1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "runtime/os.hpp"
  27 #include "utilities/globalDefinitions.hpp"
  28 #include "utilities/top.hpp"
  29 
  30 // Basic error support
  31 
  32 // Info for oops within a java object.  Defaults are zero so
  33 // things will break badly if incorrectly initialized.
  34 int heapOopSize        = 0;
  35 int LogBytesPerHeapOop = 0;
  36 int LogBitsPerHeapOop  = 0;
  37 int BytesPerHeapOop    = 0;
  38 int BitsPerHeapOop     = 0;
  39 
  40 // Object alignment, in units of HeapWords.
  41 // Defaults are -1 so things will break badly if incorrectly initialized.
  42 int MinObjAlignment            = -1;
  43 int MinObjAlignmentInBytes     = -1;
  44 int MinObjAlignmentInBytesMask = 0;
  45 
  46 int LogMinObjAlignment         = -1;
  47 int LogMinObjAlignmentInBytes  = -1;
  48 
  49 // Oop encoding heap max
  50 uint64_t OopEncodingHeapMax = 0;
  51 
  52 void basic_fatal(const char* msg) {
  53   fatal("%s", msg);
  54 }
  55 
  56 // Something to help porters sleep at night
  57 
  58 void basic_types_init() {
  59 #ifdef ASSERT
  60 #ifdef _LP64
  61   assert(min_intx ==  (intx)CONST64(0x8000000000000000), "correct constant");
  62   assert(max_intx ==  CONST64(0x7FFFFFFFFFFFFFFF), "correct constant");
  63   assert(max_uintx == CONST64(0xFFFFFFFFFFFFFFFF), "correct constant");
  64   assert( 8 == sizeof( intx),      "wrong size for basic type");
  65   assert( 8 == sizeof( jobject),   "wrong size for basic type");
  66 #else
  67   assert(min_intx ==  (intx)0x80000000,  "correct constant");
  68   assert(max_intx ==  0x7FFFFFFF,  "correct constant");
  69   assert(max_uintx == 0xFFFFFFFF,  "correct constant");
  70   assert( 4 == sizeof( intx),      "wrong size for basic type");
  71   assert( 4 == sizeof( jobject),   "wrong size for basic type");
  72 #endif
  73   assert( (~max_juint) == 0,  "max_juint has all its bits");
  74   assert( (~max_uintx) == 0,  "max_uintx has all its bits");
  75   assert( (~max_julong) == 0, "max_julong has all its bits");
  76   assert( 1 == sizeof( jbyte),     "wrong size for basic type");
  77   assert( 2 == sizeof( jchar),     "wrong size for basic type");
  78   assert( 2 == sizeof( jshort),    "wrong size for basic type");
  79   assert( 4 == sizeof( juint),     "wrong size for basic type");
  80   assert( 4 == sizeof( jint),      "wrong size for basic type");
  81   assert( 1 == sizeof( jboolean),  "wrong size for basic type");
  82   assert( 8 == sizeof( jlong),     "wrong size for basic type");
  83   assert( 4 == sizeof( jfloat),    "wrong size for basic type");
  84   assert( 8 == sizeof( jdouble),   "wrong size for basic type");
  85   assert( 1 == sizeof( u1),        "wrong size for basic type");
  86   assert( 2 == sizeof( u2),        "wrong size for basic type");
  87   assert( 4 == sizeof( u4),        "wrong size for basic type");
  88   assert(wordSize == BytesPerWord, "should be the same since they're used interchangeably");
  89   assert(wordSize == HeapWordSize, "should be the same since they're also used interchangeably");
  90 
  91   int num_type_chars = 0;
  92   for (int i = 0; i < 99; i++) {
  93     if (type2char((BasicType)i) != 0) {
  94       assert(char2type(type2char((BasicType)i)) == i, "proper inverses");
  95       num_type_chars++;
  96     }
  97   }
  98   assert(num_type_chars == 11, "must have tested the right number of mappings");
  99   assert(char2type(0) == T_ILLEGAL, "correct illegality");
 100 
 101   {
 102     for (int i = T_BOOLEAN; i <= T_CONFLICT; i++) {
 103       BasicType vt = (BasicType)i;
 104       BasicType ft = type2field[vt];
 105       switch (vt) {
 106       // the following types might plausibly show up in memory layouts:
 107       case T_BOOLEAN:
 108       case T_BYTE:
 109       case T_CHAR:
 110       case T_SHORT:
 111       case T_INT:
 112       case T_FLOAT:
 113       case T_DOUBLE:
 114       case T_LONG:
 115       case T_OBJECT:
 116       case T_ADDRESS:     // random raw pointer
 117       case T_METADATA:    // metadata pointer
 118       case T_NARROWOOP:   // compressed pointer
 119       case T_NARROWKLASS: // compressed klass pointer
 120       case T_CONFLICT:    // might as well support a bottom type
 121       case T_VOID:        // padding or other unaddressed word
 122         // layout type must map to itself
 123         assert(vt == ft, "");
 124         break;
 125       default:
 126         // non-layout type must map to a (different) layout type
 127         assert(vt != ft, "");
 128         assert(ft == type2field[ft], "");
 129       }
 130       // every type must map to same-sized layout type:
 131       assert(type2size[vt] == type2size[ft], "");
 132     }
 133   }
 134   // These are assumed, e.g., when filling HeapWords with juints.
 135   assert(is_power_of_2(sizeof(juint)), "juint must be power of 2");
 136   assert(is_power_of_2(HeapWordSize), "HeapWordSize must be power of 2");
 137   assert((size_t)HeapWordSize >= sizeof(juint),
 138          "HeapWord should be at least as large as juint");
 139   assert(sizeof(NULL) == sizeof(char*), "NULL must be same size as pointer");
 140 #endif
 141 
 142   if( JavaPriority1_To_OSPriority != -1 )
 143     os::java_to_os_priority[1] = JavaPriority1_To_OSPriority;
 144   if( JavaPriority2_To_OSPriority != -1 )
 145     os::java_to_os_priority[2] = JavaPriority2_To_OSPriority;
 146   if( JavaPriority3_To_OSPriority != -1 )
 147     os::java_to_os_priority[3] = JavaPriority3_To_OSPriority;
 148   if( JavaPriority4_To_OSPriority != -1 )
 149     os::java_to_os_priority[4] = JavaPriority4_To_OSPriority;
 150   if( JavaPriority5_To_OSPriority != -1 )
 151     os::java_to_os_priority[5] = JavaPriority5_To_OSPriority;
 152   if( JavaPriority6_To_OSPriority != -1 )
 153     os::java_to_os_priority[6] = JavaPriority6_To_OSPriority;
 154   if( JavaPriority7_To_OSPriority != -1 )
 155     os::java_to_os_priority[7] = JavaPriority7_To_OSPriority;
 156   if( JavaPriority8_To_OSPriority != -1 )
 157     os::java_to_os_priority[8] = JavaPriority8_To_OSPriority;
 158   if( JavaPriority9_To_OSPriority != -1 )
 159     os::java_to_os_priority[9] = JavaPriority9_To_OSPriority;
 160   if(JavaPriority10_To_OSPriority != -1 )
 161     os::java_to_os_priority[10] = JavaPriority10_To_OSPriority;
 162 
 163   // Set the size of basic types here (after argument parsing but before
 164   // stub generation).
 165   if (UseCompressedOops) {
 166     // Size info for oops within java objects is fixed
 167     heapOopSize        = jintSize;
 168     LogBytesPerHeapOop = LogBytesPerInt;
 169     LogBitsPerHeapOop  = LogBitsPerInt;
 170     BytesPerHeapOop    = BytesPerInt;
 171     BitsPerHeapOop     = BitsPerInt;
 172   } else {
 173     heapOopSize        = oopSize;
 174     LogBytesPerHeapOop = LogBytesPerWord;
 175     LogBitsPerHeapOop  = LogBitsPerWord;
 176     BytesPerHeapOop    = BytesPerWord;
 177     BitsPerHeapOop     = BitsPerWord;
 178   }
 179   _type2aelembytes[T_OBJECT] = heapOopSize;
 180   _type2aelembytes[T_ARRAY]  = heapOopSize;
 181 }
 182 
 183 
 184 // Map BasicType to signature character
 185 char type2char_tab[T_CONFLICT+1]={ 0, 0, 0, 0, 'Z', 'C', 'F', 'D', 'B', 'S', 'I', 'J', 'L', '[', 'V', 0, 0, 0, 0, 0};
 186 
 187 // Map BasicType to Java type name
 188 const char* type2name_tab[T_CONFLICT+1] = {
 189   NULL, NULL, NULL, NULL,
 190   "boolean",
 191   "char",
 192   "float",
 193   "double",
 194   "byte",
 195   "short",
 196   "int",
 197   "long",
 198   "object",
 199   "array",
 200   "void",
 201   "*address*",
 202   "*narrowoop*",
 203   "*metadata*",
 204   "*narrowklass*",
 205   "*conflict*"
 206 };
 207 
 208 
 209 BasicType name2type(const char* name) {
 210   for (int i = T_BOOLEAN; i <= T_VOID; i++) {
 211     BasicType t = (BasicType)i;
 212     if (type2name_tab[t] != NULL && 0 == strcmp(type2name_tab[t], name))
 213       return t;
 214   }
 215   return T_ILLEGAL;
 216 }
 217 
 218 
 219 // Map BasicType to size in words
 220 int type2size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, -1};
 221 
 222 BasicType type2field[T_CONFLICT+1] = {
 223   (BasicType)0,            // 0,
 224   (BasicType)0,            // 1,
 225   (BasicType)0,            // 2,
 226   (BasicType)0,            // 3,
 227   T_BOOLEAN,               // T_BOOLEAN  =  4,
 228   T_CHAR,                  // T_CHAR     =  5,
 229   T_FLOAT,                 // T_FLOAT    =  6,
 230   T_DOUBLE,                // T_DOUBLE   =  7,
 231   T_BYTE,                  // T_BYTE     =  8,
 232   T_SHORT,                 // T_SHORT    =  9,
 233   T_INT,                   // T_INT      = 10,
 234   T_LONG,                  // T_LONG     = 11,
 235   T_OBJECT,                // T_OBJECT   = 12,
 236   T_OBJECT,                // T_ARRAY    = 13,
 237   T_VOID,                  // T_VOID     = 14,
 238   T_ADDRESS,               // T_ADDRESS  = 15,
 239   T_NARROWOOP,             // T_NARROWOOP= 16,
 240   T_METADATA,              // T_METADATA = 17,
 241   T_NARROWKLASS,           // T_NARROWKLASS = 18,
 242   T_CONFLICT               // T_CONFLICT = 19,
 243 };
 244 
 245 
 246 BasicType type2wfield[T_CONFLICT+1] = {
 247   (BasicType)0,            // 0,
 248   (BasicType)0,            // 1,
 249   (BasicType)0,            // 2,
 250   (BasicType)0,            // 3,
 251   T_INT,     // T_BOOLEAN  =  4,
 252   T_INT,     // T_CHAR     =  5,
 253   T_FLOAT,   // T_FLOAT    =  6,
 254   T_DOUBLE,  // T_DOUBLE   =  7,
 255   T_INT,     // T_BYTE     =  8,
 256   T_INT,     // T_SHORT    =  9,
 257   T_INT,     // T_INT      = 10,
 258   T_LONG,    // T_LONG     = 11,
 259   T_OBJECT,  // T_OBJECT   = 12,
 260   T_OBJECT,  // T_ARRAY    = 13,
 261   T_VOID,    // T_VOID     = 14,
 262   T_ADDRESS, // T_ADDRESS  = 15,
 263   T_NARROWOOP, // T_NARROWOOP  = 16,
 264   T_METADATA,  // T_METADATA   = 17,
 265   T_NARROWKLASS, // T_NARROWKLASS  = 18,
 266   T_CONFLICT // T_CONFLICT = 19,
 267 };
 268 
 269 
 270 int _type2aelembytes[T_CONFLICT+1] = {
 271   0,                         // 0
 272   0,                         // 1
 273   0,                         // 2
 274   0,                         // 3
 275   T_BOOLEAN_aelem_bytes,     // T_BOOLEAN  =  4,
 276   T_CHAR_aelem_bytes,        // T_CHAR     =  5,
 277   T_FLOAT_aelem_bytes,       // T_FLOAT    =  6,
 278   T_DOUBLE_aelem_bytes,      // T_DOUBLE   =  7,
 279   T_BYTE_aelem_bytes,        // T_BYTE     =  8,
 280   T_SHORT_aelem_bytes,       // T_SHORT    =  9,
 281   T_INT_aelem_bytes,         // T_INT      = 10,
 282   T_LONG_aelem_bytes,        // T_LONG     = 11,
 283   T_OBJECT_aelem_bytes,      // T_OBJECT   = 12,
 284   T_ARRAY_aelem_bytes,       // T_ARRAY    = 13,
 285   0,                         // T_VOID     = 14,
 286   T_OBJECT_aelem_bytes,      // T_ADDRESS  = 15,
 287   T_NARROWOOP_aelem_bytes,   // T_NARROWOOP= 16,
 288   T_OBJECT_aelem_bytes,      // T_METADATA = 17,
 289   T_NARROWKLASS_aelem_bytes, // T_NARROWKLASS= 18,
 290   0                          // T_CONFLICT = 19,
 291 };
 292 
 293 #ifdef ASSERT
 294 int type2aelembytes(BasicType t, bool allow_address) {
 295   assert(allow_address || t != T_ADDRESS, " ");
 296   return _type2aelembytes[t];
 297 }
 298 #endif
 299 
 300 // Support for 64-bit integer arithmetic
 301 
 302 // The following code is mostly taken from JVM typedefs_md.h and system_md.c
 303 
 304 static const jlong high_bit   = (jlong)1 << (jlong)63;
 305 static const jlong other_bits = ~high_bit;
 306 
 307 jlong float2long(jfloat f) {
 308   jlong tmp = (jlong) f;
 309   if (tmp != high_bit) {
 310     return tmp;
 311   } else {
 312     if (g_isnan((jdouble)f)) {
 313       return 0;
 314     }
 315     if (f < 0) {
 316       return high_bit;
 317     } else {
 318       return other_bits;
 319     }
 320   }
 321 }
 322 
 323 
 324 jlong double2long(jdouble f) {
 325   jlong tmp = (jlong) f;
 326   if (tmp != high_bit) {
 327     return tmp;
 328   } else {
 329     if (g_isnan(f)) {
 330       return 0;
 331     }
 332     if (f < 0) {
 333       return high_bit;
 334     } else {
 335       return other_bits;
 336     }
 337   }
 338 }
 339 
 340 // least common multiple
 341 size_t lcm(size_t a, size_t b) {
 342     size_t cur, div, next;
 343 
 344     cur = MAX2(a, b);
 345     div = MIN2(a, b);
 346 
 347     assert(div != 0, "lcm requires positive arguments");
 348 
 349 
 350     while ((next = cur % div) != 0) {
 351         cur = div; div = next;
 352     }
 353 
 354 
 355     julong result = julong(a) * b / div;
 356     assert(result <= (size_t)max_uintx, "Integer overflow in lcm");
 357 
 358     return size_t(result);
 359 }
 360 
 361 
 362 // Test that nth_bit macro and friends behave as
 363 // expected, even with low-precedence operators.
 364 
 365 STATIC_ASSERT(nth_bit(3)   == 0x8);
 366 STATIC_ASSERT(nth_bit(1|2) == 0x8);
 367 
 368 STATIC_ASSERT(right_n_bits(3)   == 0x7);
 369 STATIC_ASSERT(right_n_bits(1|2) == 0x7);
 370 
 371 STATIC_ASSERT(left_n_bits(3)   == (intptr_t) LP64_ONLY(0xE000000000000000) NOT_LP64(0xE0000000));
 372 STATIC_ASSERT(left_n_bits(1|2) == (intptr_t) LP64_ONLY(0xE000000000000000) NOT_LP64(0xE0000000));
 373 
 374 
 375 #ifndef PRODUCT
 376 // For unit testing only
 377 class TestGlobalDefinitions {
 378 private:
 379 
 380   static void test_clamp_address_in_page() {
 381     intptr_t page_sizes[] = { os::vm_page_size(), 4096, 8192, 65536, 2*1024*1024 };
 382     const int num_page_sizes = sizeof(page_sizes) / sizeof(page_sizes[0]);
 383 
 384     for (int i = 0; i < num_page_sizes; i++) {
 385       intptr_t page_size = page_sizes[i];
 386 
 387       address a_page = (address)(10*page_size);
 388 
 389       // Check that address within page is returned as is
 390       assert(clamp_address_in_page(a_page, a_page, page_size) == a_page, "incorrect");
 391       assert(clamp_address_in_page(a_page + 128, a_page, page_size) == a_page + 128, "incorrect");
 392       assert(clamp_address_in_page(a_page + page_size - 1, a_page, page_size) == a_page + page_size - 1, "incorrect");
 393 
 394       // Check that address above page returns start of next page
 395       assert(clamp_address_in_page(a_page + page_size, a_page, page_size) == a_page + page_size, "incorrect");
 396       assert(clamp_address_in_page(a_page + page_size + 1, a_page, page_size) == a_page + page_size, "incorrect");
 397       assert(clamp_address_in_page(a_page + page_size*5 + 1, a_page, page_size) == a_page + page_size, "incorrect");
 398 
 399       // Check that address below page returns start of page
 400       assert(clamp_address_in_page(a_page - 1, a_page, page_size) == a_page, "incorrect");
 401       assert(clamp_address_in_page(a_page - 2*page_size - 1, a_page, page_size) == a_page, "incorrect");
 402       assert(clamp_address_in_page(a_page - 5*page_size - 1, a_page, page_size) == a_page, "incorrect");
 403     }
 404   }
 405 
 406   static void test_exact_unit_for_byte_size() {
 407     assert(strcmp(exact_unit_for_byte_size(0),     "B") == 0, "incorrect");
 408     assert(strcmp(exact_unit_for_byte_size(1),     "B") == 0, "incorrect");
 409     assert(strcmp(exact_unit_for_byte_size(K - 1), "B") == 0, "incorrect");
 410     assert(strcmp(exact_unit_for_byte_size(K),     "K") == 0, "incorrect");
 411     assert(strcmp(exact_unit_for_byte_size(K + 1), "B") == 0, "incorrect");
 412     assert(strcmp(exact_unit_for_byte_size(M - 1), "B") == 0, "incorrect");
 413     assert(strcmp(exact_unit_for_byte_size(M),     "M") == 0, "incorrect");
 414     assert(strcmp(exact_unit_for_byte_size(M + 1), "B") == 0, "incorrect");
 415     assert(strcmp(exact_unit_for_byte_size(M + K), "K") == 0, "incorrect");
 416 #ifdef LP64
 417     assert(strcmp(exact_unit_for_byte_size(G - 1),     "B") == 0, "incorrect");
 418     assert(strcmp(exact_unit_for_byte_size(G),         "G") == 0, "incorrect");
 419     assert(strcmp(exact_unit_for_byte_size(G + 1),     "B") == 0, "incorrect");
 420     assert(strcmp(exact_unit_for_byte_size(G + K),     "K") == 0, "incorrect");
 421     assert(strcmp(exact_unit_for_byte_size(G + M),     "M") == 0, "incorrect");
 422     assert(strcmp(exact_unit_for_byte_size(G + M + K), "K") == 0, "incorrect");
 423 #endif
 424   }
 425 
 426   static void test_byte_size_in_exact_unit() {
 427     assert(byte_size_in_exact_unit(0)     == 0,     "incorrect");
 428     assert(byte_size_in_exact_unit(1)     == 1,     "incorrect");
 429     assert(byte_size_in_exact_unit(K - 1) == K - 1, "incorrect");
 430     assert(byte_size_in_exact_unit(K)     == 1,     "incorrect");
 431     assert(byte_size_in_exact_unit(K + 1) == K + 1, "incorrect");
 432     assert(byte_size_in_exact_unit(M - 1) == M - 1, "incorrect");
 433     assert(byte_size_in_exact_unit(M)     == 1,     "incorrect");
 434     assert(byte_size_in_exact_unit(M + 1) == M + 1, "incorrect");
 435     assert(byte_size_in_exact_unit(M + K) == K + 1, "incorrect");
 436 #ifdef LP64
 437     assert(byte_size_in_exact_unit(G - 1)     == G - 1,     "incorrect");
 438     assert(byte_size_in_exact_unit(G)         == 1,         "incorrect");
 439     assert(byte_size_in_exact_unit(G + 1)     == G + 1,     "incorrect");
 440     assert(byte_size_in_exact_unit(G + K)     == M + 1,     "incorrect");
 441     assert(byte_size_in_exact_unit(G + M)     == K + 1,     "incorrect");
 442     assert(byte_size_in_exact_unit(G + M + K) == M + K + 1, "incorrect");
 443 #endif
 444   }
 445 
 446   static void test_exact_units() {
 447     test_exact_unit_for_byte_size();
 448     test_byte_size_in_exact_unit();
 449   }
 450 
 451 public:
 452   static void test() {
 453     test_clamp_address_in_page();
 454     test_exact_units();
 455   }
 456 };
 457 
 458 void TestGlobalDefinitions_test() {
 459   TestGlobalDefinitions::test();
 460 }
 461 
 462 #endif // PRODUCT