1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 #ifndef PRAGMA_DIAG_PUSH
  52 #define PRAGMA_DIAG_PUSH
  53 #endif
  54 #ifndef PRAGMA_DIAG_POP
  55 #define PRAGMA_DIAG_POP
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  59 #endif
  60 #ifndef PRAGMA_FORMAT_IGNORED
  61 #define PRAGMA_FORMAT_IGNORED
  62 #endif
  63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  65 #endif
  66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  68 #endif
  69 #ifndef ATTRIBUTE_PRINTF
  70 #define ATTRIBUTE_PRINTF(fmt, vargs)
  71 #endif
  72 #ifndef ATTRIBUTE_SCANF
  73 #define ATTRIBUTE_SCANF(fmt, vargs)
  74 #endif
  75 
  76 
  77 #include "utilities/macros.hpp"
  78 
  79 // This file holds all globally used constants & types, class (forward)
  80 // declarations and a few frequently used utility functions.
  81 
  82 //----------------------------------------------------------------------------------------------------
  83 // Constants
  84 
  85 const int LogBytesPerShort   = 1;
  86 const int LogBytesPerInt     = 2;
  87 #ifdef _LP64
  88 const int LogBytesPerWord    = 3;
  89 #else
  90 const int LogBytesPerWord    = 2;
  91 #endif
  92 const int LogBytesPerLong    = 3;
  93 
  94 const int BytesPerShort      = 1 << LogBytesPerShort;
  95 const int BytesPerInt        = 1 << LogBytesPerInt;
  96 const int BytesPerWord       = 1 << LogBytesPerWord;
  97 const int BytesPerLong       = 1 << LogBytesPerLong;
  98 
  99 const int LogBitsPerByte     = 3;
 100 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 101 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 102 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 103 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 104 
 105 const int BitsPerByte        = 1 << LogBitsPerByte;
 106 const int BitsPerShort       = 1 << LogBitsPerShort;
 107 const int BitsPerInt         = 1 << LogBitsPerInt;
 108 const int BitsPerWord        = 1 << LogBitsPerWord;
 109 const int BitsPerLong        = 1 << LogBitsPerLong;
 110 
 111 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 112 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 113 
 114 const int WordsPerLong       = 2;       // Number of stack entries for longs
 115 
 116 const int oopSize            = sizeof(char*); // Full-width oop
 117 extern int heapOopSize;                       // Oop within a java object
 118 const int wordSize           = sizeof(char*);
 119 const int longSize           = sizeof(jlong);
 120 const int jintSize           = sizeof(jint);
 121 const int size_tSize         = sizeof(size_t);
 122 
 123 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 124 
 125 extern int LogBytesPerHeapOop;                // Oop within a java object
 126 extern int LogBitsPerHeapOop;
 127 extern int BytesPerHeapOop;
 128 extern int BitsPerHeapOop;
 129 
 130 const int BitsPerJavaInteger = 32;
 131 const int BitsPerJavaLong    = 64;
 132 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 133 
 134 // Size of a char[] needed to represent a jint as a string in decimal.
 135 const int jintAsStringSize = 12;
 136 
 137 // In fact this should be
 138 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 139 // see os::set_memory_serialize_page()
 140 #ifdef _LP64
 141 const int SerializePageShiftCount = 4;
 142 #else
 143 const int SerializePageShiftCount = 3;
 144 #endif
 145 
 146 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 147 // pointer into the heap.  We require that object sizes be measured in
 148 // units of heap words, so that that
 149 //   HeapWord* hw;
 150 //   hw += oop(hw)->foo();
 151 // works, where foo is a method (like size or scavenge) that returns the
 152 // object size.
 153 class HeapWord {
 154   friend class VMStructs;
 155  private:
 156   char* i;
 157 #ifndef PRODUCT
 158  public:
 159   char* value() { return i; }
 160 #endif
 161 };
 162 
 163 // Analogous opaque struct for metadata allocated from
 164 // metaspaces.
 165 class MetaWord {
 166  private:
 167   char* i;
 168 };
 169 
 170 // HeapWordSize must be 2^LogHeapWordSize.
 171 const int HeapWordSize        = sizeof(HeapWord);
 172 #ifdef _LP64
 173 const int LogHeapWordSize     = 3;
 174 #else
 175 const int LogHeapWordSize     = 2;
 176 #endif
 177 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 178 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 179 
 180 // The larger HeapWordSize for 64bit requires larger heaps
 181 // for the same application running in 64bit.  See bug 4967770.
 182 // The minimum alignment to a heap word size is done.  Other
 183 // parts of the memory system may require additional alignment
 184 // and are responsible for those alignments.
 185 #ifdef _LP64
 186 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 187 #else
 188 #define ScaleForWordSize(x) (x)
 189 #endif
 190 
 191 // The minimum number of native machine words necessary to contain "byte_size"
 192 // bytes.
 193 inline size_t heap_word_size(size_t byte_size) {
 194   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 195 }
 196 
 197 const size_t K                  = 1024;
 198 const size_t M                  = K*K;
 199 const size_t G                  = M*K;
 200 const size_t HWperKB            = K / sizeof(HeapWord);
 201 
 202 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 203 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 204 
 205 // Constants for converting from a base unit to milli-base units.  For
 206 // example from seconds to milliseconds and microseconds
 207 
 208 const int MILLIUNITS    = 1000;         // milli units per base unit
 209 const int MICROUNITS    = 1000000;      // micro units per base unit
 210 const int NANOUNITS     = 1000000000;   // nano units per base unit
 211 
 212 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 213 const jint  NANOSECS_PER_MILLISEC = 1000000;
 214 
 215 inline const char* proper_unit_for_byte_size(size_t s) {
 216 #ifdef _LP64
 217   if (s >= 10*G) {
 218     return "G";
 219   }
 220 #endif
 221   if (s >= 10*M) {
 222     return "M";
 223   } else if (s >= 10*K) {
 224     return "K";
 225   } else {
 226     return "B";
 227   }
 228 }
 229 
 230 template <class T>
 231 inline T byte_size_in_proper_unit(T s) {
 232 #ifdef _LP64
 233   if (s >= 10*G) {
 234     return (T)(s/G);
 235   }
 236 #endif
 237   if (s >= 10*M) {
 238     return (T)(s/M);
 239   } else if (s >= 10*K) {
 240     return (T)(s/K);
 241   } else {
 242     return s;
 243   }
 244 }
 245 
 246 inline const char* exact_unit_for_byte_size(size_t s) {
 247 #ifdef _LP64
 248   if (s >= G && (s % G) == 0) {
 249     return "G";
 250   }
 251 #endif
 252   if (s >= M && (s % M) == 0) {
 253     return "M";
 254   }
 255   if (s >= K && (s % K) == 0) {
 256     return "K";
 257   }
 258   return "B";
 259 }
 260 
 261 inline size_t byte_size_in_exact_unit(size_t s) {
 262 #ifdef _LP64
 263   if (s >= G && (s % G) == 0) {
 264     return s / G;
 265   }
 266 #endif
 267   if (s >= M && (s % M) == 0) {
 268     return s / M;
 269   }
 270   if (s >= K && (s % K) == 0) {
 271     return s / K;
 272   }
 273   return s;
 274 }
 275 
 276 //----------------------------------------------------------------------------------------------------
 277 // VM type definitions
 278 
 279 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 280 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 281 
 282 typedef intptr_t  intx;
 283 typedef uintptr_t uintx;
 284 
 285 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 286 const intx  max_intx  = (uintx)min_intx - 1;
 287 const uintx max_uintx = (uintx)-1;
 288 
 289 // Table of values:
 290 //      sizeof intx         4               8
 291 // min_intx             0x80000000      0x8000000000000000
 292 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 293 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 294 
 295 typedef unsigned int uint;   NEEDS_CLEANUP
 296 
 297 
 298 //----------------------------------------------------------------------------------------------------
 299 // Java type definitions
 300 
 301 // All kinds of 'plain' byte addresses
 302 typedef   signed char s_char;
 303 typedef unsigned char u_char;
 304 typedef u_char*       address;
 305 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 306                                     // except for some implementations of a C++
 307                                     // linkage pointer to function. Should never
 308                                     // need one of those to be placed in this
 309                                     // type anyway.
 310 
 311 //  Utility functions to "portably" (?) bit twiddle pointers
 312 //  Where portable means keep ANSI C++ compilers quiet
 313 
 314 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 315 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 316 
 317 //  Utility functions to "portably" make cast to/from function pointers.
 318 
 319 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 320 inline address_word  castable_address(address x)              { return address_word(x) ; }
 321 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 322 
 323 // Pointer subtraction.
