1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "mutex_windows.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "os_windows.inline.hpp"
  45 #include "prims/jniFastGetField.hpp"
  46 #include "prims/jvm.h"
  47 #include "prims/jvm_misc.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/extendedPC.hpp"
  51 #include "runtime/globals.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/mutexLocker.hpp"
  56 #include "runtime/objectMonitor.hpp"
  57 #include "runtime/orderAccess.inline.hpp"
  58 #include "runtime/osThread.hpp"
  59 #include "runtime/perfMemory.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/statSampler.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/thread.inline.hpp"
  64 #include "runtime/threadCritical.hpp"
  65 #include "runtime/timer.hpp"
  66 #include "runtime/vm_version.hpp"
  67 #include "semaphore_windows.hpp"
  68 #include "services/attachListener.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/growableArray.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/vmError.hpp"
  77 
  78 #ifdef _DEBUG
  79 #include <crtdbg.h>
  80 #endif
  81 
  82 
  83 #include <windows.h>
  84 #include <sys/types.h>
  85 #include <sys/stat.h>
  86 #include <sys/timeb.h>
  87 #include <objidl.h>
  88 #include <shlobj.h>
  89 
  90 #include <malloc.h>
  91 #include <signal.h>
  92 #include <direct.h>
  93 #include <errno.h>
  94 #include <fcntl.h>
  95 #include <io.h>
  96 #include <process.h>              // For _beginthreadex(), _endthreadex()
  97 #include <imagehlp.h>             // For os::dll_address_to_function_name
  98 // for enumerating dll libraries
  99 #include <vdmdbg.h>
 100 
 101 // for timer info max values which include all bits
 102 #define ALL_64_BITS CONST64(-1)
 103 
 104 // For DLL loading/load error detection
 105 // Values of PE COFF
 106 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 107 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 108 
 109 static HANDLE main_process;
 110 static HANDLE main_thread;
 111 static int    main_thread_id;
 112 
 113 static FILETIME process_creation_time;
 114 static FILETIME process_exit_time;
 115 static FILETIME process_user_time;
 116 static FILETIME process_kernel_time;
 117 
 118 #ifdef _M_IA64
 119   #define __CPU__ ia64
 120 #else
 121   #ifdef _M_AMD64
 122     #define __CPU__ amd64
 123   #else
 124     #define __CPU__ i486
 125   #endif
 126 #endif
 127 
 128 // save DLL module handle, used by GetModuleFileName
 129 
 130 HINSTANCE vm_lib_handle;
 131 
 132 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 133   switch (reason) {
 134   case DLL_PROCESS_ATTACH:
 135     vm_lib_handle = hinst;
 136     if (ForceTimeHighResolution) {
 137       timeBeginPeriod(1L);
 138     }
 139     break;
 140   case DLL_PROCESS_DETACH:
 141     if (ForceTimeHighResolution) {
 142       timeEndPeriod(1L);
 143     }
 144     break;
 145   default:
 146     break;
 147   }
 148   return true;
 149 }
 150 
 151 static inline double fileTimeAsDouble(FILETIME* time) {
 152   const double high  = (double) ((unsigned int) ~0);
 153   const double split = 10000000.0;
 154   double result = (time->dwLowDateTime / split) +
 155                    time->dwHighDateTime * (high/split);
 156   return result;
 157 }
 158 
 159 // Implementation of os
 160 
 161 bool os::unsetenv(const char* name) {
 162   assert(name != NULL, "Null pointer");
 163   return (SetEnvironmentVariable(name, NULL) == TRUE);
 164 }
 165 
 166 // No setuid programs under Windows.
 167 bool os::have_special_privileges() {
 168   return false;
 169 }
 170 
 171 
 172 // This method is  a periodic task to check for misbehaving JNI applications
 173 // under CheckJNI, we can add any periodic checks here.
 174 // For Windows at the moment does nothing
 175 void os::run_periodic_checks() {
 176   return;
 177 }
 178 
 179 // previous UnhandledExceptionFilter, if there is one
 180 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 181 
 182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 183 
 184 void os::init_system_properties_values() {
 185   // sysclasspath, java_home, dll_dir
 186   {
 187     char *home_path;
 188     char *dll_path;
 189     char *pslash;
 190     char *bin = "\\bin";
 191     char home_dir[MAX_PATH + 1];
 192     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 193 
 194     if (alt_home_dir != NULL)  {
 195       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 196       home_dir[MAX_PATH] = '\0';
 197     } else {
 198       os::jvm_path(home_dir, sizeof(home_dir));
 199       // Found the full path to jvm.dll.
 200       // Now cut the path to <java_home>/jre if we can.
 201       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 202       pslash = strrchr(home_dir, '\\');
 203       if (pslash != NULL) {
 204         *pslash = '\0';                   // get rid of \{client|server}
 205         pslash = strrchr(home_dir, '\\');
 206         if (pslash != NULL) {
 207           *pslash = '\0';                 // get rid of \bin
 208         }
 209       }
 210     }
 211 
 212     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 213     if (home_path == NULL) {
 214       return;
 215     }
 216     strcpy(home_path, home_dir);
 217     Arguments::set_java_home(home_path);
 218     FREE_C_HEAP_ARRAY(char, home_path);
 219 
 220     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 221                                 mtInternal);
 222     if (dll_path == NULL) {
 223       return;
 224     }
 225     strcpy(dll_path, home_dir);
 226     strcat(dll_path, bin);
 227     Arguments::set_dll_dir(dll_path);
 228     FREE_C_HEAP_ARRAY(char, dll_path);
 229 
 230     if (!set_boot_path('\\', ';')) {
 231       return;
 232     }
 233   }
 234 
 235 // library_path
 236 #define EXT_DIR "\\lib\\ext"
 237 #define BIN_DIR "\\bin"
 238 #define PACKAGE_DIR "\\Sun\\Java"
 239   {
 240     // Win32 library search order (See the documentation for LoadLibrary):
 241     //
 242     // 1. The directory from which application is loaded.
 243     // 2. The system wide Java Extensions directory (Java only)
 244     // 3. System directory (GetSystemDirectory)
 245     // 4. Windows directory (GetWindowsDirectory)
 246     // 5. The PATH environment variable
 247     // 6. The current directory
 248 
 249     char *library_path;
 250     char tmp[MAX_PATH];
 251     char *path_str = ::getenv("PATH");
 252 
 253     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 254                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 255 
 256     library_path[0] = '\0';
 257 
 258     GetModuleFileName(NULL, tmp, sizeof(tmp));
 259     *(strrchr(tmp, '\\')) = '\0';
 260     strcat(library_path, tmp);
 261 
 262     GetWindowsDirectory(tmp, sizeof(tmp));
 263     strcat(library_path, ";");
 264     strcat(library_path, tmp);
 265     strcat(library_path, PACKAGE_DIR BIN_DIR);
 266 
 267     GetSystemDirectory(tmp, sizeof(tmp));
 268     strcat(library_path, ";");
 269     strcat(library_path, tmp);
 270 
 271     GetWindowsDirectory(tmp, sizeof(tmp));
 272     strcat(library_path, ";");
 273     strcat(library_path, tmp);
 274 
 275     if (path_str) {
 276       strcat(library_path, ";");
 277       strcat(library_path, path_str);
 278     }
 279 
 280     strcat(library_path, ";.");
 281 
 282     Arguments::set_library_path(library_path);
 283     FREE_C_HEAP_ARRAY(char, library_path);
 284   }
 285 
 286   // Default extensions directory
 287   {
 288     char path[MAX_PATH];
 289     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 290     GetWindowsDirectory(path, MAX_PATH);
 291     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 292             path, PACKAGE_DIR, EXT_DIR);
 293     Arguments::set_ext_dirs(buf);
 294   }
 295   #undef EXT_DIR
 296   #undef BIN_DIR
 297   #undef PACKAGE_DIR
 298 
 299 #ifndef _WIN64
 300   // set our UnhandledExceptionFilter and save any previous one
 301   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 302 #endif
 303 
 304   // Done
 305   return;
 306 }
 307 
 308 void os::breakpoint() {
 309   DebugBreak();
 310 }
 311 
 312 // Invoked from the BREAKPOINT Macro
 313 extern "C" void breakpoint() {
 314   os::breakpoint();
 315 }
 316 
 317 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 318 // So far, this method is only used by Native Memory Tracking, which is
 319 // only supported on Windows XP or later.
 320 //
 321 int os::get_native_stack(address* stack, int frames, int toSkip) {
 322 #ifdef _NMT_NOINLINE_
 323   toSkip++;
 324 #endif
 325   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 326   for (int index = captured; index < frames; index ++) {
 327     stack[index] = NULL;
 328   }
 329   return captured;
 330 }
 331 
 332 
 333 // os::current_stack_base()
 334 //
 335 //   Returns the base of the stack, which is the stack's
 336 //   starting address.  This function must be called
 337 //   while running on the stack of the thread being queried.
 338 
 339 address os::current_stack_base() {
 340   MEMORY_BASIC_INFORMATION minfo;
 341   address stack_bottom;
 342   size_t stack_size;
 343 
 344   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 345   stack_bottom =  (address)minfo.AllocationBase;
 346   stack_size = minfo.RegionSize;
 347 
 348   // Add up the sizes of all the regions with the same
 349   // AllocationBase.
 350   while (1) {
 351     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 352     if (stack_bottom == (address)minfo.AllocationBase) {
 353       stack_size += minfo.RegionSize;
 354     } else {
 355       break;
 356     }
 357   }
 358 
 359 #ifdef _M_IA64
 360   // IA64 has memory and register stacks
 361   //
 362   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 363   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 364   // growing downwards, 2MB summed up)
 365   //
 366   // ...
 367   // ------- top of stack (high address) -----
 368   // |
 369   // |      1MB
 370   // |      Backing Store (Register Stack)
 371   // |
 372   // |         / \
 373   // |          |
 374   // |          |
 375   // |          |
 376   // ------------------------ stack base -----
 377   // |      1MB
 378   // |      Memory Stack
 379   // |
 380   // |          |
 381   // |          |
 382   // |          |
 383   // |         \ /
 384   // |
 385   // ----- bottom of stack (low address) -----
 386   // ...
 387 
 388   stack_size = stack_size / 2;
 389 #endif
 390   return stack_bottom + stack_size;
 391 }
 392 
 393 size_t os::current_stack_size() {
 394   size_t sz;
 395   MEMORY_BASIC_INFORMATION minfo;
 396   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 397   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 398   return sz;
 399 }
 400 
 401 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 402   const struct tm* time_struct_ptr = localtime(clock);
 403   if (time_struct_ptr != NULL) {
 404     *res = *time_struct_ptr;
 405     return res;
 406   }
 407   return NULL;
 408 }
 409 
 410 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 411 
 412 // Thread start routine for all new Java threads
 413 static unsigned __stdcall java_start(Thread* thread) {
 414   // Try to randomize the cache line index of hot stack frames.
 415   // This helps when threads of the same stack traces evict each other's
 416   // cache lines. The threads can be either from the same JVM instance, or
 417   // from different JVM instances. The benefit is especially true for
 418   // processors with hyperthreading technology.
 419   static int counter = 0;
 420   int pid = os::current_process_id();
 421   _alloca(((pid ^ counter++) & 7) * 128);
 422 
 423   thread->initialize_thread_current();
 424 
 425   OSThread* osthr = thread->osthread();
 426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 427 
 428   if (UseNUMA) {
 429     int lgrp_id = os::numa_get_group_id();
 430     if (lgrp_id != -1) {
 431       thread->set_lgrp_id(lgrp_id);
 432     }
 433   }
 434 
 435   // Diagnostic code to investigate JDK-6573254
 436   int res = 30115;  // non-java thread
 437   if (thread->is_Java_thread()) {
 438     res = 20115;    // java thread
 439   }
 440 
 441   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 442 
 443   // Install a win32 structured exception handler around every thread created
 444   // by VM, so VM can generate error dump when an exception occurred in non-
 445   // Java thread (e.g. VM thread).
 446   __try {
 447     thread->run();
 448   } __except(topLevelExceptionFilter(
 449                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 450     // Nothing to do.
 451   }
 452 
 453   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 454 
 455   // One less thread is executing
 456   // When the VMThread gets here, the main thread may have already exited
 457   // which frees the CodeHeap containing the Atomic::add code
 458   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 459     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 460   }
 461 
 462   // Thread must not return from exit_process_or_thread(), but if it does,
 463   // let it proceed to exit normally
 464   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 465 }
 466 
 467 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 468                                   int thread_id) {
 469   // Allocate the OSThread object
 470   OSThread* osthread = new OSThread(NULL, NULL);
 471   if (osthread == NULL) return NULL;
 472 
 473   // Initialize support for Java interrupts
 474   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 475   if (interrupt_event == NULL) {
 476     delete osthread;
 477     return NULL;
 478   }
 479   osthread->set_interrupt_event(interrupt_event);
 480 
 481   // Store info on the Win32 thread into the OSThread
 482   osthread->set_thread_handle(thread_handle);
 483   osthread->set_thread_id(thread_id);
 484 
 485   if (UseNUMA) {
 486     int lgrp_id = os::numa_get_group_id();
 487     if (lgrp_id != -1) {
 488       thread->set_lgrp_id(lgrp_id);
 489     }
 490   }
 491 
 492   // Initial thread state is INITIALIZED, not SUSPENDED
 493   osthread->set_state(INITIALIZED);
 494 
 495   return osthread;
 496 }
 497 
 498 
 499 bool os::create_attached_thread(JavaThread* thread) {
 500 #ifdef ASSERT
 501   thread->verify_not_published();
 502 #endif
 503   HANDLE thread_h;
 504   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 505                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 506     fatal("DuplicateHandle failed\n");
 507   }
 508   OSThread* osthread = create_os_thread(thread, thread_h,
 509                                         (int)current_thread_id());
 510   if (osthread == NULL) {
 511     return false;
 512   }
 513 
 514   // Initial thread state is RUNNABLE
 515   osthread->set_state(RUNNABLE);
 516 
 517   thread->set_osthread(osthread);
 518 
 519   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 520     os::current_thread_id());
 521 
 522   return true;
 523 }
 524 
 525 bool os::create_main_thread(JavaThread* thread) {
 526 #ifdef ASSERT
 527   thread->verify_not_published();
 528 #endif
 529   if (_starting_thread == NULL) {
 530     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 531     if (_starting_thread == NULL) {
 532       return false;
 533     }
 534   }
 535 
 536   // The primordial thread is runnable from the start)
 537   _starting_thread->set_state(RUNNABLE);
 538 
 539   thread->set_osthread(_starting_thread);
 540   return true;
 541 }
 542 
 543 // Helper function to trace _beginthreadex attributes,
 544 //  similar to os::Posix::describe_pthread_attr()
 545 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 546                                                size_t stacksize, unsigned initflag) {
 547   stringStream ss(buf, buflen);
 548   if (stacksize == 0) {
 549     ss.print("stacksize: default, ");
 550   } else {
 551     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 552   }
 553   ss.print("flags: ");
 554   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 555   #define ALL(X) \
 556     X(CREATE_SUSPENDED) \
 557     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 558   ALL(PRINT_FLAG)
 559   #undef ALL
 560   #undef PRINT_FLAG
 561   return buf;
 562 }
 563 
 564 // Allocate and initialize a new OSThread
 565 bool os::create_thread(Thread* thread, ThreadType thr_type,
 566                        size_t stack_size) {
 567   unsigned thread_id;
 568 
 569   // Allocate the OSThread object
 570   OSThread* osthread = new OSThread(NULL, NULL);
 571   if (osthread == NULL) {
 572     return false;
 573   }
 574 
 575   // Initialize support for Java interrupts
 576   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 577   if (interrupt_event == NULL) {
 578     delete osthread;
 579     return NULL;
 580   }
 581   osthread->set_interrupt_event(interrupt_event);
 582   osthread->set_interrupted(false);
 583 
 584   thread->set_osthread(osthread);
 585 
 586   if (stack_size == 0) {
 587     switch (thr_type) {
 588     case os::java_thread:
 589       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 590       if (JavaThread::stack_size_at_create() > 0) {
 591         stack_size = JavaThread::stack_size_at_create();
 592       }
 593       break;
 594     case os::compiler_thread:
 595       if (CompilerThreadStackSize > 0) {
 596         stack_size = (size_t)(CompilerThreadStackSize * K);
 597         break;
 598       } // else fall through:
 599         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 600     case os::vm_thread:
 601     case os::pgc_thread:
 602     case os::cgc_thread:
 603     case os::watcher_thread:
 604       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 605       break;
 606     }
 607   }
 608 
 609   // Create the Win32 thread
 610   //
 611   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 612   // does not specify stack size. Instead, it specifies the size of
 613   // initially committed space. The stack size is determined by
 614   // PE header in the executable. If the committed "stack_size" is larger
 615   // than default value in the PE header, the stack is rounded up to the
 616   // nearest multiple of 1MB. For example if the launcher has default
 617   // stack size of 320k, specifying any size less than 320k does not
 618   // affect the actual stack size at all, it only affects the initial
 619   // commitment. On the other hand, specifying 'stack_size' larger than
 620   // default value may cause significant increase in memory usage, because
 621   // not only the stack space will be rounded up to MB, but also the
 622   // entire space is committed upfront.
 623   //
 624   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 625   // for CreateThread() that can treat 'stack_size' as stack size. However we
 626   // are not supposed to call CreateThread() directly according to MSDN
 627   // document because JVM uses C runtime library. The good news is that the
 628   // flag appears to work with _beginthredex() as well.
 629 
 630   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 631   HANDLE thread_handle =
 632     (HANDLE)_beginthreadex(NULL,
 633                            (unsigned)stack_size,
 634                            (unsigned (__stdcall *)(void*)) java_start,
 635                            thread,
 636                            initflag,
 637                            &thread_id);
 638 
 639   char buf[64];
 640   if (thread_handle != NULL) {
 641     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 642       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 643   } else {
 644     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 645       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 646   }
 647 
 648   if (thread_handle == NULL) {
 649     // Need to clean up stuff we've allocated so far
 650     CloseHandle(osthread->interrupt_event());
 651     thread->set_osthread(NULL);
 652     delete osthread;
 653     return NULL;
 654   }
 655 
 656   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 657 
 658   // Store info on the Win32 thread into the OSThread
 659   osthread->set_thread_handle(thread_handle);
 660   osthread->set_thread_id(thread_id);
 661 
 662   // Initial thread state is INITIALIZED, not SUSPENDED
 663   osthread->set_state(INITIALIZED);
 664 
 665   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 666   return true;
 667 }
 668 
 669 
 670 // Free Win32 resources related to the OSThread
 671 void os::free_thread(OSThread* osthread) {
 672   assert(osthread != NULL, "osthread not set");
 673   CloseHandle(osthread->thread_handle());
 674   CloseHandle(osthread->interrupt_event());
 675   delete osthread;
 676 }
 677 
 678 static jlong first_filetime;
 679 static jlong initial_performance_count;
 680 static jlong performance_frequency;
 681 
 682 
 683 jlong as_long(LARGE_INTEGER x) {
 684   jlong result = 0; // initialization to avoid warning
 685   set_high(&result, x.HighPart);
 686   set_low(&result, x.LowPart);
 687   return result;
 688 }
 689 
 690 
 691 jlong os::elapsed_counter() {
 692   LARGE_INTEGER count;
 693   QueryPerformanceCounter(&count);
 694   return as_long(count) - initial_performance_count;
 695 }
 696 
 697 
 698 jlong os::elapsed_frequency() {
 699   return performance_frequency;
 700 }
 701 
 702 
 703 julong os::available_memory() {
 704   return win32::available_memory();
 705 }
 706 
 707 julong os::win32::available_memory() {
 708   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 709   // value if total memory is larger than 4GB
 710   MEMORYSTATUSEX ms;
 711   ms.dwLength = sizeof(ms);
 712   GlobalMemoryStatusEx(&ms);
 713 
 714   return (julong)ms.ullAvailPhys;
 715 }
 716 
 717 julong os::physical_memory() {
 718   return win32::physical_memory();
 719 }
 720 
 721 bool os::has_allocatable_memory_limit(julong* limit) {
 722   MEMORYSTATUSEX ms;
 723   ms.dwLength = sizeof(ms);
 724   GlobalMemoryStatusEx(&ms);
 725 #ifdef _LP64
 726   *limit = (julong)ms.ullAvailVirtual;
 727   return true;
 728 #else
 729   // Limit to 1400m because of the 2gb address space wall
 730   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 731   return true;
 732 #endif
 733 }
 734 
 735 int os::active_processor_count() {
 736   DWORD_PTR lpProcessAffinityMask = 0;
 737   DWORD_PTR lpSystemAffinityMask = 0;
 738   int proc_count = processor_count();
 739   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 740       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 741     // Nof active processors is number of bits in process affinity mask
 742     int bitcount = 0;
 743     while (lpProcessAffinityMask != 0) {
 744       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 745       bitcount++;
 746     }
 747     return bitcount;
 748   } else {
 749     return proc_count;
 750   }
 751 }
 752 
 753 void os::set_native_thread_name(const char *name) {
 754 
 755   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 756   //
 757   // Note that unfortunately this only works if the process
 758   // is already attached to a debugger; debugger must observe
 759   // the exception below to show the correct name.
 760 
 761   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 762   struct {
 763     DWORD dwType;     // must be 0x1000
 764     LPCSTR szName;    // pointer to name (in user addr space)
 765     DWORD dwThreadID; // thread ID (-1=caller thread)
 766     DWORD dwFlags;    // reserved for future use, must be zero
 767   } info;
 768 
 769   info.dwType = 0x1000;
 770   info.szName = name;
 771   info.dwThreadID = -1;
 772   info.dwFlags = 0;
 773 
 774   __try {
 775     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 776   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 777 }
 778 
 779 bool os::distribute_processes(uint length, uint* distribution) {
 780   // Not yet implemented.
 781   return false;
 782 }
 783 
 784 bool os::bind_to_processor(uint processor_id) {
 785   // Not yet implemented.
 786   return false;
 787 }
 788 
 789 void os::win32::initialize_performance_counter() {
 790   LARGE_INTEGER count;
 791   QueryPerformanceFrequency(&count);
 792   performance_frequency = as_long(count);
 793   QueryPerformanceCounter(&count);
 794   initial_performance_count = as_long(count);
 795 }
 796 
 797 
 798 double os::elapsedTime() {
 799   return (double) elapsed_counter() / (double) elapsed_frequency();
 800 }
 801 
 802 
 803 // Windows format:
 804 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 805 // Java format:
 806 //   Java standards require the number of milliseconds since 1/1/1970
 807 
 808 // Constant offset - calculated using offset()
 809 static jlong  _offset   = 116444736000000000;
 810 // Fake time counter for reproducible results when debugging
 811 static jlong  fake_time = 0;
 812 
 813 #ifdef ASSERT
 814 // Just to be safe, recalculate the offset in debug mode
 815 static jlong _calculated_offset = 0;
 816 static int   _has_calculated_offset = 0;
 817 
 818 jlong offset() {
 819   if (_has_calculated_offset) return _calculated_offset;
 820   SYSTEMTIME java_origin;
 821   java_origin.wYear          = 1970;
 822   java_origin.wMonth         = 1;
 823   java_origin.wDayOfWeek     = 0; // ignored
 824   java_origin.wDay           = 1;
 825   java_origin.wHour          = 0;
 826   java_origin.wMinute        = 0;
 827   java_origin.wSecond        = 0;
 828   java_origin.wMilliseconds  = 0;
 829   FILETIME jot;
 830   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 831     fatal("Error = %d\nWindows error", GetLastError());
 832   }
 833   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 834   _has_calculated_offset = 1;
 835   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 836   return _calculated_offset;
 837 }
 838 #else
 839 jlong offset() {
 840   return _offset;
 841 }
 842 #endif
 843 
 844 jlong windows_to_java_time(FILETIME wt) {
 845   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 846   return (a - offset()) / 10000;
 847 }
 848 
 849 // Returns time ticks in (10th of micro seconds)
 850 jlong windows_to_time_ticks(FILETIME wt) {
 851   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 852   return (a - offset());
 853 }
 854 
 855 FILETIME java_to_windows_time(jlong l) {
 856   jlong a = (l * 10000) + offset();
 857   FILETIME result;
 858   result.dwHighDateTime = high(a);
 859   result.dwLowDateTime  = low(a);
 860   return result;
 861 }
 862 
 863 bool os::supports_vtime() { return true; }
 864 bool os::enable_vtime() { return false; }
 865 bool os::vtime_enabled() { return false; }
 866 
 867 double os::elapsedVTime() {
 868   FILETIME created;
 869   FILETIME exited;
 870   FILETIME kernel;
 871   FILETIME user;
 872   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 873     // the resolution of windows_to_java_time() should be sufficient (ms)
 874     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 875   } else {
 876     return elapsedTime();
 877   }
 878 }
 879 
 880 jlong os::javaTimeMillis() {
 881   if (UseFakeTimers) {
 882     return fake_time++;
 883   } else {
 884     FILETIME wt;
 885     GetSystemTimeAsFileTime(&wt);
 886     return windows_to_java_time(wt);
 887   }
 888 }
 889 
 890 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 891   FILETIME wt;
 892   GetSystemTimeAsFileTime(&wt);
 893   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 894   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 895   seconds = secs;
 896   nanos = jlong(ticks - (secs*10000000)) * 100;
 897 }
 898 
 899 jlong os::javaTimeNanos() {
 900     LARGE_INTEGER current_count;
 901     QueryPerformanceCounter(&current_count);
 902     double current = as_long(current_count);
 903     double freq = performance_frequency;
 904     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 905     return time;
 906 }
 907 
 908 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 909   jlong freq = performance_frequency;
 910   if (freq < NANOSECS_PER_SEC) {
 911     // the performance counter is 64 bits and we will
 912     // be multiplying it -- so no wrap in 64 bits
 913     info_ptr->max_value = ALL_64_BITS;
 914   } else if (freq > NANOSECS_PER_SEC) {
 915     // use the max value the counter can reach to
 916     // determine the max value which could be returned
 917     julong max_counter = (julong)ALL_64_BITS;
 918     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 919   } else {
 920     // the performance counter is 64 bits and we will
 921     // be using it directly -- so no wrap in 64 bits
 922     info_ptr->max_value = ALL_64_BITS;
 923   }
 924 
 925   // using a counter, so no skipping
 926   info_ptr->may_skip_backward = false;
 927   info_ptr->may_skip_forward = false;
 928 
 929   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 930 }
 931 
 932 char* os::local_time_string(char *buf, size_t buflen) {
 933   SYSTEMTIME st;
 934   GetLocalTime(&st);
 935   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 936                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 937   return buf;
 938 }
 939 
 940 bool os::getTimesSecs(double* process_real_time,
 941                       double* process_user_time,
 942                       double* process_system_time) {
 943   HANDLE h_process = GetCurrentProcess();
 944   FILETIME create_time, exit_time, kernel_time, user_time;
 945   BOOL result = GetProcessTimes(h_process,
 946                                 &create_time,
 947                                 &exit_time,
 948                                 &kernel_time,
 949                                 &user_time);
 950   if (result != 0) {
 951     FILETIME wt;
 952     GetSystemTimeAsFileTime(&wt);
 953     jlong rtc_millis = windows_to_java_time(wt);
 954     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 955     *process_user_time =
 956       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 957     *process_system_time =
 958       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 959     return true;
 960   } else {
 961     return false;
 962   }
 963 }
 964 
 965 void os::shutdown() {
 966   // allow PerfMemory to attempt cleanup of any persistent resources
 967   perfMemory_exit();
 968 
 969   // flush buffered output, finish log files
 970   ostream_abort();
 971 
 972   // Check for abort hook
 973   abort_hook_t abort_hook = Arguments::abort_hook();
 974   if (abort_hook != NULL) {
 975     abort_hook();
 976   }
 977 }
 978 
 979 
 980 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 981                                          PMINIDUMP_EXCEPTION_INFORMATION,
 982                                          PMINIDUMP_USER_STREAM_INFORMATION,
 983                                          PMINIDUMP_CALLBACK_INFORMATION);
 984 
 985 static HANDLE dumpFile = NULL;
 986 
 987 // Check if dump file can be created.
 988 void os::check_dump_limit(char* buffer, size_t buffsz) {
 989   bool status = true;
 990   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 991     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
 992     status = false;
 993   }
 994 
 995 #ifndef ASSERT
 996   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
 997     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
 998     status = false;
 999   }
1000 #endif
1001 
1002   if (status) {
1003     const char* cwd = get_current_directory(NULL, 0);
1004     int pid = current_process_id();
1005     if (cwd != NULL) {
1006       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1007     } else {
1008       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1009     }
1010 
1011     if (dumpFile == NULL &&
1012        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1013                  == INVALID_HANDLE_VALUE) {
1014       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1015       status = false;
1016     }
1017   }
1018   VMError::record_coredump_status(buffer, status);
1019 }
1020 
1021 void os::abort(bool dump_core, void* siginfo, const void* context) {
1022   HINSTANCE dbghelp;
1023   EXCEPTION_POINTERS ep;
1024   MINIDUMP_EXCEPTION_INFORMATION mei;
1025   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1026 
1027   HANDLE hProcess = GetCurrentProcess();
1028   DWORD processId = GetCurrentProcessId();
1029   MINIDUMP_TYPE dumpType;
1030 
1031   shutdown();
1032   if (!dump_core || dumpFile == NULL) {
1033     if (dumpFile != NULL) {
1034       CloseHandle(dumpFile);
1035     }
1036     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1037   }
1038 
1039   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1040 
1041   if (dbghelp == NULL) {
1042     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1043     CloseHandle(dumpFile);
1044     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045   }
1046 
1047   _MiniDumpWriteDump =
1048       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1049                                     PMINIDUMP_EXCEPTION_INFORMATION,
1050                                     PMINIDUMP_USER_STREAM_INFORMATION,
1051                                     PMINIDUMP_CALLBACK_INFORMATION),
1052                                     GetProcAddress(dbghelp,
1053                                     "MiniDumpWriteDump"));
1054 
1055   if (_MiniDumpWriteDump == NULL) {
1056     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1057     CloseHandle(dumpFile);
1058     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1059   }
1060 
1061   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1062     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1063 
1064   if (siginfo != NULL && context != NULL) {
1065     ep.ContextRecord = (PCONTEXT) context;
1066     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1067 
1068     mei.ThreadId = GetCurrentThreadId();
1069     mei.ExceptionPointers = &ep;
1070     pmei = &mei;
1071   } else {
1072     pmei = NULL;
1073   }
1074 
1075   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1076   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1077   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1078       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1079     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1080   }
1081   CloseHandle(dumpFile);
1082   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1083 }
1084 
1085 // Die immediately, no exit hook, no abort hook, no cleanup.
1086 void os::die() {
1087   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1088 }
1089 
1090 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1091 //  * dirent_md.c       1.15 00/02/02
1092 //
1093 // The declarations for DIR and struct dirent are in jvm_win32.h.
1094 
1095 // Caller must have already run dirname through JVM_NativePath, which removes
1096 // duplicate slashes and converts all instances of '/' into '\\'.
1097 
1098 DIR * os::opendir(const char *dirname) {
1099   assert(dirname != NULL, "just checking");   // hotspot change
1100   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1101   DWORD fattr;                                // hotspot change
1102   char alt_dirname[4] = { 0, 0, 0, 0 };
1103 
1104   if (dirp == 0) {
1105     errno = ENOMEM;
1106     return 0;
1107   }
1108 
1109   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1110   // as a directory in FindFirstFile().  We detect this case here and
1111   // prepend the current drive name.
1112   //
1113   if (dirname[1] == '\0' && dirname[0] == '\\') {
1114     alt_dirname[0] = _getdrive() + 'A' - 1;
1115     alt_dirname[1] = ':';
1116     alt_dirname[2] = '\\';
1117     alt_dirname[3] = '\0';
1118     dirname = alt_dirname;
1119   }
1120 
1121   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1122   if (dirp->path == 0) {
1123     free(dirp);
1124     errno = ENOMEM;
1125     return 0;
1126   }
1127   strcpy(dirp->path, dirname);
1128 
1129   fattr = GetFileAttributes(dirp->path);
1130   if (fattr == 0xffffffff) {
1131     free(dirp->path);
1132     free(dirp);
1133     errno = ENOENT;
1134     return 0;
1135   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1136     free(dirp->path);
1137     free(dirp);
1138     errno = ENOTDIR;
1139     return 0;
1140   }
1141 
1142   // Append "*.*", or possibly "\\*.*", to path
1143   if (dirp->path[1] == ':' &&
1144       (dirp->path[2] == '\0' ||
1145       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1146     // No '\\' needed for cases like "Z:" or "Z:\"
1147     strcat(dirp->path, "*.*");
1148   } else {
1149     strcat(dirp->path, "\\*.*");
1150   }
1151 
1152   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1153   if (dirp->handle == INVALID_HANDLE_VALUE) {
1154     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1155       free(dirp->path);
1156       free(dirp);
1157       errno = EACCES;
1158       return 0;
1159     }
1160   }
1161   return dirp;
1162 }
1163 
1164 // parameter dbuf unused on Windows
1165 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1166   assert(dirp != NULL, "just checking");      // hotspot change
1167   if (dirp->handle == INVALID_HANDLE_VALUE) {
1168     return 0;
1169   }
1170 
1171   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1172 
1173   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1174     if (GetLastError() == ERROR_INVALID_HANDLE) {
1175       errno = EBADF;
1176       return 0;
1177     }
1178     FindClose(dirp->handle);
1179     dirp->handle = INVALID_HANDLE_VALUE;
1180   }
1181 
1182   return &dirp->dirent;
1183 }
1184 
1185 int os::closedir(DIR *dirp) {
1186   assert(dirp != NULL, "just checking");      // hotspot change
1187   if (dirp->handle != INVALID_HANDLE_VALUE) {
1188     if (!FindClose(dirp->handle)) {
1189       errno = EBADF;
1190       return -1;
1191     }
1192     dirp->handle = INVALID_HANDLE_VALUE;
1193   }
1194   free(dirp->path);
1195   free(dirp);
1196   return 0;
1197 }
1198 
1199 // This must be hard coded because it's the system's temporary
1200 // directory not the java application's temp directory, ala java.io.tmpdir.
1201 const char* os::get_temp_directory() {
1202   static char path_buf[MAX_PATH];
1203   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1204     return path_buf;
1205   } else {
1206     path_buf[0] = '\0';
1207     return path_buf;
1208   }
1209 }
1210 
1211 static bool file_exists(const char* filename) {
1212   if (filename == NULL || strlen(filename) == 0) {
1213     return false;
1214   }
1215   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1216 }
1217 
1218 bool os::dll_build_name(char *buffer, size_t buflen,
1219                         const char* pname, const char* fname) {
1220   bool retval = false;
1221   const size_t pnamelen = pname ? strlen(pname) : 0;
1222   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1223 
1224   // Return error on buffer overflow.
1225   if (pnamelen + strlen(fname) + 10 > buflen) {
1226     return retval;
1227   }
1228 
1229   if (pnamelen == 0) {
1230     jio_snprintf(buffer, buflen, "%s.dll", fname);
1231     retval = true;
1232   } else if (c == ':' || c == '\\') {
1233     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1234     retval = true;
1235   } else if (strchr(pname, *os::path_separator()) != NULL) {
1236     int n;
1237     char** pelements = split_path(pname, &n);
1238     if (pelements == NULL) {
1239       return false;
1240     }
1241     for (int i = 0; i < n; i++) {
1242       char* path = pelements[i];
1243       // Really shouldn't be NULL, but check can't hurt
1244       size_t plen = (path == NULL) ? 0 : strlen(path);
1245       if (plen == 0) {
1246         continue; // skip the empty path values
1247       }
1248       const char lastchar = path[plen - 1];
1249       if (lastchar == ':' || lastchar == '\\') {
1250         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1251       } else {
1252         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1253       }
1254       if (file_exists(buffer)) {
1255         retval = true;
1256         break;
1257       }
1258     }
1259     // release the storage
1260     for (int i = 0; i < n; i++) {
1261       if (pelements[i] != NULL) {
1262         FREE_C_HEAP_ARRAY(char, pelements[i]);
1263       }
1264     }
1265     if (pelements != NULL) {
1266       FREE_C_HEAP_ARRAY(char*, pelements);
1267     }
1268   } else {
1269     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1270     retval = true;
1271   }
1272   return retval;
1273 }
1274 
1275 // Needs to be in os specific directory because windows requires another
1276 // header file <direct.h>
1277 const char* os::get_current_directory(char *buf, size_t buflen) {
1278   int n = static_cast<int>(buflen);
1279   if (buflen > INT_MAX)  n = INT_MAX;
1280   return _getcwd(buf, n);
1281 }
1282 
1283 //-----------------------------------------------------------
1284 // Helper functions for fatal error handler
1285 #ifdef _WIN64
1286 // Helper routine which returns true if address in
1287 // within the NTDLL address space.
1288 //
1289 static bool _addr_in_ntdll(address addr) {
1290   HMODULE hmod;
1291   MODULEINFO minfo;
1292 
1293   hmod = GetModuleHandle("NTDLL.DLL");
1294   if (hmod == NULL) return false;
1295   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1296                                           &minfo, sizeof(MODULEINFO))) {
1297     return false;
1298   }
1299 
1300   if ((addr >= minfo.lpBaseOfDll) &&
1301       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1302     return true;
1303   } else {
1304     return false;
1305   }
1306 }
1307 #endif
1308 
1309 struct _modinfo {
1310   address addr;
1311   char*   full_path;   // point to a char buffer
1312   int     buflen;      // size of the buffer
1313   address base_addr;
1314 };
1315 
1316 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1317                                   address top_address, void * param) {
1318   struct _modinfo *pmod = (struct _modinfo *)param;
1319   if (!pmod) return -1;
1320 
1321   if (base_addr   <= pmod->addr &&
1322       top_address > pmod->addr) {
1323     // if a buffer is provided, copy path name to the buffer
1324     if (pmod->full_path) {
1325       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1326     }
1327     pmod->base_addr = base_addr;
1328     return 1;
1329   }
1330   return 0;
1331 }
1332 
1333 bool os::dll_address_to_library_name(address addr, char* buf,
1334                                      int buflen, int* offset) {
1335   // buf is not optional, but offset is optional
1336   assert(buf != NULL, "sanity check");
1337 
1338 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1339 //       return the full path to the DLL file, sometimes it returns path
1340 //       to the corresponding PDB file (debug info); sometimes it only
1341 //       returns partial path, which makes life painful.
1342 
1343   struct _modinfo mi;
1344   mi.addr      = addr;
1345   mi.full_path = buf;
1346   mi.buflen    = buflen;
1347   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1348     // buf already contains path name
1349     if (offset) *offset = addr - mi.base_addr;
1350     return true;
1351   }
1352 
1353   buf[0] = '\0';
1354   if (offset) *offset = -1;
1355   return false;
1356 }
1357 
1358 bool os::dll_address_to_function_name(address addr, char *buf,
1359                                       int buflen, int *offset,
1360                                       bool demangle) {
1361   // buf is not optional, but offset is optional
1362   assert(buf != NULL, "sanity check");
1363 
1364   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1365     return true;
1366   }
1367   if (offset != NULL)  *offset  = -1;
1368   buf[0] = '\0';
1369   return false;
1370 }
1371 
1372 // save the start and end address of jvm.dll into param[0] and param[1]
1373 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1374                            address top_address, void * param) {
1375   if (!param) return -1;
1376 
1377   if (base_addr   <= (address)_locate_jvm_dll &&
1378       top_address > (address)_locate_jvm_dll) {
1379     ((address*)param)[0] = base_addr;
1380     ((address*)param)[1] = top_address;
1381     return 1;
1382   }
1383   return 0;
1384 }
1385 
1386 address vm_lib_location[2];    // start and end address of jvm.dll
1387 
1388 // check if addr is inside jvm.dll
1389 bool os::address_is_in_vm(address addr) {
1390   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1391     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1392       assert(false, "Can't find jvm module.");
1393       return false;
1394     }
1395   }
1396 
1397   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1398 }
1399 
1400 // print module info; param is outputStream*
1401 static int _print_module(const char* fname, address base_address,
1402                          address top_address, void* param) {
1403   if (!param) return -1;
1404 
1405   outputStream* st = (outputStream*)param;
1406 
1407   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1408   return 0;
1409 }
1410 
1411 // Loads .dll/.so and
1412 // in case of error it checks if .dll/.so was built for the
1413 // same architecture as Hotspot is running on
1414 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1415   void * result = LoadLibrary(name);
1416   if (result != NULL) {
1417     return result;
1418   }
1419 
1420   DWORD errcode = GetLastError();
1421   if (errcode == ERROR_MOD_NOT_FOUND) {
1422     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1423     ebuf[ebuflen - 1] = '\0';
1424     return NULL;
1425   }
1426 
1427   // Parsing dll below
1428   // If we can read dll-info and find that dll was built
1429   // for an architecture other than Hotspot is running in
1430   // - then print to buffer "DLL was built for a different architecture"
1431   // else call os::lasterror to obtain system error message
1432 
1433   // Read system error message into ebuf
1434   // It may or may not be overwritten below (in the for loop and just above)
1435   lasterror(ebuf, (size_t) ebuflen);
1436   ebuf[ebuflen - 1] = '\0';
1437   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1438   if (fd < 0) {
1439     return NULL;
1440   }
1441 
1442   uint32_t signature_offset;
1443   uint16_t lib_arch = 0;
1444   bool failed_to_get_lib_arch =
1445     ( // Go to position 3c in the dll
1446      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1447      ||
1448      // Read location of signature
1449      (sizeof(signature_offset) !=
1450      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1451      ||
1452      // Go to COFF File Header in dll
1453      // that is located after "signature" (4 bytes long)
1454      (os::seek_to_file_offset(fd,
1455      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1456      ||
1457      // Read field that contains code of architecture
1458      // that dll was built for
1459      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1460     );
1461 
1462   ::close(fd);
1463   if (failed_to_get_lib_arch) {
1464     // file i/o error - report os::lasterror(...) msg
1465     return NULL;
1466   }
1467 
1468   typedef struct {
1469     uint16_t arch_code;
1470     char* arch_name;
1471   } arch_t;
1472 
1473   static const arch_t arch_array[] = {
1474     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1475     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1476     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1477   };
1478 #if   (defined _M_IA64)
1479   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1480 #elif (defined _M_AMD64)
1481   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1482 #elif (defined _M_IX86)
1483   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1484 #else
1485   #error Method os::dll_load requires that one of following \
1486          is defined :_M_IA64,_M_AMD64 or _M_IX86
1487 #endif
1488 
1489 
1490   // Obtain a string for printf operation
1491   // lib_arch_str shall contain string what platform this .dll was built for
1492   // running_arch_str shall string contain what platform Hotspot was built for
1493   char *running_arch_str = NULL, *lib_arch_str = NULL;
1494   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1495     if (lib_arch == arch_array[i].arch_code) {
1496       lib_arch_str = arch_array[i].arch_name;
1497     }
1498     if (running_arch == arch_array[i].arch_code) {
1499       running_arch_str = arch_array[i].arch_name;
1500     }
1501   }
1502 
1503   assert(running_arch_str,
1504          "Didn't find running architecture code in arch_array");
1505 
1506   // If the architecture is right
1507   // but some other error took place - report os::lasterror(...) msg
1508   if (lib_arch == running_arch) {
1509     return NULL;
1510   }
1511 
1512   if (lib_arch_str != NULL) {
1513     ::_snprintf(ebuf, ebuflen - 1,
1514                 "Can't load %s-bit .dll on a %s-bit platform",
1515                 lib_arch_str, running_arch_str);
1516   } else {
1517     // don't know what architecture this dll was build for
1518     ::_snprintf(ebuf, ebuflen - 1,
1519                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1520                 lib_arch, running_arch_str);
1521   }
1522 
1523   return NULL;
1524 }
1525 
1526 void os::print_dll_info(outputStream *st) {
1527   st->print_cr("Dynamic libraries:");
1528   get_loaded_modules_info(_print_module, (void *)st);
1529 }
1530 
1531 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1532   HANDLE   hProcess;
1533 
1534 # define MAX_NUM_MODULES 128
1535   HMODULE     modules[MAX_NUM_MODULES];
1536   static char filename[MAX_PATH];
1537   int         result = 0;
1538 
1539   int pid = os::current_process_id();
1540   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1541                          FALSE, pid);
1542   if (hProcess == NULL) return 0;
1543 
1544   DWORD size_needed;
1545   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1546     CloseHandle(hProcess);
1547     return 0;
1548   }
1549 
1550   // number of modules that are currently loaded
1551   int num_modules = size_needed / sizeof(HMODULE);
1552 
1553   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1554     // Get Full pathname:
1555     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1556       filename[0] = '\0';
1557     }
1558 
1559     MODULEINFO modinfo;
1560     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1561       modinfo.lpBaseOfDll = NULL;
1562       modinfo.SizeOfImage = 0;
1563     }
1564 
1565     // Invoke callback function
1566     result = callback(filename, (address)modinfo.lpBaseOfDll,
1567                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1568     if (result) break;
1569   }
1570 
1571   CloseHandle(hProcess);
1572   return result;
1573 }
1574 
1575 bool os::get_host_name(char* buf, size_t buflen) {
1576   DWORD size = (DWORD)buflen;
1577   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1578 }
1579 
1580 void os::get_summary_os_info(char* buf, size_t buflen) {
1581   stringStream sst(buf, buflen);
1582   os::win32::print_windows_version(&sst);
1583   // chop off newline character
1584   char* nl = strchr(buf, '\n');
1585   if (nl != NULL) *nl = '\0';
1586 }
1587 
1588 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1589   int ret = vsnprintf(buf, len, fmt, args);
1590   // Get the correct buffer size if buf is too small
1591   if (ret < 0) {
1592     return _vscprintf(fmt, args);
1593   }
1594   return ret;
1595 }
1596 
1597 void os::print_os_info_brief(outputStream* st) {
1598   os::print_os_info(st);
1599 }
1600 
1601 void os::print_os_info(outputStream* st) {
1602 #ifdef ASSERT
1603   char buffer[1024];
1604   st->print("HostName: ");
1605   if (get_host_name(buffer, sizeof(buffer))) {
1606     st->print("%s ", buffer);
1607   } else {
1608     st->print("N/A ");
1609   }
1610 #endif
1611   st->print("OS:");
1612   os::win32::print_windows_version(st);
1613 }
1614 
1615 void os::win32::print_windows_version(outputStream* st) {
1616   OSVERSIONINFOEX osvi;
1617   VS_FIXEDFILEINFO *file_info;
1618   TCHAR kernel32_path[MAX_PATH];
1619   UINT len, ret;
1620 
1621   // Use the GetVersionEx information to see if we're on a server or
1622   // workstation edition of Windows. Starting with Windows 8.1 we can't
1623   // trust the OS version information returned by this API.
1624   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1625   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1626   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1627     st->print_cr("Call to GetVersionEx failed");
1628     return;
1629   }
1630   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1631 
1632   // Get the full path to \Windows\System32\kernel32.dll and use that for
1633   // determining what version of Windows we're running on.
1634   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1635   ret = GetSystemDirectory(kernel32_path, len);
1636   if (ret == 0 || ret > len) {
1637     st->print_cr("Call to GetSystemDirectory failed");
1638     return;
1639   }
1640   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1641 
1642   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1643   if (version_size == 0) {
1644     st->print_cr("Call to GetFileVersionInfoSize failed");
1645     return;
1646   }
1647 
1648   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1649   if (version_info == NULL) {
1650     st->print_cr("Failed to allocate version_info");
1651     return;
1652   }
1653 
1654   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1655     os::free(version_info);
1656     st->print_cr("Call to GetFileVersionInfo failed");
1657     return;
1658   }
1659 
1660   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1661     os::free(version_info);
1662     st->print_cr("Call to VerQueryValue failed");
1663     return;
1664   }
1665 
1666   int major_version = HIWORD(file_info->dwProductVersionMS);
1667   int minor_version = LOWORD(file_info->dwProductVersionMS);
1668   int build_number = HIWORD(file_info->dwProductVersionLS);
1669   int build_minor = LOWORD(file_info->dwProductVersionLS);
1670   int os_vers = major_version * 1000 + minor_version;
1671   os::free(version_info);
1672 
1673   st->print(" Windows ");
1674   switch (os_vers) {
1675 
1676   case 6000:
1677     if (is_workstation) {
1678       st->print("Vista");
1679     } else {
1680       st->print("Server 2008");
1681     }
1682     break;
1683 
1684   case 6001:
1685     if (is_workstation) {
1686       st->print("7");
1687     } else {
1688       st->print("Server 2008 R2");
1689     }
1690     break;
1691 
1692   case 6002:
1693     if (is_workstation) {
1694       st->print("8");
1695     } else {
1696       st->print("Server 2012");
1697     }
1698     break;
1699 
1700   case 6003:
1701     if (is_workstation) {
1702       st->print("8.1");
1703     } else {
1704       st->print("Server 2012 R2");
1705     }
1706     break;
1707 
1708   case 10000:
1709     if (is_workstation) {
1710       st->print("10");
1711     } else {
1712       st->print("Server 2016");
1713     }
1714     break;
1715 
1716   default:
1717     // Unrecognized windows, print out its major and minor versions
1718     st->print("%d.%d", major_version, minor_version);
1719     break;
1720   }
1721 
1722   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1723   // find out whether we are running on 64 bit processor or not
1724   SYSTEM_INFO si;
1725   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1726   GetNativeSystemInfo(&si);
1727   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1728     st->print(" , 64 bit");
1729   }
1730 
1731   st->print(" Build %d", build_number);
1732   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1733   st->cr();
1734 }
1735 
1736 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1737   // Nothing to do for now.
1738 }
1739 
1740 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1741   HKEY key;
1742   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1743                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1744   if (status == ERROR_SUCCESS) {
1745     DWORD size = (DWORD)buflen;
1746     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1747     if (status != ERROR_SUCCESS) {
1748         strncpy(buf, "## __CPU__", buflen);
1749     }
1750     RegCloseKey(key);
1751   } else {
1752     // Put generic cpu info to return
1753     strncpy(buf, "## __CPU__", buflen);
1754   }
1755 }
1756 
1757 void os::print_memory_info(outputStream* st) {
1758   st->print("Memory:");
1759   st->print(" %dk page", os::vm_page_size()>>10);
1760 
1761   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1762   // value if total memory is larger than 4GB
1763   MEMORYSTATUSEX ms;
1764   ms.dwLength = sizeof(ms);
1765   GlobalMemoryStatusEx(&ms);
1766 
1767   st->print(", physical %uk", os::physical_memory() >> 10);
1768   st->print("(%uk free)", os::available_memory() >> 10);
1769 
1770   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1771   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1772   st->cr();
1773 }
1774 
1775 void os::print_siginfo(outputStream *st, const void* siginfo) {
1776   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1777   st->print("siginfo:");
1778 
1779   char tmp[64];
1780   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1781     strcpy(tmp, "EXCEPTION_??");
1782   }
1783   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1784 
1785   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1786        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1787        er->NumberParameters >= 2) {
1788     switch (er->ExceptionInformation[0]) {
1789     case 0: st->print(", reading address"); break;
1790     case 1: st->print(", writing address"); break;
1791     case 8: st->print(", data execution prevention violation at address"); break;
1792     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1793                        er->ExceptionInformation[0]);
1794     }
1795     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1796   } else {
1797     int num = er->NumberParameters;
1798     if (num > 0) {
1799       st->print(", ExceptionInformation=");
1800       for (int i = 0; i < num; i++) {
1801         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1802       }
1803     }
1804   }
1805   st->cr();
1806 }
1807 
1808 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1809   // do nothing
1810 }
1811 
1812 static char saved_jvm_path[MAX_PATH] = {0};
1813 
1814 // Find the full path to the current module, jvm.dll
1815 void os::jvm_path(char *buf, jint buflen) {
1816   // Error checking.
1817   if (buflen < MAX_PATH) {
1818     assert(false, "must use a large-enough buffer");
1819     buf[0] = '\0';
1820     return;
1821   }
1822   // Lazy resolve the path to current module.
1823   if (saved_jvm_path[0] != 0) {
1824     strcpy(buf, saved_jvm_path);
1825     return;
1826   }
1827 
1828   buf[0] = '\0';
1829   if (Arguments::sun_java_launcher_is_altjvm()) {
1830     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1831     // for a JAVA_HOME environment variable and fix up the path so it
1832     // looks like jvm.dll is installed there (append a fake suffix
1833     // hotspot/jvm.dll).
1834     char* java_home_var = ::getenv("JAVA_HOME");
1835     if (java_home_var != NULL && java_home_var[0] != 0 &&
1836         strlen(java_home_var) < (size_t)buflen) {
1837       strncpy(buf, java_home_var, buflen);
1838 
1839       // determine if this is a legacy image or modules image
1840       // modules image doesn't have "jre" subdirectory
1841       size_t len = strlen(buf);
1842       char* jrebin_p = buf + len;
1843       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1844       if (0 != _access(buf, 0)) {
1845         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1846       }
1847       len = strlen(buf);
1848       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1849     }
1850   }
1851 
1852   if (buf[0] == '\0') {
1853     GetModuleFileName(vm_lib_handle, buf, buflen);
1854   }
1855   strncpy(saved_jvm_path, buf, MAX_PATH);
1856   saved_jvm_path[MAX_PATH - 1] = '\0';
1857 }
1858 
1859 
1860 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1861 #ifndef _WIN64
1862   st->print("_");
1863 #endif
1864 }
1865 
1866 
1867 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1868 #ifndef _WIN64
1869   st->print("@%d", args_size  * sizeof(int));
1870 #endif
1871 }
1872 
1873 // This method is a copy of JDK's sysGetLastErrorString
1874 // from src/windows/hpi/src/system_md.c
1875 
1876 size_t os::lasterror(char* buf, size_t len) {
1877   DWORD errval;
1878 
1879   if ((errval = GetLastError()) != 0) {
1880     // DOS error
1881     size_t n = (size_t)FormatMessage(
1882                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1883                                      NULL,
1884                                      errval,
1885                                      0,
1886                                      buf,
1887                                      (DWORD)len,
1888                                      NULL);
1889     if (n > 3) {
1890       // Drop final '.', CR, LF
1891       if (buf[n - 1] == '\n') n--;
1892       if (buf[n - 1] == '\r') n--;
1893       if (buf[n - 1] == '.') n--;
1894       buf[n] = '\0';
1895     }
1896     return n;
1897   }
1898 
1899   if (errno != 0) {
1900     // C runtime error that has no corresponding DOS error code
1901     const char* s = os::strerror(errno);
1902     size_t n = strlen(s);
1903     if (n >= len) n = len - 1;
1904     strncpy(buf, s, n);
1905     buf[n] = '\0';
1906     return n;
1907   }
1908 
1909   return 0;
1910 }
1911 
1912 int os::get_last_error() {
1913   DWORD error = GetLastError();
1914   if (error == 0) {
1915     error = errno;
1916   }
1917   return (int)error;
1918 }
1919 
1920 WindowsSemaphore::WindowsSemaphore(uint value) {
1921   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1922 
1923   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1924 }
1925 
1926 WindowsSemaphore::~WindowsSemaphore() {
1927   ::CloseHandle(_semaphore);
1928 }
1929 
1930 void WindowsSemaphore::signal(uint count) {
1931   if (count > 0) {
1932     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1933 
1934     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1935   }
1936 }
1937 
1938 void WindowsSemaphore::wait() {
1939   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1940   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1941   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1942 }
1943 
1944 // sun.misc.Signal
1945 // NOTE that this is a workaround for an apparent kernel bug where if
1946 // a signal handler for SIGBREAK is installed then that signal handler
1947 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1948 // See bug 4416763.
1949 static void (*sigbreakHandler)(int) = NULL;
1950 
1951 static void UserHandler(int sig, void *siginfo, void *context) {
1952   os::signal_notify(sig);
1953   // We need to reinstate the signal handler each time...
1954   os::signal(sig, (void*)UserHandler);
1955 }
1956 
1957 void* os::user_handler() {
1958   return (void*) UserHandler;
1959 }
1960 
1961 void* os::signal(int signal_number, void* handler) {
1962   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1963     void (*oldHandler)(int) = sigbreakHandler;
1964     sigbreakHandler = (void (*)(int)) handler;
1965     return (void*) oldHandler;
1966   } else {
1967     return (void*)::signal(signal_number, (void (*)(int))handler);
1968   }
1969 }
1970 
1971 void os::signal_raise(int signal_number) {
1972   raise(signal_number);
1973 }
1974 
1975 // The Win32 C runtime library maps all console control events other than ^C
1976 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1977 // logoff, and shutdown events.  We therefore install our own console handler
1978 // that raises SIGTERM for the latter cases.
1979 //
1980 static BOOL WINAPI consoleHandler(DWORD event) {
1981   switch (event) {
1982   case CTRL_C_EVENT:
1983     if (is_error_reported()) {
1984       // Ctrl-C is pressed during error reporting, likely because the error
1985       // handler fails to abort. Let VM die immediately.
1986       os::die();
1987     }
1988 
1989     os::signal_raise(SIGINT);
1990     return TRUE;
1991     break;
1992   case CTRL_BREAK_EVENT:
1993     if (sigbreakHandler != NULL) {
1994       (*sigbreakHandler)(SIGBREAK);
1995     }
1996     return TRUE;
1997     break;
1998   case CTRL_LOGOFF_EVENT: {
1999     // Don't terminate JVM if it is running in a non-interactive session,
2000     // such as a service process.
2001     USEROBJECTFLAGS flags;
2002     HANDLE handle = GetProcessWindowStation();
2003     if (handle != NULL &&
2004         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2005         sizeof(USEROBJECTFLAGS), NULL)) {
2006       // If it is a non-interactive session, let next handler to deal
2007       // with it.
2008       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2009         return FALSE;
2010       }
2011     }
2012   }
2013   case CTRL_CLOSE_EVENT:
2014   case CTRL_SHUTDOWN_EVENT:
2015     os::signal_raise(SIGTERM);
2016     return TRUE;
2017     break;
2018   default:
2019     break;
2020   }
2021   return FALSE;
2022 }
2023 
2024 // The following code is moved from os.cpp for making this
2025 // code platform specific, which it is by its very nature.
2026 
2027 // Return maximum OS signal used + 1 for internal use only
2028 // Used as exit signal for signal_thread
2029 int os::sigexitnum_pd() {
2030   return NSIG;
2031 }
2032 
2033 // a counter for each possible signal value, including signal_thread exit signal
2034 static volatile jint pending_signals[NSIG+1] = { 0 };
2035 static HANDLE sig_sem = NULL;
2036 
2037 void os::signal_init_pd() {
2038   // Initialize signal structures
2039   memset((void*)pending_signals, 0, sizeof(pending_signals));
2040 
2041   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2042 
2043   // Programs embedding the VM do not want it to attempt to receive
2044   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2045   // shutdown hooks mechanism introduced in 1.3.  For example, when
2046   // the VM is run as part of a Windows NT service (i.e., a servlet
2047   // engine in a web server), the correct behavior is for any console
2048   // control handler to return FALSE, not TRUE, because the OS's
2049   // "final" handler for such events allows the process to continue if
2050   // it is a service (while terminating it if it is not a service).
2051   // To make this behavior uniform and the mechanism simpler, we
2052   // completely disable the VM's usage of these console events if -Xrs
2053   // (=ReduceSignalUsage) is specified.  This means, for example, that
2054   // the CTRL-BREAK thread dump mechanism is also disabled in this
2055   // case.  See bugs 4323062, 4345157, and related bugs.
2056 
2057   if (!ReduceSignalUsage) {
2058     // Add a CTRL-C handler
2059     SetConsoleCtrlHandler(consoleHandler, TRUE);
2060   }
2061 }
2062 
2063 void os::signal_notify(int signal_number) {
2064   BOOL ret;
2065   if (sig_sem != NULL) {
2066     Atomic::inc(&pending_signals[signal_number]);
2067     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2068     assert(ret != 0, "ReleaseSemaphore() failed");
2069   }
2070 }
2071 
2072 static int check_pending_signals(bool wait_for_signal) {
2073   DWORD ret;
2074   while (true) {
2075     for (int i = 0; i < NSIG + 1; i++) {
2076       jint n = pending_signals[i];
2077       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2078         return i;
2079       }
2080     }
2081     if (!wait_for_signal) {
2082       return -1;
2083     }
2084 
2085     JavaThread *thread = JavaThread::current();
2086 
2087     ThreadBlockInVM tbivm(thread);
2088 
2089     bool threadIsSuspended;
2090     do {
2091       thread->set_suspend_equivalent();
2092       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2093       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2094       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2095 
2096       // were we externally suspended while we were waiting?
2097       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2098       if (threadIsSuspended) {
2099         // The semaphore has been incremented, but while we were waiting
2100         // another thread suspended us. We don't want to continue running
2101         // while suspended because that would surprise the thread that
2102         // suspended us.
2103         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2104         assert(ret != 0, "ReleaseSemaphore() failed");
2105 
2106         thread->java_suspend_self();
2107       }
2108     } while (threadIsSuspended);
2109   }
2110 }
2111 
2112 int os::signal_lookup() {
2113   return check_pending_signals(false);
2114 }
2115 
2116 int os::signal_wait() {
2117   return check_pending_signals(true);
2118 }
2119 
2120 // Implicit OS exception handling
2121 
2122 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2123                       address handler) {
2124     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2125   // Save pc in thread
2126 #ifdef _M_IA64
2127   // Do not blow up if no thread info available.
2128   if (thread) {
2129     // Saving PRECISE pc (with slot information) in thread.
2130     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2131     // Convert precise PC into "Unix" format
2132     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2133     thread->set_saved_exception_pc((address)precise_pc);
2134   }
2135   // Set pc to handler
2136   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2137   // Clear out psr.ri (= Restart Instruction) in order to continue
2138   // at the beginning of the target bundle.
2139   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2140   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2141 #else
2142   #ifdef _M_AMD64
2143   // Do not blow up if no thread info available.
2144   if (thread) {
2145     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2146   }
2147   // Set pc to handler
2148   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2149   #else
2150   // Do not blow up if no thread info available.
2151   if (thread) {
2152     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2153   }
2154   // Set pc to handler
2155   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2156   #endif
2157 #endif
2158 
2159   // Continue the execution
2160   return EXCEPTION_CONTINUE_EXECUTION;
2161 }
2162 
2163 
2164 // Used for PostMortemDump
2165 extern "C" void safepoints();
2166 extern "C" void find(int x);
2167 extern "C" void events();
2168 
2169 // According to Windows API documentation, an illegal instruction sequence should generate
2170 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2171 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2172 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2173 
2174 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2175 
2176 // From "Execution Protection in the Windows Operating System" draft 0.35
2177 // Once a system header becomes available, the "real" define should be
2178 // included or copied here.
2179 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2180 
2181 // Handle NAT Bit consumption on IA64.
2182 #ifdef _M_IA64
2183   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2184 #endif
2185 
2186 // Windows Vista/2008 heap corruption check
2187 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2188 
2189 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2190 // C++ compiler contain this error code. Because this is a compiler-generated
2191 // error, the code is not listed in the Win32 API header files.
2192 // The code is actually a cryptic mnemonic device, with the initial "E"
2193 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2194 // ASCII values of "msc".
2195 
2196 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2197 
2198 #define def_excpt(val) { #val, (val) }
2199 
2200 static const struct { char* name; uint number; } exceptlabels[] = {
2201     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2202     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2203     def_excpt(EXCEPTION_BREAKPOINT),
2204     def_excpt(EXCEPTION_SINGLE_STEP),
2205     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2206     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2207     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2208     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2209     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2210     def_excpt(EXCEPTION_FLT_OVERFLOW),
2211     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2212     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2213     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2214     def_excpt(EXCEPTION_INT_OVERFLOW),
2215     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2216     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2217     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2218     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2219     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2220     def_excpt(EXCEPTION_STACK_OVERFLOW),
2221     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2222     def_excpt(EXCEPTION_GUARD_PAGE),
2223     def_excpt(EXCEPTION_INVALID_HANDLE),
2224     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2225     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2226 #ifdef _M_IA64
2227     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2228 #endif
2229 };
2230 
2231 #undef def_excpt
2232 
2233 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2234   uint code = static_cast<uint>(exception_code);
2235   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2236     if (exceptlabels[i].number == code) {
2237       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2238       return buf;
2239     }
2240   }
2241 
2242   return NULL;
2243 }
2244 
2245 //-----------------------------------------------------------------------------
2246 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2247   // handle exception caused by idiv; should only happen for -MinInt/-1
2248   // (division by zero is handled explicitly)
2249 #ifdef _M_IA64
2250   assert(0, "Fix Handle_IDiv_Exception");
2251 #else
2252   #ifdef  _M_AMD64
2253   PCONTEXT ctx = exceptionInfo->ContextRecord;
2254   address pc = (address)ctx->Rip;
2255   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2256   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2257   if (pc[0] == 0xF7) {
2258     // set correct result values and continue after idiv instruction
2259     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2260   } else {
2261     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2262   }
2263   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2264   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2265   // idiv opcode (0xF7).
2266   ctx->Rdx = (DWORD)0;             // remainder
2267   // Continue the execution
2268   #else
2269   PCONTEXT ctx = exceptionInfo->ContextRecord;
2270   address pc = (address)ctx->Eip;
2271   assert(pc[0] == 0xF7, "not an idiv opcode");
2272   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2273   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2274   // set correct result values and continue after idiv instruction
2275   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2276   ctx->Eax = (DWORD)min_jint;      // result
2277   ctx->Edx = (DWORD)0;             // remainder
2278   // Continue the execution
2279   #endif
2280 #endif
2281   return EXCEPTION_CONTINUE_EXECUTION;
2282 }
2283 
2284 //-----------------------------------------------------------------------------
2285 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2286   PCONTEXT ctx = exceptionInfo->ContextRecord;
2287 #ifndef  _WIN64
2288   // handle exception caused by native method modifying control word
2289   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2290 
2291   switch (exception_code) {
2292   case EXCEPTION_FLT_DENORMAL_OPERAND:
2293   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2294   case EXCEPTION_FLT_INEXACT_RESULT:
2295   case EXCEPTION_FLT_INVALID_OPERATION:
2296   case EXCEPTION_FLT_OVERFLOW:
2297   case EXCEPTION_FLT_STACK_CHECK:
2298   case EXCEPTION_FLT_UNDERFLOW:
2299     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2300     if (fp_control_word != ctx->FloatSave.ControlWord) {
2301       // Restore FPCW and mask out FLT exceptions
2302       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2303       // Mask out pending FLT exceptions
2304       ctx->FloatSave.StatusWord &=  0xffffff00;
2305       return EXCEPTION_CONTINUE_EXECUTION;
2306     }
2307   }
2308 
2309   if (prev_uef_handler != NULL) {
2310     // We didn't handle this exception so pass it to the previous
2311     // UnhandledExceptionFilter.
2312     return (prev_uef_handler)(exceptionInfo);
2313   }
2314 #else // !_WIN64
2315   // On Windows, the mxcsr control bits are non-volatile across calls
2316   // See also CR 6192333
2317   //
2318   jint MxCsr = INITIAL_MXCSR;
2319   // we can't use StubRoutines::addr_mxcsr_std()
2320   // because in Win64 mxcsr is not saved there
2321   if (MxCsr != ctx->MxCsr) {
2322     ctx->MxCsr = MxCsr;
2323     return EXCEPTION_CONTINUE_EXECUTION;
2324   }
2325 #endif // !_WIN64
2326 
2327   return EXCEPTION_CONTINUE_SEARCH;
2328 }
2329 
2330 static inline void report_error(Thread* t, DWORD exception_code,
2331                                 address addr, void* siginfo, void* context) {
2332   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2333 
2334   // If UseOsErrorReporting, this will return here and save the error file
2335   // somewhere where we can find it in the minidump.
2336 }
2337 
2338 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2339         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2340   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2341   address addr = (address) exceptionRecord->ExceptionInformation[1];
2342   if (Interpreter::contains(pc)) {
2343     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2344     if (!fr->is_first_java_frame()) {
2345       assert(fr->safe_for_sender(thread), "Safety check");
2346       *fr = fr->java_sender();
2347     }
2348   } else {
2349     // more complex code with compiled code
2350     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2351     CodeBlob* cb = CodeCache::find_blob(pc);
2352     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2353       // Not sure where the pc points to, fallback to default
2354       // stack overflow handling
2355       return false;
2356     } else {
2357       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2358       // in compiled code, the stack banging is performed just after the return pc
2359       // has been pushed on the stack
2360       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2361       if (!fr->is_java_frame()) {
2362         assert(fr->safe_for_sender(thread), "Safety check");
2363         *fr = fr->java_sender();
2364       }
2365     }
2366   }
2367   assert(fr->is_java_frame(), "Safety check");
2368   return true;
2369 }
2370 
2371 //-----------------------------------------------------------------------------
2372 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2373   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2374   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2375 #ifdef _M_IA64
2376   // On Itanium, we need the "precise pc", which has the slot number coded
2377   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2378   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2379   // Convert the pc to "Unix format", which has the slot number coded
2380   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2381   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2382   // information is saved in the Unix format.
2383   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2384 #else
2385   #ifdef _M_AMD64
2386   address pc = (address) exceptionInfo->ContextRecord->Rip;
2387   #else
2388   address pc = (address) exceptionInfo->ContextRecord->Eip;
2389   #endif
2390 #endif
2391   Thread* t = Thread::current_or_null_safe();
2392 
2393   // Handle SafeFetch32 and SafeFetchN exceptions.
2394   if (StubRoutines::is_safefetch_fault(pc)) {
2395     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2396   }
2397 
2398 #ifndef _WIN64
2399   // Execution protection violation - win32 running on AMD64 only
2400   // Handled first to avoid misdiagnosis as a "normal" access violation;
2401   // This is safe to do because we have a new/unique ExceptionInformation
2402   // code for this condition.
2403   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2404     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2405     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2406     address addr = (address) exceptionRecord->ExceptionInformation[1];
2407 
2408     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2409       int page_size = os::vm_page_size();
2410 
2411       // Make sure the pc and the faulting address are sane.
2412       //
2413       // If an instruction spans a page boundary, and the page containing
2414       // the beginning of the instruction is executable but the following
2415       // page is not, the pc and the faulting address might be slightly
2416       // different - we still want to unguard the 2nd page in this case.
2417       //
2418       // 15 bytes seems to be a (very) safe value for max instruction size.
2419       bool pc_is_near_addr =
2420         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2421       bool instr_spans_page_boundary =
2422         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2423                          (intptr_t) page_size) > 0);
2424 
2425       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2426         static volatile address last_addr =
2427           (address) os::non_memory_address_word();
2428 
2429         // In conservative mode, don't unguard unless the address is in the VM
2430         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2431             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2432 
2433           // Set memory to RWX and retry
2434           address page_start =
2435             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2436           bool res = os::protect_memory((char*) page_start, page_size,
2437                                         os::MEM_PROT_RWX);
2438 
2439           log_debug(os)("Execution protection violation "
2440                         "at " INTPTR_FORMAT
2441                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2442                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2443 
2444           // Set last_addr so if we fault again at the same address, we don't
2445           // end up in an endless loop.
2446           //
2447           // There are two potential complications here.  Two threads trapping
2448           // at the same address at the same time could cause one of the
2449           // threads to think it already unguarded, and abort the VM.  Likely
2450           // very rare.
2451           //
2452           // The other race involves two threads alternately trapping at
2453           // different addresses and failing to unguard the page, resulting in
2454           // an endless loop.  This condition is probably even more unlikely
2455           // than the first.
2456           //
2457           // Although both cases could be avoided by using locks or thread
2458           // local last_addr, these solutions are unnecessary complication:
2459           // this handler is a best-effort safety net, not a complete solution.
2460           // It is disabled by default and should only be used as a workaround
2461           // in case we missed any no-execute-unsafe VM code.
2462 
2463           last_addr = addr;
2464 
2465           return EXCEPTION_CONTINUE_EXECUTION;
2466         }
2467       }
2468 
2469       // Last unguard failed or not unguarding
2470       tty->print_raw_cr("Execution protection violation");
2471       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2472                    exceptionInfo->ContextRecord);
2473       return EXCEPTION_CONTINUE_SEARCH;
2474     }
2475   }
2476 #endif // _WIN64
2477 
2478   // Check to see if we caught the safepoint code in the
2479   // process of write protecting the memory serialization page.
2480   // It write enables the page immediately after protecting it
2481   // so just return.
2482   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2483     JavaThread* thread = (JavaThread*) t;
2484     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2485     address addr = (address) exceptionRecord->ExceptionInformation[1];
2486     if (os::is_memory_serialize_page(thread, addr)) {
2487       // Block current thread until the memory serialize page permission restored.
2488       os::block_on_serialize_page_trap();
2489       return EXCEPTION_CONTINUE_EXECUTION;
2490     }
2491   }
2492 
2493   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2494       VM_Version::is_cpuinfo_segv_addr(pc)) {
2495     // Verify that OS save/restore AVX registers.
2496     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2497   }
2498 
2499   if (t != NULL && t->is_Java_thread()) {
2500     JavaThread* thread = (JavaThread*) t;
2501     bool in_java = thread->thread_state() == _thread_in_Java;
2502 
2503     // Handle potential stack overflows up front.
2504     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2505 #ifdef _M_IA64
2506       // Use guard page for register stack.
2507       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2508       address addr = (address) exceptionRecord->ExceptionInformation[1];
2509       // Check for a register stack overflow on Itanium
2510       if (thread->addr_inside_register_stack_red_zone(addr)) {
2511         // Fatal red zone violation happens if the Java program
2512         // catches a StackOverflow error and does so much processing
2513         // that it runs beyond the unprotected yellow guard zone. As
2514         // a result, we are out of here.
2515         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2516       } else if(thread->addr_inside_register_stack(addr)) {
2517         // Disable the yellow zone which sets the state that
2518         // we've got a stack overflow problem.
2519         if (thread->stack_yellow_reserved_zone_enabled()) {
2520           thread->disable_stack_yellow_reserved_zone();
2521         }
2522         // Give us some room to process the exception.
2523         thread->disable_register_stack_guard();
2524         // Tracing with +Verbose.
2525         if (Verbose) {
2526           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2527           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2528           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2529           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2530                         thread->register_stack_base(),
2531                         thread->register_stack_base() + thread->stack_size());
2532         }
2533 
2534         // Reguard the permanent register stack red zone just to be sure.
2535         // We saw Windows silently disabling this without telling us.
2536         thread->enable_register_stack_red_zone();
2537 
2538         return Handle_Exception(exceptionInfo,
2539                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2540       }
2541 #endif
2542       if (thread->stack_guards_enabled()) {
2543         if (_thread_in_Java) {
2544           frame fr;
2545           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2546           address addr = (address) exceptionRecord->ExceptionInformation[1];
2547           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2548             assert(fr.is_java_frame(), "Must be a Java frame");
2549             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2550           }
2551         }
2552         // Yellow zone violation.  The o/s has unprotected the first yellow
2553         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2554         // update the enabled status, even if the zone contains only one page.
2555         thread->disable_stack_yellow_reserved_zone();
2556         // If not in java code, return and hope for the best.
2557         return in_java
2558             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2559             :  EXCEPTION_CONTINUE_EXECUTION;
2560       } else {
2561         // Fatal red zone violation.
2562         thread->disable_stack_red_zone();
2563         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2564         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2565                       exceptionInfo->ContextRecord);
2566         return EXCEPTION_CONTINUE_SEARCH;
2567       }
2568     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2569       // Either stack overflow or null pointer exception.
2570       if (in_java) {
2571         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2572         address addr = (address) exceptionRecord->ExceptionInformation[1];
2573         address stack_end = thread->stack_end();
2574         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2575           // Stack overflow.
2576           assert(!os::uses_stack_guard_pages(),
2577                  "should be caught by red zone code above.");
2578           return Handle_Exception(exceptionInfo,
2579                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2580         }
2581         // Check for safepoint polling and implicit null
2582         // We only expect null pointers in the stubs (vtable)
2583         // the rest are checked explicitly now.
2584         CodeBlob* cb = CodeCache::find_blob(pc);
2585         if (cb != NULL) {
2586           if (os::is_poll_address(addr)) {
2587             address stub = SharedRuntime::get_poll_stub(pc);
2588             return Handle_Exception(exceptionInfo, stub);
2589           }
2590         }
2591         {
2592 #ifdef _WIN64
2593           // If it's a legal stack address map the entire region in
2594           //
2595           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2596           address addr = (address) exceptionRecord->ExceptionInformation[1];
2597           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2598             addr = (address)((uintptr_t)addr &
2599                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2600             os::commit_memory((char *)addr, thread->stack_base() - addr,
2601                               !ExecMem);
2602             return EXCEPTION_CONTINUE_EXECUTION;
2603           } else
2604 #endif
2605           {
2606             // Null pointer exception.
2607 #ifdef _M_IA64
2608             // Process implicit null checks in compiled code. Note: Implicit null checks
2609             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2610             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2611               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2612               // Handle implicit null check in UEP method entry
2613               if (cb && (cb->is_frame_complete_at(pc) ||
2614                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2615                 if (Verbose) {
2616                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2617                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2618                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2619                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2620                                 *(bundle_start + 1), *bundle_start);
2621                 }
2622                 return Handle_Exception(exceptionInfo,
2623                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2624               }
2625             }
2626 
2627             // Implicit null checks were processed above.  Hence, we should not reach
2628             // here in the usual case => die!
2629             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2630             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2631                          exceptionInfo->ContextRecord);
2632             return EXCEPTION_CONTINUE_SEARCH;
2633 
2634 #else // !IA64
2635 
2636             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2637               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2638               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2639             }
2640             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2641                          exceptionInfo->ContextRecord);
2642             return EXCEPTION_CONTINUE_SEARCH;
2643 #endif
2644           }
2645         }
2646       }
2647 
2648 #ifdef _WIN64
2649       // Special care for fast JNI field accessors.
2650       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2651       // in and the heap gets shrunk before the field access.
2652       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2653         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2654         if (addr != (address)-1) {
2655           return Handle_Exception(exceptionInfo, addr);
2656         }
2657       }
2658 #endif
2659 
2660       // Stack overflow or null pointer exception in native code.
2661       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2662                    exceptionInfo->ContextRecord);
2663       return EXCEPTION_CONTINUE_SEARCH;
2664     } // /EXCEPTION_ACCESS_VIOLATION
2665     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2666 #if defined _M_IA64
2667     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2668               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2669       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2670 
2671       // Compiled method patched to be non entrant? Following conditions must apply:
2672       // 1. must be first instruction in bundle
2673       // 2. must be a break instruction with appropriate code
2674       if ((((uint64_t) pc & 0x0F) == 0) &&
2675           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2676         return Handle_Exception(exceptionInfo,
2677                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2678       }
2679     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2680 #endif
2681 
2682 
2683     if (in_java) {
2684       switch (exception_code) {
2685       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2686         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2687 
2688       case EXCEPTION_INT_OVERFLOW:
2689         return Handle_IDiv_Exception(exceptionInfo);
2690 
2691       } // switch
2692     }
2693     if (((thread->thread_state() == _thread_in_Java) ||
2694          (thread->thread_state() == _thread_in_native)) &&
2695          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2696       LONG result=Handle_FLT_Exception(exceptionInfo);
2697       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2698     }
2699   }
2700 
2701   if (exception_code != EXCEPTION_BREAKPOINT) {
2702     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2703                  exceptionInfo->ContextRecord);
2704   }
2705   return EXCEPTION_CONTINUE_SEARCH;
2706 }
2707 
2708 #ifndef _WIN64
2709 // Special care for fast JNI accessors.
2710 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2711 // the heap gets shrunk before the field access.
2712 // Need to install our own structured exception handler since native code may
2713 // install its own.
2714 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2715   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2716   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2717     address pc = (address) exceptionInfo->ContextRecord->Eip;
2718     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2719     if (addr != (address)-1) {
2720       return Handle_Exception(exceptionInfo, addr);
2721     }
2722   }
2723   return EXCEPTION_CONTINUE_SEARCH;
2724 }
2725 
2726 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2727   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2728                                                      jobject obj,           \
2729                                                      jfieldID fieldID) {    \
2730     __try {                                                                 \
2731       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2732                                                                  obj,       \
2733                                                                  fieldID);  \
2734     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2735                                               _exception_info())) {         \
2736     }                                                                       \
2737     return 0;                                                               \
2738   }
2739 
2740 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2741 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2742 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2743 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2744 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2745 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2746 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2747 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2748 
2749 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2750   switch (type) {
2751   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2752   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2753   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2754   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2755   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2756   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2757   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2758   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2759   default:        ShouldNotReachHere();
2760   }
2761   return (address)-1;
2762 }
2763 #endif
2764 
2765 // Virtual Memory
2766 
2767 int os::vm_page_size() { return os::win32::vm_page_size(); }
2768 int os::vm_allocation_granularity() {
2769   return os::win32::vm_allocation_granularity();
2770 }
2771 
2772 // Windows large page support is available on Windows 2003. In order to use
2773 // large page memory, the administrator must first assign additional privilege
2774 // to the user:
2775 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2776 //   + select Local Policies -> User Rights Assignment
2777 //   + double click "Lock pages in memory", add users and/or groups
2778 //   + reboot
2779 // Note the above steps are needed for administrator as well, as administrators
2780 // by default do not have the privilege to lock pages in memory.
2781 //
2782 // Note about Windows 2003: although the API supports committing large page
2783 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2784 // scenario, I found through experiment it only uses large page if the entire
2785 // memory region is reserved and committed in a single VirtualAlloc() call.
2786 // This makes Windows large page support more or less like Solaris ISM, in
2787 // that the entire heap must be committed upfront. This probably will change
2788 // in the future, if so the code below needs to be revisited.
2789 
2790 #ifndef MEM_LARGE_PAGES
2791   #define MEM_LARGE_PAGES 0x20000000
2792 #endif
2793 
2794 static HANDLE    _hProcess;
2795 static HANDLE    _hToken;
2796 
2797 // Container for NUMA node list info
2798 class NUMANodeListHolder {
2799  private:
2800   int *_numa_used_node_list;  // allocated below
2801   int _numa_used_node_count;
2802 
2803   void free_node_list() {
2804     if (_numa_used_node_list != NULL) {
2805       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2806     }
2807   }
2808 
2809  public:
2810   NUMANodeListHolder() {
2811     _numa_used_node_count = 0;
2812     _numa_used_node_list = NULL;
2813     // do rest of initialization in build routine (after function pointers are set up)
2814   }
2815 
2816   ~NUMANodeListHolder() {
2817     free_node_list();
2818   }
2819 
2820   bool build() {
2821     DWORD_PTR proc_aff_mask;
2822     DWORD_PTR sys_aff_mask;
2823     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2824     ULONG highest_node_number;
2825     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2826     free_node_list();
2827     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2828     for (unsigned int i = 0; i <= highest_node_number; i++) {
2829       ULONGLONG proc_mask_numa_node;
2830       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2831       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2832         _numa_used_node_list[_numa_used_node_count++] = i;
2833       }
2834     }
2835     return (_numa_used_node_count > 1);
2836   }
2837 
2838   int get_count() { return _numa_used_node_count; }
2839   int get_node_list_entry(int n) {
2840     // for indexes out of range, returns -1
2841     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2842   }
2843 
2844 } numa_node_list_holder;
2845 
2846 
2847 
2848 static size_t _large_page_size = 0;
2849 
2850 static bool request_lock_memory_privilege() {
2851   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2852                           os::current_process_id());
2853 
2854   LUID luid;
2855   if (_hProcess != NULL &&
2856       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2857       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2858 
2859     TOKEN_PRIVILEGES tp;
2860     tp.PrivilegeCount = 1;
2861     tp.Privileges[0].Luid = luid;
2862     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2863 
2864     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2865     // privilege. Check GetLastError() too. See MSDN document.
2866     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2867         (GetLastError() == ERROR_SUCCESS)) {
2868       return true;
2869     }
2870   }
2871 
2872   return false;
2873 }
2874 
2875 static void cleanup_after_large_page_init() {
2876   if (_hProcess) CloseHandle(_hProcess);
2877   _hProcess = NULL;
2878   if (_hToken) CloseHandle(_hToken);
2879   _hToken = NULL;
2880 }
2881 
2882 static bool numa_interleaving_init() {
2883   bool success = false;
2884   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2885 
2886   // print a warning if UseNUMAInterleaving flag is specified on command line
2887   bool warn_on_failure = use_numa_interleaving_specified;
2888 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2889 
2890   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2891   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2892   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2893 
2894   if (numa_node_list_holder.build()) {
2895     if (log_is_enabled(Debug, os, cpu)) {
2896       Log(os, cpu) log;
2897       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2898       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2899         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2900       }
2901     }
2902     success = true;
2903   } else {
2904     WARN("Process does not cover multiple NUMA nodes.");
2905   }
2906   if (!success) {
2907     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2908   }
2909   return success;
2910 #undef WARN
2911 }
2912 
2913 // this routine is used whenever we need to reserve a contiguous VA range
2914 // but we need to make separate VirtualAlloc calls for each piece of the range
2915 // Reasons for doing this:
2916 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2917 //  * UseNUMAInterleaving requires a separate node for each piece
2918 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2919                                          DWORD prot,
2920                                          bool should_inject_error = false) {
2921   char * p_buf;
2922   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2923   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2924   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2925 
2926   // first reserve enough address space in advance since we want to be
2927   // able to break a single contiguous virtual address range into multiple
2928   // large page commits but WS2003 does not allow reserving large page space
2929   // so we just use 4K pages for reserve, this gives us a legal contiguous
2930   // address space. then we will deallocate that reservation, and re alloc
2931   // using large pages
2932   const size_t size_of_reserve = bytes + chunk_size;
2933   if (bytes > size_of_reserve) {
2934     // Overflowed.
2935     return NULL;
2936   }
2937   p_buf = (char *) VirtualAlloc(addr,
2938                                 size_of_reserve,  // size of Reserve
2939                                 MEM_RESERVE,
2940                                 PAGE_READWRITE);
2941   // If reservation failed, return NULL
2942   if (p_buf == NULL) return NULL;
2943   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2944   os::release_memory(p_buf, bytes + chunk_size);
2945 
2946   // we still need to round up to a page boundary (in case we are using large pages)
2947   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2948   // instead we handle this in the bytes_to_rq computation below
2949   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2950 
2951   // now go through and allocate one chunk at a time until all bytes are
2952   // allocated
2953   size_t  bytes_remaining = bytes;
2954   // An overflow of align_size_up() would have been caught above
2955   // in the calculation of size_of_reserve.
2956   char * next_alloc_addr = p_buf;
2957   HANDLE hProc = GetCurrentProcess();
2958 
2959 #ifdef ASSERT
2960   // Variable for the failure injection
2961   long ran_num = os::random();
2962   size_t fail_after = ran_num % bytes;
2963 #endif
2964 
2965   int count=0;
2966   while (bytes_remaining) {
2967     // select bytes_to_rq to get to the next chunk_size boundary
2968 
2969     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2970     // Note allocate and commit
2971     char * p_new;
2972 
2973 #ifdef ASSERT
2974     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2975 #else
2976     const bool inject_error_now = false;
2977 #endif
2978 
2979     if (inject_error_now) {
2980       p_new = NULL;
2981     } else {
2982       if (!UseNUMAInterleaving) {
2983         p_new = (char *) VirtualAlloc(next_alloc_addr,
2984                                       bytes_to_rq,
2985                                       flags,
2986                                       prot);
2987       } else {
2988         // get the next node to use from the used_node_list
2989         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2990         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2991         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2992       }
2993     }
2994 
2995     if (p_new == NULL) {
2996       // Free any allocated pages
2997       if (next_alloc_addr > p_buf) {
2998         // Some memory was committed so release it.
2999         size_t bytes_to_release = bytes - bytes_remaining;
3000         // NMT has yet to record any individual blocks, so it
3001         // need to create a dummy 'reserve' record to match
3002         // the release.
3003         MemTracker::record_virtual_memory_reserve((address)p_buf,
3004                                                   bytes_to_release, CALLER_PC);
3005         os::release_memory(p_buf, bytes_to_release);
3006       }
3007 #ifdef ASSERT
3008       if (should_inject_error) {
3009         log_develop_info(pagesize)("Reserving pages individually failed.");
3010       }
3011 #endif
3012       return NULL;
3013     }
3014 
3015     bytes_remaining -= bytes_to_rq;
3016     next_alloc_addr += bytes_to_rq;
3017     count++;
3018   }
3019   // Although the memory is allocated individually, it is returned as one.
3020   // NMT records it as one block.
3021   if ((flags & MEM_COMMIT) != 0) {
3022     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3023   } else {
3024     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3025   }
3026 
3027   // made it this far, success
3028   return p_buf;
3029 }
3030 
3031 
3032 
3033 void os::large_page_init() {
3034   if (!UseLargePages) return;
3035 
3036   // print a warning if any large page related flag is specified on command line
3037   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3038                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3039   bool success = false;
3040 
3041 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3042   if (request_lock_memory_privilege()) {
3043     size_t s = GetLargePageMinimum();
3044     if (s) {
3045 #if defined(IA32) || defined(AMD64)
3046       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3047         WARN("JVM cannot use large pages bigger than 4mb.");
3048       } else {
3049 #endif
3050         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3051           _large_page_size = LargePageSizeInBytes;
3052         } else {
3053           _large_page_size = s;
3054         }
3055         success = true;
3056 #if defined(IA32) || defined(AMD64)
3057       }
3058 #endif
3059     } else {
3060       WARN("Large page is not supported by the processor.");
3061     }
3062   } else {
3063     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3064   }
3065 #undef WARN
3066 
3067   const size_t default_page_size = (size_t) vm_page_size();
3068   if (success && _large_page_size > default_page_size) {
3069     _page_sizes[0] = _large_page_size;
3070     _page_sizes[1] = default_page_size;
3071     _page_sizes[2] = 0;
3072   }
3073 
3074   cleanup_after_large_page_init();
3075   UseLargePages = success;
3076 }
3077 
3078 // On win32, one cannot release just a part of reserved memory, it's an
3079 // all or nothing deal.  When we split a reservation, we must break the
3080 // reservation into two reservations.
3081 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3082                                   bool realloc) {
3083   if (size > 0) {
3084     release_memory(base, size);
3085     if (realloc) {
3086       reserve_memory(split, base);
3087     }
3088     if (size != split) {
3089       reserve_memory(size - split, base + split);
3090     }
3091   }
3092 }
3093 
3094 // Multiple threads can race in this code but it's not possible to unmap small sections of
3095 // virtual space to get requested alignment, like posix-like os's.
3096 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3097 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3098   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3099          "Alignment must be a multiple of allocation granularity (page size)");
3100   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3101 
3102   size_t extra_size = size + alignment;
3103   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3104 
3105   char* aligned_base = NULL;
3106 
3107   do {
3108     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3109     if (extra_base == NULL) {
3110       return NULL;
3111     }
3112     // Do manual alignment
3113     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3114 
3115     os::release_memory(extra_base, extra_size);
3116 
3117     aligned_base = os::reserve_memory(size, aligned_base);
3118 
3119   } while (aligned_base == NULL);
3120 
3121   return aligned_base;
3122 }
3123 
3124 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3125   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3126          "reserve alignment");
3127   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3128   char* res;
3129   // note that if UseLargePages is on, all the areas that require interleaving
3130   // will go thru reserve_memory_special rather than thru here.
3131   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3132   if (!use_individual) {
3133     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3134   } else {
3135     elapsedTimer reserveTimer;
3136     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3137     // in numa interleaving, we have to allocate pages individually
3138     // (well really chunks of NUMAInterleaveGranularity size)
3139     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3140     if (res == NULL) {
3141       warning("NUMA page allocation failed");
3142     }
3143     if (Verbose && PrintMiscellaneous) {
3144       reserveTimer.stop();
3145       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3146                     reserveTimer.milliseconds(), reserveTimer.ticks());
3147     }
3148   }
3149   assert(res == NULL || addr == NULL || addr == res,
3150          "Unexpected address from reserve.");
3151 
3152   return res;
3153 }
3154 
3155 // Reserve memory at an arbitrary address, only if that area is
3156 // available (and not reserved for something else).
3157 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3158   // Windows os::reserve_memory() fails of the requested address range is
3159   // not avilable.
3160   return reserve_memory(bytes, requested_addr);
3161 }
3162 
3163 size_t os::large_page_size() {
3164   return _large_page_size;
3165 }
3166 
3167 bool os::can_commit_large_page_memory() {
3168   // Windows only uses large page memory when the entire region is reserved
3169   // and committed in a single VirtualAlloc() call. This may change in the
3170   // future, but with Windows 2003 it's not possible to commit on demand.
3171   return false;
3172 }
3173 
3174 bool os::can_execute_large_page_memory() {
3175   return true;
3176 }
3177 
3178 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3179                                  bool exec) {
3180   assert(UseLargePages, "only for large pages");
3181 
3182   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3183     return NULL; // Fallback to small pages.
3184   }
3185 
3186   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3187   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3188 
3189   // with large pages, there are two cases where we need to use Individual Allocation
3190   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3191   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3192   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3193     log_debug(pagesize)("Reserving large pages individually.");
3194 
3195     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3196     if (p_buf == NULL) {
3197       // give an appropriate warning message
3198       if (UseNUMAInterleaving) {
3199         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3200       }
3201       if (UseLargePagesIndividualAllocation) {
3202         warning("Individually allocated large pages failed, "
3203                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3204       }
3205       return NULL;
3206     }
3207 
3208     return p_buf;
3209 
3210   } else {
3211     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3212 
3213     // normal policy just allocate it all at once
3214     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3215     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3216     if (res != NULL) {
3217       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3218     }
3219 
3220     return res;
3221   }
3222 }
3223 
3224 bool os::release_memory_special(char* base, size_t bytes) {
3225   assert(base != NULL, "Sanity check");
3226   return release_memory(base, bytes);
3227 }
3228 
3229 void os::print_statistics() {
3230 }
3231 
3232 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3233   int err = os::get_last_error();
3234   char buf[256];
3235   size_t buf_len = os::lasterror(buf, sizeof(buf));
3236   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3237           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3238           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3239 }
3240 
3241 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3242   if (bytes == 0) {
3243     // Don't bother the OS with noops.
3244     return true;
3245   }
3246   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3247   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3248   // Don't attempt to print anything if the OS call fails. We're
3249   // probably low on resources, so the print itself may cause crashes.
3250 
3251   // unless we have NUMAInterleaving enabled, the range of a commit
3252   // is always within a reserve covered by a single VirtualAlloc
3253   // in that case we can just do a single commit for the requested size
3254   if (!UseNUMAInterleaving) {
3255     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3256       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3257       return false;
3258     }
3259     if (exec) {
3260       DWORD oldprot;
3261       // Windows doc says to use VirtualProtect to get execute permissions
3262       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3263         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3264         return false;
3265       }
3266     }
3267     return true;
3268   } else {
3269 
3270     // when NUMAInterleaving is enabled, the commit might cover a range that
3271     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3272     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3273     // returns represents the number of bytes that can be committed in one step.
3274     size_t bytes_remaining = bytes;
3275     char * next_alloc_addr = addr;
3276     while (bytes_remaining > 0) {
3277       MEMORY_BASIC_INFORMATION alloc_info;
3278       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3279       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3280       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3281                        PAGE_READWRITE) == NULL) {
3282         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3283                                             exec);)
3284         return false;
3285       }
3286       if (exec) {
3287         DWORD oldprot;
3288         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3289                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3290           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3291                                               exec);)
3292           return false;
3293         }
3294       }
3295       bytes_remaining -= bytes_to_rq;
3296       next_alloc_addr += bytes_to_rq;
3297     }
3298   }
3299   // if we made it this far, return true
3300   return true;
3301 }
3302 
3303 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3304                           bool exec) {
3305   // alignment_hint is ignored on this OS
3306   return pd_commit_memory(addr, size, exec);
3307 }
3308 
3309 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3310                                   const char* mesg) {
3311   assert(mesg != NULL, "mesg must be specified");
3312   if (!pd_commit_memory(addr, size, exec)) {
3313     warn_fail_commit_memory(addr, size, exec);
3314     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3315   }
3316 }
3317 
3318 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3319                                   size_t alignment_hint, bool exec,
3320                                   const char* mesg) {
3321   // alignment_hint is ignored on this OS
3322   pd_commit_memory_or_exit(addr, size, exec, mesg);
3323 }
3324 
3325 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3326   if (bytes == 0) {
3327     // Don't bother the OS with noops.
3328     return true;
3329   }
3330   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3331   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3332   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3333 }
3334 
3335 bool os::pd_release_memory(char* addr, size_t bytes) {
3336   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3337 }
3338 
3339 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3340   return os::commit_memory(addr, size, !ExecMem);
3341 }
3342 
3343 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3344   return os::uncommit_memory(addr, size);
3345 }
3346 
3347 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3348   uint count = 0;
3349   bool ret = false;
3350   size_t bytes_remaining = bytes;
3351   char * next_protect_addr = addr;
3352 
3353   // Use VirtualQuery() to get the chunk size.
3354   while (bytes_remaining) {
3355     MEMORY_BASIC_INFORMATION alloc_info;
3356     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3357       return false;
3358     }
3359 
3360     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3361     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3362     // but we don't distinguish here as both cases are protected by same API.
3363     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3364     warning("Failed protecting pages individually for chunk #%u", count);
3365     if (!ret) {
3366       return false;
3367     }
3368 
3369     bytes_remaining -= bytes_to_protect;
3370     next_protect_addr += bytes_to_protect;
3371     count++;
3372   }
3373   return ret;
3374 }
3375 
3376 // Set protections specified
3377 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3378                         bool is_committed) {
3379   unsigned int p = 0;
3380   switch (prot) {
3381   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3382   case MEM_PROT_READ: p = PAGE_READONLY; break;
3383   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3384   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3385   default:
3386     ShouldNotReachHere();
3387   }
3388 
3389   DWORD old_status;
3390 
3391   // Strange enough, but on Win32 one can change protection only for committed
3392   // memory, not a big deal anyway, as bytes less or equal than 64K
3393   if (!is_committed) {
3394     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3395                           "cannot commit protection page");
3396   }
3397   // One cannot use os::guard_memory() here, as on Win32 guard page
3398   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3399   //
3400   // Pages in the region become guard pages. Any attempt to access a guard page
3401   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3402   // the guard page status. Guard pages thus act as a one-time access alarm.
3403   bool ret;
3404   if (UseNUMAInterleaving) {
3405     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3406     // so we must protect the chunks individually.
3407     ret = protect_pages_individually(addr, bytes, p, &old_status);
3408   } else {
3409     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3410   }
3411 #ifdef ASSERT
3412   if (!ret) {
3413     int err = os::get_last_error();
3414     char buf[256];
3415     size_t buf_len = os::lasterror(buf, sizeof(buf));
3416     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3417           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3418           buf_len != 0 ? buf : "<no_error_string>", err);
3419   }
3420 #endif
3421   return ret;
3422 }
3423 
3424 bool os::guard_memory(char* addr, size_t bytes) {
3425   DWORD old_status;
3426   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3427 }
3428 
3429 bool os::unguard_memory(char* addr, size_t bytes) {
3430   DWORD old_status;
3431   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3432 }
3433 
3434 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3435 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3436 void os::numa_make_global(char *addr, size_t bytes)    { }
3437 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3438 bool os::numa_topology_changed()                       { return false; }
3439 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3440 int os::numa_get_group_id()                            { return 0; }
3441 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3442   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3443     // Provide an answer for UMA systems
3444     ids[0] = 0;
3445     return 1;
3446   } else {
3447     // check for size bigger than actual groups_num
3448     size = MIN2(size, numa_get_groups_num());
3449     for (int i = 0; i < (int)size; i++) {
3450       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3451     }
3452     return size;
3453   }
3454 }
3455 
3456 bool os::get_page_info(char *start, page_info* info) {
3457   return false;
3458 }
3459 
3460 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3461                      page_info* page_found) {
3462   return end;
3463 }
3464 
3465 char* os::non_memory_address_word() {
3466   // Must never look like an address returned by reserve_memory,
3467   // even in its subfields (as defined by the CPU immediate fields,
3468   // if the CPU splits constants across multiple instructions).
3469   return (char*)-1;
3470 }
3471 
3472 #define MAX_ERROR_COUNT 100
3473 #define SYS_THREAD_ERROR 0xffffffffUL
3474 
3475 void os::pd_start_thread(Thread* thread) {
3476   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3477   // Returns previous suspend state:
3478   // 0:  Thread was not suspended
3479   // 1:  Thread is running now
3480   // >1: Thread is still suspended.
3481   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3482 }
3483 
3484 class HighResolutionInterval : public CHeapObj<mtThread> {
3485   // The default timer resolution seems to be 10 milliseconds.
3486   // (Where is this written down?)
3487   // If someone wants to sleep for only a fraction of the default,
3488   // then we set the timer resolution down to 1 millisecond for
3489   // the duration of their interval.
3490   // We carefully set the resolution back, since otherwise we
3491   // seem to incur an overhead (3%?) that we don't need.
3492   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3493   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3494   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3495   // timeBeginPeriod() if the relative error exceeded some threshold.
3496   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3497   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3498   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3499   // resolution timers running.
3500  private:
3501   jlong resolution;
3502  public:
3503   HighResolutionInterval(jlong ms) {
3504     resolution = ms % 10L;
3505     if (resolution != 0) {
3506       MMRESULT result = timeBeginPeriod(1L);
3507     }
3508   }
3509   ~HighResolutionInterval() {
3510     if (resolution != 0) {
3511       MMRESULT result = timeEndPeriod(1L);
3512     }
3513     resolution = 0L;
3514   }
3515 };
3516 
3517 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3518   jlong limit = (jlong) MAXDWORD;
3519 
3520   while (ms > limit) {
3521     int res;
3522     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3523       return res;
3524     }
3525     ms -= limit;
3526   }
3527 
3528   assert(thread == Thread::current(), "thread consistency check");
3529   OSThread* osthread = thread->osthread();
3530   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3531   int result;
3532   if (interruptable) {
3533     assert(thread->is_Java_thread(), "must be java thread");
3534     JavaThread *jt = (JavaThread *) thread;
3535     ThreadBlockInVM tbivm(jt);
3536 
3537     jt->set_suspend_equivalent();
3538     // cleared by handle_special_suspend_equivalent_condition() or
3539     // java_suspend_self() via check_and_wait_while_suspended()
3540 
3541     HANDLE events[1];
3542     events[0] = osthread->interrupt_event();
3543     HighResolutionInterval *phri=NULL;
3544     if (!ForceTimeHighResolution) {
3545       phri = new HighResolutionInterval(ms);
3546     }
3547     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3548       result = OS_TIMEOUT;
3549     } else {
3550       ResetEvent(osthread->interrupt_event());
3551       osthread->set_interrupted(false);
3552       result = OS_INTRPT;
3553     }
3554     delete phri; //if it is NULL, harmless
3555 
3556     // were we externally suspended while we were waiting?
3557     jt->check_and_wait_while_suspended();
3558   } else {
3559     assert(!thread->is_Java_thread(), "must not be java thread");
3560     Sleep((long) ms);
3561     result = OS_TIMEOUT;
3562   }
3563   return result;
3564 }
3565 
3566 // Short sleep, direct OS call.
3567 //
3568 // ms = 0, means allow others (if any) to run.
3569 //
3570 void os::naked_short_sleep(jlong ms) {
3571   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3572   Sleep(ms);
3573 }
3574 
3575 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3576 void os::infinite_sleep() {
3577   while (true) {    // sleep forever ...
3578     Sleep(100000);  // ... 100 seconds at a time
3579   }
3580 }
3581 
3582 typedef BOOL (WINAPI * STTSignature)(void);
3583 
3584 void os::naked_yield() {
3585   // Consider passing back the return value from SwitchToThread().
3586   SwitchToThread();
3587 }
3588 
3589 // Win32 only gives you access to seven real priorities at a time,
3590 // so we compress Java's ten down to seven.  It would be better
3591 // if we dynamically adjusted relative priorities.
3592 
3593 int os::java_to_os_priority[CriticalPriority + 1] = {
3594   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3595   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3596   THREAD_PRIORITY_LOWEST,                       // 2
3597   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3598   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3599   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3600   THREAD_PRIORITY_NORMAL,                       // 6
3601   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3602   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3603   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3604   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3605   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3606 };
3607 
3608 int prio_policy1[CriticalPriority + 1] = {
3609   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3610   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3611   THREAD_PRIORITY_LOWEST,                       // 2
3612   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3613   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3614   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3615   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3616   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3617   THREAD_PRIORITY_HIGHEST,                      // 8
3618   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3619   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3620   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3621 };
3622 
3623 static int prio_init() {
3624   // If ThreadPriorityPolicy is 1, switch tables
3625   if (ThreadPriorityPolicy == 1) {
3626     int i;
3627     for (i = 0; i < CriticalPriority + 1; i++) {
3628       os::java_to_os_priority[i] = prio_policy1[i];
3629     }
3630   }
3631   if (UseCriticalJavaThreadPriority) {
3632     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3633   }
3634   return 0;
3635 }
3636 
3637 OSReturn os::set_native_priority(Thread* thread, int priority) {
3638   if (!UseThreadPriorities) return OS_OK;
3639   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3640   return ret ? OS_OK : OS_ERR;
3641 }
3642 
3643 OSReturn os::get_native_priority(const Thread* const thread,
3644                                  int* priority_ptr) {
3645   if (!UseThreadPriorities) {
3646     *priority_ptr = java_to_os_priority[NormPriority];
3647     return OS_OK;
3648   }
3649   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3650   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3651     assert(false, "GetThreadPriority failed");
3652     return OS_ERR;
3653   }
3654   *priority_ptr = os_prio;
3655   return OS_OK;
3656 }
3657 
3658 
3659 // Hint to the underlying OS that a task switch would not be good.
3660 // Void return because it's a hint and can fail.
3661 void os::hint_no_preempt() {}
3662 
3663 void os::interrupt(Thread* thread) {
3664   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3665          Threads_lock->owned_by_self(),
3666          "possibility of dangling Thread pointer");
3667 
3668   OSThread* osthread = thread->osthread();
3669   osthread->set_interrupted(true);
3670   // More than one thread can get here with the same value of osthread,
3671   // resulting in multiple notifications.  We do, however, want the store
3672   // to interrupted() to be visible to other threads before we post
3673   // the interrupt event.
3674   OrderAccess::release();
3675   SetEvent(osthread->interrupt_event());
3676   // For JSR166:  unpark after setting status
3677   if (thread->is_Java_thread()) {
3678     ((JavaThread*)thread)->parker()->unpark();
3679   }
3680 
3681   ParkEvent * ev = thread->_ParkEvent;
3682   if (ev != NULL) ev->unpark();
3683 }
3684 
3685 
3686 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3687   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3688          "possibility of dangling Thread pointer");
3689 
3690   OSThread* osthread = thread->osthread();
3691   // There is no synchronization between the setting of the interrupt
3692   // and it being cleared here. It is critical - see 6535709 - that
3693   // we only clear the interrupt state, and reset the interrupt event,
3694   // if we are going to report that we were indeed interrupted - else
3695   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3696   // depending on the timing. By checking thread interrupt event to see
3697   // if the thread gets real interrupt thus prevent spurious wakeup.
3698   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3699   if (interrupted && clear_interrupted) {
3700     osthread->set_interrupted(false);
3701     ResetEvent(osthread->interrupt_event());
3702   } // Otherwise leave the interrupted state alone
3703 
3704   return interrupted;
3705 }
3706 
3707 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3708 ExtendedPC os::get_thread_pc(Thread* thread) {
3709   CONTEXT context;
3710   context.ContextFlags = CONTEXT_CONTROL;
3711   HANDLE handle = thread->osthread()->thread_handle();
3712 #ifdef _M_IA64
3713   assert(0, "Fix get_thread_pc");
3714   return ExtendedPC(NULL);
3715 #else
3716   if (GetThreadContext(handle, &context)) {
3717 #ifdef _M_AMD64
3718     return ExtendedPC((address) context.Rip);
3719 #else
3720     return ExtendedPC((address) context.Eip);
3721 #endif
3722   } else {
3723     return ExtendedPC(NULL);
3724   }
3725 #endif
3726 }
3727 
3728 // GetCurrentThreadId() returns DWORD
3729 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3730 
3731 static int _initial_pid = 0;
3732 
3733 int os::current_process_id() {
3734   return (_initial_pid ? _initial_pid : _getpid());
3735 }
3736 
3737 int    os::win32::_vm_page_size              = 0;
3738 int    os::win32::_vm_allocation_granularity = 0;
3739 int    os::win32::_processor_type            = 0;
3740 // Processor level is not available on non-NT systems, use vm_version instead
3741 int    os::win32::_processor_level           = 0;
3742 julong os::win32::_physical_memory           = 0;
3743 size_t os::win32::_default_stack_size        = 0;
3744 
3745 intx          os::win32::_os_thread_limit    = 0;
3746 volatile intx os::win32::_os_thread_count    = 0;
3747 
3748 bool   os::win32::_is_windows_server         = false;
3749 
3750 // 6573254
3751 // Currently, the bug is observed across all the supported Windows releases,
3752 // including the latest one (as of this writing - Windows Server 2012 R2)
3753 bool   os::win32::_has_exit_bug              = true;
3754 
3755 void os::win32::initialize_system_info() {
3756   SYSTEM_INFO si;
3757   GetSystemInfo(&si);
3758   _vm_page_size    = si.dwPageSize;
3759   _vm_allocation_granularity = si.dwAllocationGranularity;
3760   _processor_type  = si.dwProcessorType;
3761   _processor_level = si.wProcessorLevel;
3762   set_processor_count(si.dwNumberOfProcessors);
3763 
3764   MEMORYSTATUSEX ms;
3765   ms.dwLength = sizeof(ms);
3766 
3767   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3768   // dwMemoryLoad (% of memory in use)
3769   GlobalMemoryStatusEx(&ms);
3770   _physical_memory = ms.ullTotalPhys;
3771 
3772   OSVERSIONINFOEX oi;
3773   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3774   GetVersionEx((OSVERSIONINFO*)&oi);
3775   switch (oi.dwPlatformId) {
3776   case VER_PLATFORM_WIN32_NT:
3777     {
3778       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3779       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3780           oi.wProductType == VER_NT_SERVER) {
3781         _is_windows_server = true;
3782       }
3783     }
3784     break;
3785   default: fatal("Unknown platform");
3786   }
3787 
3788   _default_stack_size = os::current_stack_size();
3789   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3790   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3791          "stack size not a multiple of page size");
3792 
3793   initialize_performance_counter();
3794 }
3795 
3796 
3797 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3798                                       int ebuflen) {
3799   char path[MAX_PATH];
3800   DWORD size;
3801   DWORD pathLen = (DWORD)sizeof(path);
3802   HINSTANCE result = NULL;
3803 
3804   // only allow library name without path component
3805   assert(strchr(name, '\\') == NULL, "path not allowed");
3806   assert(strchr(name, ':') == NULL, "path not allowed");
3807   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3808     jio_snprintf(ebuf, ebuflen,
3809                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3810     return NULL;
3811   }
3812 
3813   // search system directory
3814   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3815     if (size >= pathLen) {
3816       return NULL; // truncated
3817     }
3818     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3819       return NULL; // truncated
3820     }
3821     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3822       return result;
3823     }
3824   }
3825 
3826   // try Windows directory
3827   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3828     if (size >= pathLen) {
3829       return NULL; // truncated
3830     }
3831     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3832       return NULL; // truncated
3833     }
3834     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3835       return result;
3836     }
3837   }
3838 
3839   jio_snprintf(ebuf, ebuflen,
3840                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3841   return NULL;
3842 }
3843 
3844 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3845 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3846 
3847 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3848   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3849   return TRUE;
3850 }
3851 
3852 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3853   // Basic approach:
3854   //  - Each exiting thread registers its intent to exit and then does so.
3855   //  - A thread trying to terminate the process must wait for all
3856   //    threads currently exiting to complete their exit.
3857 
3858   if (os::win32::has_exit_bug()) {
3859     // The array holds handles of the threads that have started exiting by calling
3860     // _endthreadex().
3861     // Should be large enough to avoid blocking the exiting thread due to lack of
3862     // a free slot.
3863     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3864     static int handle_count = 0;
3865 
3866     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3867     static CRITICAL_SECTION crit_sect;
3868     static volatile jint process_exiting = 0;
3869     int i, j;
3870     DWORD res;
3871     HANDLE hproc, hthr;
3872 
3873     // The first thread that reached this point, initializes the critical section.
3874     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3875       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3876     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3877       if (what != EPT_THREAD) {
3878         // Atomically set process_exiting before the critical section
3879         // to increase the visibility between racing threads.
3880         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3881       }
3882       EnterCriticalSection(&crit_sect);
3883 
3884       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3885         // Remove from the array those handles of the threads that have completed exiting.
3886         for (i = 0, j = 0; i < handle_count; ++i) {
3887           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3888           if (res == WAIT_TIMEOUT) {
3889             handles[j++] = handles[i];
3890           } else {
3891             if (res == WAIT_FAILED) {
3892               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3893                       GetLastError(), __FILE__, __LINE__);
3894             }
3895             // Don't keep the handle, if we failed waiting for it.
3896             CloseHandle(handles[i]);
3897           }
3898         }
3899 
3900         // If there's no free slot in the array of the kept handles, we'll have to
3901         // wait until at least one thread completes exiting.
3902         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3903           // Raise the priority of the oldest exiting thread to increase its chances
3904           // to complete sooner.
3905           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3906           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3907           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3908             i = (res - WAIT_OBJECT_0);
3909             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3910             for (; i < handle_count; ++i) {
3911               handles[i] = handles[i + 1];
3912             }
3913           } else {
3914             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3915                     (res == WAIT_FAILED ? "failed" : "timed out"),
3916                     GetLastError(), __FILE__, __LINE__);
3917             // Don't keep handles, if we failed waiting for them.
3918             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3919               CloseHandle(handles[i]);
3920             }
3921             handle_count = 0;
3922           }
3923         }
3924 
3925         // Store a duplicate of the current thread handle in the array of handles.
3926         hproc = GetCurrentProcess();
3927         hthr = GetCurrentThread();
3928         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3929                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3930           warning("DuplicateHandle failed (%u) in %s: %d\n",
3931                   GetLastError(), __FILE__, __LINE__);
3932         } else {
3933           ++handle_count;
3934         }
3935 
3936         // The current exiting thread has stored its handle in the array, and now
3937         // should leave the critical section before calling _endthreadex().
3938 
3939       } else if (what != EPT_THREAD && handle_count > 0) {
3940         jlong start_time, finish_time, timeout_left;
3941         // Before ending the process, make sure all the threads that had called
3942         // _endthreadex() completed.
3943 
3944         // Set the priority level of the current thread to the same value as
3945         // the priority level of exiting threads.
3946         // This is to ensure it will be given a fair chance to execute if
3947         // the timeout expires.
3948         hthr = GetCurrentThread();
3949         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3950         start_time = os::javaTimeNanos();
3951         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3952         for (i = 0; ; ) {
3953           int portion_count = handle_count - i;
3954           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3955             portion_count = MAXIMUM_WAIT_OBJECTS;
3956           }
3957           for (j = 0; j < portion_count; ++j) {
3958             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3959           }
3960           timeout_left = (finish_time - start_time) / 1000000L;
3961           if (timeout_left < 0) {
3962             timeout_left = 0;
3963           }
3964           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3965           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3966             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3967                     (res == WAIT_FAILED ? "failed" : "timed out"),
3968                     GetLastError(), __FILE__, __LINE__);
3969             // Reset portion_count so we close the remaining
3970             // handles due to this error.
3971             portion_count = handle_count - i;
3972           }
3973           for (j = 0; j < portion_count; ++j) {
3974             CloseHandle(handles[i + j]);
3975           }
3976           if ((i += portion_count) >= handle_count) {
3977             break;
3978           }
3979           start_time = os::javaTimeNanos();
3980         }
3981         handle_count = 0;
3982       }
3983 
3984       LeaveCriticalSection(&crit_sect);
3985     }
3986 
3987     if (OrderAccess::load_acquire(&process_exiting) != 0 &&
3988         process_exiting != (jint)GetCurrentThreadId()) {
3989       // Some other thread is about to call exit(), so we
3990       // don't let the current thread proceed to exit() or _endthreadex()
3991       while (true) {
3992         SuspendThread(GetCurrentThread());
3993         // Avoid busy-wait loop, if SuspendThread() failed.
3994         Sleep(EXIT_TIMEOUT);
3995       }
3996     }
3997   }
3998 
3999   // We are here if either
4000   // - there's no 'race at exit' bug on this OS release;
4001   // - initialization of the critical section failed (unlikely);
4002   // - the current thread has stored its handle and left the critical section;
4003   // - the process-exiting thread has raised the flag and left the critical section.
4004   if (what == EPT_THREAD) {
4005     _endthreadex((unsigned)exit_code);
4006   } else if (what == EPT_PROCESS) {
4007     ::exit(exit_code);
4008   } else {
4009     _exit(exit_code);
4010   }
4011 
4012   // Should not reach here
4013   return exit_code;
4014 }
4015 
4016 #undef EXIT_TIMEOUT
4017 
4018 void os::win32::setmode_streams() {
4019   _setmode(_fileno(stdin), _O_BINARY);
4020   _setmode(_fileno(stdout), _O_BINARY);
4021   _setmode(_fileno(stderr), _O_BINARY);
4022 }
4023 
4024 
4025 bool os::is_debugger_attached() {
4026   return IsDebuggerPresent() ? true : false;
4027 }
4028 
4029 
4030 void os::wait_for_keypress_at_exit(void) {
4031   if (PauseAtExit) {
4032     fprintf(stderr, "Press any key to continue...\n");
4033     fgetc(stdin);
4034   }
4035 }
4036 
4037 
4038 bool os::message_box(const char* title, const char* message) {
4039   int result = MessageBox(NULL, message, title,
4040                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4041   return result == IDYES;
4042 }
4043 
4044 #ifndef PRODUCT
4045 #ifndef _WIN64
4046 // Helpers to check whether NX protection is enabled
4047 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4048   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4049       pex->ExceptionRecord->NumberParameters > 0 &&
4050       pex->ExceptionRecord->ExceptionInformation[0] ==
4051       EXCEPTION_INFO_EXEC_VIOLATION) {
4052     return EXCEPTION_EXECUTE_HANDLER;
4053   }
4054   return EXCEPTION_CONTINUE_SEARCH;
4055 }
4056 
4057 void nx_check_protection() {
4058   // If NX is enabled we'll get an exception calling into code on the stack
4059   char code[] = { (char)0xC3 }; // ret
4060   void *code_ptr = (void *)code;
4061   __try {
4062     __asm call code_ptr
4063   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4064     tty->print_raw_cr("NX protection detected.");
4065   }
4066 }
4067 #endif // _WIN64
4068 #endif // PRODUCT
4069 
4070 // This is called _before_ the global arguments have been parsed
4071 void os::init(void) {
4072   _initial_pid = _getpid();
4073 
4074   init_random(1234567);
4075 
4076   win32::initialize_system_info();
4077   win32::setmode_streams();
4078   init_page_sizes((size_t) win32::vm_page_size());
4079 
4080   // This may be overridden later when argument processing is done.
4081   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4082 
4083   // Initialize main_process and main_thread
4084   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4085   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4086                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4087     fatal("DuplicateHandle failed\n");
4088   }
4089   main_thread_id = (int) GetCurrentThreadId();
4090 
4091   // initialize fast thread access - only used for 32-bit
4092   win32::initialize_thread_ptr_offset();
4093 }
4094 
4095 // To install functions for atexit processing
4096 extern "C" {
4097   static void perfMemory_exit_helper() {
4098     perfMemory_exit();
4099   }
4100 }
4101 
4102 static jint initSock();
4103 
4104 // this is called _after_ the global arguments have been parsed
4105 jint os::init_2(void) {
4106   // Allocate a single page and mark it as readable for safepoint polling
4107   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4108   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4109 
4110   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4111   guarantee(return_page != NULL, "Commit Failed for polling page");
4112 
4113   os::set_polling_page(polling_page);
4114   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4115 
4116   if (!UseMembar) {
4117     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4118     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4119 
4120     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4121     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4122 
4123     os::set_memory_serialize_page(mem_serialize_page);
4124     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4125   }
4126 
4127   // Setup Windows Exceptions
4128 
4129   // for debugging float code generation bugs
4130   if (ForceFloatExceptions) {
4131 #ifndef  _WIN64
4132     static long fp_control_word = 0;
4133     __asm { fstcw fp_control_word }
4134     // see Intel PPro Manual, Vol. 2, p 7-16
4135     const long precision = 0x20;
4136     const long underflow = 0x10;
4137     const long overflow  = 0x08;
4138     const long zero_div  = 0x04;
4139     const long denorm    = 0x02;
4140     const long invalid   = 0x01;
4141     fp_control_word |= invalid;
4142     __asm { fldcw fp_control_word }
4143 #endif
4144   }
4145 
4146   // If stack_commit_size is 0, windows will reserve the default size,
4147   // but only commit a small portion of it.
4148   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4149   size_t default_reserve_size = os::win32::default_stack_size();
4150   size_t actual_reserve_size = stack_commit_size;
4151   if (stack_commit_size < default_reserve_size) {
4152     // If stack_commit_size == 0, we want this too
4153     actual_reserve_size = default_reserve_size;
4154   }
4155 
4156   // Check minimum allowable stack size for thread creation and to initialize
4157   // the java system classes, including StackOverflowError - depends on page
4158   // size.  Add a page for compiler2 recursion in main thread.
4159   // Add in 2*BytesPerWord times page size to account for VM stack during
4160   // class initialization depending on 32 or 64 bit VM.
4161   size_t min_stack_allowed =
4162             (size_t)(JavaThread::stack_yellow_zone_size() + JavaThread::stack_red_zone_size() +
4163                      JavaThread::stack_shadow_zone_size() +
4164                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size());
4165   if (actual_reserve_size < min_stack_allowed) {
4166     tty->print_cr("\nThe stack size specified is too small, "
4167                   "Specify at least %dk",
4168                   min_stack_allowed / K);
4169     return JNI_ERR;
4170   }
4171 
4172   JavaThread::set_stack_size_at_create(stack_commit_size);
4173 
4174   // Calculate theoretical max. size of Threads to guard gainst artifical
4175   // out-of-memory situations, where all available address-space has been
4176   // reserved by thread stacks.
4177   assert(actual_reserve_size != 0, "Must have a stack");
4178 
4179   // Calculate the thread limit when we should start doing Virtual Memory
4180   // banging. Currently when the threads will have used all but 200Mb of space.
4181   //
4182   // TODO: consider performing a similar calculation for commit size instead
4183   // as reserve size, since on a 64-bit platform we'll run into that more
4184   // often than running out of virtual memory space.  We can use the
4185   // lower value of the two calculations as the os_thread_limit.
4186   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4187   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4188 
4189   // at exit methods are called in the reverse order of their registration.
4190   // there is no limit to the number of functions registered. atexit does
4191   // not set errno.
4192 
4193   if (PerfAllowAtExitRegistration) {
4194     // only register atexit functions if PerfAllowAtExitRegistration is set.
4195     // atexit functions can be delayed until process exit time, which
4196     // can be problematic for embedded VM situations. Embedded VMs should
4197     // call DestroyJavaVM() to assure that VM resources are released.
4198 
4199     // note: perfMemory_exit_helper atexit function may be removed in
4200     // the future if the appropriate cleanup code can be added to the
4201     // VM_Exit VMOperation's doit method.
