1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 #ifdef COMPILER1
  32 #include "c1/c1_globals.hpp"
  33 #endif
  34 #ifdef COMPILER2
  35 #include "opto/c2_globals.hpp"
  36 #endif
  37 
  38 #include <new>
  39 
  40 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
  41 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
  42 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
  43 
  44 
  45 // noinline attribute
  46 #ifdef _WINDOWS
  47   #define _NOINLINE_  __declspec(noinline)
  48 #else
  49   #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
  50     #define _NOINLINE_
  51   #else
  52     #define _NOINLINE_ __attribute__ ((noinline))
  53   #endif
  54 #endif
  55 
  56 class AllocFailStrategy {
  57 public:
  58   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  59 };
  60 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  61 
  62 // All classes in the virtual machine must be subclassed
  63 // by one of the following allocation classes:
  64 //
  65 // For objects allocated in the resource area (see resourceArea.hpp).
  66 // - ResourceObj
  67 //
  68 // For objects allocated in the C-heap (managed by: free & malloc).
  69 // - CHeapObj
  70 //
  71 // For objects allocated on the stack.
  72 // - StackObj
  73 //
  74 // For embedded objects.
  75 // - ValueObj
  76 //
  77 // For classes used as name spaces.
  78 // - AllStatic
  79 //
  80 // For classes in Metaspace (class data)
  81 // - MetaspaceObj
  82 //
  83 // The printable subclasses are used for debugging and define virtual
  84 // member functions for printing. Classes that avoid allocating the
  85 // vtbl entries in the objects should therefore not be the printable
  86 // subclasses.
  87 //
  88 // The following macros and function should be used to allocate memory
  89 // directly in the resource area or in the C-heap, The _OBJ variants
  90 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  91 // objects which are not inherited from CHeapObj, note constructor and
  92 // destructor are not called. The preferable way to allocate objects
  93 // is using the new operator.
  94 //
  95 // WARNING: The array variant must only be used for a homogenous array
  96 // where all objects are of the exact type specified. If subtypes are
  97 // stored in the array then must pay attention to calling destructors
  98 // at needed.
  99 //
 100 //   NEW_RESOURCE_ARRAY(type, size)
 101 //   NEW_RESOURCE_OBJ(type)
 102 //   NEW_C_HEAP_ARRAY(type, size)
 103 //   NEW_C_HEAP_OBJ(type, memflags)
 104 //   FREE_C_HEAP_ARRAY(type, old)
 105 //   FREE_C_HEAP_OBJ(objname, type, memflags)
 106 //   char* AllocateHeap(size_t size, const char* name);
 107 //   void  FreeHeap(void* p);
 108 //
 109 // C-heap allocation can be traced using +PrintHeapAllocation.
 110 // malloc and free should therefore never called directly.
 111 
 112 // Base class for objects allocated in the C-heap.
 113 
 114 // In non product mode we introduce a super class for all allocation classes
 115 // that supports printing.
 116 // We avoid the superclass in product mode since some C++ compilers add
 117 // a word overhead for empty super classes.
 118 
 119 #ifdef PRODUCT
 120 #define ALLOCATION_SUPER_CLASS_SPEC
 121 #else
 122 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 123 class AllocatedObj {
 124  public:
 125   // Printing support
 126   void print() const;
 127   void print_value() const;
 128 
 129   virtual void print_on(outputStream* st) const;
 130   virtual void print_value_on(outputStream* st) const;
 131 };
 132 #endif
 133 
 134 
 135 /*
 136  * Memory types
 137  */
 138 enum MemoryType {
 139   // Memory type by sub systems. It occupies lower byte.
 140   mtJavaHeap          = 0x00,  // Java heap
 141   mtClass             = 0x01,  // memory class for Java classes
 142   mtThread            = 0x02,  // memory for thread objects
 143   mtThreadStack       = 0x03,
 144   mtCode              = 0x04,  // memory for generated code
 145   mtGC                = 0x05,  // memory for GC
 146   mtCompiler          = 0x06,  // memory for compiler
 147   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 148                                  // any of above categories, and not used for
 149                                  // native memory tracking
 150   mtOther             = 0x08,  // memory not used by VM
 151   mtSymbol            = 0x09,  // symbol
 152   mtNMT               = 0x0A,  // memory used by native memory tracking
 153   mtClassShared       = 0x0B,  // class data sharing
 154   mtChunk             = 0x0C,  // chunk that holds content of arenas
 155   mtTest              = 0x0D,  // Test type for verifying NMT
 156   mtTracing           = 0x0E,  // memory used for Tracing
 157   mtLogging           = 0x0F,  // memory for logging
 158   mtNone              = 0x10,  // undefined
 159   mt_number_of_types  = 0x11   // number of memory types (mtDontTrack
 160                                  // is not included as validate type)
 161 };
 162 
 163 typedef MemoryType MEMFLAGS;
 164 
 165 
 166 #if INCLUDE_NMT
 167 
 168 extern bool NMT_track_callsite;
 169 
 170 #else
 171 
 172 const bool NMT_track_callsite = false;
 173 
 174 #endif // INCLUDE_NMT
 175 
 176 class NativeCallStack;
 177 
 178 
 179 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 180  public:
 181   _NOINLINE_ void* operator new(size_t size, const NativeCallStack& stack) throw();
 182   _NOINLINE_ void* operator new(size_t size) throw();
 183   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 184                                const NativeCallStack& stack) throw();
 185   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 186                                throw();
 187   _NOINLINE_ void* operator new [](size_t size, const NativeCallStack& stack) throw();
 188   _NOINLINE_ void* operator new [](size_t size) throw();
 189   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 190                                const NativeCallStack& stack) throw();
 191   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 192                                throw();
 193   void  operator delete(void* p);
 194   void  operator delete [] (void* p);
 195 };
 196 
 197 // Base class for objects allocated on the stack only.
 198 // Calling new or delete will result in fatal error.
 199 
 200 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 201  private:
 202   void* operator new(size_t size) throw();
 203   void* operator new [](size_t size) throw();
 204 #ifdef __IBMCPP__
 205  public:
 206 #endif
 207   void  operator delete(void* p);
 208   void  operator delete [](void* p);
 209 };
 210 
 211 // Base class for objects used as value objects.
 212 // Calling new or delete will result in fatal error.
 213 //
 214 // Portability note: Certain compilers (e.g. gcc) will
 215 // always make classes bigger if it has a superclass, even
 216 // if the superclass does not have any virtual methods or
 217 // instance fields. The HotSpot implementation relies on this
 218 // not to happen. So never make a ValueObj class a direct subclass
 219 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
 220 // like this:
 221 //
 222 //   class A VALUE_OBJ_CLASS_SPEC {
 223 //     ...
 224 //   }
 225 //
 226 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
 227 // be defined as a an empty string "".
 228 //
 229 class _ValueObj {
 230  private:
 231   void* operator new(size_t size) throw();
 232   void  operator delete(void* p);
 233   void* operator new [](size_t size) throw();
 234   void  operator delete [](void* p);
 235 };
 236 
 237 
 238 // Base class for objects stored in Metaspace.
 239 // Calling delete will result in fatal error.
 240 //
 241 // Do not inherit from something with a vptr because this class does
 242 // not introduce one.  This class is used to allocate both shared read-only
 243 // and shared read-write classes.
 244 //
 245 
 246 class ClassLoaderData;
 247 
 248 class MetaspaceObj {
 249  public:
 250   bool is_metaspace_object() const;
 251   bool is_shared() const;
 252   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 253 
 254 #define METASPACE_OBJ_TYPES_DO(f) \
 255   f(Unknown) \
 256   f(Class) \
 257   f(Symbol) \
 258   f(TypeArrayU1) \
 259   f(TypeArrayU2) \
 260   f(TypeArrayU4) \
 261   f(TypeArrayU8) \
 262   f(TypeArrayOther) \
 263   f(Method) \
 264   f(ConstMethod) \
 265   f(MethodData) \
 266   f(ConstantPool) \
 267   f(ConstantPoolCache) \
 268   f(Annotation) \
 269   f(MethodCounters) \
 270   f(Deallocated)
 271 
 272 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 273 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 274 
 275   enum Type {
 276     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 277     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 278     _number_of_types
 279   };
 280 
 281   static const char * type_name(Type type) {
 282     switch(type) {
 283     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 284     default:
 285       ShouldNotReachHere();
 286       return NULL;
 287     }
 288   }
 289 
 290   static MetaspaceObj::Type array_type(size_t elem_size) {
 291     switch (elem_size) {
 292     case 1: return TypeArrayU1Type;
 293     case 2: return TypeArrayU2Type;
 294     case 4: return TypeArrayU4Type;
 295     case 8: return TypeArrayU8Type;
 296     default:
 297       return TypeArrayOtherType;
 298     }
 299   }
 300 
 301   void* operator new(size_t size, ClassLoaderData* loader_data,
 302                      size_t word_size, bool read_only,
 303                      Type type, Thread* thread) throw();
 304                      // can't use TRAPS from this header file.
 305   void operator delete(void* p) { ShouldNotCallThis(); }
 306 };
 307 
 308 // Base class for classes that constitute name spaces.
 309 
 310 class AllStatic {
 311  public:
 312   AllStatic()  { ShouldNotCallThis(); }
 313   ~AllStatic() { ShouldNotCallThis(); }
 314 };
 315 
 316 
 317 //------------------------------Chunk------------------------------------------
 318 // Linked list of raw memory chunks
 319 class Chunk: CHeapObj<mtChunk> {
 320   friend class VMStructs;
 321 
 322  protected:
 323   Chunk*       _next;     // Next Chunk in list
 324   const size_t _len;      // Size of this Chunk
 325  public:
 326   void* operator new(size_t size, AllocFailType alloc_failmode, size_t length) throw();
 327   void  operator delete(void* p);
 328   Chunk(size_t length);
 329 
 330   enum {
 331     // default sizes; make them slightly smaller than 2**k to guard against
 332     // buddy-system style malloc implementations
 333 #ifdef _LP64
 334     slack      = 40,            // [RGV] Not sure if this is right, but make it
 335                                 //       a multiple of 8.
 336 #else
 337     slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
 338 #endif
 339 
 340     tiny_size  =  256  - slack, // Size of first chunk (tiny)
 341     init_size  =  1*K  - slack, // Size of first chunk (normal aka small)
 342     medium_size= 10*K  - slack, // Size of medium-sized chunk
 343     size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
 344     non_pool_size = init_size + 32 // An initial size which is not one of above
 345   };
 346 
 347   void chop();                  // Chop this chunk
 348   void next_chop();             // Chop next chunk
 349   static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
 350   static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
 351 
 352   size_t length() const         { return _len;  }
 353   Chunk* next() const           { return _next;  }
 354   void set_next(Chunk* n)       { _next = n;  }
 355   // Boundaries of data area (possibly unused)
 356   char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
 357   char* top()    const          { return bottom() + _len; }
 358   bool contains(char* p) const  { return bottom() <= p && p <= top(); }
 359 
 360   // Start the chunk_pool cleaner task
 361   static void start_chunk_pool_cleaner_task();
 362 
 363   static void clean_chunk_pool();
 364 };
 365 
 366 //------------------------------Arena------------------------------------------
 367 // Fast allocation of memory
 368 class Arena : public CHeapObj<mtNone> {
 369 protected:
 370   friend class ResourceMark;
 371   friend class HandleMark;
 372   friend class NoHandleMark;
 373   friend class VMStructs;
 374 
 375   MEMFLAGS    _flags;           // Memory tracking flags
 376 
 377   Chunk *_first;                // First chunk
 378   Chunk *_chunk;                // current chunk
 379   char *_hwm, *_max;            // High water mark and max in current chunk
 380   // Get a new Chunk of at least size x
 381   void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 382   size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
 383 
 384   NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
 385   friend class AllocStats;
 386   debug_only(void* malloc(size_t size);)
 387   debug_only(void* internal_malloc_4(size_t x);)
 388   NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
 389 
 390   void signal_out_of_memory(size_t request, const char* whence) const;
 391 
 392   bool check_for_overflow(size_t request, const char* whence,
 393       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
 394     if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
 395       if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
 396         return false;
 397       }
 398       signal_out_of_memory(request, whence);
 399     }
 400     return true;
 401  }
 402 
 403  public:
 404   Arena(MEMFLAGS memflag);
 405   Arena(MEMFLAGS memflag, size_t init_size);
 406   ~Arena();
 407   void  destruct_contents();
 408   char* hwm() const             { return _hwm; }
 409 
 410   // new operators
 411   void* operator new (size_t size) throw();
 412   void* operator new (size_t size, const std::nothrow_t& nothrow_constant) throw();
 413 
 414   // dynamic memory type tagging
 415   void* operator new(size_t size, MEMFLAGS flags) throw();
 416   void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw();
 417   void  operator delete(void* p);
 418 
 419   // Fast allocate in the arena.  Common case is: pointer test + increment.
 420   void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 421     assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
 422     x = ARENA_ALIGN(x);
 423     debug_only(if (UseMallocOnly) return malloc(x);)
 424     if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
 425       return NULL;
 426     NOT_PRODUCT(inc_bytes_allocated(x);)
 427     if (_hwm + x > _max) {
 428       return grow(x, alloc_failmode);
 429     } else {
 430       char *old = _hwm;
 431       _hwm += x;
 432       return old;
 433     }
 434   }
 435   // Further assume size is padded out to words
 436   void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 437     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 438     debug_only(if (UseMallocOnly) return malloc(x);)
 439     if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
 440       return NULL;
 441     NOT_PRODUCT(inc_bytes_allocated(x);)
 442     if (_hwm + x > _max) {
 443       return grow(x, alloc_failmode);
 444     } else {
 445       char *old = _hwm;
 446       _hwm += x;
 447       return old;
 448     }
 449   }
 450 
 451   // Allocate with 'double' alignment. It is 8 bytes on sparc.
 452   // In other cases Amalloc_D() should be the same as Amalloc_4().
 453   void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 454     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 455     debug_only(if (UseMallocOnly) return malloc(x);)
 456 #if defined(SPARC) && !defined(_LP64)
 457 #define DALIGN_M1 7
 458     size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
 459     x += delta;
 460 #endif
 461     if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
 462       return NULL;
 463     NOT_PRODUCT(inc_bytes_allocated(x);)
 464     if (_hwm + x > _max) {
 465       return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
 466     } else {
 467       char *old = _hwm;
 468       _hwm += x;
 469 #if defined(SPARC) && !defined(_LP64)
 470       old += delta; // align to 8-bytes
 471 #endif
 472       return old;
 473     }
 474   }
 475 
 476   // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
 477   void Afree(void *ptr, size_t size) {
 478 #ifdef ASSERT
 479     if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
 480     if (UseMallocOnly) return;
 481 #endif
 482     if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
 483   }
 484 
 485   void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
 486       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 487 
 488   // Move contents of this arena into an empty arena
 489   Arena *move_contents(Arena *empty_arena);
 490 
 491   // Determine if pointer belongs to this Arena or not.
 492   bool contains( const void *ptr ) const;
 493 
 494   // Total of all chunks in use (not thread-safe)
 495   size_t used() const;
 496 
 497   // Total # of bytes used
 498   size_t size_in_bytes() const         {  return _size_in_bytes; };
 499   void set_size_in_bytes(size_t size);
 500 
 501   static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
 502   static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
 503 
 504 private:
 505   // Reset this Arena to empty, access will trigger grow if necessary
 506   void   reset(void) {
 507     _first = _chunk = NULL;
 508     _hwm = _max = NULL;
 509     set_size_in_bytes(0);
 510   }
 511 };
 512 
 513 // One of the following macros must be used when allocating
 514 // an array or object from an arena
 515 #define NEW_ARENA_ARRAY(arena, type, size) \
 516   (type*) (arena)->Amalloc((size) * sizeof(type))
 517 
 518 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
 519   (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
 520                             (new_size) * sizeof(type) )
 521 
 522 #define FREE_ARENA_ARRAY(arena, type, old, size) \
 523   (arena)->Afree((char*)(old), (size) * sizeof(type))
 524 
 525 #define NEW_ARENA_OBJ(arena, type) \
 526   NEW_ARENA_ARRAY(arena, type, 1)
 527 
 528 
 529 //%note allocation_1
 530 extern char* resource_allocate_bytes(size_t size,
 531     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 532 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 533     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 534 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 535     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 536 extern void resource_free_bytes( char *old, size_t size );
 537 
 538 //----------------------------------------------------------------------
 539 // Base class for objects allocated in the resource area per default.
 540 // Optionally, objects may be allocated on the C heap with
 541 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 542 // ResourceObj's can be allocated within other objects, but don't use
 543 // new or delete (allocation_type is unknown).  If new is used to allocate,
 544 // use delete to deallocate.
 545 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 546  public:
 547   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 548   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 549 #ifdef ASSERT
 550  private:
 551   // When this object is allocated on stack the new() operator is not
 552   // called but garbage on stack may look like a valid allocation_type.
 553   // Store negated 'this' pointer when new() is called to distinguish cases.
 554   // Use second array's element for verification value to distinguish garbage.
 555   uintptr_t _allocation_t[2];
 556   bool is_type_set() const;
 557  public:
 558   allocation_type get_allocation_type() const;
 559   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 560   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 561   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 562   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 563   ResourceObj(); // default constructor
 564   ResourceObj(const ResourceObj& r); // default copy constructor
 565   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 566   ~ResourceObj();
 567 #endif // ASSERT
 568 
 569  public:
 570   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 571   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 572   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 573       allocation_type type, MEMFLAGS flags) throw();
 574   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 575       allocation_type type, MEMFLAGS flags) throw();
 576 
 577   void* operator new(size_t size, Arena *arena) throw() {
 578       address res = (address)arena->Amalloc(size);
 579       DEBUG_ONLY(set_allocation_type(res, ARENA);)
 580       return res;
 581   }
 582 
 583   void* operator new [](size_t size, Arena *arena) throw() {
 584       address res = (address)arena->Amalloc(size);
 585       DEBUG_ONLY(set_allocation_type(res, ARENA);)
 586       return res;
 587   }
 588 
 589   void* operator new(size_t size) throw() {
 590       address res = (address)resource_allocate_bytes(size);
 591       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 592       return res;
 593   }
 594 
 595   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 596       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 597       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 598       return res;
 599   }
 600 
 601   void* operator new [](size_t size) throw() {
 602       address res = (address)resource_allocate_bytes(size);
 603       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 604       return res;
 605   }
 606 
 607   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 608       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 609       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 610       return res;
 611   }
 612 
 613   void  operator delete(void* p);
 614   void  operator delete [](void* p);
 615 };
 616 
 617 // One of the following macros must be used when allocating an array
 618 // or object to determine whether it should reside in the C heap on in
 619 // the resource area.
 620 
 621 #define NEW_RESOURCE_ARRAY(type, size)\
 622   (type*) resource_allocate_bytes((size) * sizeof(type))
 623 
 624 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 625   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 626 
 627 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 628   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 629 
 630 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 631   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 632 
 633 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 634   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 635 
 636 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 637   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 638                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 639 
 640 #define FREE_RESOURCE_ARRAY(type, old, size)\
 641   resource_free_bytes((char*)(old), (size) * sizeof(type))
 642 
 643 #define FREE_FAST(old)\
 644     /* nop */
 645 
 646 #define NEW_RESOURCE_OBJ(type)\
 647   NEW_RESOURCE_ARRAY(type, 1)
 648 
 649 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 650   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 651 
 652 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 653   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 654 
 655 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 656   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 657 
 658 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 659   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 660 
 661 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 662   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 663 
 664 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 665   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 666 
 667 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 668   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 669 
 670 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 671   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 672 
 673 #define FREE_C_HEAP_ARRAY(type, old) \
 674   FreeHeap((char*)(old))
 675 
 676 // allocate type in heap without calling ctor
 677 #define NEW_C_HEAP_OBJ(type, memflags)\
 678   NEW_C_HEAP_ARRAY(type, 1, memflags)
 679 
 680 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 681   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 682 
 683 // deallocate obj of type in heap without calling dtor
 684 #define FREE_C_HEAP_OBJ(objname)\
 685   FreeHeap((char*)objname);
 686 
 687 // for statistics
 688 #ifndef PRODUCT
 689 class AllocStats : StackObj {
 690   julong start_mallocs, start_frees;
 691   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 692  public:
 693   AllocStats();
 694 
 695   julong num_mallocs();    // since creation of receiver
 696   julong alloc_bytes();
 697   julong num_frees();
 698   julong free_bytes();
 699   julong resource_bytes();
 700   void   print();
 701 };
 702 #endif
 703 
 704 
 705 //------------------------------ReallocMark---------------------------------
 706 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 707 // ReallocMark, which is declared in the same scope as the reallocated
 708 // pointer.  Any operation that could __potentially__ cause a reallocation
 709 // should check the ReallocMark.
 710 class ReallocMark: public StackObj {
 711 protected:
 712   NOT_PRODUCT(int _nesting;)
 713 
 714 public:
 715   ReallocMark()   PRODUCT_RETURN;
 716   void check()    PRODUCT_RETURN;
 717 };
 718 
 719 // Helper class to allocate arrays that may become large.
 720 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 721 // and uses mapped memory for larger allocations.
 722 // Most OS mallocs do something similar but Solaris malloc does not revert
 723 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 724 // is set so that we always use malloc except for Solaris where we set the
 725 // limit to get mapped memory.
 726 template <class E, MEMFLAGS F>
 727 class ArrayAllocator : public AllStatic {
 728  private:
 729   static bool should_use_malloc(size_t length);
 730 
 731   static size_t size_for_malloc(size_t length);
 732   static size_t size_for_mmap(size_t length);
 733 
 734   static E* allocate_malloc(size_t length);
 735   static E* allocate_mmap(size_t length);
 736 
 737   static void free_malloc(E* addr, size_t length);
 738   static void free_mmap(E* addr, size_t length);
 739 
 740  public:
 741   static E* allocate(size_t length);
 742   static E* reallocate(E* old_addr, size_t old_length, size_t new_length);
 743   static void free(E* addr, size_t length);
 744 };
 745 
 746 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP