1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcId.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/gcTrace.hpp"
  36 #include "gc/shared/gcTraceTime.inline.hpp"
  37 #include "gc/shared/genCollectedHeap.hpp"
  38 #include "gc/shared/genOopClosures.inline.hpp"
  39 #include "gc/shared/generationSpec.hpp"
  40 #include "gc/shared/space.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "gc/shared/vmGCOperations.hpp"
  43 #include "gc/shared/workgroup.hpp"
  44 #include "memory/filemap.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/fprofiler.hpp"
  49 #include "runtime/handles.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #include "utilities/vmError.hpp"
  58 #if INCLUDE_ALL_GCS
  59 #include "gc/cms/concurrentMarkSweepThread.hpp"
  60 #include "gc/cms/vmCMSOperations.hpp"
  61 #endif // INCLUDE_ALL_GCS
  62 
  63 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  64 
  65 // The set of potentially parallel tasks in root scanning.
  66 enum GCH_strong_roots_tasks {
  67   GCH_PS_Universe_oops_do,
  68   GCH_PS_JNIHandles_oops_do,
  69   GCH_PS_ObjectSynchronizer_oops_do,
  70   GCH_PS_FlatProfiler_oops_do,
  71   GCH_PS_Management_oops_do,
  72   GCH_PS_SystemDictionary_oops_do,
  73   GCH_PS_ClassLoaderDataGraph_oops_do,
  74   GCH_PS_jvmti_oops_do,
  75   GCH_PS_CodeCache_oops_do,
  76   GCH_PS_younger_gens,
  77   // Leave this one last.
  78   GCH_PS_NumElements
  79 };
  80 
  81 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  82   CollectedHeap(),
  83   _rem_set(NULL),
  84   _gen_policy(policy),
  85   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  86   _full_collections_completed(0)
  87 {
  88   assert(policy != NULL, "Sanity check");
  89   if (UseConcMarkSweepGC) {
  90     _workers = new WorkGang("GC Thread", ParallelGCThreads,
  91                             /* are_GC_task_threads */true,
  92                             /* are_ConcurrentGC_threads */false);
  93     _workers->initialize_workers();
  94   } else {
  95     // Serial GC does not use workers.
  96     _workers = NULL;
  97   }
  98 }
  99 
 100 jint GenCollectedHeap::initialize() {
 101   CollectedHeap::pre_initialize();
 102 
 103   // While there are no constraints in the GC code that HeapWordSize
 104   // be any particular value, there are multiple other areas in the
 105   // system which believe this to be true (e.g. oop->object_size in some
 106   // cases incorrectly returns the size in wordSize units rather than
 107   // HeapWordSize).
 108   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 109 
 110   // Allocate space for the heap.
 111 
 112   char* heap_address;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &heap_rs);
 118 
 119   if (!heap_rs.is_reserved()) {
 120     vm_shutdown_during_initialization(
 121       "Could not reserve enough space for object heap");
 122     return JNI_ENOMEM;
 123   }
 124 
 125   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 126 
 127   _rem_set = collector_policy()->create_rem_set(reserved_region());
 128   set_barrier_set(rem_set()->bs());
 129 
 130   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 131   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 132   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 133 
 134   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 135   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 136   clear_incremental_collection_failed();
 137 
 138 #if INCLUDE_ALL_GCS
 139   // If we are running CMS, create the collector responsible
 140   // for collecting the CMS generations.
 141   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 142     bool success = create_cms_collector();
 143     if (!success) return JNI_ENOMEM;
 144   }
 145 #endif // INCLUDE_ALL_GCS
 146 
 147   return JNI_OK;
 148 }
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   // Now figure out the total size.
 153   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 154   assert(alignment % pageSize == 0, "Must be");
 155 
 156   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 157   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 158 
 159   // Check for overflow.
 160   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 161   if (total_reserved < young_spec->max_size()) {
 162     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 163                                   "the maximum representable size");
 164   }
 165   assert(total_reserved % alignment == 0,
 166          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 167          SIZE_FORMAT, total_reserved, alignment);
 168 
 169   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 170 
 171   os::trace_page_sizes("Heap",
 172                        collector_policy()->min_heap_byte_size(),
 173                        total_reserved,
 174                        alignment,
 175                        heap_rs->base(),
 176                        heap_rs->size());
 177 
 178   return heap_rs->base();
 179 }
 180 
 181 void GenCollectedHeap::post_initialize() {
 182   CollectedHeap::post_initialize();
 183   ref_processing_init();
 184   assert((_young_gen->kind() == Generation::DefNew) ||
 185          (_young_gen->kind() == Generation::ParNew),
 186     "Wrong youngest generation type");
 187   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 188 
 189   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 190          _old_gen->kind() == Generation::MarkSweepCompact,
 191     "Wrong generation kind");
 192 
 193   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 194                                       _old_gen->capacity(),
 195                                       def_new_gen->from()->capacity());
 196   _gen_policy->initialize_gc_policy_counters();
 197 }
 198 
 199 void GenCollectedHeap::ref_processing_init() {
 200   _young_gen->ref_processor_init();
 201   _old_gen->ref_processor_init();
 202 }
 203 
 204 size_t GenCollectedHeap::capacity() const {
 205   return _young_gen->capacity() + _old_gen->capacity();
 206 }
 207 
 208 size_t GenCollectedHeap::used() const {
 209   return _young_gen->used() + _old_gen->used();
 210 }
 211 
 212 void GenCollectedHeap::save_used_regions() {
 213   _old_gen->save_used_region();
 214   _young_gen->save_used_region();
 215 }
 216 
 217 size_t GenCollectedHeap::max_capacity() const {
 218   return _young_gen->max_capacity() + _old_gen->max_capacity();
 219 }
 220 
 221 // Update the _full_collections_completed counter
 222 // at the end of a stop-world full GC.
 223 unsigned int GenCollectedHeap::update_full_collections_completed() {
 224   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 225   assert(_full_collections_completed <= _total_full_collections,
 226          "Can't complete more collections than were started");
 227   _full_collections_completed = _total_full_collections;
 228   ml.notify_all();
 229   return _full_collections_completed;
 230 }
 231 
 232 // Update the _full_collections_completed counter, as appropriate,
 233 // at the end of a concurrent GC cycle. Note the conditional update
 234 // below to allow this method to be called by a concurrent collector
 235 // without synchronizing in any manner with the VM thread (which
 236 // may already have initiated a STW full collection "concurrently").
 237 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 238   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 239   assert((_full_collections_completed <= _total_full_collections) &&
 240          (count <= _total_full_collections),
 241          "Can't complete more collections than were started");
 242   if (count > _full_collections_completed) {
 243     _full_collections_completed = count;
 244     ml.notify_all();
 245   }
 246   return _full_collections_completed;
 247 }
 248 
 249 
 250 #ifndef PRODUCT
 251 // Override of memory state checking method in CollectedHeap:
 252 // Some collectors (CMS for example) can't have badHeapWordVal written
 253 // in the first two words of an object. (For instance , in the case of
 254 // CMS these words hold state used to synchronize between certain
 255 // (concurrent) GC steps and direct allocating mutators.)
 256 // The skip_header_HeapWords() method below, allows us to skip
 257 // over the requisite number of HeapWord's. Note that (for
 258 // generational collectors) this means that those many words are
 259 // skipped in each object, irrespective of the generation in which
 260 // that object lives. The resultant loss of precision seems to be
 261 // harmless and the pain of avoiding that imprecision appears somewhat
 262 // higher than we are prepared to pay for such rudimentary debugging
 263 // support.
 264 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 265                                                          size_t size) {
 266   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 267     // We are asked to check a size in HeapWords,
 268     // but the memory is mangled in juint words.
 269     juint* start = (juint*) (addr + skip_header_HeapWords());
 270     juint* end   = (juint*) (addr + size);
 271     for (juint* slot = start; slot < end; slot += 1) {
 272       assert(*slot == badHeapWordVal,
 273              "Found non badHeapWordValue in pre-allocation check");
 274     }
 275   }
 276 }
 277 #endif
 278 
 279 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 280                                                bool is_tlab,
 281                                                bool first_only) {
 282   HeapWord* res = NULL;
 283 
 284   if (_young_gen->should_allocate(size, is_tlab)) {
 285     res = _young_gen->allocate(size, is_tlab);
 286     if (res != NULL || first_only) {
 287       return res;
 288     }
 289   }
 290 
 291   if (_old_gen->should_allocate(size, is_tlab)) {
 292     res = _old_gen->allocate(size, is_tlab);
 293   }
 294 
 295   return res;
 296 }
 297 
 298 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 299                                          bool* gc_overhead_limit_was_exceeded) {
 300   return gen_policy()->mem_allocate_work(size,
 301                                          false /* is_tlab */,
 302                                          gc_overhead_limit_was_exceeded);
 303 }
 304 
 305 bool GenCollectedHeap::must_clear_all_soft_refs() {
 306   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 307          _gc_cause == GCCause::_wb_full_gc;
 308 }
 309 
 310 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 311   if (!UseConcMarkSweepGC) {
 312     return false;
 313   }
 314 
 315   switch (cause) {
 316     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 317     case GCCause::_java_lang_system_gc:
 318     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 319     default:                            return false;
 320   }
 321 }
 322 
 323 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 324                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 325                                           bool restore_marks_for_biased_locking) {
 326   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 327   GCTraceTime(Trace, gc, phases) t1(title);
 328   TraceCollectorStats tcs(gen->counters());
 329   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 330 
 331   gen->stat_record()->invocations++;
 332   gen->stat_record()->accumulated_time.start();
 333 
 334   // Must be done anew before each collection because
 335   // a previous collection will do mangling and will
 336   // change top of some spaces.
 337   record_gen_tops_before_GC();
 338 
 339   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 340 
 341   if (run_verification && VerifyBeforeGC) {
 342     HandleMark hm;  // Discard invalid handles created during verification
 343     Universe::verify("Before GC");
 344   }
 345   COMPILER2_PRESENT(DerivedPointerTable::clear());
 346 
 347   if (restore_marks_for_biased_locking) {
 348     // We perform this mark word preservation work lazily
 349     // because it's only at this point that we know whether we
 350     // absolutely have to do it; we want to avoid doing it for
 351     // scavenge-only collections where it's unnecessary
 352     BiasedLocking::preserve_marks();
 353   }
 354 
 355   // Do collection work
 356   {
 357     // Note on ref discovery: For what appear to be historical reasons,
 358     // GCH enables and disabled (by enqueing) refs discovery.
 359     // In the future this should be moved into the generation's
 360     // collect method so that ref discovery and enqueueing concerns
 361     // are local to a generation. The collect method could return
 362     // an appropriate indication in the case that notification on
 363     // the ref lock was needed. This will make the treatment of
 364     // weak refs more uniform (and indeed remove such concerns
 365     // from GCH). XXX
 366 
 367     HandleMark hm;  // Discard invalid handles created during gc
 368     save_marks();   // save marks for all gens
 369     // We want to discover references, but not process them yet.
 370     // This mode is disabled in process_discovered_references if the
 371     // generation does some collection work, or in
 372     // enqueue_discovered_references if the generation returns
 373     // without doing any work.
 374     ReferenceProcessor* rp = gen->ref_processor();
 375     // If the discovery of ("weak") refs in this generation is
 376     // atomic wrt other collectors in this configuration, we
 377     // are guaranteed to have empty discovered ref lists.
 378     if (rp->discovery_is_atomic()) {
 379       rp->enable_discovery();
 380       rp->setup_policy(clear_soft_refs);
 381     } else {
 382       // collect() below will enable discovery as appropriate
 383     }
 384     gen->collect(full, clear_soft_refs, size, is_tlab);
 385     if (!rp->enqueuing_is_done()) {
 386       rp->enqueue_discovered_references();
 387     } else {
 388       rp->set_enqueuing_is_done(false);
 389     }
 390     rp->verify_no_references_recorded();
 391   }
 392 
 393   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 394 
 395   gen->stat_record()->accumulated_time.stop();
 396 
 397   update_gc_stats(gen, full);
 398 
 399   if (run_verification && VerifyAfterGC) {
 400     HandleMark hm;  // Discard invalid handles created during verification
 401     Universe::verify("After GC");
 402   }
 403 }
 404 
 405 void GenCollectedHeap::do_collection(bool           full,
 406                                      bool           clear_all_soft_refs,
 407                                      size_t         size,
 408                                      bool           is_tlab,
 409                                      GenerationType max_generation) {
 410   ResourceMark rm;
 411   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 412 
 413   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 414   assert(my_thread->is_VM_thread() ||
 415          my_thread->is_ConcurrentGC_thread(),
 416          "incorrect thread type capability");
 417   assert(Heap_lock->is_locked(),
 418          "the requesting thread should have the Heap_lock");
 419   guarantee(!is_gc_active(), "collection is not reentrant");
 420 
 421   if (GCLocker::check_active_before_gc()) {
 422     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 423   }
 424 
 425   GCIdMarkAndRestore gc_id_mark;
 426 
 427   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 428                           collector_policy()->should_clear_all_soft_refs();
 429 
 430   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 431 
 432   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 433 
 434   print_heap_before_gc();
 435 
 436   {
 437     FlagSetting fl(_is_gc_active, true);
 438 
 439     bool complete = full && (max_generation == OldGen);
 440     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 441     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 442 
 443     FormatBuffer<> gc_string("%s", "Pause ");
 444     if (do_young_collection) {
 445       gc_string.append("Young");
 446     } else {
 447       gc_string.append("Full");
 448     }
 449 
 450     GCTraceCPUTime tcpu;
 451     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 452 
 453     gc_prologue(complete);
 454     increment_total_collections(complete);
 455 
 456     size_t young_prev_used = _young_gen->used();
 457     size_t old_prev_used = _old_gen->used();
 458 
 459     bool run_verification = total_collections() >= VerifyGCStartAt;
 460 
 461     bool prepared_for_verification = false;
 462     bool collected_old = false;
 463 
 464     if (do_young_collection) {
 465       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 466         prepare_for_verify();
 467         prepared_for_verification = true;
 468       }
 469 
 470       collect_generation(_young_gen,
 471                          full,
 472                          size,
 473                          is_tlab,
 474                          run_verification && VerifyGCLevel <= 0,
 475                          do_clear_all_soft_refs,
 476                          false);
 477 
 478       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 479           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 480         // Allocation request was met by young GC.
 481         size = 0;
 482       }
 483     }
 484 
 485     bool must_restore_marks_for_biased_locking = false;
 486 
 487     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 488       if (!complete) {
 489         // The full_collections increment was missed above.
 490         increment_total_full_collections();
 491       }
 492 
 493       if (!prepared_for_verification && run_verification &&
 494           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 495         prepare_for_verify();
 496       }
 497 
 498       if (do_young_collection) {
 499         // We did a young GC. Need a new GC id for the old GC.
 500         GCIdMarkAndRestore gc_id_mark;
 501         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 502         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 503       } else {
 504         // No young GC done. Use the same GC id as was set up earlier in this method.
 505         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 506       }
 507 
 508       must_restore_marks_for_biased_locking = true;
 509       collected_old = true;
 510     }
 511 
 512     // Update "complete" boolean wrt what actually transpired --
 513     // for instance, a promotion failure could have led to
 514     // a whole heap collection.
 515     complete = complete || collected_old;
 516 
 517     print_heap_change(young_prev_used, old_prev_used);
 518     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 519 
 520     // Adjust generation sizes.
 521     if (collected_old) {
 522       _old_gen->compute_new_size();
 523     }
 524     _young_gen->compute_new_size();
 525 
 526     if (complete) {
 527       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 528       ClassLoaderDataGraph::purge();
 529       MetaspaceAux::verify_metrics();
 530       // Resize the metaspace capacity after full collections
 531       MetaspaceGC::compute_new_size();
 532       update_full_collections_completed();
 533     }
 534 
 535     // Track memory usage and detect low memory after GC finishes
 536     MemoryService::track_memory_usage();
 537 
 538     gc_epilogue(complete);
 539 
 540     if (must_restore_marks_for_biased_locking) {
 541       BiasedLocking::restore_marks();
 542     }
 543   }
 544 
 545   print_heap_after_gc();
 546 
 547 #ifdef TRACESPINNING
 548   ParallelTaskTerminator::print_termination_counts();
 549 #endif
 550 }
 551 
 552 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 553   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 554 }
 555 
 556 #ifdef ASSERT
 557 class AssertNonScavengableClosure: public OopClosure {
 558 public:
 559   virtual void do_oop(oop* p) {
 560     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 561       "Referent should not be scavengable.");  }
 562   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 563 };
 564 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 565 #endif
 566 
 567 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 568                                      ScanningOption so,
 569                                      OopClosure* strong_roots,
 570                                      OopClosure* weak_roots,
 571                                      CLDClosure* strong_cld_closure,
 572                                      CLDClosure* weak_cld_closure,
 573                                      CodeBlobToOopClosure* code_roots) {
 574   // General roots.
 575   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 576   assert(code_roots != NULL, "code root closure should always be set");
 577   // _n_termination for _process_strong_tasks should be set up stream
 578   // in a method not running in a GC worker.  Otherwise the GC worker
 579   // could be trying to change the termination condition while the task
 580   // is executing in another GC worker.
 581 
 582   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 583     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 584   }
 585 
 586   // Some CLDs contained in the thread frames should be considered strong.
 587   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
 588   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
 589   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 590   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 591 
 592   bool is_par = scope->n_threads() > 1;
 593   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_clds_p, roots_from_code_p);
 594 
 595   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 596     Universe::oops_do(strong_roots);
 597   }
 598   // Global (strong) JNI handles
 599   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 600     JNIHandles::oops_do(strong_roots);
 601   }
 602 
 603   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 604     ObjectSynchronizer::oops_do(strong_roots);
 605   }
 606   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 607     FlatProfiler::oops_do(strong_roots);
 608   }
 609   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 610     Management::oops_do(strong_roots);
 611   }
 612   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 613     JvmtiExport::oops_do(strong_roots);
 614   }
 615 
 616   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 617     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 618   }
 619 
 620   // All threads execute the following. A specific chunk of buckets
 621   // from the StringTable are the individual tasks.
 622   if (weak_roots != NULL) {
 623     if (is_par) {
 624       StringTable::possibly_parallel_oops_do(weak_roots);
 625     } else {
 626       StringTable::oops_do(weak_roots);
 627     }
 628   }
 629 
 630   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 631     if (so & SO_ScavengeCodeCache) {
 632       assert(code_roots != NULL, "must supply closure for code cache");
 633 
 634       // We only visit parts of the CodeCache when scavenging.
 635       CodeCache::scavenge_root_nmethods_do(code_roots);
 636     }
 637     if (so & SO_AllCodeCache) {
 638       assert(code_roots != NULL, "must supply closure for code cache");
 639 
 640       // CMSCollector uses this to do intermediate-strength collections.
 641       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 642       CodeCache::blobs_do(code_roots);
 643     }
 644     // Verify that the code cache contents are not subject to
 645     // movement by a scavenging collection.
 646     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 647     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 648   }
 649 }
 650 
 651 void GenCollectedHeap::gen_process_roots(StrongRootsScope* scope,
 652                                          GenerationType type,
 653                                          bool young_gen_as_roots,
 654                                          ScanningOption so,
 655                                          bool only_strong_roots,
 656                                          OopsInGenClosure* not_older_gens,
 657                                          OopsInGenClosure* older_gens,
 658                                          CLDClosure* cld_closure) {
 659   const bool is_adjust_phase = !only_strong_roots && !young_gen_as_roots;
 660 
 661   bool is_moving_collection = false;
 662   if (type == YoungGen || is_adjust_phase) {
 663     // young collections are always moving
 664     is_moving_collection = true;
 665   }
 666 
 667   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 668   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 669   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 670 
 671   process_roots(scope, so,
 672                 not_older_gens, weak_roots,
 673                 cld_closure, weak_cld_closure,
 674                 &mark_code_closure);
 675 
 676   if (young_gen_as_roots) {
 677     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 678       if (type == OldGen) {
 679         not_older_gens->set_generation(_young_gen);
 680         _young_gen->oop_iterate(not_older_gens);
 681       }
 682       not_older_gens->reset_generation();
 683     }
 684   }
 685   // When collection is parallel, all threads get to cooperate to do
 686   // old generation scanning.
 687   if (type == YoungGen) {
 688     older_gens->set_generation(_old_gen);
 689     rem_set()->younger_refs_iterate(_old_gen, older_gens, scope->n_threads());
 690     older_gens->reset_generation();
 691   }
 692 
 693   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 694 }
 695 
 696 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 697   JNIHandles::weak_oops_do(root_closure);
 698   _young_gen->ref_processor()->weak_oops_do(root_closure);
 699   _old_gen->ref_processor()->weak_oops_do(root_closure);
 700 }
 701 
 702 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 703 void GenCollectedHeap::                                                 \
 704 oop_since_save_marks_iterate(GenerationType gen,                        \
 705                              OopClosureType* cur,                       \
 706                              OopClosureType* older) {                   \
 707   if (gen == YoungGen) {                              \
 708     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 709     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 710   } else {                                                              \
 711     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 712   }                                                                     \
 713 }
 714 
 715 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 716 
 717 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 718 
 719 bool GenCollectedHeap::no_allocs_since_save_marks() {
 720   return _young_gen->no_allocs_since_save_marks() &&
 721          _old_gen->no_allocs_since_save_marks();
 722 }
 723 
 724 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 725   return _young_gen->supports_inline_contig_alloc();
 726 }
 727 
 728 HeapWord** GenCollectedHeap::top_addr() const {
 729   return _young_gen->top_addr();
 730 }
 731 
 732 HeapWord** GenCollectedHeap::end_addr() const {
 733   return _young_gen->end_addr();
 734 }
 735 
 736 // public collection interfaces
 737 
 738 void GenCollectedHeap::collect(GCCause::Cause cause) {
 739   if (should_do_concurrent_full_gc(cause)) {
 740 #if INCLUDE_ALL_GCS
 741     // Mostly concurrent full collection.
 742     collect_mostly_concurrent(cause);
 743 #else  // INCLUDE_ALL_GCS
 744     ShouldNotReachHere();
 745 #endif // INCLUDE_ALL_GCS
 746   } else if (cause == GCCause::_wb_young_gc) {
 747     // Young collection for the WhiteBox API.
 748     collect(cause, YoungGen);
 749   } else {
 750 #ifdef ASSERT
 751   if (cause == GCCause::_scavenge_alot) {
 752     // Young collection only.
 753     collect(cause, YoungGen);
 754   } else {
 755     // Stop-the-world full collection.
 756     collect(cause, OldGen);
 757   }
 758 #else
 759     // Stop-the-world full collection.
 760     collect(cause, OldGen);
 761 #endif
 762   }
 763 }
 764 
 765 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 766   // The caller doesn't have the Heap_lock
 767   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 768   MutexLocker ml(Heap_lock);
 769   collect_locked(cause, max_generation);
 770 }
 771 
 772 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 773   // The caller has the Heap_lock
 774   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 775   collect_locked(cause, OldGen);
 776 }
 777 
 778 // this is the private collection interface
 779 // The Heap_lock is expected to be held on entry.
 780 
 781 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 782   // Read the GC count while holding the Heap_lock
 783   unsigned int gc_count_before      = total_collections();
 784   unsigned int full_gc_count_before = total_full_collections();
 785   {
 786     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 787     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 788                          cause, max_generation);
 789     VMThread::execute(&op);
 790   }
 791 }
 792 
 793 #if INCLUDE_ALL_GCS
 794 bool GenCollectedHeap::create_cms_collector() {
 795 
 796   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 797          "Unexpected generation kinds");
 798   // Skip two header words in the block content verification
 799   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 800   assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
 801   CMSCollector* collector =
 802     new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
 803                      _rem_set,
 804                      _gen_policy->as_concurrent_mark_sweep_policy());
 805 
 806   if (collector == NULL || !collector->completed_initialization()) {
 807     if (collector) {
 808       delete collector;  // Be nice in embedded situation
 809     }
 810     vm_shutdown_during_initialization("Could not create CMS collector");
 811     return false;
 812   }
 813   return true;  // success
 814 }
 815 
 816 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 817   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 818 
 819   MutexLocker ml(Heap_lock);
 820   // Read the GC counts while holding the Heap_lock
 821   unsigned int full_gc_count_before = total_full_collections();
 822   unsigned int gc_count_before      = total_collections();
 823   {
 824     MutexUnlocker mu(Heap_lock);
 825     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 826     VMThread::execute(&op);
 827   }
 828 }
 829 #endif // INCLUDE_ALL_GCS
 830 
 831 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 832    do_full_collection(clear_all_soft_refs, OldGen);
 833 }
 834 
 835 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 836                                           GenerationType last_generation) {
 837   GenerationType local_last_generation;
 838   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 839       gc_cause() == GCCause::_gc_locker) {
 840     local_last_generation = YoungGen;
 841   } else {
 842     local_last_generation = last_generation;
 843   }
 844 
 845   do_collection(true,                   // full
 846                 clear_all_soft_refs,    // clear_all_soft_refs
 847                 0,                      // size
 848                 false,                  // is_tlab
 849                 local_last_generation); // last_generation
 850   // Hack XXX FIX ME !!!
 851   // A scavenge may not have been attempted, or may have
 852   // been attempted and failed, because the old gen was too full
 853   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 854       incremental_collection_will_fail(false /* don't consult_young */)) {
 855     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 856     // This time allow the old gen to be collected as well
 857     do_collection(true,                // full
 858                   clear_all_soft_refs, // clear_all_soft_refs
 859                   0,                   // size
 860                   false,               // is_tlab
 861                   OldGen);             // last_generation
 862   }
 863 }
 864 
 865 bool GenCollectedHeap::is_in_young(oop p) {
 866   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 867   assert(result == _young_gen->is_in_reserved(p),
 868          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 869   return result;
 870 }
 871 
 872 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 873 bool GenCollectedHeap::is_in(const void* p) const {
 874   return _young_gen->is_in(p) || _old_gen->is_in(p);
 875 }
 876 
 877 #ifdef ASSERT
 878 // Don't implement this by using is_in_young().  This method is used
 879 // in some cases to check that is_in_young() is correct.
 880 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 881   assert(is_in_reserved(p) || p == NULL,
 882     "Does not work if address is non-null and outside of the heap");
 883   return p < _young_gen->reserved().end() && p != NULL;
 884 }
 885 #endif
 886 
 887 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 888   NoHeaderExtendedOopClosure no_header_cl(cl);
 889   oop_iterate(&no_header_cl);
 890 }
 891 
 892 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 893   _young_gen->oop_iterate(cl);
 894   _old_gen->oop_iterate(cl);
 895 }
 896 
 897 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 898   _young_gen->object_iterate(cl);
 899   _old_gen->object_iterate(cl);
 900 }
 901 
 902 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 903   _young_gen->safe_object_iterate(cl);
 904   _old_gen->safe_object_iterate(cl);
 905 }
 906 
 907 Space* GenCollectedHeap::space_containing(const void* addr) const {
 908   Space* res = _young_gen->space_containing(addr);
 909   if (res != NULL) {
 910     return res;
 911   }
 912   res = _old_gen->space_containing(addr);
 913   assert(res != NULL, "Could not find containing space");
 914   return res;
 915 }
 916 
 917 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 918   assert(is_in_reserved(addr), "block_start of address outside of heap");
 919   if (_young_gen->is_in_reserved(addr)) {
 920     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 921     return _young_gen->block_start(addr);
 922   }
 923 
 924   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 925   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 926   return _old_gen->block_start(addr);
 927 }
 928 
 929 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 930   assert(is_in_reserved(addr), "block_size of address outside of heap");
 931   if (_young_gen->is_in_reserved(addr)) {
 932     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 933     return _young_gen->block_size(addr);
 934   }
 935 
 936   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 937   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 938   return _old_gen->block_size(addr);
 939 }
 940 
 941 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 942   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 943   assert(block_start(addr) == addr, "addr must be a block start");
 944   if (_young_gen->is_in_reserved(addr)) {
 945     return _young_gen->block_is_obj(addr);
 946   }
 947 
 948   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 949   return _old_gen->block_is_obj(addr);
 950 }
 951 
 952 bool GenCollectedHeap::supports_tlab_allocation() const {
 953   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 954   return _young_gen->supports_tlab_allocation();
 955 }
 956 
 957 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 958   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 959   if (_young_gen->supports_tlab_allocation()) {
 960     return _young_gen->tlab_capacity();
 961   }
 962   return 0;
 963 }
 964 
 965 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 966   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 967   if (_young_gen->supports_tlab_allocation()) {
 968     return _young_gen->tlab_used();
 969   }
 970   return 0;
 971 }
 972 
 973 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 974   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 975   if (_young_gen->supports_tlab_allocation()) {
 976     return _young_gen->unsafe_max_tlab_alloc();
 977   }
 978   return 0;
 979 }
 980 
 981 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 982   bool gc_overhead_limit_was_exceeded;
 983   return gen_policy()->mem_allocate_work(size /* size */,
 984                                          true /* is_tlab */,
 985                                          &gc_overhead_limit_was_exceeded);
 986 }
 987 
 988 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 989 // from the list headed by "*prev_ptr".
 990 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 991   bool first = true;
 992   size_t min_size = 0;   // "first" makes this conceptually infinite.
 993   ScratchBlock **smallest_ptr, *smallest;
 994   ScratchBlock  *cur = *prev_ptr;
 995   while (cur) {
 996     assert(*prev_ptr == cur, "just checking");
 997     if (first || cur->num_words < min_size) {
 998       smallest_ptr = prev_ptr;
 999       smallest     = cur;
1000       min_size     = smallest->num_words;
1001       first        = false;
1002     }
1003     prev_ptr = &cur->next;
1004     cur     =  cur->next;
1005   }
1006   smallest      = *smallest_ptr;
1007   *smallest_ptr = smallest->next;
1008   return smallest;
1009 }
1010 
1011 // Sort the scratch block list headed by res into decreasing size order,
1012 // and set "res" to the result.
1013 static void sort_scratch_list(ScratchBlock*& list) {
1014   ScratchBlock* sorted = NULL;
1015   ScratchBlock* unsorted = list;
1016   while (unsorted) {
1017     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1018     smallest->next  = sorted;
1019     sorted          = smallest;
1020   }
1021   list = sorted;
1022 }
1023 
1024 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1025                                                size_t max_alloc_words) {
1026   ScratchBlock* res = NULL;
1027   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1028   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1029   sort_scratch_list(res);
1030   return res;
1031 }
1032 
1033 void GenCollectedHeap::release_scratch() {
1034   _young_gen->reset_scratch();
1035   _old_gen->reset_scratch();
1036 }
1037 
1038 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1039   void do_generation(Generation* gen) {
1040     gen->prepare_for_verify();
1041   }
1042 };
1043 
1044 void GenCollectedHeap::prepare_for_verify() {
1045   ensure_parsability(false);        // no need to retire TLABs
1046   GenPrepareForVerifyClosure blk;
1047   generation_iterate(&blk, false);
1048 }
1049 
1050 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1051                                           bool old_to_young) {
1052   if (old_to_young) {
1053     cl->do_generation(_old_gen);
1054     cl->do_generation(_young_gen);
1055   } else {
1056     cl->do_generation(_young_gen);
1057     cl->do_generation(_old_gen);
1058   }
1059 }
1060 
1061 bool GenCollectedHeap::is_maximal_no_gc() const {
1062   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1063 }
1064 
1065 void GenCollectedHeap::save_marks() {
1066   _young_gen->save_marks();
1067   _old_gen->save_marks();
1068 }
1069 
1070 GenCollectedHeap* GenCollectedHeap::heap() {
1071   CollectedHeap* heap = Universe::heap();
1072   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1073   assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
1074   return (GenCollectedHeap*)heap;
1075 }
1076 
1077 void GenCollectedHeap::prepare_for_compaction() {
1078   // Start by compacting into same gen.
1079   CompactPoint cp(_old_gen);
1080   _old_gen->prepare_for_compaction(&cp);
1081   _young_gen->prepare_for_compaction(&cp);
1082 }
1083 
1084 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1085   log_debug(gc, verify)("%s", _old_gen->name());
1086   _old_gen->verify();
1087 
1088   log_debug(gc, verify)("%s", _old_gen->name());
1089   _young_gen->verify();
1090 
1091   log_debug(gc, verify)("RemSet");
1092   rem_set()->verify();
1093 }
1094 
1095 void GenCollectedHeap::print_on(outputStream* st) const {
1096   _young_gen->print_on(st);
1097   _old_gen->print_on(st);
1098   MetaspaceAux::print_on(st);
1099 }
1100 
1101 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1102   if (workers() != NULL) {
1103     workers()->threads_do(tc);
1104   }
1105 #if INCLUDE_ALL_GCS
1106   if (UseConcMarkSweepGC) {
1107     ConcurrentMarkSweepThread::threads_do(tc);
1108   }
1109 #endif // INCLUDE_ALL_GCS
1110 }
1111 
1112 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1113 #if INCLUDE_ALL_GCS
1114   if (UseConcMarkSweepGC) {
1115     workers()->print_worker_threads_on(st);
1116     ConcurrentMarkSweepThread::print_all_on(st);
1117   }
1118 #endif // INCLUDE_ALL_GCS
1119 }
1120 
1121 void GenCollectedHeap::print_on_error(outputStream* st) const {
1122   this->CollectedHeap::print_on_error(st);
1123 
1124 #if INCLUDE_ALL_GCS
1125   if (UseConcMarkSweepGC) {
1126     st->cr();
1127     CMSCollector::print_on_error(st);
1128   }
1129 #endif // INCLUDE_ALL_GCS
1130 }
1131 
1132 void GenCollectedHeap::print_tracing_info() const {
1133   if (TraceYoungGenTime) {
1134     _young_gen->print_summary_info();
1135   }
1136   if (TraceOldGenTime) {
1137     _old_gen->print_summary_info();
1138   }
1139 }
1140 
1141 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1142   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1143                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1144   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1145                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1146 }
1147 
1148 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1149  private:
1150   bool _full;
1151  public:
1152   void do_generation(Generation* gen) {
1153     gen->gc_prologue(_full);
1154   }
1155   GenGCPrologueClosure(bool full) : _full(full) {};
1156 };
1157 
1158 void GenCollectedHeap::gc_prologue(bool full) {
1159   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1160 
1161   always_do_update_barrier = false;
1162   // Fill TLAB's and such
1163   CollectedHeap::accumulate_statistics_all_tlabs();
1164   ensure_parsability(true);   // retire TLABs
1165 
1166   // Walk generations
1167   GenGCPrologueClosure blk(full);
1168   generation_iterate(&blk, false);  // not old-to-young.
1169 };
1170 
1171 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1172  private:
1173   bool _full;
1174  public:
1175   void do_generation(Generation* gen) {
1176     gen->gc_epilogue(_full);
1177   }
1178   GenGCEpilogueClosure(bool full) : _full(full) {};
1179 };
1180 
1181 void GenCollectedHeap::gc_epilogue(bool full) {
1182 #if defined(COMPILER2) || INCLUDE_JVMCI
1183   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1184   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1185   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1186 #endif /* COMPILER2 || INCLUDE_JVMCI */
1187 
1188   resize_all_tlabs();
1189 
1190   GenGCEpilogueClosure blk(full);
1191   generation_iterate(&blk, false);  // not old-to-young.
1192 
1193   if (!CleanChunkPoolAsync) {
1194     Chunk::clean_chunk_pool();
1195   }
1196 
1197   MetaspaceCounters::update_performance_counters();
1198   CompressedClassSpaceCounters::update_performance_counters();
1199 
1200   always_do_update_barrier = UseConcMarkSweepGC;
1201 };
1202 
1203 #ifndef PRODUCT
1204 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1205  private:
1206  public:
1207   void do_generation(Generation* gen) {
1208     gen->record_spaces_top();
1209   }
1210 };
1211 
1212 void GenCollectedHeap::record_gen_tops_before_GC() {
1213   if (ZapUnusedHeapArea) {
1214     GenGCSaveTopsBeforeGCClosure blk;
1215     generation_iterate(&blk, false);  // not old-to-young.
1216   }
1217 }
1218 #endif  // not PRODUCT
1219 
1220 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1221  public:
1222   void do_generation(Generation* gen) {
1223     gen->ensure_parsability();
1224   }
1225 };
1226 
1227 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1228   CollectedHeap::ensure_parsability(retire_tlabs);
1229   GenEnsureParsabilityClosure ep_cl;
1230   generation_iterate(&ep_cl, false);
1231 }
1232 
1233 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1234                                               oop obj,
1235                                               size_t obj_size) {
1236   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1237   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1238   HeapWord* result = NULL;
1239 
1240   result = old_gen->expand_and_allocate(obj_size, false);
1241 
1242   if (result != NULL) {
1243     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1244   }
1245   return oop(result);
1246 }
1247 
1248 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1249   jlong _time;   // in ms
1250   jlong _now;    // in ms
1251 
1252  public:
1253   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1254 
1255   jlong time() { return _time; }
1256 
1257   void do_generation(Generation* gen) {
1258     _time = MIN2(_time, gen->time_of_last_gc(_now));
1259   }
1260 };
1261 
1262 jlong GenCollectedHeap::millis_since_last_gc() {
1263   // We need a monotonically non-decreasing time in ms but
1264   // os::javaTimeMillis() does not guarantee monotonicity.
1265   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1266   GenTimeOfLastGCClosure tolgc_cl(now);
1267   // iterate over generations getting the oldest
1268   // time that a generation was collected
1269   generation_iterate(&tolgc_cl, false);
1270 
1271   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1272   // provided the underlying platform provides such a time source
1273   // (and it is bug free). So we still have to guard against getting
1274   // back a time later than 'now'.
1275   jlong retVal = now - tolgc_cl.time();
1276   if (retVal < 0) {
1277     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, retVal);)
1278     return 0;
1279   }
1280   return retVal;
1281 }
1282 
1283 void GenCollectedHeap::stop() {
1284 #if INCLUDE_ALL_GCS
1285   if (UseConcMarkSweepGC) {
1286     ConcurrentMarkSweepThread::cmst()->stop();
1287   }
1288 #endif
1289 }