4202     if (atexit(perfMemory_exit_helper) != 0) {
4203       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4204     }
4205   }
4206 
4207 #ifndef _WIN64
4208   // Print something if NX is enabled (win32 on AMD64)
4209   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4210 #endif
4211 
4212   // initialize thread priority policy
4213   prio_init();
4214 
4215   if (UseNUMA && !ForceNUMA) {
4216     UseNUMA = false; // We don't fully support this yet
4217   }
4218 
4219   if (UseNUMAInterleaving) {
4220     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4221     bool success = numa_interleaving_init();
4222     if (!success) UseNUMAInterleaving = false;
4223   }
4224 
4225   if (initSock() != JNI_OK) {
4226     return JNI_ERR;
4227   }
4228 
4229   return JNI_OK;
4230 }
4231 
4232 // Mark the polling page as unreadable
4233 void os::make_polling_page_unreadable(void) {
4234   DWORD old_status;
4235   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4236                       PAGE_NOACCESS, &old_status)) {
4237     fatal("Could not disable polling page");
4238   }
4239 }
4240 
4241 // Mark the polling page as readable
4242 void os::make_polling_page_readable(void) {
4243   DWORD old_status;
4244   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4245                       PAGE_READONLY, &old_status)) {
4246     fatal("Could not enable polling page");
4247   }
4248 }
4249 
4250 
4251 int os::stat(const char *path, struct stat *sbuf) {
4252   char pathbuf[MAX_PATH];
4253   if (strlen(path) > MAX_PATH - 1) {
4254     errno = ENAMETOOLONG;
4255     return -1;
4256   }
4257   os::native_path(strcpy(pathbuf, path));
4258   int ret = ::stat(pathbuf, sbuf);
4259   if (sbuf != NULL && UseUTCFileTimestamp) {
4260     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4261     // the system timezone and so can return different values for the
4262     // same file if/when daylight savings time changes.  This adjustment
4263     // makes sure the same timestamp is returned regardless of the TZ.
4264     //
4265     // See:
4266     // http://msdn.microsoft.com/library/
4267     //   default.asp?url=/library/en-us/sysinfo/base/
4268     //   time_zone_information_str.asp
4269     // and
4270     // http://msdn.microsoft.com/library/default.asp?url=
4271     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4272     //
4273     // NOTE: there is a insidious bug here:  If the timezone is changed
4274     // after the call to stat() but before 'GetTimeZoneInformation()', then
4275     // the adjustment we do here will be wrong and we'll return the wrong
4276     // value (which will likely end up creating an invalid class data
4277     // archive).  Absent a better API for this, or some time zone locking
4278     // mechanism, we'll have to live with this risk.
4279     TIME_ZONE_INFORMATION tz;
4280     DWORD tzid = GetTimeZoneInformation(&tz);
4281     int daylightBias =
4282       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4283     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4284   }
4285   return ret;
4286 }
4287 
4288 
4289 #define FT2INT64(ft) \
4290   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4291 
4292 
4293 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4294 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4295 // of a thread.
4296 //
4297 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4298 // the fast estimate available on the platform.
4299 
4300 // current_thread_cpu_time() is not optimized for Windows yet
4301 jlong os::current_thread_cpu_time() {
4302   // return user + sys since the cost is the same
4303   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4304 }
4305 
4306 jlong os::thread_cpu_time(Thread* thread) {
4307   // consistent with what current_thread_cpu_time() returns.
4308   return os::thread_cpu_time(thread, true /* user+sys */);
4309 }
4310 
4311 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4312   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4313 }
4314 
4315 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4316   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4317   // If this function changes, os::is_thread_cpu_time_supported() should too
4318   FILETIME CreationTime;
4319   FILETIME ExitTime;
4320   FILETIME KernelTime;
4321   FILETIME UserTime;
4322 
4323   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4324                       &ExitTime, &KernelTime, &UserTime) == 0) {
4325     return -1;
4326   } else if (user_sys_cpu_time) {
4327     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4328   } else {
4329     return FT2INT64(UserTime) * 100;
4330   }
4331 }
4332 
4333 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4334   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4335   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4336   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4337   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4338 }
4339 
4340 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4341   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4342   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4343   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4344   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4345 }
4346 
4347 bool os::is_thread_cpu_time_supported() {
4348   // see os::thread_cpu_time
4349   FILETIME CreationTime;
4350   FILETIME ExitTime;
4351   FILETIME KernelTime;
4352   FILETIME UserTime;
4353 
4354   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4355                       &KernelTime, &UserTime) == 0) {
4356     return false;
4357   } else {
4358     return true;
4359   }
4360 }
4361 
4362 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4363 // It does have primitives (PDH API) to get CPU usage and run queue length.
4364 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4365 // If we wanted to implement loadavg on Windows, we have a few options:
4366 //
4367 // a) Query CPU usage and run queue length and "fake" an answer by
4368 //    returning the CPU usage if it's under 100%, and the run queue
4369 //    length otherwise.  It turns out that querying is pretty slow
4370 //    on Windows, on the order of 200 microseconds on a fast machine.
4371 //    Note that on the Windows the CPU usage value is the % usage
4372 //    since the last time the API was called (and the first call
4373 //    returns 100%), so we'd have to deal with that as well.
4374 //
4375 // b) Sample the "fake" answer using a sampling thread and store
4376 //    the answer in a global variable.  The call to loadavg would
4377 //    just return the value of the global, avoiding the slow query.
4378 //
4379 // c) Sample a better answer using exponential decay to smooth the
4380 //    value.  This is basically the algorithm used by UNIX kernels.
4381 //
4382 // Note that sampling thread starvation could affect both (b) and (c).
4383 int os::loadavg(double loadavg[], int nelem) {
4384   return -1;
4385 }
4386 
4387 
4388 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4389 bool os::dont_yield() {
4390   return DontYieldALot;
4391 }
4392 
4393 // This method is a slightly reworked copy of JDK's sysOpen
4394 // from src/windows/hpi/src/sys_api_md.c
4395 
4396 int os::open(const char *path, int oflag, int mode) {
4397   char pathbuf[MAX_PATH];
4398 
4399   if (strlen(path) > MAX_PATH - 1) {
4400     errno = ENAMETOOLONG;
4401     return -1;
4402   }
4403   os::native_path(strcpy(pathbuf, path));
4404   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4405 }
4406 
4407 FILE* os::open(int fd, const char* mode) {
4408   return ::_fdopen(fd, mode);
4409 }
4410 
4411 // Is a (classpath) directory empty?
4412 bool os::dir_is_empty(const char* path) {
4413   WIN32_FIND_DATA fd;
4414   HANDLE f = FindFirstFile(path, &fd);
4415   if (f == INVALID_HANDLE_VALUE) {
4416     return true;
4417   }
4418   FindClose(f);
4419   return false;
4420 }
4421 
4422 // create binary file, rewriting existing file if required
4423 int os::create_binary_file(const char* path, bool rewrite_existing) {
4424   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4425   if (!rewrite_existing) {
4426     oflags |= _O_EXCL;
4427   }
4428   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4429 }
4430 
4431 // return current position of file pointer
4432 jlong os::current_file_offset(int fd) {
4433   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4434 }
4435 
4436 // move file pointer to the specified offset
4437 jlong os::seek_to_file_offset(int fd, jlong offset) {
4438   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4439 }
4440 
4441 
4442 jlong os::lseek(int fd, jlong offset, int whence) {
4443   return (jlong) ::_lseeki64(fd, offset, whence);
4444 }
4445 
4446 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4447   OVERLAPPED ov;
4448   DWORD nread;
4449   BOOL result;
4450 
4451   ZeroMemory(&ov, sizeof(ov));
4452   ov.Offset = (DWORD)offset;
4453   ov.OffsetHigh = (DWORD)(offset >> 32);
4454 
4455   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4456 
4457   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4458 
4459   return result ? nread : 0;
4460 }
4461 
4462 
4463 // This method is a slightly reworked copy of JDK's sysNativePath
4464 // from src/windows/hpi/src/path_md.c
4465 
4466 // Convert a pathname to native format.  On win32, this involves forcing all
4467 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4468 // sometimes rejects '/') and removing redundant separators.  The input path is
4469 // assumed to have been converted into the character encoding used by the local
4470 // system.  Because this might be a double-byte encoding, care is taken to
4471 // treat double-byte lead characters correctly.
4472 //
4473 // This procedure modifies the given path in place, as the result is never
4474 // longer than the original.  There is no error return; this operation always
4475 // succeeds.
4476 char * os::native_path(char *path) {
4477   char *src = path, *dst = path, *end = path;
4478   char *colon = NULL;  // If a drive specifier is found, this will
4479                        // point to the colon following the drive letter
4480 
4481   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4482   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4483           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4484 
4485   // Check for leading separators
4486 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4487   while (isfilesep(*src)) {
4488     src++;
4489   }
4490 
4491   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4492     // Remove leading separators if followed by drive specifier.  This
4493     // hack is necessary to support file URLs containing drive
4494     // specifiers (e.g., "file://c:/path").  As a side effect,
4495     // "/c:/path" can be used as an alternative to "c:/path".
4496     *dst++ = *src++;
4497     colon = dst;
4498     *dst++ = ':';
4499     src++;
4500   } else {
4501     src = path;
4502     if (isfilesep(src[0]) && isfilesep(src[1])) {
4503       // UNC pathname: Retain first separator; leave src pointed at
4504       // second separator so that further separators will be collapsed
4505       // into the second separator.  The result will be a pathname
4506       // beginning with "\\\\" followed (most likely) by a host name.
4507       src = dst = path + 1;
4508       path[0] = '\\';     // Force first separator to '\\'
4509     }
4510   }
4511 
4512   end = dst;
4513 
4514   // Remove redundant separators from remainder of path, forcing all
4515   // separators to be '\\' rather than '/'. Also, single byte space
4516   // characters are removed from the end of the path because those
4517   // are not legal ending characters on this operating system.
4518   //
4519   while (*src != '\0') {
4520     if (isfilesep(*src)) {
4521       *dst++ = '\\'; src++;
4522       while (isfilesep(*src)) src++;
4523       if (*src == '\0') {
4524         // Check for trailing separator
4525         end = dst;
4526         if (colon == dst - 2) break;  // "z:\\"
4527         if (dst == path + 1) break;   // "\\"
4528         if (dst == path + 2 && isfilesep(path[0])) {
4529           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4530           // beginning of a UNC pathname.  Even though it is not, by
4531           // itself, a valid UNC pathname, we leave it as is in order
4532           // to be consistent with the path canonicalizer as well
4533           // as the win32 APIs, which treat this case as an invalid
4534           // UNC pathname rather than as an alias for the root
4535           // directory of the current drive.
4536           break;
4537         }
4538         end = --dst;  // Path does not denote a root directory, so
4539                       // remove trailing separator
4540         break;
4541       }
4542       end = dst;
4543     } else {
4544       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4545         *dst++ = *src++;
4546         if (*src) *dst++ = *src++;
4547         end = dst;
4548       } else {  // Copy a single-byte character
4549         char c = *src++;
4550         *dst++ = c;
4551         // Space is not a legal ending character
4552         if (c != ' ') end = dst;
4553       }
4554     }
4555   }
4556 
4557   *end = '\0';
4558 
4559   // For "z:", add "." to work around a bug in the C runtime library
4560   if (colon == dst - 1) {
4561     path[2] = '.';
4562     path[3] = '\0';
4563   }
4564 
4565   return path;
4566 }
4567 
4568 // This code is a copy of JDK's sysSetLength
4569 // from src/windows/hpi/src/sys_api_md.c
4570 
4571 int os::ftruncate(int fd, jlong length) {
4572   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4573   long high = (long)(length >> 32);
4574   DWORD ret;
4575 
4576   if (h == (HANDLE)(-1)) {
4577     return -1;
4578   }
4579 
4580   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4581   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4582     return -1;
4583   }
4584 
4585   if (::SetEndOfFile(h) == FALSE) {
4586     return -1;
4587   }
4588 
4589   return 0;
4590 }
4591 
4592 
4593 // This code is a copy of JDK's sysSync
4594 // from src/windows/hpi/src/sys_api_md.c
4595 // except for the legacy workaround for a bug in Win 98
4596 
4597 int os::fsync(int fd) {
4598   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4599 
4600   if ((!::FlushFileBuffers(handle)) &&
4601       (GetLastError() != ERROR_ACCESS_DENIED)) {
4602     // from winerror.h
4603     return -1;
4604   }
4605   return 0;
4606 }
4607 
4608 static int nonSeekAvailable(int, long *);
4609 static int stdinAvailable(int, long *);
4610 
4611 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4612 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4613 
4614 // This code is a copy of JDK's sysAvailable
4615 // from src/windows/hpi/src/sys_api_md.c
4616 
4617 int os::available(int fd, jlong *bytes) {
4618   jlong cur, end;
4619   struct _stati64 stbuf64;
4620 
4621   if (::_fstati64(fd, &stbuf64) >= 0) {
4622     int mode = stbuf64.st_mode;
4623     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4624       int ret;
4625       long lpbytes;
4626       if (fd == 0) {
4627         ret = stdinAvailable(fd, &lpbytes);
4628       } else {
4629         ret = nonSeekAvailable(fd, &lpbytes);
4630       }
4631       (*bytes) = (jlong)(lpbytes);
4632       return ret;
4633     }
4634     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4635       return FALSE;
4636     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4637       return FALSE;
4638     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4639       return FALSE;
4640     }
4641     *bytes = end - cur;
4642     return TRUE;
4643   } else {
4644     return FALSE;
4645   }
4646 }
4647 
4648 // This code is a copy of JDK's nonSeekAvailable
4649 // from src/windows/hpi/src/sys_api_md.c
4650 
4651 static int nonSeekAvailable(int fd, long *pbytes) {
4652   // This is used for available on non-seekable devices
4653   // (like both named and anonymous pipes, such as pipes
4654   //  connected to an exec'd process).
4655   // Standard Input is a special case.
4656   HANDLE han;
4657 
4658   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4659     return FALSE;
4660   }
4661 
4662   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4663     // PeekNamedPipe fails when at EOF.  In that case we
4664     // simply make *pbytes = 0 which is consistent with the
4665     // behavior we get on Solaris when an fd is at EOF.
4666     // The only alternative is to raise an Exception,
4667     // which isn't really warranted.
4668     //
4669     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4670       return FALSE;
4671     }
4672     *pbytes = 0;
4673   }
4674   return TRUE;
4675 }
4676 
4677 #define MAX_INPUT_EVENTS 2000
4678 
4679 // This code is a copy of JDK's stdinAvailable
4680 // from src/windows/hpi/src/sys_api_md.c
4681 
4682 static int stdinAvailable(int fd, long *pbytes) {
4683   HANDLE han;
4684   DWORD numEventsRead = 0;  // Number of events read from buffer
4685   DWORD numEvents = 0;      // Number of events in buffer
4686   DWORD i = 0;              // Loop index
4687   DWORD curLength = 0;      // Position marker
4688   DWORD actualLength = 0;   // Number of bytes readable
4689   BOOL error = FALSE;       // Error holder
4690   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4691 
4692   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4693     return FALSE;
4694   }
4695 
4696   // Construct an array of input records in the console buffer
4697   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4698   if (error == 0) {
4699     return nonSeekAvailable(fd, pbytes);
4700   }
4701 
4702   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4703   if (numEvents > MAX_INPUT_EVENTS) {
4704     numEvents = MAX_INPUT_EVENTS;
4705   }
4706 
4707   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4708   if (lpBuffer == NULL) {
4709     return FALSE;
4710   }
4711 
4712   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4713   if (error == 0) {
4714     os::free(lpBuffer);
4715     return FALSE;
4716   }
4717 
4718   // Examine input records for the number of bytes available
4719   for (i=0; i<numEvents; i++) {
4720     if (lpBuffer[i].EventType == KEY_EVENT) {
4721 
4722       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4723                                       &(lpBuffer[i].Event);
4724       if (keyRecord->bKeyDown == TRUE) {
4725         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4726         curLength++;
4727         if (*keyPressed == '\r') {
4728           actualLength = curLength;
4729         }
4730       }
4731     }
4732   }
4733 
4734   if (lpBuffer != NULL) {
4735     os::free(lpBuffer);
4736   }
4737 
4738   *pbytes = (long) actualLength;
4739   return TRUE;
4740 }
4741 
4742 // Map a block of memory.
4743 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4744                         char *addr, size_t bytes, bool read_only,
4745                         bool allow_exec) {
4746   HANDLE hFile;
4747   char* base;
4748 
4749   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4750                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4751   if (hFile == NULL) {
4752     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4753     return NULL;
4754   }
4755 
4756   if (allow_exec) {
4757     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4758     // unless it comes from a PE image (which the shared archive is not.)
4759     // Even VirtualProtect refuses to give execute access to mapped memory
4760     // that was not previously executable.
4761     //
4762     // Instead, stick the executable region in anonymous memory.  Yuck.
4763     // Penalty is that ~4 pages will not be shareable - in the future
4764     // we might consider DLLizing the shared archive with a proper PE
4765     // header so that mapping executable + sharing is possible.
4766 
4767     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4768                                 PAGE_READWRITE);
4769     if (base == NULL) {
4770       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4771       CloseHandle(hFile);
4772       return NULL;
4773     }
4774 
4775     DWORD bytes_read;
4776     OVERLAPPED overlapped;
4777     overlapped.Offset = (DWORD)file_offset;
4778     overlapped.OffsetHigh = 0;
4779     overlapped.hEvent = NULL;
4780     // ReadFile guarantees that if the return value is true, the requested
4781     // number of bytes were read before returning.
4782     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4783     if (!res) {
4784       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4785       release_memory(base, bytes);
4786       CloseHandle(hFile);
4787       return NULL;
4788     }
4789   } else {
4790     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4791                                     NULL /* file_name */);
4792     if (hMap == NULL) {
4793       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4794       CloseHandle(hFile);
4795       return NULL;
4796     }
4797 
4798     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4799     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4800                                   (DWORD)bytes, addr);
4801     if (base == NULL) {
4802       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4803       CloseHandle(hMap);
4804       CloseHandle(hFile);
4805       return NULL;
4806     }
4807 
4808     if (CloseHandle(hMap) == 0) {
4809       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4810       CloseHandle(hFile);
4811       return base;
4812     }
4813   }
4814 
4815   if (allow_exec) {
4816     DWORD old_protect;
4817     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4818     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4819 
4820     if (!res) {
4821       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4822       // Don't consider this a hard error, on IA32 even if the
4823       // VirtualProtect fails, we should still be able to execute
4824       CloseHandle(hFile);
4825       return base;
4826     }
4827   }
4828 
4829   if (CloseHandle(hFile) == 0) {
4830     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4831     return base;
4832   }
4833 
4834   return base;
4835 }
4836 
4837 
4838 // Remap a block of memory.
4839 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4840                           char *addr, size_t bytes, bool read_only,
4841                           bool allow_exec) {
4842   // This OS does not allow existing memory maps to be remapped so we
4843   // have to unmap the memory before we remap it.
4844   if (!os::unmap_memory(addr, bytes)) {
4845     return NULL;
4846   }
4847 
4848   // There is a very small theoretical window between the unmap_memory()
4849   // call above and the map_memory() call below where a thread in native
4850   // code may be able to access an address that is no longer mapped.
4851 
4852   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4853                         read_only, allow_exec);
4854 }
4855 
4856 
4857 // Unmap a block of memory.
4858 // Returns true=success, otherwise false.
4859 
4860 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4861   MEMORY_BASIC_INFORMATION mem_info;
4862   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4863     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4864     return false;
4865   }
4866 
4867   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4868   // Instead, executable region was allocated using VirtualAlloc(). See
4869   // pd_map_memory() above.
4870   //
4871   // The following flags should match the 'exec_access' flages used for
4872   // VirtualProtect() in pd_map_memory().
4873   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4874       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4875     return pd_release_memory(addr, bytes);
4876   }
4877 
4878   BOOL result = UnmapViewOfFile(addr);
4879   if (result == 0) {
4880     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4881     return false;
4882   }
4883   return true;
4884 }
4885 
4886 void os::pause() {
4887   char filename[MAX_PATH];
4888   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4889     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4890   } else {
4891     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4892   }
4893 
4894   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4895   if (fd != -1) {
4896     struct stat buf;
4897     ::close(fd);
4898     while (::stat(filename, &buf) == 0) {
4899       Sleep(100);
4900     }
4901   } else {
4902     jio_fprintf(stderr,
4903                 "Could not open pause file '%s', continuing immediately.\n", filename);
4904   }
4905 }
4906 
4907 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4908   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4909 }
4910 
4911 // See the caveats for this class in os_windows.hpp
4912 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4913 // into this method and returns false. If no OS EXCEPTION was raised, returns
4914 // true.
4915 // The callback is supposed to provide the method that should be protected.
4916 //
4917 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4918   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4919   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4920          "crash_protection already set?");
4921 
4922   bool success = true;
4923   __try {
4924     WatcherThread::watcher_thread()->set_crash_protection(this);
4925     cb.call();
4926   } __except(EXCEPTION_EXECUTE_HANDLER) {
4927     // only for protection, nothing to do
4928     success = false;
4929   }
4930   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4931   return success;
4932 }
4933 
4934 // An Event wraps a win32 "CreateEvent" kernel handle.
4935 //
4936 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4937 //
4938 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4939 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4940 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4941 //     In addition, an unpark() operation might fetch the handle field, but the
4942 //     event could recycle between the fetch and the SetEvent() operation.
4943 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4944 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4945 //     on an stale but recycled handle would be harmless, but in practice this might
4946 //     confuse other non-Sun code, so it's not a viable approach.
4947 //
4948 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4949 //     with the Event.  The event handle is never closed.  This could be construed
4950 //     as handle leakage, but only up to the maximum # of threads that have been extant
4951 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4952 //     permit a process to have hundreds of thousands of open handles.
4953 //
4954 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4955 //     and release unused handles.
4956 //
4957 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4958 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4959 //
4960 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4961 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4962 //
4963 // We use (2).
4964 //
4965 // TODO-FIXME:
4966 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4967 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4968 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4969 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4970 //     into a single win32 CreateEvent() handle.
4971 //
4972 // Assumption:
4973 //    Only one parker can exist on an event, which is why we allocate
4974 //    them per-thread. Multiple unparkers can coexist.
4975 //
4976 // _Event transitions in park()
4977 //   -1 => -1 : illegal
4978 //    1 =>  0 : pass - return immediately
4979 //    0 => -1 : block; then set _Event to 0 before returning
4980 //
4981 // _Event transitions in unpark()
4982 //    0 => 1 : just return
4983 //    1 => 1 : just return
4984 //   -1 => either 0 or 1; must signal target thread
4985 //         That is, we can safely transition _Event from -1 to either
4986 //         0 or 1.
4987 //
4988 // _Event serves as a restricted-range semaphore.
4989 //   -1 : thread is blocked, i.e. there is a waiter
4990 //    0 : neutral: thread is running or ready,
4991 //        could have been signaled after a wait started
4992 //    1 : signaled - thread is running or ready
4993 //
4994 // Another possible encoding of _Event would be with
4995 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4996 //
4997 
4998 int os::PlatformEvent::park(jlong Millis) {
4999   // Transitions for _Event:
5000   //   -1 => -1 : illegal
5001   //    1 =>  0 : pass - return immediately
5002   //    0 => -1 : block; then set _Event to 0 before returning
5003 
5004   guarantee(_ParkHandle != NULL , "Invariant");
5005   guarantee(Millis > 0          , "Invariant");
5006 
5007   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5008   // the initial park() operation.
5009   // Consider: use atomic decrement instead of CAS-loop
5010 
5011   int v;
5012   for (;;) {
5013     v = _Event;
5014     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5015   }
5016   guarantee((v == 0) || (v == 1), "invariant");
5017   if (v != 0) return OS_OK;
5018 
5019   // Do this the hard way by blocking ...
5020   // TODO: consider a brief spin here, gated on the success of recent
5021   // spin attempts by this thread.
5022   //
5023   // We decompose long timeouts into series of shorter timed waits.
5024   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5025   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5026   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5027   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5028   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5029   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5030   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5031   // for the already waited time.  This policy does not admit any new outcomes.
5032   // In the future, however, we might want to track the accumulated wait time and
5033   // adjust Millis accordingly if we encounter a spurious wakeup.
5034 
5035   const int MAXTIMEOUT = 0x10000000;
5036   DWORD rv = WAIT_TIMEOUT;
5037   while (_Event < 0 && Millis > 0) {
5038     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5039     if (Millis > MAXTIMEOUT) {
5040       prd = MAXTIMEOUT;
5041     }
5042     rv = ::WaitForSingleObject(_ParkHandle, prd);
5043     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5044     if (rv == WAIT_TIMEOUT) {
5045       Millis -= prd;
5046     }
5047   }
5048   v = _Event;
5049   _Event = 0;
5050   // see comment at end of os::PlatformEvent::park() below:
5051   OrderAccess::fence();
5052   // If we encounter a nearly simultanous timeout expiry and unpark()
5053   // we return OS_OK indicating we awoke via unpark().
5054   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5055   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5056 }
5057 
5058 void os::PlatformEvent::park() {
5059   // Transitions for _Event:
5060   //   -1 => -1 : illegal
5061   //    1 =>  0 : pass - return immediately
5062   //    0 => -1 : block; then set _Event to 0 before returning
5063 
5064   guarantee(_ParkHandle != NULL, "Invariant");
5065   // Invariant: Only the thread associated with the Event/PlatformEvent
5066   // may call park().
5067   // Consider: use atomic decrement instead of CAS-loop
5068   int v;
5069   for (;;) {
5070     v = _Event;
5071     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5072   }
5073   guarantee((v == 0) || (v == 1), "invariant");
5074   if (v != 0) return;
5075 
5076   // Do this the hard way by blocking ...
5077   // TODO: consider a brief spin here, gated on the success of recent
5078   // spin attempts by this thread.
5079   while (_Event < 0) {
5080     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5081     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5082   }
5083 
5084   // Usually we'll find _Event == 0 at this point, but as
5085   // an optional optimization we clear it, just in case can
5086   // multiple unpark() operations drove _Event up to 1.
5087   _Event = 0;
5088   OrderAccess::fence();
5089   guarantee(_Event >= 0, "invariant");
5090 }
5091 
5092 void os::PlatformEvent::unpark() {
5093   guarantee(_ParkHandle != NULL, "Invariant");
5094 
5095   // Transitions for _Event:
5096   //    0 => 1 : just return
5097   //    1 => 1 : just return
5098   //   -1 => either 0 or 1; must signal target thread
5099   //         That is, we can safely transition _Event from -1 to either
5100   //         0 or 1.
5101   // See also: "Semaphores in Plan 9" by Mullender & Cox
5102   //
5103   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5104   // that it will take two back-to-back park() calls for the owning
5105   // thread to block. This has the benefit of forcing a spurious return
5106   // from the first park() call after an unpark() call which will help
5107   // shake out uses of park() and unpark() without condition variables.
5108 
5109   if (Atomic::xchg(1, &_Event) >= 0) return;
5110 
5111   ::SetEvent(_ParkHandle);
5112 }
5113 
5114 
5115 // JSR166
5116 // -------------------------------------------------------
5117 
5118 // The Windows implementation of Park is very straightforward: Basic
5119 // operations on Win32 Events turn out to have the right semantics to
5120 // use them directly. We opportunistically resuse the event inherited
5121 // from Monitor.
5122 
5123 void Parker::park(bool isAbsolute, jlong time) {
5124   guarantee(_ParkEvent != NULL, "invariant");
5125   // First, demultiplex/decode time arguments
5126   if (time < 0) { // don't wait
5127     return;
5128   } else if (time == 0 && !isAbsolute) {
5129     time = INFINITE;
5130   } else if (isAbsolute) {
5131     time -= os::javaTimeMillis(); // convert to relative time
5132     if (time <= 0) {  // already elapsed
5133       return;
5134     }
5135   } else { // relative
5136     time /= 1000000;  // Must coarsen from nanos to millis
5137     if (time == 0) {  // Wait for the minimal time unit if zero
5138       time = 1;
5139     }
5140   }
5141 
5142   JavaThread* thread = JavaThread::current();
5143 
5144   // Don't wait if interrupted or already triggered
5145   if (Thread::is_interrupted(thread, false) ||
5146       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5147     ResetEvent(_ParkEvent);
5148     return;
5149   } else {
5150     ThreadBlockInVM tbivm(thread);
5151     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5152     thread->set_suspend_equivalent();
5153 
5154     WaitForSingleObject(_ParkEvent, time);
5155     ResetEvent(_ParkEvent);
5156 
5157     // If externally suspended while waiting, re-suspend
5158     if (thread->handle_special_suspend_equivalent_condition()) {
5159       thread->java_suspend_self();
5160     }
5161   }
5162 }
5163 
5164 void Parker::unpark() {
5165   guarantee(_ParkEvent != NULL, "invariant");
5166   SetEvent(_ParkEvent);
5167 }
5168 
5169 // Run the specified command in a separate process. Return its exit value,
5170 // or -1 on failure (e.g. can't create a new process).
5171 int os::fork_and_exec(char* cmd) {
5172   STARTUPINFO si;
5173   PROCESS_INFORMATION pi;
5174 
5175   memset(&si, 0, sizeof(si));
5176   si.cb = sizeof(si);
5177   memset(&pi, 0, sizeof(pi));
5178   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5179                             cmd,    // command line
5180                             NULL,   // process security attribute
5181                             NULL,   // thread security attribute
5182                             TRUE,   // inherits system handles
5183                             0,      // no creation flags
5184                             NULL,   // use parent's environment block
5185                             NULL,   // use parent's starting directory
5186                             &si,    // (in) startup information
5187                             &pi);   // (out) process information
5188 
5189   if (rslt) {
5190     // Wait until child process exits.
5191     WaitForSingleObject(pi.hProcess, INFINITE);
5192 
5193     DWORD exit_code;
5194     GetExitCodeProcess(pi.hProcess, &exit_code);
5195 
5196     // Close process and thread handles.
5197     CloseHandle(pi.hProcess);
5198     CloseHandle(pi.hThread);
5199 
5200     return (int)exit_code;
5201   } else {
5202     return -1;
5203   }
5204 }
5205 
5206 //--------------------------------------------------------------------------------------------------
5207 // Non-product code
5208 
5209 static int mallocDebugIntervalCounter = 0;
5210 static int mallocDebugCounter = 0;
5211 bool os::check_heap(bool force) {
5212   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5213   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5214     // Note: HeapValidate executes two hardware breakpoints when it finds something
5215     // wrong; at these points, eax contains the address of the offending block (I think).
5216     // To get to the exlicit error message(s) below, just continue twice.
5217     //
5218     // Note:  we want to check the CRT heap, which is not necessarily located in the
5219     // process default heap.
5220     HANDLE heap = (HANDLE) _get_heap_handle();
5221     if (!heap) {
5222       return true;
5223     }
5224 
5225     // If we fail to lock the heap, then gflags.exe has been used
5226     // or some other special heap flag has been set that prevents
5227     // locking. We don't try to walk a heap we can't lock.
5228     if (HeapLock(heap) != 0) {
5229       PROCESS_HEAP_ENTRY phe;
5230       phe.lpData = NULL;
5231       while (HeapWalk(heap, &phe) != 0) {
5232         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5233             !HeapValidate(heap, 0, phe.lpData)) {
5234           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5235           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5236           HeapUnlock(heap);
5237           fatal("corrupted C heap");
5238         }
5239       }
5240       DWORD err = GetLastError();
5241       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5242         HeapUnlock(heap);
5243         fatal("heap walk aborted with error %d", err);
5244       }
5245       HeapUnlock(heap);
5246     }
5247     mallocDebugIntervalCounter = 0;
5248   }
5249   return true;
5250 }
5251 
5252 
5253 bool os::find(address addr, outputStream* st) {
5254   int offset = -1;
5255   bool result = false;
5256   char buf[256];
5257   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5258     st->print(PTR_FORMAT " ", addr);
5259     if (strlen(buf) < sizeof(buf) - 1) {
5260       char* p = strrchr(buf, '\\');
5261       if (p) {
5262         st->print("%s", p + 1);
5263       } else {
5264         st->print("%s", buf);
5265       }
5266     } else {
5267         // The library name is probably truncated. Let's omit the library name.
5268         // See also JDK-8147512.
5269     }
5270     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5271       st->print("::%s + 0x%x", buf, offset);
5272     }
5273     st->cr();
5274     result = true;
5275   }
5276   return result;
5277 }
5278 
5279 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5280   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5281 
5282   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5283     JavaThread* thread = JavaThread::current();
5284     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5285     address addr = (address) exceptionRecord->ExceptionInformation[1];
5286 
5287     if (os::is_memory_serialize_page(thread, addr)) {
5288       return EXCEPTION_CONTINUE_EXECUTION;
5289     }
5290   }
5291 
5292   return EXCEPTION_CONTINUE_SEARCH;
5293 }
5294 
5295 // We don't build a headless jre for Windows
5296 bool os::is_headless_jre() { return false; }
5297 
5298 static jint initSock() {
5299   WSADATA wsadata;
5300 
5301   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5302     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5303                 ::GetLastError());
5304     return JNI_ERR;
5305   }
5306   return JNI_OK;
5307 }
5308 
5309 struct hostent* os::get_host_by_name(char* name) {
5310   return (struct hostent*)gethostbyname(name);
5311 }
5312 
5313 int os::socket_close(int fd) {
5314   return ::closesocket(fd);
5315 }
5316 
5317 int os::socket(int domain, int type, int protocol) {
5318   return ::socket(domain, type, protocol);
5319 }
5320 
5321 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5322   return ::connect(fd, him, len);
5323 }
5324 
5325 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5326   return ::recv(fd, buf, (int)nBytes, flags);
5327 }
5328 
5329 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5330   return ::send(fd, buf, (int)nBytes, flags);
5331 }
5332 
5333 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5334   return ::send(fd, buf, (int)nBytes, flags);
5335 }
5336 
5337 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5338 #if defined(IA32)
5339   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5340 #elif defined (AMD64)
5341   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5342 #endif
5343 
5344 // returns true if thread could be suspended,
5345 // false otherwise
5346 static bool do_suspend(HANDLE* h) {
5347   if (h != NULL) {
5348     if (SuspendThread(*h) != ~0) {
5349       return true;
5350     }
5351   }
5352   return false;
5353 }
5354 
5355 // resume the thread
5356 // calling resume on an active thread is a no-op
5357 static void do_resume(HANDLE* h) {
5358   if (h != NULL) {
5359     ResumeThread(*h);
5360   }
5361 }
5362 
5363 // retrieve a suspend/resume context capable handle
5364 // from the tid. Caller validates handle return value.
5365 void get_thread_handle_for_extended_context(HANDLE* h,
5366                                             OSThread::thread_id_t tid) {
5367   if (h != NULL) {
5368     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5369   }
5370 }
5371 
5372 // Thread sampling implementation
5373 //
5374 void os::SuspendedThreadTask::internal_do_task() {
5375   CONTEXT    ctxt;
5376   HANDLE     h = NULL;
5377 
5378   // get context capable handle for thread
5379   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5380 
5381   // sanity
5382   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5383     return;
5384   }
5385 
5386   // suspend the thread
5387   if (do_suspend(&h)) {
5388     ctxt.ContextFlags = sampling_context_flags;
5389     // get thread context
5390     GetThreadContext(h, &ctxt);
5391     SuspendedThreadTaskContext context(_thread, &ctxt);
5392     // pass context to Thread Sampling impl
5393     do_task(context);
5394     // resume thread
5395     do_resume(&h);
5396   }
5397 
5398   // close handle
5399   CloseHandle(h);
5400 }
5401 
5402 bool os::start_debugging(char *buf, int buflen) {
5403   int len = (int)strlen(buf);
5404   char *p = &buf[len];
5405 
5406   jio_snprintf(p, buflen-len,
5407              "\n\n"
5408              "Do you want to debug the problem?\n\n"
5409              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5410              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5411              "Otherwise, select 'No' to abort...",
5412              os::current_process_id(), os::current_thread_id());
5413 
5414   bool yes = os::message_box("Unexpected Error", buf);
5415 
5416   if (yes) {
5417     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5418     // exception. If VM is running inside a debugger, the debugger will
5419     // catch the exception. Otherwise, the breakpoint exception will reach
5420     // the default windows exception handler, which can spawn a debugger and
5421     // automatically attach to the dying VM.
5422     os::breakpoint();
5423     yes = false;
5424   }
5425   return yes;
5426 }
5427 
5428 void* os::get_default_process_handle() {
5429   return (void*)GetModuleHandle(NULL);
5430 }
5431 
5432 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5433 // which is used to find statically linked in agents.
5434 // Additionally for windows, takes into account __stdcall names.
5435 // Parameters:
5436 //            sym_name: Symbol in library we are looking for
5437 //            lib_name: Name of library to look in, NULL for shared libs.
5438 //            is_absolute_path == true if lib_name is absolute path to agent
5439 //                                     such as "C:/a/b/L.dll"
5440 //            == false if only the base name of the library is passed in
5441 //               such as "L"
5442 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5443                                     bool is_absolute_path) {
5444   char *agent_entry_name;
5445   size_t len;
5446   size_t name_len;
5447   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5448   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5449   const char *start;
5450 
5451   if (lib_name != NULL) {
5452     len = name_len = strlen(lib_name);
5453     if (is_absolute_path) {
5454       // Need to strip path, prefix and suffix
5455       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5456         lib_name = ++start;
5457       } else {
5458         // Need to check for drive prefix
5459         if ((start = strchr(lib_name, ':')) != NULL) {
5460           lib_name = ++start;
5461         }
5462       }
5463       if (len <= (prefix_len + suffix_len)) {
5464         return NULL;
5465       }
5466       lib_name += prefix_len;
5467       name_len = strlen(lib_name) - suffix_len;
5468     }
5469   }
5470   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5471   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5472   if (agent_entry_name == NULL) {
5473     return NULL;
5474   }
5475   if (lib_name != NULL) {
5476     const char *p = strrchr(sym_name, '@');
5477     if (p != NULL && p != sym_name) {
5478       // sym_name == _Agent_OnLoad@XX
5479       strncpy(agent_entry_name, sym_name, (p - sym_name));
5480       agent_entry_name[(p-sym_name)] = '\0';
5481       // agent_entry_name == _Agent_OnLoad
5482       strcat(agent_entry_name, "_");
5483       strncat(agent_entry_name, lib_name, name_len);
5484       strcat(agent_entry_name, p);
5485       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5486     } else {
5487       strcpy(agent_entry_name, sym_name);
5488       strcat(agent_entry_name, "_");
5489       strncat(agent_entry_name, lib_name, name_len);
5490     }
5491   } else {
5492     strcpy(agent_entry_name, sym_name);
5493   }
5494   return agent_entry_name;
5495 }
5496 
5497 #ifndef PRODUCT
5498 
5499 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5500 // contiguous memory block at a particular address.
5501 // The test first tries to find a good approximate address to allocate at by using the same
5502 // method to allocate some memory at any address. The test then tries to allocate memory in
5503 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5504 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5505 // the previously allocated memory is available for allocation. The only actual failure
5506 // that is reported is when the test tries to allocate at a particular location but gets a
5507 // different valid one. A NULL return value at this point is not considered an error but may
5508 // be legitimate.
5509 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5510 void TestReserveMemorySpecial_test() {
5511   if (!UseLargePages) {
5512     if (VerboseInternalVMTests) {
5513       tty->print("Skipping test because large pages are disabled");
5514     }
5515     return;
5516   }
5517   // save current value of globals
5518   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5519   bool old_use_numa_interleaving = UseNUMAInterleaving;
5520 
5521   // set globals to make sure we hit the correct code path
5522   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5523 
5524   // do an allocation at an address selected by the OS to get a good one.
5525   const size_t large_allocation_size = os::large_page_size() * 4;
5526   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5527   if (result == NULL) {
5528     if (VerboseInternalVMTests) {
5529       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5530                           large_allocation_size);
5531     }
5532   } else {
5533     os::release_memory_special(result, large_allocation_size);
5534 
5535     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5536     // we managed to get it once.
5537     const size_t expected_allocation_size = os::large_page_size();
5538     char* expected_location = result + os::large_page_size();
5539     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5540     if (actual_location == NULL) {
5541       if (VerboseInternalVMTests) {
5542         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5543                             expected_location, large_allocation_size);
5544       }
5545     } else {
5546       // release memory
5547       os::release_memory_special(actual_location, expected_allocation_size);
5548       // only now check, after releasing any memory to avoid any leaks.
5549       assert(actual_location == expected_location,
5550              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5551              expected_location, expected_allocation_size, actual_location);
5552     }
5553   }
5554 
5555   // restore globals
5556   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5557   UseNUMAInterleaving = old_use_numa_interleaving;
5558 }
5559 #endif // PRODUCT
5560 
5561 /*
5562   All the defined signal names for Windows.
5563 
5564   NOTE that not all of these names are accepted by FindSignal!
5565 
5566   For various reasons some of these may be rejected at runtime.
5567 
5568   Here are the names currently accepted by a user of sun.misc.Signal with
5569   1.4.1 (ignoring potential interaction with use of chaining, etc):
5570 
5571      (LIST TBD)
5572 
5573 */
5574 int os::get_signal_number(const char* name) {
5575   static const struct {
5576     char* name;
5577     int   number;
5578   } siglabels [] =
5579     // derived from version 6.0 VC98/include/signal.h
5580   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5581   "FPE",        SIGFPE,         // floating point exception
5582   "SEGV",       SIGSEGV,        // segment violation
5583   "INT",        SIGINT,         // interrupt
5584   "TERM",       SIGTERM,        // software term signal from kill
5585   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5586   "ILL",        SIGILL};        // illegal instruction
5587   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5588     if (strcmp(name, siglabels[i].name) == 0) {
5589       return siglabels[i].number;
5590     }
5591   }
5592   return -1;
5593 }
5594 
5595 // Fast current thread access
5596 
5597 int os::win32::_thread_ptr_offset = 0;
5598 
5599 static void call_wrapper_dummy() {}
5600 
5601 // We need to call the os_exception_wrapper once so that it sets
5602 // up the offset from FS of the thread pointer.
5603 void os::win32::initialize_thread_ptr_offset() {
5604   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5605                            NULL, NULL, NULL, NULL);
5606 }