIME UserTime;
4282 
4283     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4284                        &ExitTime, &KernelTime, &UserTime) == 0) {
4285       return -1;
4286     } else if (user_sys_cpu_time) {
4287       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4288     } else {
4289       return FT2INT64(UserTime) * 100;
4290     }
4291   } else {
4292     return (jlong) timeGetTime() * 1000000;
4293   }
4294 }
4295 
4296 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4297   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4298   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4299   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4300   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4301 }
4302 
4303 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4304   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4305   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4306   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4307   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4308 }
4309 
4310 bool os::is_thread_cpu_time_supported() {
4311   // see os::thread_cpu_time
4312   if (os::win32::is_nt()) {
4313     FILETIME CreationTime;
4314     FILETIME ExitTime;
4315     FILETIME KernelTime;
4316     FILETIME UserTime;
4317 
4318     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4319                        &KernelTime, &UserTime) == 0) {
4320       return false;
4321     } else {
4322       return true;
4323     }
4324   } else {
4325     return false;
4326   }
4327 }
4328 
4329 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4330 // It does have primitives (PDH API) to get CPU usage and run queue length.
4331 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4332 // If we wanted to implement loadavg on Windows, we have a few options:
4333 //
4334 // a) Query CPU usage and run queue length and "fake" an answer by
4335 //    returning the CPU usage if it's under 100%, and the run queue
4336 //    length otherwise.  It turns out that querying is pretty slow
4337 //    on Windows, on the order of 200 microseconds on a fast machine.
4338 //    Note that on the Windows the CPU usage value is the % usage
4339 //    since the last time the API was called (and the first call
4340 //    returns 100%), so we'd have to deal with that as well.
4341 //
4342 // b) Sample the "fake" answer using a sampling thread and store
4343 //    the answer in a global variable.  The call to loadavg would
4344 //    just return the value of the global, avoiding the slow query.
4345 //
4346 // c) Sample a better answer using exponential decay to smooth the
4347 //    value.  This is basically the algorithm used by UNIX kernels.
4348 //
4349 // Note that sampling thread starvation could affect both (b) and (c).
4350 int os::loadavg(double loadavg[], int nelem) {
4351   return -1;
4352 }
4353 
4354 
4355 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4356 bool os::dont_yield() {
4357   return DontYieldALot;
4358 }
4359 
4360 // This method is a slightly reworked copy of JDK's sysOpen
4361 // from src/windows/hpi/src/sys_api_md.c
4362 
4363 int os::open(const char *path, int oflag, int mode) {
4364   char pathbuf[MAX_PATH];
4365 
4366   if (strlen(path) > MAX_PATH - 1) {
4367     errno = ENAMETOOLONG;
4368     return -1;
4369   }
4370   os::native_path(strcpy(pathbuf, path));
4371   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4372 }
4373 
4374 FILE* os::open(int fd, const char* mode) {
4375   return ::_fdopen(fd, mode);
4376 }
4377 
4378 // Is a (classpath) directory empty?
4379 bool os::dir_is_empty(const char* path) {
4380   WIN32_FIND_DATA fd;
4381   HANDLE f = FindFirstFile(path, &fd);
4382   if (f == INVALID_HANDLE_VALUE) {
4383     return true;
4384   }
4385   FindClose(f);
4386   return false;
4387 }
4388 
4389 // create binary file, rewriting existing file if required
4390 int os::create_binary_file(const char* path, bool rewrite_existing) {
4391   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4392   if (!rewrite_existing) {
4393     oflags |= _O_EXCL;
4394   }
4395   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4396 }
4397 
4398 // return current position of file pointer
4399 jlong os::current_file_offset(int fd) {
4400   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4401 }
4402 
4403 // move file pointer to the specified offset
4404 jlong os::seek_to_file_offset(int fd, jlong offset) {
4405   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4406 }
4407 
4408 
4409 jlong os::lseek(int fd, jlong offset, int whence) {
4410   return (jlong) ::_lseeki64(fd, offset, whence);
4411 }
4412 
4413 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4414   OVERLAPPED ov;
4415   DWORD nread;
4416   BOOL result;
4417 
4418   ZeroMemory(&ov, sizeof(ov));
4419   ov.Offset = (DWORD)offset;
4420   ov.OffsetHigh = (DWORD)(offset >> 32);
4421 
4422   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4423 
4424   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4425 
4426   return result ? nread : 0;
4427 }
4428 
4429 
4430 // This method is a slightly reworked copy of JDK's sysNativePath
4431 // from src/windows/hpi/src/path_md.c
4432 
4433 // Convert a pathname to native format.  On win32, this involves forcing all
4434 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4435 // sometimes rejects '/') and removing redundant separators.  The input path is
4436 // assumed to have been converted into the character encoding used by the local
4437 // system.  Because this might be a double-byte encoding, care is taken to
4438 // treat double-byte lead characters correctly.
4439 //
4440 // This procedure modifies the given path in place, as the result is never
4441 // longer than the original.  There is no error return; this operation always
4442 // succeeds.
4443 char * os::native_path(char *path) {
4444   char *src = path, *dst = path, *end = path;
4445   char *colon = NULL;  // If a drive specifier is found, this will
4446                        // point to the colon following the drive letter
4447 
4448   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4449   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4450           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4451 
4452   // Check for leading separators
4453 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4454   while (isfilesep(*src)) {
4455     src++;
4456   }
4457 
4458   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4459     // Remove leading separators if followed by drive specifier.  This
4460     // hack is necessary to support file URLs containing drive
4461     // specifiers (e.g., "file://c:/path").  As a side effect,
4462     // "/c:/path" can be used as an alternative to "c:/path".
4463     *dst++ = *src++;
4464     colon = dst;
4465     *dst++ = ':';
4466     src++;
4467   } else {
4468     src = path;
4469     if (isfilesep(src[0]) && isfilesep(src[1])) {
4470       // UNC pathname: Retain first separator; leave src pointed at
4471       // second separator so that further separators will be collapsed
4472       // into the second separator.  The result will be a pathname
4473       // beginning with "\\\\" followed (most likely) by a host name.
4474       src = dst = path + 1;
4475       path[0] = '\\';     // Force first separator to '\\'
4476     }
4477   }
4478 
4479   end = dst;
4480 
4481   // Remove redundant separators from remainder of path, forcing all
4482   // separators to be '\\' rather than '/'. Also, single byte space
4483   // characters are removed from the end of the path because those
4484   // are not legal ending characters on this operating system.
4485   //
4486   while (*src != '\0') {
4487     if (isfilesep(*src)) {
4488       *dst++ = '\\'; src++;
4489       while (isfilesep(*src)) src++;
4490       if (*src == '\0') {
4491         // Check for trailing separator
4492         end = dst;
4493         if (colon == dst - 2) break;  // "z:\\"
4494         if (dst == path + 1) break;   // "\\"
4495         if (dst == path + 2 && isfilesep(path[0])) {
4496           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4497           // beginning of a UNC pathname.  Even though it is not, by
4498           // itself, a valid UNC pathname, we leave it as is in order
4499           // to be consistent with the path canonicalizer as well
4500           // as the win32 APIs, which treat this case as an invalid
4501           // UNC pathname rather than as an alias for the root
4502           // directory of the current drive.
4503           break;
4504         }
4505         end = --dst;  // Path does not denote a root directory, so
4506                       // remove trailing separator
4507         break;
4508       }
4509       end = dst;
4510     } else {
4511       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4512         *dst++ = *src++;
4513         if (*src) *dst++ = *src++;
4514         end = dst;
4515       } else {  // Copy a single-byte character
4516         char c = *src++;
4517         *dst++ = c;
4518         // Space is not a legal ending character
4519         if (c != ' ') end = dst;
4520       }
4521     }
4522   }
4523 
4524   *end = '\0';
4525 
4526   // For "z:", add "." to work around a bug in the C runtime library
4527   if (colon == dst - 1) {
4528     path[2] = '.';
4529     path[3] = '\0';
4530   }
4531 
4532   return path;
4533 }
4534 
4535 // This code is a copy of JDK's sysSetLength
4536 // from src/windows/hpi/src/sys_api_md.c
4537 
4538 int os::ftruncate(int fd, jlong length) {
4539   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4540   long high = (long)(length >> 32);
4541   DWORD ret;
4542 
4543   if (h == (HANDLE)(-1)) {
4544     return -1;
4545   }
4546 
4547   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4548   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4549     return -1;
4550   }
4551 
4552   if (::SetEndOfFile(h) == FALSE) {
4553     return -1;
4554   }
4555 
4556   return 0;
4557 }
4558 
4559 
4560 // This code is a copy of JDK's sysSync
4561 // from src/windows/hpi/src/sys_api_md.c
4562 // except for the legacy workaround for a bug in Win 98
4563 
4564 int os::fsync(int fd) {
4565   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4566 
4567   if ((!::FlushFileBuffers(handle)) &&
4568       (GetLastError() != ERROR_ACCESS_DENIED)) {
4569     // from winerror.h
4570     return -1;
4571   }
4572   return 0;
4573 }
4574 
4575 static int nonSeekAvailable(int, long *);
4576 static int stdinAvailable(int, long *);
4577 
4578 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4579 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4580 
4581 // This code is a copy of JDK's sysAvailable
4582 // from src/windows/hpi/src/sys_api_md.c
4583 
4584 int os::available(int fd, jlong *bytes) {
4585   jlong cur, end;
4586   struct _stati64 stbuf64;
4587 
4588   if (::_fstati64(fd, &stbuf64) >= 0) {
4589     int mode = stbuf64.st_mode;
4590     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4591       int ret;
4592       long lpbytes;
4593       if (fd == 0) {
4594         ret = stdinAvailable(fd, &lpbytes);
4595       } else {
4596         ret = nonSeekAvailable(fd, &lpbytes);
4597       }
4598       (*bytes) = (jlong)(lpbytes);
4599       return ret;
4600     }
4601     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4602       return FALSE;
4603     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4604       return FALSE;
4605     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4606       return FALSE;
4607     }
4608     *bytes = end - cur;
4609     return TRUE;
4610   } else {
4611     return FALSE;
4612   }
4613 }
4614 
4615 // This code is a copy of JDK's nonSeekAvailable
4616 // from src/windows/hpi/src/sys_api_md.c
4617 
4618 static int nonSeekAvailable(int fd, long *pbytes) {
4619   // This is used for available on non-seekable devices
4620   // (like both named and anonymous pipes, such as pipes
4621   //  connected to an exec'd process).
4622   // Standard Input is a special case.
4623   HANDLE han;
4624 
4625   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4626     return FALSE;
4627   }
4628 
4629   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4630     // PeekNamedPipe fails when at EOF.  In that case we
4631     // simply make *pbytes = 0 which is consistent with the
4632     // behavior we get on Solaris when an fd is at EOF.
4633     // The only alternative is to raise an Exception,
4634     // which isn't really warranted.
4635     //
4636     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4637       return FALSE;
4638     }
4639     *pbytes = 0;
4640   }
4641   return TRUE;
4642 }
4643 
4644 #define MAX_INPUT_EVENTS 2000
4645 
4646 // This code is a copy of JDK's stdinAvailable
4647 // from src/windows/hpi/src/sys_api_md.c
4648 
4649 static int stdinAvailable(int fd, long *pbytes) {
4650   HANDLE han;
4651   DWORD numEventsRead = 0;  // Number of events read from buffer
4652   DWORD numEvents = 0;      // Number of events in buffer
4653   DWORD i = 0;              // Loop index
4654   DWORD curLength = 0;      // Position marker
4655   DWORD actualLength = 0;   // Number of bytes readable
4656   BOOL error = FALSE;       // Error holder
4657   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4658 
4659   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4660     return FALSE;
4661   }
4662 
4663   // Construct an array of input records in the console buffer
4664   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4665   if (error == 0) {
4666     return nonSeekAvailable(fd, pbytes);
4667   }
4668 
4669   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4670   if (numEvents > MAX_INPUT_EVENTS) {
4671     numEvents = MAX_INPUT_EVENTS;
4672   }
4673 
4674   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4675   if (lpBuffer == NULL) {
4676     return FALSE;
4677   }
4678 
4679   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4680   if (error == 0) {
4681     os::free(lpBuffer);
4682     return FALSE;
4683   }
4684 
4685   // Examine input records for the number of bytes available
4686   for (i=0; i<numEvents; i++) {
4687     if (lpBuffer[i].EventType == KEY_EVENT) {
4688 
4689       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4690                                       &(lpBuffer[i].Event);
4691       if (keyRecord->bKeyDown == TRUE) {
4692         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4693         curLength++;
4694         if (*keyPressed == '\r') {
4695           actualLength = curLength;
4696         }
4697       }
4698     }
4699   }
4700 
4701   if (lpBuffer != NULL) {
4702     os::free(lpBuffer);
4703   }
4704 
4705   *pbytes = (long) actualLength;
4706   return TRUE;
4707 }
4708 
4709 // Map a block of memory.
4710 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4711                         char *addr, size_t bytes, bool read_only,
4712                         bool allow_exec) {
4713   HANDLE hFile;
4714   char* base;
4715 
4716   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4717                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4718   if (hFile == NULL) {
4719     if (PrintMiscellaneous && Verbose) {
4720       DWORD err = GetLastError();
4721       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4722     }
4723     return NULL;
4724   }
4725 
4726   if (allow_exec) {
4727     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4728     // unless it comes from a PE image (which the shared archive is not.)
4729     // Even VirtualProtect refuses to give execute access to mapped memory
4730     // that was not previously executable.
4731     //
4732     // Instead, stick the executable region in anonymous memory.  Yuck.
4733     // Penalty is that ~4 pages will not be shareable - in the future
4734     // we might consider DLLizing the shared archive with a proper PE
4735     // header so that mapping executable + sharing is possible.
4736 
4737     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4738                                 PAGE_READWRITE);
4739     if (base == NULL) {
4740       if (PrintMiscellaneous && Verbose) {
4741         DWORD err = GetLastError();
4742         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4743       }
4744       CloseHandle(hFile);
4745       return NULL;
4746     }
4747 
4748     DWORD bytes_read;
4749     OVERLAPPED overlapped;
4750     overlapped.Offset = (DWORD)file_offset;
4751     overlapped.OffsetHigh = 0;
4752     overlapped.hEvent = NULL;
4753     // ReadFile guarantees that if the return value is true, the requested
4754     // number of bytes were read before returning.
4755     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4756     if (!res) {
4757       if (PrintMiscellaneous && Verbose) {
4758         DWORD err = GetLastError();
4759         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4760       }
4761       release_memory(base, bytes);
4762       CloseHandle(hFile);
4763       return NULL;
4764     }
4765   } else {
4766     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4767                                     NULL /* file_name */);
4768     if (hMap == NULL) {
4769       if (PrintMiscellaneous && Verbose) {
4770         DWORD err = GetLastError();
4771         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4772       }
4773       CloseHandle(hFile);
4774       return NULL;
4775     }
4776 
4777     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4778     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4779                                   (DWORD)bytes, addr);
4780     if (base == NULL) {
4781       if (PrintMiscellaneous && Verbose) {
4782         DWORD err = GetLastError();
4783         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4784       }
4785       CloseHandle(hMap);
4786       CloseHandle(hFile);
4787       return NULL;
4788     }
4789 
4790     if (CloseHandle(hMap) == 0) {
4791       if (PrintMiscellaneous && Verbose) {
4792         DWORD err = GetLastError();
4793         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4794       }
4795       CloseHandle(hFile);
4796       return base;
4797     }
4798   }
4799 
4800   if (allow_exec) {
4801     DWORD old_protect;
4802     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4803     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4804 
4805     if (!res) {
4806       if (PrintMiscellaneous && Verbose) {
4807         DWORD err = GetLastError();
4808         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4809       }
4810       // Don't consider this a hard error, on IA32 even if the
4811       // VirtualProtect fails, we should still be able to execute
4812       CloseHandle(hFile);
4813       return base;
4814     }
4815   }
4816 
4817   if (CloseHandle(hFile) == 0) {
4818     if (PrintMiscellaneous && Verbose) {
4819       DWORD err = GetLastError();
4820       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4821     }
4822     return base;
4823   }
4824 
4825   return base;
4826 }
4827 
4828 
4829 // Remap a block of memory.
4830 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4831                           char *addr, size_t bytes, bool read_only,
4832                           bool allow_exec) {
4833   // This OS does not allow existing memory maps to be remapped so we
4834   // have to unmap the memory before we remap it.
4835   if (!os::unmap_memory(addr, bytes)) {
4836     return NULL;
4837   }
4838 
4839   // There is a very small theoretical window between the unmap_memory()
4840   // call above and the map_memory() call below where a thread in native
4841   // code may be able to access an address that is no longer mapped.
4842 
4843   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4844                         read_only, allow_exec);
4845 }
4846 
4847 
4848 // Unmap a block of memory.
4849 // Returns true=success, otherwise false.
4850 
4851 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4852   BOOL result = UnmapViewOfFile(addr);
4853   if (result == 0) {
4854     if (PrintMiscellaneous && Verbose) {
4855       DWORD err = GetLastError();
4856       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4857     }
4858     return false;
4859   }
4860   return true;
4861 }
4862 
4863 void os::pause() {
4864   char filename[MAX_PATH];
4865   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4866     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4867   } else {
4868     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4869   }
4870 
4871   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4872   if (fd != -1) {
4873     struct stat buf;
4874     ::close(fd);
4875     while (::stat(filename, &buf) == 0) {
4876       Sleep(100);
4877     }
4878   } else {
4879     jio_fprintf(stderr,
4880                 "Could not open pause file '%s', continuing immediately.\n", filename);
4881   }
4882 }
4883 
4884 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4885   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4886 }
4887 
4888 // See the caveats for this class in os_windows.hpp
4889 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4890 // into this method and returns false. If no OS EXCEPTION was raised, returns
4891 // true.
4892 // The callback is supposed to provide the method that should be protected.
4893 //
4894 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4895   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4896   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4897          "crash_protection already set?");
4898 
4899   bool success = true;
4900   __try {
4901     WatcherThread::watcher_thread()->set_crash_protection(this);
4902     cb.call();
4903   } __except(EXCEPTION_EXECUTE_HANDLER) {
4904     // only for protection, nothing to do
4905     success = false;
4906   }
4907   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4908   return success;
4909 }
4910 
4911 // An Event wraps a win32 "CreateEvent" kernel handle.
4912 //
4913 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4914 //
4915 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4916 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4917 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4918 //     In addition, an unpark() operation might fetch the handle field, but the
4919 //     event could recycle between the fetch and the SetEvent() operation.
4920 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4921 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4922 //     on an stale but recycled handle would be harmless, but in practice this might
4923 //     confuse other non-Sun code, so it's not a viable approach.
4924 //
4925 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4926 //     with the Event.  The event handle is never closed.  This could be construed
4927 //     as handle leakage, but only up to the maximum # of threads that have been extant
4928 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4929 //     permit a process to have hundreds of thousands of open handles.
4930 //
4931 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4932 //     and release unused handles.
4933 //
4934 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4935 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4936 //
4937 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4938 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4939 //
4940 // We use (2).
4941 //
4942 // TODO-FIXME:
4943 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4944 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4945 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4946 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4947 //     into a single win32 CreateEvent() handle.
4948 //
4949 // Assumption:
4950 //    Only one parker can exist on an event, which is why we allocate
4951 //    them per-thread. Multiple unparkers can coexist.
4952 //
4953 // _Event transitions in park()
4954 //   -1 => -1 : illegal
4955 //    1 =>  0 : pass - return immediately
4956 //    0 => -1 : block; then set _Event to 0 before returning
4957 //
4958 // _Event transitions in unpark()
4959 //    0 => 1 : just return
4960 //    1 => 1 : just return
4961 //   -1 => either 0 or 1; must signal target thread
4962 //         That is, we can safely transition _Event from -1 to either
4963 //         0 or 1.
4964 //
4965 // _Event serves as a restricted-range semaphore.
4966 //   -1 : thread is blocked, i.e. there is a waiter
4967 //    0 : neutral: thread is running or ready,
4968 //        could have been signaled after a wait started
4969 //    1 : signaled - thread is running or ready
4970 //
4971 // Another possible encoding of _Event would be with
4972 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4973 //
4974 
4975 int os::PlatformEvent::park(jlong Millis) {
4976   // Transitions for _Event:
4977   //   -1 => -1 : illegal
4978   //    1 =>  0 : pass - return immediately
4979   //    0 => -1 : block; then set _Event to 0 before returning
4980 
4981   guarantee(_ParkHandle != NULL , "Invariant");
4982   guarantee(Millis > 0          , "Invariant");
4983 
4984   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4985   // the initial park() operation.
4986   // Consider: use atomic decrement instead of CAS-loop
4987 
4988   int v;
4989   for (;;) {
4990     v = _Event;
4991     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4992   }
4993   guarantee((v == 0) || (v == 1), "invariant");
4994   if (v != 0) return OS_OK;
4995 
4996   // Do this the hard way by blocking ...
4997   // TODO: consider a brief spin here, gated on the success of recent
4998   // spin attempts by this thread.
4999   //
5000   // We decompose long timeouts into series of shorter timed waits.
5001   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5002   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5003   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5004   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5005   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5006   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5007   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5008   // for the already waited time.  This policy does not admit any new outcomes.
5009   // In the future, however, we might want to track the accumulated wait time and
5010   // adjust Millis accordingly if we encounter a spurious wakeup.
5011 
5012   const int MAXTIMEOUT = 0x10000000;
5013   DWORD rv = WAIT_TIMEOUT;
5014   while (_Event < 0 && Millis > 0) {
5015     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5016     if (Millis > MAXTIMEOUT) {
5017       prd = MAXTIMEOUT;
5018     }
5019     rv = ::WaitForSingleObject(_ParkHandle, prd);
5020     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5021     if (rv == WAIT_TIMEOUT) {
5022       Millis -= prd;
5023     }
5024   }
5025   v = _Event;
5026   _Event = 0;
5027   // see comment at end of os::PlatformEvent::park() below:
5028   OrderAccess::fence();
5029   // If we encounter a nearly simultanous timeout expiry and unpark()
5030   // we return OS_OK indicating we awoke via unpark().
5031   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5032   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5033 }
5034 
5035 void os::PlatformEvent::park() {
5036   // Transitions for _Event:
5037   //   -1 => -1 : illegal
5038   //    1 =>  0 : pass - return immediately
5039   //    0 => -1 : block; then set _Event to 0 before returning
5040 
5041   guarantee(_ParkHandle != NULL, "Invariant");
5042   // Invariant: Only the thread associated with the Event/PlatformEvent
5043   // may call park().
5044   // Consider: use atomic decrement instead of CAS-loop
5045   int v;
5046   for (;;) {
5047     v = _Event;
5048     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5049   }
5050   guarantee((v == 0) || (v == 1), "invariant");
5051   if (v != 0) return;
5052 
5053   // Do this the hard way by blocking ...
5054   // TODO: consider a brief spin here, gated on the success of recent
5055   // spin attempts by this thread.
5056   while (_Event < 0) {
5057     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5058     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5059   }
5060 
5061   // Usually we'll find _Event == 0 at this point, but as
5062   // an optional optimization we clear it, just in case can
5063   // multiple unpark() operations drove _Event up to 1.
5064   _Event = 0;
5065   OrderAccess::fence();
5066   guarantee(_Event >= 0, "invariant");
5067 }
5068 
5069 void os::PlatformEvent::unpark() {
5070   guarantee(_ParkHandle != NULL, "Invariant");
5071 
5072   // Transitions for _Event:
5073   //    0 => 1 : just return
5074   //    1 => 1 : just return
5075   //   -1 => either 0 or 1; must signal target thread
5076   //         That is, we can safely transition _Event from -1 to either
5077   //         0 or 1.
5078   // See also: "Semaphores in Plan 9" by Mullender & Cox
5079   //
5080   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5081   // that it will take two back-to-back park() calls for the owning
5082   // thread to block. This has the benefit of forcing a spurious return
5083   // from the first park() call after an unpark() call which will help
5084   // shake out uses of park() and unpark() without condition variables.
5085 
5086   if (Atomic::xchg(1, &_Event) >= 0) return;
5087 
5088   ::SetEvent(_ParkHandle);
5089 }
5090 
5091 
5092 // JSR166
5093 // -------------------------------------------------------
5094 
5095 // The Windows implementation of Park is very straightforward: Basic
5096 // operations on Win32 Events turn out to have the right semantics to
5097 // use them directly. We opportunistically resuse the event inherited
5098 // from Monitor.
5099 
5100 void Parker::park(bool isAbsolute, jlong time) {
5101   guarantee(_ParkEvent != NULL, "invariant");
5102   // First, demultiplex/decode time arguments
5103   if (time < 0) { // don't wait
5104     return;
5105   } else if (time == 0 && !isAbsolute) {
5106     time = INFINITE;
5107   } else if (isAbsolute) {
5108     time -= os::javaTimeMillis(); // convert to relative time
5109     if (time <= 0) {  // already elapsed
5110       return;
5111     }
5112   } else { // relative
5113     time /= 1000000;  // Must coarsen from nanos to millis
5114     if (time == 0) {  // Wait for the minimal time unit if zero
5115       time = 1;
5116     }
5117   }
5118 
5119   JavaThread* thread = (JavaThread*)(Thread::current());
5120   assert(thread->is_Java_thread(), "Must be JavaThread");
5121   JavaThread *jt = (JavaThread *)thread;
5122 
5123   // Don't wait if interrupted or already triggered
5124   if (Thread::is_interrupted(thread, false) ||
5125       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5126     ResetEvent(_ParkEvent);
5127     return;
5128   } else {
5129     ThreadBlockInVM tbivm(jt);
5130     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5131     jt->set_suspend_equivalent();
5132 
5133     WaitForSingleObject(_ParkEvent, time);
5134     ResetEvent(_ParkEvent);
5135 
5136     // If externally suspended while waiting, re-suspend
5137     if (jt->handle_special_suspend_equivalent_condition()) {
5138       jt->java_suspend_self();
5139     }
5140   }
5141 }
5142 
5143 void Parker::unpark() {
5144   guarantee(_ParkEvent != NULL, "invariant");
5145   SetEvent(_ParkEvent);
5146 }
5147 
5148 // Run the specified command in a separate process. Return its exit value,
5149 // or -1 on failure (e.g. can't create a new process).
5150 int os::fork_and_exec(char* cmd) {
5151   STARTUPINFO si;
5152   PROCESS_INFORMATION pi;
5153 
5154   memset(&si, 0, sizeof(si));
5155   si.cb = sizeof(si);
5156   memset(&pi, 0, sizeof(pi));
5157   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5158                             cmd,    // command line
5159                             NULL,   // process security attribute
5160                             NULL,   // thread security attribute
5161                             TRUE,   // inherits system handles
5162                             0,      // no creation flags
5163                             NULL,   // use parent's environment block
5164                             NULL,   // use parent's starting directory
5165                             &si,    // (in) startup information
5166                             &pi);   // (out) process information
5167 
5168   if (rslt) {
5169     // Wait until child process exits.
5170     WaitForSingleObject(pi.hProcess, INFINITE);
5171 
5172     DWORD exit_code;
5173     GetExitCodeProcess(pi.hProcess, &exit_code);
5174 
5175     // Close process and thread handles.
5176     CloseHandle(pi.hProcess);
5177     CloseHandle(pi.hThread);
5178 
5179     return (int)exit_code;
5180   } else {
5181     return -1;
5182   }
5183 }
5184 
5185 //--------------------------------------------------------------------------------------------------
5186 // Non-product code
5187 
5188 static int mallocDebugIntervalCounter = 0;
5189 static int mallocDebugCounter = 0;
5190 bool os::check_heap(bool force) {
5191   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5192   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5193     // Note: HeapValidate executes two hardware breakpoints when it finds something
5194     // wrong; at these points, eax contains the address of the offending block (I think).
5195     // To get to the exlicit error message(s) below, just continue twice.
5196     HANDLE heap = GetProcessHeap();
5197 
5198     // If we fail to lock the heap, then gflags.exe has been used
5199     // or some other special heap flag has been set that prevents
5200     // locking. We don't try to walk a heap we can't lock.
5201     if (HeapLock(heap) != 0) {
5202       PROCESS_HEAP_ENTRY phe;
5203       phe.lpData = NULL;
5204       while (HeapWalk(heap, &phe) != 0) {
5205         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5206             !HeapValidate(heap, 0, phe.lpData)) {
5207           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5208           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5209           fatal("corrupted C heap");
5210         }
5211       }
5212       DWORD err = GetLastError();
5213       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5214         fatal(err_msg("heap walk aborted with error %d", err));
5215       }
5216       HeapUnlock(heap);
5217     }
5218     mallocDebugIntervalCounter = 0;
5219   }
5220   return true;
5221 }
5222 
5223 
5224 bool os::find(address addr, outputStream* st) {
5225   // Nothing yet
5226   return false;
5227 }
5228 
5229 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5230   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5231 
5232   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5233     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5234     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5235     address addr = (address) exceptionRecord->ExceptionInformation[1];
5236 
5237     if (os::is_memory_serialize_page(thread, addr)) {
5238       return EXCEPTION_CONTINUE_EXECUTION;
5239     }
5240   }
5241 
5242   return EXCEPTION_CONTINUE_SEARCH;
5243 }
5244 
5245 // We don't build a headless jre for Windows
5246 bool os::is_headless_jre() { return false; }
5247 
5248 static jint initSock() {
5249   WSADATA wsadata;
5250 
5251   if (!os::WinSock2Dll::WinSock2Available()) {
5252     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5253                 ::GetLastError());
5254     return JNI_ERR;
5255   }
5256 
5257   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5258     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5259                 ::GetLastError());
5260     return JNI_ERR;
5261   }
5262   return JNI_OK;
5263 }
5264 
5265 struct hostent* os::get_host_by_name(char* name) {
5266   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5267 }
5268 
5269 int os::socket_close(int fd) {
5270   return ::closesocket(fd);
5271 }
5272 
5273 int os::socket(int domain, int type, int protocol) {
5274   return ::socket(domain, type, protocol);
5275 }
5276 
5277 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5278   return ::connect(fd, him, len);
5279 }
5280 
5281 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5282   return ::recv(fd, buf, (int)nBytes, flags);
5283 }
5284 
5285 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5286   return ::send(fd, buf, (int)nBytes, flags);
5287 }
5288 
5289 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5290   return ::send(fd, buf, (int)nBytes, flags);
5291 }
5292 
5293 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5294 #if defined(IA32)
5295   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5296 #elif defined (AMD64)
5297   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5298 #endif
5299 
5300 // returns true if thread could be suspended,
5301 // false otherwise
5302 static bool do_suspend(HANDLE* h) {
5303   if (h != NULL) {
5304     if (SuspendThread(*h) != ~0) {
5305       return true;
5306     }
5307   }
5308   return false;
5309 }
5310 
5311 // resume the thread
5312 // calling resume on an active thread is a no-op
5313 static void do_resume(HANDLE* h) {
5314   if (h != NULL) {
5315     ResumeThread(*h);
5316   }
5317 }
5318 
5319 // retrieve a suspend/resume context capable handle
5320 // from the tid. Caller validates handle return value.
5321 void get_thread_handle_for_extended_context(HANDLE* h,
5322                                             OSThread::thread_id_t tid) {
5323   if (h != NULL) {
5324     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5325   }
5326 }
5327 
5328 // Thread sampling implementation
5329 //
5330 void os::SuspendedThreadTask::internal_do_task() {
5331   CONTEXT    ctxt;
5332   HANDLE     h = NULL;
5333 
5334   // get context capable handle for thread
5335   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5336 
5337   // sanity
5338   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5339     return;
5340   }
5341 
5342   // suspend the thread
5343   if (do_suspend(&h)) {
5344     ctxt.ContextFlags = sampling_context_flags;
5345     // get thread context
5346     GetThreadContext(h, &ctxt);
5347     SuspendedThreadTaskContext context(_thread, &ctxt);
5348     // pass context to Thread Sampling impl
5349     do_task(context);
5350     // resume thread
5351     do_resume(&h);
5352   }
5353 
5354   // close handle
5355   CloseHandle(h);
5356 }
5357 
5358 
5359 // Kernel32 API
5360 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5361 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5362 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5363 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5364 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5365 
5366 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5367 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5368 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5369 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5370 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5371 
5372 
5373 BOOL                        os::Kernel32Dll::initialized = FALSE;
5374 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5375   assert(initialized && _GetLargePageMinimum != NULL,
5376          "GetLargePageMinimumAvailable() not yet called");
5377   return _GetLargePageMinimum();
5378 }
5379 
5380 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5381   if (!initialized) {
5382     initialize();
5383   }
5384   return _GetLargePageMinimum != NULL;
5385 }
5386 
5387 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5388   if (!initialized) {
5389     initialize();
5390   }
5391   return _VirtualAllocExNuma != NULL;
5392 }
5393 
5394 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5395                                            SIZE_T bytes, DWORD flags,
5396                                            DWORD prot, DWORD node) {
5397   assert(initialized && _VirtualAllocExNuma != NULL,
5398          "NUMACallsAvailable() not yet called");
5399 
5400   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5401 }
5402 
5403 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5404   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5405          "NUMACallsAvailable() not yet called");
5406 
5407   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5408 }
5409 
5410 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5411                                                PULONGLONG proc_mask) {
5412   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5413          "NUMACallsAvailable() not yet called");
5414 
5415   return _GetNumaNodeProcessorMask(node, proc_mask);
5416 }
5417 
5418 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5419                                                  ULONG FrameToCapture,
5420                                                  PVOID* BackTrace,
5421                                                  PULONG BackTraceHash) {
5422   if (!initialized) {
5423     initialize();
5424   }
5425 
5426   if (_RtlCaptureStackBackTrace != NULL) {
5427     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5428                                      BackTrace, BackTraceHash);
5429   } else {
5430     return 0;
5431   }
5432 }
5433 
5434 void os::Kernel32Dll::initializeCommon() {
5435   if (!initialized) {
5436     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5437     assert(handle != NULL, "Just check");
5438     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5439     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5440     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5441     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5442     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5443     initialized = TRUE;
5444   }
5445 }
5446 
5447 
5448 
5449 #ifndef JDK6_OR_EARLIER
5450 
5451 void os::Kernel32Dll::initialize() {
5452   initializeCommon();
5453 }
5454 
5455 
5456 // Kernel32 API
5457 inline BOOL os::Kernel32Dll::SwitchToThread() {
5458   return ::SwitchToThread();
5459 }
5460 
5461 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5462   return true;
5463 }
5464 
5465 // Help tools
5466 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5467   return true;
5468 }
5469 
5470 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5471                                                         DWORD th32ProcessId) {
5472   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5473 }
5474 
5475 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5476                                            LPMODULEENTRY32 lpme) {
5477   return ::Module32First(hSnapshot, lpme);
5478 }
5479 
5480 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5481                                           LPMODULEENTRY32 lpme) {
5482   return ::Module32Next(hSnapshot, lpme);
5483 }
5484 
5485 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5486   ::GetNativeSystemInfo(lpSystemInfo);
5487 }
5488 
5489 // PSAPI API
5490 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5491                                              HMODULE *lpModule, DWORD cb,
5492                                              LPDWORD lpcbNeeded) {
5493   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5494 }
5495 
5496 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5497                                                HMODULE hModule,
5498                                                LPTSTR lpFilename,
5499                                                DWORD nSize) {
5500   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5501 }
5502 
5503 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5504                                                HMODULE hModule,
5505                                                LPMODULEINFO lpmodinfo,
5506                                                DWORD cb) {
5507   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5508 }
5509 
5510 inline BOOL os::PSApiDll::PSApiAvailable() {
5511   return true;
5512 }
5513 
5514 
5515 // WinSock2 API
5516 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5517                                         LPWSADATA lpWSAData) {
5518   return ::WSAStartup(wVersionRequested, lpWSAData);
5519 }
5520 
5521 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5522   return ::gethostbyname(name);
5523 }
5524 
5525 inline BOOL os::WinSock2Dll::WinSock2Available() {
5526   return true;
5527 }
5528 
5529 // Advapi API
5530 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5531                                                    BOOL DisableAllPrivileges,
5532                                                    PTOKEN_PRIVILEGES NewState,
5533                                                    DWORD BufferLength,
5534                                                    PTOKEN_PRIVILEGES PreviousState,
5535                                                    PDWORD ReturnLength) {
5536   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5537                                  BufferLength, PreviousState, ReturnLength);
5538 }
5539 
5540 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5541                                               DWORD DesiredAccess,
5542                                               PHANDLE TokenHandle) {
5543   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5544 }
5545 
5546 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5547                                                   LPCTSTR lpName,
5548                                                   PLUID lpLuid) {
5549   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5550 }
5551 
5552 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5553   return true;
5554 }
5555 
5556 void* os::get_default_process_handle() {
5557   return (void*)GetModuleHandle(NULL);
5558 }
5559 
5560 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5561 // which is used to find statically linked in agents.
