1 /*
   2  * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
  26 #define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
  27 
  28 #include "gc/shared/taskqueue.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/atomic.inline.hpp"
  32 #include "runtime/orderAccess.inline.hpp"
  33 #include "utilities/debug.hpp"
  34 #include "utilities/stack.inline.hpp"
  35 
  36 template <class T, MEMFLAGS F>
  37 inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) {
  38   typedef T* GenericTaskQueuePtr;
  39   _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
  40   for (int i = 0; i < n; i++) {
  41     _queues[i] = NULL;
  42   }
  43 }
  44 
  45 template<class E, MEMFLAGS F, unsigned int N>
  46 inline void GenericTaskQueue<E, F, N>::initialize() {
  47   _elems = ArrayAllocator<E, F>::allocate(N);
  48 }
  49 
  50 template<class E, MEMFLAGS F, unsigned int N>
  51 inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
  52   assert(false, "This code is currently never called");
  53   ArrayAllocator<E, F>::free(const_cast<E*>(_elems), N);
  54 }
  55 
  56 template<class E, MEMFLAGS F, unsigned int N>
  57 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
  58   if (dirty_n_elems == N - 1) {
  59     // Actually means 0, so do the push.
  60     uint localBot = _bottom;
  61     // g++ complains if the volatile result of the assignment is
  62     // unused, so we cast the volatile away.  We cannot cast directly
  63     // to void, because gcc treats that as not using the result of the
  64     // assignment.  However, casting to E& means that we trigger an
  65     // unused-value warning.  So, we cast the E& to void.
  66     (void)const_cast<E&>(_elems[localBot] = t);
  67     OrderAccess::release_store(&_bottom, increment_index(localBot));
  68     TASKQUEUE_STATS_ONLY(stats.record_push());
  69     return true;
  70   }
  71   return false;
  72 }
  73 
  74 template<class E, MEMFLAGS F, unsigned int N> inline bool
  75 GenericTaskQueue<E, F, N>::push(E t) {
  76   uint localBot = _bottom;
  77   assert(localBot < N, "_bottom out of range.");
  78   idx_t top = _age.top();
  79   uint dirty_n_elems = dirty_size(localBot, top);
  80   assert(dirty_n_elems < N, "n_elems out of range.");
  81   if (dirty_n_elems < max_elems()) {
  82     // g++ complains if the volatile result of the assignment is
  83     // unused, so we cast the volatile away.  We cannot cast directly
  84     // to void, because gcc treats that as not using the result of the
  85     // assignment.  However, casting to E& means that we trigger an
  86     // unused-value warning.  So, we cast the E& to void.
  87     (void) const_cast<E&>(_elems[localBot] = t);
  88     OrderAccess::release_store(&_bottom, increment_index(localBot));
  89     TASKQUEUE_STATS_ONLY(stats.record_push());
  90     return true;
  91   } else {
  92     return push_slow(t, dirty_n_elems);
  93   }
  94 }
  95 
  96 template <class E, MEMFLAGS F, unsigned int N>
  97 inline bool OverflowTaskQueue<E, F, N>::push(E t)
  98 {
  99   if (!taskqueue_t::push(t)) {
 100     overflow_stack()->push(t);
 101     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
 102   }
 103   return true;
 104 }
 105 
 106 // pop_local_slow() is done by the owning thread and is trying to
 107 // get the last task in the queue.  It will compete with pop_global()
 108 // that will be used by other threads.  The tag age is incremented
 109 // whenever the queue goes empty which it will do here if this thread
 110 // gets the last task or in pop_global() if the queue wraps (top == 0
 111 // and pop_global() succeeds, see pop_global()).
 112 template<class E, MEMFLAGS F, unsigned int N>
 113 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
 114   // This queue was observed to contain exactly one element; either this
 115   // thread will claim it, or a competing "pop_global".  In either case,
 116   // the queue will be logically empty afterwards.  Create a new Age value
 117   // that represents the empty queue for the given value of "_bottom".  (We
 118   // must also increment "tag" because of the case where "bottom == 1",
 119   // "top == 0".  A pop_global could read the queue element in that case,
 120   // then have the owner thread do a pop followed by another push.  Without
 121   // the incrementing of "tag", the pop_global's CAS could succeed,
 122   // allowing it to believe it has claimed the stale element.)
 123   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 124   // Perhaps a competing pop_global has already incremented "top", in which
 125   // case it wins the element.
 126   if (localBot == oldAge.top()) {
 127     // No competing pop_global has yet incremented "top"; we'll try to
 128     // install new_age, thus claiming the element.
 129     Age tempAge = _age.cmpxchg(newAge, oldAge);
 130     if (tempAge == oldAge) {
 131       // We win.
 132       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 133       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 134       return true;
 135     }
 136   }
 137   // We lose; a completing pop_global gets the element.  But the queue is empty
 138   // and top is greater than bottom.  Fix this representation of the empty queue
 139   // to become the canonical one.
 140   _age.set(newAge);
 141   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 142   return false;
 143 }
 144 
 145 template<class E, MEMFLAGS F, unsigned int N> inline bool
 146 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
 147   uint localBot = _bottom;
 148   // This value cannot be N-1.  That can only occur as a result of
 149   // the assignment to bottom in this method.  If it does, this method
 150   // resets the size to 0 before the next call (which is sequential,
 151   // since this is pop_local.)
 152   uint dirty_n_elems = dirty_size(localBot, _age.top());
 153   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 154   if (dirty_n_elems == 0) return false;
 155   localBot = decrement_index(localBot);
 156   _bottom = localBot;
 157   // This is necessary to prevent any read below from being reordered
 158   // before the store just above.
 159   OrderAccess::fence();
 160   // g++ complains if the volatile result of the assignment is
 161   // unused, so we cast the volatile away.  We cannot cast directly
 162   // to void, because gcc treats that as not using the result of the
 163   // assignment.  However, casting to E& means that we trigger an
 164   // unused-value warning.  So, we cast the E& to void.
 165   (void) const_cast<E&>(t = _elems[localBot]);
 166   // This is a second read of "age"; the "size()" above is the first.
 167   // If there's still at least one element in the queue, based on the
 168   // "_bottom" and "age" we've read, then there can be no interference with
 169   // a "pop_global" operation, and we're done.
 170   idx_t tp = _age.top();    // XXX
 171   if (size(localBot, tp) > 0) {
 172     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 173     TASKQUEUE_STATS_ONLY(stats.record_pop());
 174     return true;
 175   } else {
 176     // Otherwise, the queue contained exactly one element; we take the slow
 177     // path.
 178     return pop_local_slow(localBot, _age.get());
 179   }
 180 }
 181 
 182 template <class E, MEMFLAGS F, unsigned int N>
 183 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
 184 {
 185   if (overflow_empty()) return false;
 186   t = overflow_stack()->pop();
 187   return true;
 188 }
 189 
 190 template<class E, MEMFLAGS F, unsigned int N>
 191 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
 192   Age oldAge = _age.get();
 193   // Architectures with weak memory model require a barrier here
 194   // to guarantee that bottom is not older than age,
 195   // which is crucial for the correctness of the algorithm.
 196 #if !(defined SPARC || defined IA32 || defined AMD64)
 197   OrderAccess::fence();
 198 #endif
 199   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
 200   uint n_elems = size(localBot, oldAge.top());
 201   if (n_elems == 0) {
 202     return false;
 203   }
 204 
 205   // g++ complains if the volatile result of the assignment is
 206   // unused, so we cast the volatile away.  We cannot cast directly
 207   // to void, because gcc treats that as not using the result of the
 208   // assignment.  However, casting to E& means that we trigger an
 209   // unused-value warning.  So, we cast the E& to void.
 210   (void) const_cast<E&>(t = _elems[oldAge.top()]);
 211   Age newAge(oldAge);
 212   newAge.increment();
 213   Age resAge = _age.cmpxchg(newAge, oldAge);
 214 
 215   // Note that using "_bottom" here might fail, since a pop_local might
 216   // have decremented it.
 217   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 218   return resAge == oldAge;
 219 }
 220 
 221 template<class T, MEMFLAGS F> bool
 222 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 223   if (_n > 2) {
 224     uint k1 = queue_num;
 225     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 226     uint k2 = queue_num;
 227     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 228     // Sample both and try the larger.
 229     uint sz1 = _queues[k1]->size();
 230     uint sz2 = _queues[k2]->size();
 231     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 232     else return _queues[k1]->pop_global(t);
 233   } else if (_n == 2) {
 234     // Just try the other one.
 235     uint k = (queue_num + 1) % 2;
 236     return _queues[k]->pop_global(t);
 237   } else {
 238     assert(_n == 1, "can't be zero.");
 239     return false;
 240   }
 241 }
 242 
 243 template<class T, MEMFLAGS F> bool
 244 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
 245   for (uint i = 0; i < 2 * _n; i++) {
 246     if (steal_best_of_2(queue_num, seed, t)) {
 247       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 248       return true;
 249     }
 250   }
 251   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 252   return false;
 253 }
 254 
 255 template <unsigned int N, MEMFLAGS F>
 256 inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile {
 257   return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 258                                       (volatile intptr_t *)&_data,
 259                                       (intptr_t)old_age._data);
 260 }
 261 
 262 template<class E, MEMFLAGS F, unsigned int N>
 263 template<class Fn>
 264 inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
 265   uint iters = size();
 266   uint index = _bottom;
 267   for (uint i = 0; i < iters; ++i) {
 268     index = decrement_index(index);
 269     fn(const_cast<E&>(_elems[index])); // cast away volatility
 270   }
 271 }
 272 
 273 
 274 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP