1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/parallel/adjoiningGenerations.hpp"
  27 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  28 #include "gc/parallel/cardTableExtension.hpp"
  29 #include "gc/parallel/gcTaskManager.hpp"
  30 #include "gc/parallel/generationSizer.hpp"
  31 #include "gc/parallel/objectStartArray.inline.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psMarkSweep.hpp"
  35 #include "gc/parallel/psParallelCompact.inline.hpp"
  36 #include "gc/parallel/psPromotionManager.hpp"
  37 #include "gc/parallel/psScavenge.hpp"
  38 #include "gc/parallel/vmPSOperations.hpp"
  39 #include "gc/shared/gcHeapSummary.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "gc/shared/gcWhen.hpp"
  42 #include "logging/log.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/vmThread.hpp"
  47 #include "services/memTracker.hpp"
  48 #include "utilities/vmError.hpp"
  49 
  50 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  51 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  52 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  53 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  54 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  55 
  56 jint ParallelScavengeHeap::initialize() {
  57   CollectedHeap::pre_initialize();
  58 
  59   const size_t heap_size = _collector_policy->max_heap_byte_size();
  60 
  61   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  62 
  63   os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(),
  64                        heap_size, generation_alignment(),
  65                        heap_rs.base(),
  66                        heap_rs.size());
  67 
  68   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  69 
  70   CardTableExtension* const barrier_set = new CardTableExtension(reserved_region());
  71   barrier_set->initialize();
  72   set_barrier_set(barrier_set);
  73 
  74   // Make up the generations
  75   // Calculate the maximum size that a generation can grow.  This
  76   // includes growth into the other generation.  Note that the
  77   // parameter _max_gen_size is kept as the maximum
  78   // size of the generation as the boundaries currently stand.
  79   // _max_gen_size is still used as that value.
  80   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  81   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  82 
  83   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
  84 
  85   _old_gen = _gens->old_gen();
  86   _young_gen = _gens->young_gen();
  87 
  88   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  89   const size_t old_capacity = _old_gen->capacity_in_bytes();
  90   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  91   _size_policy =
  92     new PSAdaptiveSizePolicy(eden_capacity,
  93                              initial_promo_size,
  94                              young_gen()->to_space()->capacity_in_bytes(),
  95                              _collector_policy->gen_alignment(),
  96                              max_gc_pause_sec,
  97                              max_gc_minor_pause_sec,
  98                              GCTimeRatio
  99                              );
 100 
 101   assert(!UseAdaptiveGCBoundary ||
 102     (old_gen()->virtual_space()->high_boundary() ==
 103      young_gen()->virtual_space()->low_boundary()),
 104     "Boundaries must meet");
 105   // initialize the policy counters - 2 collectors, 3 generations
 106   _gc_policy_counters =
 107     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 108 
 109   // Set up the GCTaskManager
 110   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 111 
 112   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 113     return JNI_ENOMEM;
 114   }
 115 
 116   return JNI_OK;
 117 }
 118 
 119 void ParallelScavengeHeap::post_initialize() {
 120   // Need to init the tenuring threshold
 121   PSScavenge::initialize();
 122   if (UseParallelOldGC) {
 123     PSParallelCompact::post_initialize();
 124   } else {
 125     PSMarkSweep::initialize();
 126   }
 127   PSPromotionManager::initialize();
 128 }
 129 
 130 void ParallelScavengeHeap::update_counters() {
 131   young_gen()->update_counters();
 132   old_gen()->update_counters();
 133   MetaspaceCounters::update_performance_counters();
 134   CompressedClassSpaceCounters::update_performance_counters();
 135 }
 136 
 137 size_t ParallelScavengeHeap::capacity() const {
 138   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 139   return value;
 140 }
 141 
 142 size_t ParallelScavengeHeap::used() const {
 143   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 144   return value;
 145 }
 146 
 147 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 148   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 149 }
 150 
 151 
 152 size_t ParallelScavengeHeap::max_capacity() const {
 153   size_t estimated = reserved_region().byte_size();
 154   if (UseAdaptiveSizePolicy) {
 155     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 156   } else {
 157     estimated -= young_gen()->to_space()->capacity_in_bytes();
 158   }
 159   return MAX2(estimated, capacity());
 160 }
 161 
 162 bool ParallelScavengeHeap::is_in(const void* p) const {
 163   return young_gen()->is_in(p) || old_gen()->is_in(p);
 164 }
 165 
 166 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 167   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 168 }
 169 
 170 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 171   return is_in_young((oop)addr);
 172 }
 173 
 174 // There are two levels of allocation policy here.
 175 //
 176 // When an allocation request fails, the requesting thread must invoke a VM
 177 // operation, transfer control to the VM thread, and await the results of a
 178 // garbage collection. That is quite expensive, and we should avoid doing it
 179 // multiple times if possible.
 180 //
 181 // To accomplish this, we have a basic allocation policy, and also a
 182 // failed allocation policy.
 183 //
 184 // The basic allocation policy controls how you allocate memory without
 185 // attempting garbage collection. It is okay to grab locks and
 186 // expand the heap, if that can be done without coming to a safepoint.
 187 // It is likely that the basic allocation policy will not be very
 188 // aggressive.
 189 //
 190 // The failed allocation policy is invoked from the VM thread after
 191 // the basic allocation policy is unable to satisfy a mem_allocate
 192 // request. This policy needs to cover the entire range of collection,
 193 // heap expansion, and out-of-memory conditions. It should make every
 194 // attempt to allocate the requested memory.
 195 
 196 // Basic allocation policy. Should never be called at a safepoint, or
 197 // from the VM thread.
 198 //
 199 // This method must handle cases where many mem_allocate requests fail
 200 // simultaneously. When that happens, only one VM operation will succeed,
 201 // and the rest will not be executed. For that reason, this method loops
 202 // during failed allocation attempts. If the java heap becomes exhausted,
 203 // we rely on the size_policy object to force a bail out.
 204 HeapWord* ParallelScavengeHeap::mem_allocate(
 205                                      size_t size,
 206                                      bool* gc_overhead_limit_was_exceeded) {
 207   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 208   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 209   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 210 
 211   // In general gc_overhead_limit_was_exceeded should be false so
 212   // set it so here and reset it to true only if the gc time
 213   // limit is being exceeded as checked below.
 214   *gc_overhead_limit_was_exceeded = false;
 215 
 216   HeapWord* result = young_gen()->allocate(size);
 217 
 218   uint loop_count = 0;
 219   uint gc_count = 0;
 220   uint gclocker_stalled_count = 0;
 221 
 222   while (result == NULL) {
 223     // We don't want to have multiple collections for a single filled generation.
 224     // To prevent this, each thread tracks the total_collections() value, and if
 225     // the count has changed, does not do a new collection.
 226     //
 227     // The collection count must be read only while holding the heap lock. VM
 228     // operations also hold the heap lock during collections. There is a lock
 229     // contention case where thread A blocks waiting on the Heap_lock, while
 230     // thread B is holding it doing a collection. When thread A gets the lock,
 231     // the collection count has already changed. To prevent duplicate collections,
 232     // The policy MUST attempt allocations during the same period it reads the
 233     // total_collections() value!
 234     {
 235       MutexLocker ml(Heap_lock);
 236       gc_count = total_collections();
 237 
 238       result = young_gen()->allocate(size);
 239       if (result != NULL) {
 240         return result;
 241       }
 242 
 243       // If certain conditions hold, try allocating from the old gen.
 244       result = mem_allocate_old_gen(size);
 245       if (result != NULL) {
 246         return result;
 247       }
 248 
 249       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 250         return NULL;
 251       }
 252 
 253       // Failed to allocate without a gc.
 254       if (GCLocker::is_active_and_needs_gc()) {
 255         // If this thread is not in a jni critical section, we stall
 256         // the requestor until the critical section has cleared and
 257         // GC allowed. When the critical section clears, a GC is
 258         // initiated by the last thread exiting the critical section; so
 259         // we retry the allocation sequence from the beginning of the loop,
 260         // rather than causing more, now probably unnecessary, GC attempts.
 261         JavaThread* jthr = JavaThread::current();
 262         if (!jthr->in_critical()) {
 263           MutexUnlocker mul(Heap_lock);
 264           GCLocker::stall_until_clear();
 265           gclocker_stalled_count += 1;
 266           continue;
 267         } else {
 268           if (CheckJNICalls) {
 269             fatal("Possible deadlock due to allocating while"
 270                   " in jni critical section");
 271           }
 272           return NULL;
 273         }
 274       }
 275     }
 276 
 277     if (result == NULL) {
 278       // Generate a VM operation
 279       VM_ParallelGCFailedAllocation op(size, gc_count);
 280       VMThread::execute(&op);
 281 
 282       // Did the VM operation execute? If so, return the result directly.
 283       // This prevents us from looping until time out on requests that can
 284       // not be satisfied.
 285       if (op.prologue_succeeded()) {
 286         assert(is_in_or_null(op.result()), "result not in heap");
 287 
 288         // If GC was locked out during VM operation then retry allocation
 289         // and/or stall as necessary.
 290         if (op.gc_locked()) {
 291           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 292           continue;  // retry and/or stall as necessary
 293         }
 294 
 295         // Exit the loop if the gc time limit has been exceeded.
 296         // The allocation must have failed above ("result" guarding
 297         // this path is NULL) and the most recent collection has exceeded the
 298         // gc overhead limit (although enough may have been collected to
 299         // satisfy the allocation).  Exit the loop so that an out-of-memory
 300         // will be thrown (return a NULL ignoring the contents of
 301         // op.result()),
 302         // but clear gc_overhead_limit_exceeded so that the next collection
 303         // starts with a clean slate (i.e., forgets about previous overhead
 304         // excesses).  Fill op.result() with a filler object so that the
 305         // heap remains parsable.
 306         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 307         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 308 
 309         if (limit_exceeded && softrefs_clear) {
 310           *gc_overhead_limit_was_exceeded = true;
 311           size_policy()->set_gc_overhead_limit_exceeded(false);
 312           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 313           if (op.result() != NULL) {
 314             CollectedHeap::fill_with_object(op.result(), size);
 315           }
 316           return NULL;
 317         }
 318 
 319         return op.result();
 320       }
 321     }
 322 
 323     // The policy object will prevent us from looping forever. If the
 324     // time spent in gc crosses a threshold, we will bail out.
 325     loop_count++;
 326     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 327         (loop_count % QueuedAllocationWarningCount == 0)) {
 328       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 329       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 330     }
 331   }
 332 
 333   return result;
 334 }
 335 
 336 // A "death march" is a series of ultra-slow allocations in which a full gc is
 337 // done before each allocation, and after the full gc the allocation still
 338 // cannot be satisfied from the young gen.  This routine detects that condition;
 339 // it should be called after a full gc has been done and the allocation
 340 // attempted from the young gen. The parameter 'addr' should be the result of
 341 // that young gen allocation attempt.
 342 void
 343 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 344   if (addr != NULL) {
 345     _death_march_count = 0;  // death march has ended
 346   } else if (_death_march_count == 0) {
 347     if (should_alloc_in_eden(size)) {
 348       _death_march_count = 1;    // death march has started
 349     }
 350   }
 351 }
 352 
 353 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 354   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 355     // Size is too big for eden, or gc is locked out.
 356     return old_gen()->allocate(size);
 357   }
 358 
 359   // If a "death march" is in progress, allocate from the old gen a limited
 360   // number of times before doing a GC.
 361   if (_death_march_count > 0) {
 362     if (_death_march_count < 64) {
 363       ++_death_march_count;
 364       return old_gen()->allocate(size);
 365     } else {
 366       _death_march_count = 0;
 367     }
 368   }
 369   return NULL;
 370 }
 371 
 372 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 373   if (UseParallelOldGC) {
 374     // The do_full_collection() parameter clear_all_soft_refs
 375     // is interpreted here as maximum_compaction which will
 376     // cause SoftRefs to be cleared.
 377     bool maximum_compaction = clear_all_soft_refs;
 378     PSParallelCompact::invoke(maximum_compaction);
 379   } else {
 380     PSMarkSweep::invoke(clear_all_soft_refs);
 381   }
 382 }
 383 
 384 // Failed allocation policy. Must be called from the VM thread, and
 385 // only at a safepoint! Note that this method has policy for allocation
 386 // flow, and NOT collection policy. So we do not check for gc collection
 387 // time over limit here, that is the responsibility of the heap specific
 388 // collection methods. This method decides where to attempt allocations,
 389 // and when to attempt collections, but no collection specific policy.
 390 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 391   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 392   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 393   assert(!is_gc_active(), "not reentrant");
 394   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 395 
 396   // We assume that allocation in eden will fail unless we collect.
 397 
 398   // First level allocation failure, scavenge and allocate in young gen.
 399   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 400   const bool invoked_full_gc = PSScavenge::invoke();
 401   HeapWord* result = young_gen()->allocate(size);
 402 
 403   // Second level allocation failure.
 404   //   Mark sweep and allocate in young generation.
 405   if (result == NULL && !invoked_full_gc) {
 406     do_full_collection(false);
 407     result = young_gen()->allocate(size);
 408   }
 409 
 410   death_march_check(result, size);
 411 
 412   // Third level allocation failure.
 413   //   After mark sweep and young generation allocation failure,
 414   //   allocate in old generation.
 415   if (result == NULL) {
 416     result = old_gen()->allocate(size);
 417   }
 418 
 419   // Fourth level allocation failure. We're running out of memory.
 420   //   More complete mark sweep and allocate in young generation.
 421   if (result == NULL) {
 422     do_full_collection(true);
 423     result = young_gen()->allocate(size);
 424   }
 425 
 426   // Fifth level allocation failure.
 427   //   After more complete mark sweep, allocate in old generation.
 428   if (result == NULL) {
 429     result = old_gen()->allocate(size);
 430   }
 431 
 432   return result;
 433 }
 434 
 435 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 436   CollectedHeap::ensure_parsability(retire_tlabs);
 437   young_gen()->eden_space()->ensure_parsability();
 438 }
 439 
 440 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 441   return young_gen()->eden_space()->tlab_capacity(thr);
 442 }
 443 
 444 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 445   return young_gen()->eden_space()->tlab_used(thr);
 446 }
 447 
 448 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 449   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 450 }
 451 
 452 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 453   return young_gen()->allocate(size);
 454 }
 455 
 456 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 457   CollectedHeap::accumulate_statistics_all_tlabs();
 458 }
 459 
 460 void ParallelScavengeHeap::resize_all_tlabs() {
 461   CollectedHeap::resize_all_tlabs();
 462 }
 463 
 464 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 465   // We don't need barriers for stores to objects in the
 466   // young gen and, a fortiori, for initializing stores to
 467   // objects therein.
 468   return is_in_young(new_obj);
 469 }
 470 
 471 // This method is used by System.gc() and JVMTI.
 472 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 473   assert(!Heap_lock->owned_by_self(),
 474     "this thread should not own the Heap_lock");
 475 
 476   uint gc_count      = 0;
 477   uint full_gc_count = 0;
 478   {
 479     MutexLocker ml(Heap_lock);
 480     // This value is guarded by the Heap_lock
 481     gc_count      = total_collections();
 482     full_gc_count = total_full_collections();
 483   }
 484 
 485   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 486   VMThread::execute(&op);
 487 }
 488 
 489 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 490   young_gen()->object_iterate(cl);
 491   old_gen()->object_iterate(cl);
 492 }
 493 
 494 
 495 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 496   if (young_gen()->is_in_reserved(addr)) {
 497     assert(young_gen()->is_in(addr),
 498            "addr should be in allocated part of young gen");
 499     // called from os::print_location by find or VMError
 500     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 501     Unimplemented();
 502   } else if (old_gen()->is_in_reserved(addr)) {
 503     assert(old_gen()->is_in(addr),
 504            "addr should be in allocated part of old gen");
 505     return old_gen()->start_array()->object_start((HeapWord*)addr);
 506   }
 507   return 0;
 508 }
 509 
 510 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 511   return oop(addr)->size();
 512 }
 513 
 514 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 515   return block_start(addr) == addr;
 516 }
 517 
 518 jlong ParallelScavengeHeap::millis_since_last_gc() {
 519   return UseParallelOldGC ?
 520     PSParallelCompact::millis_since_last_gc() :
 521     PSMarkSweep::millis_since_last_gc();
 522 }
 523 
 524 void ParallelScavengeHeap::prepare_for_verify() {
 525   ensure_parsability(false);  // no need to retire TLABs for verification
 526 }
 527 
 528 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 529   PSOldGen* old = old_gen();
 530   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 531   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 532   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 533 
 534   PSYoungGen* young = young_gen();
 535   VirtualSpaceSummary young_summary(young->reserved().start(),
 536     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 537 
 538   MutableSpace* eden = young_gen()->eden_space();
 539   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 540 
 541   MutableSpace* from = young_gen()->from_space();
 542   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 543 
 544   MutableSpace* to = young_gen()->to_space();
 545   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 546 
 547   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 548   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 549 }
 550 
 551 void ParallelScavengeHeap::print_on(outputStream* st) const {
 552   young_gen()->print_on(st);
 553   old_gen()->print_on(st);
 554   MetaspaceAux::print_on(st);
 555 }
 556 
 557 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 558   this->CollectedHeap::print_on_error(st);
 559 
 560   if (UseParallelOldGC) {
 561     st->cr();
 562     PSParallelCompact::print_on_error(st);
 563   }
 564 }
 565 
 566 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 567   PSScavenge::gc_task_manager()->threads_do(tc);
 568 }
 569 
 570 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 571   PSScavenge::gc_task_manager()->print_threads_on(st);
 572 }
 573 
 574 void ParallelScavengeHeap::print_tracing_info() const {
 575   if (TraceYoungGenTime) {
 576     double time = PSScavenge::accumulated_time()->seconds();
 577     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 578   }
 579   if (TraceOldGenTime) {
 580     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
 581     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 582   }
 583 }
 584 
 585 
 586 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 587   // Why do we need the total_collections()-filter below?
 588   if (total_collections() > 0) {
 589     log_debug(gc, verify)("Tenured");
 590     old_gen()->verify();
 591 
 592     log_debug(gc, verify)("Eden");
 593     young_gen()->verify();
 594   }
 595 }
 596 
 597 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 598   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 599   gc_tracer->report_gc_heap_summary(when, heap_summary);
 600 
 601   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 602   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 603 }
 604 
 605 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 606   CollectedHeap* heap = Universe::heap();
 607   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 608   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Not a ParallelScavengeHeap");
 609   return (ParallelScavengeHeap*)heap;
 610 }
 611 
 612 // Before delegating the resize to the young generation,
 613 // the reserved space for the young and old generations
 614 // may be changed to accommodate the desired resize.
 615 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 616     size_t survivor_size) {
 617   if (UseAdaptiveGCBoundary) {
 618     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 619       size_policy()->reset_bytes_absorbed_from_eden();
 620       return;  // The generation changed size already.
 621     }
 622     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 623   }
 624 
 625   // Delegate the resize to the generation.
 626   _young_gen->resize(eden_size, survivor_size);
 627 }
 628 
 629 // Before delegating the resize to the old generation,
 630 // the reserved space for the young and old generations
 631 // may be changed to accommodate the desired resize.
 632 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 633   if (UseAdaptiveGCBoundary) {
 634     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 635       size_policy()->reset_bytes_absorbed_from_eden();
 636       return;  // The generation changed size already.
 637     }
 638     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 639   }
 640 
 641   // Delegate the resize to the generation.
 642   _old_gen->resize(desired_free_space);
 643 }
 644 
 645 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 646   // nothing particular
 647 }
 648 
 649 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 650   // nothing particular
 651 }
 652 
 653 #ifndef PRODUCT
 654 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 655   if (ZapUnusedHeapArea) {
 656     young_gen()->record_spaces_top();
 657     old_gen()->record_spaces_top();
 658   }
 659 }
 660 
 661 void ParallelScavengeHeap::gen_mangle_unused_area() {
 662   if (ZapUnusedHeapArea) {
 663     young_gen()->eden_space()->mangle_unused_area();
 664     young_gen()->to_space()->mangle_unused_area();
 665     young_gen()->from_space()->mangle_unused_area();
 666     old_gen()->object_space()->mangle_unused_area();
 667   }
 668 }
 669 #endif