1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/workgroup.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "runtime/atomic.inline.hpp"
  30 #include "runtime/os.hpp"
  31 #include "runtime/thread.inline.hpp"
  32 #include "utilities/semaphore.hpp"
  33 
  34 // Definitions of WorkGang methods.
  35 
  36 // The current implementation will exit if the allocation
  37 // of any worker fails.  Still, return a boolean so that
  38 // a future implementation can possibly do a partial
  39 // initialization of the workers and report such to the
  40 // caller.
  41 bool AbstractWorkGang::initialize_workers() {
  42 
  43   if (TraceWorkGang) {
  44     tty->print_cr("Constructing work gang %s with %d threads",
  45                   name(),
  46                   total_workers());
  47   }
  48   _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
  49   if (_workers == NULL) {
  50     vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
  51     return false;
  52   }
  53   os::ThreadType worker_type;
  54   if (are_ConcurrentGC_threads()) {
  55     worker_type = os::cgc_thread;
  56   } else {
  57     worker_type = os::pgc_thread;
  58   }
  59   for (uint worker = 0; worker < total_workers(); worker += 1) {
  60     AbstractGangWorker* new_worker = allocate_worker(worker);
  61     assert(new_worker != NULL, "Failed to allocate GangWorker");
  62     _workers[worker] = new_worker;
  63     if (new_worker == NULL || !os::create_thread(new_worker, worker_type)) {
  64       vm_exit_out_of_memory(0, OOM_MALLOC_ERROR,
  65               "Cannot create worker GC thread. Out of system resources.");
  66       return false;
  67     }
  68     if (!DisableStartThread) {
  69       os::start_thread(new_worker);
  70     }
  71   }
  72   return true;
  73 }
  74 
  75 AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
  76   // Array index bounds checking.
  77   AbstractGangWorker* result = NULL;
  78   assert(_workers != NULL, "No workers for indexing");
  79   assert(i < total_workers(), "Worker index out of bounds");
  80   result = _workers[i];
  81   assert(result != NULL, "Indexing to null worker");
  82   return result;
  83 }
  84 
  85 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
  86   uint workers = total_workers();
  87   for (uint i = 0; i < workers; i++) {
  88     worker(i)->print_on(st);
  89     st->cr();
  90   }
  91 }
  92 
  93 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
  94   assert(tc != NULL, "Null ThreadClosure");
  95   uint workers = total_workers();
  96   for (uint i = 0; i < workers; i++) {
  97     tc->do_thread(worker(i));
  98   }
  99 }
 100 
 101 #if IMPLEMENTS_SEMAPHORE_CLASS
 102 
 103 // WorkGang dispatcher implemented with semaphores.
 104 //
 105 // Semaphores don't require the worker threads to re-claim the lock when they wake up.
 106 // This helps lowering the latency when starting and stopping the worker threads.
 107 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
 108   // The task currently being dispatched to the GangWorkers.
 109   AbstractGangTask* _task;
 110 
 111   volatile uint _started;
 112   volatile uint _not_finished;
 113 
 114   // Semaphore used to start the GangWorkers.
 115   Semaphore* _start_semaphore;
 116   // Semaphore used to notify the coordinator that all workers are done.
 117   Semaphore* _end_semaphore;
 118 
 119 public:
 120   SemaphoreGangTaskDispatcher(uint workers) :
 121       _task(NULL),
 122       _started(0),
 123       _not_finished(0),
 124       // Limit the semaphore value to the number of workers.
 125       _start_semaphore(new Semaphore(0, workers)),
 126       _end_semaphore(new Semaphore(0, workers))
 127 { }
 128 
 129   ~SemaphoreGangTaskDispatcher() {
 130     delete _start_semaphore;
 131     delete _end_semaphore;
 132   }
 133 
 134   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
 135     // No workers are allowed to read the state variables until they have been signaled.
 136     _task         = task;
 137     _not_finished = num_workers;
 138 
 139     // Dispatch 'num_workers' number of tasks.
 140     _start_semaphore->signal(num_workers);
 141 
 142     // Wait for the last worker to signal the coordinator.
 143     _end_semaphore->wait();
 144 
 145     // No workers are allowed to read the state variables after the coordinator has been signaled.
 146     _task         = NULL;
 147     _started      = 0;
 148     _not_finished = 0;
 149   }
 150 
 151   WorkData worker_wait_for_task() {
 152     // Wait for the coordinator to dispatch a task.
 153     _start_semaphore->wait();
 154 
 155     uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started);
 156 
 157     // Subtract one to get a zero-indexed worker id.
 158     uint worker_id = num_started - 1;
 159 
 160     return WorkData(_task, worker_id);
 161   }
 162 
 163   void worker_done_with_task() {
 164     // Mark that the worker is done with the task.
 165     // The worker is not allowed to read the state variables after this line.
 166     uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished);
 167 
 168     // The last worker signals to the coordinator that all work is completed.
 169     if (not_finished == 0) {
 170       _end_semaphore->signal();
 171     }
 172   }
 173 };
 174 #endif // IMPLEMENTS_SEMAPHORE_CLASS
 175 
 176 class MutexGangTaskDispatcher : public GangTaskDispatcher {
 177   AbstractGangTask* _task;
 178 
 179   volatile uint _started;
 180   volatile uint _finished;
 181   volatile uint _num_workers;
 182 
 183   Monitor* _monitor;
 184 
 185  public:
 186   MutexGangTaskDispatcher()
 187       : _task(NULL),
 188         _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)),
 189         _started(0),
 190         _finished(0),
 191         _num_workers(0) {}
 192 
 193   ~MutexGangTaskDispatcher() {
 194     delete _monitor;
 195   }
 196 
 197   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
 198     MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 199 
 200     _task        = task;
 201     _num_workers = num_workers;
 202 
 203     // Tell the workers to get to work.
 204     _monitor->notify_all();
 205 
 206     // Wait for them to finish.
 207     while (_finished < _num_workers) {
 208       _monitor->wait(/* no_safepoint_check */ true);
 209     }
 210 
 211     _task        = NULL;
 212     _num_workers = 0;
 213     _started     = 0;
 214     _finished    = 0;
 215   }
 216 
 217   WorkData worker_wait_for_task() {
 218     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 219 
 220     while (_num_workers == 0 || _started == _num_workers) {
 221       _monitor->wait(/* no_safepoint_check */ true);
 222     }
 223 
 224     _started++;
 225 
 226     // Subtract one to get a zero-indexed worker id.
 227     uint worker_id = _started - 1;
 228 
 229     return WorkData(_task, worker_id);
 230   }
 231 
 232   void worker_done_with_task() {
 233     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 234 
 235     _finished++;
 236 
 237     if (_finished == _num_workers) {
 238       // This will wake up all workers and not only the coordinator.
 239       _monitor->notify_all();
 240     }
 241   }
 242 };
 243 
 244 static GangTaskDispatcher* create_dispatcher(uint workers) {
 245 #if IMPLEMENTS_SEMAPHORE_CLASS
 246   if (UseSemaphoreGCThreadsSynchronization) {
 247     return new SemaphoreGangTaskDispatcher(workers);
 248   }
 249 #endif
 250 
 251   return new MutexGangTaskDispatcher();
 252 }
 253 
 254 WorkGang::WorkGang(const char* name,
 255                    uint  workers,
 256                    bool  are_GC_task_threads,
 257                    bool  are_ConcurrentGC_threads) :
 258     AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
 259     _dispatcher(create_dispatcher(workers))
 260 { }
 261 
 262 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
 263   return new GangWorker(this, worker_id);
 264 }
 265 
 266 void WorkGang::run_task(AbstractGangTask* task) {
 267   _dispatcher->coordinator_execute_on_workers(task, active_workers());
 268 }
 269 
 270 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
 271   _gang = gang;
 272   set_id(id);
 273   set_name("%s#%d", gang->name(), id);
 274 }
 275 
 276 void AbstractGangWorker::run() {
 277   initialize();
 278   loop();
 279 }
 280 
 281 void AbstractGangWorker::initialize() {
 282   this->initialize_thread_local_storage();
 283   this->record_stack_base_and_size();
 284   this->initialize_named_thread();
 285   assert(_gang != NULL, "No gang to run in");
 286   os::set_priority(this, NearMaxPriority);
 287   if (TraceWorkGang) {
 288     tty->print_cr("Running gang worker for gang %s id %u",
 289                   gang()->name(), id());
 290   }
 291   // The VM thread should not execute here because MutexLocker's are used
 292   // as (opposed to MutexLockerEx's).
 293   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
 294          " of a work gang");
 295 }
 296 
 297 bool AbstractGangWorker::is_GC_task_thread() const {
 298   return gang()->are_GC_task_threads();
 299 }
 300 
 301 bool AbstractGangWorker::is_ConcurrentGC_thread() const {
 302   return gang()->are_ConcurrentGC_threads();
 303 }
 304 
 305 void AbstractGangWorker::print_on(outputStream* st) const {
 306   st->print("\"%s\" ", name());
 307   Thread::print_on(st);
 308   st->cr();
 309 }
 310 
 311 WorkData GangWorker::wait_for_task() {
 312   return gang()->dispatcher()->worker_wait_for_task();
 313 }
 314 
 315 void GangWorker::signal_task_done() {
 316   gang()->dispatcher()->worker_done_with_task();
 317 }
 318 
 319 void GangWorker::print_task_started(WorkData data) {
 320   if (TraceWorkGang) {
 321     tty->print_cr("Running work gang %s task %s worker %u", name(), data._task->name(), data._worker_id);
 322   }
 323 }
 324 
 325 void GangWorker::print_task_done(WorkData data) {
 326   if (TraceWorkGang) {
 327     tty->print_cr("\nFinished work gang %s task %s worker %u", name(), data._task->name(), data._worker_id);
 328     Thread* me = Thread::current();
 329     tty->print_cr("  T: " PTR_FORMAT "  VM_thread: %d", p2i(me), me->is_VM_thread());
 330   }
 331 }
 332 
 333 void GangWorker::run_task(WorkData data) {
 334   print_task_started(data);
 335 
 336   data._task->work(data._worker_id);
 337 
 338   print_task_done(data);
 339 }
 340 
 341 void GangWorker::loop() {
 342   while (true) {
 343     WorkData data = wait_for_task();
 344 
 345     run_task(data);
 346 
 347     signal_task_done();
 348   }
 349 }
 350 
 351 // *** WorkGangBarrierSync
 352 
 353 WorkGangBarrierSync::WorkGangBarrierSync()
 354   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
 355              Monitor::_safepoint_check_never),
 356     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
 357 }
 358 
 359 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
 360   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
 361     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
 362 }
 363 
 364 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
 365   _n_workers    = n_workers;
 366   _n_completed  = 0;
 367   _should_reset = false;
 368   _aborted      = false;
 369 }
 370 
 371 bool WorkGangBarrierSync::enter() {
 372   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 373   if (should_reset()) {
 374     // The should_reset() was set and we are the first worker to enter
 375     // the sync barrier. We will zero the n_completed() count which
 376     // effectively resets the barrier.
 377     zero_completed();
 378     set_should_reset(false);
 379   }
 380   inc_completed();
 381   if (n_completed() == n_workers()) {
 382     // At this point we would like to reset the barrier to be ready in
 383     // case it is used again. However, we cannot set n_completed() to
 384     // 0, even after the notify_all(), given that some other workers
 385     // might still be waiting for n_completed() to become ==
 386     // n_workers(). So, if we set n_completed() to 0, those workers
 387     // will get stuck (as they will wake up, see that n_completed() !=
 388     // n_workers() and go back to sleep). Instead, we raise the
 389     // should_reset() flag and the barrier will be reset the first
 390     // time a worker enters it again.
 391     set_should_reset(true);
 392     monitor()->notify_all();
 393   } else {
 394     while (n_completed() != n_workers() && !aborted()) {
 395       monitor()->wait(/* no_safepoint_check */ true);
 396     }
 397   }
 398   return !aborted();
 399 }
 400 
 401 void WorkGangBarrierSync::abort() {
 402   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 403   set_aborted();
 404   monitor()->notify_all();
 405 }
 406 
 407 // SubTasksDone functions.
 408 
 409 SubTasksDone::SubTasksDone(uint n) :
 410   _n_tasks(n), _tasks(NULL) {
 411   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
 412   guarantee(_tasks != NULL, "alloc failure");
 413   clear();
 414 }
 415 
 416 bool SubTasksDone::valid() {
 417   return _tasks != NULL;
 418 }
 419 
 420 void SubTasksDone::clear() {
 421   for (uint i = 0; i < _n_tasks; i++) {
 422     _tasks[i] = 0;
 423   }
 424   _threads_completed = 0;
 425 #ifdef ASSERT
 426   _claimed = 0;
 427 #endif
 428 }
 429 
 430 bool SubTasksDone::is_task_claimed(uint t) {
 431   assert(t < _n_tasks, "bad task id.");
 432   uint old = _tasks[t];
 433   if (old == 0) {
 434     old = Atomic::cmpxchg(1, &_tasks[t], 0);
 435   }
 436   assert(_tasks[t] == 1, "What else?");
 437   bool res = old != 0;
 438 #ifdef ASSERT
 439   if (!res) {
 440     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
 441     Atomic::inc((volatile jint*) &_claimed);
 442   }
 443 #endif
 444   return res;
 445 }
 446 
 447 void SubTasksDone::all_tasks_completed(uint n_threads) {
 448   jint observed = _threads_completed;
 449   jint old;
 450   do {
 451     old = observed;
 452     observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
 453   } while (observed != old);
 454   // If this was the last thread checking in, clear the tasks.
 455   uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
 456   if (observed + 1 == (jint)adjusted_thread_count) {
 457     clear();
 458   }
 459 }
 460 
 461 
 462 SubTasksDone::~SubTasksDone() {
 463   if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks);
 464 }
 465 
 466 // *** SequentialSubTasksDone
 467 
 468 void SequentialSubTasksDone::clear() {
 469   _n_tasks   = _n_claimed   = 0;
 470   _n_threads = _n_completed = 0;
 471 }
 472 
 473 bool SequentialSubTasksDone::valid() {
 474   return _n_threads > 0;
 475 }
 476 
 477 bool SequentialSubTasksDone::is_task_claimed(uint& t) {
 478   uint* n_claimed_ptr = &_n_claimed;
 479   t = *n_claimed_ptr;
 480   while (t < _n_tasks) {
 481     jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t);
 482     if (res == (jint)t) {
 483       return false;
 484     }
 485     t = *n_claimed_ptr;
 486   }
 487   return true;
 488 }
 489 
 490 bool SequentialSubTasksDone::all_tasks_completed() {
 491   uint* n_completed_ptr = &_n_completed;
 492   uint  complete        = *n_completed_ptr;
 493   while (true) {
 494     uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete);
 495     if (res == complete) {
 496       break;
 497     }
 498     complete = res;
 499   }
 500   if (complete+1 == _n_threads) {
 501     clear();
 502     return true;
 503   }
 504   return false;
 505 }
 506 
 507 bool FreeIdSet::_stat_init = false;
 508 FreeIdSet* FreeIdSet::_sets[NSets];
 509 bool FreeIdSet::_safepoint;
 510 
 511 FreeIdSet::FreeIdSet(int sz, Monitor* mon) :
 512   _sz(sz), _mon(mon), _hd(0), _waiters(0), _index(-1), _claimed(0)
 513 {
 514   _ids = NEW_C_HEAP_ARRAY(int, sz, mtInternal);
 515   for (int i = 0; i < sz; i++) _ids[i] = i+1;
 516   _ids[sz-1] = end_of_list; // end of list.
 517   if (_stat_init) {
 518     for (int j = 0; j < NSets; j++) _sets[j] = NULL;
 519     _stat_init = true;
 520   }
 521   // Add to sets.  (This should happen while the system is still single-threaded.)
 522   for (int j = 0; j < NSets; j++) {
 523     if (_sets[j] == NULL) {
 524       _sets[j] = this;
 525       _index = j;
 526       break;
 527     }
 528   }
 529   guarantee(_index != -1, "Too many FreeIdSets in use!");
 530 }
 531 
 532 FreeIdSet::~FreeIdSet() {
 533   _sets[_index] = NULL;
 534   FREE_C_HEAP_ARRAY(int, _ids);
 535 }
 536 
 537 void FreeIdSet::set_safepoint(bool b) {
 538   _safepoint = b;
 539   if (b) {
 540     for (int j = 0; j < NSets; j++) {
 541       if (_sets[j] != NULL && _sets[j]->_waiters > 0) {
 542         Monitor* mon = _sets[j]->_mon;
 543         mon->lock_without_safepoint_check();
 544         mon->notify_all();
 545         mon->unlock();
 546       }
 547     }
 548   }
 549 }
 550 
 551 #define FID_STATS 0
 552 
 553 int FreeIdSet::claim_par_id() {
 554 #if FID_STATS
 555   thread_t tslf = thr_self();
 556   tty->print("claim_par_id[%d]: sz = %d, claimed = %d\n", tslf, _sz, _claimed);
 557 #endif
 558   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 559   while (!_safepoint && _hd == end_of_list) {
 560     _waiters++;
 561 #if FID_STATS
 562     if (_waiters > 5) {
 563       tty->print("claim_par_id waiting[%d]: %d waiters, %d claimed.\n",
 564                  tslf, _waiters, _claimed);
 565     }
 566 #endif
 567     _mon->wait(Mutex::_no_safepoint_check_flag);
 568     _waiters--;
 569   }
 570   if (_hd == end_of_list) {
 571 #if FID_STATS
 572     tty->print("claim_par_id[%d]: returning EOL.\n", tslf);
 573 #endif
 574     return -1;
 575   } else {
 576     int res = _hd;
 577     _hd = _ids[res];
 578     _ids[res] = claimed;  // For debugging.
 579     _claimed++;
 580 #if FID_STATS
 581     tty->print("claim_par_id[%d]: returning %d, claimed = %d.\n",
 582                tslf, res, _claimed);
 583 #endif
 584     return res;
 585   }
 586 }
 587 
 588 bool FreeIdSet::claim_perm_id(int i) {
 589   assert(0 <= i && i < _sz, "Out of range.");
 590   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 591   int prev = end_of_list;
 592   int cur = _hd;
 593   while (cur != end_of_list) {
 594     if (cur == i) {
 595       if (prev == end_of_list) {
 596         _hd = _ids[cur];
 597       } else {
 598         _ids[prev] = _ids[cur];
 599       }
 600       _ids[cur] = claimed;
 601       _claimed++;
 602       return true;
 603     } else {
 604       prev = cur;
 605       cur = _ids[cur];
 606     }
 607   }
 608   return false;
 609 
 610 }
 611 
 612 void FreeIdSet::release_par_id(int id) {
 613   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 614   assert(_ids[id] == claimed, "Precondition.");
 615   _ids[id] = _hd;
 616   _hd = id;
 617   _claimed--;
 618 #if FID_STATS
 619   tty->print("[%d] release_par_id(%d), waiters =%d,  claimed = %d.\n",
 620              thr_self(), id, _waiters, _claimed);
 621 #endif
 622   if (_waiters > 0)
 623     // Notify all would be safer, but this is OK, right?
 624     _mon->notify_all();
 625 }