 324 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 325 // the range we might need to find differences from one end of the heap
 326 // to the other.
 327 // A typical use might be:
 328 //     if (pointer_delta(end(), top()) >= size) {
 329 //       // enough room for an object of size
 330 //       ...
 331 // and then additions like
 332 //       ... top() + size ...
 333 // are safe because we know that top() is at least size below end().
 334 inline size_t pointer_delta(const void* left,
 335                             const void* right,
 336                             size_t element_size) {
 337   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 338 }
 339 // A version specialized for HeapWord*'s.
 340 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 341   return pointer_delta(left, right, sizeof(HeapWord));
 342 }
 343 // A version specialized for MetaWord*'s.
 344 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 345   return pointer_delta(left, right, sizeof(MetaWord));
 346 }
 347 
 348 //
 349 // ANSI C++ does not allow casting from one pointer type to a function pointer
 350 // directly without at best a warning. This macro accomplishes it silently
 351 // In every case that is present at this point the value be cast is a pointer
 352 // to a C linkage function. In some case the type used for the cast reflects
 353 // that linkage and a picky compiler would not complain. In other cases because
 354 // there is no convenient place to place a typedef with extern C linkage (i.e
 355 // a platform dependent header file) it doesn't. At this point no compiler seems
 356 // picky enough to catch these instances (which are few). It is possible that
 357 // using templates could fix these for all cases. This use of templates is likely
 358 // so far from the middle of the road that it is likely to be problematic in
 359 // many C++ compilers.
 360 //
 361 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 362 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 363 
 364 // Unsigned byte types for os and stream.hpp
 365 
 366 // Unsigned one, two, four and eigth byte quantities used for describing
 367 // the .class file format. See JVM book chapter 4.
 368 
 369 typedef jubyte  u1;
 370 typedef jushort u2;
 371 typedef juint   u4;
 372 typedef julong  u8;
 373 
 374 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 375 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 376 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 377 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 378 
 379 typedef jbyte  s1;
 380 typedef jshort s2;
 381 typedef jint   s4;
 382 typedef jlong  s8;
 383 
 384 //----------------------------------------------------------------------------------------------------
 385 // JVM spec restrictions
 386 
 387 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 388 
 389 // Default ProtectionDomainCacheSize values
 390 
 391 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 392 
 393 //----------------------------------------------------------------------------------------------------
 394 // Default and minimum StringTableSize values
 395 
 396 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 397 const int minimumStringTableSize = 1009;
 398 
 399 const int defaultSymbolTableSize = 20011;
 400 const int minimumSymbolTableSize = 1009;
 401 
 402 
 403 //----------------------------------------------------------------------------------------------------
 404 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 405 //
 406 // Determines whether on-the-fly class replacement and frame popping are enabled.
 407 
 408 #define HOTSWAP
 409 
 410 //----------------------------------------------------------------------------------------------------
 411 // Object alignment, in units of HeapWords.
 412 //
 413 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 414 // reference fields can be naturally aligned.
 415 
 416 extern int MinObjAlignment;
 417 extern int MinObjAlignmentInBytes;
 418 extern int MinObjAlignmentInBytesMask;
 419 
 420 extern int LogMinObjAlignment;
 421 extern int LogMinObjAlignmentInBytes;
 422 
 423 const int LogKlassAlignmentInBytes = 3;
 424 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 425 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 426 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 427 
 428 // Maximal size of heap where unscaled compression can be used. Also upper bound
 429 // for heap placement: 4GB.
 430 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 431 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 432 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 433 extern uint64_t OopEncodingHeapMax;
 434 
 435 // Maximal size of compressed class space. Above this limit compression is not possible.
 436 // Also upper bound for placement of zero based class space. (Class space is further limited
 437 // to be < 3G, see arguments.cpp.)
 438 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 439 
 440 // Machine dependent stuff
 441 
 442 // States of Restricted Transactional Memory usage.
 443 enum RTMState {
 444   NoRTM      = 0x2, // Don't use RTM
 445   UseRTM     = 0x1, // Use RTM
 446   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 447 };
 448 
 449 // The maximum size of the code cache.  Can be overridden by targets.
 450 #define CODE_CACHE_SIZE_LIMIT (2*G)
 451 // Allow targets to reduce the default size of the code cache.
