1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 112 // getrusage() is prepared to handle the associated failure.
 113 #ifndef RUSAGE_THREAD
 114   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 115 #endif
 116 
 117 #define MAX_PATH    (2 * K)
 118 
 119 #define MAX_SECS 100000000
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 #define LARGEPAGES_BIT (1 << 6)
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Linux::_physical_memory = 0;
 128 
 129 address   os::Linux::_initial_thread_stack_bottom = NULL;
 130 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 131 
 132 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 133 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 134 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 const int os::Linux::_vm_default_page_size = (8 * K);
 139 bool os::Linux::_is_floating_stack = false;
 140 bool os::Linux::_is_NPTL = false;
 141 bool os::Linux::_supports_fast_thread_cpu_time = false;
 142 const char * os::Linux::_glibc_version = NULL;
 143 const char * os::Linux::_libpthread_version = NULL;
 144 pthread_condattr_t os::Linux::_condattr[1];
 145 
 146 static jlong initial_time_count=0;
 147 
 148 static int clock_tics_per_sec = 100;
 149 
 150 // For diagnostics to print a message once. see run_periodic_checks
 151 static sigset_t check_signal_done;
 152 static bool check_signals = true;
 153 
 154 static pid_t _initial_pid = 0;
 155 
 156 // Signal number used to suspend/resume a thread
 157 
 158 // do not use any signal number less than SIGSEGV, see 4355769
 159 static int SR_signum = SIGUSR2;
 160 sigset_t SR_sigset;
 161 
 162 // Declarations
 163 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   sysinfo(&si);
 177 
 178   return (julong)si.freeram * si.mem_unit;
 179 }
 180 
 181 julong os::physical_memory() {
 182   return Linux::physical_memory();
 183 }
 184 
 185 // Return true if user is running as root.
 186 
 187 bool os::have_special_privileges() {
 188   static bool init = false;
 189   static bool privileges = false;
 190   if (!init) {
 191     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 192     init = true;
 193   }
 194   return privileges;
 195 }
 196 
 197 
 198 #ifndef SYS_gettid
 199 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 200   #ifdef __ia64__
 201     #define SYS_gettid 1105
 202   #else
 203     #ifdef __i386__
 204       #define SYS_gettid 224
 205     #else
 206       #ifdef __amd64__
 207         #define SYS_gettid 186
 208       #else
 209         #ifdef __sparc__
 210           #define SYS_gettid 143
 211         #else
 212           #error define gettid for the arch
 213         #endif
 214       #endif
 215     #endif
 216   #endif
 217 #endif
 218 
 219 // Cpu architecture string
 220 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 221 
 222 
 223 // pid_t gettid()
 224 //
 225 // Returns the kernel thread id of the currently running thread. Kernel
 226 // thread id is used to access /proc.
 227 //
 228 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 229 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 230 //
 231 pid_t os::Linux::gettid() {
 232   int rslt = syscall(SYS_gettid);
 233   if (rslt == -1) {
 234     // old kernel, no NPTL support
 235     return getpid();
 236   } else {
 237     return (pid_t)rslt;
 238   }
 239 }
 240 
 241 // Most versions of linux have a bug where the number of processors are
 242 // determined by looking at the /proc file system.  In a chroot environment,
 243 // the system call returns 1.  This causes the VM to act as if it is
 244 // a single processor and elide locking (see is_MP() call).
 245 static bool unsafe_chroot_detected = false;
 246 static const char *unstable_chroot_error = "/proc file system not found.\n"
 247                      "Java may be unstable running multithreaded in a chroot "
 248                      "environment on Linux when /proc filesystem is not mounted.";
 249 
 250 void os::Linux::initialize_system_info() {
 251   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 252   if (processor_count() == 1) {
 253     pid_t pid = os::Linux::gettid();
 254     char fname[32];
 255     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 256     FILE *fp = fopen(fname, "r");
 257     if (fp == NULL) {
 258       unsafe_chroot_detected = true;
 259     } else {
 260       fclose(fp);
 261     }
 262   }
 263   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 264   assert(processor_count() > 0, "linux error");
 265 }
 266 
 267 void os::init_system_properties_values() {
 268   // The next steps are taken in the product version:
 269   //
 270   // Obtain the JAVA_HOME value from the location of libjvm.so.
 271   // This library should be located at:
 272   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 273   //
 274   // If "/jre/lib/" appears at the right place in the path, then we
 275   // assume libjvm.so is installed in a JDK and we use this path.
 276   //
 277   // Otherwise exit with message: "Could not create the Java virtual machine."
 278   //
 279   // The following extra steps are taken in the debugging version:
 280   //
 281   // If "/jre/lib/" does NOT appear at the right place in the path
 282   // instead of exit check for $JAVA_HOME environment variable.
 283   //
 284   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 285   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 286   // it looks like libjvm.so is installed there
 287   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 288   //
 289   // Otherwise exit.
 290   //
 291   // Important note: if the location of libjvm.so changes this
 292   // code needs to be changed accordingly.
 293 
 294   // See ld(1):
 295   //      The linker uses the following search paths to locate required
 296   //      shared libraries:
 297   //        1: ...
 298   //        ...
 299   //        7: The default directories, normally /lib and /usr/lib.
 300 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 301   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 302 #else
 303   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 304 #endif
 305 
 306 // Base path of extensions installed on the system.
 307 #define SYS_EXT_DIR     "/usr/java/packages"
 308 #define EXTENSIONS_DIR  "/lib/ext"
 309 
 310   // Buffer that fits several sprintfs.
 311   // Note that the space for the colon and the trailing null are provided
 312   // by the nulls included by the sizeof operator.
 313   const size_t bufsize =
 314     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 315          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 316   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 317 
 318   // sysclasspath, java_home, dll_dir
 319   {
 320     char *pslash;
 321     os::jvm_path(buf, bufsize);
 322 
 323     // Found the full path to libjvm.so.
 324     // Now cut the path to <java_home>/jre if we can.
 325     pslash = strrchr(buf, '/');
 326     if (pslash != NULL) {
 327       *pslash = '\0';            // Get rid of /libjvm.so.
 328     }
 329     pslash = strrchr(buf, '/');
 330     if (pslash != NULL) {
 331       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 332     }
 333     Arguments::set_dll_dir(buf);
 334 
 335     if (pslash != NULL) {
 336       pslash = strrchr(buf, '/');
 337       if (pslash != NULL) {
 338         *pslash = '\0';          // Get rid of /<arch>.
 339         pslash = strrchr(buf, '/');
 340         if (pslash != NULL) {
 341           *pslash = '\0';        // Get rid of /lib.
 342         }
 343       }
 344     }
 345     Arguments::set_java_home(buf);
 346     set_boot_path('/', ':');
 347   }
 348 
 349   // Where to look for native libraries.
 350   //
 351   // Note: Due to a legacy implementation, most of the library path
 352   // is set in the launcher. This was to accomodate linking restrictions
 353   // on legacy Linux implementations (which are no longer supported).
 354   // Eventually, all the library path setting will be done here.
 355   //
 356   // However, to prevent the proliferation of improperly built native
 357   // libraries, the new path component /usr/java/packages is added here.
 358   // Eventually, all the library path setting will be done here.
 359   {
 360     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 361     // should always exist (until the legacy problem cited above is
 362     // addressed).
 363     const char *v = ::getenv("LD_LIBRARY_PATH");
 364     const char *v_colon = ":";
 365     if (v == NULL) { v = ""; v_colon = ""; }
 366     // That's +1 for the colon and +1 for the trailing '\0'.
 367     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 368                                                      strlen(v) + 1 +
 369                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 370                                                      mtInternal);
 371     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 372     Arguments::set_library_path(ld_library_path);
 373     FREE_C_HEAP_ARRAY(char, ld_library_path);
 374   }
 375 
 376   // Extensions directories.
 377   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 378   Arguments::set_ext_dirs(buf);
 379 
 380   FREE_C_HEAP_ARRAY(char, buf);
 381 
 382 #undef DEFAULT_LIBPATH
 383 #undef SYS_EXT_DIR
 384 #undef EXTENSIONS_DIR
 385 }
 386 
 387 ////////////////////////////////////////////////////////////////////////////////
 388 // breakpoint support
 389 
 390 void os::breakpoint() {
 391   BREAKPOINT;
 392 }
 393 
 394 extern "C" void breakpoint() {
 395   // use debugger to set breakpoint here
 396 }
 397 
 398 ////////////////////////////////////////////////////////////////////////////////
 399 // signal support
 400 
 401 debug_only(static bool signal_sets_initialized = false);
 402 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 403 
 404 bool os::Linux::is_sig_ignored(int sig) {
 405   struct sigaction oact;
 406   sigaction(sig, (struct sigaction*)NULL, &oact);
 407   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 408                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 409   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 410     return true;
 411   } else {
 412     return false;
 413   }
 414 }
 415 
 416 void os::Linux::signal_sets_init() {
 417   // Should also have an assertion stating we are still single-threaded.
 418   assert(!signal_sets_initialized, "Already initialized");
 419   // Fill in signals that are necessarily unblocked for all threads in
 420   // the VM. Currently, we unblock the following signals:
 421   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 422   //                         by -Xrs (=ReduceSignalUsage));
 423   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 424   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 425   // the dispositions or masks wrt these signals.
 426   // Programs embedding the VM that want to use the above signals for their
 427   // own purposes must, at this time, use the "-Xrs" option to prevent
 428   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 429   // (See bug 4345157, and other related bugs).
 430   // In reality, though, unblocking these signals is really a nop, since
 431   // these signals are not blocked by default.
 432   sigemptyset(&unblocked_sigs);
 433   sigemptyset(&allowdebug_blocked_sigs);
 434   sigaddset(&unblocked_sigs, SIGILL);
 435   sigaddset(&unblocked_sigs, SIGSEGV);
 436   sigaddset(&unblocked_sigs, SIGBUS);
 437   sigaddset(&unblocked_sigs, SIGFPE);
 438 #if defined(PPC64)
 439   sigaddset(&unblocked_sigs, SIGTRAP);
 440 #endif
 441   sigaddset(&unblocked_sigs, SR_signum);
 442 
 443   if (!ReduceSignalUsage) {
 444     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 445       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 447     }
 448     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 449       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 450       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 451     }
 452     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 453       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 454       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 455     }
 456   }
 457   // Fill in signals that are blocked by all but the VM thread.
 458   sigemptyset(&vm_sigs);
 459   if (!ReduceSignalUsage) {
 460     sigaddset(&vm_sigs, BREAK_SIGNAL);
 461   }
 462   debug_only(signal_sets_initialized = true);
 463 
 464 }
 465 
 466 // These are signals that are unblocked while a thread is running Java.
 467 // (For some reason, they get blocked by default.)
 468 sigset_t* os::Linux::unblocked_signals() {
 469   assert(signal_sets_initialized, "Not initialized");
 470   return &unblocked_sigs;
 471 }
 472 
 473 // These are the signals that are blocked while a (non-VM) thread is
 474 // running Java. Only the VM thread handles these signals.
 475 sigset_t* os::Linux::vm_signals() {
 476   assert(signal_sets_initialized, "Not initialized");
 477   return &vm_sigs;
 478 }
 479 
 480 // These are signals that are blocked during cond_wait to allow debugger in
 481 sigset_t* os::Linux::allowdebug_blocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &allowdebug_blocked_sigs;
 484 }
 485 
 486 void os::Linux::hotspot_sigmask(Thread* thread) {
 487 
 488   //Save caller's signal mask before setting VM signal mask
 489   sigset_t caller_sigmask;
 490   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 491 
 492   OSThread* osthread = thread->osthread();
 493   osthread->set_caller_sigmask(caller_sigmask);
 494 
 495   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 496 
 497   if (!ReduceSignalUsage) {
 498     if (thread->is_VM_thread()) {
 499       // Only the VM thread handles BREAK_SIGNAL ...
 500       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 501     } else {
 502       // ... all other threads block BREAK_SIGNAL
 503       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 504     }
 505   }
 506 }
 507 
 508 //////////////////////////////////////////////////////////////////////////////
 509 // detecting pthread library
 510 
 511 void os::Linux::libpthread_init() {
 512   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 513   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 514   // generic name for earlier versions.
 515   // Define macros here so we can build HotSpot on old systems.
 516 #ifndef _CS_GNU_LIBC_VERSION
 517   #define _CS_GNU_LIBC_VERSION 2
 518 #endif
 519 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 520   #define _CS_GNU_LIBPTHREAD_VERSION 3
 521 #endif
 522 
 523   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 524   if (n > 0) {
 525     char *str = (char *)malloc(n, mtInternal);
 526     confstr(_CS_GNU_LIBC_VERSION, str, n);
 527     os::Linux::set_glibc_version(str);
 528   } else {
 529     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 530     static char _gnu_libc_version[32];
 531     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 532                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 533     os::Linux::set_glibc_version(_gnu_libc_version);
 534   }
 535 
 536   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 537   if (n > 0) {
 538     char *str = (char *)malloc(n, mtInternal);
 539     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 540     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 541     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 542     // is the case. LinuxThreads has a hard limit on max number of threads.
 543     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 544     // On the other hand, NPTL does not have such a limit, sysconf()
 545     // will return -1 and errno is not changed. Check if it is really NPTL.
 546     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 547         strstr(str, "NPTL") &&
 548         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 549       free(str);
 550       os::Linux::set_libpthread_version("linuxthreads");
 551     } else {
 552       os::Linux::set_libpthread_version(str);
 553     }
 554   } else {
 555     // glibc before 2.3.2 only has LinuxThreads.
 556     os::Linux::set_libpthread_version("linuxthreads");
 557   }
 558 
 559   if (strstr(libpthread_version(), "NPTL")) {
 560     os::Linux::set_is_NPTL();
 561   } else {
 562     os::Linux::set_is_LinuxThreads();
 563   }
 564 
 565   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 566   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 567   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 568     os::Linux::set_is_floating_stack();
 569   }
 570 }
 571 
 572 /////////////////////////////////////////////////////////////////////////////
 573 // thread stack
 574 
 575 // Force Linux kernel to expand current thread stack. If "bottom" is close
 576 // to the stack guard, caller should block all signals.
 577 //
 578 // MAP_GROWSDOWN:
 579 //   A special mmap() flag that is used to implement thread stacks. It tells
 580 //   kernel that the memory region should extend downwards when needed. This
 581 //   allows early versions of LinuxThreads to only mmap the first few pages
 582 //   when creating a new thread. Linux kernel will automatically expand thread
 583 //   stack as needed (on page faults).
 584 //
 585 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 586 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 587 //   region, it's hard to tell if the fault is due to a legitimate stack
 588 //   access or because of reading/writing non-exist memory (e.g. buffer
 589 //   overrun). As a rule, if the fault happens below current stack pointer,
 590 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 591 //   application (see Linux kernel fault.c).
 592 //
 593 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 594 //   stack overflow detection.
 595 //
 596 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 597 //   not use this flag. However, the stack of initial thread is not created
 598 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 599 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 600 //   and then attach the thread to JVM.
 601 //
 602 // To get around the problem and allow stack banging on Linux, we need to
 603 // manually expand thread stack after receiving the SIGSEGV.
 604 //
 605 // There are two ways to expand thread stack to address "bottom", we used
 606 // both of them in JVM before 1.5:
 607 //   1. adjust stack pointer first so that it is below "bottom", and then
 608 //      touch "bottom"
 609 //   2. mmap() the page in question
 610 //
 611 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 612 // if current sp is already near the lower end of page 101, and we need to
 613 // call mmap() to map page 100, it is possible that part of the mmap() frame
 614 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 615 // That will destroy the mmap() frame and cause VM to crash.
 616 //
 617 // The following code works by adjusting sp first, then accessing the "bottom"
 618 // page to force a page fault. Linux kernel will then automatically expand the
 619 // stack mapping.
 620 //
 621 // _expand_stack_to() assumes its frame size is less than page size, which
 622 // should always be true if the function is not inlined.
 623 
 624 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 625   #define NOINLINE
 626 #else
 627   #define NOINLINE __attribute__ ((noinline))
 628 #endif
 629 
 630 static void _expand_stack_to(address bottom) NOINLINE;
 631 
 632 static void _expand_stack_to(address bottom) {
 633   address sp;
 634   size_t size;
 635   volatile char *p;
 636 
 637   // Adjust bottom to point to the largest address within the same page, it
 638   // gives us a one-page buffer if alloca() allocates slightly more memory.
 639   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 640   bottom += os::Linux::page_size() - 1;
 641 
 642   // sp might be slightly above current stack pointer; if that's the case, we
 643   // will alloca() a little more space than necessary, which is OK. Don't use
 644   // os::current_stack_pointer(), as its result can be slightly below current
 645   // stack pointer, causing us to not alloca enough to reach "bottom".
 646   sp = (address)&sp;
 647 
 648   if (sp > bottom) {
 649     size = sp - bottom;
 650     p = (volatile char *)alloca(size);
 651     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 652     p[0] = '\0';
 653   }
 654 }
 655 
 656 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 657   assert(t!=NULL, "just checking");
 658   assert(t->osthread()->expanding_stack(), "expand should be set");
 659   assert(t->stack_base() != NULL, "stack_base was not initialized");
 660 
 661   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 662     sigset_t mask_all, old_sigset;
 663     sigfillset(&mask_all);
 664     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 665     _expand_stack_to(addr);
 666     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 667     return true;
 668   }
 669   return false;
 670 }
 671 
 672 //////////////////////////////////////////////////////////////////////////////
 673 // create new thread
 674 
 675 static address highest_vm_reserved_address();
 676 
 677 // check if it's safe to start a new thread
 678 static bool _thread_safety_check(Thread* thread) {
 679   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 680     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 681     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 682     //   allocated (MAP_FIXED) from high address space. Every thread stack
 683     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 684     //   it to other values if they rebuild LinuxThreads).
 685     //
 686     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 687     // the memory region has already been mmap'ed. That means if we have too
 688     // many threads and/or very large heap, eventually thread stack will
 689     // collide with heap.
 690     //
 691     // Here we try to prevent heap/stack collision by comparing current
 692     // stack bottom with the highest address that has been mmap'ed by JVM
 693     // plus a safety margin for memory maps created by native code.
 694     //
 695     // This feature can be disabled by setting ThreadSafetyMargin to 0
 696     //
 697     if (ThreadSafetyMargin > 0) {
 698       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 699 
 700       // not safe if our stack extends below the safety margin
 701       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 702     } else {
 703       return true;
 704     }
 705   } else {
 706     // Floating stack LinuxThreads or NPTL:
 707     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 708     //   there's not enough space left, pthread_create() will fail. If we come
 709     //   here, that means enough space has been reserved for stack.
 710     return true;
 711   }
 712 }
 713 
 714 // Thread start routine for all newly created threads
 715 static void *java_start(Thread *thread) {
 716   // Try to randomize the cache line index of hot stack frames.
 717   // This helps when threads of the same stack traces evict each other's
 718   // cache lines. The threads can be either from the same JVM instance, or
 719   // from different JVM instances. The benefit is especially true for
 720   // processors with hyperthreading technology.
 721   static int counter = 0;
 722   int pid = os::current_process_id();
 723   alloca(((pid ^ counter++) & 7) * 128);
 724 
 725   ThreadLocalStorage::set_thread(thread);
 726 
 727   OSThread* osthread = thread->osthread();
 728   Monitor* sync = osthread->startThread_lock();
 729 
 730   // non floating stack LinuxThreads needs extra check, see above
 731   if (!_thread_safety_check(thread)) {
 732     // notify parent thread
 733     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 734     osthread->set_state(ZOMBIE);
 735     sync->notify_all();
 736     return NULL;
 737   }
 738 
 739   // thread_id is kernel thread id (similar to Solaris LWP id)
 740   osthread->set_thread_id(os::Linux::gettid());
 741 
 742   if (UseNUMA) {
 743     int lgrp_id = os::numa_get_group_id();
 744     if (lgrp_id != -1) {
 745       thread->set_lgrp_id(lgrp_id);
 746     }
 747   }
 748   // initialize signal mask for this thread
 749   os::Linux::hotspot_sigmask(thread);
 750 
 751   // initialize floating point control register
 752   os::Linux::init_thread_fpu_state();
 753 
 754   // handshaking with parent thread
 755   {
 756     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 757 
 758     // notify parent thread
 759     osthread->set_state(INITIALIZED);
 760     sync->notify_all();
 761 
 762     // wait until os::start_thread()
 763     while (osthread->get_state() == INITIALIZED) {
 764       sync->wait(Mutex::_no_safepoint_check_flag);
 765     }
 766   }
 767 
 768   // call one more level start routine
 769   thread->run();
 770 
 771   return 0;
 772 }
 773 
 774 bool os::create_thread(Thread* thread, ThreadType thr_type,
 775                        size_t stack_size) {
 776   assert(thread->osthread() == NULL, "caller responsible");
 777 
 778   // Allocate the OSThread object
 779   OSThread* osthread = new OSThread(NULL, NULL);
 780   if (osthread == NULL) {
 781     return false;
 782   }
 783 
 784   // set the correct thread state
 785   osthread->set_thread_type(thr_type);
 786 
 787   // Initial state is ALLOCATED but not INITIALIZED
 788   osthread->set_state(ALLOCATED);
 789 
 790   thread->set_osthread(osthread);
 791 
 792   // init thread attributes
 793   pthread_attr_t attr;
 794   pthread_attr_init(&attr);
 795   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 796 
 797   // stack size
 798   if (os::Linux::supports_variable_stack_size()) {
 799     // calculate stack size if it's not specified by caller
 800     if (stack_size == 0) {
 801       stack_size = os::Linux::default_stack_size(thr_type);
 802 
 803       switch (thr_type) {
 804       case os::java_thread:
 805         // Java threads use ThreadStackSize which default value can be
 806         // changed with the flag -Xss
 807         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 808         stack_size = JavaThread::stack_size_at_create();
 809         break;
 810       case os::compiler_thread:
 811         if (CompilerThreadStackSize > 0) {
 812           stack_size = (size_t)(CompilerThreadStackSize * K);
 813           break;
 814         } // else fall through:
 815           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 816       case os::vm_thread:
 817       case os::pgc_thread:
 818       case os::cgc_thread:
 819       case os::watcher_thread:
 820         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 821         break;
 822       }
 823     }
 824 
 825     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 826     pthread_attr_setstacksize(&attr, stack_size);
 827   } else {
 828     // let pthread_create() pick the default value.
 829   }
 830 
 831   // glibc guard page
 832   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 833 
 834   ThreadState state;
 835 
 836   {
 837     // Serialize thread creation if we are running with fixed stack LinuxThreads
 838     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 839     if (lock) {
 840       os::Linux::createThread_lock()->lock_without_safepoint_check();
 841     }
 842 
 843     pthread_t tid;
 844     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 845 
 846     pthread_attr_destroy(&attr);
 847 
 848     if (ret != 0) {
 849       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 850         perror("pthread_create()");
 851       }
 852       // Need to clean up stuff we've allocated so far
 853       thread->set_osthread(NULL);
 854       delete osthread;
 855       if (lock) os::Linux::createThread_lock()->unlock();
 856       return false;
 857     }
 858 
 859     // Store pthread info into the OSThread
 860     osthread->set_pthread_id(tid);
 861 
 862     // Wait until child thread is either initialized or aborted
 863     {
 864       Monitor* sync_with_child = osthread->startThread_lock();
 865       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 866       while ((state = osthread->get_state()) == ALLOCATED) {
 867         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 868       }
 869     }
 870 
 871     if (lock) {
 872       os::Linux::createThread_lock()->unlock();
 873     }
 874   }
 875 
 876   // Aborted due to thread limit being reached
 877   if (state == ZOMBIE) {
 878     thread->set_osthread(NULL);
 879     delete osthread;
 880     return false;
 881   }
 882 
 883   // The thread is returned suspended (in state INITIALIZED),
 884   // and is started higher up in the call chain
 885   assert(state == INITIALIZED, "race condition");
 886   return true;
 887 }
 888 
 889 /////////////////////////////////////////////////////////////////////////////
 890 // attach existing thread
 891 
 892 // bootstrap the main thread
 893 bool os::create_main_thread(JavaThread* thread) {
 894   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 895   return create_attached_thread(thread);
 896 }
 897 
 898 bool os::create_attached_thread(JavaThread* thread) {
 899 #ifdef ASSERT
 900   thread->verify_not_published();
 901 #endif
 902 
 903   // Allocate the OSThread object
 904   OSThread* osthread = new OSThread(NULL, NULL);
 905 
 906   if (osthread == NULL) {
 907     return false;
 908   }
 909 
 910   // Store pthread info into the OSThread
 911   osthread->set_thread_id(os::Linux::gettid());
 912   osthread->set_pthread_id(::pthread_self());
 913 
 914   // initialize floating point control register
 915   os::Linux::init_thread_fpu_state();
 916 
 917   // Initial thread state is RUNNABLE
 918   osthread->set_state(RUNNABLE);
 919 
 920   thread->set_osthread(osthread);
 921 
 922   if (UseNUMA) {
 923     int lgrp_id = os::numa_get_group_id();
 924     if (lgrp_id != -1) {
 925       thread->set_lgrp_id(lgrp_id);
 926     }
 927   }
 928 
 929   if (os::Linux::is_initial_thread()) {
 930     // If current thread is initial thread, its stack is mapped on demand,
 931     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 932     // the entire stack region to avoid SEGV in stack banging.
 933     // It is also useful to get around the heap-stack-gap problem on SuSE
 934     // kernel (see 4821821 for details). We first expand stack to the top
 935     // of yellow zone, then enable stack yellow zone (order is significant,
 936     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 937     // is no gap between the last two virtual memory regions.
 938 
 939     JavaThread *jt = (JavaThread *)thread;
 940     address addr = jt->stack_yellow_zone_base();
 941     assert(addr != NULL, "initialization problem?");
 942     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 943 
 944     osthread->set_expanding_stack();
 945     os::Linux::manually_expand_stack(jt, addr);
 946     osthread->clear_expanding_stack();
 947   }
 948 
 949   // initialize signal mask for this thread
 950   // and save the caller's signal mask
 951   os::Linux::hotspot_sigmask(thread);
 952 
 953   return true;
 954 }
 955 
 956 void os::pd_start_thread(Thread* thread) {
 957   OSThread * osthread = thread->osthread();
 958   assert(osthread->get_state() != INITIALIZED, "just checking");
 959   Monitor* sync_with_child = osthread->startThread_lock();
 960   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 961   sync_with_child->notify();
 962 }
 963 
 964 // Free Linux resources related to the OSThread
 965 void os::free_thread(OSThread* osthread) {
 966   assert(osthread != NULL, "osthread not set");
 967 
 968   if (Thread::current()->osthread() == osthread) {
 969     // Restore caller's signal mask
 970     sigset_t sigmask = osthread->caller_sigmask();
 971     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 972   }
 973 
 974   delete osthread;
 975 }
 976 
 977 //////////////////////////////////////////////////////////////////////////////
 978 // thread local storage
 979 
 980 // Restore the thread pointer if the destructor is called. This is in case
 981 // someone from JNI code sets up a destructor with pthread_key_create to run
 982 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 983 // will hang or crash. When detachCurrentThread is called the key will be set
 984 // to null and we will not be called again. If detachCurrentThread is never
 985 // called we could loop forever depending on the pthread implementation.
 986 static void restore_thread_pointer(void* p) {
 987   Thread* thread = (Thread*) p;
 988   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 989 }
 990 
 991 int os::allocate_thread_local_storage() {
 992   pthread_key_t key;
 993   int rslt = pthread_key_create(&key, restore_thread_pointer);
 994   assert(rslt == 0, "cannot allocate thread local storage");
 995   return (int)key;
 996 }
 997 
 998 // Note: This is currently not used by VM, as we don't destroy TLS key
 999 // on VM exit.
1000 void os::free_thread_local_storage(int index) {
1001   int rslt = pthread_key_delete((pthread_key_t)index);
1002   assert(rslt == 0, "invalid index");
1003 }
1004 
1005 void os::thread_local_storage_at_put(int index, void* value) {
1006   int rslt = pthread_setspecific((pthread_key_t)index, value);
1007   assert(rslt == 0, "pthread_setspecific failed");
1008 }
1009 
1010 extern "C" Thread* get_thread() {
1011   return ThreadLocalStorage::thread();
1012 }
1013 
1014 //////////////////////////////////////////////////////////////////////////////
1015 // initial thread
1016 
1017 // Check if current thread is the initial thread, similar to Solaris thr_main.
1018 bool os::Linux::is_initial_thread(void) {
1019   char dummy;
1020   // If called before init complete, thread stack bottom will be null.
1021   // Can be called if fatal error occurs before initialization.
1022   if (initial_thread_stack_bottom() == NULL) return false;
1023   assert(initial_thread_stack_bottom() != NULL &&
1024          initial_thread_stack_size()   != 0,
1025          "os::init did not locate initial thread's stack region");
1026   if ((address)&dummy >= initial_thread_stack_bottom() &&
1027       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1028     return true;
1029   } else {
1030     return false;
1031   }
1032 }
1033 
1034 // Find the virtual memory area that contains addr
1035 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1036   FILE *fp = fopen("/proc/self/maps", "r");
1037   if (fp) {
1038     address low, high;
1039     while (!feof(fp)) {
1040       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1041         if (low <= addr && addr < high) {
1042           if (vma_low)  *vma_low  = low;
1043           if (vma_high) *vma_high = high;
1044           fclose(fp);
1045           return true;
1046         }
1047       }
1048       for (;;) {
1049         int ch = fgetc(fp);
1050         if (ch == EOF || ch == (int)'\n') break;
1051       }
1052     }
1053     fclose(fp);
1054   }
1055   return false;
1056 }
1057 
1058 // Locate initial thread stack. This special handling of initial thread stack
1059 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1060 // bogus value for initial thread.
1061 void os::Linux::capture_initial_stack(size_t max_size) {
1062   // stack size is the easy part, get it from RLIMIT_STACK
1063   size_t stack_size;
1064   struct rlimit rlim;
1065   getrlimit(RLIMIT_STACK, &rlim);
1066   stack_size = rlim.rlim_cur;
1067 
1068   // 6308388: a bug in ld.so will relocate its own .data section to the
1069   //   lower end of primordial stack; reduce ulimit -s value a little bit
1070   //   so we won't install guard page on ld.so's data section.
1071   stack_size -= 2 * page_size();
1072 
1073   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1074   //   7.1, in both cases we will get 2G in return value.
1075   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1076   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1077   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1078   //   in case other parts in glibc still assumes 2M max stack size.
1079   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1080   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1081   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1082     stack_size = 2 * K * K IA64_ONLY(*2);
1083   }
1084   // Try to figure out where the stack base (top) is. This is harder.
1085   //
1086   // When an application is started, glibc saves the initial stack pointer in
1087   // a global variable "__libc_stack_end", which is then used by system
1088   // libraries. __libc_stack_end should be pretty close to stack top. The
1089   // variable is available since the very early days. However, because it is
1090   // a private interface, it could disappear in the future.
1091   //
1092   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1093   // to __libc_stack_end, it is very close to stack top, but isn't the real
1094   // stack top. Note that /proc may not exist if VM is running as a chroot
1095   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1096   // /proc/<pid>/stat could change in the future (though unlikely).
1097   //
1098   // We try __libc_stack_end first. If that doesn't work, look for
1099   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1100   // as a hint, which should work well in most cases.
1101 
1102   uintptr_t stack_start;
1103 
1104   // try __libc_stack_end first
1105   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1106   if (p && *p) {
1107     stack_start = *p;
1108   } else {
1109     // see if we can get the start_stack field from /proc/self/stat
1110     FILE *fp;
1111     int pid;
1112     char state;
1113     int ppid;
1114     int pgrp;
1115     int session;
1116     int nr;
1117     int tpgrp;
1118     unsigned long flags;
1119     unsigned long minflt;
1120     unsigned long cminflt;
1121     unsigned long majflt;
1122     unsigned long cmajflt;
1123     unsigned long utime;
1124     unsigned long stime;
1125     long cutime;
1126     long cstime;
1127     long prio;
1128     long nice;
1129     long junk;
1130     long it_real;
1131     uintptr_t start;
1132     uintptr_t vsize;
1133     intptr_t rss;
1134     uintptr_t rsslim;
1135     uintptr_t scodes;
1136     uintptr_t ecode;
1137     int i;
1138 
1139     // Figure what the primordial thread stack base is. Code is inspired
1140     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1141     // followed by command name surrounded by parentheses, state, etc.
1142     char stat[2048];
1143     int statlen;
1144 
1145     fp = fopen("/proc/self/stat", "r");
1146     if (fp) {
1147       statlen = fread(stat, 1, 2047, fp);
1148       stat[statlen] = '\0';
1149       fclose(fp);
1150 
1151       // Skip pid and the command string. Note that we could be dealing with
1152       // weird command names, e.g. user could decide to rename java launcher
1153       // to "java 1.4.2 :)", then the stat file would look like
1154       //                1234 (java 1.4.2 :)) R ... ...
1155       // We don't really need to know the command string, just find the last
1156       // occurrence of ")" and then start parsing from there. See bug 4726580.
1157       char * s = strrchr(stat, ')');
1158 
1159       i = 0;
1160       if (s) {
1161         // Skip blank chars
1162         do { s++; } while (s && isspace(*s));
1163 
1164 #define _UFM UINTX_FORMAT
1165 #define _DFM INTX_FORMAT
1166 
1167         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1168         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1169         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1170                    &state,          // 3  %c
1171                    &ppid,           // 4  %d
1172                    &pgrp,           // 5  %d
1173                    &session,        // 6  %d
1174                    &nr,             // 7  %d
1175                    &tpgrp,          // 8  %d
1176                    &flags,          // 9  %lu
1177                    &minflt,         // 10 %lu
1178                    &cminflt,        // 11 %lu
1179                    &majflt,         // 12 %lu
1180                    &cmajflt,        // 13 %lu
1181                    &utime,          // 14 %lu
1182                    &stime,          // 15 %lu
1183                    &cutime,         // 16 %ld
1184                    &cstime,         // 17 %ld
1185                    &prio,           // 18 %ld
1186                    &nice,           // 19 %ld
1187                    &junk,           // 20 %ld
1188                    &it_real,        // 21 %ld
1189                    &start,          // 22 UINTX_FORMAT
1190                    &vsize,          // 23 UINTX_FORMAT
1191                    &rss,            // 24 INTX_FORMAT
1192                    &rsslim,         // 25 UINTX_FORMAT
1193                    &scodes,         // 26 UINTX_FORMAT
1194                    &ecode,          // 27 UINTX_FORMAT
1195                    &stack_start);   // 28 UINTX_FORMAT
1196       }
1197 
1198 #undef _UFM
1199 #undef _DFM
1200 
1201       if (i != 28 - 2) {
1202         assert(false, "Bad conversion from /proc/self/stat");
1203         // product mode - assume we are the initial thread, good luck in the
1204         // embedded case.
1205         warning("Can't detect initial thread stack location - bad conversion");
1206         stack_start = (uintptr_t) &rlim;
1207       }
1208     } else {
1209       // For some reason we can't open /proc/self/stat (for example, running on
1210       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1211       // most cases, so don't abort:
1212       warning("Can't detect initial thread stack location - no /proc/self/stat");
1213       stack_start = (uintptr_t) &rlim;
1214     }
1215   }
1216 
1217   // Now we have a pointer (stack_start) very close to the stack top, the
1218   // next thing to do is to figure out the exact location of stack top. We
1219   // can find out the virtual memory area that contains stack_start by
1220   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1221   // and its upper limit is the real stack top. (again, this would fail if
1222   // running inside chroot, because /proc may not exist.)
1223 
1224   uintptr_t stack_top;
1225   address low, high;
1226   if (find_vma((address)stack_start, &low, &high)) {
1227     // success, "high" is the true stack top. (ignore "low", because initial
1228     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1229     stack_top = (uintptr_t)high;
1230   } else {
1231     // failed, likely because /proc/self/maps does not exist
1232     warning("Can't detect initial thread stack location - find_vma failed");
1233     // best effort: stack_start is normally within a few pages below the real
1234     // stack top, use it as stack top, and reduce stack size so we won't put
1235     // guard page outside stack.
1236     stack_top = stack_start;
1237     stack_size -= 16 * page_size();
1238   }
1239 
1240   // stack_top could be partially down the page so align it
1241   stack_top = align_size_up(stack_top, page_size());
1242 
1243   if (max_size && stack_size > max_size) {
1244     _initial_thread_stack_size = max_size;
1245   } else {
1246     _initial_thread_stack_size = stack_size;
1247   }
1248 
1249   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1250   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1251 }
1252 
1253 ////////////////////////////////////////////////////////////////////////////////
1254 // time support
1255 
1256 // Time since start-up in seconds to a fine granularity.
1257 // Used by VMSelfDestructTimer and the MemProfiler.
1258 double os::elapsedTime() {
1259 
1260   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1261 }
1262 
1263 jlong os::elapsed_counter() {
1264   return javaTimeNanos() - initial_time_count;
1265 }
1266 
1267 jlong os::elapsed_frequency() {
1268   return NANOSECS_PER_SEC; // nanosecond resolution
1269 }
1270 
1271 bool os::supports_vtime() { return true; }
1272 bool os::enable_vtime()   { return false; }
1273 bool os::vtime_enabled()  { return false; }
1274 
1275 double os::elapsedVTime() {
1276   struct rusage usage;
1277   int retval = getrusage(RUSAGE_THREAD, &usage);
1278   if (retval == 0) {
1279     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1280   } else {
1281     // better than nothing, but not much
1282     return elapsedTime();
1283   }
1284 }
1285 
1286 jlong os::javaTimeMillis() {
1287   timeval time;
1288   int status = gettimeofday(&time, NULL);
1289   assert(status != -1, "linux error");
1290   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1291 }
1292 
1293 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1294   timeval time;
1295   int status = gettimeofday(&time, NULL);
1296   assert(status != -1, "linux error");
1297   seconds = jlong(time.tv_sec);
1298   nanos = jlong(time.tv_usec) * 1000;
1299 }
1300 
1301 
1302 #ifndef CLOCK_MONOTONIC
1303   #define CLOCK_MONOTONIC (1)
1304 #endif
1305 
1306 void os::Linux::clock_init() {
1307   // we do dlopen's in this particular order due to bug in linux
1308   // dynamical loader (see 6348968) leading to crash on exit
1309   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1310   if (handle == NULL) {
1311     handle = dlopen("librt.so", RTLD_LAZY);
1312   }
1313 
1314   if (handle) {
1315     int (*clock_getres_func)(clockid_t, struct timespec*) =
1316            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1317     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1319     if (clock_getres_func && clock_gettime_func) {
1320       // See if monotonic clock is supported by the kernel. Note that some
1321       // early implementations simply return kernel jiffies (updated every
1322       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1323       // for nano time (though the monotonic property is still nice to have).
1324       // It's fixed in newer kernels, however clock_getres() still returns
1325       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1326       // resolution for now. Hopefully as people move to new kernels, this
1327       // won't be a problem.
1328       struct timespec res;
1329       struct timespec tp;
1330       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1331           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1332         // yes, monotonic clock is supported
1333         _clock_gettime = clock_gettime_func;
1334         return;
1335       } else {
1336         // close librt if there is no monotonic clock
1337         dlclose(handle);
1338       }
1339     }
1340   }
1341   warning("No monotonic clock was available - timed services may " \
1342           "be adversely affected if the time-of-day clock changes");
1343 }
1344 
1345 #ifndef SYS_clock_getres
1346   #if defined(IA32) || defined(AMD64)
1347     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1348     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1349   #else
1350     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1351     #define sys_clock_getres(x,y)  -1
1352   #endif
1353 #else
1354   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1355 #endif
1356 
1357 void os::Linux::fast_thread_clock_init() {
1358   if (!UseLinuxPosixThreadCPUClocks) {
1359     return;
1360   }
1361   clockid_t clockid;
1362   struct timespec tp;
1363   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1364       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1365 
1366   // Switch to using fast clocks for thread cpu time if
1367   // the sys_clock_getres() returns 0 error code.
1368   // Note, that some kernels may support the current thread
1369   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1370   // returned by the pthread_getcpuclockid().
1371   // If the fast Posix clocks are supported then the sys_clock_getres()
1372   // must return at least tp.tv_sec == 0 which means a resolution
1373   // better than 1 sec. This is extra check for reliability.
1374 
1375   if (pthread_getcpuclockid_func &&
1376       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1377       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1378     _supports_fast_thread_cpu_time = true;
1379     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1380   }
1381 }
1382 
1383 jlong os::javaTimeNanos() {
1384   if (os::supports_monotonic_clock()) {
1385     struct timespec tp;
1386     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1387     assert(status == 0, "gettime error");
1388     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1389     return result;
1390   } else {
1391     timeval time;
1392     int status = gettimeofday(&time, NULL);
1393     assert(status != -1, "linux error");
1394     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1395     return 1000 * usecs;
1396   }
1397 }
1398 
1399 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1400   if (os::supports_monotonic_clock()) {
1401     info_ptr->max_value = ALL_64_BITS;
1402 
1403     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1404     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1405     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1406   } else {
1407     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1408     info_ptr->max_value = ALL_64_BITS;
1409 
1410     // gettimeofday is a real time clock so it skips
1411     info_ptr->may_skip_backward = true;
1412     info_ptr->may_skip_forward = true;
1413   }
1414 
1415   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1416 }
1417 
1418 // Return the real, user, and system times in seconds from an
1419 // arbitrary fixed point in the past.
1420 bool os::getTimesSecs(double* process_real_time,
1421                       double* process_user_time,
1422                       double* process_system_time) {
1423   struct tms ticks;
1424   clock_t real_ticks = times(&ticks);
1425 
1426   if (real_ticks == (clock_t) (-1)) {
1427     return false;
1428   } else {
1429     double ticks_per_second = (double) clock_tics_per_sec;
1430     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1431     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1432     *process_real_time = ((double) real_ticks) / ticks_per_second;
1433 
1434     return true;
1435   }
1436 }
1437 
1438 
1439 char * os::local_time_string(char *buf, size_t buflen) {
1440   struct tm t;
1441   time_t long_time;
1442   time(&long_time);
1443   localtime_r(&long_time, &t);
1444   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1445                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1446                t.tm_hour, t.tm_min, t.tm_sec);
1447   return buf;
1448 }
1449 
1450 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1451   return localtime_r(clock, res);
1452 }
1453 
1454 ////////////////////////////////////////////////////////////////////////////////
1455 // runtime exit support
1456 
1457 // Note: os::shutdown() might be called very early during initialization, or
1458 // called from signal handler. Before adding something to os::shutdown(), make
1459 // sure it is async-safe and can handle partially initialized VM.
1460 void os::shutdown() {
1461 
1462   // allow PerfMemory to attempt cleanup of any persistent resources
1463   perfMemory_exit();
1464 
1465   // needs to remove object in file system
1466   AttachListener::abort();
1467 
1468   // flush buffered output, finish log files
1469   ostream_abort();
1470 
1471   // Check for abort hook
1472   abort_hook_t abort_hook = Arguments::abort_hook();
1473   if (abort_hook != NULL) {
1474     abort_hook();
1475   }
1476 
1477 }
1478 
1479 // Note: os::abort() might be called very early during initialization, or
1480 // called from signal handler. Before adding something to os::abort(), make
1481 // sure it is async-safe and can handle partially initialized VM.
1482 void os::abort(bool dump_core) {
1483   abort(dump_core, NULL, NULL);
1484 }
1485 
1486 void os::abort(bool dump_core, void* siginfo, void* context) {
1487   os::shutdown();
1488   if (dump_core) {
1489 #ifndef PRODUCT
1490     fdStream out(defaultStream::output_fd());
1491     out.print_raw("Current thread is ");
1492     char buf[16];
1493     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1494     out.print_raw_cr(buf);
1495     out.print_raw_cr("Dumping core ...");
1496 #endif
1497     ::abort(); // dump core
1498   }
1499 
1500   ::exit(1);
1501 }
1502 
1503 // Die immediately, no exit hook, no abort hook, no cleanup.
1504 void os::die() {
1505   // _exit() on LinuxThreads only kills current thread
1506   ::abort();
1507 }
1508 
1509 
1510 // This method is a copy of JDK's sysGetLastErrorString
1511 // from src/solaris/hpi/src/system_md.c
1512 
1513 size_t os::lasterror(char *buf, size_t len) {
1514   if (errno == 0)  return 0;
1515 
1516   const char *s = ::strerror(errno);
1517   size_t n = ::strlen(s);
1518   if (n >= len) {
1519     n = len - 1;
1520   }
1521   ::strncpy(buf, s, n);
1522   buf[n] = '\0';
1523   return n;
1524 }
1525 
1526 intx os::current_thread_id() { return (intx)pthread_self(); }
1527 int os::current_process_id() {
1528 
1529   // Under the old linux thread library, linux gives each thread
1530   // its own process id. Because of this each thread will return
1531   // a different pid if this method were to return the result
1532   // of getpid(2). Linux provides no api that returns the pid
1533   // of the launcher thread for the vm. This implementation
1534   // returns a unique pid, the pid of the launcher thread
1535   // that starts the vm 'process'.
1536 
1537   // Under the NPTL, getpid() returns the same pid as the
1538   // launcher thread rather than a unique pid per thread.
1539   // Use gettid() if you want the old pre NPTL behaviour.
1540 
1541   // if you are looking for the result of a call to getpid() that
1542   // returns a unique pid for the calling thread, then look at the
1543   // OSThread::thread_id() method in osThread_linux.hpp file
1544 
1545   return (int)(_initial_pid ? _initial_pid : getpid());
1546 }
1547 
1548 // DLL functions
1549 
1550 const char* os::dll_file_extension() { return ".so"; }
1551 
1552 // This must be hard coded because it's the system's temporary
1553 // directory not the java application's temp directory, ala java.io.tmpdir.
1554 const char* os::get_temp_directory() { return "/tmp"; }
1555 
1556 static bool file_exists(const char* filename) {
1557   struct stat statbuf;
1558   if (filename == NULL || strlen(filename) == 0) {
1559     return false;
1560   }
1561   return os::stat(filename, &statbuf) == 0;
1562 }
1563 
1564 bool os::dll_build_name(char* buffer, size_t buflen,
1565                         const char* pname, const char* fname) {
1566   bool retval = false;
1567   // Copied from libhpi
1568   const size_t pnamelen = pname ? strlen(pname) : 0;
1569 
1570   // Return error on buffer overflow.
1571   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1572     return retval;
1573   }
1574 
1575   if (pnamelen == 0) {
1576     snprintf(buffer, buflen, "lib%s.so", fname);
1577     retval = true;
1578   } else if (strchr(pname, *os::path_separator()) != NULL) {
1579     int n;
1580     char** pelements = split_path(pname, &n);
1581     if (pelements == NULL) {
1582       return false;
1583     }
1584     for (int i = 0; i < n; i++) {
1585       // Really shouldn't be NULL, but check can't hurt
1586       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1587         continue; // skip the empty path values
1588       }
1589       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1590       if (file_exists(buffer)) {
1591         retval = true;
1592         break;
1593       }
1594     }
1595     // release the storage
1596     for (int i = 0; i < n; i++) {
1597       if (pelements[i] != NULL) {
1598         FREE_C_HEAP_ARRAY(char, pelements[i]);
1599       }
1600     }
1601     if (pelements != NULL) {
1602       FREE_C_HEAP_ARRAY(char*, pelements);
1603     }
1604   } else {
1605     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1606     retval = true;
1607   }
1608   return retval;
1609 }
1610 
1611 // check if addr is inside libjvm.so
1612 bool os::address_is_in_vm(address addr) {
1613   static address libjvm_base_addr;
1614   Dl_info dlinfo;
1615 
1616   if (libjvm_base_addr == NULL) {
1617     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1618       libjvm_base_addr = (address)dlinfo.dli_fbase;
1619     }
1620     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1621   }
1622 
1623   if (dladdr((void *)addr, &dlinfo) != 0) {
1624     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 bool os::dll_address_to_function_name(address addr, char *buf,
1631                                       int buflen, int *offset) {
1632   // buf is not optional, but offset is optional
1633   assert(buf != NULL, "sanity check");
1634 
1635   Dl_info dlinfo;
1636 
1637   if (dladdr((void*)addr, &dlinfo) != 0) {
1638     // see if we have a matching symbol
1639     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1640       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1641         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1642       }
1643       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1644       return true;
1645     }
1646     // no matching symbol so try for just file info
1647     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1648       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1649                           buf, buflen, offset, dlinfo.dli_fname)) {
1650         return true;
1651       }
1652     }
1653   }
1654 
1655   buf[0] = '\0';
1656   if (offset != NULL) *offset = -1;
1657   return false;
1658 }
1659 
1660 struct _address_to_library_name {
1661   address addr;          // input : memory address
1662   size_t  buflen;        //         size of fname
1663   char*   fname;         // output: library name
1664   address base;          //         library base addr
1665 };
1666 
1667 static int address_to_library_name_callback(struct dl_phdr_info *info,
1668                                             size_t size, void *data) {
1669   int i;
1670   bool found = false;
1671   address libbase = NULL;
1672   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1673 
1674   // iterate through all loadable segments
1675   for (i = 0; i < info->dlpi_phnum; i++) {
1676     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1677     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1678       // base address of a library is the lowest address of its loaded
1679       // segments.
1680       if (libbase == NULL || libbase > segbase) {
1681         libbase = segbase;
1682       }
1683       // see if 'addr' is within current segment
1684       if (segbase <= d->addr &&
1685           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1686         found = true;
1687       }
1688     }
1689   }
1690 
1691   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1692   // so dll_address_to_library_name() can fall through to use dladdr() which
1693   // can figure out executable name from argv[0].
1694   if (found && info->dlpi_name && info->dlpi_name[0]) {
1695     d->base = libbase;
1696     if (d->fname) {
1697       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1698     }
1699     return 1;
1700   }
1701   return 0;
1702 }
1703 
1704 bool os::dll_address_to_library_name(address addr, char* buf,
1705                                      int buflen, int* offset) {
1706   // buf is not optional, but offset is optional
1707   assert(buf != NULL, "sanity check");
1708 
1709   Dl_info dlinfo;
1710   struct _address_to_library_name data;
1711 
1712   // There is a bug in old glibc dladdr() implementation that it could resolve
1713   // to wrong library name if the .so file has a base address != NULL. Here
1714   // we iterate through the program headers of all loaded libraries to find
1715   // out which library 'addr' really belongs to. This workaround can be
1716   // removed once the minimum requirement for glibc is moved to 2.3.x.
1717   data.addr = addr;
1718   data.fname = buf;
1719   data.buflen = buflen;
1720   data.base = NULL;
1721   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1722 
1723   if (rslt) {
1724     // buf already contains library name
1725     if (offset) *offset = addr - data.base;
1726     return true;
1727   }
1728   if (dladdr((void*)addr, &dlinfo) != 0) {
1729     if (dlinfo.dli_fname != NULL) {
1730       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1731     }
1732     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1733       *offset = addr - (address)dlinfo.dli_fbase;
1734     }
1735     return true;
1736   }
1737 
1738   buf[0] = '\0';
1739   if (offset) *offset = -1;
1740   return false;
1741 }
1742 
1743 // Loads .dll/.so and
1744 // in case of error it checks if .dll/.so was built for the
1745 // same architecture as Hotspot is running on
1746 
1747 
1748 // Remember the stack's state. The Linux dynamic linker will change
1749 // the stack to 'executable' at most once, so we must safepoint only once.
1750 bool os::Linux::_stack_is_executable = false;
1751 
1752 // VM operation that loads a library.  This is necessary if stack protection
1753 // of the Java stacks can be lost during loading the library.  If we
1754 // do not stop the Java threads, they can stack overflow before the stacks
1755 // are protected again.
1756 class VM_LinuxDllLoad: public VM_Operation {
1757  private:
1758   const char *_filename;
1759   char *_ebuf;
1760   int _ebuflen;
1761   void *_lib;
1762  public:
1763   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1764     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1765   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1766   void doit() {
1767     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1768     os::Linux::_stack_is_executable = true;
1769   }
1770   void* loaded_library() { return _lib; }
1771 };
1772 
1773 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1774   void * result = NULL;
1775   bool load_attempted = false;
1776 
1777   // Check whether the library to load might change execution rights
1778   // of the stack. If they are changed, the protection of the stack
1779   // guard pages will be lost. We need a safepoint to fix this.
1780   //
1781   // See Linux man page execstack(8) for more info.
1782   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1783     ElfFile ef(filename);
1784     if (!ef.specifies_noexecstack()) {
1785       if (!is_init_completed()) {
1786         os::Linux::_stack_is_executable = true;
1787         // This is OK - No Java threads have been created yet, and hence no
1788         // stack guard pages to fix.
1789         //
1790         // This should happen only when you are building JDK7 using a very
1791         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1792         //
1793         // Dynamic loader will make all stacks executable after
1794         // this function returns, and will not do that again.
1795         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1796       } else {
1797         warning("You have loaded library %s which might have disabled stack guard. "
1798                 "The VM will try to fix the stack guard now.\n"
1799                 "It's highly recommended that you fix the library with "
1800                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1801                 filename);
1802 
1803         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1804         JavaThread *jt = JavaThread::current();
1805         if (jt->thread_state() != _thread_in_native) {
1806           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1807           // that requires ExecStack. Cannot enter safe point. Let's give up.
1808           warning("Unable to fix stack guard. Giving up.");
1809         } else {
1810           if (!LoadExecStackDllInVMThread) {
1811             // This is for the case where the DLL has an static
1812             // constructor function that executes JNI code. We cannot
1813             // load such DLLs in the VMThread.
1814             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1815           }
1816 
1817           ThreadInVMfromNative tiv(jt);
1818           debug_only(VMNativeEntryWrapper vew;)
1819 
1820           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1821           VMThread::execute(&op);
1822           if (LoadExecStackDllInVMThread) {
1823             result = op.loaded_library();
1824           }
1825           load_attempted = true;
1826         }
1827       }
1828     }
1829   }
1830 
1831   if (!load_attempted) {
1832     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1833   }
1834 
1835   if (result != NULL) {
1836     // Successful loading
1837     return result;
1838   }
1839 
1840   Elf32_Ehdr elf_head;
1841   int diag_msg_max_length=ebuflen-strlen(ebuf);
1842   char* diag_msg_buf=ebuf+strlen(ebuf);
1843 
1844   if (diag_msg_max_length==0) {
1845     // No more space in ebuf for additional diagnostics message
1846     return NULL;
1847   }
1848 
1849 
1850   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1851 
1852   if (file_descriptor < 0) {
1853     // Can't open library, report dlerror() message
1854     return NULL;
1855   }
1856 
1857   bool failed_to_read_elf_head=
1858     (sizeof(elf_head)!=
1859      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1860 
1861   ::close(file_descriptor);
1862   if (failed_to_read_elf_head) {
1863     // file i/o error - report dlerror() msg
1864     return NULL;
1865   }
1866 
1867   typedef struct {
1868     Elf32_Half  code;         // Actual value as defined in elf.h
1869     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1870     char        elf_class;    // 32 or 64 bit
1871     char        endianess;    // MSB or LSB
1872     char*       name;         // String representation
1873   } arch_t;
1874 
1875 #ifndef EM_486
1876   #define EM_486          6               /* Intel 80486 */
1877 #endif
1878 #ifndef EM_AARCH64
1879   #define EM_AARCH64    183               /* ARM AARCH64 */
1880 #endif
1881 
1882   static const arch_t arch_array[]={
1883     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1884     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1885     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1886     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1887     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1888     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1889     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1890     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1891 #if defined(VM_LITTLE_ENDIAN)
1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1893 #else
1894     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1895 #endif
1896     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1897     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1898     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1899     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1900     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1901     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1902     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1903     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1904   };
1905 
1906 #if  (defined IA32)
1907   static  Elf32_Half running_arch_code=EM_386;
1908 #elif   (defined AMD64)
1909   static  Elf32_Half running_arch_code=EM_X86_64;
1910 #elif  (defined IA64)
1911   static  Elf32_Half running_arch_code=EM_IA_64;
1912 #elif  (defined __sparc) && (defined _LP64)
1913   static  Elf32_Half running_arch_code=EM_SPARCV9;
1914 #elif  (defined __sparc) && (!defined _LP64)
1915   static  Elf32_Half running_arch_code=EM_SPARC;
1916 #elif  (defined __powerpc64__)
1917   static  Elf32_Half running_arch_code=EM_PPC64;
1918 #elif  (defined __powerpc__)
1919   static  Elf32_Half running_arch_code=EM_PPC;
1920 #elif  (defined ARM)
1921   static  Elf32_Half running_arch_code=EM_ARM;
1922 #elif  (defined S390)
1923   static  Elf32_Half running_arch_code=EM_S390;
1924 #elif  (defined ALPHA)
1925   static  Elf32_Half running_arch_code=EM_ALPHA;
1926 #elif  (defined MIPSEL)
1927   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1928 #elif  (defined PARISC)
1929   static  Elf32_Half running_arch_code=EM_PARISC;
1930 #elif  (defined MIPS)
1931   static  Elf32_Half running_arch_code=EM_MIPS;
1932 #elif  (defined M68K)
1933   static  Elf32_Half running_arch_code=EM_68K;
1934 #elif  (defined AARCH64)
1935   static  Elf32_Half running_arch_code=EM_AARCH64;
1936 #else
1937     #error Method os::dll_load requires that one of following is defined:\
1938          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1939 #endif
1940 
1941   // Identify compatability class for VM's architecture and library's architecture
1942   // Obtain string descriptions for architectures
1943 
1944   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1945   int running_arch_index=-1;
1946 
1947   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1948     if (running_arch_code == arch_array[i].code) {
1949       running_arch_index    = i;
1950     }
1951     if (lib_arch.code == arch_array[i].code) {
1952       lib_arch.compat_class = arch_array[i].compat_class;
1953       lib_arch.name         = arch_array[i].name;
1954     }
1955   }
1956 
1957   assert(running_arch_index != -1,
1958          "Didn't find running architecture code (running_arch_code) in arch_array");
1959   if (running_arch_index == -1) {
1960     // Even though running architecture detection failed
1961     // we may still continue with reporting dlerror() message
1962     return NULL;
1963   }
1964 
1965   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1966     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1967     return NULL;
1968   }
1969 
1970 #ifndef S390
1971   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1972     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1973     return NULL;
1974   }
1975 #endif // !S390
1976 
1977   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1978     if (lib_arch.name!=NULL) {
1979       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1980                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1981                  lib_arch.name, arch_array[running_arch_index].name);
1982     } else {
1983       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1984                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1985                  lib_arch.code,
1986                  arch_array[running_arch_index].name);
1987     }
1988   }
1989 
1990   return NULL;
1991 }
1992 
1993 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1994                                 int ebuflen) {
1995   void * result = ::dlopen(filename, RTLD_LAZY);
1996   if (result == NULL) {
1997     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1998     ebuf[ebuflen-1] = '\0';
1999   }
2000   return result;
2001 }
2002 
2003 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2004                                        int ebuflen) {
2005   void * result = NULL;
2006   if (LoadExecStackDllInVMThread) {
2007     result = dlopen_helper(filename, ebuf, ebuflen);
2008   }
2009 
2010   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2011   // library that requires an executable stack, or which does not have this
2012   // stack attribute set, dlopen changes the stack attribute to executable. The
2013   // read protection of the guard pages gets lost.
2014   //
2015   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2016   // may have been queued at the same time.
2017 
2018   if (!_stack_is_executable) {
2019     JavaThread *jt = Threads::first();
2020 
2021     while (jt) {
2022       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2023           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2024         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2025                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2026           warning("Attempt to reguard stack yellow zone failed.");
2027         }
2028       }
2029       jt = jt->next();
2030     }
2031   }
2032 
2033   return result;
2034 }
2035 
2036 void* os::dll_lookup(void* handle, const char* name) {
2037   void* res = dlsym(handle, name);
2038   return res;
2039 }
2040 
2041 void* os::get_default_process_handle() {
2042   return (void*)::dlopen(NULL, RTLD_LAZY);
2043 }
2044 
2045 static bool _print_ascii_file(const char* filename, outputStream* st) {
2046   int fd = ::open(filename, O_RDONLY);
2047   if (fd == -1) {
2048     return false;
2049   }
2050 
2051   char buf[32];
2052   int bytes;
2053   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2054     st->print_raw(buf, bytes);
2055   }
2056 
2057   ::close(fd);
2058 
2059   return true;
2060 }
2061 
2062 void os::print_dll_info(outputStream *st) {
2063   st->print_cr("Dynamic libraries:");
2064 
2065   char fname[32];
2066   pid_t pid = os::Linux::gettid();
2067 
2068   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2069 
2070   if (!_print_ascii_file(fname, st)) {
2071     st->print("Can not get library information for pid = %d\n", pid);
2072   }
2073 }
2074 
2075 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2076   FILE *procmapsFile = NULL;
2077 
2078   // Open the procfs maps file for the current process
2079   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2080     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2081     char line[PATH_MAX + 100];
2082 
2083     // Read line by line from 'file'
2084     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2085       u8 base, top, offset, inode;
2086       char permissions[5];
2087       char device[6];
2088       char name[PATH_MAX + 1];
2089 
2090       // Parse fields from line
2091       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2092 
2093       // Filter by device id '00:00' so that we only get file system mapped files.
2094       if (strcmp(device, "00:00") != 0) {
2095 
2096         // Call callback with the fields of interest
2097         if(callback(name, (address)base, (address)top, param)) {
2098           // Oops abort, callback aborted
2099           fclose(procmapsFile);
2100           return 1;
2101         }
2102       }
2103     }
2104     fclose(procmapsFile);
2105   }
2106   return 0;
2107 }
2108 
2109 void os::print_os_info_brief(outputStream* st) {
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   os::Linux::print_libversion_info(st);
2115 
2116 }
2117 
2118 void os::print_os_info(outputStream* st) {
2119   st->print("OS:");
2120 
2121   os::Linux::print_distro_info(st);
2122 
2123   os::Posix::print_uname_info(st);
2124 
2125   // Print warning if unsafe chroot environment detected
2126   if (unsafe_chroot_detected) {
2127     st->print("WARNING!! ");
2128     st->print_cr("%s", unstable_chroot_error);
2129   }
2130 
2131   os::Linux::print_libversion_info(st);
2132 
2133   os::Posix::print_rlimit_info(st);
2134 
2135   os::Posix::print_load_average(st);
2136 
2137   os::Linux::print_full_memory_info(st);
2138 }
2139 
2140 // Try to identify popular distros.
2141 // Most Linux distributions have a /etc/XXX-release file, which contains
2142 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2143 // file that also contains the OS version string. Some have more than one
2144 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2145 // /etc/redhat-release.), so the order is important.
2146 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2147 // their own specific XXX-release file as well as a redhat-release file.
2148 // Because of this the XXX-release file needs to be searched for before the
2149 // redhat-release file.
2150 // Since Red Hat has a lsb-release file that is not very descriptive the
2151 // search for redhat-release needs to be before lsb-release.
2152 // Since the lsb-release file is the new standard it needs to be searched
2153 // before the older style release files.
2154 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2155 // next to last resort.  The os-release file is a new standard that contains
2156 // distribution information and the system-release file seems to be an old
2157 // standard that has been replaced by the lsb-release and os-release files.
2158 // Searching for the debian_version file is the last resort.  It contains
2159 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2160 // "Debian " is printed before the contents of the debian_version file.
2161 void os::Linux::print_distro_info(outputStream* st) {
2162   if (!_print_ascii_file("/etc/oracle-release", st) &&
2163       !_print_ascii_file("/etc/mandriva-release", st) &&
2164       !_print_ascii_file("/etc/mandrake-release", st) &&
2165       !_print_ascii_file("/etc/sun-release", st) &&
2166       !_print_ascii_file("/etc/redhat-release", st) &&
2167       !_print_ascii_file("/etc/lsb-release", st) &&
2168       !_print_ascii_file("/etc/SuSE-release", st) &&
2169       !_print_ascii_file("/etc/turbolinux-release", st) &&
2170       !_print_ascii_file("/etc/gentoo-release", st) &&
2171       !_print_ascii_file("/etc/ltib-release", st) &&
2172       !_print_ascii_file("/etc/angstrom-version", st) &&
2173       !_print_ascii_file("/etc/system-release", st) &&
2174       !_print_ascii_file("/etc/os-release", st)) {
2175 
2176     if (file_exists("/etc/debian_version")) {
2177       st->print("Debian ");
2178       _print_ascii_file("/etc/debian_version", st);
2179     } else {
2180       st->print("Linux");
2181     }
2182   }
2183   st->cr();
2184 }
2185 
2186 void os::Linux::print_libversion_info(outputStream* st) {
2187   // libc, pthread
2188   st->print("libc:");
2189   st->print("%s ", os::Linux::glibc_version());
2190   st->print("%s ", os::Linux::libpthread_version());
2191   if (os::Linux::is_LinuxThreads()) {
2192     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2193   }
2194   st->cr();
2195 }
2196 
2197 void os::Linux::print_full_memory_info(outputStream* st) {
2198   st->print("\n/proc/meminfo:\n");
2199   _print_ascii_file("/proc/meminfo", st);
2200   st->cr();
2201 }
2202 
2203 void os::print_memory_info(outputStream* st) {
2204 
2205   st->print("Memory:");
2206   st->print(" %dk page", os::vm_page_size()>>10);
2207 
2208   // values in struct sysinfo are "unsigned long"
2209   struct sysinfo si;
2210   sysinfo(&si);
2211 
2212   st->print(", physical " UINT64_FORMAT "k",
2213             os::physical_memory() >> 10);
2214   st->print("(" UINT64_FORMAT "k free)",
2215             os::available_memory() >> 10);
2216   st->print(", swap " UINT64_FORMAT "k",
2217             ((jlong)si.totalswap * si.mem_unit) >> 10);
2218   st->print("(" UINT64_FORMAT "k free)",
2219             ((jlong)si.freeswap * si.mem_unit) >> 10);
2220   st->cr();
2221 }
2222 
2223 void os::pd_print_cpu_info(outputStream* st) {
2224   st->print("\n/proc/cpuinfo:\n");
2225   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2226     st->print("  <Not Available>");
2227   }
2228   st->cr();
2229 }
2230 
2231 void os::print_siginfo(outputStream* st, void* siginfo) {
2232   const siginfo_t* si = (const siginfo_t*)siginfo;
2233 
2234   os::Posix::print_siginfo_brief(st, si);
2235 #if INCLUDE_CDS
2236   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2237       UseSharedSpaces) {
2238     FileMapInfo* mapinfo = FileMapInfo::current_info();
2239     if (mapinfo->is_in_shared_space(si->si_addr)) {
2240       st->print("\n\nError accessing class data sharing archive."   \
2241                 " Mapped file inaccessible during execution, "      \
2242                 " possible disk/network problem.");
2243     }
2244   }
2245 #endif
2246   st->cr();
2247 }
2248 
2249 
2250 static void print_signal_handler(outputStream* st, int sig,
2251                                  char* buf, size_t buflen);
2252 
2253 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2254   st->print_cr("Signal Handlers:");
2255   print_signal_handler(st, SIGSEGV, buf, buflen);
2256   print_signal_handler(st, SIGBUS , buf, buflen);
2257   print_signal_handler(st, SIGFPE , buf, buflen);
2258   print_signal_handler(st, SIGPIPE, buf, buflen);
2259   print_signal_handler(st, SIGXFSZ, buf, buflen);
2260   print_signal_handler(st, SIGILL , buf, buflen);
2261   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2262   print_signal_handler(st, SR_signum, buf, buflen);
2263   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2264   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2265   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2266   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2267 #if defined(PPC64)
2268   print_signal_handler(st, SIGTRAP, buf, buflen);
2269 #endif
2270 }
2271 
2272 static char saved_jvm_path[MAXPATHLEN] = {0};
2273 
2274 // Find the full path to the current module, libjvm.so
2275 void os::jvm_path(char *buf, jint buflen) {
2276   // Error checking.
2277   if (buflen < MAXPATHLEN) {
2278     assert(false, "must use a large-enough buffer");
2279     buf[0] = '\0';
2280     return;
2281   }
2282   // Lazy resolve the path to current module.
2283   if (saved_jvm_path[0] != 0) {
2284     strcpy(buf, saved_jvm_path);
2285     return;
2286   }
2287 
2288   char dli_fname[MAXPATHLEN];
2289   bool ret = dll_address_to_library_name(
2290                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2291                                          dli_fname, sizeof(dli_fname), NULL);
2292   assert(ret, "cannot locate libjvm");
2293   char *rp = NULL;
2294   if (ret && dli_fname[0] != '\0') {
2295     rp = realpath(dli_fname, buf);
2296   }
2297   if (rp == NULL) {
2298     return;
2299   }
2300 
2301   if (Arguments::sun_java_launcher_is_altjvm()) {
2302     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2303     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2304     // If "/jre/lib/" appears at the right place in the string, then
2305     // assume we are installed in a JDK and we're done. Otherwise, check
2306     // for a JAVA_HOME environment variable and fix up the path so it
2307     // looks like libjvm.so is installed there (append a fake suffix
2308     // hotspot/libjvm.so).
2309     const char *p = buf + strlen(buf) - 1;
2310     for (int count = 0; p > buf && count < 5; ++count) {
2311       for (--p; p > buf && *p != '/'; --p)
2312         /* empty */ ;
2313     }
2314 
2315     if (strncmp(p, "/jre/lib/", 9) != 0) {
2316       // Look for JAVA_HOME in the environment.
2317       char* java_home_var = ::getenv("JAVA_HOME");
2318       if (java_home_var != NULL && java_home_var[0] != 0) {
2319         char* jrelib_p;
2320         int len;
2321 
2322         // Check the current module name "libjvm.so".
2323         p = strrchr(buf, '/');
2324         if (p == NULL) {
2325           return;
2326         }
2327         assert(strstr(p, "/libjvm") == p, "invalid library name");
2328 
2329         rp = realpath(java_home_var, buf);
2330         if (rp == NULL) {
2331           return;
2332         }
2333 
2334         // determine if this is a legacy image or modules image
2335         // modules image doesn't have "jre" subdirectory
2336         len = strlen(buf);
2337         assert(len < buflen, "Ran out of buffer room");
2338         jrelib_p = buf + len;
2339         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2340         if (0 != access(buf, F_OK)) {
2341           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2342         }
2343 
2344         if (0 == access(buf, F_OK)) {
2345           // Use current module name "libjvm.so"
2346           len = strlen(buf);
2347           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2348         } else {
2349           // Go back to path of .so
2350           rp = realpath(dli_fname, buf);
2351           if (rp == NULL) {
2352             return;
2353           }
2354         }
2355       }
2356     }
2357   }
2358 
2359   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2360   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2361 }
2362 
2363 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2364   // no prefix required, not even "_"
2365 }
2366 
2367 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2368   // no suffix required
2369 }
2370 
2371 ////////////////////////////////////////////////////////////////////////////////
2372 // sun.misc.Signal support
2373 
2374 static volatile jint sigint_count = 0;
2375 
2376 static void UserHandler(int sig, void *siginfo, void *context) {
2377   // 4511530 - sem_post is serialized and handled by the manager thread. When
2378   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2379   // don't want to flood the manager thread with sem_post requests.
2380   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2381     return;
2382   }
2383 
2384   // Ctrl-C is pressed during error reporting, likely because the error
2385   // handler fails to abort. Let VM die immediately.
2386   if (sig == SIGINT && is_error_reported()) {
2387     os::die();
2388   }
2389 
2390   os::signal_notify(sig);
2391 }
2392 
2393 void* os::user_handler() {
2394   return CAST_FROM_FN_PTR(void*, UserHandler);
2395 }
2396 
2397 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2398   struct timespec ts;
2399   // Semaphore's are always associated with CLOCK_REALTIME
2400   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2401   // see unpackTime for discussion on overflow checking
2402   if (sec >= MAX_SECS) {
2403     ts.tv_sec += MAX_SECS;
2404     ts.tv_nsec = 0;
2405   } else {
2406     ts.tv_sec += sec;
2407     ts.tv_nsec += nsec;
2408     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2409       ts.tv_nsec -= NANOSECS_PER_SEC;
2410       ++ts.tv_sec; // note: this must be <= max_secs
2411     }
2412   }
2413 
2414   return ts;
2415 }
2416 
2417 extern "C" {
2418   typedef void (*sa_handler_t)(int);
2419   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2420 }
2421 
2422 void* os::signal(int signal_number, void* handler) {
2423   struct sigaction sigAct, oldSigAct;
2424 
2425   sigfillset(&(sigAct.sa_mask));
2426   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2427   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2428 
2429   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2430     // -1 means registration failed
2431     return (void *)-1;
2432   }
2433 
2434   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2435 }
2436 
2437 void os::signal_raise(int signal_number) {
2438   ::raise(signal_number);
2439 }
2440 
2441 // The following code is moved from os.cpp for making this
2442 // code platform specific, which it is by its very nature.
2443 
2444 // Will be modified when max signal is changed to be dynamic
2445 int os::sigexitnum_pd() {
2446   return NSIG;
2447 }
2448 
2449 // a counter for each possible signal value
2450 static volatile jint pending_signals[NSIG+1] = { 0 };
2451 
2452 // Linux(POSIX) specific hand shaking semaphore.
2453 static sem_t sig_sem;
2454 static PosixSemaphore sr_semaphore;
2455 
2456 void os::signal_init_pd() {
2457   // Initialize signal structures
2458   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2459 
2460   // Initialize signal semaphore
2461   ::sem_init(&sig_sem, 0, 0);
2462 }
2463 
2464 void os::signal_notify(int sig) {
2465   Atomic::inc(&pending_signals[sig]);
2466   ::sem_post(&sig_sem);
2467 }
2468 
2469 static int check_pending_signals(bool wait) {
2470   Atomic::store(0, &sigint_count);
2471   for (;;) {
2472     for (int i = 0; i < NSIG + 1; i++) {
2473       jint n = pending_signals[i];
2474       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2475         return i;
2476       }
2477     }
2478     if (!wait) {
2479       return -1;
2480     }
2481     JavaThread *thread = JavaThread::current();
2482     ThreadBlockInVM tbivm(thread);
2483 
2484     bool threadIsSuspended;
2485     do {
2486       thread->set_suspend_equivalent();
2487       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2488       ::sem_wait(&sig_sem);
2489 
2490       // were we externally suspended while we were waiting?
2491       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2492       if (threadIsSuspended) {
2493         // The semaphore has been incremented, but while we were waiting
2494         // another thread suspended us. We don't want to continue running
2495         // while suspended because that would surprise the thread that
2496         // suspended us.
2497         ::sem_post(&sig_sem);
2498 
2499         thread->java_suspend_self();
2500       }
2501     } while (threadIsSuspended);
2502   }
2503 }
2504 
2505 int os::signal_lookup() {
2506   return check_pending_signals(false);
2507 }
2508 
2509 int os::signal_wait() {
2510   return check_pending_signals(true);
2511 }
2512 
2513 ////////////////////////////////////////////////////////////////////////////////
2514 // Virtual Memory
2515 
2516 int os::vm_page_size() {
2517   // Seems redundant as all get out
2518   assert(os::Linux::page_size() != -1, "must call os::init");
2519   return os::Linux::page_size();
2520 }
2521 
2522 // Solaris allocates memory by pages.
2523 int os::vm_allocation_granularity() {
2524   assert(os::Linux::page_size() != -1, "must call os::init");
2525   return os::Linux::page_size();
2526 }
2527 
2528 // Rationale behind this function:
2529 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2530 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2531 //  samples for JITted code. Here we create private executable mapping over the code cache
2532 //  and then we can use standard (well, almost, as mapping can change) way to provide
2533 //  info for the reporting script by storing timestamp and location of symbol
2534 void linux_wrap_code(char* base, size_t size) {
2535   static volatile jint cnt = 0;
2536 
2537   if (!UseOprofile) {
2538     return;
2539   }
2540 
2541   char buf[PATH_MAX+1];
2542   int num = Atomic::add(1, &cnt);
2543 
2544   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2545            os::get_temp_directory(), os::current_process_id(), num);
2546   unlink(buf);
2547 
2548   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2549 
2550   if (fd != -1) {
2551     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2552     if (rv != (off_t)-1) {
2553       if (::write(fd, "", 1) == 1) {
2554         mmap(base, size,
2555              PROT_READ|PROT_WRITE|PROT_EXEC,
2556              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2557       }
2558     }
2559     ::close(fd);
2560     unlink(buf);
2561   }
2562 }
2563 
2564 static bool recoverable_mmap_error(int err) {
2565   // See if the error is one we can let the caller handle. This
2566   // list of errno values comes from JBS-6843484. I can't find a
2567   // Linux man page that documents this specific set of errno
2568   // values so while this list currently matches Solaris, it may
2569   // change as we gain experience with this failure mode.
2570   switch (err) {
2571   case EBADF:
2572   case EINVAL:
2573   case ENOTSUP:
2574     // let the caller deal with these errors
2575     return true;
2576 
2577   default:
2578     // Any remaining errors on this OS can cause our reserved mapping
2579     // to be lost. That can cause confusion where different data
2580     // structures think they have the same memory mapped. The worst
2581     // scenario is if both the VM and a library think they have the
2582     // same memory mapped.
2583     return false;
2584   }
2585 }
2586 
2587 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2588                                     int err) {
2589   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2590           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2591           strerror(err), err);
2592 }
2593 
2594 static void warn_fail_commit_memory(char* addr, size_t size,
2595                                     size_t alignment_hint, bool exec,
2596                                     int err) {
2597   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2598           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2599           alignment_hint, exec, strerror(err), err);
2600 }
2601 
2602 // NOTE: Linux kernel does not really reserve the pages for us.
2603 //       All it does is to check if there are enough free pages
2604 //       left at the time of mmap(). This could be a potential
2605 //       problem.
2606 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2607   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2608   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2609                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2610   if (res != (uintptr_t) MAP_FAILED) {
2611     if (UseNUMAInterleaving) {
2612       numa_make_global(addr, size);
2613     }
2614     return 0;
2615   }
2616 
2617   int err = errno;  // save errno from mmap() call above
2618 
2619   if (!recoverable_mmap_error(err)) {
2620     warn_fail_commit_memory(addr, size, exec, err);
2621     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2622   }
2623 
2624   return err;
2625 }
2626 
2627 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2628   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2629 }
2630 
2631 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2632                                   const char* mesg) {
2633   assert(mesg != NULL, "mesg must be specified");
2634   int err = os::Linux::commit_memory_impl(addr, size, exec);
2635   if (err != 0) {
2636     // the caller wants all commit errors to exit with the specified mesg:
2637     warn_fail_commit_memory(addr, size, exec, err);
2638     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2639   }
2640 }
2641 
2642 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2643 #ifndef MAP_HUGETLB
2644   #define MAP_HUGETLB 0x40000
2645 #endif
2646 
2647 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2648 #ifndef MADV_HUGEPAGE
2649   #define MADV_HUGEPAGE 14
2650 #endif
2651 
2652 int os::Linux::commit_memory_impl(char* addr, size_t size,
2653                                   size_t alignment_hint, bool exec) {
2654   int err = os::Linux::commit_memory_impl(addr, size, exec);
2655   if (err == 0) {
2656     realign_memory(addr, size, alignment_hint);
2657   }
2658   return err;
2659 }
2660 
2661 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2662                           bool exec) {
2663   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2664 }
2665 
2666 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2667                                   size_t alignment_hint, bool exec,
2668                                   const char* mesg) {
2669   assert(mesg != NULL, "mesg must be specified");
2670   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2671   if (err != 0) {
2672     // the caller wants all commit errors to exit with the specified mesg:
2673     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2674     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2675   }
2676 }
2677 
2678 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2679   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2680     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2681     // be supported or the memory may already be backed by huge pages.
2682     ::madvise(addr, bytes, MADV_HUGEPAGE);
2683   }
2684 }
2685 
2686 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2687   // This method works by doing an mmap over an existing mmaping and effectively discarding
2688   // the existing pages. However it won't work for SHM-based large pages that cannot be
2689   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2690   // small pages on top of the SHM segment. This method always works for small pages, so we
2691   // allow that in any case.
2692   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2693     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2694   }
2695 }
2696 
2697 void os::numa_make_global(char *addr, size_t bytes) {
2698   Linux::numa_interleave_memory(addr, bytes);
2699 }
2700 
2701 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2702 // bind policy to MPOL_PREFERRED for the current thread.
2703 #define USE_MPOL_PREFERRED 0
2704 
2705 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2706   // To make NUMA and large pages more robust when both enabled, we need to ease
2707   // the requirements on where the memory should be allocated. MPOL_BIND is the
2708   // default policy and it will force memory to be allocated on the specified
2709   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2710   // the specified node, but will not force it. Using this policy will prevent
2711   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2712   // free large pages.
2713   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2714   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2715 }
2716 
2717 bool os::numa_topology_changed() { return false; }
2718 
2719 size_t os::numa_get_groups_num() {
2720   int max_node = Linux::numa_max_node();
2721   return max_node > 0 ? max_node + 1 : 1;
2722 }
2723 
2724 int os::numa_get_group_id() {
2725   int cpu_id = Linux::sched_getcpu();
2726   if (cpu_id != -1) {
2727     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2728     if (lgrp_id != -1) {
2729       return lgrp_id;
2730     }
2731   }
2732   return 0;
2733 }
2734 
2735 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2736   for (size_t i = 0; i < size; i++) {
2737     ids[i] = i;
2738   }
2739   return size;
2740 }
2741 
2742 bool os::get_page_info(char *start, page_info* info) {
2743   return false;
2744 }
2745 
2746 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2747                      page_info* page_found) {
2748   return end;
2749 }
2750 
2751 
2752 int os::Linux::sched_getcpu_syscall(void) {
2753   unsigned int cpu;
2754   int retval = -1;
2755 
2756 #if defined(IA32)
2757   #ifndef SYS_getcpu
2758     #define SYS_getcpu 318
2759   #endif
2760   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2761 #elif defined(AMD64)
2762 // Unfortunately we have to bring all these macros here from vsyscall.h
2763 // to be able to compile on old linuxes.
2764   #define __NR_vgetcpu 2
2765   #define VSYSCALL_START (-10UL << 20)
2766   #define VSYSCALL_SIZE 1024
2767   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2768   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2769   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2770   retval = vgetcpu(&cpu, NULL, NULL);
2771 #endif
2772 
2773   return (retval == -1) ? retval : cpu;
2774 }
2775 
2776 // Something to do with the numa-aware allocator needs these symbols
2777 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2778 extern "C" JNIEXPORT void numa_error(char *where) { }
2779 extern "C" JNIEXPORT int fork1() { return fork(); }
2780 
2781 
2782 // If we are running with libnuma version > 2, then we should
2783 // be trying to use symbols with versions 1.1
2784 // If we are running with earlier version, which did not have symbol versions,
2785 // we should use the base version.
2786 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2787   void *f = dlvsym(handle, name, "libnuma_1.1");
2788   if (f == NULL) {
2789     f = dlsym(handle, name);
2790   }
2791   return f;
2792 }
2793 
2794 bool os::Linux::libnuma_init() {
2795   // sched_getcpu() should be in libc.
2796   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2797                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2798 
2799   // If it's not, try a direct syscall.
2800   if (sched_getcpu() == -1) {
2801     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2802                                     (void*)&sched_getcpu_syscall));
2803   }
2804 
2805   if (sched_getcpu() != -1) { // Does it work?
2806     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2807     if (handle != NULL) {
2808       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2809                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2810       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2811                                        libnuma_dlsym(handle, "numa_max_node")));
2812       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2813                                         libnuma_dlsym(handle, "numa_available")));
2814       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2815                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2816       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2817                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2818       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2819                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2820 
2821 
2822       if (numa_available() != -1) {
2823         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2824         // Create a cpu -> node mapping
2825         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2826         rebuild_cpu_to_node_map();
2827         return true;
2828       }
2829     }
2830   }
2831   return false;
2832 }
2833 
2834 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2835 // The table is later used in get_node_by_cpu().
2836 void os::Linux::rebuild_cpu_to_node_map() {
2837   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2838                               // in libnuma (possible values are starting from 16,
2839                               // and continuing up with every other power of 2, but less
2840                               // than the maximum number of CPUs supported by kernel), and
2841                               // is a subject to change (in libnuma version 2 the requirements
2842                               // are more reasonable) we'll just hardcode the number they use
2843                               // in the library.
2844   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2845 
2846   size_t cpu_num = os::active_processor_count();
2847   size_t cpu_map_size = NCPUS / BitsPerCLong;
2848   size_t cpu_map_valid_size =
2849     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2850 
2851   cpu_to_node()->clear();
2852   cpu_to_node()->at_grow(cpu_num - 1);
2853   size_t node_num = numa_get_groups_num();
2854 
2855   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2856   for (size_t i = 0; i < node_num; i++) {
2857     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2858       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2859         if (cpu_map[j] != 0) {
2860           for (size_t k = 0; k < BitsPerCLong; k++) {
2861             if (cpu_map[j] & (1UL << k)) {
2862               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2863             }
2864           }
2865         }
2866       }
2867     }
2868   }
2869   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2870 }
2871 
2872 int os::Linux::get_node_by_cpu(int cpu_id) {
2873   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2874     return cpu_to_node()->at(cpu_id);
2875   }
2876   return -1;
2877 }
2878 
2879 GrowableArray<int>* os::Linux::_cpu_to_node;
2880 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2881 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2882 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2883 os::Linux::numa_available_func_t os::Linux::_numa_available;
2884 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2885 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2886 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2887 unsigned long* os::Linux::_numa_all_nodes;
2888 
2889 bool os::pd_uncommit_memory(char* addr, size_t size) {
2890   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2891                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2892   return res  != (uintptr_t) MAP_FAILED;
2893 }
2894 
2895 static address get_stack_commited_bottom(address bottom, size_t size) {
2896   address nbot = bottom;
2897   address ntop = bottom + size;
2898 
2899   size_t page_sz = os::vm_page_size();
2900   unsigned pages = size / page_sz;
2901 
2902   unsigned char vec[1];
2903   unsigned imin = 1, imax = pages + 1, imid;
2904   int mincore_return_value = 0;
2905 
2906   assert(imin <= imax, "Unexpected page size");
2907 
2908   while (imin < imax) {
2909     imid = (imax + imin) / 2;
2910     nbot = ntop - (imid * page_sz);
2911 
2912     // Use a trick with mincore to check whether the page is mapped or not.
2913     // mincore sets vec to 1 if page resides in memory and to 0 if page
2914     // is swapped output but if page we are asking for is unmapped
2915     // it returns -1,ENOMEM
2916     mincore_return_value = mincore(nbot, page_sz, vec);
2917 
2918     if (mincore_return_value == -1) {
2919       // Page is not mapped go up
2920       // to find first mapped page
2921       if (errno != EAGAIN) {
2922         assert(errno == ENOMEM, "Unexpected mincore errno");
2923         imax = imid;
2924       }
2925     } else {
2926       // Page is mapped go down
2927       // to find first not mapped page
2928       imin = imid + 1;
2929     }
2930   }
2931 
2932   nbot = nbot + page_sz;
2933 
2934   // Adjust stack bottom one page up if last checked page is not mapped
2935   if (mincore_return_value == -1) {
2936     nbot = nbot + page_sz;
2937   }
2938 
2939   return nbot;
2940 }
2941 
2942 
2943 // Linux uses a growable mapping for the stack, and if the mapping for
2944 // the stack guard pages is not removed when we detach a thread the
2945 // stack cannot grow beyond the pages where the stack guard was
2946 // mapped.  If at some point later in the process the stack expands to
2947 // that point, the Linux kernel cannot expand the stack any further
2948 // because the guard pages are in the way, and a segfault occurs.
2949 //
2950 // However, it's essential not to split the stack region by unmapping
2951 // a region (leaving a hole) that's already part of the stack mapping,
2952 // so if the stack mapping has already grown beyond the guard pages at
2953 // the time we create them, we have to truncate the stack mapping.
2954 // So, we need to know the extent of the stack mapping when
2955 // create_stack_guard_pages() is called.
2956 
2957 // We only need this for stacks that are growable: at the time of
2958 // writing thread stacks don't use growable mappings (i.e. those
2959 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2960 // only applies to the main thread.
2961 
2962 // If the (growable) stack mapping already extends beyond the point
2963 // where we're going to put our guard pages, truncate the mapping at
2964 // that point by munmap()ping it.  This ensures that when we later
2965 // munmap() the guard pages we don't leave a hole in the stack
2966 // mapping. This only affects the main/initial thread
2967 
2968 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2969   if (os::Linux::is_initial_thread()) {
2970     // As we manually grow stack up to bottom inside create_attached_thread(),
2971     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2972     // we don't need to do anything special.
2973     // Check it first, before calling heavy function.
2974     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2975     unsigned char vec[1];
2976 
2977     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2978       // Fallback to slow path on all errors, including EAGAIN
2979       stack_extent = (uintptr_t) get_stack_commited_bottom(
2980                                                            os::Linux::initial_thread_stack_bottom(),
2981                                                            (size_t)addr - stack_extent);
2982     }
2983 
2984     if (stack_extent < (uintptr_t)addr) {
2985       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2986     }
2987   }
2988 
2989   return os::commit_memory(addr, size, !ExecMem);
2990 }
2991 
2992 // If this is a growable mapping, remove the guard pages entirely by
2993 // munmap()ping them.  If not, just call uncommit_memory(). This only
2994 // affects the main/initial thread, but guard against future OS changes
2995 // It's safe to always unmap guard pages for initial thread because we
2996 // always place it right after end of the mapped region
2997 
2998 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2999   uintptr_t stack_extent, stack_base;
3000 
3001   if (os::Linux::is_initial_thread()) {
3002     return ::munmap(addr, size) == 0;
3003   }
3004 
3005   return os::uncommit_memory(addr, size);
3006 }
3007 
3008 static address _highest_vm_reserved_address = NULL;
3009 
3010 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3011 // at 'requested_addr'. If there are existing memory mappings at the same
3012 // location, however, they will be overwritten. If 'fixed' is false,
3013 // 'requested_addr' is only treated as a hint, the return value may or
3014 // may not start from the requested address. Unlike Linux mmap(), this
3015 // function returns NULL to indicate failure.
3016 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3017   char * addr;
3018   int flags;
3019 
3020   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3021   if (fixed) {
3022     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3023     flags |= MAP_FIXED;
3024   }
3025 
3026   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3027   // touch an uncommitted page. Otherwise, the read/write might
3028   // succeed if we have enough swap space to back the physical page.
3029   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3030                        flags, -1, 0);
3031 
3032   if (addr != MAP_FAILED) {
3033     // anon_mmap() should only get called during VM initialization,
3034     // don't need lock (actually we can skip locking even it can be called
3035     // from multiple threads, because _highest_vm_reserved_address is just a
3036     // hint about the upper limit of non-stack memory regions.)
3037     if ((address)addr + bytes > _highest_vm_reserved_address) {
3038       _highest_vm_reserved_address = (address)addr + bytes;
3039     }
3040   }
3041 
3042   return addr == MAP_FAILED ? NULL : addr;
3043 }
3044 
3045 // Don't update _highest_vm_reserved_address, because there might be memory
3046 // regions above addr + size. If so, releasing a memory region only creates
3047 // a hole in the address space, it doesn't help prevent heap-stack collision.
3048 //
3049 static int anon_munmap(char * addr, size_t size) {
3050   return ::munmap(addr, size) == 0;
3051 }
3052 
3053 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3054                             size_t alignment_hint) {
3055   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3056 }
3057 
3058 bool os::pd_release_memory(char* addr, size_t size) {
3059   return anon_munmap(addr, size);
3060 }
3061 
3062 static address highest_vm_reserved_address() {
3063   return _highest_vm_reserved_address;
3064 }
3065 
3066 static bool linux_mprotect(char* addr, size_t size, int prot) {
3067   // Linux wants the mprotect address argument to be page aligned.
3068   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3069 
3070   // According to SUSv3, mprotect() should only be used with mappings
3071   // established by mmap(), and mmap() always maps whole pages. Unaligned
3072   // 'addr' likely indicates problem in the VM (e.g. trying to change
3073   // protection of malloc'ed or statically allocated memory). Check the
3074   // caller if you hit this assert.
3075   assert(addr == bottom, "sanity check");
3076 
3077   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3078   return ::mprotect(bottom, size, prot) == 0;
3079 }
3080 
3081 // Set protections specified
3082 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3083                         bool is_committed) {
3084   unsigned int p = 0;
3085   switch (prot) {
3086   case MEM_PROT_NONE: p = PROT_NONE; break;
3087   case MEM_PROT_READ: p = PROT_READ; break;
3088   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3089   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3090   default:
3091     ShouldNotReachHere();
3092   }
3093   // is_committed is unused.
3094   return linux_mprotect(addr, bytes, p);
3095 }
3096 
3097 bool os::guard_memory(char* addr, size_t size) {
3098   return linux_mprotect(addr, size, PROT_NONE);
3099 }
3100 
3101 bool os::unguard_memory(char* addr, size_t size) {
3102   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3103 }
3104 
3105 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3106                                                     size_t page_size) {
3107   bool result = false;
3108   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3109                  MAP_ANONYMOUS|MAP_PRIVATE,
3110                  -1, 0);
3111   if (p != MAP_FAILED) {
3112     void *aligned_p = align_ptr_up(p, page_size);
3113 
3114     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3115 
3116     munmap(p, page_size * 2);
3117   }
3118 
3119   if (warn && !result) {
3120     warning("TransparentHugePages is not supported by the operating system.");
3121   }
3122 
3123   return result;
3124 }
3125 
3126 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3127   bool result = false;
3128   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3129                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3130                  -1, 0);
3131 
3132   if (p != MAP_FAILED) {
3133     // We don't know if this really is a huge page or not.
3134     FILE *fp = fopen("/proc/self/maps", "r");
3135     if (fp) {
3136       while (!feof(fp)) {
3137         char chars[257];
3138         long x = 0;
3139         if (fgets(chars, sizeof(chars), fp)) {
3140           if (sscanf(chars, "%lx-%*x", &x) == 1
3141               && x == (long)p) {
3142             if (strstr (chars, "hugepage")) {
3143               result = true;
3144               break;
3145             }
3146           }
3147         }
3148       }
3149       fclose(fp);
3150     }
3151     munmap(p, page_size);
3152   }
3153 
3154   if (warn && !result) {
3155     warning("HugeTLBFS is not supported by the operating system.");
3156   }
3157 
3158   return result;
3159 }
3160 
3161 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3162 //
3163 // From the coredump_filter documentation:
3164 //
3165 // - (bit 0) anonymous private memory
3166 // - (bit 1) anonymous shared memory
3167 // - (bit 2) file-backed private memory
3168 // - (bit 3) file-backed shared memory
3169 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3170 //           effective only if the bit 2 is cleared)
3171 // - (bit 5) hugetlb private memory
3172 // - (bit 6) hugetlb shared memory
3173 //
3174 static void set_coredump_filter(void) {
3175   FILE *f;
3176   long cdm;
3177 
3178   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3179     return;
3180   }
3181 
3182   if (fscanf(f, "%lx", &cdm) != 1) {
3183     fclose(f);
3184     return;
3185   }
3186 
3187   rewind(f);
3188 
3189   if ((cdm & LARGEPAGES_BIT) == 0) {
3190     cdm |= LARGEPAGES_BIT;
3191     fprintf(f, "%#lx", cdm);
3192   }
3193 
3194   fclose(f);
3195 }
3196 
3197 // Large page support
3198 
3199 static size_t _large_page_size = 0;
3200 
3201 size_t os::Linux::find_large_page_size() {
3202   size_t large_page_size = 0;
3203 
3204   // large_page_size on Linux is used to round up heap size. x86 uses either
3205   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3206   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3207   // page as large as 256M.
3208   //
3209   // Here we try to figure out page size by parsing /proc/meminfo and looking
3210   // for a line with the following format:
3211   //    Hugepagesize:     2048 kB
3212   //
3213   // If we can't determine the value (e.g. /proc is not mounted, or the text
3214   // format has been changed), we'll use the largest page size supported by
3215   // the processor.
3216 
3217 #ifndef ZERO
3218   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3219                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3220 #endif // ZERO
3221 
3222   FILE *fp = fopen("/proc/meminfo", "r");
3223   if (fp) {
3224     while (!feof(fp)) {
3225       int x = 0;
3226       char buf[16];
3227       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3228         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3229           large_page_size = x * K;
3230           break;
3231         }
3232       } else {
3233         // skip to next line
3234         for (;;) {
3235           int ch = fgetc(fp);
3236           if (ch == EOF || ch == (int)'\n') break;
3237         }
3238       }
3239     }
3240     fclose(fp);
3241   }
3242 
3243   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3244     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3245             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3246             proper_unit_for_byte_size(large_page_size));
3247   }
3248 
3249   return large_page_size;
3250 }
3251 
3252 size_t os::Linux::setup_large_page_size() {
3253   _large_page_size = Linux::find_large_page_size();
3254   const size_t default_page_size = (size_t)Linux::page_size();
3255   if (_large_page_size > default_page_size) {
3256     _page_sizes[0] = _large_page_size;
3257     _page_sizes[1] = default_page_size;
3258     _page_sizes[2] = 0;
3259   }
3260 
3261   return _large_page_size;
3262 }
3263 
3264 bool os::Linux::setup_large_page_type(size_t page_size) {
3265   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3266       FLAG_IS_DEFAULT(UseSHM) &&
3267       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3268 
3269     // The type of large pages has not been specified by the user.
3270 
3271     // Try UseHugeTLBFS and then UseSHM.
3272     UseHugeTLBFS = UseSHM = true;
3273 
3274     // Don't try UseTransparentHugePages since there are known
3275     // performance issues with it turned on. This might change in the future.
3276     UseTransparentHugePages = false;
3277   }
3278 
3279   if (UseTransparentHugePages) {
3280     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3281     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3282       UseHugeTLBFS = false;
3283       UseSHM = false;
3284       return true;
3285     }
3286     UseTransparentHugePages = false;
3287   }
3288 
3289   if (UseHugeTLBFS) {
3290     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3291     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3292       UseSHM = false;
3293       return true;
3294     }
3295     UseHugeTLBFS = false;
3296   }
3297 
3298   return UseSHM;
3299 }
3300 
3301 void os::large_page_init() {
3302   if (!UseLargePages &&
3303       !UseTransparentHugePages &&
3304       !UseHugeTLBFS &&
3305       !UseSHM) {
3306     // Not using large pages.
3307     return;
3308   }
3309 
3310   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3311     // The user explicitly turned off large pages.
3312     // Ignore the rest of the large pages flags.
3313     UseTransparentHugePages = false;
3314     UseHugeTLBFS = false;
3315     UseSHM = false;
3316     return;
3317   }
3318 
3319   size_t large_page_size = Linux::setup_large_page_size();
3320   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3321 
3322   set_coredump_filter();
3323 }
3324 
3325 #ifndef SHM_HUGETLB
3326   #define SHM_HUGETLB 04000
3327 #endif
3328 
3329 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3330                                             char* req_addr, bool exec) {
3331   // "exec" is passed in but not used.  Creating the shared image for
3332   // the code cache doesn't have an SHM_X executable permission to check.
3333   assert(UseLargePages && UseSHM, "only for SHM large pages");
3334   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3335 
3336   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3337     return NULL; // Fallback to small pages.
3338   }
3339 
3340   key_t key = IPC_PRIVATE;
3341   char *addr;
3342 
3343   bool warn_on_failure = UseLargePages &&
3344                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3345                          !FLAG_IS_DEFAULT(UseSHM) ||
3346                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3347   char msg[128];
3348 
3349   // Create a large shared memory region to attach to based on size.
3350   // Currently, size is the total size of the heap
3351   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3352   if (shmid == -1) {
3353     // Possible reasons for shmget failure:
3354     // 1. shmmax is too small for Java heap.
3355     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3356     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3357     // 2. not enough large page memory.
3358     //    > check available large pages: cat /proc/meminfo
3359     //    > increase amount of large pages:
3360     //          echo new_value > /proc/sys/vm/nr_hugepages
3361     //      Note 1: different Linux may use different name for this property,
3362     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3363     //      Note 2: it's possible there's enough physical memory available but
3364     //            they are so fragmented after a long run that they can't
3365     //            coalesce into large pages. Try to reserve large pages when
3366     //            the system is still "fresh".
3367     if (warn_on_failure) {
3368       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3369       warning("%s", msg);
3370     }
3371     return NULL;
3372   }
3373 
3374   // attach to the region
3375   addr = (char*)shmat(shmid, req_addr, 0);
3376   int err = errno;
3377 
3378   // Remove shmid. If shmat() is successful, the actual shared memory segment
3379   // will be deleted when it's detached by shmdt() or when the process
3380   // terminates. If shmat() is not successful this will remove the shared
3381   // segment immediately.
3382   shmctl(shmid, IPC_RMID, NULL);
3383 
3384   if ((intptr_t)addr == -1) {
3385     if (warn_on_failure) {
3386       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3387       warning("%s", msg);
3388     }
3389     return NULL;
3390   }
3391 
3392   return addr;
3393 }
3394 
3395 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3396                                         int error) {
3397   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3398 
3399   bool warn_on_failure = UseLargePages &&
3400       (!FLAG_IS_DEFAULT(UseLargePages) ||
3401        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3402        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3403 
3404   if (warn_on_failure) {
3405     char msg[128];
3406     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3407                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3408     warning("%s", msg);
3409   }
3410 }
3411 
3412 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3413                                                         char* req_addr,
3414                                                         bool exec) {
3415   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3416   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3417   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3418 
3419   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3420   char* addr = (char*)::mmap(req_addr, bytes, prot,
3421                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3422                              -1, 0);
3423 
3424   if (addr == MAP_FAILED) {
3425     warn_on_large_pages_failure(req_addr, bytes, errno);
3426     return NULL;
3427   }
3428 
3429   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3430 
3431   return addr;
3432 }
3433 
3434 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3435 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3436 //   (req_addr != NULL) or with a given alignment.
3437 //  - bytes shall be a multiple of alignment.
3438 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3439 //  - alignment sets the alignment at which memory shall be allocated.
3440 //     It must be a multiple of allocation granularity.
3441 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3442 //  req_addr or NULL.
3443 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3444 
3445   size_t extra_size = bytes;
3446   if (req_addr == NULL && alignment > 0) {
3447     extra_size += alignment;
3448   }
3449 
3450   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3451     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3452     -1, 0);
3453   if (start == MAP_FAILED) {
3454     start = NULL;
3455   } else {
3456     if (req_addr != NULL) {
3457       if (start != req_addr) {
3458         ::munmap(start, extra_size);
3459         start = NULL;
3460       }
3461     } else {
3462       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3463       char* const end_aligned = start_aligned + bytes;
3464       char* const end = start + extra_size;
3465       if (start_aligned > start) {
3466         ::munmap(start, start_aligned - start);
3467       }
3468       if (end_aligned < end) {
3469         ::munmap(end_aligned, end - end_aligned);
3470       }
3471       start = start_aligned;
3472     }
3473   }
3474   return start;
3475 
3476 }
3477 
3478 // Reserve memory using mmap(MAP_HUGETLB).
3479 //  - bytes shall be a multiple of alignment.
3480 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3481 //  - alignment sets the alignment at which memory shall be allocated.
3482 //     It must be a multiple of allocation granularity.
3483 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3484 //  req_addr or NULL.
3485 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3486                                                          size_t alignment,
3487                                                          char* req_addr,
3488                                                          bool exec) {
3489   size_t large_page_size = os::large_page_size();
3490   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3491 
3492   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3493   assert(is_size_aligned(bytes, alignment), "Must be");
3494 
3495   // First reserve - but not commit - the address range in small pages.
3496   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3497 
3498   if (start == NULL) {
3499     return NULL;
3500   }
3501 
3502   assert(is_ptr_aligned(start, alignment), "Must be");
3503 
3504   char* end = start + bytes;
3505 
3506   // Find the regions of the allocated chunk that can be promoted to large pages.
3507   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3508   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3509 
3510   size_t lp_bytes = lp_end - lp_start;
3511 
3512   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3513 
3514   if (lp_bytes == 0) {
3515     // The mapped region doesn't even span the start and the end of a large page.
3516     // Fall back to allocate a non-special area.
3517     ::munmap(start, end - start);
3518     return NULL;
3519   }
3520 
3521   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3522 
3523   void* result;
3524 
3525   // Commit small-paged leading area.
3526   if (start != lp_start) {
3527     result = ::mmap(start, lp_start - start, prot,
3528                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3529                     -1, 0);
3530     if (result == MAP_FAILED) {
3531       ::munmap(lp_start, end - lp_start);
3532       return NULL;
3533     }
3534   }
3535 
3536   // Commit large-paged area.
3537   result = ::mmap(lp_start, lp_bytes, prot,
3538                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3539                   -1, 0);
3540   if (result == MAP_FAILED) {
3541     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3542     // If the mmap above fails, the large pages region will be unmapped and we
3543     // have regions before and after with small pages. Release these regions.
3544     //
3545     // |  mapped  |  unmapped  |  mapped  |
3546     // ^          ^            ^          ^
3547     // start      lp_start     lp_end     end
3548     //
3549     ::munmap(start, lp_start - start);
3550     ::munmap(lp_end, end - lp_end);
3551     return NULL;
3552   }
3553 
3554   // Commit small-paged trailing area.
3555   if (lp_end != end) {
3556     result = ::mmap(lp_end, end - lp_end, prot,
3557                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3558                     -1, 0);
3559     if (result == MAP_FAILED) {
3560       ::munmap(start, lp_end - start);
3561       return NULL;
3562     }
3563   }
3564 
3565   return start;
3566 }
3567 
3568 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3569                                                    size_t alignment,
3570                                                    char* req_addr,
3571                                                    bool exec) {
3572   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3573   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3574   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3575   assert(is_power_of_2(os::large_page_size()), "Must be");
3576   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3577 
3578   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3579     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3580   } else {
3581     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3582   }
3583 }
3584 
3585 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3586                                  char* req_addr, bool exec) {
3587   assert(UseLargePages, "only for large pages");
3588 
3589   char* addr;
3590   if (UseSHM) {
3591     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3592   } else {
3593     assert(UseHugeTLBFS, "must be");
3594     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3595   }
3596 
3597   if (addr != NULL) {
3598     if (UseNUMAInterleaving) {
3599       numa_make_global(addr, bytes);
3600     }
3601 
3602     // The memory is committed
3603     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3604   }
3605 
3606   return addr;
3607 }
3608 
3609 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3610   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3611   return shmdt(base) == 0;
3612 }
3613 
3614 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3615   return pd_release_memory(base, bytes);
3616 }
3617 
3618 bool os::release_memory_special(char* base, size_t bytes) {
3619   bool res;
3620   if (MemTracker::tracking_level() > NMT_minimal) {
3621     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3622     res = os::Linux::release_memory_special_impl(base, bytes);
3623     if (res) {
3624       tkr.record((address)base, bytes);
3625     }
3626 
3627   } else {
3628     res = os::Linux::release_memory_special_impl(base, bytes);
3629   }
3630   return res;
3631 }
3632 
3633 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3634   assert(UseLargePages, "only for large pages");
3635   bool res;
3636 
3637   if (UseSHM) {
3638     res = os::Linux::release_memory_special_shm(base, bytes);
3639   } else {
3640     assert(UseHugeTLBFS, "must be");
3641     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3642   }
3643   return res;
3644 }
3645 
3646 size_t os::large_page_size() {
3647   return _large_page_size;
3648 }
3649 
3650 // With SysV SHM the entire memory region must be allocated as shared
3651 // memory.
3652 // HugeTLBFS allows application to commit large page memory on demand.
3653 // However, when committing memory with HugeTLBFS fails, the region
3654 // that was supposed to be committed will lose the old reservation
3655 // and allow other threads to steal that memory region. Because of this
3656 // behavior we can't commit HugeTLBFS memory.
3657 bool os::can_commit_large_page_memory() {
3658   return UseTransparentHugePages;
3659 }
3660 
3661 bool os::can_execute_large_page_memory() {
3662   return UseTransparentHugePages || UseHugeTLBFS;
3663 }
3664 
3665 // Reserve memory at an arbitrary address, only if that area is
3666 // available (and not reserved for something else).
3667 
3668 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3669   const int max_tries = 10;
3670   char* base[max_tries];
3671   size_t size[max_tries];
3672   const size_t gap = 0x000000;
3673 
3674   // Assert only that the size is a multiple of the page size, since
3675   // that's all that mmap requires, and since that's all we really know
3676   // about at this low abstraction level.  If we need higher alignment,
3677   // we can either pass an alignment to this method or verify alignment
3678   // in one of the methods further up the call chain.  See bug 5044738.
3679   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3680 
3681   // Repeatedly allocate blocks until the block is allocated at the
3682   // right spot. Give up after max_tries. Note that reserve_memory() will
3683   // automatically update _highest_vm_reserved_address if the call is
3684   // successful. The variable tracks the highest memory address every reserved
3685   // by JVM. It is used to detect heap-stack collision if running with
3686   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3687   // space than needed, it could confuse the collision detecting code. To
3688   // solve the problem, save current _highest_vm_reserved_address and
3689   // calculate the correct value before return.
3690   address old_highest = _highest_vm_reserved_address;
3691 
3692   // Linux mmap allows caller to pass an address as hint; give it a try first,
3693   // if kernel honors the hint then we can return immediately.
3694   char * addr = anon_mmap(requested_addr, bytes, false);
3695   if (addr == requested_addr) {
3696     return requested_addr;
3697   }
3698 
3699   if (addr != NULL) {
3700     // mmap() is successful but it fails to reserve at the requested address
3701     anon_munmap(addr, bytes);
3702   }
3703 
3704   int i;
3705   for (i = 0; i < max_tries; ++i) {
3706     base[i] = reserve_memory(bytes);
3707 
3708     if (base[i] != NULL) {
3709       // Is this the block we wanted?
3710       if (base[i] == requested_addr) {
3711         size[i] = bytes;
3712         break;
3713       }
3714 
3715       // Does this overlap the block we wanted? Give back the overlapped
3716       // parts and try again.
3717 
3718       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3719       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3720         unmap_memory(base[i], top_overlap);
3721         base[i] += top_overlap;
3722         size[i] = bytes - top_overlap;
3723       } else {
3724         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3725         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3726           unmap_memory(requested_addr, bottom_overlap);
3727           size[i] = bytes - bottom_overlap;
3728         } else {
3729           size[i] = bytes;
3730         }
3731       }
3732     }
3733   }
3734 
3735   // Give back the unused reserved pieces.
3736 
3737   for (int j = 0; j < i; ++j) {
3738     if (base[j] != NULL) {
3739       unmap_memory(base[j], size[j]);
3740     }
3741   }
3742 
3743   if (i < max_tries) {
3744     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3745     return requested_addr;
3746   } else {
3747     _highest_vm_reserved_address = old_highest;
3748     return NULL;
3749   }
3750 }
3751 
3752 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3753   return ::read(fd, buf, nBytes);
3754 }
3755 
3756 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3757   return ::pread(fd, buf, nBytes, offset);
3758 }
3759 
3760 // Short sleep, direct OS call.
3761 //
3762 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3763 // sched_yield(2) will actually give up the CPU:
3764 //
3765 //   * Alone on this pariticular CPU, keeps running.
3766 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3767 //     (pre 2.6.39).
3768 //
3769 // So calling this with 0 is an alternative.
3770 //
3771 void os::naked_short_sleep(jlong ms) {
3772   struct timespec req;
3773 
3774   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3775   req.tv_sec = 0;
3776   if (ms > 0) {
3777     req.tv_nsec = (ms % 1000) * 1000000;
3778   } else {
3779     req.tv_nsec = 1;
3780   }
3781 
3782   nanosleep(&req, NULL);
3783 
3784   return;
3785 }
3786 
3787 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3788 void os::infinite_sleep() {
3789   while (true) {    // sleep forever ...
3790     ::sleep(100);   // ... 100 seconds at a time
3791   }
3792 }
3793 
3794 // Used to convert frequent JVM_Yield() to nops
3795 bool os::dont_yield() {
3796   return DontYieldALot;
3797 }
3798 
3799 void os::naked_yield() {
3800   sched_yield();
3801 }
3802 
3803 ////////////////////////////////////////////////////////////////////////////////
3804 // thread priority support
3805 
3806 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3807 // only supports dynamic priority, static priority must be zero. For real-time
3808 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3809 // However, for large multi-threaded applications, SCHED_RR is not only slower
3810 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3811 // of 5 runs - Sep 2005).
3812 //
3813 // The following code actually changes the niceness of kernel-thread/LWP. It
3814 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3815 // not the entire user process, and user level threads are 1:1 mapped to kernel
3816 // threads. It has always been the case, but could change in the future. For
3817 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3818 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3819 
3820 int os::java_to_os_priority[CriticalPriority + 1] = {
3821   19,              // 0 Entry should never be used
3822 
3823    4,              // 1 MinPriority
3824    3,              // 2
3825    2,              // 3
3826 
3827    1,              // 4
3828    0,              // 5 NormPriority
3829   -1,              // 6
3830 
3831   -2,              // 7
3832   -3,              // 8
3833   -4,              // 9 NearMaxPriority
3834 
3835   -5,              // 10 MaxPriority
3836 
3837   -5               // 11 CriticalPriority
3838 };
3839 
3840 static int prio_init() {
3841   if (ThreadPriorityPolicy == 1) {
3842     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3843     // if effective uid is not root. Perhaps, a more elegant way of doing
3844     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3845     if (geteuid() != 0) {
3846       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3847         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3848       }
3849       ThreadPriorityPolicy = 0;
3850     }
3851   }
3852   if (UseCriticalJavaThreadPriority) {
3853     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3854   }
3855   return 0;
3856 }
3857 
3858 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3859   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3860 
3861   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3862   return (ret == 0) ? OS_OK : OS_ERR;
3863 }
3864 
3865 OSReturn os::get_native_priority(const Thread* const thread,
3866                                  int *priority_ptr) {
3867   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3868     *priority_ptr = java_to_os_priority[NormPriority];
3869     return OS_OK;
3870   }
3871 
3872   errno = 0;
3873   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3874   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3875 }
3876 
3877 // Hint to the underlying OS that a task switch would not be good.
3878 // Void return because it's a hint and can fail.
3879 void os::hint_no_preempt() {}
3880 
3881 ////////////////////////////////////////////////////////////////////////////////
3882 // suspend/resume support
3883 
3884 //  the low-level signal-based suspend/resume support is a remnant from the
3885 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3886 //  within hotspot. Now there is a single use-case for this:
3887 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3888 //      that runs in the watcher thread.
3889 //  The remaining code is greatly simplified from the more general suspension
3890 //  code that used to be used.
3891 //
3892 //  The protocol is quite simple:
3893 //  - suspend:
3894 //      - sends a signal to the target thread
3895 //      - polls the suspend state of the osthread using a yield loop
3896 //      - target thread signal handler (SR_handler) sets suspend state
3897 //        and blocks in sigsuspend until continued
3898 //  - resume:
3899 //      - sets target osthread state to continue
3900 //      - sends signal to end the sigsuspend loop in the SR_handler
3901 //
3902 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3903 
3904 static void resume_clear_context(OSThread *osthread) {
3905   osthread->set_ucontext(NULL);
3906   osthread->set_siginfo(NULL);
3907 }
3908 
3909 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3910                                  ucontext_t* context) {
3911   osthread->set_ucontext(context);
3912   osthread->set_siginfo(siginfo);
3913 }
3914 
3915 // Handler function invoked when a thread's execution is suspended or
3916 // resumed. We have to be careful that only async-safe functions are
3917 // called here (Note: most pthread functions are not async safe and
3918 // should be avoided.)
3919 //
3920 // Note: sigwait() is a more natural fit than sigsuspend() from an
3921 // interface point of view, but sigwait() prevents the signal hander
3922 // from being run. libpthread would get very confused by not having
3923 // its signal handlers run and prevents sigwait()'s use with the
3924 // mutex granting granting signal.
3925 //
3926 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3927 //
3928 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3929   // Save and restore errno to avoid confusing native code with EINTR
3930   // after sigsuspend.
3931   int old_errno = errno;
3932 
3933   Thread* thread = Thread::current();
3934   OSThread* osthread = thread->osthread();
3935   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3936 
3937   os::SuspendResume::State current = osthread->sr.state();
3938   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3939     suspend_save_context(osthread, siginfo, context);
3940 
3941     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3942     os::SuspendResume::State state = osthread->sr.suspended();
3943     if (state == os::SuspendResume::SR_SUSPENDED) {
3944       sigset_t suspend_set;  // signals for sigsuspend()
3945 
3946       // get current set of blocked signals and unblock resume signal
3947       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3948       sigdelset(&suspend_set, SR_signum);
3949 
3950       sr_semaphore.signal();
3951       // wait here until we are resumed
3952       while (1) {
3953         sigsuspend(&suspend_set);
3954 
3955         os::SuspendResume::State result = osthread->sr.running();
3956         if (result == os::SuspendResume::SR_RUNNING) {
3957           sr_semaphore.signal();
3958           break;
3959         }
3960       }
3961 
3962     } else if (state == os::SuspendResume::SR_RUNNING) {
3963       // request was cancelled, continue
3964     } else {
3965       ShouldNotReachHere();
3966     }
3967 
3968     resume_clear_context(osthread);
3969   } else if (current == os::SuspendResume::SR_RUNNING) {
3970     // request was cancelled, continue
3971   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3972     // ignore
3973   } else {
3974     // ignore
3975   }
3976 
3977   errno = old_errno;
3978 }
3979 
3980 
3981 static int SR_initialize() {
3982   struct sigaction act;
3983   char *s;
3984   // Get signal number to use for suspend/resume
3985   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3986     int sig = ::strtol(s, 0, 10);
3987     if (sig > 0 || sig < _NSIG) {
3988       SR_signum = sig;
3989     }
3990   }
3991 
3992   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3993          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3994 
3995   sigemptyset(&SR_sigset);
3996   sigaddset(&SR_sigset, SR_signum);
3997 
3998   // Set up signal handler for suspend/resume
3999   act.sa_flags = SA_RESTART|SA_SIGINFO;
4000   act.sa_handler = (void (*)(int)) SR_handler;
4001 
4002   // SR_signum is blocked by default.
4003   // 4528190 - We also need to block pthread restart signal (32 on all
4004   // supported Linux platforms). Note that LinuxThreads need to block
4005   // this signal for all threads to work properly. So we don't have
4006   // to use hard-coded signal number when setting up the mask.
4007   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4008 
4009   if (sigaction(SR_signum, &act, 0) == -1) {
4010     return -1;
4011   }
4012 
4013   // Save signal flag
4014   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4015   return 0;
4016 }
4017 
4018 static int sr_notify(OSThread* osthread) {
4019   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4020   assert_status(status == 0, status, "pthread_kill");
4021   return status;
4022 }
4023 
4024 // "Randomly" selected value for how long we want to spin
4025 // before bailing out on suspending a thread, also how often
4026 // we send a signal to a thread we want to resume
4027 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4028 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4029 
4030 // returns true on success and false on error - really an error is fatal
4031 // but this seems the normal response to library errors
4032 static bool do_suspend(OSThread* osthread) {
4033   assert(osthread->sr.is_running(), "thread should be running");
4034   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4035 
4036   // mark as suspended and send signal
4037   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4038     // failed to switch, state wasn't running?
4039     ShouldNotReachHere();
4040     return false;
4041   }
4042 
4043   if (sr_notify(osthread) != 0) {
4044     ShouldNotReachHere();
4045   }
4046 
4047   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4048   while (true) {
4049     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4050       break;
4051     } else {
4052       // timeout
4053       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4054       if (cancelled == os::SuspendResume::SR_RUNNING) {
4055         return false;
4056       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4057         // make sure that we consume the signal on the semaphore as well
4058         sr_semaphore.wait();
4059         break;
4060       } else {
4061         ShouldNotReachHere();
4062         return false;
4063       }
4064     }
4065   }
4066 
4067   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4068   return true;
4069 }
4070 
4071 static void do_resume(OSThread* osthread) {
4072   assert(osthread->sr.is_suspended(), "thread should be suspended");
4073   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4074 
4075   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4076     // failed to switch to WAKEUP_REQUEST
4077     ShouldNotReachHere();
4078     return;
4079   }
4080 
4081   while (true) {
4082     if (sr_notify(osthread) == 0) {
4083       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4084         if (osthread->sr.is_running()) {
4085           return;
4086         }
4087       }
4088     } else {
4089       ShouldNotReachHere();
4090     }
4091   }
4092 
4093   guarantee(osthread->sr.is_running(), "Must be running!");
4094 }
4095 
4096 ///////////////////////////////////////////////////////////////////////////////////
4097 // signal handling (except suspend/resume)
4098 
4099 // This routine may be used by user applications as a "hook" to catch signals.
4100 // The user-defined signal handler must pass unrecognized signals to this
4101 // routine, and if it returns true (non-zero), then the signal handler must
4102 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4103 // routine will never retun false (zero), but instead will execute a VM panic
4104 // routine kill the process.
4105 //
4106 // If this routine returns false, it is OK to call it again.  This allows
4107 // the user-defined signal handler to perform checks either before or after
4108 // the VM performs its own checks.  Naturally, the user code would be making
4109 // a serious error if it tried to handle an exception (such as a null check
4110 // or breakpoint) that the VM was generating for its own correct operation.
4111 //
4112 // This routine may recognize any of the following kinds of signals:
4113 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4114 // It should be consulted by handlers for any of those signals.
4115 //
4116 // The caller of this routine must pass in the three arguments supplied
4117 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4118 // field of the structure passed to sigaction().  This routine assumes that
4119 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4120 //
4121 // Note that the VM will print warnings if it detects conflicting signal
4122 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4123 //
4124 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4125                                                  siginfo_t* siginfo,
4126                                                  void* ucontext,
4127                                                  int abort_if_unrecognized);
4128 
4129 void signalHandler(int sig, siginfo_t* info, void* uc) {
4130   assert(info != NULL && uc != NULL, "it must be old kernel");
4131   int orig_errno = errno;  // Preserve errno value over signal handler.
4132   JVM_handle_linux_signal(sig, info, uc, true);
4133   errno = orig_errno;
4134 }
4135 
4136 
4137 // This boolean allows users to forward their own non-matching signals
4138 // to JVM_handle_linux_signal, harmlessly.
4139 bool os::Linux::signal_handlers_are_installed = false;
4140 
4141 // For signal-chaining
4142 struct sigaction os::Linux::sigact[MAXSIGNUM];
4143 unsigned int os::Linux::sigs = 0;
4144 bool os::Linux::libjsig_is_loaded = false;
4145 typedef struct sigaction *(*get_signal_t)(int);
4146 get_signal_t os::Linux::get_signal_action = NULL;
4147 
4148 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4149   struct sigaction *actp = NULL;
4150 
4151   if (libjsig_is_loaded) {
4152     // Retrieve the old signal handler from libjsig
4153     actp = (*get_signal_action)(sig);
4154   }
4155   if (actp == NULL) {
4156     // Retrieve the preinstalled signal handler from jvm
4157     actp = get_preinstalled_handler(sig);
4158   }
4159 
4160   return actp;
4161 }
4162 
4163 static bool call_chained_handler(struct sigaction *actp, int sig,
4164                                  siginfo_t *siginfo, void *context) {
4165   // Call the old signal handler
4166   if (actp->sa_handler == SIG_DFL) {
4167     // It's more reasonable to let jvm treat it as an unexpected exception
4168     // instead of taking the default action.
4169     return false;
4170   } else if (actp->sa_handler != SIG_IGN) {
4171     if ((actp->sa_flags & SA_NODEFER) == 0) {
4172       // automaticlly block the signal
4173       sigaddset(&(actp->sa_mask), sig);
4174     }
4175 
4176     sa_handler_t hand;
4177     sa_sigaction_t sa;
4178     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4179     // retrieve the chained handler
4180     if (siginfo_flag_set) {
4181       sa = actp->sa_sigaction;
4182     } else {
4183       hand = actp->sa_handler;
4184     }
4185 
4186     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4187       actp->sa_handler = SIG_DFL;
4188     }
4189 
4190     // try to honor the signal mask
4191     sigset_t oset;
4192     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4193 
4194     // call into the chained handler
4195     if (siginfo_flag_set) {
4196       (*sa)(sig, siginfo, context);
4197     } else {
4198       (*hand)(sig);
4199     }
4200 
4201     // restore the signal mask
4202     pthread_sigmask(SIG_SETMASK, &oset, 0);
4203   }
4204   // Tell jvm's signal handler the signal is taken care of.
4205   return true;
4206 }
4207 
4208 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4209   bool chained = false;
4210   // signal-chaining
4211   if (UseSignalChaining) {
4212     struct sigaction *actp = get_chained_signal_action(sig);
4213     if (actp != NULL) {
4214       chained = call_chained_handler(actp, sig, siginfo, context);
4215     }
4216   }
4217   return chained;
4218 }
4219 
4220 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4221   if ((((unsigned int)1 << sig) & sigs) != 0) {
4222     return &sigact[sig];
4223   }
4224   return NULL;
4225 }
4226 
4227 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4228   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4229   sigact[sig] = oldAct;
4230   sigs |= (unsigned int)1 << sig;
4231 }
4232 
4233 // for diagnostic
4234 int os::Linux::sigflags[MAXSIGNUM];
4235 
4236 int os::Linux::get_our_sigflags(int sig) {
4237   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4238   return sigflags[sig];
4239 }
4240 
4241 void os::Linux::set_our_sigflags(int sig, int flags) {
4242   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4243   sigflags[sig] = flags;
4244 }
4245 
4246 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4247   // Check for overwrite.
4248   struct sigaction oldAct;
4249   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4250 
4251   void* oldhand = oldAct.sa_sigaction
4252                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4253                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4254   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4255       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4256       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4257     if (AllowUserSignalHandlers || !set_installed) {
4258       // Do not overwrite; user takes responsibility to forward to us.
4259       return;
4260     } else if (UseSignalChaining) {
4261       // save the old handler in jvm
4262       save_preinstalled_handler(sig, oldAct);
4263       // libjsig also interposes the sigaction() call below and saves the
4264       // old sigaction on it own.
4265     } else {
4266       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4267                     "%#lx for signal %d.", (long)oldhand, sig));
4268     }
4269   }
4270 
4271   struct sigaction sigAct;
4272   sigfillset(&(sigAct.sa_mask));
4273   sigAct.sa_handler = SIG_DFL;
4274   if (!set_installed) {
4275     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4276   } else {
4277     sigAct.sa_sigaction = signalHandler;
4278     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4279   }
4280   // Save flags, which are set by ours
4281   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4282   sigflags[sig] = sigAct.sa_flags;
4283 
4284   int ret = sigaction(sig, &sigAct, &oldAct);
4285   assert(ret == 0, "check");
4286 
4287   void* oldhand2  = oldAct.sa_sigaction
4288                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4289                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4290   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4291 }
4292 
4293 // install signal handlers for signals that HotSpot needs to
4294 // handle in order to support Java-level exception handling.
4295 
4296 void os::Linux::install_signal_handlers() {
4297   if (!signal_handlers_are_installed) {
4298     signal_handlers_are_installed = true;
4299 
4300     // signal-chaining
4301     typedef void (*signal_setting_t)();
4302     signal_setting_t begin_signal_setting = NULL;
4303     signal_setting_t end_signal_setting = NULL;
4304     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4305                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4306     if (begin_signal_setting != NULL) {
4307       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4308                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4309       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4310                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4311       libjsig_is_loaded = true;
4312       assert(UseSignalChaining, "should enable signal-chaining");
4313     }
4314     if (libjsig_is_loaded) {
4315       // Tell libjsig jvm is setting signal handlers
4316       (*begin_signal_setting)();
4317     }
4318 
4319     set_signal_handler(SIGSEGV, true);
4320     set_signal_handler(SIGPIPE, true);
4321     set_signal_handler(SIGBUS, true);
4322     set_signal_handler(SIGILL, true);
4323     set_signal_handler(SIGFPE, true);
4324 #if defined(PPC64)
4325     set_signal_handler(SIGTRAP, true);
4326 #endif
4327     set_signal_handler(SIGXFSZ, true);
4328 
4329     if (libjsig_is_loaded) {
4330       // Tell libjsig jvm finishes setting signal handlers
4331       (*end_signal_setting)();
4332     }
4333 
4334     // We don't activate signal checker if libjsig is in place, we trust ourselves
4335     // and if UserSignalHandler is installed all bets are off.
4336     // Log that signal checking is off only if -verbose:jni is specified.
4337     if (CheckJNICalls) {
4338       if (libjsig_is_loaded) {
4339         if (PrintJNIResolving) {
4340           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4341         }
4342         check_signals = false;
4343       }
4344       if (AllowUserSignalHandlers) {
4345         if (PrintJNIResolving) {
4346           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4347         }
4348         check_signals = false;
4349       }
4350     }
4351   }
4352 }
4353 
4354 // This is the fastest way to get thread cpu time on Linux.
4355 // Returns cpu time (user+sys) for any thread, not only for current.
4356 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4357 // It might work on 2.6.10+ with a special kernel/glibc patch.
4358 // For reference, please, see IEEE Std 1003.1-2004:
4359 //   http://www.unix.org/single_unix_specification
4360 
4361 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4362   struct timespec tp;
4363   int rc = os::Linux::clock_gettime(clockid, &tp);
4364   assert(rc == 0, "clock_gettime is expected to return 0 code");
4365 
4366   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4367 }
4368 
4369 /////
4370 // glibc on Linux platform uses non-documented flag
4371 // to indicate, that some special sort of signal
4372 // trampoline is used.
4373 // We will never set this flag, and we should
4374 // ignore this flag in our diagnostic
4375 #ifdef SIGNIFICANT_SIGNAL_MASK
4376   #undef SIGNIFICANT_SIGNAL_MASK
4377 #endif
4378 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4379 
4380 static const char* get_signal_handler_name(address handler,
4381                                            char* buf, int buflen) {
4382   int offset;
4383   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4384   if (found) {
4385     // skip directory names
4386     const char *p1, *p2;
4387     p1 = buf;
4388     size_t len = strlen(os::file_separator());
4389     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4390     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4391   } else {
4392     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4393   }
4394   return buf;
4395 }
4396 
4397 static void print_signal_handler(outputStream* st, int sig,
4398                                  char* buf, size_t buflen) {
4399   struct sigaction sa;
4400 
4401   sigaction(sig, NULL, &sa);
4402 
4403   // See comment for SIGNIFICANT_SIGNAL_MASK define
4404   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4405 
4406   st->print("%s: ", os::exception_name(sig, buf, buflen));
4407 
4408   address handler = (sa.sa_flags & SA_SIGINFO)
4409     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4410     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4411 
4412   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4413     st->print("SIG_DFL");
4414   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4415     st->print("SIG_IGN");
4416   } else {
4417     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4418   }
4419 
4420   st->print(", sa_mask[0]=");
4421   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4422 
4423   address rh = VMError::get_resetted_sighandler(sig);
4424   // May be, handler was resetted by VMError?
4425   if (rh != NULL) {
4426     handler = rh;
4427     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4428   }
4429 
4430   st->print(", sa_flags=");
4431   os::Posix::print_sa_flags(st, sa.sa_flags);
4432 
4433   // Check: is it our handler?
4434   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4435       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4436     // It is our signal handler
4437     // check for flags, reset system-used one!
4438     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4439       st->print(
4440                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4441                 os::Linux::get_our_sigflags(sig));
4442     }
4443   }
4444   st->cr();
4445 }
4446 
4447 
4448 #define DO_SIGNAL_CHECK(sig)                      \
4449   do {                                            \
4450     if (!sigismember(&check_signal_done, sig)) {  \
4451       os::Linux::check_signal_handler(sig);       \
4452     }                                             \
4453   } while (0)
4454 
4455 // This method is a periodic task to check for misbehaving JNI applications
4456 // under CheckJNI, we can add any periodic checks here
4457 
4458 void os::run_periodic_checks() {
4459   if (check_signals == false) return;
4460 
4461   // SEGV and BUS if overridden could potentially prevent
4462   // generation of hs*.log in the event of a crash, debugging
4463   // such a case can be very challenging, so we absolutely
4464   // check the following for a good measure:
4465   DO_SIGNAL_CHECK(SIGSEGV);
4466   DO_SIGNAL_CHECK(SIGILL);
4467   DO_SIGNAL_CHECK(SIGFPE);
4468   DO_SIGNAL_CHECK(SIGBUS);
4469   DO_SIGNAL_CHECK(SIGPIPE);
4470   DO_SIGNAL_CHECK(SIGXFSZ);
4471 #if defined(PPC64)
4472   DO_SIGNAL_CHECK(SIGTRAP);
4473 #endif
4474 
4475   // ReduceSignalUsage allows the user to override these handlers
4476   // see comments at the very top and jvm_solaris.h
4477   if (!ReduceSignalUsage) {
4478     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4479     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4480     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4481     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4482   }
4483 
4484   DO_SIGNAL_CHECK(SR_signum);
4485   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4486 }
4487 
4488 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4489 
4490 static os_sigaction_t os_sigaction = NULL;
4491 
4492 void os::Linux::check_signal_handler(int sig) {
4493   char buf[O_BUFLEN];
4494   address jvmHandler = NULL;
4495 
4496 
4497   struct sigaction act;
4498   if (os_sigaction == NULL) {
4499     // only trust the default sigaction, in case it has been interposed
4500     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4501     if (os_sigaction == NULL) return;
4502   }
4503 
4504   os_sigaction(sig, (struct sigaction*)NULL, &act);
4505 
4506 
4507   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4508 
4509   address thisHandler = (act.sa_flags & SA_SIGINFO)
4510     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4511     : CAST_FROM_FN_PTR(address, act.sa_handler);
4512 
4513 
4514   switch (sig) {
4515   case SIGSEGV:
4516   case SIGBUS:
4517   case SIGFPE:
4518   case SIGPIPE:
4519   case SIGILL:
4520   case SIGXFSZ:
4521     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4522     break;
4523 
4524   case SHUTDOWN1_SIGNAL:
4525   case SHUTDOWN2_SIGNAL:
4526   case SHUTDOWN3_SIGNAL:
4527   case BREAK_SIGNAL:
4528     jvmHandler = (address)user_handler();
4529     break;
4530 
4531   case INTERRUPT_SIGNAL:
4532     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4533     break;
4534 
4535   default:
4536     if (sig == SR_signum) {
4537       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4538     } else {
4539       return;
4540     }
4541     break;
4542   }
4543 
4544   if (thisHandler != jvmHandler) {
4545     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4546     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4547     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4548     // No need to check this sig any longer
4549     sigaddset(&check_signal_done, sig);
4550     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4551     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4552       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4553                     exception_name(sig, buf, O_BUFLEN));
4554     }
4555   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4556     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4557     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4558     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4559     // No need to check this sig any longer
4560     sigaddset(&check_signal_done, sig);
4561   }
4562 
4563   // Dump all the signal
4564   if (sigismember(&check_signal_done, sig)) {
4565     print_signal_handlers(tty, buf, O_BUFLEN);
4566   }
4567 }
4568 
4569 extern void report_error(char* file_name, int line_no, char* title,
4570                          char* format, ...);
4571 
4572 extern bool signal_name(int signo, char* buf, size_t len);
4573 
4574 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4575   if (0 < exception_code && exception_code <= SIGRTMAX) {
4576     // signal
4577     if (!signal_name(exception_code, buf, size)) {
4578       jio_snprintf(buf, size, "SIG%d", exception_code);
4579     }
4580     return buf;
4581   } else {
4582     return NULL;
4583   }
4584 }
4585 
4586 // this is called _before_ the most of global arguments have been parsed
4587 void os::init(void) {
4588   char dummy;   // used to get a guess on initial stack address
4589 //  first_hrtime = gethrtime();
4590 
4591   // With LinuxThreads the JavaMain thread pid (primordial thread)
4592   // is different than the pid of the java launcher thread.
4593   // So, on Linux, the launcher thread pid is passed to the VM
4594   // via the sun.java.launcher.pid property.
4595   // Use this property instead of getpid() if it was correctly passed.
4596   // See bug 6351349.
4597   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4598 
4599   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4600 
4601   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4602 
4603   init_random(1234567);
4604 
4605   ThreadCritical::initialize();
4606 
4607   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4608   if (Linux::page_size() == -1) {
4609     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4610                   strerror(errno)));
4611   }
4612   init_page_sizes((size_t) Linux::page_size());
4613 
4614   Linux::initialize_system_info();
4615 
4616   // main_thread points to the aboriginal thread
4617   Linux::_main_thread = pthread_self();
4618 
4619   Linux::clock_init();
4620   initial_time_count = javaTimeNanos();
4621 
4622   // pthread_condattr initialization for monotonic clock
4623   int status;
4624   pthread_condattr_t* _condattr = os::Linux::condAttr();
4625   if ((status = pthread_condattr_init(_condattr)) != 0) {
4626     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4627   }
4628   // Only set the clock if CLOCK_MONOTONIC is available
4629   if (os::supports_monotonic_clock()) {
4630     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4631       if (status == EINVAL) {
4632         warning("Unable to use monotonic clock with relative timed-waits" \
4633                 " - changes to the time-of-day clock may have adverse affects");
4634       } else {
4635         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4636       }
4637     }
4638   }
4639   // else it defaults to CLOCK_REALTIME
4640 
4641   // If the pagesize of the VM is greater than 8K determine the appropriate
4642   // number of initial guard pages.  The user can change this with the
4643   // command line arguments, if needed.
4644   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4645     StackYellowPages = 1;
4646     StackRedPages = 1;
4647     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4648   }
4649 
4650   // retrieve entry point for pthread_setname_np
4651   Linux::_pthread_setname_np =
4652     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4653 
4654 }
4655 
4656 // To install functions for atexit system call
4657 extern "C" {
4658   static void perfMemory_exit_helper() {
4659     perfMemory_exit();
4660   }
4661 }
4662 
4663 // this is called _after_ the global arguments have been parsed
4664 jint os::init_2(void) {
4665   Linux::fast_thread_clock_init();
4666 
4667   // Allocate a single page and mark it as readable for safepoint polling
4668   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4669   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4670 
4671   os::set_polling_page(polling_page);
4672 
4673 #ifndef PRODUCT
4674   if (Verbose && PrintMiscellaneous) {
4675     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4676                (intptr_t)polling_page);
4677   }
4678 #endif
4679 
4680   if (!UseMembar) {
4681     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4682     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4683     os::set_memory_serialize_page(mem_serialize_page);
4684 
4685 #ifndef PRODUCT
4686     if (Verbose && PrintMiscellaneous) {
4687       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4688                  (intptr_t)mem_serialize_page);
4689     }
4690 #endif
4691   }
4692 
4693   // initialize suspend/resume support - must do this before signal_sets_init()
4694   if (SR_initialize() != 0) {
4695     perror("SR_initialize failed");
4696     return JNI_ERR;
4697   }
4698 
4699   Linux::signal_sets_init();
4700   Linux::install_signal_handlers();
4701 
4702   // Check minimum allowable stack size for thread creation and to initialize
4703   // the java system classes, including StackOverflowError - depends on page
4704   // size.  Add a page for compiler2 recursion in main thread.
