1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
  27 
  28 #include "runtime/atomic.inline.hpp"
  29 #include "runtime/os.hpp"
  30 #include "services/memTracker.hpp"
  31 
  32 // Explicit C-heap memory management
  33 
  34 void trace_heap_malloc(size_t size, const char* name, void *p);
  35 void trace_heap_free(void *p);
  36 
  37 #ifndef PRODUCT
  38 // Increments unsigned long value for statistics (not atomic on MP).
  39 inline void inc_stat_counter(volatile julong* dest, julong add_value) {
  40 #if defined(SPARC) || defined(X86)
  41   // Sparc and X86 have atomic jlong (8 bytes) instructions
  42   julong value = Atomic::load((volatile jlong*)dest);
  43   value += add_value;
  44   Atomic::store((jlong)value, (volatile jlong*)dest);
  45 #else
  46   // possible word-tearing during load/store
  47   *dest += add_value;
  48 #endif
  49 }
  50 #endif
  51 
  52 // allocate using malloc; will fail if no memory available
  53 inline char* AllocateHeap(size_t size, MEMFLAGS flags,
  54     const NativeCallStack& stack,
  55     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  56   char* p = (char*) os::malloc(size, flags, stack);
  57   #ifdef ASSERT
  58   if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p);
  59   #endif
  60   if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
  61     vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap");
  62   }
  63   return p;
  64 }
  65 
  66 #ifdef __GNUC__
  67 __attribute__((always_inline))
  68 #endif
  69 inline char* AllocateHeap(size_t size, MEMFLAGS flags,
  70     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  71   return AllocateHeap(size, flags, CURRENT_PC, alloc_failmode);
  72 }
  73 
  74 #ifdef __GNUC__
  75 __attribute__((always_inline))
  76 #endif
  77 inline char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag,
  78     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  79   char* p = (char*) os::realloc(old, size, flag, CURRENT_PC);
  80   #ifdef ASSERT
  81   if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p);
  82   #endif
  83   if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
  84     vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap");
  85   }
  86   return p;
  87 }
  88 
  89 inline void FreeHeap(void* p) {
  90   #ifdef ASSERT
  91   if (PrintMallocFree) trace_heap_free(p);
  92   #endif
  93   os::free(p);
  94 }
  95 
  96 
  97 template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size,
  98       const NativeCallStack& stack) throw() {
  99   void* p = (void*)AllocateHeap(size, F, stack);
 100 #ifdef ASSERT
 101   if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
 102 #endif
 103   return p;
 104 }
 105 
 106 template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size) throw() {
 107   return CHeapObj<F>::operator new(size, CALLER_PC);
 108 }
 109 
 110 template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
 111   const std::nothrow_t&  nothrow_constant, const NativeCallStack& stack) throw() {
 112   void* p = (void*)AllocateHeap(size, F, stack,
 113       AllocFailStrategy::RETURN_NULL);
 114 #ifdef ASSERT
 115     if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
 116 #endif
 117     return p;
 118   }
 119 
 120 template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
 121   const std::nothrow_t& nothrow_constant) throw() {
 122   return CHeapObj<F>::operator new(size, nothrow_constant, CALLER_PC);
 123 }
 124 
 125 template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
 126       const NativeCallStack& stack) throw() {
 127   return CHeapObj<F>::operator new(size, stack);
 128 }
 129 
 130 template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size)
 131   throw() {
 132   return CHeapObj<F>::operator new(size, CALLER_PC);
 133 }
 134 
 135 template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
 136   const std::nothrow_t&  nothrow_constant, const NativeCallStack& stack) throw() {
 137   return CHeapObj<F>::operator new(size, nothrow_constant, stack);
 138 }
 139 
 140 template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
 141   const std::nothrow_t& nothrow_constant) throw() {
 142   return CHeapObj<F>::operator new(size, nothrow_constant, CALLER_PC);
 143 }
 144 
 145 template <MEMFLAGS F> void CHeapObj<F>::operator delete(void* p){
 146     FreeHeap(p);
 147 }
 148 
 149 template <MEMFLAGS F> void CHeapObj<F>::operator delete [](void* p){
 150     FreeHeap(p);
 151 }
 152 
 153 template <class E, MEMFLAGS F>
 154 size_t ArrayAllocator<E, F>::size_for_malloc(size_t length) {
 155   return length * sizeof(E);
 156 }
 157 
 158 template <class E, MEMFLAGS F>
 159 size_t ArrayAllocator<E, F>::size_for_mmap(size_t length) {
 160   size_t size = length * sizeof(E);
 161   int alignment = os::vm_allocation_granularity();
 162   return align_size_up(size, alignment);
 163 }
 164 
 165 template <class E, MEMFLAGS F>
 166 bool ArrayAllocator<E, F>::should_use_malloc(size_t length) {
 167   return size_for_malloc(length) < ArrayAllocatorMallocLimit;
 168 }
 169 
 170 template <class E, MEMFLAGS F>
 171 E* ArrayAllocator<E, F>::allocate_malloc(size_t length) {
 172   return (E*)AllocateHeap(size_for_malloc(length), F);
 173 }
 174 
 175 template <class E, MEMFLAGS F>
 176 E* ArrayAllocator<E, F>::allocate_mmap(size_t length) {
 177   size_t size = size_for_mmap(length);
 178   int alignment = os::vm_allocation_granularity();
 179 
 180   char* addr = os::reserve_memory(size, NULL, alignment, F);
 181   if (addr == NULL) {
 182     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "Allocator (reserve)");
 183   }
 184 
 185   os::commit_memory_or_exit(addr, size, !ExecMem, "Allocator (commit)");
 186 
 187   return (E*)addr;
 188 }
 189 
 190 template <class E, MEMFLAGS F>
 191 E* ArrayAllocator<E, F>::allocate(size_t length) {
 192   if (should_use_malloc(length)) {
 193     return allocate_malloc(length);
 194   }
 195 
 196   return allocate_mmap(length);
 197 }
 198 
 199 template <class E, MEMFLAGS F>
 200 E* ArrayAllocator<E, F>::reallocate(E* old_addr, size_t old_length, size_t new_length) {
 201   E* new_addr = (new_length > 0)
 202       ? allocate(new_length)
 203       : NULL;
 204 
 205   if (new_addr != NULL && old_addr != NULL) {
 206     memcpy(new_addr, old_addr, MIN2(old_length, new_length) * sizeof(E));
 207   }
 208 
 209   if (old_addr != NULL) {
 210     free(old_addr, old_length);
 211   }
 212 
 213   return new_addr;
 214 }
 215 
 216 template<class E, MEMFLAGS F>
 217 void ArrayAllocator<E, F>::free_malloc(E* addr, size_t /*length*/) {
 218   FreeHeap(addr);
 219 }
 220 
 221 template<class E, MEMFLAGS F>
 222 void ArrayAllocator<E, F>::free_mmap(E* addr, size_t length) {
 223   bool result = os::release_memory((char*)addr, size_for_mmap(length));
 224   assert(result, "Failed to release memory");
 225 }
 226 
 227 template<class E, MEMFLAGS F>
 228 void ArrayAllocator<E, F>::free(E* addr, size_t length) {
 229   if (addr != NULL) {
 230     if (should_use_malloc(length)) {
 231       free_malloc(addr, length);
 232     } else {
 233       free_mmap(addr, length);
 234     }
 235   }
 236 }
 237 
 238 #endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP