1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/parallel/parMarkBitMap.hpp"
  27 #include "gc/parallel/psCompactionManager.inline.hpp"
  28 #include "gc/parallel/psParallelCompact.inline.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/atomic.inline.hpp"
  31 #include "runtime/os.hpp"
  32 #include "services/memTracker.hpp"
  33 #include "utilities/bitMap.inline.hpp"
  34 
  35 bool
  36 ParMarkBitMap::initialize(MemRegion covered_region)
  37 {
  38   const idx_t bits = bits_required(covered_region);
  39   // The bits will be divided evenly between two bitmaps; each of them should be
  40   // an integral number of words.
  41   assert(bits % (BitsPerWord * 2) == 0, "region size unaligned");
  42 
  43   const size_t words = bits / BitsPerWord;
  44   const size_t raw_bytes = words * sizeof(idx_t);
  45   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
  46   const size_t granularity = os::vm_allocation_granularity();
  47   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
  48 
  49   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
  50     MAX2(page_sz, granularity);
  51   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
  52   os::trace_page_sizes("par bitmap", raw_bytes, raw_bytes, page_sz,
  53                        rs.base(), rs.size());
  54 
  55   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  56 
  57   _virtual_space = new PSVirtualSpace(rs, page_sz);
  58   if (_virtual_space != NULL && _virtual_space->expand_by(_reserved_byte_size)) {
  59     _region_start = covered_region.start();
  60     _region_size = covered_region.word_size();
  61     BitMap::bm_word_t* map = (BitMap::bm_word_t*)_virtual_space->reserved_low_addr();
  62     _beg_bits.set_map(map);
  63     _beg_bits.set_size(bits / 2);
  64     _end_bits.set_map(map + words / 2);
  65     _end_bits.set_size(bits / 2);
  66     return true;
  67   }
  68 
  69   _region_start = 0;
  70   _region_size = 0;
  71   if (_virtual_space != NULL) {
  72     delete _virtual_space;
  73     _virtual_space = NULL;
  74     // Release memory reserved in the space.
  75     rs.release();
  76   }
  77   return false;
  78 }
  79 
  80 #ifdef ASSERT
  81 extern size_t mark_bitmap_count;
  82 extern size_t mark_bitmap_size;
  83 #endif  // #ifdef ASSERT
  84 
  85 bool
  86 ParMarkBitMap::mark_obj(HeapWord* addr, size_t size)
  87 {
  88   const idx_t beg_bit = addr_to_bit(addr);
  89   if (_beg_bits.par_set_bit(beg_bit)) {
  90     const idx_t end_bit = addr_to_bit(addr + size - 1);
  91     bool end_bit_ok = _end_bits.par_set_bit(end_bit);
  92     assert(end_bit_ok, "concurrency problem");
  93     DEBUG_ONLY(Atomic::inc_ptr(&mark_bitmap_count));
  94     DEBUG_ONLY(Atomic::add_ptr(size, &mark_bitmap_size));
  95     return true;
  96   }
  97   return false;
  98 }
  99 
 100 inline bool
 101 ParMarkBitMap::is_live_words_in_range_in_cache(ParCompactionManager* cm, HeapWord* beg_addr) const {
 102   return cm->last_query_begin() == beg_addr;
 103 }
 104 
 105 inline void
 106 ParMarkBitMap::update_live_words_in_range_cache(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj, size_t result) const {
 107   cm->set_last_query_begin(beg_addr);
 108   cm->set_last_query_object(end_obj);
 109   cm->set_last_query_return(result);
 110 }
 111 
 112 size_t
 113 ParMarkBitMap::live_words_in_range_helper(HeapWord* beg_addr, oop end_obj) const
 114 {
 115   assert(beg_addr <= (HeapWord*)end_obj, "bad range");
 116   assert(is_marked(end_obj), "end_obj must be live");
 117 
 118   idx_t live_bits = 0;
 119 
 120   // The bitmap routines require the right boundary to be word-aligned.
 121   const idx_t end_bit = addr_to_bit((HeapWord*)end_obj);
 122   const idx_t range_end = BitMap::word_align_up(end_bit);
 123 
 124   idx_t beg_bit = find_obj_beg(addr_to_bit(beg_addr), range_end);
 125   while (beg_bit < end_bit) {
 126     idx_t tmp_end = find_obj_end(beg_bit, range_end);
 127     assert(tmp_end < end_bit, "missing end bit");
 128     live_bits += tmp_end - beg_bit + 1;
 129     beg_bit = find_obj_beg(tmp_end + 1, range_end);
 130   }
 131   return bits_to_words(live_bits);
 132 }
 133 
 134 size_t
 135 ParMarkBitMap::live_words_in_range_use_cache(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj) const
 136 {
 137   HeapWord* last_beg = cm->last_query_begin();
 138   oop last_obj = cm->last_query_object();
 139   size_t last_ret = cm->last_query_return();
 140   if (end_obj > last_obj) {
 141     last_ret = last_ret + live_words_in_range_helper((HeapWord*)last_obj, end_obj);
 142     last_obj = end_obj;
 143   } else if (end_obj < last_obj) {
 144     // The cached value is for an object that is to the left (lower address) of the current
 145     // end_obj. Calculate back from that cached value.
 146     if (pointer_delta((HeapWord*)end_obj, (HeapWord*)beg_addr) > pointer_delta((HeapWord*)last_obj, (HeapWord*)end_obj)) {
 147       last_ret = last_ret - live_words_in_range_helper((HeapWord*)end_obj, last_obj);
 148     } else {
 149       last_ret = live_words_in_range_helper(beg_addr, end_obj);
 150     }
 151     last_obj = end_obj;
 152   }
 153 
 154   update_live_words_in_range_cache(cm, last_beg, last_obj, last_ret);
 155   return last_ret;
 156 }
 157 
 158 size_t
 159 ParMarkBitMap::live_words_in_range(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj) const
 160 {
 161   // Try to reuse result from ParCompactionManager cache first.
 162   if (is_live_words_in_range_in_cache(cm, beg_addr)) {
 163     return live_words_in_range_use_cache(cm, beg_addr, end_obj);
 164   }
 165   size_t ret = live_words_in_range_helper(beg_addr, end_obj);
 166   update_live_words_in_range_cache(cm, beg_addr, end_obj, ret);
 167   return ret;
 168 }
 169 
 170 ParMarkBitMap::IterationStatus
 171 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 172                        idx_t range_beg, idx_t range_end) const
 173 {
 174   DEBUG_ONLY(verify_bit(range_beg);)
 175   DEBUG_ONLY(verify_bit(range_end);)
 176   assert(range_beg <= range_end, "live range invalid");
 177 
 178   // The bitmap routines require the right boundary to be word-aligned.
 179   const idx_t search_end = BitMap::word_align_up(range_end);
 180 
 181   idx_t cur_beg = find_obj_beg(range_beg, search_end);
 182   while (cur_beg < range_end) {
 183     const idx_t cur_end = find_obj_end(cur_beg, search_end);
 184     if (cur_end >= range_end) {
 185       // The obj ends outside the range.
 186       live_closure->set_source(bit_to_addr(cur_beg));
 187       return incomplete;
 188     }
 189 
 190     const size_t size = obj_size(cur_beg, cur_end);
 191     IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size);
 192     if (status != incomplete) {
 193       assert(status == would_overflow || status == full, "sanity");
 194       return status;
 195     }
 196 
 197     // Successfully processed the object; look for the next object.
 198     cur_beg = find_obj_beg(cur_end + 1, search_end);
 199   }
 200 
 201   live_closure->set_source(bit_to_addr(range_end));
 202   return complete;
 203 }
 204 
 205 ParMarkBitMap::IterationStatus
 206 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 207                        ParMarkBitMapClosure* dead_closure,
 208                        idx_t range_beg, idx_t range_end,
 209                        idx_t dead_range_end) const
 210 {
 211   DEBUG_ONLY(verify_bit(range_beg);)
 212   DEBUG_ONLY(verify_bit(range_end);)
 213   DEBUG_ONLY(verify_bit(dead_range_end);)
 214   assert(range_beg <= range_end, "live range invalid");
 215   assert(range_end <= dead_range_end, "dead range invalid");
 216 
 217   // The bitmap routines require the right boundary to be word-aligned.
 218   const idx_t live_search_end = BitMap::word_align_up(range_end);
 219   const idx_t dead_search_end = BitMap::word_align_up(dead_range_end);
 220 
 221   idx_t cur_beg = range_beg;
 222   if (range_beg < range_end && is_unmarked(range_beg)) {
 223     // The range starts with dead space.  Look for the next object, then fill.
 224     cur_beg = find_obj_beg(range_beg + 1, dead_search_end);
 225     const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1);
 226     const size_t size = obj_size(range_beg, dead_space_end);
 227     dead_closure->do_addr(bit_to_addr(range_beg), size);
 228   }
 229 
 230   while (cur_beg < range_end) {
 231     const idx_t cur_end = find_obj_end(cur_beg, live_search_end);
 232     if (cur_end >= range_end) {
 233       // The obj ends outside the range.
 234       live_closure->set_source(bit_to_addr(cur_beg));
 235       return incomplete;
 236     }
 237 
 238     const size_t size = obj_size(cur_beg, cur_end);
 239     IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size);
 240     if (status != incomplete) {
 241       assert(status == would_overflow || status == full, "sanity");
 242       return status;
 243     }
 244 
 245     // Look for the start of the next object.
 246     const idx_t dead_space_beg = cur_end + 1;
 247     cur_beg = find_obj_beg(dead_space_beg, dead_search_end);
 248     if (cur_beg > dead_space_beg) {
 249       // Found dead space; compute the size and invoke the dead closure.
 250       const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1);
 251       const size_t size = obj_size(dead_space_beg, dead_space_end);
 252       dead_closure->do_addr(bit_to_addr(dead_space_beg), size);
 253     }
 254   }
 255 
 256   live_closure->set_source(bit_to_addr(range_end));
 257   return complete;
 258 }
 259 
 260 #ifdef ASSERT
 261 void ParMarkBitMap::verify_clear() const
 262 {
 263   const idx_t* const beg = (const idx_t*)_virtual_space->committed_low_addr();
 264   const idx_t* const end = (const idx_t*)_virtual_space->committed_high_addr();
 265   for (const idx_t* p = beg; p < end; ++p) {
 266     assert(*p == 0, "bitmap not clear");
 267   }
 268 }
 269 #endif  // #ifdef ASSERT