4705   // Add in 2*BytesPerWord times page size to account for VM stack during
4706   // class initialization depending on 32 or 64 bit VM.
4707   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4708                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4709                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4710 
4711   size_t threadStackSizeInBytes = ThreadStackSize * K;
4712   if (threadStackSizeInBytes != 0 &&
4713       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4714     tty->print_cr("\nThe stack size specified is too small, "
4715                   "Specify at least %dk",
4716                   os::Linux::min_stack_allowed/ K);
4717     return JNI_ERR;
4718   }
4719 
4720   // Make the stack size a multiple of the page size so that
4721   // the yellow/red zones can be guarded.
4722   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4723                                                 vm_page_size()));
4724 
4725   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4726 
4727 #if defined(IA32)
4728   workaround_expand_exec_shield_cs_limit();
4729 #endif
4730 
4731   Linux::libpthread_init();
4732   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4733     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4734                   Linux::glibc_version(), Linux::libpthread_version(),
4735                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4736   }
4737 
4738   if (UseNUMA) {
4739     if (!Linux::libnuma_init()) {
4740       UseNUMA = false;
4741     } else {
4742       if ((Linux::numa_max_node() < 1)) {
4743         // There's only one node(they start from 0), disable NUMA.
4744         UseNUMA = false;
4745       }
4746     }
4747     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4748     // we can make the adaptive lgrp chunk resizing work. If the user specified
4749     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4750     // disable adaptive resizing.
4751     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4752       if (FLAG_IS_DEFAULT(UseNUMA)) {
4753         UseNUMA = false;
4754       } else {
4755         if (FLAG_IS_DEFAULT(UseLargePages) &&
4756             FLAG_IS_DEFAULT(UseSHM) &&
4757             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4758           UseLargePages = false;
4759         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4760           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4761           UseAdaptiveSizePolicy = false;
4762           UseAdaptiveNUMAChunkSizing = false;
4763         }
4764       }
4765     }
4766     if (!UseNUMA && ForceNUMA) {
4767       UseNUMA = true;
4768     }
4769   }
4770 
4771   if (MaxFDLimit) {
4772     // set the number of file descriptors to max. print out error
4773     // if getrlimit/setrlimit fails but continue regardless.
4774     struct rlimit nbr_files;
4775     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4776     if (status != 0) {
4777       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4778         perror("os::init_2 getrlimit failed");
4779       }
4780     } else {
4781       nbr_files.rlim_cur = nbr_files.rlim_max;
4782       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4783       if (status != 0) {
4784         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4785           perror("os::init_2 setrlimit failed");
4786         }
4787       }
4788     }
4789   }
4790 
4791   // Initialize lock used to serialize thread creation (see os::create_thread)
4792   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4793 
4794   // at-exit methods are called in the reverse order of their registration.
4795   // atexit functions are called on return from main or as a result of a
4796   // call to exit(3C). There can be only 32 of these functions registered
4797   // and atexit() does not set errno.
4798 
4799   if (PerfAllowAtExitRegistration) {
4800     // only register atexit functions if PerfAllowAtExitRegistration is set.
4801     // atexit functions can be delayed until process exit time, which
4802     // can be problematic for embedded VM situations. Embedded VMs should
4803     // call DestroyJavaVM() to assure that VM resources are released.
4804 
4805     // note: perfMemory_exit_helper atexit function may be removed in
4806     // the future if the appropriate cleanup code can be added to the
4807     // VM_Exit VMOperation's doit method.
4808     if (atexit(perfMemory_exit_helper) != 0) {
4809       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4810     }
4811   }
4812 
4813   // initialize thread priority policy
4814   prio_init();
4815 
4816   return JNI_OK;
4817 }
4818 
4819 // Mark the polling page as unreadable
4820 void os::make_polling_page_unreadable(void) {
4821   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4822     fatal("Could not disable polling page");
4823   }
4824 }
4825 
4826 // Mark the polling page as readable
4827 void os::make_polling_page_readable(void) {
4828   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4829     fatal("Could not enable polling page");
4830   }
4831 }
4832 
4833 int os::active_processor_count() {
4834   // Linux doesn't yet have a (official) notion of processor sets,
4835   // so just return the number of online processors.
4836   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4837   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4838   return online_cpus;
4839 }
4840 
4841 void os::set_native_thread_name(const char *name) {
4842   if (Linux::_pthread_setname_np) {
4843     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4844     snprintf(buf, sizeof(buf), "%s", name);
4845     buf[sizeof(buf) - 1] = '\0';
4846     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4847     // ERANGE should not happen; all other errors should just be ignored.
4848     assert(rc != ERANGE, "pthread_setname_np failed");
4849   }
4850 }
4851 
4852 bool os::distribute_processes(uint length, uint* distribution) {
4853   // Not yet implemented.
4854   return false;
4855 }
4856 
4857 bool os::bind_to_processor(uint processor_id) {
4858   // Not yet implemented.
4859   return false;
4860 }
4861 
4862 ///
4863 
4864 void os::SuspendedThreadTask::internal_do_task() {
4865   if (do_suspend(_thread->osthread())) {
4866     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4867     do_task(context);
4868     do_resume(_thread->osthread());
4869   }
4870 }
4871 
4872 class PcFetcher : public os::SuspendedThreadTask {
4873  public:
4874   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4875   ExtendedPC result();
4876  protected:
4877   void do_task(const os::SuspendedThreadTaskContext& context);
4878  private:
4879   ExtendedPC _epc;
4880 };
4881 
4882 ExtendedPC PcFetcher::result() {
4883   guarantee(is_done(), "task is not done yet.");
4884   return _epc;
4885 }
4886 
4887 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4888   Thread* thread = context.thread();
4889   OSThread* osthread = thread->osthread();
4890   if (osthread->ucontext() != NULL) {
4891     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4892   } else {
4893     // NULL context is unexpected, double-check this is the VMThread
4894     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4895   }
4896 }
4897 
4898 // Suspends the target using the signal mechanism and then grabs the PC before
4899 // resuming the target. Used by the flat-profiler only
4900 ExtendedPC os::get_thread_pc(Thread* thread) {
4901   // Make sure that it is called by the watcher for the VMThread
4902   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4903   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4904 
4905   PcFetcher fetcher(thread);
4906   fetcher.run();
4907   return fetcher.result();
4908 }
4909 
4910 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4911                                    pthread_mutex_t *_mutex,
4912                                    const struct timespec *_abstime) {
4913   if (is_NPTL()) {
4914     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4915   } else {
4916     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4917     // word back to default 64bit precision if condvar is signaled. Java
4918     // wants 53bit precision.  Save and restore current value.
4919     int fpu = get_fpu_control_word();
4920     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4921     set_fpu_control_word(fpu);
4922     return status;
4923   }
4924 }
4925 
4926 ////////////////////////////////////////////////////////////////////////////////
4927 // debug support
4928 
4929 bool os::find(address addr, outputStream* st) {
4930   Dl_info dlinfo;
4931   memset(&dlinfo, 0, sizeof(dlinfo));
4932   if (dladdr(addr, &dlinfo) != 0) {
4933     st->print(PTR_FORMAT ": ", addr);
4934     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4935       st->print("%s+%#x", dlinfo.dli_sname,
4936                 addr - (intptr_t)dlinfo.dli_saddr);
4937     } else if (dlinfo.dli_fbase != NULL) {
4938       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4939     } else {
4940       st->print("<absolute address>");
4941     }
4942     if (dlinfo.dli_fname != NULL) {
4943       st->print(" in %s", dlinfo.dli_fname);
4944     }
4945     if (dlinfo.dli_fbase != NULL) {
4946       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4947     }
4948     st->cr();
4949 
4950     if (Verbose) {
4951       // decode some bytes around the PC
4952       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4953       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4954       address       lowest = (address) dlinfo.dli_sname;
4955       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4956       if (begin < lowest)  begin = lowest;
4957       Dl_info dlinfo2;
4958       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4959           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4960         end = (address) dlinfo2.dli_saddr;
4961       }
4962       Disassembler::decode(begin, end, st);
4963     }
4964     return true;
4965   }
4966   return false;
4967 }
4968 
4969 ////////////////////////////////////////////////////////////////////////////////
4970 // misc
4971 
4972 // This does not do anything on Linux. This is basically a hook for being
4973 // able to use structured exception handling (thread-local exception filters)
4974 // on, e.g., Win32.
4975 void
4976 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4977                          JavaCallArguments* args, Thread* thread) {
4978   f(value, method, args, thread);
4979 }
4980 
4981 void os::print_statistics() {
4982 }
4983 
4984 int os::message_box(const char* title, const char* message) {
4985   int i;
4986   fdStream err(defaultStream::error_fd());
4987   for (i = 0; i < 78; i++) err.print_raw("=");
4988   err.cr();
4989   err.print_raw_cr(title);
4990   for (i = 0; i < 78; i++) err.print_raw("-");
4991   err.cr();
4992   err.print_raw_cr(message);
4993   for (i = 0; i < 78; i++) err.print_raw("=");
4994   err.cr();
4995 
4996   char buf[16];
4997   // Prevent process from exiting upon "read error" without consuming all CPU
4998   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4999 
5000   return buf[0] == 'y' || buf[0] == 'Y';
5001 }
5002 
5003 int os::stat(const char *path, struct stat *sbuf) {
5004   char pathbuf[MAX_PATH];
5005   if (strlen(path) > MAX_PATH - 1) {
5006     errno = ENAMETOOLONG;
5007     return -1;
5008   }
5009   os::native_path(strcpy(pathbuf, path));
5010   return ::stat(pathbuf, sbuf);
5011 }
5012 
5013 bool os::check_heap(bool force) {
5014   return true;
5015 }
5016 
5017 // Is a (classpath) directory empty?
5018 bool os::dir_is_empty(const char* path) {
5019   DIR *dir = NULL;
5020   struct dirent *ptr;
5021 
5022   dir = opendir(path);
5023   if (dir == NULL) return true;
5024 
5025   // Scan the directory
5026   bool result = true;
5027   char buf[sizeof(struct dirent) + MAX_PATH];
5028   while (result && (ptr = ::readdir(dir)) != NULL) {
5029     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5030       result = false;
5031     }
5032   }
5033   closedir(dir);
5034   return result;
5035 }
5036 
5037 // This code originates from JDK's sysOpen and open64_w
5038 // from src/solaris/hpi/src/system_md.c
5039 
5040 int os::open(const char *path, int oflag, int mode) {
5041   if (strlen(path) > MAX_PATH - 1) {
5042     errno = ENAMETOOLONG;
5043     return -1;
5044   }
5045 
5046   // All file descriptors that are opened in the Java process and not
5047   // specifically destined for a subprocess should have the close-on-exec
5048   // flag set.  If we don't set it, then careless 3rd party native code
5049   // might fork and exec without closing all appropriate file descriptors
5050   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5051   // turn might:
5052   //
5053   // - cause end-of-file to fail to be detected on some file
5054   //   descriptors, resulting in mysterious hangs, or
5055   //
5056   // - might cause an fopen in the subprocess to fail on a system
5057   //   suffering from bug 1085341.
5058   //
5059   // (Yes, the default setting of the close-on-exec flag is a Unix
5060   // design flaw)
5061   //
5062   // See:
5063   // 1085341: 32-bit stdio routines should support file descriptors >255
5064   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5065   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5066   //
5067   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5068   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5069   // because it saves a system call and removes a small window where the flag
5070   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5071   // and we fall back to using FD_CLOEXEC (see below).
5072 #ifdef O_CLOEXEC
5073   oflag |= O_CLOEXEC;
5074 #endif
5075 
5076   int fd = ::open64(path, oflag, mode);
5077   if (fd == -1) return -1;
5078 
5079   //If the open succeeded, the file might still be a directory
5080   {
5081     struct stat64 buf64;
5082     int ret = ::fstat64(fd, &buf64);
5083     int st_mode = buf64.st_mode;
5084 
5085     if (ret != -1) {
5086       if ((st_mode & S_IFMT) == S_IFDIR) {
5087         errno = EISDIR;
5088         ::close(fd);
5089         return -1;
5090       }
5091     } else {
5092       ::close(fd);
5093       return -1;
5094     }
5095   }
5096 
5097 #ifdef FD_CLOEXEC
5098   // Validate that the use of the O_CLOEXEC flag on open above worked.
5099   // With recent kernels, we will perform this check exactly once.
5100   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5101   if (!O_CLOEXEC_is_known_to_work) {
5102     int flags = ::fcntl(fd, F_GETFD);
5103     if (flags != -1) {
5104       if ((flags & FD_CLOEXEC) != 0)
5105         O_CLOEXEC_is_known_to_work = 1;
5106       else
5107         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5108     }
5109   }
5110 #endif
5111 
5112   return fd;
5113 }
5114 
5115 
5116 // create binary file, rewriting existing file if required
5117 int os::create_binary_file(const char* path, bool rewrite_existing) {
5118   int oflags = O_WRONLY | O_CREAT;
5119   if (!rewrite_existing) {
5120     oflags |= O_EXCL;
5121   }
5122   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5123 }
5124 
5125 // return current position of file pointer
5126 jlong os::current_file_offset(int fd) {
5127   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5128 }
5129 
5130 // move file pointer to the specified offset
5131 jlong os::seek_to_file_offset(int fd, jlong offset) {
5132   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5133 }
5134 
5135 // This code originates from JDK's sysAvailable
5136 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5137 
5138 int os::available(int fd, jlong *bytes) {
5139   jlong cur, end;
5140   int mode;
5141   struct stat64 buf64;
5142 
5143   if (::fstat64(fd, &buf64) >= 0) {
5144     mode = buf64.st_mode;
5145     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5146       // XXX: is the following call interruptible? If so, this might
5147       // need to go through the INTERRUPT_IO() wrapper as for other
5148       // blocking, interruptible calls in this file.
5149       int n;
5150       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5151         *bytes = n;
5152         return 1;
5153       }
5154     }
5155   }
5156   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5157     return 0;
5158   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5159     return 0;
5160   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5161     return 0;
5162   }
5163   *bytes = end - cur;
5164   return 1;
5165 }
5166 
5167 // Map a block of memory.
5168 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5169                         char *addr, size_t bytes, bool read_only,
5170                         bool allow_exec) {
5171   int prot;
5172   int flags = MAP_PRIVATE;
5173 
5174   if (read_only) {
5175     prot = PROT_READ;
5176   } else {
5177     prot = PROT_READ | PROT_WRITE;
5178   }
5179 
5180   if (allow_exec) {
5181     prot |= PROT_EXEC;
5182   }
5183 
5184   if (addr != NULL) {
5185     flags |= MAP_FIXED;
5186   }
5187 
5188   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5189                                      fd, file_offset);
5190   if (mapped_address == MAP_FAILED) {
5191     return NULL;
5192   }
5193   return mapped_address;
5194 }
5195 
5196 
5197 // Remap a block of memory.
5198 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5199                           char *addr, size_t bytes, bool read_only,
5200                           bool allow_exec) {
5201   // same as map_memory() on this OS
5202   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5203                         allow_exec);
5204 }
5205 
5206 
5207 // Unmap a block of memory.
5208 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5209   return munmap(addr, bytes) == 0;
5210 }
5211 
5212 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5213 
5214 static clockid_t thread_cpu_clockid(Thread* thread) {
5215   pthread_t tid = thread->osthread()->pthread_id();
5216   clockid_t clockid;
5217 
5218   // Get thread clockid
5219   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5220   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5221   return clockid;
5222 }
5223 
5224 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5225 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5226 // of a thread.
5227 //
5228 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5229 // the fast estimate available on the platform.
5230 
5231 jlong os::current_thread_cpu_time() {
5232   if (os::Linux::supports_fast_thread_cpu_time()) {
5233     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5234   } else {
5235     // return user + sys since the cost is the same
5236     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5237   }
5238 }
5239 
5240 jlong os::thread_cpu_time(Thread* thread) {
5241   // consistent with what current_thread_cpu_time() returns
5242   if (os::Linux::supports_fast_thread_cpu_time()) {
5243     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5244   } else {
5245     return slow_thread_cpu_time(thread, true /* user + sys */);
5246   }
5247 }
5248 
5249 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5250   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5251     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5252   } else {
5253     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5254   }
5255 }
5256 
5257 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5258   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5259     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5260   } else {
5261     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5262   }
5263 }
5264 
5265 //  -1 on error.
5266 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5267   pid_t  tid = thread->osthread()->thread_id();
5268   char *s;
5269   char stat[2048];
5270   int statlen;
5271   char proc_name[64];
5272   int count;
5273   long sys_time, user_time;
5274   char cdummy;
5275   int idummy;
5276   long ldummy;
5277   FILE *fp;
5278 
5279   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5280   fp = fopen(proc_name, "r");
5281   if (fp == NULL) return -1;
5282   statlen = fread(stat, 1, 2047, fp);
5283   stat[statlen] = '\0';
5284   fclose(fp);
5285 
5286   // Skip pid and the command string. Note that we could be dealing with
5287   // weird command names, e.g. user could decide to rename java launcher
5288   // to "java 1.4.2 :)", then the stat file would look like
5289   //                1234 (java 1.4.2 :)) R ... ...
5290   // We don't really need to know the command string, just find the last
5291   // occurrence of ")" and then start parsing from there. See bug 4726580.
5292   s = strrchr(stat, ')');
5293   if (s == NULL) return -1;
5294 
5295   // Skip blank chars
5296   do { s++; } while (s && isspace(*s));
5297 
5298   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5299                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5300                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5301                  &user_time, &sys_time);
5302   if (count != 13) return -1;
5303   if (user_sys_cpu_time) {
5304     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5305   } else {
5306     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5307   }
5308 }
5309 
5310 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5311   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5312   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5313   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5314   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5315 }
5316 
5317 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5318   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5319   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5320   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5321   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5322 }
5323 
5324 bool os::is_thread_cpu_time_supported() {
5325   return true;
5326 }
5327 
5328 // System loadavg support.  Returns -1 if load average cannot be obtained.
5329 // Linux doesn't yet have a (official) notion of processor sets,
5330 // so just return the system wide load average.
5331 int os::loadavg(double loadavg[], int nelem) {
5332   return ::getloadavg(loadavg, nelem);
5333 }
5334 
5335 void os::pause() {
5336   char filename[MAX_PATH];
5337   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5338     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5339   } else {
5340     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5341   }
5342 
5343   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5344   if (fd != -1) {
5345     struct stat buf;
5346     ::close(fd);
5347     while (::stat(filename, &buf) == 0) {
5348       (void)::poll(NULL, 0, 100);
5349     }
5350   } else {
5351     jio_fprintf(stderr,
5352                 "Could not open pause file '%s', continuing immediately.\n", filename);
5353   }
5354 }
5355 
5356 
5357 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5358 // comment paragraphs are worth repeating here:
5359 //
5360 // Assumption:
5361 //    Only one parker can exist on an event, which is why we allocate
5362 //    them per-thread. Multiple unparkers can coexist.
5363 //
5364 // _Event serves as a restricted-range semaphore.
5365 //   -1 : thread is blocked, i.e. there is a waiter
5366 //    0 : neutral: thread is running or ready,
5367 //        could have been signaled after a wait started
5368 //    1 : signaled - thread is running or ready
5369 //
5370 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5371 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5372 // For specifics regarding the bug see GLIBC BUGID 261237 :
5373 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5374 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5375 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5376 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5377 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5378 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5379 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5380 // of libpthread avoids the problem, but isn't practical.
5381 //
5382 // Possible remedies:
5383 //
5384 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5385 //      This is palliative and probabilistic, however.  If the thread is preempted
5386 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5387 //      than the minimum period may have passed, and the abstime may be stale (in the
5388 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5389 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5390 //
5391 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5392 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5393 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5394 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5395 //      thread.
5396 //
5397 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5398 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5399 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5400 //      This also works well.  In fact it avoids kernel-level scalability impediments
5401 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5402 //      timers in a graceful fashion.
5403 //
5404 // 4.   When the abstime value is in the past it appears that control returns
5405 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5406 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5407 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5408 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5409 //      It may be possible to avoid reinitialization by checking the return
5410 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5411 //      condvar we must establish the invariant that cond_signal() is only called
5412 //      within critical sections protected by the adjunct mutex.  This prevents
5413 //      cond_signal() from "seeing" a condvar that's in the midst of being
5414 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5415 //      desirable signal-after-unlock optimization that avoids futile context switching.
5416 //
5417 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5418 //      structure when a condvar is used or initialized.  cond_destroy()  would
5419 //      release the helper structure.  Our reinitialize-after-timedwait fix
5420 //      put excessive stress on malloc/free and locks protecting the c-heap.
5421 //
5422 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5423 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5424 // and only enabling the work-around for vulnerable environments.
5425 
5426 // utility to compute the abstime argument to timedwait:
5427 // millis is the relative timeout time
5428 // abstime will be the absolute timeout time
5429 // TODO: replace compute_abstime() with unpackTime()
5430 
5431 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5432   if (millis < 0)  millis = 0;
5433 
5434   jlong seconds = millis / 1000;
5435   millis %= 1000;
5436   if (seconds > 50000000) { // see man cond_timedwait(3T)
5437     seconds = 50000000;
5438   }
5439 
5440   if (os::supports_monotonic_clock()) {
5441     struct timespec now;
5442     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5443     assert_status(status == 0, status, "clock_gettime");
5444     abstime->tv_sec = now.tv_sec  + seconds;
5445     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5446     if (nanos >= NANOSECS_PER_SEC) {
5447       abstime->tv_sec += 1;
5448       nanos -= NANOSECS_PER_SEC;
5449     }
5450     abstime->tv_nsec = nanos;
5451   } else {
5452     struct timeval now;
5453     int status = gettimeofday(&now, NULL);
5454     assert(status == 0, "gettimeofday");
5455     abstime->tv_sec = now.tv_sec  + seconds;
5456     long usec = now.tv_usec + millis * 1000;
5457     if (usec >= 1000000) {
5458       abstime->tv_sec += 1;
5459       usec -= 1000000;
5460     }
5461     abstime->tv_nsec = usec * 1000;
5462   }
5463   return abstime;
5464 }
5465 
5466 void os::PlatformEvent::park() {       // AKA "down()"
5467   // Transitions for _Event:
5468   //   -1 => -1 : illegal
5469   //    1 =>  0 : pass - return immediately
5470   //    0 => -1 : block; then set _Event to 0 before returning
5471 
5472   // Invariant: Only the thread associated with the Event/PlatformEvent
5473   // may call park().
