1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcLocker.inline.hpp"
  56 #include "gc/shared/gcTimer.hpp"
  57 #include "gc/shared/gcTrace.hpp"
  58 #include "gc/shared/gcTraceTime.hpp"
  59 #include "gc/shared/generationSpec.hpp"
  60 #include "gc/shared/isGCActiveMark.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_processed;
 119 
 120  public:
 121   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 122 
 123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 124     *card_ptr = CardTableModRefBS::dirty_card_val();
 125     _num_processed++;
 126     return true;
 127   }
 128 
 129   size_t num_processed() const { return _num_processed; }
 130 };
 131 
 132 YoungList::YoungList(G1CollectedHeap* g1h) :
 133     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 134     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 135   guarantee(check_list_empty(false), "just making sure...");
 136 }
 137 
 138 void YoungList::push_region(HeapRegion *hr) {
 139   assert(!hr->is_young(), "should not already be young");
 140   assert(hr->get_next_young_region() == NULL, "cause it should!");
 141 
 142   hr->set_next_young_region(_head);
 143   _head = hr;
 144 
 145   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 146   ++_length;
 147 }
 148 
 149 void YoungList::add_survivor_region(HeapRegion* hr) {
 150   assert(hr->is_survivor(), "should be flagged as survivor region");
 151   assert(hr->get_next_young_region() == NULL, "cause it should!");
 152 
 153   hr->set_next_young_region(_survivor_head);
 154   if (_survivor_head == NULL) {
 155     _survivor_tail = hr;
 156   }
 157   _survivor_head = hr;
 158   ++_survivor_length;
 159 }
 160 
 161 void YoungList::empty_list(HeapRegion* list) {
 162   while (list != NULL) {
 163     HeapRegion* next = list->get_next_young_region();
 164     list->set_next_young_region(NULL);
 165     list->uninstall_surv_rate_group();
 166     // This is called before a Full GC and all the non-empty /
 167     // non-humongous regions at the end of the Full GC will end up as
 168     // old anyway.
 169     list->set_old();
 170     list = next;
 171   }
 172 }
 173 
 174 void YoungList::empty_list() {
 175   assert(check_list_well_formed(), "young list should be well formed");
 176 
 177   empty_list(_head);
 178   _head = NULL;
 179   _length = 0;
 180 
 181   empty_list(_survivor_head);
 182   _survivor_head = NULL;
 183   _survivor_tail = NULL;
 184   _survivor_length = 0;
 185 
 186   _last_sampled_rs_lengths = 0;
 187 
 188   assert(check_list_empty(false), "just making sure...");
 189 }
 190 
 191 bool YoungList::check_list_well_formed() {
 192   bool ret = true;
 193 
 194   uint length = 0;
 195   HeapRegion* curr = _head;
 196   HeapRegion* last = NULL;
 197   while (curr != NULL) {
 198     if (!curr->is_young()) {
 199       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 200                              "incorrectly tagged (y: %d, surv: %d)",
 201                              p2i(curr->bottom()), p2i(curr->end()),
 202                              curr->is_young(), curr->is_survivor());
 203       ret = false;
 204     }
 205     ++length;
 206     last = curr;
 207     curr = curr->get_next_young_region();
 208   }
 209   ret = ret && (length == _length);
 210 
 211   if (!ret) {
 212     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 213     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 214                            length, _length);
 215   }
 216 
 217   return ret;
 218 }
 219 
 220 bool YoungList::check_list_empty(bool check_sample) {
 221   bool ret = true;
 222 
 223   if (_length != 0) {
 224     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 225                   _length);
 226     ret = false;
 227   }
 228   if (check_sample && _last_sampled_rs_lengths != 0) {
 229     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 230     ret = false;
 231   }
 232   if (_head != NULL) {
 233     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 234     ret = false;
 235   }
 236   if (!ret) {
 237     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 238   }
 239 
 240   return ret;
 241 }
 242 
 243 void
 244 YoungList::rs_length_sampling_init() {
 245   _sampled_rs_lengths = 0;
 246   _curr               = _head;
 247 }
 248 
 249 bool
 250 YoungList::rs_length_sampling_more() {
 251   return _curr != NULL;
 252 }
 253 
 254 void
 255 YoungList::rs_length_sampling_next() {
 256   assert( _curr != NULL, "invariant" );
 257   size_t rs_length = _curr->rem_set()->occupied();
 258 
 259   _sampled_rs_lengths += rs_length;
 260 
 261   // The current region may not yet have been added to the
 262   // incremental collection set (it gets added when it is
 263   // retired as the current allocation region).
 264   if (_curr->in_collection_set()) {
 265     // Update the collection set policy information for this region
 266     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 267   }
 268 
 269   _curr = _curr->get_next_young_region();
 270   if (_curr == NULL) {
 271     _last_sampled_rs_lengths = _sampled_rs_lengths;
 272     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 273   }
 274 }
 275 
 276 void
 277 YoungList::reset_auxilary_lists() {
 278   guarantee( is_empty(), "young list should be empty" );
 279   assert(check_list_well_formed(), "young list should be well formed");
 280 
 281   // Add survivor regions to SurvRateGroup.
 282   _g1h->g1_policy()->note_start_adding_survivor_regions();
 283   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 284 
 285   int young_index_in_cset = 0;
 286   for (HeapRegion* curr = _survivor_head;
 287        curr != NULL;
 288        curr = curr->get_next_young_region()) {
 289     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 290 
 291     // The region is a non-empty survivor so let's add it to
 292     // the incremental collection set for the next evacuation
 293     // pause.
 294     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 295     young_index_in_cset += 1;
 296   }
 297   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 298   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 299 
 300   _head   = _survivor_head;
 301   _length = _survivor_length;
 302   if (_survivor_head != NULL) {
 303     assert(_survivor_tail != NULL, "cause it shouldn't be");
 304     assert(_survivor_length > 0, "invariant");
 305     _survivor_tail->set_next_young_region(NULL);
 306   }
 307 
 308   // Don't clear the survivor list handles until the start of
 309   // the next evacuation pause - we need it in order to re-tag
 310   // the survivor regions from this evacuation pause as 'young'
 311   // at the start of the next.
 312 
 313   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 314 
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 }
 317 
 318 void YoungList::print() {
 319   HeapRegion* lists[] = {_head,   _survivor_head};
 320   const char* names[] = {"YOUNG", "SURVIVOR"};
 321 
 322   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 323     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 324     HeapRegion *curr = lists[list];
 325     if (curr == NULL)
 326       gclog_or_tty->print_cr("  empty");
 327     while (curr != NULL) {
 328       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 329                              HR_FORMAT_PARAMS(curr),
 330                              p2i(curr->prev_top_at_mark_start()),
 331                              p2i(curr->next_top_at_mark_start()),
 332                              curr->age_in_surv_rate_group_cond());
 333       curr = curr->get_next_young_region();
 334     }
 335   }
 336 
 337   gclog_or_tty->cr();
 338 }
 339 
 340 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 341   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 342 }
 343 
 344 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 345   // The from card cache is not the memory that is actually committed. So we cannot
 346   // take advantage of the zero_filled parameter.
 347   reset_from_card_cache(start_idx, num_regions);
 348 }
 349 
 350 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 351 {
 352   // Claim the right to put the region on the dirty cards region list
 353   // by installing a self pointer.
 354   HeapRegion* next = hr->get_next_dirty_cards_region();
 355   if (next == NULL) {
 356     HeapRegion* res = (HeapRegion*)
 357       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 358                           NULL);
 359     if (res == NULL) {
 360       HeapRegion* head;
 361       do {
 362         // Put the region to the dirty cards region list.
 363         head = _dirty_cards_region_list;
 364         next = (HeapRegion*)
 365           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 366         if (next == head) {
 367           assert(hr->get_next_dirty_cards_region() == hr,
 368                  "hr->get_next_dirty_cards_region() != hr");
 369           if (next == NULL) {
 370             // The last region in the list points to itself.
 371             hr->set_next_dirty_cards_region(hr);
 372           } else {
 373             hr->set_next_dirty_cards_region(next);
 374           }
 375         }
 376       } while (next != head);
 377     }
 378   }
 379 }
 380 
 381 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 382 {
 383   HeapRegion* head;
 384   HeapRegion* hr;
 385   do {
 386     head = _dirty_cards_region_list;
 387     if (head == NULL) {
 388       return NULL;
 389     }
 390     HeapRegion* new_head = head->get_next_dirty_cards_region();
 391     if (head == new_head) {
 392       // The last region.
 393       new_head = NULL;
 394     }
 395     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 396                                           head);
 397   } while (hr != head);
 398   assert(hr != NULL, "invariant");
 399   hr->set_next_dirty_cards_region(NULL);
 400   return hr;
 401 }
 402 
 403 // Returns true if the reference points to an object that
 404 // can move in an incremental collection.
 405 bool G1CollectedHeap::is_scavengable(const void* p) {
 406   HeapRegion* hr = heap_region_containing(p);
 407   return !hr->is_humongous();
 408 }
 409 
 410 // Private methods.
 411 
 412 HeapRegion*
 413 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 414   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 415   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 416     if (!_secondary_free_list.is_empty()) {
 417       if (G1ConcRegionFreeingVerbose) {
 418         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 419                                "secondary_free_list has %u entries",
 420                                _secondary_free_list.length());
 421       }
 422       // It looks as if there are free regions available on the
 423       // secondary_free_list. Let's move them to the free_list and try
 424       // again to allocate from it.
 425       append_secondary_free_list();
 426 
 427       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 428              "empty we should have moved at least one entry to the free_list");
 429       HeapRegion* res = _hrm.allocate_free_region(is_old);
 430       if (G1ConcRegionFreeingVerbose) {
 431         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 432                                "allocated "HR_FORMAT" from secondary_free_list",
 433                                HR_FORMAT_PARAMS(res));
 434       }
 435       return res;
 436     }
 437 
 438     // Wait here until we get notified either when (a) there are no
 439     // more free regions coming or (b) some regions have been moved on
 440     // the secondary_free_list.
 441     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 442   }
 443 
 444   if (G1ConcRegionFreeingVerbose) {
 445     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 446                            "could not allocate from secondary_free_list");
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 452   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 453          "the only time we use this to allocate a humongous region is "
 454          "when we are allocating a single humongous region");
 455 
 456   HeapRegion* res;
 457   if (G1StressConcRegionFreeing) {
 458     if (!_secondary_free_list.is_empty()) {
 459       if (G1ConcRegionFreeingVerbose) {
 460         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 461                                "forced to look at the secondary_free_list");
 462       }
 463       res = new_region_try_secondary_free_list(is_old);
 464       if (res != NULL) {
 465         return res;
 466       }
 467     }
 468   }
 469 
 470   res = _hrm.allocate_free_region(is_old);
 471 
 472   if (res == NULL) {
 473     if (G1ConcRegionFreeingVerbose) {
 474       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 475                              "res == NULL, trying the secondary_free_list");
 476     }
 477     res = new_region_try_secondary_free_list(is_old);
 478   }
 479   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 480     // Currently, only attempts to allocate GC alloc regions set
 481     // do_expand to true. So, we should only reach here during a
 482     // safepoint. If this assumption changes we might have to
 483     // reconsider the use of _expand_heap_after_alloc_failure.
 484     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 485 
 486     ergo_verbose1(ErgoHeapSizing,
 487                   "attempt heap expansion",
 488                   ergo_format_reason("region allocation request failed")
 489                   ergo_format_byte("allocation request"),
 490                   word_size * HeapWordSize);
 491     if (expand(word_size * HeapWordSize)) {
 492       // Given that expand() succeeded in expanding the heap, and we
 493       // always expand the heap by an amount aligned to the heap
 494       // region size, the free list should in theory not be empty.
 495       // In either case allocate_free_region() will check for NULL.
 496       res = _hrm.allocate_free_region(is_old);
 497     } else {
 498       _expand_heap_after_alloc_failure = false;
 499     }
 500   }
 501   return res;
 502 }
 503 
 504 HeapWord*
 505 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 506                                                            uint num_regions,
 507                                                            size_t word_size,
 508                                                            AllocationContext_t context) {
 509   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 510   assert(is_humongous(word_size), "word_size should be humongous");
 511   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 512 
 513   // Index of last region in the series + 1.
 514   uint last = first + num_regions;
 515 
 516   // We need to initialize the region(s) we just discovered. This is
 517   // a bit tricky given that it can happen concurrently with
 518   // refinement threads refining cards on these regions and
 519   // potentially wanting to refine the BOT as they are scanning
 520   // those cards (this can happen shortly after a cleanup; see CR
 521   // 6991377). So we have to set up the region(s) carefully and in
 522   // a specific order.
 523 
 524   // The word size sum of all the regions we will allocate.
 525   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 526   assert(word_size <= word_size_sum, "sanity");
 527 
 528   // This will be the "starts humongous" region.
 529   HeapRegion* first_hr = region_at(first);
 530   // The header of the new object will be placed at the bottom of
 531   // the first region.
 532   HeapWord* new_obj = first_hr->bottom();
 533   // This will be the new end of the first region in the series that
 534   // should also match the end of the last region in the series.
 535   HeapWord* new_end = new_obj + word_size_sum;
 536   // This will be the new top of the first region that will reflect
 537   // this allocation.
 538   HeapWord* new_top = new_obj + word_size;
 539 
 540   // First, we need to zero the header of the space that we will be
 541   // allocating. When we update top further down, some refinement
 542   // threads might try to scan the region. By zeroing the header we
 543   // ensure that any thread that will try to scan the region will
 544   // come across the zero klass word and bail out.
 545   //
 546   // NOTE: It would not have been correct to have used
 547   // CollectedHeap::fill_with_object() and make the space look like
 548   // an int array. The thread that is doing the allocation will
 549   // later update the object header to a potentially different array
 550   // type and, for a very short period of time, the klass and length
 551   // fields will be inconsistent. This could cause a refinement
 552   // thread to calculate the object size incorrectly.
 553   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 554 
 555   // We will set up the first region as "starts humongous". This
 556   // will also update the BOT covering all the regions to reflect
 557   // that there is a single object that starts at the bottom of the
 558   // first region.
 559   first_hr->set_starts_humongous(new_top, new_end);
 560   first_hr->set_allocation_context(context);
 561   // Then, if there are any, we will set up the "continues
 562   // humongous" regions.
 563   HeapRegion* hr = NULL;
 564   for (uint i = first + 1; i < last; ++i) {
 565     hr = region_at(i);
 566     hr->set_continues_humongous(first_hr);
 567     hr->set_allocation_context(context);
 568   }
 569   // If we have "continues humongous" regions (hr != NULL), then the
 570   // end of the last one should match new_end.
 571   assert(hr == NULL || hr->end() == new_end, "sanity");
 572 
 573   // Up to this point no concurrent thread would have been able to
 574   // do any scanning on any region in this series. All the top
 575   // fields still point to bottom, so the intersection between
 576   // [bottom,top] and [card_start,card_end] will be empty. Before we
 577   // update the top fields, we'll do a storestore to make sure that
 578   // no thread sees the update to top before the zeroing of the
 579   // object header and the BOT initialization.
 580   OrderAccess::storestore();
 581 
 582   // Now that the BOT and the object header have been initialized,
 583   // we can update top of the "starts humongous" region.
 584   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 585          "new_top should be in this region");
 586   first_hr->set_top(new_top);
 587   if (_hr_printer.is_active()) {
 588     HeapWord* bottom = first_hr->bottom();
 589     HeapWord* end = first_hr->orig_end();
 590     if ((first + 1) == last) {
 591       // the series has a single humongous region
 592       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 593     } else {
 594       // the series has more than one humongous regions
 595       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 596     }
 597   }
 598 
 599   // Now, we will update the top fields of the "continues humongous"
 600   // regions. The reason we need to do this is that, otherwise,
 601   // these regions would look empty and this will confuse parts of
 602   // G1. For example, the code that looks for a consecutive number
 603   // of empty regions will consider them empty and try to
 604   // re-allocate them. We can extend is_empty() to also include
 605   // !is_continues_humongous(), but it is easier to just update the top
 606   // fields here. The way we set top for all regions (i.e., top ==
 607   // end for all regions but the last one, top == new_top for the
 608   // last one) is actually used when we will free up the humongous
 609   // region in free_humongous_region().
 610   hr = NULL;
 611   for (uint i = first + 1; i < last; ++i) {
 612     hr = region_at(i);
 613     if ((i + 1) == last) {
 614       // last continues humongous region
 615       assert(hr->bottom() < new_top && new_top <= hr->end(),
 616              "new_top should fall on this region");
 617       hr->set_top(new_top);
 618       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 619     } else {
 620       // not last one
 621       assert(new_top > hr->end(), "new_top should be above this region");
 622       hr->set_top(hr->end());
 623       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 624     }
 625   }
 626   // If we have continues humongous regions (hr != NULL), then the
 627   // end of the last one should match new_end and its top should
 628   // match new_top.
 629   assert(hr == NULL ||
 630          (hr->end() == new_end && hr->top() == new_top), "sanity");
 631   check_bitmaps("Humongous Region Allocation", first_hr);
 632 
 633   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 634   _allocator->increase_used(first_hr->used());
 635   _humongous_set.add(first_hr);
 636 
 637   return new_obj;
 638 }
 639 
 640 // If could fit into free regions w/o expansion, try.
 641 // Otherwise, if can expand, do so.
 642 // Otherwise, if using ex regions might help, try with ex given back.
 643 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 644   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 645 
 646   verify_region_sets_optional();
 647 
 648   uint first = G1_NO_HRM_INDEX;
 649   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 650 
 651   if (obj_regions == 1) {
 652     // Only one region to allocate, try to use a fast path by directly allocating
 653     // from the free lists. Do not try to expand here, we will potentially do that
 654     // later.
 655     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 656     if (hr != NULL) {
 657       first = hr->hrm_index();
 658     }
 659   } else {
 660     // We can't allocate humongous regions spanning more than one region while
 661     // cleanupComplete() is running, since some of the regions we find to be
 662     // empty might not yet be added to the free list. It is not straightforward
 663     // to know in which list they are on so that we can remove them. We only
 664     // need to do this if we need to allocate more than one region to satisfy the
 665     // current humongous allocation request. If we are only allocating one region
 666     // we use the one-region region allocation code (see above), that already
 667     // potentially waits for regions from the secondary free list.
 668     wait_while_free_regions_coming();
 669     append_secondary_free_list_if_not_empty_with_lock();
 670 
 671     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 672     // are lucky enough to find some.
 673     first = _hrm.find_contiguous_only_empty(obj_regions);
 674     if (first != G1_NO_HRM_INDEX) {
 675       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 676     }
 677   }
 678 
 679   if (first == G1_NO_HRM_INDEX) {
 680     // Policy: We could not find enough regions for the humongous object in the
 681     // free list. Look through the heap to find a mix of free and uncommitted regions.
 682     // If so, try expansion.
 683     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 684     if (first != G1_NO_HRM_INDEX) {
 685       // We found something. Make sure these regions are committed, i.e. expand
 686       // the heap. Alternatively we could do a defragmentation GC.
 687       ergo_verbose1(ErgoHeapSizing,
 688                     "attempt heap expansion",
 689                     ergo_format_reason("humongous allocation request failed")
 690                     ergo_format_byte("allocation request"),
 691                     word_size * HeapWordSize);
 692 
 693       _hrm.expand_at(first, obj_regions);
 694       g1_policy()->record_new_heap_size(num_regions());
 695 
 696 #ifdef ASSERT
 697       for (uint i = first; i < first + obj_regions; ++i) {
 698         HeapRegion* hr = region_at(i);
 699         assert(hr->is_free(), "sanity");
 700         assert(hr->is_empty(), "sanity");
 701         assert(is_on_master_free_list(hr), "sanity");
 702       }
 703 #endif
 704       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 705     } else {
 706       // Policy: Potentially trigger a defragmentation GC.
 707     }
 708   }
 709 
 710   HeapWord* result = NULL;
 711   if (first != G1_NO_HRM_INDEX) {
 712     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 713                                                        word_size, context);
 714     assert(result != NULL, "it should always return a valid result");
 715 
 716     // A successful humongous object allocation changes the used space
 717     // information of the old generation so we need to recalculate the
 718     // sizes and update the jstat counters here.
 719     g1mm()->update_sizes();
 720   }
 721 
 722   verify_region_sets_optional();
 723 
 724   return result;
 725 }
 726 
 727 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 728   assert_heap_not_locked_and_not_at_safepoint();
 729   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 730 
 731   uint dummy_gc_count_before;
 732   uint dummy_gclocker_retry_count = 0;
 733   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 734 }
 735 
 736 HeapWord*
 737 G1CollectedHeap::mem_allocate(size_t word_size,
 738                               bool*  gc_overhead_limit_was_exceeded) {
 739   assert_heap_not_locked_and_not_at_safepoint();
 740 
 741   // Loop until the allocation is satisfied, or unsatisfied after GC.
 742   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 743     uint gc_count_before;
 744 
 745     HeapWord* result = NULL;
 746     if (!is_humongous(word_size)) {
 747       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 748     } else {
 749       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 750     }
 751     if (result != NULL) {
 752       return result;
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(gc_count_before, word_size);
 757     op.set_allocation_context(AllocationContext::current());
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761 
 762     if (op.prologue_succeeded() && op.pause_succeeded()) {
 763       // If the operation was successful we'll return the result even
 764       // if it is NULL. If the allocation attempt failed immediately
 765       // after a Full GC, it's unlikely we'll be able to allocate now.
 766       HeapWord* result = op.result();
 767       if (result != NULL && !is_humongous(word_size)) {
 768         // Allocations that take place on VM operations do not do any
 769         // card dirtying and we have to do it here. We only have to do
 770         // this for non-humongous allocations, though.
 771         dirty_young_block(result, word_size);
 772       }
 773       return result;
 774     } else {
 775       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 776         return NULL;
 777       }
 778       assert(op.result() == NULL,
 779              "the result should be NULL if the VM op did not succeed");
 780     }
 781 
 782     // Give a warning if we seem to be looping forever.
 783     if ((QueuedAllocationWarningCount > 0) &&
 784         (try_count % QueuedAllocationWarningCount == 0)) {
 785       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 786     }
 787   }
 788 
 789   ShouldNotReachHere();
 790   return NULL;
 791 }
 792 
 793 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 794                                                    AllocationContext_t context,
 795                                                    uint* gc_count_before_ret,
 796                                                    uint* gclocker_retry_count_ret) {
 797   // Make sure you read the note in attempt_allocation_humongous().
 798 
 799   assert_heap_not_locked_and_not_at_safepoint();
 800   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 801          "be called for humongous allocation requests");
 802 
 803   // We should only get here after the first-level allocation attempt
 804   // (attempt_allocation()) failed to allocate.
 805 
 806   // We will loop until a) we manage to successfully perform the
 807   // allocation or b) we successfully schedule a collection which
 808   // fails to perform the allocation. b) is the only case when we'll
 809   // return NULL.
 810   HeapWord* result = NULL;
 811   for (int try_count = 1; /* we'll return */; try_count += 1) {
 812     bool should_try_gc;
 813     uint gc_count_before;
 814 
 815     {
 816       MutexLockerEx x(Heap_lock);
 817       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 818                                                                                     false /* bot_updates */);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       // If we reach here, attempt_allocation_locked() above failed to
 824       // allocate a new region. So the mutator alloc region should be NULL.
 825       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 826 
 827       if (GC_locker::is_active_and_needs_gc()) {
 828         if (g1_policy()->can_expand_young_list()) {
 829           // No need for an ergo verbose message here,
 830           // can_expand_young_list() does this when it returns true.
 831           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 832                                                                                        false /* bot_updates */);
 833           if (result != NULL) {
 834             return result;
 835           }
 836         }
 837         should_try_gc = false;
 838       } else {
 839         // The GCLocker may not be active but the GCLocker initiated
 840         // GC may not yet have been performed (GCLocker::needs_gc()
 841         // returns true). In this case we do not try this GC and
 842         // wait until the GCLocker initiated GC is performed, and
 843         // then retry the allocation.
 844         if (GC_locker::needs_gc()) {
 845           should_try_gc = false;
 846         } else {
 847           // Read the GC count while still holding the Heap_lock.
 848           gc_count_before = total_collections();
 849           should_try_gc = true;
 850         }
 851       }
 852     }
 853 
 854     if (should_try_gc) {
 855       bool succeeded;
 856       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 857                                    GCCause::_g1_inc_collection_pause);
 858       if (result != NULL) {
 859         assert(succeeded, "only way to get back a non-NULL result");
 860         return result;
 861       }
 862 
 863       if (succeeded) {
 864         // If we get here we successfully scheduled a collection which
 865         // failed to allocate. No point in trying to allocate
 866         // further. We'll just return NULL.
 867         MutexLockerEx x(Heap_lock);
 868         *gc_count_before_ret = total_collections();
 869         return NULL;
 870       }
 871     } else {
 872       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877       // The GCLocker is either active or the GCLocker initiated
 878       // GC has not yet been performed. Stall until it is and
 879       // then retry the allocation.
 880       GC_locker::stall_until_clear();
 881       (*gclocker_retry_count_ret) += 1;
 882     }
 883 
 884     // We can reach here if we were unsuccessful in scheduling a
 885     // collection (because another thread beat us to it) or if we were
 886     // stalled due to the GC locker. In either can we should retry the
 887     // allocation attempt in case another thread successfully
 888     // performed a collection and reclaimed enough space. We do the
 889     // first attempt (without holding the Heap_lock) here and the
 890     // follow-on attempt will be at the start of the next loop
 891     // iteration (after taking the Heap_lock).
 892     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 893                                                                            false /* bot_updates */);
 894     if (result != NULL) {
 895       return result;
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::attempt_allocation_slow() "
 902               "retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 911                                                         uint* gc_count_before_ret,
 912                                                         uint* gclocker_retry_count_ret) {
 913   // The structure of this method has a lot of similarities to
 914   // attempt_allocation_slow(). The reason these two were not merged
 915   // into a single one is that such a method would require several "if
 916   // allocation is not humongous do this, otherwise do that"
 917   // conditional paths which would obscure its flow. In fact, an early
 918   // version of this code did use a unified method which was harder to
 919   // follow and, as a result, it had subtle bugs that were hard to
 920   // track down. So keeping these two methods separate allows each to
 921   // be more readable. It will be good to keep these two in sync as
 922   // much as possible.
 923 
 924   assert_heap_not_locked_and_not_at_safepoint();
 925   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 926          "should only be called for humongous allocations");
 927 
 928   // Humongous objects can exhaust the heap quickly, so we should check if we
 929   // need to start a marking cycle at each humongous object allocation. We do
 930   // the check before we do the actual allocation. The reason for doing it
 931   // before the allocation is that we avoid having to keep track of the newly
 932   // allocated memory while we do a GC.
 933   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 934                                            word_size)) {
 935     collect(GCCause::_g1_humongous_allocation);
 936   }
 937 
 938   // We will loop until a) we manage to successfully perform the
 939   // allocation or b) we successfully schedule a collection which
 940   // fails to perform the allocation. b) is the only case when we'll
 941   // return NULL.
 942   HeapWord* result = NULL;
 943   for (int try_count = 1; /* we'll return */; try_count += 1) {
 944     bool should_try_gc;
 945     uint gc_count_before;
 946 
 947     {
 948       MutexLockerEx x(Heap_lock);
 949 
 950       // Given that humongous objects are not allocated in young
 951       // regions, we'll first try to do the allocation without doing a
 952       // collection hoping that there's enough space in the heap.
 953       result = humongous_obj_allocate(word_size, AllocationContext::current());
 954       if (result != NULL) {
 955         return result;
 956       }
 957 
 958       if (GC_locker::is_active_and_needs_gc()) {
 959         should_try_gc = false;
 960       } else {
 961          // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       // If we failed to allocate the humongous object, we should try to
 978       // do a collection pause (if we're allowed) in case it reclaims
 979       // enough space for the allocation to succeed after the pause.
 980 
 981       bool succeeded;
 982       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 983                                    GCCause::_g1_humongous_allocation);
 984       if (result != NULL) {
 985         assert(succeeded, "only way to get back a non-NULL result");
 986         return result;
 987       }
 988 
 989       if (succeeded) {
 990         // If we get here we successfully scheduled a collection which
 991         // failed to allocate. No point in trying to allocate
 992         // further. We'll just return NULL.
 993         MutexLockerEx x(Heap_lock);
 994         *gc_count_before_ret = total_collections();
 995         return NULL;
 996       }
 997     } else {
 998       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003       // The GCLocker is either active or the GCLocker initiated
1004       // GC has not yet been performed. Stall until it is and
1005       // then retry the allocation.
1006       GC_locker::stall_until_clear();
1007       (*gclocker_retry_count_ret) += 1;
1008     }
1009 
1010     // We can reach here if we were unsuccessful in scheduling a
1011     // collection (because another thread beat us to it) or if we were
1012     // stalled due to the GC locker. In either can we should retry the
1013     // allocation attempt in case another thread successfully
1014     // performed a collection and reclaimed enough space.  Give a
1015     // warning if we seem to be looping forever.
1016 
1017     if ((QueuedAllocationWarningCount > 0) &&
1018         (try_count % QueuedAllocationWarningCount == 0)) {
1019       warning("G1CollectedHeap::attempt_allocation_humongous() "
1020               "retries %d times", try_count);
1021     }
1022   }
1023 
1024   ShouldNotReachHere();
1025   return NULL;
1026 }
1027 
1028 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1029                                                            AllocationContext_t context,
1030                                                            bool expect_null_mutator_alloc_region) {
1031   assert_at_safepoint(true /* should_be_vm_thread */);
1032   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1033                                              !expect_null_mutator_alloc_region,
1034          "the current alloc region was unexpectedly found to be non-NULL");
1035 
1036   if (!is_humongous(word_size)) {
1037     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1038                                                       false /* bot_updates */);
1039   } else {
1040     HeapWord* result = humongous_obj_allocate(word_size, context);
1041     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1042       g1_policy()->set_initiate_conc_mark_if_possible();
1043     }
1044     return result;
1045   }
1046 
1047   ShouldNotReachHere();
1048 }
1049 
1050 class PostMCRemSetClearClosure: public HeapRegionClosure {
1051   G1CollectedHeap* _g1h;
1052   ModRefBarrierSet* _mr_bs;
1053 public:
1054   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1055     _g1h(g1h), _mr_bs(mr_bs) {}
1056 
1057   bool doHeapRegion(HeapRegion* r) {
1058     HeapRegionRemSet* hrrs = r->rem_set();
1059 
1060     if (r->is_continues_humongous()) {
1061       // We'll assert that the strong code root list and RSet is empty
1062       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1063       assert(hrrs->occupied() == 0, "RSet should be empty");
1064       return false;
1065     }
1066 
1067     _g1h->reset_gc_time_stamps(r);
1068     hrrs->clear();
1069     // You might think here that we could clear just the cards
1070     // corresponding to the used region.  But no: if we leave a dirty card
1071     // in a region we might allocate into, then it would prevent that card
1072     // from being enqueued, and cause it to be missed.
1073     // Re: the performance cost: we shouldn't be doing full GC anyway!
1074     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1075 
1076     return false;
1077   }
1078 };
1079 
1080 void G1CollectedHeap::clear_rsets_post_compaction() {
1081   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1082   heap_region_iterate(&rs_clear);
1083 }
1084 
1085 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1086   G1CollectedHeap*   _g1h;
1087   UpdateRSOopClosure _cl;
1088 public:
1089   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1090     _cl(g1->g1_rem_set(), worker_i),
1091     _g1h(g1)
1092   { }
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     if (!r->is_continues_humongous()) {
1096       _cl.set_from(r);
1097       r->oop_iterate(&_cl);
1098     }
1099     return false;
1100   }
1101 };
1102 
1103 class ParRebuildRSTask: public AbstractGangTask {
1104   G1CollectedHeap* _g1;
1105   HeapRegionClaimer _hrclaimer;
1106 
1107 public:
1108   ParRebuildRSTask(G1CollectedHeap* g1) :
1109       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1110 
1111   void work(uint worker_id) {
1112     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1113     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1114   }
1115 };
1116 
1117 class PostCompactionPrinterClosure: public HeapRegionClosure {
1118 private:
1119   G1HRPrinter* _hr_printer;
1120 public:
1121   bool doHeapRegion(HeapRegion* hr) {
1122     assert(!hr->is_young(), "not expecting to find young regions");
1123     if (hr->is_free()) {
1124       // We only generate output for non-empty regions.
1125     } else if (hr->is_starts_humongous()) {
1126       if (hr->region_num() == 1) {
1127         // single humongous region
1128         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1129       } else {
1130         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1131       }
1132     } else if (hr->is_continues_humongous()) {
1133       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1134     } else if (hr->is_old()) {
1135       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1136     } else {
1137       ShouldNotReachHere();
1138     }
1139     return false;
1140   }
1141 
1142   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1143     : _hr_printer(hr_printer) { }
1144 };
1145 
1146 void G1CollectedHeap::print_hrm_post_compaction() {
1147   PostCompactionPrinterClosure cl(hr_printer());
1148   heap_region_iterate(&cl);
1149 }
1150 
1151 bool G1CollectedHeap::do_collection(bool explicit_gc,
1152                                     bool clear_all_soft_refs,
1153                                     size_t word_size) {
1154   assert_at_safepoint(true /* should_be_vm_thread */);
1155 
1156   if (GC_locker::check_active_before_gc()) {
1157     return false;
1158   }
1159 
1160   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1161   gc_timer->register_gc_start();
1162 
1163   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1164   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1165 
1166   SvcGCMarker sgcm(SvcGCMarker::FULL);
1167   ResourceMark rm;
1168 
1169   G1Log::update_level();
1170   print_heap_before_gc();
1171   trace_heap_before_gc(gc_tracer);
1172 
1173   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1174 
1175   verify_region_sets_optional();
1176 
1177   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1178                            collector_policy()->should_clear_all_soft_refs();
1179 
1180   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1181 
1182   {
1183     IsGCActiveMark x;
1184 
1185     // Timing
1186     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1187     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1188 
1189     {
1190       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1191       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1192       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1193 
1194       g1_policy()->record_full_collection_start();
1195 
1196       // Note: When we have a more flexible GC logging framework that
1197       // allows us to add optional attributes to a GC log record we
1198       // could consider timing and reporting how long we wait in the
1199       // following two methods.
1200       wait_while_free_regions_coming();
1201       // If we start the compaction before the CM threads finish
1202       // scanning the root regions we might trip them over as we'll
1203       // be moving objects / updating references. So let's wait until
1204       // they are done. By telling them to abort, they should complete
1205       // early.
1206       _cm->root_regions()->abort();
1207       _cm->root_regions()->wait_until_scan_finished();
1208       append_secondary_free_list_if_not_empty_with_lock();
1209 
1210       gc_prologue(true);
1211       increment_total_collections(true /* full gc */);
1212       increment_old_marking_cycles_started();
1213 
1214       assert(used() == recalculate_used(), "Should be equal");
1215 
1216       verify_before_gc();
1217 
1218       check_bitmaps("Full GC Start");
1219       pre_full_gc_dump(gc_timer);
1220 
1221       COMPILER2_PRESENT(DerivedPointerTable::clear());
1222 
1223       // Disable discovery and empty the discovered lists
1224       // for the CM ref processor.
1225       ref_processor_cm()->disable_discovery();
1226       ref_processor_cm()->abandon_partial_discovery();
1227       ref_processor_cm()->verify_no_references_recorded();
1228 
1229       // Abandon current iterations of concurrent marking and concurrent
1230       // refinement, if any are in progress. We have to do this before
1231       // wait_until_scan_finished() below.
1232       concurrent_mark()->abort();
1233 
1234       // Make sure we'll choose a new allocation region afterwards.
1235       _allocator->release_mutator_alloc_region();
1236       _allocator->abandon_gc_alloc_regions();
1237       g1_rem_set()->cleanupHRRS();
1238 
1239       // We should call this after we retire any currently active alloc
1240       // regions so that all the ALLOC / RETIRE events are generated
1241       // before the start GC event.
1242       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1243 
1244       // We may have added regions to the current incremental collection
1245       // set between the last GC or pause and now. We need to clear the
1246       // incremental collection set and then start rebuilding it afresh
1247       // after this full GC.
1248       abandon_collection_set(g1_policy()->inc_cset_head());
1249       g1_policy()->clear_incremental_cset();
1250       g1_policy()->stop_incremental_cset_building();
1251 
1252       tear_down_region_sets(false /* free_list_only */);
1253       g1_policy()->set_gcs_are_young(true);
1254 
1255       // See the comments in g1CollectedHeap.hpp and
1256       // G1CollectedHeap::ref_processing_init() about
1257       // how reference processing currently works in G1.
1258 
1259       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1260       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1261 
1262       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1263       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1264 
1265       ref_processor_stw()->enable_discovery();
1266       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1267 
1268       // Do collection work
1269       {
1270         HandleMark hm;  // Discard invalid handles created during gc
1271         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1272       }
1273 
1274       assert(num_free_regions() == 0, "we should not have added any free regions");
1275       rebuild_region_sets(false /* free_list_only */);
1276 
1277       // Enqueue any discovered reference objects that have
1278       // not been removed from the discovered lists.
1279       ref_processor_stw()->enqueue_discovered_references();
1280 
1281       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1282 
1283       MemoryService::track_memory_usage();
1284 
1285       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1286       ref_processor_stw()->verify_no_references_recorded();
1287 
1288       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1289       ClassLoaderDataGraph::purge();
1290       MetaspaceAux::verify_metrics();
1291 
1292       // Note: since we've just done a full GC, concurrent
1293       // marking is no longer active. Therefore we need not
1294       // re-enable reference discovery for the CM ref processor.
1295       // That will be done at the start of the next marking cycle.
1296       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1297       ref_processor_cm()->verify_no_references_recorded();
1298 
1299       reset_gc_time_stamp();
1300       // Since everything potentially moved, we will clear all remembered
1301       // sets, and clear all cards.  Later we will rebuild remembered
1302       // sets. We will also reset the GC time stamps of the regions.
1303       clear_rsets_post_compaction();
1304       check_gc_time_stamps();
1305 
1306       // Resize the heap if necessary.
1307       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1308 
1309       if (_hr_printer.is_active()) {
1310         // We should do this after we potentially resize the heap so
1311         // that all the COMMIT / UNCOMMIT events are generated before
1312         // the end GC event.
1313 
1314         print_hrm_post_compaction();
1315         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1316       }
1317 
1318       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1319       if (hot_card_cache->use_cache()) {
1320         hot_card_cache->reset_card_counts();
1321         hot_card_cache->reset_hot_cache();
1322       }
1323 
1324       // Rebuild remembered sets of all regions.
1325       uint n_workers =
1326         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1327                                                 workers()->active_workers(),
1328                                                 Threads::number_of_non_daemon_threads());
1329       workers()->set_active_workers(n_workers);
1330 
1331       ParRebuildRSTask rebuild_rs_task(this);
1332       workers()->run_task(&rebuild_rs_task);
1333 
1334       // Rebuild the strong code root lists for each region
1335       rebuild_strong_code_roots();
1336 
1337       if (true) { // FIXME
1338         MetaspaceGC::compute_new_size();
1339       }
1340 
1341 #ifdef TRACESPINNING
1342       ParallelTaskTerminator::print_termination_counts();
1343 #endif
1344 
1345       // Discard all rset updates
1346       JavaThread::dirty_card_queue_set().abandon_logs();
1347       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1348 
1349       _young_list->reset_sampled_info();
1350       // At this point there should be no regions in the
1351       // entire heap tagged as young.
1352       assert(check_young_list_empty(true /* check_heap */),
1353              "young list should be empty at this point");
1354 
1355       // Update the number of full collections that have been completed.
1356       increment_old_marking_cycles_completed(false /* concurrent */);
1357 
1358       _hrm.verify_optional();
1359       verify_region_sets_optional();
1360 
1361       verify_after_gc();
1362 
1363       // Clear the previous marking bitmap, if needed for bitmap verification.
1364       // Note we cannot do this when we clear the next marking bitmap in
1365       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1366       // objects marked during a full GC against the previous bitmap.
1367       // But we need to clear it before calling check_bitmaps below since
1368       // the full GC has compacted objects and updated TAMS but not updated
1369       // the prev bitmap.
1370       if (G1VerifyBitmaps) {
1371         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1372       }
1373       check_bitmaps("Full GC End");
1374 
1375       // Start a new incremental collection set for the next pause
1376       assert(g1_policy()->collection_set() == NULL, "must be");
1377       g1_policy()->start_incremental_cset_building();
1378 
1379       clear_cset_fast_test();
1380 
1381       _allocator->init_mutator_alloc_region();
1382 
1383       g1_policy()->record_full_collection_end();
1384 
1385       if (G1Log::fine()) {
1386         g1_policy()->print_heap_transition();
1387       }
1388 
1389       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1390       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1391       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1392       // before any GC notifications are raised.
1393       g1mm()->update_sizes();
1394 
1395       gc_epilogue(true);
1396     }
1397 
1398     if (G1Log::finer()) {
1399       g1_policy()->print_detailed_heap_transition(true /* full */);
1400     }
1401 
1402     print_heap_after_gc();
1403     trace_heap_after_gc(gc_tracer);
1404 
1405     post_full_gc_dump(gc_timer);
1406 
1407     gc_timer->register_gc_end();
1408     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1409   }
1410 
1411   return true;
1412 }
1413 
1414 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1415   // do_collection() will return whether it succeeded in performing
1416   // the GC. Currently, there is no facility on the
1417   // do_full_collection() API to notify the caller than the collection
1418   // did not succeed (e.g., because it was locked out by the GC
1419   // locker). So, right now, we'll ignore the return value.
1420   bool dummy = do_collection(true,                /* explicit_gc */
1421                              clear_all_soft_refs,
1422                              0                    /* word_size */);
1423 }
1424 
1425 // This code is mostly copied from TenuredGeneration.
1426 void
1427 G1CollectedHeap::
1428 resize_if_necessary_after_full_collection(size_t word_size) {
1429   // Include the current allocation, if any, and bytes that will be
1430   // pre-allocated to support collections, as "used".
1431   const size_t used_after_gc = used();
1432   const size_t capacity_after_gc = capacity();
1433   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1434 
1435   // This is enforced in arguments.cpp.
1436   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1437          "otherwise the code below doesn't make sense");
1438 
1439   // We don't have floating point command-line arguments
1440   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1441   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1442   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1443   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1444 
1445   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1446   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1447 
1448   // We have to be careful here as these two calculations can overflow
1449   // 32-bit size_t's.
1450   double used_after_gc_d = (double) used_after_gc;
1451   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1452   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1453 
1454   // Let's make sure that they are both under the max heap size, which
1455   // by default will make them fit into a size_t.
1456   double desired_capacity_upper_bound = (double) max_heap_size;
1457   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1458                                     desired_capacity_upper_bound);
1459   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1460                                     desired_capacity_upper_bound);
1461 
1462   // We can now safely turn them into size_t's.
1463   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1464   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1465 
1466   // This assert only makes sense here, before we adjust them
1467   // with respect to the min and max heap size.
1468   assert(minimum_desired_capacity <= maximum_desired_capacity,
1469          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1470                  "maximum_desired_capacity = "SIZE_FORMAT,
1471                  minimum_desired_capacity, maximum_desired_capacity));
1472 
1473   // Should not be greater than the heap max size. No need to adjust
1474   // it with respect to the heap min size as it's a lower bound (i.e.,
1475   // we'll try to make the capacity larger than it, not smaller).
1476   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1477   // Should not be less than the heap min size. No need to adjust it
1478   // with respect to the heap max size as it's an upper bound (i.e.,
1479   // we'll try to make the capacity smaller than it, not greater).
1480   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1481 
1482   if (capacity_after_gc < minimum_desired_capacity) {
1483     // Don't expand unless it's significant
1484     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1485     ergo_verbose4(ErgoHeapSizing,
1486                   "attempt heap expansion",
1487                   ergo_format_reason("capacity lower than "
1488                                      "min desired capacity after Full GC")
1489                   ergo_format_byte("capacity")
1490                   ergo_format_byte("occupancy")
1491                   ergo_format_byte_perc("min desired capacity"),
1492                   capacity_after_gc, used_after_gc,
1493                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1494     expand(expand_bytes);
1495 
1496     // No expansion, now see if we want to shrink
1497   } else if (capacity_after_gc > maximum_desired_capacity) {
1498     // Capacity too large, compute shrinking size
1499     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1500     ergo_verbose4(ErgoHeapSizing,
1501                   "attempt heap shrinking",
1502                   ergo_format_reason("capacity higher than "
1503                                      "max desired capacity after Full GC")
1504                   ergo_format_byte("capacity")
1505                   ergo_format_byte("occupancy")
1506                   ergo_format_byte_perc("max desired capacity"),
1507                   capacity_after_gc, used_after_gc,
1508                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1509     shrink(shrink_bytes);
1510   }
1511 }
1512 
1513 
1514 HeapWord*
1515 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1516                                            AllocationContext_t context,
1517                                            bool* succeeded) {
1518   assert_at_safepoint(true /* should_be_vm_thread */);
1519 
1520   *succeeded = true;
1521   // Let's attempt the allocation first.
1522   HeapWord* result =
1523     attempt_allocation_at_safepoint(word_size,
1524                                     context,
1525                                     false /* expect_null_mutator_alloc_region */);
1526   if (result != NULL) {
1527     assert(*succeeded, "sanity");
1528     return result;
1529   }
1530 
1531   // In a G1 heap, we're supposed to keep allocation from failing by
1532   // incremental pauses.  Therefore, at least for now, we'll favor
1533   // expansion over collection.  (This might change in the future if we can
1534   // do something smarter than full collection to satisfy a failed alloc.)
1535   result = expand_and_allocate(word_size, context);
1536   if (result != NULL) {
1537     assert(*succeeded, "sanity");
1538     return result;
1539   }
1540 
1541   // Expansion didn't work, we'll try to do a Full GC.
1542   bool gc_succeeded = do_collection(false, /* explicit_gc */
1543                                     false, /* clear_all_soft_refs */
1544                                     word_size);
1545   if (!gc_succeeded) {
1546     *succeeded = false;
1547     return NULL;
1548   }
1549 
1550   // Retry the allocation
1551   result = attempt_allocation_at_safepoint(word_size,
1552                                            context,
1553                                            true /* expect_null_mutator_alloc_region */);
1554   if (result != NULL) {
1555     assert(*succeeded, "sanity");
1556     return result;
1557   }
1558 
1559   // Then, try a Full GC that will collect all soft references.
1560   gc_succeeded = do_collection(false, /* explicit_gc */
1561                                true,  /* clear_all_soft_refs */
1562                                word_size);
1563   if (!gc_succeeded) {
1564     *succeeded = false;
1565     return NULL;
1566   }
1567 
1568   // Retry the allocation once more
1569   result = attempt_allocation_at_safepoint(word_size,
1570                                            context,
1571                                            true /* expect_null_mutator_alloc_region */);
1572   if (result != NULL) {
1573     assert(*succeeded, "sanity");
1574     return result;
1575   }
1576 
1577   assert(!collector_policy()->should_clear_all_soft_refs(),
1578          "Flag should have been handled and cleared prior to this point");
1579 
1580   // What else?  We might try synchronous finalization later.  If the total
1581   // space available is large enough for the allocation, then a more
1582   // complete compaction phase than we've tried so far might be
1583   // appropriate.
1584   assert(*succeeded, "sanity");
1585   return NULL;
1586 }
1587 
1588 // Attempting to expand the heap sufficiently
1589 // to support an allocation of the given "word_size".  If
1590 // successful, perform the allocation and return the address of the
1591 // allocated block, or else "NULL".
1592 
1593 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1594   assert_at_safepoint(true /* should_be_vm_thread */);
1595 
1596   verify_region_sets_optional();
1597 
1598   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1599   ergo_verbose1(ErgoHeapSizing,
1600                 "attempt heap expansion",
1601                 ergo_format_reason("allocation request failed")
1602                 ergo_format_byte("allocation request"),
1603                 word_size * HeapWordSize);
1604   if (expand(expand_bytes)) {
1605     _hrm.verify_optional();
1606     verify_region_sets_optional();
1607     return attempt_allocation_at_safepoint(word_size,
1608                                            context,
1609                                            false /* expect_null_mutator_alloc_region */);
1610   }
1611   return NULL;
1612 }
1613 
1614 bool G1CollectedHeap::expand(size_t expand_bytes) {
1615   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1616   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1617                                        HeapRegion::GrainBytes);
1618   ergo_verbose2(ErgoHeapSizing,
1619                 "expand the heap",
1620                 ergo_format_byte("requested expansion amount")
1621                 ergo_format_byte("attempted expansion amount"),
1622                 expand_bytes, aligned_expand_bytes);
1623 
1624   if (is_maximal_no_gc()) {
1625     ergo_verbose0(ErgoHeapSizing,
1626                       "did not expand the heap",
1627                       ergo_format_reason("heap already fully expanded"));
1628     return false;
1629   }
1630 
1631   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1632   assert(regions_to_expand > 0, "Must expand by at least one region");
1633 
1634   uint expanded_by = _hrm.expand_by(regions_to_expand);
1635 
1636   if (expanded_by > 0) {
1637     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1638     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1639     g1_policy()->record_new_heap_size(num_regions());
1640   } else {
1641     ergo_verbose0(ErgoHeapSizing,
1642                   "did not expand the heap",
1643                   ergo_format_reason("heap expansion operation failed"));
1644     // The expansion of the virtual storage space was unsuccessful.
1645     // Let's see if it was because we ran out of swap.
1646     if (G1ExitOnExpansionFailure &&
1647         _hrm.available() >= regions_to_expand) {
1648       // We had head room...
1649       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1650     }
1651   }
1652   return regions_to_expand > 0;
1653 }
1654 
1655 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1656   size_t aligned_shrink_bytes =
1657     ReservedSpace::page_align_size_down(shrink_bytes);
1658   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1659                                          HeapRegion::GrainBytes);
1660   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1661 
1662   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1663   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1664 
1665   ergo_verbose3(ErgoHeapSizing,
1666                 "shrink the heap",
1667                 ergo_format_byte("requested shrinking amount")
1668                 ergo_format_byte("aligned shrinking amount")
1669                 ergo_format_byte("attempted shrinking amount"),
1670                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1671   if (num_regions_removed > 0) {
1672     g1_policy()->record_new_heap_size(num_regions());
1673   } else {
1674     ergo_verbose0(ErgoHeapSizing,
1675                   "did not shrink the heap",
1676                   ergo_format_reason("heap shrinking operation failed"));
1677   }
1678 }
1679 
1680 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1681   verify_region_sets_optional();
1682 
1683   // We should only reach here at the end of a Full GC which means we
1684   // should not not be holding to any GC alloc regions. The method
1685   // below will make sure of that and do any remaining clean up.
1686   _allocator->abandon_gc_alloc_regions();
1687 
1688   // Instead of tearing down / rebuilding the free lists here, we
1689   // could instead use the remove_all_pending() method on free_list to
1690   // remove only the ones that we need to remove.
1691   tear_down_region_sets(true /* free_list_only */);
1692   shrink_helper(shrink_bytes);
1693   rebuild_region_sets(true /* free_list_only */);
1694 
1695   _hrm.verify_optional();
1696   verify_region_sets_optional();
1697 }
1698 
1699 // Public methods.
1700 
1701 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1702 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1703 #endif // _MSC_VER
1704 
1705 
1706 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1707   CollectedHeap(),
1708   _g1_policy(policy_),
1709   _dirty_card_queue_set(false),
1710   _into_cset_dirty_card_queue_set(false),
1711   _is_alive_closure_cm(this),
1712   _is_alive_closure_stw(this),
1713   _ref_processor_cm(NULL),
1714   _ref_processor_stw(NULL),
1715   _bot_shared(NULL),
1716   _evac_failure_scan_stack(NULL),
1717   _mark_in_progress(false),
1718   _cg1r(NULL),
1719   _g1mm(NULL),
1720   _refine_cte_cl(NULL),
1721   _full_collection(false),
1722   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1723   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1724   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1725   _humongous_reclaim_candidates(),
1726   _has_humongous_reclaim_candidates(false),
1727   _free_regions_coming(false),
1728   _young_list(new YoungList(this)),
1729   _gc_time_stamp(0),
1730   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1731   _old_plab_stats(OldPLABSize, PLABWeight),
1732   _expand_heap_after_alloc_failure(true),
1733   _surviving_young_words(NULL),
1734   _old_marking_cycles_started(0),
1735   _old_marking_cycles_completed(0),
1736   _concurrent_cycle_started(false),
1737   _heap_summary_sent(false),
1738   _in_cset_fast_test(),
1739   _dirty_cards_region_list(NULL),
1740   _worker_cset_start_region(NULL),
1741   _worker_cset_start_region_time_stamp(NULL),
1742   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1743   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1744   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1745   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1746 
1747   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1748                           /* are_GC_task_threads */true,
1749                           /* are_ConcurrentGC_threads */false);
1750   _workers->initialize_workers();
1751 
1752   _allocator = G1Allocator::create_allocator(this);
1753   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1754 
1755   int n_queues = (int)ParallelGCThreads;
1756   _task_queues = new RefToScanQueueSet(n_queues);
1757 
1758   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1759   assert(n_rem_sets > 0, "Invariant.");
1760 
1761   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1762   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1763   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1764 
1765   for (int i = 0; i < n_queues; i++) {
1766     RefToScanQueue* q = new RefToScanQueue();
1767     q->initialize();
1768     _task_queues->register_queue(i, q);
1769     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1770   }
1771   clear_cset_start_regions();
1772 
1773   // Initialize the G1EvacuationFailureALot counters and flags.
1774   NOT_PRODUCT(reset_evacuation_should_fail();)
1775 
1776   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1777 }
1778 
1779 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1780                                                                  size_t size,
1781                                                                  size_t translation_factor) {
1782   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1783   // Allocate a new reserved space, preferring to use large pages.
1784   ReservedSpace rs(size, preferred_page_size);
1785   G1RegionToSpaceMapper* result  =
1786     G1RegionToSpaceMapper::create_mapper(rs,
1787                                          size,
1788                                          rs.alignment(),
1789                                          HeapRegion::GrainBytes,
1790                                          translation_factor,
1791                                          mtGC);
1792   if (TracePageSizes) {
1793     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1794                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1795   }
1796   return result;
1797 }
1798 
1799 jint G1CollectedHeap::initialize() {
1800   CollectedHeap::pre_initialize();
1801   os::enable_vtime();
1802 
1803   G1Log::init();
1804 
1805   // Necessary to satisfy locking discipline assertions.
1806 
1807   MutexLocker x(Heap_lock);
1808 
1809   // We have to initialize the printer before committing the heap, as
1810   // it will be used then.
1811   _hr_printer.set_active(G1PrintHeapRegions);
1812 
1813   // While there are no constraints in the GC code that HeapWordSize
1814   // be any particular value, there are multiple other areas in the
1815   // system which believe this to be true (e.g. oop->object_size in some
1816   // cases incorrectly returns the size in wordSize units rather than
1817   // HeapWordSize).
1818   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1819 
1820   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1821   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1822   size_t heap_alignment = collector_policy()->heap_alignment();
1823 
1824   // Ensure that the sizes are properly aligned.
1825   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1826   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1827   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1828 
1829   _refine_cte_cl = new RefineCardTableEntryClosure();
1830 
1831   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1832 
1833   // Reserve the maximum.
1834 
1835   // When compressed oops are enabled, the preferred heap base
1836   // is calculated by subtracting the requested size from the
1837   // 32Gb boundary and using the result as the base address for
1838   // heap reservation. If the requested size is not aligned to
1839   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1840   // into the ReservedHeapSpace constructor) then the actual
1841   // base of the reserved heap may end up differing from the
1842   // address that was requested (i.e. the preferred heap base).
1843   // If this happens then we could end up using a non-optimal
1844   // compressed oops mode.
1845 
1846   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1847                                                  heap_alignment);
1848 
1849   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1850 
1851   // Create the barrier set for the entire reserved region.
1852   G1SATBCardTableLoggingModRefBS* bs
1853     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1854   bs->initialize();
1855   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1856   set_barrier_set(bs);
1857 
1858   // Also create a G1 rem set.
1859   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1860 
1861   // Carve out the G1 part of the heap.
1862 
1863   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1864   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1865   G1RegionToSpaceMapper* heap_storage =
1866     G1RegionToSpaceMapper::create_mapper(g1_rs,
1867                                          g1_rs.size(),
1868                                          page_size,
1869                                          HeapRegion::GrainBytes,
1870                                          1,
1871                                          mtJavaHeap);
1872   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1873                        max_byte_size, page_size,
1874                        heap_rs.base(),
1875                        heap_rs.size());
1876   heap_storage->set_mapping_changed_listener(&_listener);
1877 
1878   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1879   G1RegionToSpaceMapper* bot_storage =
1880     create_aux_memory_mapper("Block offset table",
1881                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1882                              G1BlockOffsetSharedArray::heap_map_factor());
1883 
1884   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1885   G1RegionToSpaceMapper* cardtable_storage =
1886     create_aux_memory_mapper("Card table",
1887                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1888                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1889 
1890   G1RegionToSpaceMapper* card_counts_storage =
1891     create_aux_memory_mapper("Card counts table",
1892                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1893                              G1CardCounts::heap_map_factor());
1894 
1895   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1896   G1RegionToSpaceMapper* prev_bitmap_storage =
1897     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1898   G1RegionToSpaceMapper* next_bitmap_storage =
1899     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1900 
1901   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1902   g1_barrier_set()->initialize(cardtable_storage);
1903    // Do later initialization work for concurrent refinement.
1904   _cg1r->init(card_counts_storage);
1905 
1906   // 6843694 - ensure that the maximum region index can fit
1907   // in the remembered set structures.
1908   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1909   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1910 
1911   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1912   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1913   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1914             "too many cards per region");
1915 
1916   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1917 
1918   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1919 
1920   {
1921     HeapWord* start = _hrm.reserved().start();
1922     HeapWord* end = _hrm.reserved().end();
1923     size_t granularity = HeapRegion::GrainBytes;
1924 
1925     _in_cset_fast_test.initialize(start, end, granularity);
1926     _humongous_reclaim_candidates.initialize(start, end, granularity);
1927   }
1928 
1929   // Create the ConcurrentMark data structure and thread.
1930   // (Must do this late, so that "max_regions" is defined.)
1931   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1932   if (_cm == NULL || !_cm->completed_initialization()) {
1933     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1934     return JNI_ENOMEM;
1935   }
1936   _cmThread = _cm->cmThread();
1937 
1938   // Initialize the from_card cache structure of HeapRegionRemSet.
1939   HeapRegionRemSet::init_heap(max_regions());
1940 
1941   // Now expand into the initial heap size.
1942   if (!expand(init_byte_size)) {
1943     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1944     return JNI_ENOMEM;
1945   }
1946 
1947   // Perform any initialization actions delegated to the policy.
1948   g1_policy()->init();
1949 
1950   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1951                                                SATB_Q_FL_lock,
1952                                                G1SATBProcessCompletedThreshold,
1953                                                Shared_SATB_Q_lock);
1954 
1955   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1956                                                 DirtyCardQ_CBL_mon,
1957                                                 DirtyCardQ_FL_lock,
1958                                                 concurrent_g1_refine()->yellow_zone(),
1959                                                 concurrent_g1_refine()->red_zone(),
1960                                                 Shared_DirtyCardQ_lock);
1961 
1962   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1963                                     DirtyCardQ_CBL_mon,
1964                                     DirtyCardQ_FL_lock,
1965                                     -1, // never trigger processing
1966                                     -1, // no limit on length
1967                                     Shared_DirtyCardQ_lock,
1968                                     &JavaThread::dirty_card_queue_set());
1969 
1970   // Initialize the card queue set used to hold cards containing
1971   // references into the collection set.
1972   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1973                                              DirtyCardQ_CBL_mon,
1974                                              DirtyCardQ_FL_lock,
1975                                              -1, // never trigger processing
1976                                              -1, // no limit on length
1977                                              Shared_DirtyCardQ_lock,
1978                                              &JavaThread::dirty_card_queue_set());
1979 
1980   // Here we allocate the dummy HeapRegion that is required by the
1981   // G1AllocRegion class.
1982   HeapRegion* dummy_region = _hrm.get_dummy_region();
1983 
1984   // We'll re-use the same region whether the alloc region will
1985   // require BOT updates or not and, if it doesn't, then a non-young
1986   // region will complain that it cannot support allocations without
1987   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1988   dummy_region->set_eden();
1989   // Make sure it's full.
1990   dummy_region->set_top(dummy_region->end());
1991   G1AllocRegion::setup(this, dummy_region);
1992 
1993   _allocator->init_mutator_alloc_region();
1994 
1995   // Do create of the monitoring and management support so that
1996   // values in the heap have been properly initialized.
1997   _g1mm = new G1MonitoringSupport(this);
1998 
1999   G1StringDedup::initialize();
2000 
2001   return JNI_OK;
2002 }
2003 
2004 void G1CollectedHeap::stop() {
2005   // Stop all concurrent threads. We do this to make sure these threads
2006   // do not continue to execute and access resources (e.g. gclog_or_tty)
2007   // that are destroyed during shutdown.
2008   _cg1r->stop();
2009   _cmThread->stop();
2010   if (G1StringDedup::is_enabled()) {
2011     G1StringDedup::stop();
2012   }
2013 }
2014 
2015 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2016   return HeapRegion::max_region_size();
2017 }
2018 
2019 void G1CollectedHeap::post_initialize() {
2020   CollectedHeap::post_initialize();
2021   ref_processing_init();
2022 }
2023 
2024 void G1CollectedHeap::ref_processing_init() {
2025   // Reference processing in G1 currently works as follows:
2026   //
2027   // * There are two reference processor instances. One is
2028   //   used to record and process discovered references
2029   //   during concurrent marking; the other is used to
2030   //   record and process references during STW pauses
2031   //   (both full and incremental).
2032   // * Both ref processors need to 'span' the entire heap as
2033   //   the regions in the collection set may be dotted around.
2034   //
2035   // * For the concurrent marking ref processor:
2036   //   * Reference discovery is enabled at initial marking.
2037   //   * Reference discovery is disabled and the discovered
2038   //     references processed etc during remarking.
2039   //   * Reference discovery is MT (see below).
2040   //   * Reference discovery requires a barrier (see below).
2041   //   * Reference processing may or may not be MT
2042   //     (depending on the value of ParallelRefProcEnabled
2043   //     and ParallelGCThreads).
2044   //   * A full GC disables reference discovery by the CM
2045   //     ref processor and abandons any entries on it's
2046   //     discovered lists.
2047   //
2048   // * For the STW processor:
2049   //   * Non MT discovery is enabled at the start of a full GC.
2050   //   * Processing and enqueueing during a full GC is non-MT.
2051   //   * During a full GC, references are processed after marking.
2052   //
2053   //   * Discovery (may or may not be MT) is enabled at the start
2054   //     of an incremental evacuation pause.
2055   //   * References are processed near the end of a STW evacuation pause.
2056   //   * For both types of GC:
2057   //     * Discovery is atomic - i.e. not concurrent.
2058   //     * Reference discovery will not need a barrier.
2059 
2060   MemRegion mr = reserved_region();
2061 
2062   // Concurrent Mark ref processor
2063   _ref_processor_cm =
2064     new ReferenceProcessor(mr,    // span
2065                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2066                                 // mt processing
2067                            (uint) ParallelGCThreads,
2068                                 // degree of mt processing
2069                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2070                                 // mt discovery
2071                            (uint) MAX2(ParallelGCThreads, ConcGCThreads),
2072                                 // degree of mt discovery
2073                            false,
2074                                 // Reference discovery is not atomic
2075                            &_is_alive_closure_cm);
2076                                 // is alive closure
2077                                 // (for efficiency/performance)
2078 
2079   // STW ref processor
2080   _ref_processor_stw =
2081     new ReferenceProcessor(mr,    // span
2082                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2083                                 // mt processing
2084                            (uint) ParallelGCThreads,
2085                                 // degree of mt processing
2086                            (ParallelGCThreads > 1),
2087                                 // mt discovery
2088                            (uint) ParallelGCThreads,
2089                                 // degree of mt discovery
2090                            true,
2091                                 // Reference discovery is atomic
2092                            &_is_alive_closure_stw);
2093                                 // is alive closure
2094                                 // (for efficiency/performance)
2095 }
2096 
2097 size_t G1CollectedHeap::capacity() const {
2098   return _hrm.length() * HeapRegion::GrainBytes;
2099 }
2100 
2101 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2102   assert(!hr->is_continues_humongous(), "pre-condition");
2103   hr->reset_gc_time_stamp();
2104   if (hr->is_starts_humongous()) {
2105     uint first_index = hr->hrm_index() + 1;
2106     uint last_index = hr->last_hc_index();
2107     for (uint i = first_index; i < last_index; i += 1) {
2108       HeapRegion* chr = region_at(i);
2109       assert(chr->is_continues_humongous(), "sanity");
2110       chr->reset_gc_time_stamp();
2111     }
2112   }
2113 }
2114 
2115 #ifndef PRODUCT
2116 
2117 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2118 private:
2119   unsigned _gc_time_stamp;
2120   bool _failures;
2121 
2122 public:
2123   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2124     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2125 
2126   virtual bool doHeapRegion(HeapRegion* hr) {
2127     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2128     if (_gc_time_stamp != region_gc_time_stamp) {
2129       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2130                              "expected %d", HR_FORMAT_PARAMS(hr),
2131                              region_gc_time_stamp, _gc_time_stamp);
2132       _failures = true;
2133     }
2134     return false;
2135   }
2136 
2137   bool failures() { return _failures; }
2138 };
2139 
2140 void G1CollectedHeap::check_gc_time_stamps() {
2141   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2142   heap_region_iterate(&cl);
2143   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2144 }
2145 #endif // PRODUCT
2146 
2147 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2148                                                  DirtyCardQueue* into_cset_dcq,
2149                                                  bool concurrent,
2150                                                  uint worker_i) {
2151   // Clean cards in the hot card cache
2152   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2153   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2154 
2155   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2156   size_t n_completed_buffers = 0;
2157   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2158     n_completed_buffers++;
2159   }
2160   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2161   dcqs.clear_n_completed_buffers();
2162   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2163 }
2164 
2165 
2166 // Computes the sum of the storage used by the various regions.
2167 size_t G1CollectedHeap::used() const {
2168   return _allocator->used();
2169 }
2170 
2171 size_t G1CollectedHeap::used_unlocked() const {
2172   return _allocator->used_unlocked();
2173 }
2174 
2175 class SumUsedClosure: public HeapRegionClosure {
2176   size_t _used;
2177 public:
2178   SumUsedClosure() : _used(0) {}
2179   bool doHeapRegion(HeapRegion* r) {
2180     if (!r->is_continues_humongous()) {
2181       _used += r->used();
2182     }
2183     return false;
2184   }
2185   size_t result() { return _used; }
2186 };
2187 
2188 size_t G1CollectedHeap::recalculate_used() const {
2189   double recalculate_used_start = os::elapsedTime();
2190 
2191   SumUsedClosure blk;
2192   heap_region_iterate(&blk);
2193 
2194   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2195   return blk.result();
2196 }
2197 
2198 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2199   switch (cause) {
2200     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2201     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2202     case GCCause::_g1_humongous_allocation: return true;
2203     case GCCause::_update_allocation_context_stats_inc: return true;
2204     case GCCause::_wb_conc_mark:            return true;
2205     default:                                return false;
2206   }
2207 }
2208 
2209 #ifndef PRODUCT
2210 void G1CollectedHeap::allocate_dummy_regions() {
2211   // Let's fill up most of the region
2212   size_t word_size = HeapRegion::GrainWords - 1024;
2213   // And as a result the region we'll allocate will be humongous.
2214   guarantee(is_humongous(word_size), "sanity");
2215 
2216   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2217     // Let's use the existing mechanism for the allocation
2218     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2219                                                  AllocationContext::system());
2220     if (dummy_obj != NULL) {
2221       MemRegion mr(dummy_obj, word_size);
2222       CollectedHeap::fill_with_object(mr);
2223     } else {
2224       // If we can't allocate once, we probably cannot allocate
2225       // again. Let's get out of the loop.
2226       break;
2227     }
2228   }
2229 }
2230 #endif // !PRODUCT
2231 
2232 void G1CollectedHeap::increment_old_marking_cycles_started() {
2233   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2234     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2235     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2236     _old_marking_cycles_started, _old_marking_cycles_completed));
2237 
2238   _old_marking_cycles_started++;
2239 }
2240 
2241 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2242   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2243 
2244   // We assume that if concurrent == true, then the caller is a
2245   // concurrent thread that was joined the Suspendible Thread
2246   // Set. If there's ever a cheap way to check this, we should add an
2247   // assert here.
2248 
2249   // Given that this method is called at the end of a Full GC or of a
2250   // concurrent cycle, and those can be nested (i.e., a Full GC can
2251   // interrupt a concurrent cycle), the number of full collections
2252   // completed should be either one (in the case where there was no
2253   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2254   // behind the number of full collections started.
2255 
2256   // This is the case for the inner caller, i.e. a Full GC.
2257   assert(concurrent ||
2258          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2259          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2260          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2261                  "is inconsistent with _old_marking_cycles_completed = %u",
2262                  _old_marking_cycles_started, _old_marking_cycles_completed));
2263 
2264   // This is the case for the outer caller, i.e. the concurrent cycle.
2265   assert(!concurrent ||
2266          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2267          err_msg("for outer caller (concurrent cycle): "
2268                  "_old_marking_cycles_started = %u "
2269                  "is inconsistent with _old_marking_cycles_completed = %u",
2270                  _old_marking_cycles_started, _old_marking_cycles_completed));
2271 
2272   _old_marking_cycles_completed += 1;
2273 
2274   // We need to clear the "in_progress" flag in the CM thread before
2275   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2276   // is set) so that if a waiter requests another System.gc() it doesn't
2277   // incorrectly see that a marking cycle is still in progress.
2278   if (concurrent) {
2279     _cmThread->clear_in_progress();
2280   }
2281 
2282   // This notify_all() will ensure that a thread that called
2283   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2284   // and it's waiting for a full GC to finish will be woken up. It is
2285   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2286   FullGCCount_lock->notify_all();
2287 }
2288 
2289 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2290   _concurrent_cycle_started = true;
2291   _gc_timer_cm->register_gc_start(start_time);
2292 
2293   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2294   trace_heap_before_gc(_gc_tracer_cm);
2295 }
2296 
2297 void G1CollectedHeap::register_concurrent_cycle_end() {
2298   if (_concurrent_cycle_started) {
2299     if (_cm->has_aborted()) {
2300       _gc_tracer_cm->report_concurrent_mode_failure();
2301     }
2302 
2303     _gc_timer_cm->register_gc_end();
2304     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2305 
2306     // Clear state variables to prepare for the next concurrent cycle.
2307     _concurrent_cycle_started = false;
2308     _heap_summary_sent = false;
2309   }
2310 }
2311 
2312 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2313   if (_concurrent_cycle_started) {
2314     // This function can be called when:
2315     //  the cleanup pause is run
2316     //  the concurrent cycle is aborted before the cleanup pause.
2317     //  the concurrent cycle is aborted after the cleanup pause,
2318     //   but before the concurrent cycle end has been registered.
2319     // Make sure that we only send the heap information once.
2320     if (!_heap_summary_sent) {
2321       trace_heap_after_gc(_gc_tracer_cm);
2322       _heap_summary_sent = true;
2323     }
2324   }
2325 }
2326 
2327 G1YCType G1CollectedHeap::yc_type() {
2328   bool is_young = g1_policy()->gcs_are_young();
2329   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2330   bool is_during_mark = mark_in_progress();
2331 
2332   if (is_initial_mark) {
2333     return InitialMark;
2334   } else if (is_during_mark) {
2335     return DuringMark;
2336   } else if (is_young) {
2337     return Normal;
2338   } else {
2339     return Mixed;
2340   }
2341 }
2342 
2343 void G1CollectedHeap::collect(GCCause::Cause cause) {
2344   assert_heap_not_locked();
2345 
2346   uint gc_count_before;
2347   uint old_marking_count_before;
2348   uint full_gc_count_before;
2349   bool retry_gc;
2350 
2351   do {
2352     retry_gc = false;
2353 
2354     {
2355       MutexLocker ml(Heap_lock);
2356 
2357       // Read the GC count while holding the Heap_lock
2358       gc_count_before = total_collections();
2359       full_gc_count_before = total_full_collections();
2360       old_marking_count_before = _old_marking_cycles_started;
2361     }
2362 
2363     if (should_do_concurrent_full_gc(cause)) {
2364       // Schedule an initial-mark evacuation pause that will start a
2365       // concurrent cycle. We're setting word_size to 0 which means that
2366       // we are not requesting a post-GC allocation.
2367       VM_G1IncCollectionPause op(gc_count_before,
2368                                  0,     /* word_size */
2369                                  true,  /* should_initiate_conc_mark */
2370                                  g1_policy()->max_pause_time_ms(),
2371                                  cause);
2372       op.set_allocation_context(AllocationContext::current());
2373 
2374       VMThread::execute(&op);
2375       if (!op.pause_succeeded()) {
2376         if (old_marking_count_before == _old_marking_cycles_started) {
2377           retry_gc = op.should_retry_gc();
2378         } else {
2379           // A Full GC happened while we were trying to schedule the
2380           // initial-mark GC. No point in starting a new cycle given
2381           // that the whole heap was collected anyway.
2382         }
2383 
2384         if (retry_gc) {
2385           if (GC_locker::is_active_and_needs_gc()) {
2386             GC_locker::stall_until_clear();
2387           }
2388         }
2389       }
2390     } else {
2391       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2392           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2393 
2394         // Schedule a standard evacuation pause. We're setting word_size
2395         // to 0 which means that we are not requesting a post-GC allocation.
2396         VM_G1IncCollectionPause op(gc_count_before,
2397                                    0,     /* word_size */
2398                                    false, /* should_initiate_conc_mark */
2399                                    g1_policy()->max_pause_time_ms(),
2400                                    cause);
2401         VMThread::execute(&op);
2402       } else {
2403         // Schedule a Full GC.
2404         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2405         VMThread::execute(&op);
2406       }
2407     }
2408   } while (retry_gc);
2409 }
2410 
2411 bool G1CollectedHeap::is_in(const void* p) const {
2412   if (_hrm.reserved().contains(p)) {
2413     // Given that we know that p is in the reserved space,
2414     // heap_region_containing_raw() should successfully
2415     // return the containing region.
2416     HeapRegion* hr = heap_region_containing_raw(p);
2417     return hr->is_in(p);
2418   } else {
2419     return false;
2420   }
2421 }
2422 
2423 #ifdef ASSERT
2424 bool G1CollectedHeap::is_in_exact(const void* p) const {
2425   bool contains = reserved_region().contains(p);
2426   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2427   if (contains && available) {
2428     return true;
2429   } else {
2430     return false;
2431   }
2432 }
2433 #endif
2434 
2435 // Iteration functions.
2436 
2437 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2438 
2439 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2440   ExtendedOopClosure* _cl;
2441 public:
2442   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2443   bool doHeapRegion(HeapRegion* r) {
2444     if (!r->is_continues_humongous()) {
2445       r->oop_iterate(_cl);
2446     }
2447     return false;
2448   }
2449 };
2450 
2451 // Iterates an ObjectClosure over all objects within a HeapRegion.
2452 
2453 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2454   ObjectClosure* _cl;
2455 public:
2456   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2457   bool doHeapRegion(HeapRegion* r) {
2458     if (!r->is_continues_humongous()) {
2459       r->object_iterate(_cl);
2460     }
2461     return false;
2462   }
2463 };
2464 
2465 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2466   IterateObjectClosureRegionClosure blk(cl);
2467   heap_region_iterate(&blk);
2468 }
2469 
2470 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2471   _hrm.iterate(cl);
2472 }
2473 
2474 void
2475 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2476                                          uint worker_id,
2477                                          HeapRegionClaimer *hrclaimer,
2478                                          bool concurrent) const {
2479   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2480 }
2481 
2482 // Clear the cached CSet starting regions and (more importantly)
2483 // the time stamps. Called when we reset the GC time stamp.
2484 void G1CollectedHeap::clear_cset_start_regions() {
2485   assert(_worker_cset_start_region != NULL, "sanity");
2486   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2487 
2488   for (uint i = 0; i < ParallelGCThreads; i++) {
2489     _worker_cset_start_region[i] = NULL;
2490     _worker_cset_start_region_time_stamp[i] = 0;
2491   }
2492 }
2493 
2494 // Given the id of a worker, obtain or calculate a suitable
2495 // starting region for iterating over the current collection set.
2496 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2497   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2498 
2499   HeapRegion* result = NULL;
2500   unsigned gc_time_stamp = get_gc_time_stamp();
2501 
2502   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2503     // Cached starting region for current worker was set
2504     // during the current pause - so it's valid.
2505     // Note: the cached starting heap region may be NULL
2506     // (when the collection set is empty).
2507     result = _worker_cset_start_region[worker_i];
2508     assert(result == NULL || result->in_collection_set(), "sanity");
2509     return result;
2510   }
2511 
2512   // The cached entry was not valid so let's calculate
2513   // a suitable starting heap region for this worker.
2514 
2515   // We want the parallel threads to start their collection
2516   // set iteration at different collection set regions to
2517   // avoid contention.
2518   // If we have:
2519   //          n collection set regions
2520   //          p threads
2521   // Then thread t will start at region floor ((t * n) / p)
2522 
2523   result = g1_policy()->collection_set();
2524   uint cs_size = g1_policy()->cset_region_length();
2525   uint active_workers = workers()->active_workers();
2526 
2527   uint end_ind   = (cs_size * worker_i) / active_workers;
2528   uint start_ind = 0;
2529 
2530   if (worker_i > 0 &&
2531       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2532     // Previous workers starting region is valid
2533     // so let's iterate from there
2534     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2535     result = _worker_cset_start_region[worker_i - 1];
2536   }
2537 
2538   for (uint i = start_ind; i < end_ind; i++) {
2539     result = result->next_in_collection_set();
2540   }
2541 
2542   // Note: the calculated starting heap region may be NULL
2543   // (when the collection set is empty).
2544   assert(result == NULL || result->in_collection_set(), "sanity");
2545   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2546          "should be updated only once per pause");
2547   _worker_cset_start_region[worker_i] = result;
2548   OrderAccess::storestore();
2549   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2550   return result;
2551 }
2552 
2553 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2554   HeapRegion* r = g1_policy()->collection_set();
2555   while (r != NULL) {
2556     HeapRegion* next = r->next_in_collection_set();
2557     if (cl->doHeapRegion(r)) {
2558       cl->incomplete();
2559       return;
2560     }
2561     r = next;
2562   }
2563 }
2564 
2565 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2566                                                   HeapRegionClosure *cl) {
2567   if (r == NULL) {
2568     // The CSet is empty so there's nothing to do.
2569     return;
2570   }
2571 
2572   assert(r->in_collection_set(),
2573          "Start region must be a member of the collection set.");
2574   HeapRegion* cur = r;
2575   while (cur != NULL) {
2576     HeapRegion* next = cur->next_in_collection_set();
2577     if (cl->doHeapRegion(cur) && false) {
2578       cl->incomplete();
2579       return;
2580     }
2581     cur = next;
2582   }
2583   cur = g1_policy()->collection_set();
2584   while (cur != r) {
2585     HeapRegion* next = cur->next_in_collection_set();
2586     if (cl->doHeapRegion(cur) && false) {
2587       cl->incomplete();
2588       return;
2589     }
2590     cur = next;
2591   }
2592 }
2593 
2594 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2595   HeapRegion* result = _hrm.next_region_in_heap(from);
2596   while (result != NULL && result->is_humongous()) {
2597     result = _hrm.next_region_in_heap(result);
2598   }
2599   return result;
2600 }
2601 
2602 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2603   HeapRegion* hr = heap_region_containing(addr);
2604   return hr->block_start(addr);
2605 }
2606 
2607 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2608   HeapRegion* hr = heap_region_containing(addr);
2609   return hr->block_size(addr);
2610 }
2611 
2612 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2613   HeapRegion* hr = heap_region_containing(addr);
2614   return hr->block_is_obj(addr);
2615 }
2616 
2617 bool G1CollectedHeap::supports_tlab_allocation() const {
2618   return true;
2619 }
2620 
2621 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2622   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2623 }
2624 
2625 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2626   return young_list()->eden_used_bytes();
2627 }
2628 
2629 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2630 // must be smaller than the humongous object limit.
2631 size_t G1CollectedHeap::max_tlab_size() const {
2632   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2633 }
2634 
2635 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2636   // Return the remaining space in the cur alloc region, but not less than
2637   // the min TLAB size.
2638 
2639   // Also, this value can be at most the humongous object threshold,
2640   // since we can't allow tlabs to grow big enough to accommodate
2641   // humongous objects.
2642 
2643   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2644   size_t max_tlab = max_tlab_size() * wordSize;
2645   if (hr == NULL) {
2646     return max_tlab;
2647   } else {
2648     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2649   }
2650 }
2651 
2652 size_t G1CollectedHeap::max_capacity() const {
2653   return _hrm.reserved().byte_size();
2654 }
2655 
2656 jlong G1CollectedHeap::millis_since_last_gc() {
2657   // assert(false, "NYI");
2658   return 0;
2659 }
2660 
2661 void G1CollectedHeap::prepare_for_verify() {
2662   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2663     ensure_parsability(false);
2664   }
2665   g1_rem_set()->prepare_for_verify();
2666 }
2667 
2668 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2669                                               VerifyOption vo) {
2670   switch (vo) {
2671   case VerifyOption_G1UsePrevMarking:
2672     return hr->obj_allocated_since_prev_marking(obj);
2673   case VerifyOption_G1UseNextMarking:
2674     return hr->obj_allocated_since_next_marking(obj);
2675   case VerifyOption_G1UseMarkWord:
2676     return false;
2677   default:
2678     ShouldNotReachHere();
2679   }
2680   return false; // keep some compilers happy
2681 }
2682 
2683 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2684   switch (vo) {
2685   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2686   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2687   case VerifyOption_G1UseMarkWord:    return NULL;
2688   default:                            ShouldNotReachHere();
2689   }
2690   return NULL; // keep some compilers happy
2691 }
2692 
2693 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2694   switch (vo) {
2695   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2696   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2697   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2698   default:                            ShouldNotReachHere();
2699   }
2700   return false; // keep some compilers happy
2701 }
2702 
2703 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2704   switch (vo) {
2705   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2706   case VerifyOption_G1UseNextMarking: return "NTAMS";
2707   case VerifyOption_G1UseMarkWord:    return "NONE";
2708   default:                            ShouldNotReachHere();
2709   }
2710   return NULL; // keep some compilers happy
2711 }
2712 
2713 class VerifyRootsClosure: public OopClosure {
2714 private:
2715   G1CollectedHeap* _g1h;
2716   VerifyOption     _vo;
2717   bool             _failures;
2718 public:
2719   // _vo == UsePrevMarking -> use "prev" marking information,
2720   // _vo == UseNextMarking -> use "next" marking information,
2721   // _vo == UseMarkWord    -> use mark word from object header.
2722   VerifyRootsClosure(VerifyOption vo) :
2723     _g1h(G1CollectedHeap::heap()),
2724     _vo(vo),
2725     _failures(false) { }
2726 
2727   bool failures() { return _failures; }
2728 
2729   template <class T> void do_oop_nv(T* p) {
2730     T heap_oop = oopDesc::load_heap_oop(p);
2731     if (!oopDesc::is_null(heap_oop)) {
2732       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2733       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2734         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2735                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2736         if (_vo == VerifyOption_G1UseMarkWord) {
2737           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2738         }
2739         obj->print_on(gclog_or_tty);
2740         _failures = true;
2741       }
2742     }
2743   }
2744 
2745   void do_oop(oop* p)       { do_oop_nv(p); }
2746   void do_oop(narrowOop* p) { do_oop_nv(p); }
2747 };
2748 
2749 class G1VerifyCodeRootOopClosure: public OopClosure {
2750   G1CollectedHeap* _g1h;
2751   OopClosure* _root_cl;
2752   nmethod* _nm;
2753   VerifyOption _vo;
2754   bool _failures;
2755 
2756   template <class T> void do_oop_work(T* p) {
2757     // First verify that this root is live
2758     _root_cl->do_oop(p);
2759 
2760     if (!G1VerifyHeapRegionCodeRoots) {
2761       // We're not verifying the code roots attached to heap region.
2762       return;
2763     }
2764 
2765     // Don't check the code roots during marking verification in a full GC
2766     if (_vo == VerifyOption_G1UseMarkWord) {
2767       return;
2768     }
2769 
2770     // Now verify that the current nmethod (which contains p) is
2771     // in the code root list of the heap region containing the
2772     // object referenced by p.
2773 
2774     T heap_oop = oopDesc::load_heap_oop(p);
2775     if (!oopDesc::is_null(heap_oop)) {
2776       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2777 
2778       // Now fetch the region containing the object
2779       HeapRegion* hr = _g1h->heap_region_containing(obj);
2780       HeapRegionRemSet* hrrs = hr->rem_set();
2781       // Verify that the strong code root list for this region
2782       // contains the nmethod
2783       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2784         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2785                                "from nmethod "PTR_FORMAT" not in strong "
2786                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2787                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2788         _failures = true;
2789       }
2790     }
2791   }
2792 
2793 public:
2794   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2795     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2796 
2797   void do_oop(oop* p) { do_oop_work(p); }
2798   void do_oop(narrowOop* p) { do_oop_work(p); }
2799 
2800   void set_nmethod(nmethod* nm) { _nm = nm; }
2801   bool failures() { return _failures; }
2802 };
2803 
2804 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2805   G1VerifyCodeRootOopClosure* _oop_cl;
2806 
2807 public:
2808   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2809     _oop_cl(oop_cl) {}
2810 
2811   void do_code_blob(CodeBlob* cb) {
2812     nmethod* nm = cb->as_nmethod_or_null();
2813     if (nm != NULL) {
2814       _oop_cl->set_nmethod(nm);
2815       nm->oops_do(_oop_cl);
2816     }
2817   }
2818 };
2819 
2820 class YoungRefCounterClosure : public OopClosure {
2821   G1CollectedHeap* _g1h;
2822   int              _count;
2823  public:
2824   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2825   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2826   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2827 
2828   int count() { return _count; }
2829   void reset_count() { _count = 0; };
2830 };
2831 
2832 class VerifyKlassClosure: public KlassClosure {
2833   YoungRefCounterClosure _young_ref_counter_closure;
2834   OopClosure *_oop_closure;
2835  public:
2836   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2837   void do_klass(Klass* k) {
2838     k->oops_do(_oop_closure);
2839 
2840     _young_ref_counter_closure.reset_count();
2841     k->oops_do(&_young_ref_counter_closure);
2842     if (_young_ref_counter_closure.count() > 0) {
2843       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
2844     }
2845   }
2846 };
2847 
2848 class VerifyLivenessOopClosure: public OopClosure {
2849   G1CollectedHeap* _g1h;
2850   VerifyOption _vo;
2851 public:
2852   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2853     _g1h(g1h), _vo(vo)
2854   { }
2855   void do_oop(narrowOop *p) { do_oop_work(p); }
2856   void do_oop(      oop *p) { do_oop_work(p); }
2857 
2858   template <class T> void do_oop_work(T *p) {
2859     oop obj = oopDesc::load_decode_heap_oop(p);
2860     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2861               "Dead object referenced by a not dead object");
2862   }
2863 };
2864 
2865 class VerifyObjsInRegionClosure: public ObjectClosure {
2866 private:
2867   G1CollectedHeap* _g1h;
2868   size_t _live_bytes;
2869   HeapRegion *_hr;
2870   VerifyOption _vo;
2871 public:
2872   // _vo == UsePrevMarking -> use "prev" marking information,
2873   // _vo == UseNextMarking -> use "next" marking information,
2874   // _vo == UseMarkWord    -> use mark word from object header.
2875   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2876     : _live_bytes(0), _hr(hr), _vo(vo) {
2877     _g1h = G1CollectedHeap::heap();
2878   }
2879   void do_object(oop o) {
2880     VerifyLivenessOopClosure isLive(_g1h, _vo);
2881     assert(o != NULL, "Huh?");
2882     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2883       // If the object is alive according to the mark word,
2884       // then verify that the marking information agrees.
2885       // Note we can't verify the contra-positive of the
2886       // above: if the object is dead (according to the mark
2887       // word), it may not be marked, or may have been marked
2888       // but has since became dead, or may have been allocated
2889       // since the last marking.
2890       if (_vo == VerifyOption_G1UseMarkWord) {
2891         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2892       }
2893 
2894       o->oop_iterate_no_header(&isLive);
2895       if (!_hr->obj_allocated_since_prev_marking(o)) {
2896         size_t obj_size = o->size();    // Make sure we don't overflow
2897         _live_bytes += (obj_size * HeapWordSize);
2898       }
2899     }
2900   }
2901   size_t live_bytes() { return _live_bytes; }
2902 };
2903 
2904 class VerifyRegionClosure: public HeapRegionClosure {
2905 private:
2906   bool             _par;
2907   VerifyOption     _vo;
2908   bool             _failures;
2909 public:
2910   // _vo == UsePrevMarking -> use "prev" marking information,
2911   // _vo == UseNextMarking -> use "next" marking information,
2912   // _vo == UseMarkWord    -> use mark word from object header.
2913   VerifyRegionClosure(bool par, VerifyOption vo)
2914     : _par(par),
2915       _vo(vo),
2916       _failures(false) {}
2917 
2918   bool failures() {
2919     return _failures;
2920   }
2921 
2922   bool doHeapRegion(HeapRegion* r) {
2923     if (!r->is_continues_humongous()) {
2924       bool failures = false;
2925       r->verify(_vo, &failures);
2926       if (failures) {
2927         _failures = true;
2928       } else {
2929         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2930         r->object_iterate(&not_dead_yet_cl);
2931         if (_vo != VerifyOption_G1UseNextMarking) {
2932           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2933             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2934                                    "max_live_bytes "SIZE_FORMAT" "
2935                                    "< calculated "SIZE_FORMAT,
2936                                    p2i(r->bottom()), p2i(r->end()),
2937                                    r->max_live_bytes(),
2938                                  not_dead_yet_cl.live_bytes());
2939             _failures = true;
2940           }
2941         } else {
2942           // When vo == UseNextMarking we cannot currently do a sanity
2943           // check on the live bytes as the calculation has not been
2944           // finalized yet.
2945         }
2946       }
2947     }
2948     return false; // stop the region iteration if we hit a failure
2949   }
2950 };
2951 
2952 // This is the task used for parallel verification of the heap regions
2953 
2954 class G1ParVerifyTask: public AbstractGangTask {
2955 private:
2956   G1CollectedHeap*  _g1h;
2957   VerifyOption      _vo;
2958   bool              _failures;
2959   HeapRegionClaimer _hrclaimer;
2960 
2961 public:
2962   // _vo == UsePrevMarking -> use "prev" marking information,
2963   // _vo == UseNextMarking -> use "next" marking information,
2964   // _vo == UseMarkWord    -> use mark word from object header.
2965   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
2966       AbstractGangTask("Parallel verify task"),
2967       _g1h(g1h),
2968       _vo(vo),
2969       _failures(false),
2970       _hrclaimer(g1h->workers()->active_workers()) {}
2971 
2972   bool failures() {
2973     return _failures;
2974   }
2975 
2976   void work(uint worker_id) {
2977     HandleMark hm;
2978     VerifyRegionClosure blk(true, _vo);
2979     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
2980     if (blk.failures()) {
2981       _failures = true;
2982     }
2983   }
2984 };
2985 
2986 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
2987   if (SafepointSynchronize::is_at_safepoint()) {
2988     assert(Thread::current()->is_VM_thread(),
2989            "Expected to be executed serially by the VM thread at this point");
2990 
2991     if (!silent) { gclog_or_tty->print("Roots "); }
2992     VerifyRootsClosure rootsCl(vo);
2993     VerifyKlassClosure klassCl(this, &rootsCl);
2994     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
2995 
2996     // We apply the relevant closures to all the oops in the
2997     // system dictionary, class loader data graph, the string table
2998     // and the nmethods in the code cache.
2999     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3000     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3001 
3002     {
3003       G1RootProcessor root_processor(this, 1);
3004       root_processor.process_all_roots(&rootsCl,
3005                                        &cldCl,
3006                                        &blobsCl);
3007     }
3008 
3009     bool failures = rootsCl.failures() || codeRootsCl.failures();
3010 
3011     if (vo != VerifyOption_G1UseMarkWord) {
3012       // If we're verifying during a full GC then the region sets
3013       // will have been torn down at the start of the GC. Therefore
3014       // verifying the region sets will fail. So we only verify
3015       // the region sets when not in a full GC.
3016       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3017       verify_region_sets();
3018     }
3019 
3020     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3021     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3022 
3023       G1ParVerifyTask task(this, vo);
3024       workers()->run_task(&task);
3025       if (task.failures()) {
3026         failures = true;
3027       }
3028 
3029     } else {
3030       VerifyRegionClosure blk(false, vo);
3031       heap_region_iterate(&blk);
3032       if (blk.failures()) {
3033         failures = true;
3034       }
3035     }
3036 
3037     if (G1StringDedup::is_enabled()) {
3038       if (!silent) gclog_or_tty->print("StrDedup ");
3039       G1StringDedup::verify();
3040     }
3041 
3042     if (failures) {
3043       gclog_or_tty->print_cr("Heap:");
3044       // It helps to have the per-region information in the output to
3045       // help us track down what went wrong. This is why we call
3046       // print_extended_on() instead of print_on().
3047       print_extended_on(gclog_or_tty);
3048       gclog_or_tty->cr();
3049       gclog_or_tty->flush();
3050     }
3051     guarantee(!failures, "there should not have been any failures");
3052   } else {
3053     if (!silent) {
3054       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3055       if (G1StringDedup::is_enabled()) {
3056         gclog_or_tty->print(", StrDedup");
3057       }
3058       gclog_or_tty->print(") ");
3059     }
3060   }
3061 }
3062 
3063 void G1CollectedHeap::verify(bool silent) {
3064   verify(silent, VerifyOption_G1UsePrevMarking);
3065 }
3066 
3067 double G1CollectedHeap::verify(bool guard, const char* msg) {
3068   double verify_time_ms = 0.0;
3069 
3070   if (guard && total_collections() >= VerifyGCStartAt) {
3071     double verify_start = os::elapsedTime();
3072     HandleMark hm;  // Discard invalid handles created during verification
3073     prepare_for_verify();
3074     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3075     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3076   }
3077 
3078   return verify_time_ms;
3079 }
3080 
3081 void G1CollectedHeap::verify_before_gc() {
3082   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3083   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3084 }
3085 
3086 void G1CollectedHeap::verify_after_gc() {
3087   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3088   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3089 }
3090 
3091 class PrintRegionClosure: public HeapRegionClosure {
3092   outputStream* _st;
3093 public:
3094   PrintRegionClosure(outputStream* st) : _st(st) {}
3095   bool doHeapRegion(HeapRegion* r) {
3096     r->print_on(_st);
3097     return false;
3098   }
3099 };
3100 
3101 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3102                                        const HeapRegion* hr,
3103                                        const VerifyOption vo) const {
3104   switch (vo) {
3105   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3106   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3107   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3108   default:                            ShouldNotReachHere();
3109   }
3110   return false; // keep some compilers happy
3111 }
3112 
3113 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3114                                        const VerifyOption vo) const {
3115   switch (vo) {
3116   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3117   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3118   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3119   default:                            ShouldNotReachHere();
3120   }
3121   return false; // keep some compilers happy
3122 }
3123 
3124 void G1CollectedHeap::print_on(outputStream* st) const {
3125   st->print(" %-20s", "garbage-first heap");
3126   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3127             capacity()/K, used_unlocked()/K);
3128   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3129             p2i(_hrm.reserved().start()),
3130             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3131             p2i(_hrm.reserved().end()));
3132   st->cr();
3133   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3134   uint young_regions = _young_list->length();
3135   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3136             (size_t) young_regions * HeapRegion::GrainBytes / K);
3137   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3138   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3139             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3140   st->cr();
3141   MetaspaceAux::print_on(st);
3142 }
3143 
3144 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3145   print_on(st);
3146 
3147   // Print the per-region information.
3148   st->cr();
3149   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3150                "HS=humongous(starts), HC=humongous(continues), "
3151                "CS=collection set, F=free, TS=gc time stamp, "
3152                "PTAMS=previous top-at-mark-start, "
3153                "NTAMS=next top-at-mark-start)");
3154   PrintRegionClosure blk(st);
3155   heap_region_iterate(&blk);
3156 }
3157 
3158 void G1CollectedHeap::print_on_error(outputStream* st) const {
3159   this->CollectedHeap::print_on_error(st);
3160 
3161   if (_cm != NULL) {
3162     st->cr();
3163     _cm->print_on_error(st);
3164   }
3165 }
3166 
3167 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3168   workers()->print_worker_threads_on(st);
3169   _cmThread->print_on(st);
3170   st->cr();
3171   _cm->print_worker_threads_on(st);
3172   _cg1r->print_worker_threads_on(st);
3173   if (G1StringDedup::is_enabled()) {
3174     G1StringDedup::print_worker_threads_on(st);
3175   }
3176 }
3177 
3178 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3179   workers()->threads_do(tc);
3180   tc->do_thread(_cmThread);
3181   _cg1r->threads_do(tc);
3182   if (G1StringDedup::is_enabled()) {
3183     G1StringDedup::threads_do(tc);
3184   }
3185 }
3186 
3187 void G1CollectedHeap::print_tracing_info() const {
3188   // We'll overload this to mean "trace GC pause statistics."
3189   if (TraceYoungGenTime || TraceOldGenTime) {
3190     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3191     // to that.
3192     g1_policy()->print_tracing_info();
3193   }
3194   if (G1SummarizeRSetStats) {
3195     g1_rem_set()->print_summary_info();
3196   }
3197   if (G1SummarizeConcMark) {
3198     concurrent_mark()->print_summary_info();
3199   }
3200   g1_policy()->print_yg_surv_rate_info();
3201 }
3202 
3203 #ifndef PRODUCT
3204 // Helpful for debugging RSet issues.
3205 
3206 class PrintRSetsClosure : public HeapRegionClosure {
3207 private:
3208   const char* _msg;
3209   size_t _occupied_sum;
3210 
3211 public:
3212   bool doHeapRegion(HeapRegion* r) {
3213     HeapRegionRemSet* hrrs = r->rem_set();
3214     size_t occupied = hrrs->occupied();
3215     _occupied_sum += occupied;
3216 
3217     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3218                            HR_FORMAT_PARAMS(r));
3219     if (occupied == 0) {
3220       gclog_or_tty->print_cr("  RSet is empty");
3221     } else {
3222       hrrs->print();
3223     }
3224     gclog_or_tty->print_cr("----------");
3225     return false;
3226   }
3227 
3228   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3229     gclog_or_tty->cr();
3230     gclog_or_tty->print_cr("========================================");
3231     gclog_or_tty->print_cr("%s", msg);
3232     gclog_or_tty->cr();
3233   }
3234 
3235   ~PrintRSetsClosure() {
3236     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3237     gclog_or_tty->print_cr("========================================");
3238     gclog_or_tty->cr();
3239   }
3240 };
3241 
3242 void G1CollectedHeap::print_cset_rsets() {
3243   PrintRSetsClosure cl("Printing CSet RSets");
3244   collection_set_iterate(&cl);
3245 }
3246 
3247 void G1CollectedHeap::print_all_rsets() {
3248   PrintRSetsClosure cl("Printing All RSets");;
3249   heap_region_iterate(&cl);
3250 }
3251 #endif // PRODUCT
3252 
3253 G1CollectedHeap* G1CollectedHeap::heap() {
3254   CollectedHeap* heap = Universe::heap();
3255   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3256   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3257   return (G1CollectedHeap*)heap;
3258 }
3259 
3260 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3261   // always_do_update_barrier = false;
3262   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3263   // Fill TLAB's and such
3264   accumulate_statistics_all_tlabs();
3265   ensure_parsability(true);
3266 
3267   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3268       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3269     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3270   }
3271 }
3272 
3273 void G1CollectedHeap::gc_epilogue(bool full) {
3274 
3275   if (G1SummarizeRSetStats &&
3276       (G1SummarizeRSetStatsPeriod > 0) &&
3277       // we are at the end of the GC. Total collections has already been increased.
3278       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3279     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3280   }
3281 
3282   // FIXME: what is this about?
3283   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3284   // is set.
3285   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3286                         "derived pointer present"));
3287   // always_do_update_barrier = true;
3288 
3289   resize_all_tlabs();
3290   allocation_context_stats().update(full);
3291 
3292   // We have just completed a GC. Update the soft reference
3293   // policy with the new heap occupancy
3294   Universe::update_heap_info_at_gc();
3295 }
3296 
3297 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3298                                                uint gc_count_before,
3299                                                bool* succeeded,
3300                                                GCCause::Cause gc_cause) {
3301   assert_heap_not_locked_and_not_at_safepoint();
3302   g1_policy()->record_stop_world_start();
3303   VM_G1IncCollectionPause op(gc_count_before,
3304                              word_size,
3305                              false, /* should_initiate_conc_mark */
3306                              g1_policy()->max_pause_time_ms(),
3307                              gc_cause);
3308 
3309   op.set_allocation_context(AllocationContext::current());
3310   VMThread::execute(&op);
3311 
3312   HeapWord* result = op.result();
3313   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3314   assert(result == NULL || ret_succeeded,
3315          "the result should be NULL if the VM did not succeed");
3316   *succeeded = ret_succeeded;
3317 
3318   assert_heap_not_locked();
3319   return result;
3320 }
3321 
3322 void
3323 G1CollectedHeap::doConcurrentMark() {
3324   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3325   if (!_cmThread->in_progress()) {
3326     _cmThread->set_started();
3327     CGC_lock->notify();
3328   }
3329 }
3330 
3331 size_t G1CollectedHeap::pending_card_num() {
3332   size_t extra_cards = 0;
3333   JavaThread *curr = Threads::first();
3334   while (curr != NULL) {
3335     DirtyCardQueue& dcq = curr->dirty_card_queue();
3336     extra_cards += dcq.size();
3337     curr = curr->next();
3338   }
3339   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3340   size_t buffer_size = dcqs.buffer_size();
3341   size_t buffer_num = dcqs.completed_buffers_num();
3342 
3343   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3344   // in bytes - not the number of 'entries'. We need to convert
3345   // into a number of cards.
3346   return (buffer_size * buffer_num + extra_cards) / oopSize;
3347 }
3348 
3349 size_t G1CollectedHeap::cards_scanned() {
3350   return g1_rem_set()->cardsScanned();
3351 }
3352 
3353 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3354  private:
3355   size_t _total_humongous;
3356   size_t _candidate_humongous;
3357 
3358   DirtyCardQueue _dcq;
3359 
3360   // We don't nominate objects with many remembered set entries, on
3361   // the assumption that such objects are likely still live.
3362   bool is_remset_small(HeapRegion* region) const {
3363     HeapRegionRemSet* const rset = region->rem_set();
3364     return G1EagerReclaimHumongousObjectsWithStaleRefs
3365       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3366       : rset->is_empty();
3367   }
3368 
3369   bool is_typeArray_region(HeapRegion* region) const {
3370     return oop(region->bottom())->is_typeArray();
3371   }
3372 
3373   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3374     assert(region->is_starts_humongous(), "Must start a humongous object");
3375 
3376     // Candidate selection must satisfy the following constraints
3377     // while concurrent marking is in progress:
3378     //
3379     // * In order to maintain SATB invariants, an object must not be
3380     // reclaimed if it was allocated before the start of marking and
3381     // has not had its references scanned.  Such an object must have
3382     // its references (including type metadata) scanned to ensure no
3383     // live objects are missed by the marking process.  Objects
3384     // allocated after the start of concurrent marking don't need to
3385     // be scanned.
3386     //
3387     // * An object must not be reclaimed if it is on the concurrent
3388     // mark stack.  Objects allocated after the start of concurrent
3389     // marking are never pushed on the mark stack.
3390     //
3391     // Nominating only objects allocated after the start of concurrent
3392     // marking is sufficient to meet both constraints.  This may miss
3393     // some objects that satisfy the constraints, but the marking data
3394     // structures don't support efficiently performing the needed
3395     // additional tests or scrubbing of the mark stack.
3396     //
3397     // However, we presently only nominate is_typeArray() objects.
3398     // A humongous object containing references induces remembered
3399     // set entries on other regions.  In order to reclaim such an
3400     // object, those remembered sets would need to be cleaned up.
3401     //
3402     // We also treat is_typeArray() objects specially, allowing them
3403     // to be reclaimed even if allocated before the start of
3404     // concurrent mark.  For this we rely on mark stack insertion to
3405     // exclude is_typeArray() objects, preventing reclaiming an object
3406     // that is in the mark stack.  We also rely on the metadata for
3407     // such objects to be built-in and so ensured to be kept live.
3408     // Frequent allocation and drop of large binary blobs is an
3409     // important use case for eager reclaim, and this special handling
3410     // may reduce needed headroom.
3411 
3412     return is_typeArray_region(region) && is_remset_small(region);
3413   }
3414 
3415  public:
3416   RegisterHumongousWithInCSetFastTestClosure()
3417   : _total_humongous(0),
3418     _candidate_humongous(0),
3419     _dcq(&JavaThread::dirty_card_queue_set()) {
3420   }
3421 
3422   virtual bool doHeapRegion(HeapRegion* r) {
3423     if (!r->is_starts_humongous()) {
3424       return false;
3425     }
3426     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3427 
3428     bool is_candidate = humongous_region_is_candidate(g1h, r);
3429     uint rindex = r->hrm_index();
3430     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3431     if (is_candidate) {
3432       _candidate_humongous++;
3433       g1h->register_humongous_region_with_cset(rindex);
3434       // Is_candidate already filters out humongous object with large remembered sets.
3435       // If we have a humongous object with a few remembered sets, we simply flush these
3436       // remembered set entries into the DCQS. That will result in automatic
3437       // re-evaluation of their remembered set entries during the following evacuation
3438       // phase.
3439       if (!r->rem_set()->is_empty()) {
3440         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3441                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3442         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3443         HeapRegionRemSetIterator hrrs(r->rem_set());
3444         size_t card_index;
3445         while (hrrs.has_next(card_index)) {
3446           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3447           // The remembered set might contain references to already freed
3448           // regions. Filter out such entries to avoid failing card table
3449           // verification.
3450           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3451             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3452               *card_ptr = CardTableModRefBS::dirty_card_val();
3453               _dcq.enqueue(card_ptr);
3454             }
3455           }
3456         }
3457         r->rem_set()->clear_locked();
3458       }
3459       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3460     }
3461     _total_humongous++;
3462 
3463     return false;
3464   }
3465 
3466   size_t total_humongous() const { return _total_humongous; }
3467   size_t candidate_humongous() const { return _candidate_humongous; }
3468 
3469   void flush_rem_set_entries() { _dcq.flush(); }
3470 };
3471 
3472 void G1CollectedHeap::register_humongous_regions_with_cset() {
3473   if (!G1EagerReclaimHumongousObjects) {
3474     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3475     return;
3476   }
3477   double time = os::elapsed_counter();
3478 
3479   // Collect reclaim candidate information and register candidates with cset.
3480   RegisterHumongousWithInCSetFastTestClosure cl;
3481   heap_region_iterate(&cl);
3482 
3483   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3484   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3485                                                                   cl.total_humongous(),
3486                                                                   cl.candidate_humongous());
3487   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3488 
3489   // Finally flush all remembered set entries to re-check into the global DCQS.
3490   cl.flush_rem_set_entries();
3491 }
3492 
3493 void
3494 G1CollectedHeap::setup_surviving_young_words() {
3495   assert(_surviving_young_words == NULL, "pre-condition");
3496   uint array_length = g1_policy()->young_cset_region_length();
3497   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3498   if (_surviving_young_words == NULL) {
3499     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3500                           "Not enough space for young surv words summary.");
3501   }
3502   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3503 #ifdef ASSERT
3504   for (uint i = 0;  i < array_length; ++i) {
3505     assert( _surviving_young_words[i] == 0, "memset above" );
3506   }
3507 #endif // !ASSERT
3508 }
3509 
3510 void
3511 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3512   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3513   uint array_length = g1_policy()->young_cset_region_length();
3514   for (uint i = 0; i < array_length; ++i) {
3515     _surviving_young_words[i] += surv_young_words[i];
3516   }
3517 }
3518 
3519 void
3520 G1CollectedHeap::cleanup_surviving_young_words() {
3521   guarantee( _surviving_young_words != NULL, "pre-condition" );
3522   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3523   _surviving_young_words = NULL;
3524 }
3525 
3526 #ifdef ASSERT
3527 class VerifyCSetClosure: public HeapRegionClosure {
3528 public:
3529   bool doHeapRegion(HeapRegion* hr) {
3530     // Here we check that the CSet region's RSet is ready for parallel
3531     // iteration. The fields that we'll verify are only manipulated
3532     // when the region is part of a CSet and is collected. Afterwards,
3533     // we reset these fields when we clear the region's RSet (when the
3534     // region is freed) so they are ready when the region is
3535     // re-allocated. The only exception to this is if there's an
3536     // evacuation failure and instead of freeing the region we leave
3537     // it in the heap. In that case, we reset these fields during
3538     // evacuation failure handling.
3539     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3540 
3541     // Here's a good place to add any other checks we'd like to
3542     // perform on CSet regions.
3543     return false;
3544   }
3545 };
3546 #endif // ASSERT
3547 
3548 uint G1CollectedHeap::num_task_queues() const {
3549   return _task_queues->size();
3550 }
3551 
3552 #if TASKQUEUE_STATS
3553 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3554   st->print_raw_cr("GC Task Stats");
3555   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3556   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3557 }
3558 
3559 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3560   print_taskqueue_stats_hdr(st);
3561 
3562   TaskQueueStats totals;
3563   const uint n = num_task_queues();
3564   for (uint i = 0; i < n; ++i) {
3565     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3566     totals += task_queue(i)->stats;
3567   }
3568   st->print_raw("tot "); totals.print(st); st->cr();
3569 
3570   DEBUG_ONLY(totals.verify());
3571 }
3572 
3573 void G1CollectedHeap::reset_taskqueue_stats() {
3574   const uint n = num_task_queues();
3575   for (uint i = 0; i < n; ++i) {
3576     task_queue(i)->stats.reset();
3577   }
3578 }
3579 #endif // TASKQUEUE_STATS
3580 
3581 void G1CollectedHeap::log_gc_header() {
3582   if (!G1Log::fine()) {
3583     return;
3584   }
3585 
3586   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3587 
3588   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3589     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3590     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3591 
3592   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3593 }
3594 
3595 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3596   if (!G1Log::fine()) {
3597     return;
3598   }
3599 
3600   if (G1Log::finer()) {
3601     if (evacuation_failed()) {
3602       gclog_or_tty->print(" (to-space exhausted)");
3603     }
3604     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3605     g1_policy()->phase_times()->note_gc_end();
3606     g1_policy()->phase_times()->print(pause_time_sec);
3607     g1_policy()->print_detailed_heap_transition();
3608   } else {
3609     if (evacuation_failed()) {
3610       gclog_or_tty->print("--");
3611     }
3612     g1_policy()->print_heap_transition();
3613     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3614   }
3615   gclog_or_tty->flush();
3616 }
3617 
3618 bool
3619 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3620   assert_at_safepoint(true /* should_be_vm_thread */);
3621   guarantee(!is_gc_active(), "collection is not reentrant");
3622 
3623   if (GC_locker::check_active_before_gc()) {
3624     return false;
3625   }
3626 
3627   _gc_timer_stw->register_gc_start();
3628 
3629   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3630 
3631   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3632   ResourceMark rm;
3633 
3634   G1Log::update_level();
3635   print_heap_before_gc();
3636   trace_heap_before_gc(_gc_tracer_stw);
3637 
3638   verify_region_sets_optional();
3639   verify_dirty_young_regions();
3640 
3641   // This call will decide whether this pause is an initial-mark
3642   // pause. If it is, during_initial_mark_pause() will return true
3643   // for the duration of this pause.
3644   g1_policy()->decide_on_conc_mark_initiation();
3645 
3646   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3647   assert(!g1_policy()->during_initial_mark_pause() ||
3648           g1_policy()->gcs_are_young(), "sanity");
3649 
3650   // We also do not allow mixed GCs during marking.
3651   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3652 
3653   // Record whether this pause is an initial mark. When the current
3654   // thread has completed its logging output and it's safe to signal
3655   // the CM thread, the flag's value in the policy has been reset.
3656   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3657 
3658   // Inner scope for scope based logging, timers, and stats collection
3659   {
3660     EvacuationInfo evacuation_info;
3661 
3662     if (g1_policy()->during_initial_mark_pause()) {
3663       // We are about to start a marking cycle, so we increment the
3664       // full collection counter.
3665       increment_old_marking_cycles_started();
3666       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3667     }
3668 
3669     _gc_tracer_stw->report_yc_type(yc_type());
3670 
3671     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3672 
3673     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3674                                                                   workers()->active_workers(),
3675                                                                   Threads::number_of_non_daemon_threads());
3676     workers()->set_active_workers(active_workers);
3677 
3678     double pause_start_sec = os::elapsedTime();
3679     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3680     log_gc_header();
3681 
3682     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3683     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3684 
3685     // If the secondary_free_list is not empty, append it to the
3686     // free_list. No need to wait for the cleanup operation to finish;
3687     // the region allocation code will check the secondary_free_list
3688     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3689     // set, skip this step so that the region allocation code has to
3690     // get entries from the secondary_free_list.
3691     if (!G1StressConcRegionFreeing) {
3692       append_secondary_free_list_if_not_empty_with_lock();
3693     }
3694 
3695     assert(check_young_list_well_formed(), "young list should be well formed");
3696 
3697     // Don't dynamically change the number of GC threads this early.  A value of
3698     // 0 is used to indicate serial work.  When parallel work is done,
3699     // it will be set.
3700 
3701     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3702       IsGCActiveMark x;
3703 
3704       gc_prologue(false);
3705       increment_total_collections(false /* full gc */);
3706       increment_gc_time_stamp();
3707 
3708       verify_before_gc();
3709 
3710       check_bitmaps("GC Start");
3711 
3712       COMPILER2_PRESENT(DerivedPointerTable::clear());
3713 
3714       // Please see comment in g1CollectedHeap.hpp and
3715       // G1CollectedHeap::ref_processing_init() to see how
3716       // reference processing currently works in G1.
3717 
3718       // Enable discovery in the STW reference processor
3719       ref_processor_stw()->enable_discovery();
3720 
3721       {
3722         // We want to temporarily turn off discovery by the
3723         // CM ref processor, if necessary, and turn it back on
3724         // on again later if we do. Using a scoped
3725         // NoRefDiscovery object will do this.
3726         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3727 
3728         // Forget the current alloc region (we might even choose it to be part
3729         // of the collection set!).
3730         _allocator->release_mutator_alloc_region();
3731 
3732         // We should call this after we retire the mutator alloc
3733         // region(s) so that all the ALLOC / RETIRE events are generated
3734         // before the start GC event.
3735         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3736 
3737         // This timing is only used by the ergonomics to handle our pause target.
3738         // It is unclear why this should not include the full pause. We will
3739         // investigate this in CR 7178365.
3740         //
3741         // Preserving the old comment here if that helps the investigation:
3742         //
3743         // The elapsed time induced by the start time below deliberately elides
3744         // the possible verification above.
3745         double sample_start_time_sec = os::elapsedTime();
3746 
3747 #if YOUNG_LIST_VERBOSE
3748         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3749         _young_list->print();
3750         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3751 #endif // YOUNG_LIST_VERBOSE
3752 
3753         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3754 
3755         double scan_wait_start = os::elapsedTime();
3756         // We have to wait until the CM threads finish scanning the
3757         // root regions as it's the only way to ensure that all the
3758         // objects on them have been correctly scanned before we start
3759         // moving them during the GC.
3760         bool waited = _cm->root_regions()->wait_until_scan_finished();
3761         double wait_time_ms = 0.0;
3762         if (waited) {
3763           double scan_wait_end = os::elapsedTime();
3764           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3765         }
3766         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3767 
3768 #if YOUNG_LIST_VERBOSE
3769         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3770         _young_list->print();
3771 #endif // YOUNG_LIST_VERBOSE
3772 
3773         if (g1_policy()->during_initial_mark_pause()) {
3774           concurrent_mark()->checkpointRootsInitialPre();
3775         }
3776 
3777 #if YOUNG_LIST_VERBOSE
3778         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3779         _young_list->print();
3780         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3781 #endif // YOUNG_LIST_VERBOSE
3782 
3783         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3784 
3785         register_humongous_regions_with_cset();
3786 
3787         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3788 
3789         _cm->note_start_of_gc();
3790         // We call this after finalize_cset() to
3791         // ensure that the CSet has been finalized.
3792         _cm->verify_no_cset_oops();
3793 
3794         if (_hr_printer.is_active()) {
3795           HeapRegion* hr = g1_policy()->collection_set();
3796           while (hr != NULL) {
3797             _hr_printer.cset(hr);
3798             hr = hr->next_in_collection_set();
3799           }
3800         }
3801 
3802 #ifdef ASSERT
3803         VerifyCSetClosure cl;
3804         collection_set_iterate(&cl);
3805 #endif // ASSERT
3806 
3807         setup_surviving_young_words();
3808 
3809         // Initialize the GC alloc regions.
3810         _allocator->init_gc_alloc_regions(evacuation_info);
3811 
3812         // Actually do the work...
3813         evacuate_collection_set(evacuation_info);
3814 
3815         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3816 
3817         eagerly_reclaim_humongous_regions();
3818 
3819         g1_policy()->clear_collection_set();
3820 
3821         cleanup_surviving_young_words();
3822 
3823         // Start a new incremental collection set for the next pause.
3824         g1_policy()->start_incremental_cset_building();
3825 
3826         clear_cset_fast_test();
3827 
3828         _young_list->reset_sampled_info();
3829 
3830         // Don't check the whole heap at this point as the
3831         // GC alloc regions from this pause have been tagged
3832         // as survivors and moved on to the survivor list.
3833         // Survivor regions will fail the !is_young() check.
3834         assert(check_young_list_empty(false /* check_heap */),
3835           "young list should be empty");
3836 
3837 #if YOUNG_LIST_VERBOSE
3838         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3839         _young_list->print();
3840 #endif // YOUNG_LIST_VERBOSE
3841 
3842         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3843                                              _young_list->first_survivor_region(),
3844                                              _young_list->last_survivor_region());
3845 
3846         _young_list->reset_auxilary_lists();
3847 
3848         if (evacuation_failed()) {
3849           _allocator->set_used(recalculate_used());
3850           for (uint i = 0; i < ParallelGCThreads; i++) {
3851             if (_evacuation_failed_info_array[i].has_failed()) {
3852               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3853             }
3854           }
3855         } else {
3856           // The "used" of the the collection set have already been subtracted
3857           // when they were freed.  Add in the bytes evacuated.
3858           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3859         }
3860 
3861         if (g1_policy()->during_initial_mark_pause()) {
3862           // We have to do this before we notify the CM threads that
3863           // they can start working to make sure that all the
3864           // appropriate initialization is done on the CM object.
3865           concurrent_mark()->checkpointRootsInitialPost();
3866           set_marking_started();
3867           // Note that we don't actually trigger the CM thread at
3868           // this point. We do that later when we're sure that
3869           // the current thread has completed its logging output.
3870         }
3871 
3872         allocate_dummy_regions();
3873 
3874 #if YOUNG_LIST_VERBOSE
3875         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3876         _young_list->print();
3877         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3878 #endif // YOUNG_LIST_VERBOSE
3879 
3880         _allocator->init_mutator_alloc_region();
3881 
3882         {
3883           size_t expand_bytes = g1_policy()->expansion_amount();
3884           if (expand_bytes > 0) {
3885             size_t bytes_before = capacity();
3886             // No need for an ergo verbose message here,
3887             // expansion_amount() does this when it returns a value > 0.
3888             if (!expand(expand_bytes)) {
3889               // We failed to expand the heap. Cannot do anything about it.
3890             }
3891           }
3892         }
3893 
3894         // We redo the verification but now wrt to the new CSet which
3895         // has just got initialized after the previous CSet was freed.
3896         _cm->verify_no_cset_oops();
3897         _cm->note_end_of_gc();
3898 
3899         // This timing is only used by the ergonomics to handle our pause target.
3900         // It is unclear why this should not include the full pause. We will
3901         // investigate this in CR 7178365.
3902         double sample_end_time_sec = os::elapsedTime();
3903         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3904         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3905 
3906         MemoryService::track_memory_usage();
3907 
3908         // In prepare_for_verify() below we'll need to scan the deferred
3909         // update buffers to bring the RSets up-to-date if
3910         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3911         // the update buffers we'll probably need to scan cards on the
3912         // regions we just allocated to (i.e., the GC alloc
3913         // regions). However, during the last GC we called
3914         // set_saved_mark() on all the GC alloc regions, so card
3915         // scanning might skip the [saved_mark_word()...top()] area of
3916         // those regions (i.e., the area we allocated objects into
3917         // during the last GC). But it shouldn't. Given that
3918         // saved_mark_word() is conditional on whether the GC time stamp
3919         // on the region is current or not, by incrementing the GC time
3920         // stamp here we invalidate all the GC time stamps on all the
3921         // regions and saved_mark_word() will simply return top() for
3922         // all the regions. This is a nicer way of ensuring this rather
3923         // than iterating over the regions and fixing them. In fact, the
3924         // GC time stamp increment here also ensures that
3925         // saved_mark_word() will return top() between pauses, i.e.,
3926         // during concurrent refinement. So we don't need the
3927         // is_gc_active() check to decided which top to use when
3928         // scanning cards (see CR 7039627).
3929         increment_gc_time_stamp();
3930 
3931         verify_after_gc();
3932         check_bitmaps("GC End");
3933 
3934         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3935         ref_processor_stw()->verify_no_references_recorded();
3936 
3937         // CM reference discovery will be re-enabled if necessary.
3938       }
3939 
3940       // We should do this after we potentially expand the heap so
3941       // that all the COMMIT events are generated before the end GC
3942       // event, and after we retire the GC alloc regions so that all
3943       // RETIRE events are generated before the end GC event.
3944       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3945 
3946 #ifdef TRACESPINNING
3947       ParallelTaskTerminator::print_termination_counts();
3948 #endif
3949 
3950       gc_epilogue(false);
3951     }
3952 
3953     // Print the remainder of the GC log output.
3954     log_gc_footer(os::elapsedTime() - pause_start_sec);
3955 
3956     // It is not yet to safe to tell the concurrent mark to
3957     // start as we have some optional output below. We don't want the
3958     // output from the concurrent mark thread interfering with this
3959     // logging output either.
3960 
3961     _hrm.verify_optional();
3962     verify_region_sets_optional();
3963 
3964     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
3965     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3966 
3967     print_heap_after_gc();
3968     trace_heap_after_gc(_gc_tracer_stw);
3969 
3970     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3971     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3972     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3973     // before any GC notifications are raised.
3974     g1mm()->update_sizes();
3975 
3976     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3977     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3978     _gc_timer_stw->register_gc_end();
3979     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3980   }
3981   // It should now be safe to tell the concurrent mark thread to start
3982   // without its logging output interfering with the logging output
3983   // that came from the pause.
3984 
3985   if (should_start_conc_mark) {
3986     // CAUTION: after the doConcurrentMark() call below,
3987     // the concurrent marking thread(s) could be running
3988     // concurrently with us. Make sure that anything after
3989     // this point does not assume that we are the only GC thread
3990     // running. Note: of course, the actual marking work will
3991     // not start until the safepoint itself is released in
3992     // SuspendibleThreadSet::desynchronize().
3993     doConcurrentMark();
3994   }
3995 
3996   return true;
3997 }
3998 
3999 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4000   _drain_in_progress = false;
4001   set_evac_failure_closure(cl);
4002   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4003 }
4004 
4005 void G1CollectedHeap::finalize_for_evac_failure() {
4006   assert(_evac_failure_scan_stack != NULL &&
4007          _evac_failure_scan_stack->length() == 0,
4008          "Postcondition");
4009   assert(!_drain_in_progress, "Postcondition");
4010   delete _evac_failure_scan_stack;
4011   _evac_failure_scan_stack = NULL;
4012 }
4013 
4014 void G1CollectedHeap::remove_self_forwarding_pointers() {
4015   double remove_self_forwards_start = os::elapsedTime();
4016 
4017   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4018   workers()->run_task(&rsfp_task);
4019 
4020   // Now restore saved marks, if any.
4021   assert(_objs_with_preserved_marks.size() ==
4022             _preserved_marks_of_objs.size(), "Both or none.");
4023   while (!_objs_with_preserved_marks.is_empty()) {
4024     oop obj = _objs_with_preserved_marks.pop();
4025     markOop m = _preserved_marks_of_objs.pop();
4026     obj->set_mark(m);
4027   }
4028   _objs_with_preserved_marks.clear(true);
4029   _preserved_marks_of_objs.clear(true);
4030 
4031   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4032 }
4033 
4034 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4035   _evac_failure_scan_stack->push(obj);
4036 }
4037 
4038 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4039   assert(_evac_failure_scan_stack != NULL, "precondition");
4040 
4041   while (_evac_failure_scan_stack->length() > 0) {
4042      oop obj = _evac_failure_scan_stack->pop();
4043      _evac_failure_closure->set_region(heap_region_containing(obj));
4044      obj->oop_iterate_backwards(_evac_failure_closure);
4045   }
4046 }
4047 
4048 oop
4049 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4050                                                oop old) {
4051   assert(obj_in_cs(old),
4052          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4053                  p2i(old)));
4054   markOop m = old->mark();
4055   oop forward_ptr = old->forward_to_atomic(old);
4056   if (forward_ptr == NULL) {
4057     // Forward-to-self succeeded.
4058     assert(_par_scan_state != NULL, "par scan state");
4059     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4060     uint queue_num = _par_scan_state->queue_num();
4061 
4062     _evacuation_failed = true;
4063     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4064     if (_evac_failure_closure != cl) {
4065       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4066       assert(!_drain_in_progress,
4067              "Should only be true while someone holds the lock.");
4068       // Set the global evac-failure closure to the current thread's.
4069       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4070       set_evac_failure_closure(cl);
4071       // Now do the common part.
4072       handle_evacuation_failure_common(old, m);
4073       // Reset to NULL.
4074       set_evac_failure_closure(NULL);
4075     } else {
4076       // The lock is already held, and this is recursive.
4077       assert(_drain_in_progress, "This should only be the recursive case.");
4078       handle_evacuation_failure_common(old, m);
4079     }
4080     return old;
4081   } else {
4082     // Forward-to-self failed. Either someone else managed to allocate
4083     // space for this object (old != forward_ptr) or they beat us in
4084     // self-forwarding it (old == forward_ptr).
4085     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4086            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4087                    "should not be in the CSet",
4088                    p2i(old), p2i(forward_ptr)));
4089     return forward_ptr;
4090   }
4091 }
4092 
4093 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4094   preserve_mark_if_necessary(old, m);
4095 
4096   HeapRegion* r = heap_region_containing(old);
4097   if (!r->evacuation_failed()) {
4098     r->set_evacuation_failed(true);
4099     _hr_printer.evac_failure(r);
4100   }
4101 
4102   push_on_evac_failure_scan_stack(old);
4103 
4104   if (!_drain_in_progress) {
4105     // prevent recursion in copy_to_survivor_space()
4106     _drain_in_progress = true;
4107     drain_evac_failure_scan_stack();
4108     _drain_in_progress = false;
4109   }
4110 }
4111 
4112 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4113   assert(evacuation_failed(), "Oversaving!");
4114   // We want to call the "for_promotion_failure" version only in the
4115   // case of a promotion failure.
4116   if (m->must_be_preserved_for_promotion_failure(obj)) {
4117     _objs_with_preserved_marks.push(obj);
4118     _preserved_marks_of_objs.push(m);
4119   }
4120 }
4121 
4122 void G1ParCopyHelper::mark_object(oop obj) {
4123   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4124 
4125   // We know that the object is not moving so it's safe to read its size.
4126   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4127 }
4128 
4129 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4130   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4131   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4132   assert(from_obj != to_obj, "should not be self-forwarded");
4133 
4134   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4135   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4136 
4137   // The object might be in the process of being copied by another
4138   // worker so we cannot trust that its to-space image is
4139   // well-formed. So we have to read its size from its from-space
4140   // image which we know should not be changing.
4141   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4142 }
4143 
4144 template <class T>
4145 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4146   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4147     _scanned_klass->record_modified_oops();
4148   }
4149 }
4150 
4151 template <G1Barrier barrier, G1Mark do_mark_object>
4152 template <class T>
4153 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4154   T heap_oop = oopDesc::load_heap_oop(p);
4155 
4156   if (oopDesc::is_null(heap_oop)) {
4157     return;
4158   }
4159 
4160   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4161 
4162   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4163 
4164   const InCSetState state = _g1->in_cset_state(obj);
4165   if (state.is_in_cset()) {
4166     oop forwardee;
4167     markOop m = obj->mark();
4168     if (m->is_marked()) {
4169       forwardee = (oop) m->decode_pointer();
4170     } else {
4171       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4172     }
4173     assert(forwardee != NULL, "forwardee should not be NULL");
4174     oopDesc::encode_store_heap_oop(p, forwardee);
4175     if (do_mark_object != G1MarkNone && forwardee != obj) {
4176       // If the object is self-forwarded we don't need to explicitly
4177       // mark it, the evacuation failure protocol will do so.
4178       mark_forwarded_object(obj, forwardee);
4179     }
4180 
4181     if (barrier == G1BarrierKlass) {
4182       do_klass_barrier(p, forwardee);
4183     }
4184   } else {
4185     if (state.is_humongous()) {
4186       _g1->set_humongous_is_live(obj);
4187     }
4188     // The object is not in collection set. If we're a root scanning
4189     // closure during an initial mark pause then attempt to mark the object.
4190     if (do_mark_object == G1MarkFromRoot) {
4191       mark_object(obj);
4192     }
4193   }
4194 
4195   if (barrier == G1BarrierEvac) {
4196     _par_scan_state->update_rs(_from, p, _worker_id);
4197   }
4198 }
4199 
4200 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4201 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4202 
4203 class G1ParEvacuateFollowersClosure : public VoidClosure {
4204 protected:
4205   G1CollectedHeap*              _g1h;
4206   G1ParScanThreadState*         _par_scan_state;
4207   RefToScanQueueSet*            _queues;
4208   ParallelTaskTerminator*       _terminator;
4209 
4210   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4211   RefToScanQueueSet*      queues()         { return _queues; }
4212   ParallelTaskTerminator* terminator()     { return _terminator; }
4213 
4214 public:
4215   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4216                                 G1ParScanThreadState* par_scan_state,
4217                                 RefToScanQueueSet* queues,
4218                                 ParallelTaskTerminator* terminator)
4219     : _g1h(g1h), _par_scan_state(par_scan_state),
4220       _queues(queues), _terminator(terminator) {}
4221 
4222   void do_void();
4223 
4224 private:
4225   inline bool offer_termination();
4226 };
4227 
4228 bool G1ParEvacuateFollowersClosure::offer_termination() {
4229   G1ParScanThreadState* const pss = par_scan_state();
4230   pss->start_term_time();
4231   const bool res = terminator()->offer_termination();
4232   pss->end_term_time();
4233   return res;
4234 }
4235 
4236 void G1ParEvacuateFollowersClosure::do_void() {
4237   G1ParScanThreadState* const pss = par_scan_state();
4238   pss->trim_queue();
4239   do {
4240     pss->steal_and_trim_queue(queues());
4241   } while (!offer_termination());
4242 }
4243 
4244 class G1KlassScanClosure : public KlassClosure {
4245  G1ParCopyHelper* _closure;
4246  bool             _process_only_dirty;
4247  int              _count;
4248  public:
4249   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4250       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4251   void do_klass(Klass* klass) {
4252     // If the klass has not been dirtied we know that there's
4253     // no references into  the young gen and we can skip it.
4254    if (!_process_only_dirty || klass->has_modified_oops()) {
4255       // Clean the klass since we're going to scavenge all the metadata.
4256       klass->clear_modified_oops();
4257 
4258       // Tell the closure that this klass is the Klass to scavenge
4259       // and is the one to dirty if oops are left pointing into the young gen.
4260       _closure->set_scanned_klass(klass);
4261 
4262       klass->oops_do(_closure);
4263 
4264       _closure->set_scanned_klass(NULL);
4265     }
4266     _count++;
4267   }
4268 };
4269 
4270 class G1ParTask : public AbstractGangTask {
4271 protected:
4272   G1CollectedHeap*       _g1h;
4273   RefToScanQueueSet      *_queues;
4274   G1RootProcessor*       _root_processor;
4275   ParallelTaskTerminator _terminator;
4276   uint _n_workers;
4277 
4278   Mutex _stats_lock;
4279   Mutex* stats_lock() { return &_stats_lock; }
4280 
4281 public:
4282   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4283     : AbstractGangTask("G1 collection"),
4284       _g1h(g1h),
4285       _queues(task_queues),
4286       _root_processor(root_processor),
4287       _terminator(n_workers, _queues),
4288       _n_workers(n_workers),
4289       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4290   {}
4291 
4292   RefToScanQueueSet* queues() { return _queues; }
4293 
4294   RefToScanQueue *work_queue(int i) {
4295     return queues()->queue(i);
4296   }
4297 
4298   ParallelTaskTerminator* terminator() { return &_terminator; }
4299 
4300   // Helps out with CLD processing.
4301   //
4302   // During InitialMark we need to:
4303   // 1) Scavenge all CLDs for the young GC.
4304   // 2) Mark all objects directly reachable from strong CLDs.
4305   template <G1Mark do_mark_object>
4306   class G1CLDClosure : public CLDClosure {
4307     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4308     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4309     G1KlassScanClosure                                _klass_in_cld_closure;
4310     bool                                              _claim;
4311 
4312    public:
4313     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4314                  bool only_young, bool claim)
4315         : _oop_closure(oop_closure),
4316           _oop_in_klass_closure(oop_closure->g1(),
4317                                 oop_closure->pss(),
4318                                 oop_closure->rp()),
4319           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4320           _claim(claim) {
4321 
4322     }
4323 
4324     void do_cld(ClassLoaderData* cld) {
4325       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4326     }
4327   };
4328 
4329   void work(uint worker_id) {
4330     if (worker_id >= _n_workers) return;  // no work needed this round
4331 
4332     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4333 
4334     {
4335       ResourceMark rm;
4336       HandleMark   hm;
4337 
4338       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4339 
4340       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4341       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4342 
4343       pss.set_evac_failure_closure(&evac_failure_cl);
4344 
4345       bool only_young = _g1h->g1_policy()->gcs_are_young();
4346 
4347       // Non-IM young GC.
4348       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4349       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4350                                                                                only_young, // Only process dirty klasses.
4351                                                                                false);     // No need to claim CLDs.
4352       // IM young GC.
4353       //    Strong roots closures.
4354       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4355       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4356                                                                                false, // Process all klasses.
4357                                                                                true); // Need to claim CLDs.
4358       //    Weak roots closures.
4359       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4360       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4361                                                                                     false, // Process all klasses.
4362                                                                                     true); // Need to claim CLDs.
4363 
4364       OopClosure* strong_root_cl;
4365       OopClosure* weak_root_cl;
4366       CLDClosure* strong_cld_cl;
4367       CLDClosure* weak_cld_cl;
4368 
4369       bool trace_metadata = false;
4370 
4371       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4372         // We also need to mark copied objects.
4373         strong_root_cl = &scan_mark_root_cl;
4374         strong_cld_cl  = &scan_mark_cld_cl;
4375         if (ClassUnloadingWithConcurrentMark) {
4376           weak_root_cl = &scan_mark_weak_root_cl;
4377           weak_cld_cl  = &scan_mark_weak_cld_cl;
4378           trace_metadata = true;
4379         } else {
4380           weak_root_cl = &scan_mark_root_cl;
4381           weak_cld_cl  = &scan_mark_cld_cl;
4382         }
4383       } else {
4384         strong_root_cl = &scan_only_root_cl;
4385         weak_root_cl   = &scan_only_root_cl;
4386         strong_cld_cl  = &scan_only_cld_cl;
4387         weak_cld_cl    = &scan_only_cld_cl;
4388       }
4389 
4390       pss.start_strong_roots();
4391 
4392       _root_processor->evacuate_roots(strong_root_cl,
4393                                       weak_root_cl,
4394                                       strong_cld_cl,
4395                                       weak_cld_cl,
4396                                       trace_metadata,
4397                                       worker_id);
4398 
4399       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4400       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4401                                             weak_root_cl,
4402                                             worker_id);
4403       pss.end_strong_roots();
4404 
4405       {
4406         double start = os::elapsedTime();
4407         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4408         evac.do_void();
4409         double elapsed_sec = os::elapsedTime() - start;
4410         double term_sec = pss.term_time();
4411         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4412         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4413         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4414       }
4415       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4416       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4417 
4418       if (PrintTerminationStats) {
4419         MutexLocker x(stats_lock());
4420         pss.print_termination_stats(worker_id);
4421       }
4422 
4423       assert(pss.queue_is_empty(), "should be empty");
4424 
4425       // Close the inner scope so that the ResourceMark and HandleMark
4426       // destructors are executed here and are included as part of the
4427       // "GC Worker Time".
4428     }
4429     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4430   }
4431 };
4432 
4433 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4434 private:
4435   BoolObjectClosure* _is_alive;
4436   int _initial_string_table_size;
4437   int _initial_symbol_table_size;
4438 
4439   bool  _process_strings;
4440   int _strings_processed;
4441   int _strings_removed;
4442 
4443   bool  _process_symbols;
4444   int _symbols_processed;
4445   int _symbols_removed;
4446 
4447 public:
4448   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4449     AbstractGangTask("String/Symbol Unlinking"),
4450     _is_alive(is_alive),
4451     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4452     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4453 
4454     _initial_string_table_size = StringTable::the_table()->table_size();
4455     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4456     if (process_strings) {
4457       StringTable::clear_parallel_claimed_index();
4458     }
4459     if (process_symbols) {
4460       SymbolTable::clear_parallel_claimed_index();
4461     }
4462   }
4463 
4464   ~G1StringSymbolTableUnlinkTask() {
4465     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4466               err_msg("claim value %d after unlink less than initial string table size %d",
4467                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4468     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4469               err_msg("claim value %d after unlink less than initial symbol table size %d",
4470                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4471 
4472     if (G1TraceStringSymbolTableScrubbing) {
4473       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4474                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4475                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4476                              strings_processed(), strings_removed(),
4477                              symbols_processed(), symbols_removed());
4478     }
4479   }
4480 
4481   void work(uint worker_id) {
4482     int strings_processed = 0;
4483     int strings_removed = 0;
4484     int symbols_processed = 0;
4485     int symbols_removed = 0;
4486     if (_process_strings) {
4487       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4488       Atomic::add(strings_processed, &_strings_processed);
4489       Atomic::add(strings_removed, &_strings_removed);
4490     }
4491     if (_process_symbols) {
4492       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4493       Atomic::add(symbols_processed, &_symbols_processed);
4494       Atomic::add(symbols_removed, &_symbols_removed);
4495     }
4496   }
4497 
4498   size_t strings_processed() const { return (size_t)_strings_processed; }
4499   size_t strings_removed()   const { return (size_t)_strings_removed; }
4500 
4501   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4502   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4503 };
4504 
4505 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4506 private:
4507   static Monitor* _lock;
4508 
4509   BoolObjectClosure* const _is_alive;
4510   const bool               _unloading_occurred;
4511   const uint               _num_workers;
4512 
4513   // Variables used to claim nmethods.
4514   nmethod* _first_nmethod;
4515   volatile nmethod* _claimed_nmethod;
4516 
4517   // The list of nmethods that need to be processed by the second pass.
4518   volatile nmethod* _postponed_list;
4519   volatile uint     _num_entered_barrier;
4520 
4521  public:
4522   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4523       _is_alive(is_alive),
4524       _unloading_occurred(unloading_occurred),
4525       _num_workers(num_workers),
4526       _first_nmethod(NULL),
4527       _claimed_nmethod(NULL),
4528       _postponed_list(NULL),
4529       _num_entered_barrier(0)
4530   {
4531     nmethod::increase_unloading_clock();
4532     // Get first alive nmethod
4533     NMethodIterator iter = NMethodIterator();
4534     if(iter.next_alive()) {
4535       _first_nmethod = iter.method();
4536     }
4537     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4538   }
4539 
4540   ~G1CodeCacheUnloadingTask() {
4541     CodeCache::verify_clean_inline_caches();
4542 
4543     CodeCache::set_needs_cache_clean(false);
4544     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4545 
4546     CodeCache::verify_icholder_relocations();
4547   }
4548 
4549  private:
4550   void add_to_postponed_list(nmethod* nm) {
4551       nmethod* old;
4552       do {
4553         old = (nmethod*)_postponed_list;
4554         nm->set_unloading_next(old);
4555       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4556   }
4557 
4558   void clean_nmethod(nmethod* nm) {
4559     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4560 
4561     if (postponed) {
4562       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4563       add_to_postponed_list(nm);
4564     }
4565 
4566     // Mark that this thread has been cleaned/unloaded.
4567     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4568     nm->set_unloading_clock(nmethod::global_unloading_clock());
4569   }
4570 
4571   void clean_nmethod_postponed(nmethod* nm) {
4572     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4573   }
4574 
4575   static const int MaxClaimNmethods = 16;
4576 
4577   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4578     nmethod* first;
4579     NMethodIterator last;
4580 
4581     do {
4582       *num_claimed_nmethods = 0;
4583 
4584       first = (nmethod*)_claimed_nmethod;
4585       last = NMethodIterator(first);
4586 
4587       if (first != NULL) {
4588 
4589         for (int i = 0; i < MaxClaimNmethods; i++) {
4590           if (!last.next_alive()) {
4591             break;
4592           }
4593           claimed_nmethods[i] = last.method();
4594           (*num_claimed_nmethods)++;
4595         }
4596       }
4597 
4598     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4599   }
4600 
4601   nmethod* claim_postponed_nmethod() {
4602     nmethod* claim;
4603     nmethod* next;
4604 
4605     do {
4606       claim = (nmethod*)_postponed_list;
4607       if (claim == NULL) {
4608         return NULL;
4609       }
4610 
4611       next = claim->unloading_next();
4612 
4613     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4614 
4615     return claim;
4616   }
4617 
4618  public:
4619   // Mark that we're done with the first pass of nmethod cleaning.
4620   void barrier_mark(uint worker_id) {
4621     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4622     _num_entered_barrier++;
4623     if (_num_entered_barrier == _num_workers) {
4624       ml.notify_all();
4625     }
4626   }
4627 
4628   // See if we have to wait for the other workers to
4629   // finish their first-pass nmethod cleaning work.
4630   void barrier_wait(uint worker_id) {
4631     if (_num_entered_barrier < _num_workers) {
4632       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4633       while (_num_entered_barrier < _num_workers) {
4634           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4635       }
4636     }
4637   }
4638 
4639   // Cleaning and unloading of nmethods. Some work has to be postponed
4640   // to the second pass, when we know which nmethods survive.
4641   void work_first_pass(uint worker_id) {
4642     // The first nmethods is claimed by the first worker.
4643     if (worker_id == 0 && _first_nmethod != NULL) {
4644       clean_nmethod(_first_nmethod);
4645       _first_nmethod = NULL;
4646     }
4647 
4648     int num_claimed_nmethods;
4649     nmethod* claimed_nmethods[MaxClaimNmethods];
4650 
4651     while (true) {
4652       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4653 
4654       if (num_claimed_nmethods == 0) {
4655         break;
4656       }
4657 
4658       for (int i = 0; i < num_claimed_nmethods; i++) {
4659         clean_nmethod(claimed_nmethods[i]);
4660       }
4661     }
4662   }
4663 
4664   void work_second_pass(uint worker_id) {
4665     nmethod* nm;
4666     // Take care of postponed nmethods.
4667     while ((nm = claim_postponed_nmethod()) != NULL) {
4668       clean_nmethod_postponed(nm);
4669     }
4670   }
4671 };
4672 
4673 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4674 
4675 class G1KlassCleaningTask : public StackObj {
4676   BoolObjectClosure*                      _is_alive;
4677   volatile jint                           _clean_klass_tree_claimed;
4678   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4679 
4680  public:
4681   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4682       _is_alive(is_alive),
4683       _clean_klass_tree_claimed(0),
4684       _klass_iterator() {
4685   }
4686 
4687  private:
4688   bool claim_clean_klass_tree_task() {
4689     if (_clean_klass_tree_claimed) {
4690       return false;
4691     }
4692 
4693     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4694   }
4695 
4696   InstanceKlass* claim_next_klass() {
4697     Klass* klass;
4698     do {
4699       klass =_klass_iterator.next_klass();
4700     } while (klass != NULL && !klass->oop_is_instance());
4701 
4702     return (InstanceKlass*)klass;
4703   }
4704 
4705 public:
4706 
4707   void clean_klass(InstanceKlass* ik) {
4708     ik->clean_implementors_list(_is_alive);
4709     ik->clean_method_data(_is_alive);
4710 
4711     // G1 specific cleanup work that has
4712     // been moved here to be done in parallel.
4713     ik->clean_dependent_nmethods();
4714   }
4715 
4716   void work() {
4717     ResourceMark rm;
4718 
4719     // One worker will clean the subklass/sibling klass tree.
4720     if (claim_clean_klass_tree_task()) {
4721       Klass::clean_subklass_tree(_is_alive);
4722     }
4723 
4724     // All workers will help cleaning the classes,
4725     InstanceKlass* klass;
4726     while ((klass = claim_next_klass()) != NULL) {
4727       clean_klass(klass);
4728     }
4729   }
4730 };
4731 
4732 // To minimize the remark pause times, the tasks below are done in parallel.
4733 class G1ParallelCleaningTask : public AbstractGangTask {
4734 private:
4735   G1StringSymbolTableUnlinkTask _string_symbol_task;
4736   G1CodeCacheUnloadingTask      _code_cache_task;
4737   G1KlassCleaningTask           _klass_cleaning_task;
4738 
4739 public:
4740   // The constructor is run in the VMThread.
4741   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4742       AbstractGangTask("Parallel Cleaning"),
4743       _string_symbol_task(is_alive, process_strings, process_symbols),
4744       _code_cache_task(num_workers, is_alive, unloading_occurred),
4745       _klass_cleaning_task(is_alive) {
4746   }
4747 
4748   // The parallel work done by all worker threads.
4749   void work(uint worker_id) {
4750     // Do first pass of code cache cleaning.
4751     _code_cache_task.work_first_pass(worker_id);
4752 
4753     // Let the threads mark that the first pass is done.
4754     _code_cache_task.barrier_mark(worker_id);
4755 
4756     // Clean the Strings and Symbols.
4757     _string_symbol_task.work(worker_id);
4758 
4759     // Wait for all workers to finish the first code cache cleaning pass.
4760     _code_cache_task.barrier_wait(worker_id);
4761 
4762     // Do the second code cache cleaning work, which realize on
4763     // the liveness information gathered during the first pass.
4764     _code_cache_task.work_second_pass(worker_id);
4765 
4766     // Clean all klasses that were not unloaded.
4767     _klass_cleaning_task.work();
4768   }
4769 };
4770 
4771 
4772 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4773                                         bool process_strings,
4774                                         bool process_symbols,
4775                                         bool class_unloading_occurred) {
4776   uint n_workers = workers()->active_workers();
4777 
4778   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4779                                         n_workers, class_unloading_occurred);
4780   workers()->run_task(&g1_unlink_task);
4781 }
4782 
4783 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4784                                                      bool process_strings, bool process_symbols) {
4785   {
4786     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4787     workers()->run_task(&g1_unlink_task);
4788   }
4789 
4790   if (G1StringDedup::is_enabled()) {
4791     G1StringDedup::unlink(is_alive);
4792   }
4793 }
4794 
4795 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4796  private:
4797   DirtyCardQueueSet* _queue;
4798  public:
4799   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4800 
4801   virtual void work(uint worker_id) {
4802     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4803     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4804 
4805     RedirtyLoggedCardTableEntryClosure cl;
4806     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4807 
4808     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4809   }
4810 };
4811 
4812 void G1CollectedHeap::redirty_logged_cards() {
4813   double redirty_logged_cards_start = os::elapsedTime();
4814 
4815   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4816   dirty_card_queue_set().reset_for_par_iteration();
4817   workers()->run_task(&redirty_task);
4818 
4819   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4820   dcq.merge_bufferlists(&dirty_card_queue_set());
4821   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4822 
4823   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4824 }
4825 
4826 // Weak Reference Processing support
4827 
4828 // An always "is_alive" closure that is used to preserve referents.
4829 // If the object is non-null then it's alive.  Used in the preservation
4830 // of referent objects that are pointed to by reference objects
4831 // discovered by the CM ref processor.
4832 class G1AlwaysAliveClosure: public BoolObjectClosure {
4833   G1CollectedHeap* _g1;
4834 public:
4835   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4836   bool do_object_b(oop p) {
4837     if (p != NULL) {
4838       return true;
4839     }
4840     return false;
4841   }
4842 };
4843 
4844 bool G1STWIsAliveClosure::do_object_b(oop p) {
4845   // An object is reachable if it is outside the collection set,
4846   // or is inside and copied.