 452 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 453 
 454 #ifdef TARGET_ARCH_x86
 455 # include "globalDefinitions_x86.hpp"
 456 #endif
 457 #ifdef TARGET_ARCH_sparc
 458 # include "globalDefinitions_sparc.hpp"
 459 #endif
 460 #ifdef TARGET_ARCH_zero
 461 # include "globalDefinitions_zero.hpp"
 462 #endif
 463 #ifdef TARGET_ARCH_arm
 464 # include "globalDefinitions_arm.hpp"
 465 #endif
 466 #ifdef TARGET_ARCH_ppc
 467 # include "globalDefinitions_ppc.hpp"
 468 #endif
 469 #ifdef TARGET_ARCH_aarch64
 470 # include "globalDefinitions_aarch64.hpp"
 471 #endif
 472 
 473 #ifndef INCLUDE_RTM_OPT
 474 #define INCLUDE_RTM_OPT 0
 475 #endif
 476 #if INCLUDE_RTM_OPT
 477 #define RTM_OPT_ONLY(code) code
 478 #else
 479 #define RTM_OPT_ONLY(code)
 480 #endif
 481 
 482 // To assure the IRIW property on processors that are not multiple copy
 483 // atomic, sync instructions must be issued between volatile reads to
 484 // assure their ordering, instead of after volatile stores.
 485 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 486 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 487 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 488 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 489 #else
 490 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 491 #endif
 492 
 493 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 494 // Note: this value must be a power of 2
 495 
 496 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 497 
 498 // Signed variants of alignment helpers.  There are two versions of each, a macro
 499 // for use in places like enum definitions that require compile-time constant
 500 // expressions and a function for all other places so as to get type checking.
 501 
 502 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 503 
 504 inline bool is_size_aligned(size_t size, size_t alignment) {
 505   return align_size_up_(size, alignment) == size;
 506 }
 507 
 508 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 509   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 510 }
 511 
 512 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 513   return align_size_up_(size, alignment);
 514 }
 515 
 516 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 517 
 518 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 519   return align_size_down_(size, alignment);
 520 }
 521 
 522 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 523 
 524 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 525   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 526 }
 527 
 528 inline void* align_ptr_down(void* ptr, size_t alignment) {
 529   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 530 }
 531 
 532 // Align metaspace objects by rounding up to natural word boundary
 533 
 534 inline intptr_t align_metadata_size(intptr_t size) {
 535   return align_size_up(size, 1);
 536 }
 537 
 538 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 539 // Since the size is given in words this is somewhat of a nop, but
 540 // distinguishes it from align_object_size.
 541 inline intptr_t align_object_size(intptr_t size) {
 542   return align_size_up(size, MinObjAlignment);
 543 }
 544 
 545 inline bool is_object_aligned(intptr_t addr) {
 546   return addr == align_object_size(addr);
 547 }
 548 
 549 // Pad out certain offsets to jlong alignment, in HeapWord units.
 550 
 551 inline intptr_t align_object_offset(intptr_t offset) {
 552   return align_size_up(offset, HeapWordsPerLong);
 553 }
 554 
 555 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 556 
 557 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 558   size_t aligned_size = align_size_down_(size, alignment);
 559   return aligned_size > 0 ? aligned_size : alignment;
 560 }
 561 
 562 // Clamp an address to be within a specific page
 563 // 1. If addr is on the page it is returned as is
 564 // 2. If addr is above the page_address the start of the *next* page will be returned
 565 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 566 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 567   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 568     // address is in the specified page, just return it as is
 569     return addr;
 570   } else if (addr > page_address) {
 571     // address is above specified page, return start of next page
 572     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 573   } else {
 574     // address is below specified page, return start of page
 575     return (address)align_size_down(intptr_t(page_address), page_size);
 576   }
 577 }
 578 
 579 
 580 // The expected size in bytes of a cache line, used to pad data structures.
 581 #ifndef DEFAULT_CACHE_LINE_SIZE
 582   #define DEFAULT_CACHE_LINE_SIZE 64
 583 #endif
 584 
 585 
 586 //----------------------------------------------------------------------------------------------------
 587 // Utility macros for compilers
 588 // used to silence compiler warnings
 589 
 590 #define Unused_Variable(var) var
 591 
 592 
 593 //----------------------------------------------------------------------------------------------------
 594 // Miscellaneous
 595 
 596 // 6302670 Eliminate Hotspot __fabsf dependency
 597 // All fabs() callers should call this function instead, which will implicitly
 598 // convert the operand to double, avoiding a dependency on __fabsf which
 599 // doesn't exist in early versions of Solaris 8.
 600 inline double fabsd(double value) {
 601   return fabs(value);
 602 }
 603 
 604 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 605 // is zero, return 0.0.
 606 template<typename T>
 607 inline double percent_of(T numerator, T denominator) {
 608   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 609 }
 610 
 611 //----------------------------------------------------------------------------------------------------
 612 // Special casts
 613 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 614 typedef union {
 615   jfloat f;
 616   jint i;
 617 } FloatIntConv;
 618 
 619 typedef union {
 620   jdouble d;
 621   jlong l;
 622   julong ul;
 623 } DoubleLongConv;
 624 
 625 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 626 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 627 
 628 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 629 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 630 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 631 
 632 inline jint low (jlong value)                    { return jint(value); }
 633 inline jint high(jlong value)                    { return jint(value >> 32); }
 634 
 635 // the fancy casts are a hopefully portable way
 636 // to do unsigned 32 to 64 bit type conversion
 637 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 638                                                    *value |= (jlong)(julong)(juint)low; }
 639 
 640 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 641                                                    *value |= (jlong)high       << 32; }
 642 
 643 inline jlong jlong_from(jint h, jint l) {
 644   jlong result = 0; // initialization to avoid warning
 645   set_high(&result, h);
 646   set_low(&result,  l);
 647   return result;
 648 }
 649 
 650 union jlong_accessor {
 651   jint  words[2];
 652   jlong long_value;
 653 };
 654 
 655 void basic_types_init(); // cannot define here; uses assert
 656 
 657 
 658 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 659 enum BasicType {
 660   T_BOOLEAN     =  4,
 661   T_CHAR        =  5,
 662   T_FLOAT       =  6,
 663   T_DOUBLE      =  7,
 664   T_BYTE        =  8,
 665   T_SHORT       =  9,
 666   T_INT         = 10,
 667   T_LONG        = 11,
 668   T_OBJECT      = 12,
 669   T_ARRAY       = 13,
 670   T_VOID        = 14,
 671   T_ADDRESS     = 15,
 672   T_NARROWOOP   = 16,
 673   T_METADATA    = 17,
 674   T_NARROWKLASS = 18,
 675   T_CONFLICT    = 19, // for stack value type with conflicting contents
 676   T_ILLEGAL     = 99
 677 };
 678 
 679 inline bool is_java_primitive(BasicType t) {
 680   return T_BOOLEAN <= t && t <= T_LONG;
 681 }
 682 
 683 inline bool is_subword_type(BasicType t) {
 684   // these guys are processed exactly like T_INT in calling sequences:
 685   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 686 }
 687 
 688 inline bool is_signed_subword_type(BasicType t) {
 689   return (t == T_BYTE || t == T_SHORT);
 690 }
 691 
 692 // Convert a char from a classfile signature to a BasicType
 693 inline BasicType char2type(char c) {
 694   switch( c ) {
 695   case 'B': return T_BYTE;
 696   case 'C': return T_CHAR;
 697   case 'D': return T_DOUBLE;
 698   case 'F': return T_FLOAT;
 699   case 'I': return T_INT;
 700   case 'J': return T_LONG;
 701   case 'S': return T_SHORT;
 702   case 'Z': return T_BOOLEAN;
 703   case 'V': return T_VOID;
 704   case 'L': return T_OBJECT;
 705   case '[': return T_ARRAY;
 706   }
 707   return T_ILLEGAL;
 708 }
 709 
 710 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 711 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 712 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 713 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 714 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 715 extern BasicType name2type(const char* name);
 716 
 717 // Auxiliary math routines
 718 // least common multiple
 719 extern size_t lcm(size_t a, size_t b);
 720 
 721 
 722 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 723 enum BasicTypeSize {
 724   T_BOOLEAN_size     = 1,
 725   T_CHAR_size        = 1,
 726   T_FLOAT_size       = 1,
 727   T_DOUBLE_size      = 2,
 728   T_BYTE_size        = 1,
 729   T_SHORT_size       = 1,
 730   T_INT_size         = 1,
 731   T_LONG_size        = 2,
 732   T_OBJECT_size      = 1,
 733   T_ARRAY_size       = 1,
 734   T_NARROWOOP_size   = 1,
 735   T_NARROWKLASS_size = 1,
 736   T_VOID_size        = 0
 737 };
 738 
 739 
 740 // maps a BasicType to its instance field storage type:
 741 // all sub-word integral types are widened to T_INT
 742 extern BasicType type2field[T_CONFLICT+1];
 743 extern BasicType type2wfield[T_CONFLICT+1];
 744 
 745 
 746 // size in bytes
 747 enum ArrayElementSize {
 748   T_BOOLEAN_aelem_bytes     = 1,
 749   T_CHAR_aelem_bytes        = 2,
 750   T_FLOAT_aelem_bytes       = 4,
 751   T_DOUBLE_aelem_bytes      = 8,
 752   T_BYTE_aelem_bytes        = 1,
 753   T_SHORT_aelem_bytes       = 2,
 754   T_INT_aelem_bytes         = 4,
 755   T_LONG_aelem_bytes        = 8,
 756 #ifdef _LP64
 757   T_OBJECT_aelem_bytes      = 8,
 758   T_ARRAY_aelem_bytes       = 8,
 759 #else
 760   T_OBJECT_aelem_bytes      = 4,
 761   T_ARRAY_aelem_bytes       = 4,
 762 #endif
 763   T_NARROWOOP_aelem_bytes   = 4,
 764   T_NARROWKLASS_aelem_bytes = 4,
 765   T_VOID_aelem_bytes        = 0
 766 };
 767 
 768 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 769 #ifdef ASSERT
 770 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 771 #else
 772 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 773 #endif
 774 
 775 
 776 // JavaValue serves as a container for arbitrary Java values.
 777 
 778 class JavaValue {
 779 
 780  public:
 781   typedef union JavaCallValue {
 782     jfloat   f;
 783     jdouble  d;
 784     jint     i;
 785     jlong    l;
 786     jobject  h;
 787   } JavaCallValue;
 788 
 789  private:
 790   BasicType _type;
 791   JavaCallValue _value;
 792 
 793  public:
 794   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 795 
 796   JavaValue(jfloat value) {
 797     _type    = T_FLOAT;
 798     _value.f = value;
 799   }
 800 
 801   JavaValue(jdouble value) {
 802     _type    = T_DOUBLE;
 803     _value.d = value;
 804   }
 805 
 806  jfloat get_jfloat() const { return _value.f; }
 807  jdouble get_jdouble() const { return _value.d; }
 808  jint get_jint() const { return _value.i; }
 809  jlong get_jlong() const { return _value.l; }
 810  jobject get_jobject() const { return _value.h; }
 811  JavaCallValue* get_value_addr() { return &_value; }
 812  BasicType get_type() const { return _type; }
 813 
 814  void set_jfloat(jfloat f) { _value.f = f;}
 815  void set_jdouble(jdouble d) { _value.d = d;}
 816  void set_jint(jint i) { _value.i = i;}
 817  void set_jlong(jlong l) { _value.l = l;}
 818  void set_jobject(jobject h) { _value.h = h;}
 819  void set_type(BasicType t) { _type = t; }
 820 
 821  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 822  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 823  jchar get_jchar() const { return (jchar) (_value.i);}
 824  jshort get_jshort() const { return (jshort) (_value.i);}
 825 
 826 };
 827 
 828 
 829 #define STACK_BIAS      0
 830 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 831 // in order to extend the reach of the stack pointer.
 832 #if defined(SPARC) && defined(_LP64)
 833 #undef STACK_BIAS
 834 #define STACK_BIAS      0x7ff
 835 #endif
 836 
 837 
 838 // TosState describes the top-of-stack state before and after the execution of
 839 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 840 // registers. The TosState corresponds to the 'machine representation' of this cached
 841 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 842 // as well as a 5th state in case the top-of-stack value is actually on the top
 843 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 844 // state when it comes to machine representation but is used separately for (oop)
 845 // type specific operations (e.g. verification code).
 846 
 847 enum TosState {         // describes the tos cache contents
 848   btos = 0,             // byte, bool tos cached
 849   ctos = 1,             // char tos cached
 850   stos = 2,             // short tos cached
 851   itos = 3,             // int tos cached
 852   ltos = 4,             // long tos cached
 853   ftos = 5,             // float tos cached
 854   dtos = 6,             // double tos cached
 855   atos = 7,             // object cached
 856   vtos = 8,             // tos not cached
 857   number_of_states,
 858   ilgl                  // illegal state: should not occur
 859 };
 860 
 861 
 862 inline TosState as_TosState(BasicType type) {
 863   switch (type) {
 864     case T_BYTE   : return btos;
 865     case T_BOOLEAN: return btos; // FIXME: Add ztos
 866     case T_CHAR   : return ctos;
 867     case T_SHORT  : return stos;
 868     case T_INT    : return itos;
 869     case T_LONG   : return ltos;
 870     case T_FLOAT  : return ftos;
 871     case T_DOUBLE : return dtos;
 872     case T_VOID   : return vtos;
 873     case T_ARRAY  : // fall through
 874     case T_OBJECT : return atos;
 875   }
 876   return ilgl;
 877 }
 878 
 879 inline BasicType as_BasicType(TosState state) {
 880   switch (state) {
 881     //case ztos: return T_BOOLEAN;//FIXME
 882     case btos : return T_BYTE;
 883     case ctos : return T_CHAR;
 884     case stos : return T_SHORT;
 885     case itos : return T_INT;
 886     case ltos : return T_LONG;
 887     case ftos : return T_FLOAT;
 888     case dtos : return T_DOUBLE;
 889     case atos : return T_OBJECT;
 890     case vtos : return T_VOID;
 891   }
 892   return T_ILLEGAL;
 893 }
 894 
 895 
 896 // Helper function to convert BasicType info into TosState
 897 // Note: Cannot define here as it uses global constant at the time being.
 898 TosState as_TosState(BasicType type);
 899 
 900 
 901 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 902 // information is needed by the safepoint code.
 903 //
 904 // There are 4 essential states:
 905 //
 906 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 907 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 908 //  _thread_in_vm       : Executing in the vm
 909 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 910 //
 911 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 912 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 913 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 914 //
 915 // Given a state, the xxxx_trans state can always be found by adding 1.
 916 //
 917 enum JavaThreadState {
 918   _thread_uninitialized     =  0, // should never happen (missing initialization)
 919   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 920   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 921   _thread_in_native         =  4, // running in native code
 922   _thread_in_native_trans   =  5, // corresponding transition state
 923   _thread_in_vm             =  6, // running in VM
 924   _thread_in_vm_trans       =  7, // corresponding transition state
 925   _thread_in_Java           =  8, // running in Java or in stub code
 926   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 927   _thread_blocked           = 10, // blocked in vm
 928   _thread_blocked_trans     = 11, // corresponding transition state
 929   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 930 };
 931 
 932 
 933 // Handy constants for deciding which compiler mode to use.
 934 enum MethodCompilation {
 935   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 936 };
 937 
 938 // Enumeration to distinguish tiers of compilation
 939 enum CompLevel {
 940   CompLevel_any               = -1,
 941   CompLevel_all               = -1,
 942   CompLevel_none              = 0,         // Interpreter
 943   CompLevel_simple            = 1,         // C1
 944   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 945   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 946   CompLevel_full_optimization = 4,         // C2, Shark or JVMCI
 947 
 948 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
 949   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered or JVMCI and tiered
 950 #elif defined(COMPILER1)
 951   CompLevel_highest_tier      = CompLevel_simple,             // pure C1 or JVMCI
 952 #else
 953   CompLevel_highest_tier      = CompLevel_none,
 954 #endif
 955 
 956 #if defined(TIERED)
 957   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 958 #elif defined(COMPILER1) || INCLUDE_JVMCI
 959   CompLevel_initial_compile   = CompLevel_simple              // pure C1 or JVMCI
 960 #elif defined(COMPILER2) || defined(SHARK)
 961   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 962 #else
 963   CompLevel_initial_compile   = CompLevel_none
 964 #endif
 965 };
 966 
 967 inline bool is_c1_compile(int comp_level) {
 968   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 969 }
 970 
 971 inline bool is_c2_compile(int comp_level) {
 972   return comp_level == CompLevel_full_optimization;
 973 }
 974 
 975 inline bool is_highest_tier_compile(int comp_level) {
 976   return comp_level == CompLevel_highest_tier;
 977 }
 978 
 979 inline bool is_compile(int comp_level) {
 980   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 981 }
 982 
 983 //----------------------------------------------------------------------------------------------------
 984 // 'Forward' declarations of frequently used classes