5474   // TODO: assert that _Assoc != NULL or _Assoc == Self
5475   assert(_nParked == 0, "invariant");
5476 
5477   int v;
5478   for (;;) {
5479     v = _Event;
5480     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5481   }
5482   guarantee(v >= 0, "invariant");
5483   if (v == 0) {
5484     // Do this the hard way by blocking ...
5485     int status = pthread_mutex_lock(_mutex);
5486     assert_status(status == 0, status, "mutex_lock");
5487     guarantee(_nParked == 0, "invariant");
5488     ++_nParked;
5489     while (_Event < 0) {
5490       status = pthread_cond_wait(_cond, _mutex);
5491       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5492       // Treat this the same as if the wait was interrupted
5493       if (status == ETIME) { status = EINTR; }
5494       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5495     }
5496     --_nParked;
5497 
5498     _Event = 0;
5499     status = pthread_mutex_unlock(_mutex);
5500     assert_status(status == 0, status, "mutex_unlock");
5501     // Paranoia to ensure our locked and lock-free paths interact
5502     // correctly with each other.
5503     OrderAccess::fence();
5504   }
5505   guarantee(_Event >= 0, "invariant");
5506 }
5507 
5508 int os::PlatformEvent::park(jlong millis) {
5509   // Transitions for _Event:
5510   //   -1 => -1 : illegal
5511   //    1 =>  0 : pass - return immediately
5512   //    0 => -1 : block; then set _Event to 0 before returning
5513 
5514   guarantee(_nParked == 0, "invariant");
5515 
5516   int v;
5517   for (;;) {
5518     v = _Event;
5519     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5520   }
5521   guarantee(v >= 0, "invariant");
5522   if (v != 0) return OS_OK;
5523 
5524   // We do this the hard way, by blocking the thread.
5525   // Consider enforcing a minimum timeout value.
5526   struct timespec abst;
5527   compute_abstime(&abst, millis);
5528 
5529   int ret = OS_TIMEOUT;
5530   int status = pthread_mutex_lock(_mutex);
5531   assert_status(status == 0, status, "mutex_lock");
5532   guarantee(_nParked == 0, "invariant");
5533   ++_nParked;
5534 
5535   // Object.wait(timo) will return because of
5536   // (a) notification
5537   // (b) timeout
5538   // (c) thread.interrupt
5539   //
5540   // Thread.interrupt and object.notify{All} both call Event::set.
5541   // That is, we treat thread.interrupt as a special case of notification.
5542   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5543   // We assume all ETIME returns are valid.
5544   //
5545   // TODO: properly differentiate simultaneous notify+interrupt.
5546   // In that case, we should propagate the notify to another waiter.
5547 
5548   while (_Event < 0) {
5549     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5550     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5551       pthread_cond_destroy(_cond);
5552       pthread_cond_init(_cond, os::Linux::condAttr());
5553     }
5554     assert_status(status == 0 || status == EINTR ||
5555                   status == ETIME || status == ETIMEDOUT,
5556                   status, "cond_timedwait");
5557     if (!FilterSpuriousWakeups) break;                 // previous semantics
5558     if (status == ETIME || status == ETIMEDOUT) break;
5559     // We consume and ignore EINTR and spurious wakeups.
5560   }
5561   --_nParked;
5562   if (_Event >= 0) {
5563     ret = OS_OK;
5564   }
5565   _Event = 0;
5566   status = pthread_mutex_unlock(_mutex);
5567   assert_status(status == 0, status, "mutex_unlock");
5568   assert(_nParked == 0, "invariant");
5569   // Paranoia to ensure our locked and lock-free paths interact
5570   // correctly with each other.
5571   OrderAccess::fence();
5572   return ret;
5573 }
5574 
5575 void os::PlatformEvent::unpark() {
5576   // Transitions for _Event:
5577   //    0 => 1 : just return
5578   //    1 => 1 : just return
5579   //   -1 => either 0 or 1; must signal target thread
5580   //         That is, we can safely transition _Event from -1 to either
5581   //         0 or 1.
5582   // See also: "Semaphores in Plan 9" by Mullender & Cox
5583   //
5584   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5585   // that it will take two back-to-back park() calls for the owning
5586   // thread to block. This has the benefit of forcing a spurious return
5587   // from the first park() call after an unpark() call which will help
5588   // shake out uses of park() and unpark() without condition variables.
5589 
5590   if (Atomic::xchg(1, &_Event) >= 0) return;
5591 
5592   // Wait for the thread associated with the event to vacate
5593   int status = pthread_mutex_lock(_mutex);
5594   assert_status(status == 0, status, "mutex_lock");
5595   int AnyWaiters = _nParked;
5596   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5597   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5598     AnyWaiters = 0;
5599     pthread_cond_signal(_cond);
5600   }
5601   status = pthread_mutex_unlock(_mutex);
5602   assert_status(status == 0, status, "mutex_unlock");
5603   if (AnyWaiters != 0) {
5604     // Note that we signal() *after* dropping the lock for "immortal" Events.
5605     // This is safe and avoids a common class of  futile wakeups.  In rare
5606     // circumstances this can cause a thread to return prematurely from
5607     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5608     // will simply re-test the condition and re-park itself.
5609     // This provides particular benefit if the underlying platform does not
5610     // provide wait morphing.
5611     status = pthread_cond_signal(_cond);
5612     assert_status(status == 0, status, "cond_signal");
5613   }
5614 }
5615 
5616 
5617 // JSR166
5618 // -------------------------------------------------------
5619 
5620 // The solaris and linux implementations of park/unpark are fairly
5621 // conservative for now, but can be improved. They currently use a
5622 // mutex/condvar pair, plus a a count.
5623 // Park decrements count if > 0, else does a condvar wait.  Unpark
5624 // sets count to 1 and signals condvar.  Only one thread ever waits
5625 // on the condvar. Contention seen when trying to park implies that someone
5626 // is unparking you, so don't wait. And spurious returns are fine, so there
5627 // is no need to track notifications.
5628 
5629 // This code is common to linux and solaris and will be moved to a
5630 // common place in dolphin.
5631 //
5632 // The passed in time value is either a relative time in nanoseconds
5633 // or an absolute time in milliseconds. Either way it has to be unpacked
5634 // into suitable seconds and nanoseconds components and stored in the
5635 // given timespec structure.
5636 // Given time is a 64-bit value and the time_t used in the timespec is only
5637 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5638 // overflow if times way in the future are given. Further on Solaris versions
5639 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5640 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5641 // As it will be 28 years before "now + 100000000" will overflow we can
5642 // ignore overflow and just impose a hard-limit on seconds using the value
5643 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5644 // years from "now".
5645 
5646 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5647   assert(time > 0, "convertTime");
5648   time_t max_secs = 0;
5649 
5650   if (!os::supports_monotonic_clock() || isAbsolute) {
5651     struct timeval now;
5652     int status = gettimeofday(&now, NULL);
5653     assert(status == 0, "gettimeofday");
5654 
5655     max_secs = now.tv_sec + MAX_SECS;
5656 
5657     if (isAbsolute) {
5658       jlong secs = time / 1000;
5659       if (secs > max_secs) {
5660         absTime->tv_sec = max_secs;
5661       } else {
5662         absTime->tv_sec = secs;
5663       }
5664       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5665     } else {
5666       jlong secs = time / NANOSECS_PER_SEC;
5667       if (secs >= MAX_SECS) {
5668         absTime->tv_sec = max_secs;
5669         absTime->tv_nsec = 0;
5670       } else {
5671         absTime->tv_sec = now.tv_sec + secs;
5672         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5673         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5674           absTime->tv_nsec -= NANOSECS_PER_SEC;
5675           ++absTime->tv_sec; // note: this must be <= max_secs
5676         }
5677       }
5678     }
5679   } else {
5680     // must be relative using monotonic clock
5681     struct timespec now;
5682     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5683     assert_status(status == 0, status, "clock_gettime");
5684     max_secs = now.tv_sec + MAX_SECS;
5685     jlong secs = time / NANOSECS_PER_SEC;
5686     if (secs >= MAX_SECS) {
5687       absTime->tv_sec = max_secs;
5688       absTime->tv_nsec = 0;
5689     } else {
5690       absTime->tv_sec = now.tv_sec + secs;
5691       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5692       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5693         absTime->tv_nsec -= NANOSECS_PER_SEC;
5694         ++absTime->tv_sec; // note: this must be <= max_secs
5695       }
5696     }
5697   }
5698   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5699   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5700   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5701   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5702 }
5703 
5704 void Parker::park(bool isAbsolute, jlong time) {
5705   // Ideally we'd do something useful while spinning, such
5706   // as calling unpackTime().
5707 
5708   // Optional fast-path check:
5709   // Return immediately if a permit is available.
5710   // We depend on Atomic::xchg() having full barrier semantics
5711   // since we are doing a lock-free update to _counter.
5712   if (Atomic::xchg(0, &_counter) > 0) return;
5713 
5714   Thread* thread = Thread::current();
5715   assert(thread->is_Java_thread(), "Must be JavaThread");
5716   JavaThread *jt = (JavaThread *)thread;
5717 
5718   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5719   // Check interrupt before trying to wait
5720   if (Thread::is_interrupted(thread, false)) {
5721     return;
5722   }
5723 
5724   // Next, demultiplex/decode time arguments
5725   timespec absTime;
5726   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5727     return;
5728   }
5729   if (time > 0) {
5730     unpackTime(&absTime, isAbsolute, time);
5731   }
5732 
5733 
5734   // Enter safepoint region
5735   // Beware of deadlocks such as 6317397.
5736   // The per-thread Parker:: mutex is a classic leaf-lock.
5737   // In particular a thread must never block on the Threads_lock while
5738   // holding the Parker:: mutex.  If safepoints are pending both the
5739   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5740   ThreadBlockInVM tbivm(jt);
5741 
5742   // Don't wait if cannot get lock since interference arises from
5743   // unblocking.  Also. check interrupt before trying wait
5744   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5745     return;
5746   }
5747 
5748   int status;
5749   if (_counter > 0)  { // no wait needed
5750     _counter = 0;
5751     status = pthread_mutex_unlock(_mutex);
5752     assert(status == 0, "invariant");
5753     // Paranoia to ensure our locked and lock-free paths interact
5754     // correctly with each other and Java-level accesses.
5755     OrderAccess::fence();
5756     return;
5757   }
5758 
5759 #ifdef ASSERT
5760   // Don't catch signals while blocked; let the running threads have the signals.
5761   // (This allows a debugger to break into the running thread.)
5762   sigset_t oldsigs;
5763   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5764   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5765 #endif
5766 
5767   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5768   jt->set_suspend_equivalent();
5769   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5770 
5771   assert(_cur_index == -1, "invariant");
5772   if (time == 0) {
5773     _cur_index = REL_INDEX; // arbitrary choice when not timed
5774     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5775   } else {
5776     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5777     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5778     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5779       pthread_cond_destroy(&_cond[_cur_index]);
5780       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5781     }
5782   }
5783   _cur_index = -1;
5784   assert_status(status == 0 || status == EINTR ||
5785                 status == ETIME || status == ETIMEDOUT,
5786                 status, "cond_timedwait");
5787 
5788 #ifdef ASSERT
5789   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5790 #endif
5791 
5792   _counter = 0;
5793   status = pthread_mutex_unlock(_mutex);
5794   assert_status(status == 0, status, "invariant");
5795   // Paranoia to ensure our locked and lock-free paths interact
5796   // correctly with each other and Java-level accesses.
5797   OrderAccess::fence();
5798 
5799   // If externally suspended while waiting, re-suspend
5800   if (jt->handle_special_suspend_equivalent_condition()) {
5801     jt->java_suspend_self();
5802   }
5803 }
5804 
5805 void Parker::unpark() {
5806   int status = pthread_mutex_lock(_mutex);
5807   assert(status == 0, "invariant");
5808   const int s = _counter;
5809   _counter = 1;
5810   if (s < 1) {
5811     // thread might be parked
5812     if (_cur_index != -1) {
5813       // thread is definitely parked
5814       if (WorkAroundNPTLTimedWaitHang) {
5815         status = pthread_cond_signal(&_cond[_cur_index]);
5816         assert(status == 0, "invariant");
5817         status = pthread_mutex_unlock(_mutex);
5818         assert(status == 0, "invariant");
5819       } else {
5820         status = pthread_mutex_unlock(_mutex);
5821         assert(status == 0, "invariant");
5822         status = pthread_cond_signal(&_cond[_cur_index]);
5823         assert(status == 0, "invariant");
5824       }
5825     } else {
5826       pthread_mutex_unlock(_mutex);
5827       assert(status == 0, "invariant");
5828     }
5829   } else {
5830     pthread_mutex_unlock(_mutex);
5831     assert(status == 0, "invariant");
5832   }
5833 }
5834 
5835 
5836 extern char** environ;
5837 
5838 // Run the specified command in a separate process. Return its exit value,
5839 // or -1 on failure (e.g. can't fork a new process).
5840 // Unlike system(), this function can be called from signal handler. It
5841 // doesn't block SIGINT et al.
5842 int os::fork_and_exec(char* cmd) {
5843   const char * argv[4] = {"sh", "-c", cmd, NULL};
5844 
5845   pid_t pid = fork();
5846 
5847   if (pid < 0) {
5848     // fork failed
5849     return -1;
5850 
5851   } else if (pid == 0) {
5852     // child process
5853 
5854     execve("/bin/sh", (char* const*)argv, environ);
5855 
5856     // execve failed
5857     _exit(-1);
5858 
5859   } else  {
5860     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5861     // care about the actual exit code, for now.
5862 
5863     int status;
5864 
5865     // Wait for the child process to exit.  This returns immediately if
5866     // the child has already exited. */
5867     while (waitpid(pid, &status, 0) < 0) {
5868       switch (errno) {
5869       case ECHILD: return 0;
5870       case EINTR: break;
5871       default: return -1;
5872       }
5873     }
5874 
5875     if (WIFEXITED(status)) {
5876       // The child exited normally; get its exit code.
5877       return WEXITSTATUS(status);
5878     } else if (WIFSIGNALED(status)) {
5879       // The child exited because of a signal
5880       // The best value to return is 0x80 + signal number,
5881       // because that is what all Unix shells do, and because
5882       // it allows callers to distinguish between process exit and
5883       // process death by signal.
5884       return 0x80 + WTERMSIG(status);
5885     } else {
5886       // Unknown exit code; pass it through
5887       return status;
5888     }
5889   }
5890 }
5891 
5892 // is_headless_jre()
5893 //
5894 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5895 // in order to report if we are running in a headless jre
5896 //
5897 // Since JDK8 xawt/libmawt.so was moved into the same directory
5898 // as libawt.so, and renamed libawt_xawt.so
5899 //
5900 bool os::is_headless_jre() {
5901   struct stat statbuf;
5902   char buf[MAXPATHLEN];
5903   char libmawtpath[MAXPATHLEN];
5904   const char *xawtstr  = "/xawt/libmawt.so";
5905   const char *new_xawtstr = "/libawt_xawt.so";
5906   char *p;
5907 
5908   // Get path to libjvm.so
5909   os::jvm_path(buf, sizeof(buf));
5910 
5911   // Get rid of libjvm.so
5912   p = strrchr(buf, '/');
5913   if (p == NULL) {
5914     return false;
5915   } else {
5916     *p = '\0';
5917   }
5918 
5919   // Get rid of client or server
5920   p = strrchr(buf, '/');
5921   if (p == NULL) {
5922     return false;
5923   } else {
5924     *p = '\0';
5925   }
5926 
5927   // check xawt/libmawt.so
5928   strcpy(libmawtpath, buf);
5929   strcat(libmawtpath, xawtstr);
5930   if (::stat(libmawtpath, &statbuf) == 0) return false;
5931 
5932   // check libawt_xawt.so
5933   strcpy(libmawtpath, buf);
5934   strcat(libmawtpath, new_xawtstr);
5935   if (::stat(libmawtpath, &statbuf) == 0) return false;
5936 
5937   return true;
5938 }
5939 
5940 // Get the default path to the core file
5941 // Returns the length of the string
5942 int os::get_core_path(char* buffer, size_t bufferSize) {
5943   /*
5944    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5945    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5946    */
5947   const int core_pattern_len = 129;
5948   char core_pattern[core_pattern_len] = {0};
5949 
5950   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5951   if (core_pattern_file != -1) {
5952     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5953     ::close(core_pattern_file);
5954 
5955     if (ret > 0) {
5956       char *last_char = core_pattern + strlen(core_pattern) - 1;
5957 
5958       if (*last_char == '\n') {
5959         *last_char = '\0';
5960       }
5961     }
5962   }
5963 
5964   if (strlen(core_pattern) == 0) {
5965     return -1;
5966   }
5967 
5968   char *pid_pos = strstr(core_pattern, "%p");
5969   int written;
5970 
5971   if (core_pattern[0] == '/') {
5972     written = jio_snprintf(buffer, bufferSize, core_pattern);
5973   } else {
5974     char cwd[PATH_MAX];
5975 
5976     const char* p = get_current_directory(cwd, PATH_MAX);
5977     if (p == NULL) {
5978       return -1;
5979     }
5980 
5981     if (core_pattern[0] == '|') {
5982       written = jio_snprintf(buffer, bufferSize,
5983                         "\"%s\" (or dumping to %s/core.%d)",
5984                                      &core_pattern[1], p, current_process_id());
5985     } else {
5986       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5987     }
5988   }
5989 
5990   if (written < 0) {
5991     return -1;
5992   }
5993 
5994   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5995     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5996 
5997     if (core_uses_pid_file != -1) {
5998       char core_uses_pid = 0;
5999       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6000       ::close(core_uses_pid_file);
6001 
6002       if (core_uses_pid == '1') {
6003         jio_snprintf(buffer + written, bufferSize - written,
6004                                           ".%d", current_process_id());
6005       }
6006     }
6007   }
6008 
6009   return strlen(buffer);
6010 }
6011 
6012 /////////////// Unit tests ///////////////
6013 
6014 #ifndef PRODUCT
6015 
6016 #define test_log(...)              \
6017   do {                             \
6018     if (VerboseInternalVMTests) {  \
6019       tty->print_cr(__VA_ARGS__);  \
6020       tty->flush();                \
6021     }                              \
6022   } while (false)
6023 
6024 class TestReserveMemorySpecial : AllStatic {
6025  public:
6026   static void small_page_write(void* addr, size_t size) {
6027     size_t page_size = os::vm_page_size();
6028 
6029     char* end = (char*)addr + size;
6030     for (char* p = (char*)addr; p < end; p += page_size) {
6031       *p = 1;
6032     }
6033   }
6034 
6035   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6036     if (!UseHugeTLBFS) {
6037       return;
6038     }
6039 
6040     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6041 
6042     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6043 
6044     if (addr != NULL) {
6045       small_page_write(addr, size);
6046 
6047       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6048     }
6049   }
6050 
6051   static void test_reserve_memory_special_huge_tlbfs_only() {
6052     if (!UseHugeTLBFS) {
6053       return;
6054     }
6055 
6056     size_t lp = os::large_page_size();
6057 
6058     for (size_t size = lp; size <= lp * 10; size += lp) {
6059       test_reserve_memory_special_huge_tlbfs_only(size);
6060     }
6061   }
6062 
6063   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6064     size_t lp = os::large_page_size();
6065     size_t ag = os::vm_allocation_granularity();
6066 
6067     // sizes to test
6068     const size_t sizes[] = {
6069       lp, lp + ag, lp + lp / 2, lp * 2,
6070       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6071       lp * 10, lp * 10 + lp / 2
6072     };
6073     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6074 
6075     // For each size/alignment combination, we test three scenarios:
6076     // 1) with req_addr == NULL
6077     // 2) with a non-null req_addr at which we expect to successfully allocate
6078     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6079     //    expect the allocation to either fail or to ignore req_addr
6080 
6081     // Pre-allocate two areas; they shall be as large as the largest allocation
6082     //  and aligned to the largest alignment we will be testing.
6083     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6084     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6085       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6086       -1, 0);
6087     assert(mapping1 != MAP_FAILED, "should work");
6088 
6089     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6090       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6091       -1, 0);
6092     assert(mapping2 != MAP_FAILED, "should work");
6093 
6094     // Unmap the first mapping, but leave the second mapping intact: the first
6095     // mapping will serve as a value for a "good" req_addr (case 2). The second
6096     // mapping, still intact, as "bad" req_addr (case 3).
6097     ::munmap(mapping1, mapping_size);
6098 
6099     // Case 1
6100     test_log("%s, req_addr NULL:", __FUNCTION__);
6101     test_log("size            align           result");
6102 
6103     for (int i = 0; i < num_sizes; i++) {
6104       const size_t size = sizes[i];
6105       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6106         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6107         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6108             size, alignment, p, (p != NULL ? "" : "(failed)"));
6109         if (p != NULL) {
6110           assert(is_ptr_aligned(p, alignment), "must be");
6111           small_page_write(p, size);
6112           os::Linux::release_memory_special_huge_tlbfs(p, size);
6113         }
6114       }
6115     }
6116 
6117     // Case 2
6118     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6119     test_log("size            align           req_addr         result");
6120 
6121     for (int i = 0; i < num_sizes; i++) {
6122       const size_t size = sizes[i];
6123       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6124         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6125         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6126         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6127             size, alignment, req_addr, p,
6128             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6129         if (p != NULL) {
6130           assert(p == req_addr, "must be");
6131           small_page_write(p, size);
6132           os::Linux::release_memory_special_huge_tlbfs(p, size);
6133         }
6134       }
6135     }
6136 
6137     // Case 3
6138     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6139     test_log("size            align           req_addr         result");
6140 
6141     for (int i = 0; i < num_sizes; i++) {
6142       const size_t size = sizes[i];
6143       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6144         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6145         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6146         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6147             size, alignment, req_addr, p,
6148             ((p != NULL ? "" : "(failed)")));
6149         // as the area around req_addr contains already existing mappings, the API should always
6150         // return NULL (as per contract, it cannot return another address)
6151         assert(p == NULL, "must be");
6152       }
6153     }
6154 
6155     ::munmap(mapping2, mapping_size);
6156 
6157   }
6158 
6159   static void test_reserve_memory_special_huge_tlbfs() {
6160     if (!UseHugeTLBFS) {
6161       return;
6162     }
6163 
6164     test_reserve_memory_special_huge_tlbfs_only();
6165     test_reserve_memory_special_huge_tlbfs_mixed();
6166   }
6167 
6168   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6169     if (!UseSHM) {
6170       return;
6171     }
6172 
6173     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6174 
6175     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6176 
6177     if (addr != NULL) {
6178       assert(is_ptr_aligned(addr, alignment), "Check");
6179       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6180 
6181       small_page_write(addr, size);
6182 
6183       os::Linux::release_memory_special_shm(addr, size);
6184     }
6185   }
6186 
6187   static void test_reserve_memory_special_shm() {
6188     size_t lp = os::large_page_size();
6189     size_t ag = os::vm_allocation_granularity();
6190 
6191     for (size_t size = ag; size < lp * 3; size += ag) {
6192       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6193         test_reserve_memory_special_shm(size, alignment);
6194       }
6195     }
6196   }
6197 
6198   static void test() {
6199     test_reserve_memory_special_huge_tlbfs();
6200     test_reserve_memory_special_shm();
6201   }
6202 };
6203 
6204 void TestReserveMemorySpecial_test() {
6205   TestReserveMemorySpecial::test();
6206 }
6207 
6208 #endif