4847   return !_g1->obj_in_cs(p) || p->is_forwarded();
4848 }
4849 
4850 // Non Copying Keep Alive closure
4851 class G1KeepAliveClosure: public OopClosure {
4852   G1CollectedHeap* _g1;
4853 public:
4854   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4855   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4856   void do_oop(oop* p) {
4857     oop obj = *p;
4858     assert(obj != NULL, "the caller should have filtered out NULL values");
4859 
4860     const InCSetState cset_state = _g1->in_cset_state(obj);
4861     if (!cset_state.is_in_cset_or_humongous()) {
4862       return;
4863     }
4864     if (cset_state.is_in_cset()) {
4865       assert( obj->is_forwarded(), "invariant" );
4866       *p = obj->forwardee();
4867     } else {
4868       assert(!obj->is_forwarded(), "invariant" );
4869       assert(cset_state.is_humongous(),
4870              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4871       _g1->set_humongous_is_live(obj);
4872     }
4873   }
4874 };
4875 
4876 // Copying Keep Alive closure - can be called from both
4877 // serial and parallel code as long as different worker
4878 // threads utilize different G1ParScanThreadState instances
4879 // and different queues.
4880 
4881 class G1CopyingKeepAliveClosure: public OopClosure {
4882   G1CollectedHeap*         _g1h;
4883   OopClosure*              _copy_non_heap_obj_cl;
4884   G1ParScanThreadState*    _par_scan_state;
4885 
4886 public:
4887   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4888                             OopClosure* non_heap_obj_cl,
4889                             G1ParScanThreadState* pss):
4890     _g1h(g1h),
4891     _copy_non_heap_obj_cl(non_heap_obj_cl),
4892     _par_scan_state(pss)
4893   {}
4894 
4895   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4896   virtual void do_oop(      oop* p) { do_oop_work(p); }
4897 
4898   template <class T> void do_oop_work(T* p) {
4899     oop obj = oopDesc::load_decode_heap_oop(p);
4900 
4901     if (_g1h->is_in_cset_or_humongous(obj)) {
4902       // If the referent object has been forwarded (either copied
4903       // to a new location or to itself in the event of an
4904       // evacuation failure) then we need to update the reference
4905       // field and, if both reference and referent are in the G1
4906       // heap, update the RSet for the referent.
4907       //
4908       // If the referent has not been forwarded then we have to keep
4909       // it alive by policy. Therefore we have copy the referent.
4910       //
4911       // If the reference field is in the G1 heap then we can push
4912       // on the PSS queue. When the queue is drained (after each
4913       // phase of reference processing) the object and it's followers
4914       // will be copied, the reference field set to point to the
4915       // new location, and the RSet updated. Otherwise we need to
4916       // use the the non-heap or metadata closures directly to copy
4917       // the referent object and update the pointer, while avoiding
4918       // updating the RSet.
4919 
4920       if (_g1h->is_in_g1_reserved(p)) {
4921         _par_scan_state->push_on_queue(p);
4922       } else {
4923         assert(!Metaspace::contains((const void*)p),
4924                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
4925         _copy_non_heap_obj_cl->do_oop(p);
4926       }
4927     }
4928   }
4929 };
4930 
4931 // Serial drain queue closure. Called as the 'complete_gc'
4932 // closure for each discovered list in some of the
4933 // reference processing phases.
4934 
4935 class G1STWDrainQueueClosure: public VoidClosure {
4936 protected:
4937   G1CollectedHeap* _g1h;
4938   G1ParScanThreadState* _par_scan_state;
4939 
4940   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4941 
4942 public:
4943   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4944     _g1h(g1h),
4945     _par_scan_state(pss)
4946   { }
4947 
4948   void do_void() {
4949     G1ParScanThreadState* const pss = par_scan_state();
4950     pss->trim_queue();
4951   }
4952 };
4953 
4954 // Parallel Reference Processing closures
4955 
4956 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4957 // processing during G1 evacuation pauses.
4958 
4959 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4960 private:
4961   G1CollectedHeap*   _g1h;
4962   RefToScanQueueSet* _queues;
4963   FlexibleWorkGang*  _workers;
4964   uint               _active_workers;
4965 
4966 public:
4967   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4968                            FlexibleWorkGang* workers,
4969                            RefToScanQueueSet *task_queues,
4970                            uint n_workers) :
4971     _g1h(g1h),
4972     _queues(task_queues),
4973     _workers(workers),
4974     _active_workers(n_workers)
4975   {
4976     assert(n_workers > 0, "shouldn't call this otherwise");
4977   }
4978 
4979   // Executes the given task using concurrent marking worker threads.
4980   virtual void execute(ProcessTask& task);
4981   virtual void execute(EnqueueTask& task);
4982 };
4983 
4984 // Gang task for possibly parallel reference processing
4985 
4986 class G1STWRefProcTaskProxy: public AbstractGangTask {
4987   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4988   ProcessTask&     _proc_task;
4989   G1CollectedHeap* _g1h;
4990   RefToScanQueueSet *_task_queues;
4991   ParallelTaskTerminator* _terminator;
4992 
4993 public:
4994   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4995                      G1CollectedHeap* g1h,
4996                      RefToScanQueueSet *task_queues,
4997                      ParallelTaskTerminator* terminator) :
4998     AbstractGangTask("Process reference objects in parallel"),
4999     _proc_task(proc_task),
5000     _g1h(g1h),
5001     _task_queues(task_queues),
5002     _terminator(terminator)
5003   {}
5004 
5005   virtual void work(uint worker_id) {
5006     // The reference processing task executed by a single worker.
5007     ResourceMark rm;
5008     HandleMark   hm;
5009 
5010     G1STWIsAliveClosure is_alive(_g1h);
5011 
5012     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5013     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5014 
5015     pss.set_evac_failure_closure(&evac_failure_cl);
5016 
5017     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5018 
5019     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5020 
5021     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5022 
5023     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5024       // We also need to mark copied objects.
5025       copy_non_heap_cl = &copy_mark_non_heap_cl;
5026     }
5027 
5028     // Keep alive closure.
5029     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5030 
5031     // Complete GC closure
5032     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5033 
5034     // Call the reference processing task's work routine.
5035     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5036 
5037     // Note we cannot assert that the refs array is empty here as not all
5038     // of the processing tasks (specifically phase2 - pp2_work) execute
5039     // the complete_gc closure (which ordinarily would drain the queue) so
5040     // the queue may not be empty.
5041   }
5042 };
5043 
5044 // Driver routine for parallel reference processing.
5045 // Creates an instance of the ref processing gang
5046 // task and has the worker threads execute it.
5047 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5048   assert(_workers != NULL, "Need parallel worker threads.");
5049 
5050   ParallelTaskTerminator terminator(_active_workers, _queues);
5051   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5052 
5053   _workers->run_task(&proc_task_proxy);
5054 }
5055 
5056 // Gang task for parallel reference enqueueing.
5057 
5058 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5059   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5060   EnqueueTask& _enq_task;
5061 
5062 public:
5063   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5064     AbstractGangTask("Enqueue reference objects in parallel"),
5065     _enq_task(enq_task)
5066   { }
5067 
5068   virtual void work(uint worker_id) {
5069     _enq_task.work(worker_id);
5070   }
5071 };
5072 
5073 // Driver routine for parallel reference enqueueing.
5074 // Creates an instance of the ref enqueueing gang
5075 // task and has the worker threads execute it.
5076 
5077 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5078   assert(_workers != NULL, "Need parallel worker threads.");
5079 
5080   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5081 
5082   _workers->run_task(&enq_task_proxy);
5083 }
5084 
5085 // End of weak reference support closures
5086 
5087 // Abstract task used to preserve (i.e. copy) any referent objects
5088 // that are in the collection set and are pointed to by reference
5089 // objects discovered by the CM ref processor.
5090 
5091 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5092 protected:
5093   G1CollectedHeap* _g1h;
5094   RefToScanQueueSet      *_queues;
5095   ParallelTaskTerminator _terminator;
5096   uint _n_workers;
5097 
5098 public:
5099   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5100     AbstractGangTask("ParPreserveCMReferents"),
5101     _g1h(g1h),
5102     _queues(task_queues),
5103     _terminator(workers, _queues),
5104     _n_workers(workers)
5105   { }
5106 
5107   void work(uint worker_id) {
5108     ResourceMark rm;
5109     HandleMark   hm;
5110 
5111     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5112     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5113 
5114     pss.set_evac_failure_closure(&evac_failure_cl);
5115 
5116     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5117 
5118     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5119 
5120     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5121 
5122     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5123 
5124     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5125       // We also need to mark copied objects.
5126       copy_non_heap_cl = &copy_mark_non_heap_cl;
5127     }
5128 
5129     // Is alive closure
5130     G1AlwaysAliveClosure always_alive(_g1h);
5131 
5132     // Copying keep alive closure. Applied to referent objects that need
5133     // to be copied.
5134     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5135 
5136     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5137 
5138     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5139     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5140 
5141     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5142     // So this must be true - but assert just in case someone decides to
5143     // change the worker ids.
5144     assert(worker_id < limit, "sanity");
5145     assert(!rp->discovery_is_atomic(), "check this code");
5146 
5147     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5148     for (uint idx = worker_id; idx < limit; idx += stride) {
5149       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5150 
5151       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5152       while (iter.has_next()) {
5153         // Since discovery is not atomic for the CM ref processor, we
5154         // can see some null referent objects.
5155         iter.load_ptrs(DEBUG_ONLY(true));
5156         oop ref = iter.obj();
5157 
5158         // This will filter nulls.
5159         if (iter.is_referent_alive()) {
5160           iter.make_referent_alive();
5161         }
5162         iter.move_to_next();
5163       }
5164     }
5165 
5166     // Drain the queue - which may cause stealing
5167     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5168     drain_queue.do_void();
5169     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5170     assert(pss.queue_is_empty(), "should be");
5171   }
5172 };
5173 
5174 // Weak Reference processing during an evacuation pause (part 1).
5175 void G1CollectedHeap::process_discovered_references() {
5176   double ref_proc_start = os::elapsedTime();
5177 
5178   ReferenceProcessor* rp = _ref_processor_stw;
5179   assert(rp->discovery_enabled(), "should have been enabled");
5180 
5181   // Any reference objects, in the collection set, that were 'discovered'
5182   // by the CM ref processor should have already been copied (either by
5183   // applying the external root copy closure to the discovered lists, or
5184   // by following an RSet entry).
5185   //
5186   // But some of the referents, that are in the collection set, that these
5187   // reference objects point to may not have been copied: the STW ref
5188   // processor would have seen that the reference object had already
5189   // been 'discovered' and would have skipped discovering the reference,
5190   // but would not have treated the reference object as a regular oop.
5191   // As a result the copy closure would not have been applied to the
5192   // referent object.
5193   //
5194   // We need to explicitly copy these referent objects - the references
5195   // will be processed at the end of remarking.
5196   //
5197   // We also need to do this copying before we process the reference
5198   // objects discovered by the STW ref processor in case one of these
5199   // referents points to another object which is also referenced by an
5200   // object discovered by the STW ref processor.
5201 
5202   uint no_of_gc_workers = workers()->active_workers();
5203 
5204   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5205                                                  no_of_gc_workers,
5206                                                  _task_queues);
5207 
5208   workers()->run_task(&keep_cm_referents);
5209 
5210   // Closure to test whether a referent is alive.
5211   G1STWIsAliveClosure is_alive(this);
5212 
5213   // Even when parallel reference processing is enabled, the processing
5214   // of JNI refs is serial and performed serially by the current thread
5215   // rather than by a worker. The following PSS will be used for processing
5216   // JNI refs.
5217 
5218   // Use only a single queue for this PSS.
5219   G1ParScanThreadState            pss(this, 0, NULL);
5220 
5221   // We do not embed a reference processor in the copying/scanning
5222   // closures while we're actually processing the discovered
5223   // reference objects.
5224   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5225 
5226   pss.set_evac_failure_closure(&evac_failure_cl);
5227 
5228   assert(pss.queue_is_empty(), "pre-condition");
5229 
5230   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5231 
5232   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5233 
5234   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5235 
5236   if (g1_policy()->during_initial_mark_pause()) {
5237     // We also need to mark copied objects.
5238     copy_non_heap_cl = &copy_mark_non_heap_cl;
5239   }
5240 
5241   // Keep alive closure.
5242   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5243 
5244   // Serial Complete GC closure
5245   G1STWDrainQueueClosure drain_queue(this, &pss);
5246 
5247   // Setup the soft refs policy...
5248   rp->setup_policy(false);
5249 
5250   ReferenceProcessorStats stats;
5251   if (!rp->processing_is_mt()) {
5252     // Serial reference processing...
5253     stats = rp->process_discovered_references(&is_alive,
5254                                               &keep_alive,
5255                                               &drain_queue,
5256                                               NULL,
5257                                               _gc_timer_stw,
5258                                               _gc_tracer_stw->gc_id());
5259   } else {
5260     // Parallel reference processing
5261     assert(rp->num_q() == no_of_gc_workers, "sanity");
5262     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5263 
5264     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5265     stats = rp->process_discovered_references(&is_alive,
5266                                               &keep_alive,
5267                                               &drain_queue,
5268                                               &par_task_executor,
5269                                               _gc_timer_stw,
5270                                               _gc_tracer_stw->gc_id());
5271   }
5272 
5273   _gc_tracer_stw->report_gc_reference_stats(stats);
5274 
5275   // We have completed copying any necessary live referent objects.
5276   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5277 
5278   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5279   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5280 }
5281 
5282 // Weak Reference processing during an evacuation pause (part 2).
5283 void G1CollectedHeap::enqueue_discovered_references() {
5284   double ref_enq_start = os::elapsedTime();
5285 
5286   ReferenceProcessor* rp = _ref_processor_stw;
5287   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5288 
5289   // Now enqueue any remaining on the discovered lists on to
5290   // the pending list.
5291   if (!rp->processing_is_mt()) {
5292     // Serial reference processing...
5293     rp->enqueue_discovered_references();
5294   } else {
5295     // Parallel reference enqueueing
5296 
5297     uint n_workers = workers()->active_workers();
5298 
5299     assert(rp->num_q() == n_workers, "sanity");
5300     assert(n_workers <= rp->max_num_q(), "sanity");
5301 
5302     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5303     rp->enqueue_discovered_references(&par_task_executor);
5304   }
5305 
5306   rp->verify_no_references_recorded();
5307   assert(!rp->discovery_enabled(), "should have been disabled");
5308 
5309   // FIXME
5310   // CM's reference processing also cleans up the string and symbol tables.
5311   // Should we do that here also? We could, but it is a serial operation
5312   // and could significantly increase the pause time.
5313 
5314   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5315   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5316 }
5317 
5318 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5319   _expand_heap_after_alloc_failure = true;
5320   _evacuation_failed = false;
5321 
5322   // Should G1EvacuationFailureALot be in effect for this GC?
5323   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5324 
5325   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5326 
5327   // Disable the hot card cache.
5328   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5329   hot_card_cache->reset_hot_cache_claimed_index();
5330   hot_card_cache->set_use_cache(false);
5331 
5332   const uint n_workers = workers()->active_workers();
5333 
5334   init_for_evac_failure(NULL);
5335 
5336   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5337   double start_par_time_sec = os::elapsedTime();
5338   double end_par_time_sec;
5339 
5340   {
5341     G1RootProcessor root_processor(this, n_workers);
5342     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5343     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5344     if (g1_policy()->during_initial_mark_pause()) {
5345       ClassLoaderDataGraph::clear_claimed_marks();
5346     }
5347 
5348     // The individual threads will set their evac-failure closures.
5349     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5350 
5351     workers()->run_task(&g1_par_task);
5352     end_par_time_sec = os::elapsedTime();
5353 
5354     // Closing the inner scope will execute the destructor
5355     // for the G1RootProcessor object. We record the current
5356     // elapsed time before closing the scope so that time
5357     // taken for the destructor is NOT included in the
5358     // reported parallel time.
5359   }
5360 
5361   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5362 
5363   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5364   phase_times->record_par_time(par_time_ms);
5365 
5366   double code_root_fixup_time_ms =
5367         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5368   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5369 
5370   // Process any discovered reference objects - we have
5371   // to do this _before_ we retire the GC alloc regions
5372   // as we may have to copy some 'reachable' referent
5373   // objects (and their reachable sub-graphs) that were
5374   // not copied during the pause.
5375   process_discovered_references();
5376 
5377   if (G1StringDedup::is_enabled()) {
5378     double fixup_start = os::elapsedTime();
5379 
5380     G1STWIsAliveClosure is_alive(this);
5381     G1KeepAliveClosure keep_alive(this);
5382     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5383 
5384     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5385     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5386   }
5387 
5388   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5389   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5390 
5391   // Reset and re-enable the hot card cache.
5392   // Note the counts for the cards in the regions in the
5393   // collection set are reset when the collection set is freed.
5394   hot_card_cache->reset_hot_cache();
5395   hot_card_cache->set_use_cache(true);
5396 
5397   purge_code_root_memory();
5398 
5399   finalize_for_evac_failure();
5400 
5401   if (evacuation_failed()) {
5402     remove_self_forwarding_pointers();
5403 
5404     // Reset the G1EvacuationFailureALot counters and flags
5405     // Note: the values are reset only when an actual
5406     // evacuation failure occurs.
5407     NOT_PRODUCT(reset_evacuation_should_fail();)
5408   }
5409 
5410   // Enqueue any remaining references remaining on the STW
5411   // reference processor's discovered lists. We need to do
5412   // this after the card table is cleaned (and verified) as
5413   // the act of enqueueing entries on to the pending list
5414   // will log these updates (and dirty their associated
5415   // cards). We need these updates logged to update any
5416   // RSets.
5417   enqueue_discovered_references();
5418 
5419   redirty_logged_cards();
5420   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5421 }
5422 
5423 void G1CollectedHeap::free_region(HeapRegion* hr,
5424                                   FreeRegionList* free_list,
5425                                   bool par,
5426                                   bool locked) {
5427   assert(!hr->is_free(), "the region should not be free");
5428   assert(!hr->is_empty(), "the region should not be empty");
5429   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5430   assert(free_list != NULL, "pre-condition");
5431 
5432   if (G1VerifyBitmaps) {
5433     MemRegion mr(hr->bottom(), hr->end());
5434     concurrent_mark()->clearRangePrevBitmap(mr);
5435   }
5436 
5437   // Clear the card counts for this region.
5438   // Note: we only need to do this if the region is not young
5439   // (since we don't refine cards in young regions).
5440   if (!hr->is_young()) {
5441     _cg1r->hot_card_cache()->reset_card_counts(hr);
5442   }
5443   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5444   free_list->add_ordered(hr);
5445 }
5446 
5447 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5448                                      FreeRegionList* free_list,
5449                                      bool par) {
5450   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5451   assert(free_list != NULL, "pre-condition");
5452 
5453   size_t hr_capacity = hr->capacity();
5454   // We need to read this before we make the region non-humongous,
5455   // otherwise the information will be gone.
5456   uint last_index = hr->last_hc_index();
5457   hr->clear_humongous();
5458   free_region(hr, free_list, par);
5459 
5460   uint i = hr->hrm_index() + 1;
5461   while (i < last_index) {
5462     HeapRegion* curr_hr = region_at(i);
5463     assert(curr_hr->is_continues_humongous(), "invariant");
5464     curr_hr->clear_humongous();
5465     free_region(curr_hr, free_list, par);
5466     i += 1;
5467   }
5468 }
5469 
5470 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5471                                        const HeapRegionSetCount& humongous_regions_removed) {
5472   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5473     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5474     _old_set.bulk_remove(old_regions_removed);
5475     _humongous_set.bulk_remove(humongous_regions_removed);
5476   }
5477 
5478 }
5479 
5480 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5481   assert(list != NULL, "list can't be null");
5482   if (!list->is_empty()) {
5483     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5484     _hrm.insert_list_into_free_list(list);
5485   }
5486 }
5487 
5488 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5489   _allocator->decrease_used(bytes);
5490 }
5491 
5492 class G1ParCleanupCTTask : public AbstractGangTask {
5493   G1SATBCardTableModRefBS* _ct_bs;
5494   G1CollectedHeap* _g1h;
5495   HeapRegion* volatile _su_head;
5496 public:
5497   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5498                      G1CollectedHeap* g1h) :
5499     AbstractGangTask("G1 Par Cleanup CT Task"),
5500     _ct_bs(ct_bs), _g1h(g1h) { }
5501 
5502   void work(uint worker_id) {
5503     HeapRegion* r;
5504     while (r = _g1h->pop_dirty_cards_region()) {
5505       clear_cards(r);
5506     }
5507   }
5508 
5509   void clear_cards(HeapRegion* r) {
5510     // Cards of the survivors should have already been dirtied.
5511     if (!r->is_survivor()) {
5512       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5513     }
5514   }
5515 };
5516 
5517 #ifndef PRODUCT
5518 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5519   G1CollectedHeap* _g1h;
5520   G1SATBCardTableModRefBS* _ct_bs;
5521 public:
5522   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5523     : _g1h(g1h), _ct_bs(ct_bs) { }
5524   virtual bool doHeapRegion(HeapRegion* r) {
5525     if (r->is_survivor()) {
5526       _g1h->verify_dirty_region(r);
5527     } else {
5528       _g1h->verify_not_dirty_region(r);
5529     }
5530     return false;
5531   }
5532 };
5533 
5534 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5535   // All of the region should be clean.
5536   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5537   MemRegion mr(hr->bottom(), hr->end());
5538   ct_bs->verify_not_dirty_region(mr);
5539 }
5540 
5541 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5542   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5543   // dirty allocated blocks as they allocate them. The thread that
5544   // retires each region and replaces it with a new one will do a
5545   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5546   // not dirty that area (one less thing to have to do while holding
5547   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5548   // is dirty.
5549   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5550   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5551   if (hr->is_young()) {
5552     ct_bs->verify_g1_young_region(mr);
5553   } else {
5554     ct_bs->verify_dirty_region(mr);
5555   }
5556 }
5557 
5558 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5559   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5560   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5561     verify_dirty_region(hr);
5562   }
5563 }
5564 
5565 void G1CollectedHeap::verify_dirty_young_regions() {
5566   verify_dirty_young_list(_young_list->first_region());
5567 }
5568 
5569 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5570                                                HeapWord* tams, HeapWord* end) {
5571   guarantee(tams <= end,
5572             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5573   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5574   if (result < end) {
5575     gclog_or_tty->cr();
5576     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5577                            bitmap_name, p2i(result));
5578     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5579                            bitmap_name, p2i(tams), p2i(end));
5580     return false;
5581   }
5582   return true;
5583 }
5584 
5585 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5586   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5587   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5588 
5589   HeapWord* bottom = hr->bottom();
5590   HeapWord* ptams  = hr->prev_top_at_mark_start();
5591   HeapWord* ntams  = hr->next_top_at_mark_start();
5592   HeapWord* end    = hr->end();
5593 
5594   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5595 
5596   bool res_n = true;
5597   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5598   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5599   // if we happen to be in that state.
5600   if (mark_in_progress() || !_cmThread->in_progress()) {
5601     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5602   }
5603   if (!res_p || !res_n) {
5604     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5605                            HR_FORMAT_PARAMS(hr));
5606     gclog_or_tty->print_cr("#### Caller: %s", caller);
5607     return false;
5608   }
5609   return true;
5610 }
5611 
5612 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5613   if (!G1VerifyBitmaps) return;
5614 
5615   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5616 }
5617 
5618 class G1VerifyBitmapClosure : public HeapRegionClosure {
5619 private:
5620   const char* _caller;
5621   G1CollectedHeap* _g1h;
5622   bool _failures;
5623 
5624 public:
5625   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5626     _caller(caller), _g1h(g1h), _failures(false) { }
5627 
5628   bool failures() { return _failures; }
5629 
5630   virtual bool doHeapRegion(HeapRegion* hr) {
5631     if (hr->is_continues_humongous()) return false;
5632 
5633     bool result = _g1h->verify_bitmaps(_caller, hr);
5634     if (!result) {
5635       _failures = true;
5636     }
5637     return false;
5638   }
5639 };
5640 
5641 void G1CollectedHeap::check_bitmaps(const char* caller) {
5642   if (!G1VerifyBitmaps) return;
5643 
5644   G1VerifyBitmapClosure cl(caller, this);
5645   heap_region_iterate(&cl);
5646   guarantee(!cl.failures(), "bitmap verification");
5647 }
5648 
5649 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5650  private:
5651   bool _failures;
5652  public:
5653   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5654 
5655   virtual bool doHeapRegion(HeapRegion* hr) {
5656     uint i = hr->hrm_index();
5657     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5658     if (hr->is_humongous()) {
5659       if (hr->in_collection_set()) {
5660         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5661         _failures = true;
5662         return true;
5663       }
5664       if (cset_state.is_in_cset()) {
5665         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5666         _failures = true;
5667         return true;
5668       }
5669       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5670         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5671         _failures = true;
5672         return true;
5673       }
5674     } else {
5675       if (cset_state.is_humongous()) {
5676         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5677         _failures = true;
5678         return true;
5679       }
5680       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5681         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5682                                hr->in_collection_set(), cset_state.value(), i);
5683         _failures = true;
5684         return true;
5685       }
5686       if (cset_state.is_in_cset()) {
5687         if (hr->is_young() != (cset_state.is_young())) {
5688           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5689                                  hr->is_young(), cset_state.value(), i);
5690           _failures = true;
5691           return true;
5692         }
5693         if (hr->is_old() != (cset_state.is_old())) {
5694           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5695                                  hr->is_old(), cset_state.value(), i);
5696           _failures = true;
5697           return true;
5698         }
5699       }
5700     }
5701     return false;
5702   }
5703 
5704   bool failures() const { return _failures; }
5705 };
5706 
5707 bool G1CollectedHeap::check_cset_fast_test() {
5708   G1CheckCSetFastTableClosure cl;
5709   _hrm.iterate(&cl);
5710   return !cl.failures();
5711 }
5712 #endif // PRODUCT
5713 
5714 void G1CollectedHeap::cleanUpCardTable() {
5715   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5716   double start = os::elapsedTime();
5717 
5718   {
5719     // Iterate over the dirty cards region list.
5720     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5721 
5722     workers()->run_task(&cleanup_task);
5723 #ifndef PRODUCT
5724     if (G1VerifyCTCleanup || VerifyAfterGC) {
5725       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5726       heap_region_iterate(&cleanup_verifier);
5727     }
5728 #endif
5729   }
5730 
5731   double elapsed = os::elapsedTime() - start;
5732   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5733 }
5734 
5735 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5736   size_t pre_used = 0;
5737   FreeRegionList local_free_list("Local List for CSet Freeing");
5738 
5739   double young_time_ms     = 0.0;
5740   double non_young_time_ms = 0.0;
5741 
5742   // Since the collection set is a superset of the the young list,
5743   // all we need to do to clear the young list is clear its
5744   // head and length, and unlink any young regions in the code below
5745   _young_list->clear();
5746 
5747   G1CollectorPolicy* policy = g1_policy();
5748 
5749   double start_sec = os::elapsedTime();
5750   bool non_young = true;
5751 
5752   HeapRegion* cur = cs_head;
5753   int age_bound = -1;
5754   size_t rs_lengths = 0;
5755 
5756   while (cur != NULL) {
5757     assert(!is_on_master_free_list(cur), "sanity");
5758     if (non_young) {
5759       if (cur->is_young()) {
5760         double end_sec = os::elapsedTime();
5761         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5762         non_young_time_ms += elapsed_ms;
5763 
5764         start_sec = os::elapsedTime();
5765         non_young = false;
5766       }
5767     } else {
5768       if (!cur->is_young()) {
5769         double end_sec = os::elapsedTime();
5770         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5771         young_time_ms += elapsed_ms;
5772 
5773         start_sec = os::elapsedTime();
5774         non_young = true;
5775       }
5776     }
5777 
5778     rs_lengths += cur->rem_set()->occupied_locked();
5779 
5780     HeapRegion* next = cur->next_in_collection_set();
5781     assert(cur->in_collection_set(), "bad CS");
5782     cur->set_next_in_collection_set(NULL);
5783     clear_in_cset(cur);
5784 
5785     if (cur->is_young()) {
5786       int index = cur->young_index_in_cset();
5787       assert(index != -1, "invariant");
5788       assert((uint) index < policy->young_cset_region_length(), "invariant");
5789       size_t words_survived = _surviving_young_words[index];
5790       cur->record_surv_words_in_group(words_survived);
5791 
5792       // At this point the we have 'popped' cur from the collection set
5793       // (linked via next_in_collection_set()) but it is still in the
5794       // young list (linked via next_young_region()). Clear the
5795       // _next_young_region field.
5796       cur->set_next_young_region(NULL);
5797     } else {
5798       int index = cur->young_index_in_cset();
5799       assert(index == -1, "invariant");
5800     }
5801 
5802     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5803             (!cur->is_young() && cur->young_index_in_cset() == -1),
5804             "invariant" );
5805 
5806     if (!cur->evacuation_failed()) {
5807       MemRegion used_mr = cur->used_region();
5808 
5809       // And the region is empty.
5810       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5811       pre_used += cur->used();
5812       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5813     } else {
5814       cur->uninstall_surv_rate_group();
5815       if (cur->is_young()) {
5816         cur->set_young_index_in_cset(-1);
5817       }
5818       cur->set_evacuation_failed(false);
5819       // The region is now considered to be old.
5820       cur->set_old();
5821       _old_set.add(cur);
5822       evacuation_info.increment_collectionset_used_after(cur->used());
5823     }
5824     cur = next;
5825   }
5826 
5827   evacuation_info.set_regions_freed(local_free_list.length());
5828   policy->record_max_rs_lengths(rs_lengths);
5829   policy->cset_regions_freed();
5830 
5831   double end_sec = os::elapsedTime();
5832   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5833 
5834   if (non_young) {
5835     non_young_time_ms += elapsed_ms;
5836   } else {
5837     young_time_ms += elapsed_ms;
5838   }
5839 
5840   prepend_to_freelist(&local_free_list);
5841   decrement_summary_bytes(pre_used);
5842   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5843   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5844 }
5845 
5846 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5847  private:
5848   FreeRegionList* _free_region_list;
5849   HeapRegionSet* _proxy_set;
5850   HeapRegionSetCount _humongous_regions_removed;
5851   size_t _freed_bytes;
5852  public:
5853 
5854   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5855     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5856   }
5857 
5858   virtual bool doHeapRegion(HeapRegion* r) {
5859     if (!r->is_starts_humongous()) {
5860       return false;
5861     }
5862 
5863     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5864 
5865     oop obj = (oop)r->bottom();
5866     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5867 
5868     // The following checks whether the humongous object is live are sufficient.
5869     // The main additional check (in addition to having a reference from the roots
5870     // or the young gen) is whether the humongous object has a remembered set entry.
5871     //
5872     // A humongous object cannot be live if there is no remembered set for it
5873     // because:
5874     // - there can be no references from within humongous starts regions referencing
5875     // the object because we never allocate other objects into them.
5876     // (I.e. there are no intra-region references that may be missed by the
5877     // remembered set)
5878     // - as soon there is a remembered set entry to the humongous starts region
5879     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5880     // until the end of a concurrent mark.
5881     //
5882     // It is not required to check whether the object has been found dead by marking
5883     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5884     // all objects allocated during that time are considered live.
5885     // SATB marking is even more conservative than the remembered set.
5886     // So if at this point in the collection there is no remembered set entry,
5887     // nobody has a reference to it.
5888     // At the start of collection we flush all refinement logs, and remembered sets
5889     // are completely up-to-date wrt to references to the humongous object.
5890     //
5891     // Other implementation considerations:
5892     // - never consider object arrays at this time because they would pose
5893     // considerable effort for cleaning up the the remembered sets. This is
5894     // required because stale remembered sets might reference locations that
5895     // are currently allocated into.
5896     uint region_idx = r->hrm_index();
5897     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5898         !r->rem_set()->is_empty()) {
5899 
5900       if (G1TraceEagerReclaimHumongousObjects) {
5901         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5902                                region_idx,
5903                                (size_t)obj->size() * HeapWordSize,
5904                                p2i(r->bottom()),
5905                                r->region_num(),
5906                                r->rem_set()->occupied(),
5907                                r->rem_set()->strong_code_roots_list_length(),
5908                                next_bitmap->isMarked(r->bottom()),
5909                                g1h->is_humongous_reclaim_candidate(region_idx),
5910                                obj->is_typeArray()
5911                               );
5912       }
5913 
5914       return false;
5915     }
5916 
5917     guarantee(obj->is_typeArray(),
5918               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
5919                       PTR_FORMAT " is not.",
5920                       p2i(r->bottom())));
5921 
5922     if (G1TraceEagerReclaimHumongousObjects) {
5923       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5924                              region_idx,
5925                              (size_t)obj->size() * HeapWordSize,
5926                              p2i(r->bottom()),
5927                              r->region_num(),
5928                              r->rem_set()->occupied(),
5929                              r->rem_set()->strong_code_roots_list_length(),
5930                              next_bitmap->isMarked(r->bottom()),
5931                              g1h->is_humongous_reclaim_candidate(region_idx),
5932                              obj->is_typeArray()
5933                             );
5934     }
5935     // Need to clear mark bit of the humongous object if already set.
5936     if (next_bitmap->isMarked(r->bottom())) {
5937       next_bitmap->clear(r->bottom());
5938     }
5939     _freed_bytes += r->used();
5940     r->set_containing_set(NULL);
5941     _humongous_regions_removed.increment(1u, r->capacity());
5942     g1h->free_humongous_region(r, _free_region_list, false);
5943 
5944     return false;
5945   }
5946 
5947   HeapRegionSetCount& humongous_free_count() {
5948     return _humongous_regions_removed;
5949   }
5950 
5951   size_t bytes_freed() const {
5952     return _freed_bytes;
5953   }
5954 
5955   size_t humongous_reclaimed() const {
5956     return _humongous_regions_removed.length();
5957   }
5958 };
5959 
5960 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5961   assert_at_safepoint(true);
5962 
5963   if (!G1EagerReclaimHumongousObjects ||
5964       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5965     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5966     return;
5967   }
5968 
5969   double start_time = os::elapsedTime();
5970 
5971   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5972 
5973   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5974   heap_region_iterate(&cl);
5975 
5976   HeapRegionSetCount empty_set;
5977   remove_from_old_sets(empty_set, cl.humongous_free_count());
5978 
5979   G1HRPrinter* hrp = hr_printer();
5980   if (hrp->is_active()) {
5981     FreeRegionListIterator iter(&local_cleanup_list);
5982     while (iter.more_available()) {
5983       HeapRegion* hr = iter.get_next();
5984       hrp->cleanup(hr);
5985     }
5986   }
5987 
5988   prepend_to_freelist(&local_cleanup_list);
5989   decrement_summary_bytes(cl.bytes_freed());
5990 
5991   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5992                                                                     cl.humongous_reclaimed());
5993 }
5994 
5995 // This routine is similar to the above but does not record
5996 // any policy statistics or update free lists; we are abandoning
5997 // the current incremental collection set in preparation of a
5998 // full collection. After the full GC we will start to build up
5999 // the incremental collection set again.
6000 // This is only called when we're doing a full collection
6001 // and is immediately followed by the tearing down of the young list.
6002 
6003 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6004   HeapRegion* cur = cs_head;
6005 
6006   while (cur != NULL) {
6007     HeapRegion* next = cur->next_in_collection_set();
6008     assert(cur->in_collection_set(), "bad CS");
6009     cur->set_next_in_collection_set(NULL);
6010     clear_in_cset(cur);
6011     cur->set_young_index_in_cset(-1);
6012     cur = next;
6013   }
6014 }
6015 
6016 void G1CollectedHeap::set_free_regions_coming() {
6017   if (G1ConcRegionFreeingVerbose) {
6018     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6019                            "setting free regions coming");
6020   }
6021 
6022   assert(!free_regions_coming(), "pre-condition");
6023   _free_regions_coming = true;
6024 }
6025 
6026 void G1CollectedHeap::reset_free_regions_coming() {
6027   assert(free_regions_coming(), "pre-condition");
6028 
6029   {
6030     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6031     _free_regions_coming = false;
6032     SecondaryFreeList_lock->notify_all();
6033   }
6034 
6035   if (G1ConcRegionFreeingVerbose) {
6036     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6037                            "reset free regions coming");
6038   }
6039 }
6040 
6041 void G1CollectedHeap::wait_while_free_regions_coming() {
6042   // Most of the time we won't have to wait, so let's do a quick test
6043   // first before we take the lock.
6044   if (!free_regions_coming()) {
6045     return;
6046   }
6047 
6048   if (G1ConcRegionFreeingVerbose) {
6049     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6050                            "waiting for free regions");
6051   }
6052 
6053   {
6054     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6055     while (free_regions_coming()) {
6056       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6057     }
6058   }
6059 
6060   if (G1ConcRegionFreeingVerbose) {
6061     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6062                            "done waiting for free regions");
6063   }
6064 }
6065 
6066 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6067   _young_list->push_region(hr);
6068 }
6069 
6070 class NoYoungRegionsClosure: public HeapRegionClosure {
6071 private:
6072   bool _success;
6073 public:
6074   NoYoungRegionsClosure() : _success(true) { }
6075   bool doHeapRegion(HeapRegion* r) {
6076     if (r->is_young()) {
6077       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6078                              p2i(r->bottom()), p2i(r->end()));
6079       _success = false;
6080     }
6081     return false;
6082   }
6083   bool success() { return _success; }
6084 };
6085 
6086 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6087   bool ret = _young_list->check_list_empty(check_sample);
6088 
6089   if (check_heap) {
6090     NoYoungRegionsClosure closure;
6091     heap_region_iterate(&closure);
6092     ret = ret && closure.success();
6093   }
6094 
6095   return ret;
6096 }
6097 
6098 class TearDownRegionSetsClosure : public HeapRegionClosure {
6099 private:
6100   HeapRegionSet *_old_set;
6101 
6102 public:
6103   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6104 
6105   bool doHeapRegion(HeapRegion* r) {
6106     if (r->is_old()) {
6107       _old_set->remove(r);
6108     } else {
6109       // We ignore free regions, we'll empty the free list afterwards.
6110       // We ignore young regions, we'll empty the young list afterwards.
6111       // We ignore humongous regions, we're not tearing down the
6112       // humongous regions set.
6113       assert(r->is_free() || r->is_young() || r->is_humongous(),
6114              "it cannot be another type");
6115     }
6116     return false;
6117   }
6118 
6119   ~TearDownRegionSetsClosure() {
6120     assert(_old_set->is_empty(), "post-condition");
6121   }
6122 };
6123 
6124 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6125   assert_at_safepoint(true /* should_be_vm_thread */);
6126 
6127   if (!free_list_only) {
6128     TearDownRegionSetsClosure cl(&_old_set);
6129     heap_region_iterate(&cl);
6130 
6131     // Note that emptying the _young_list is postponed and instead done as
6132     // the first step when rebuilding the regions sets again. The reason for
6133     // this is that during a full GC string deduplication needs to know if
6134     // a collected region was young or old when the full GC was initiated.
6135   }
6136   _hrm.remove_all_free_regions();
6137 }
6138 
6139 class RebuildRegionSetsClosure : public HeapRegionClosure {
6140 private:
6141   bool            _free_list_only;
6142   HeapRegionSet*   _old_set;
6143   HeapRegionManager*   _hrm;
6144   size_t          _total_used;
6145 
6146 public:
6147   RebuildRegionSetsClosure(bool free_list_only,
6148                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6149     _free_list_only(free_list_only),
6150     _old_set(old_set), _hrm(hrm), _total_used(0) {
6151     assert(_hrm->num_free_regions() == 0, "pre-condition");
6152     if (!free_list_only) {
6153       assert(_old_set->is_empty(), "pre-condition");
6154     }
6155   }
6156 
6157   bool doHeapRegion(HeapRegion* r) {
6158     if (r->is_continues_humongous()) {
6159       return false;
6160     }
6161 
6162     if (r->is_empty()) {
6163       // Add free regions to the free list
6164       r->set_free();
6165       r->set_allocation_context(AllocationContext::system());
6166       _hrm->insert_into_free_list(r);
6167     } else if (!_free_list_only) {
6168       assert(!r->is_young(), "we should not come across young regions");
6169 
6170       if (r->is_humongous()) {
6171         // We ignore humongous regions, we left the humongous set unchanged
6172       } else {
6173         // Objects that were compacted would have ended up on regions
6174         // that were previously old or free.
6175         assert(r->is_free() || r->is_old(), "invariant");
6176         // We now consider them old, so register as such.
6177         r->set_old();
6178         _old_set->add(r);
6179       }
6180       _total_used += r->used();
6181     }
6182 
6183     return false;
6184   }
6185 
6186   size_t total_used() {
6187     return _total_used;
6188   }
6189 };
6190 
6191 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6192   assert_at_safepoint(true /* should_be_vm_thread */);
6193 
6194   if (!free_list_only) {
6195     _young_list->empty_list();
6196   }
6197 
6198   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6199   heap_region_iterate(&cl);
6200 
6201   if (!free_list_only) {
6202     _allocator->set_used(cl.total_used());
6203   }
6204   assert(_allocator->used_unlocked() == recalculate_used(),
6205          err_msg("inconsistent _allocator->used_unlocked(), "
6206                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6207                  _allocator->used_unlocked(), recalculate_used()));
6208 }
6209 
6210 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6211   _refine_cte_cl->set_concurrent(concurrent);
6212 }
6213 
6214 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6215   HeapRegion* hr = heap_region_containing(p);
6216   return hr->is_in(p);
6217 }
6218 
6219 // Methods for the mutator alloc region
6220 
6221 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6222                                                       bool force) {
6223   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6224   assert(!force || g1_policy()->can_expand_young_list(),
6225          "if force is true we should be able to expand the young list");
6226   bool young_list_full = g1_policy()->is_young_list_full();
6227   if (force || !young_list_full) {
6228     HeapRegion* new_alloc_region = new_region(word_size,
6229                                               false /* is_old */,
6230                                               false /* do_expand */);
6231     if (new_alloc_region != NULL) {
6232       set_region_short_lived_locked(new_alloc_region);
6233       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6234       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6235       return new_alloc_region;
6236     }
6237   }
6238   return NULL;
6239 }
6240 
6241 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6242                                                   size_t allocated_bytes) {
6243   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6244   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6245 
6246   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6247   _allocator->increase_used(allocated_bytes);
6248   _hr_printer.retire(alloc_region);
6249   // We update the eden sizes here, when the region is retired,
6250   // instead of when it's allocated, since this is the point that its
6251   // used space has been recored in _summary_bytes_used.
6252   g1mm()->update_eden_size();
6253 }
6254 
6255 // Methods for the GC alloc regions
6256 
6257 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6258                                                  uint count,
6259                                                  InCSetState dest) {
6260   assert(FreeList_lock->owned_by_self(), "pre-condition");
6261 
6262   if (count < g1_policy()->max_regions(dest)) {
6263     const bool is_survivor = (dest.is_young());
6264     HeapRegion* new_alloc_region = new_region(word_size,
6265                                               !is_survivor,
6266                                               true /* do_expand */);
6267     if (new_alloc_region != NULL) {
6268       // We really only need to do this for old regions given that we
6269       // should never scan survivors. But it doesn't hurt to do it
6270       // for survivors too.
6271       new_alloc_region->record_timestamp();
6272       if (is_survivor) {
6273         new_alloc_region->set_survivor();
6274         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6275         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6276       } else {
6277         new_alloc_region->set_old();
6278         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6279         check_bitmaps("Old Region Allocation", new_alloc_region);
6280       }
6281       bool during_im = g1_policy()->during_initial_mark_pause();
6282       new_alloc_region->note_start_of_copying(during_im);
6283       return new_alloc_region;
6284     }
6285   }
6286   return NULL;
6287 }
6288 
6289 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6290                                              size_t allocated_bytes,
6291                                              InCSetState dest) {
6292   bool during_im = g1_policy()->during_initial_mark_pause();
6293   alloc_region->note_end_of_copying(during_im);
6294   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6295   if (dest.is_young()) {
6296     young_list()->add_survivor_region(alloc_region);
6297   } else {
6298     _old_set.add(alloc_region);
6299   }
6300   _hr_printer.retire(alloc_region);
6301 }
6302 
6303 // Heap region set verification
6304 
6305 class VerifyRegionListsClosure : public HeapRegionClosure {
6306 private:
6307   HeapRegionSet*   _old_set;
6308   HeapRegionSet*   _humongous_set;
6309   HeapRegionManager*   _hrm;
6310 
6311 public:
6312   HeapRegionSetCount _old_count;
6313   HeapRegionSetCount _humongous_count;
6314   HeapRegionSetCount _free_count;
6315 
6316   VerifyRegionListsClosure(HeapRegionSet* old_set,
6317                            HeapRegionSet* humongous_set,
6318                            HeapRegionManager* hrm) :
6319     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6320     _old_count(), _humongous_count(), _free_count(){ }
6321 
6322   bool doHeapRegion(HeapRegion* hr) {
6323     if (hr->is_continues_humongous()) {
6324       return false;
6325     }
6326 
6327     if (hr->is_young()) {
6328       // TODO
6329     } else if (hr->is_starts_humongous()) {
6330       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6331       _humongous_count.increment(1u, hr->capacity());
6332     } else if (hr->is_empty()) {
6333       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6334       _free_count.increment(1u, hr->capacity());
6335     } else if (hr->is_old()) {
6336       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6337       _old_count.increment(1u, hr->capacity());
6338     } else {
6339       ShouldNotReachHere();
6340     }
6341     return false;
6342   }
6343 
6344   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6345     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6346     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6347         old_set->total_capacity_bytes(), _old_count.capacity()));
6348 
6349     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6350     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6351         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6352 
6353     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6354     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6355         free_list->total_capacity_bytes(), _free_count.capacity()));
6356   }
6357 };
6358 
6359 void G1CollectedHeap::verify_region_sets() {
6360   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6361 
6362   // First, check the explicit lists.
6363   _hrm.verify();
6364   {
6365     // Given that a concurrent operation might be adding regions to
6366     // the secondary free list we have to take the lock before
6367     // verifying it.
6368     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6369     _secondary_free_list.verify_list();
6370   }
6371 
6372   // If a concurrent region freeing operation is in progress it will
6373   // be difficult to correctly attributed any free regions we come
6374   // across to the correct free list given that they might belong to
6375   // one of several (free_list, secondary_free_list, any local lists,
6376   // etc.). So, if that's the case we will skip the rest of the
6377   // verification operation. Alternatively, waiting for the concurrent
6378   // operation to complete will have a non-trivial effect on the GC's
6379   // operation (no concurrent operation will last longer than the
6380   // interval between two calls to verification) and it might hide
6381   // any issues that we would like to catch during testing.
6382   if (free_regions_coming()) {
6383     return;
6384   }
6385 
6386   // Make sure we append the secondary_free_list on the free_list so
6387   // that all free regions we will come across can be safely
6388   // attributed to the free_list.
6389   append_secondary_free_list_if_not_empty_with_lock();
6390 
6391   // Finally, make sure that the region accounting in the lists is
6392   // consistent with what we see in the heap.
6393 
6394   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6395   heap_region_iterate(&cl);
6396   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6397 }
6398 
6399 // Optimized nmethod scanning
6400 
6401 class RegisterNMethodOopClosure: public OopClosure {
6402   G1CollectedHeap* _g1h;
6403   nmethod* _nm;
6404 
6405   template <class T> void do_oop_work(T* p) {
6406     T heap_oop = oopDesc::load_heap_oop(p);
6407     if (!oopDesc::is_null(heap_oop)) {
6408       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6409       HeapRegion* hr = _g1h->heap_region_containing(obj);
6410       assert(!hr->is_continues_humongous(),
6411              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6412                      " starting at "HR_FORMAT,
6413                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6414 
6415       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6416       hr->add_strong_code_root_locked(_nm);
6417     }
6418   }
6419 
6420 public:
6421   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6422     _g1h(g1h), _nm(nm) {}
6423 
6424   void do_oop(oop* p)       { do_oop_work(p); }
6425   void do_oop(narrowOop* p) { do_oop_work(p); }
6426 };
6427 
6428 class UnregisterNMethodOopClosure: public OopClosure {
6429   G1CollectedHeap* _g1h;
6430   nmethod* _nm;
6431 
6432   template <class T> void do_oop_work(T* p) {
6433     T heap_oop = oopDesc::load_heap_oop(p);
6434     if (!oopDesc::is_null(heap_oop)) {
6435       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6436       HeapRegion* hr = _g1h->heap_region_containing(obj);
6437       assert(!hr->is_continues_humongous(),
6438              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6439                      " starting at "HR_FORMAT,
6440                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6441 
6442       hr->remove_strong_code_root(_nm);
6443     }
6444   }
6445 
6446 public:
6447   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6448     _g1h(g1h), _nm(nm) {}
6449 
6450   void do_oop(oop* p)       { do_oop_work(p); }
6451   void do_oop(narrowOop* p) { do_oop_work(p); }
6452 };
6453 
6454 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6455   CollectedHeap::register_nmethod(nm);
6456 
6457   guarantee(nm != NULL, "sanity");
6458   RegisterNMethodOopClosure reg_cl(this, nm);
6459   nm->oops_do(&reg_cl);
6460 }
6461 
6462 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6463   CollectedHeap::unregister_nmethod(nm);
6464 
6465   guarantee(nm != NULL, "sanity");
6466   UnregisterNMethodOopClosure reg_cl(this, nm);
6467   nm->oops_do(&reg_cl, true);
6468 }
6469 
6470 void G1CollectedHeap::purge_code_root_memory() {
6471   double purge_start = os::elapsedTime();
6472   G1CodeRootSet::purge();
6473   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6474   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6475 }
6476 
6477 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6478   G1CollectedHeap* _g1h;
6479 
6480 public:
6481   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6482     _g1h(g1h) {}
6483 
6484   void do_code_blob(CodeBlob* cb) {
6485     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6486     if (nm == NULL) {
6487       return;
6488     }
6489 
6490     if (ScavengeRootsInCode) {
6491       _g1h->register_nmethod(nm);
6492     }
6493   }
6494 };
6495 
6496 void G1CollectedHeap::rebuild_strong_code_roots() {
6497   RebuildStrongCodeRootClosure blob_cl(this);
6498   CodeCache::blobs_do(&blob_cl);
6499 }