5562 // Additionally for windows, takes into account __stdcall names.
5563 // Parameters:
5564 //            sym_name: Symbol in library we are looking for
5565 //            lib_name: Name of library to look in, NULL for shared libs.
5566 //            is_absolute_path == true if lib_name is absolute path to agent
5567 //                                     such as "C:/a/b/L.dll"
5568 //            == false if only the base name of the library is passed in
5569 //               such as "L"
5570 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5571                                     bool is_absolute_path) {
5572   char *agent_entry_name;
5573   size_t len;
5574   size_t name_len;
5575   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5576   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5577   const char *start;
5578 
5579   if (lib_name != NULL) {
5580     len = name_len = strlen(lib_name);
5581     if (is_absolute_path) {
5582       // Need to strip path, prefix and suffix
5583       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5584         lib_name = ++start;
5585       } else {
5586         // Need to check for drive prefix
5587         if ((start = strchr(lib_name, ':')) != NULL) {
5588           lib_name = ++start;
5589         }
5590       }
5591       if (len <= (prefix_len + suffix_len)) {
5592         return NULL;
5593       }
5594       lib_name += prefix_len;
5595       name_len = strlen(lib_name) - suffix_len;
5596     }
5597   }
5598   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5599   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5600   if (agent_entry_name == NULL) {
5601     return NULL;
5602   }
5603   if (lib_name != NULL) {
5604     const char *p = strrchr(sym_name, '@');
5605     if (p != NULL && p != sym_name) {
5606       // sym_name == _Agent_OnLoad@XX
5607       strncpy(agent_entry_name, sym_name, (p - sym_name));
5608       agent_entry_name[(p-sym_name)] = '\0';
5609       // agent_entry_name == _Agent_OnLoad
5610       strcat(agent_entry_name, "_");
5611       strncat(agent_entry_name, lib_name, name_len);
5612       strcat(agent_entry_name, p);
5613       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5614     } else {
5615       strcpy(agent_entry_name, sym_name);
5616       strcat(agent_entry_name, "_");
5617       strncat(agent_entry_name, lib_name, name_len);
5618     }
5619   } else {
5620     strcpy(agent_entry_name, sym_name);
5621   }
5622   return agent_entry_name;
5623 }
5624 
5625 #else
5626 // Kernel32 API
5627 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5628 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5629 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5630 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5631 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5632 
5633 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5634 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5635 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5636 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5637 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5638 
5639 void os::Kernel32Dll::initialize() {
5640   if (!initialized) {
5641     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5642     assert(handle != NULL, "Just check");
5643 
5644     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5645     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5646       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5647     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5648     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5649     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5650     initializeCommon();  // resolve the functions that always need resolving
5651 
5652     initialized = TRUE;
5653   }
5654 }
5655 
5656 BOOL os::Kernel32Dll::SwitchToThread() {
5657   assert(initialized && _SwitchToThread != NULL,
5658          "SwitchToThreadAvailable() not yet called");
5659   return _SwitchToThread();
5660 }
5661 
5662 
5663 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5664   if (!initialized) {
5665     initialize();
5666   }
5667   return _SwitchToThread != NULL;
5668 }
5669 
5670 // Help tools
5671 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5672   if (!initialized) {
5673     initialize();
5674   }
5675   return _CreateToolhelp32Snapshot != NULL &&
5676          _Module32First != NULL &&
5677          _Module32Next != NULL;
5678 }
5679 
5680 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5681                                                  DWORD th32ProcessId) {
5682   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5683          "HelpToolsAvailable() not yet called");
5684 
5685   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5686 }
5687 
5688 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5689   assert(initialized && _Module32First != NULL,
5690          "HelpToolsAvailable() not yet called");
5691 
5692   return _Module32First(hSnapshot, lpme);
5693 }
5694 
5695 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5696                                           LPMODULEENTRY32 lpme) {
5697   assert(initialized && _Module32Next != NULL,
5698          "HelpToolsAvailable() not yet called");
5699 
5700   return _Module32Next(hSnapshot, lpme);
5701 }
5702 
5703 
5704 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5705   if (!initialized) {
5706     initialize();
5707   }
5708   return _GetNativeSystemInfo != NULL;
5709 }
5710 
5711 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5712   assert(initialized && _GetNativeSystemInfo != NULL,
5713          "GetNativeSystemInfoAvailable() not yet called");
5714 
5715   _GetNativeSystemInfo(lpSystemInfo);
5716 }
5717 
5718 // PSAPI API
5719 
5720 
5721 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5722 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5723 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5724 
5725 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5726 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5727 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5728 BOOL                    os::PSApiDll::initialized = FALSE;
5729 
5730 void os::PSApiDll::initialize() {
5731   if (!initialized) {
5732     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5733     if (handle != NULL) {
5734       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5735                                                                     "EnumProcessModules");
5736       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5737                                                                       "GetModuleFileNameExA");
5738       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5739                                                                         "GetModuleInformation");
5740     }
5741     initialized = TRUE;
5742   }
5743 }
5744 
5745 
5746 
5747 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5748                                       DWORD cb, LPDWORD lpcbNeeded) {
5749   assert(initialized && _EnumProcessModules != NULL,
5750          "PSApiAvailable() not yet called");
5751   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5752 }
5753 
5754 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5755                                         LPTSTR lpFilename, DWORD nSize) {
5756   assert(initialized && _GetModuleFileNameEx != NULL,
5757          "PSApiAvailable() not yet called");
5758   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5759 }
5760 
5761 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5762                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5763   assert(initialized && _GetModuleInformation != NULL,
5764          "PSApiAvailable() not yet called");
5765   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5766 }
5767 
5768 BOOL os::PSApiDll::PSApiAvailable() {
5769   if (!initialized) {
5770     initialize();
5771   }
5772   return _EnumProcessModules != NULL &&
5773     _GetModuleFileNameEx != NULL &&
5774     _GetModuleInformation != NULL;
5775 }
5776 
5777 
5778 // WinSock2 API
5779 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5780 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5781 
5782 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5783 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5784 BOOL             os::WinSock2Dll::initialized = FALSE;
5785 
5786 void os::WinSock2Dll::initialize() {
5787   if (!initialized) {
5788     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5789     if (handle != NULL) {
5790       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5791       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5792     }
5793     initialized = TRUE;
5794   }
5795 }
5796 
5797 
5798 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5799   assert(initialized && _WSAStartup != NULL,
5800          "WinSock2Available() not yet called");
5801   return _WSAStartup(wVersionRequested, lpWSAData);
5802 }
5803 
5804 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5805   assert(initialized && _gethostbyname != NULL,
5806          "WinSock2Available() not yet called");
5807   return _gethostbyname(name);
5808 }
5809 
5810 BOOL os::WinSock2Dll::WinSock2Available() {
5811   if (!initialized) {
5812     initialize();
5813   }
5814   return _WSAStartup != NULL &&
5815     _gethostbyname != NULL;
5816 }
5817 
5818 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5819 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5820 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5821 
5822 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5823 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5824 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5825 BOOL                     os::Advapi32Dll::initialized = FALSE;
5826 
5827 void os::Advapi32Dll::initialize() {
5828   if (!initialized) {
5829     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5830     if (handle != NULL) {
5831       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5832                                                                           "AdjustTokenPrivileges");
5833       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5834                                                                 "OpenProcessToken");
5835       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5836                                                                         "LookupPrivilegeValueA");
5837     }
5838     initialized = TRUE;
5839   }
5840 }
5841 
5842 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5843                                             BOOL DisableAllPrivileges,
5844                                             PTOKEN_PRIVILEGES NewState,
5845                                             DWORD BufferLength,
5846                                             PTOKEN_PRIVILEGES PreviousState,
5847                                             PDWORD ReturnLength) {
5848   assert(initialized && _AdjustTokenPrivileges != NULL,
5849          "AdvapiAvailable() not yet called");
5850   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5851                                 BufferLength, PreviousState, ReturnLength);
5852 }
5853 
5854 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5855                                        DWORD DesiredAccess,
5856                                        PHANDLE TokenHandle) {
5857   assert(initialized && _OpenProcessToken != NULL,
5858          "AdvapiAvailable() not yet called");
5859   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5860 }
5861 
5862 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5863                                            LPCTSTR lpName, PLUID lpLuid) {
5864   assert(initialized && _LookupPrivilegeValue != NULL,
5865          "AdvapiAvailable() not yet called");
5866   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5867 }
5868 
5869 BOOL os::Advapi32Dll::AdvapiAvailable() {
5870   if (!initialized) {
5871     initialize();
5872   }
5873   return _AdjustTokenPrivileges != NULL &&
5874     _OpenProcessToken != NULL &&
5875     _LookupPrivilegeValue != NULL;
5876 }
5877 
5878 #endif
5879 
5880 #ifndef PRODUCT
5881 
5882 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5883 // contiguous memory block at a particular address.
5884 // The test first tries to find a good approximate address to allocate at by using the same
5885 // method to allocate some memory at any address. The test then tries to allocate memory in
5886 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5887 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5888 // the previously allocated memory is available for allocation. The only actual failure
5889 // that is reported is when the test tries to allocate at a particular location but gets a
5890 // different valid one. A NULL return value at this point is not considered an error but may
5891 // be legitimate.
5892 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5893 void TestReserveMemorySpecial_test() {
5894   if (!UseLargePages) {
5895     if (VerboseInternalVMTests) {
5896       gclog_or_tty->print("Skipping test because large pages are disabled");
5897     }
5898     return;
5899   }
5900   // save current value of globals
5901   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5902   bool old_use_numa_interleaving = UseNUMAInterleaving;
5903 
5904   // set globals to make sure we hit the correct code path
5905   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5906 
5907   // do an allocation at an address selected by the OS to get a good one.
5908   const size_t large_allocation_size = os::large_page_size() * 4;
5909   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5910   if (result == NULL) {
5911     if (VerboseInternalVMTests) {
5912       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5913                           large_allocation_size);
5914     }
5915   } else {
5916     os::release_memory_special(result, large_allocation_size);
5917 
5918     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5919     // we managed to get it once.
5920     const size_t expected_allocation_size = os::large_page_size();
5921     char* expected_location = result + os::large_page_size();
5922     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5923     if (actual_location == NULL) {
5924       if (VerboseInternalVMTests) {
5925         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5926                             expected_location, large_allocation_size);
5927       }
5928     } else {
5929       // release memory
5930       os::release_memory_special(actual_location, expected_allocation_size);
5931       // only now check, after releasing any memory to avoid any leaks.
5932       assert(actual_location == expected_location,
5933              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5934              expected_location, expected_allocation_size, actual_location));
5935     }
5936   }
5937 
5938   // restore globals
5939   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5940   UseNUMAInterleaving = old_use_numa_interleaving;
5941 }
5942 #endif // PRODUCT