 985 // (in order to reduce interface dependencies & reduce
 986 // number of unnecessary compilations after changes)
 987 
 988 class ClassFileStream;
 989 
 990 class Event;
 991 
 992 class Thread;
 993 class  VMThread;
 994 class  JavaThread;
 995 class Threads;
 996 
 997 class VM_Operation;
 998 class VMOperationQueue;
 999 
1000 class CodeBlob;
1001 class  nmethod;
1002 class  OSRAdapter;
1003 class  I2CAdapter;
1004 class  C2IAdapter;
1005 class CompiledIC;
1006 class relocInfo;
1007 class ScopeDesc;
1008 class PcDesc;
1009 
1010 class Recompiler;
1011 class Recompilee;
1012 class RecompilationPolicy;
1013 class RFrame;
1014 class  CompiledRFrame;
1015 class  InterpretedRFrame;
1016 
1017 class frame;
1018 
1019 class vframe;
1020 class   javaVFrame;
1021 class     interpretedVFrame;
1022 class     compiledVFrame;
1023 class     deoptimizedVFrame;
1024 class   externalVFrame;
1025 class     entryVFrame;
1026 
1027 class RegisterMap;
1028 
1029 class Mutex;
1030 class Monitor;
1031 class BasicLock;
1032 class BasicObjectLock;
1033 
1034 class PeriodicTask;
1035 
1036 class JavaCallWrapper;
1037 
1038 class   oopDesc;
1039 class   metaDataOopDesc;
1040 
1041 class NativeCall;
1042 
1043 class zone;
1044 
1045 class StubQueue;
1046 
1047 class outputStream;
1048 
1049 class ResourceArea;
1050 
1051 class DebugInformationRecorder;
1052 class ScopeValue;
1053 class CompressedStream;
1054 class   DebugInfoReadStream;
1055 class   DebugInfoWriteStream;
1056 class LocationValue;
1057 class ConstantValue;
1058 class IllegalValue;
1059 
1060 class PrivilegedElement;
1061 class MonitorArray;
1062 
1063 class MonitorInfo;
1064 
1065 class OffsetClosure;
1066 class OopMapCache;
1067 class InterpreterOopMap;
1068 class OopMapCacheEntry;
1069 class OSThread;
1070 
1071 typedef int (*OSThreadStartFunc)(void*);
1072 
1073 class Space;
1074 
1075 class JavaValue;
1076 class methodHandle;
1077 class JavaCallArguments;
1078 
1079 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1080 
1081 extern void basic_fatal(const char* msg);
1082 
1083 
1084 //----------------------------------------------------------------------------------------------------
1085 // Special constants for debugging
1086 
1087 const jint     badInt           = -3;                       // generic "bad int" value
1088 const long     badAddressVal    = -2;                       // generic "bad address" value
1089 const long     badOopVal        = -1;                       // generic "bad oop" value
1090 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1091 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1092 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1093 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1094 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1095 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1096 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1097 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1098 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1099 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1100 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1101 
1102 
1103 // (These must be implemented as #defines because C++ compilers are
1104 // not obligated to inline non-integral constants!)
1105 #define       badAddress        ((address)::badAddressVal)
1106 #define       badOop            (cast_to_oop(::badOopVal))
1107 #define       badHeapWord       (::badHeapWordVal)
1108 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1109 
1110 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1111 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1112 
1113 //----------------------------------------------------------------------------------------------------
1114 // Utility functions for bitfield manipulations
1115 
1116 const intptr_t AllBits    = ~0; // all bits set in a word
1117 const intptr_t NoBits     =  0; // no bits set in a word
1118 const jlong    NoLongBits =  0; // no bits set in a long
1119 const intptr_t OneBit     =  1; // only right_most bit set in a word
1120 
1121 // get a word with the n.th or the right-most or left-most n bits set
1122 // (note: #define used only so that they can be used in enum constant definitions)
1123 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1124 #define right_n_bits(n)   (nth_bit(n) - 1)
1125 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1126 
1127 // bit-operations using a mask m
1128 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1129 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1130 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1131 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1132 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1133 
1134 // bit-operations using the n.th bit
1135 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1136 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1137 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1138 
1139 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1140 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1141   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1142 }
1143 
1144 
1145 //----------------------------------------------------------------------------------------------------
1146 // Utility functions for integers
1147 
1148 // Avoid use of global min/max macros which may cause unwanted double
1149 // evaluation of arguments.
1150 #ifdef max
1151 #undef max
1152 #endif
1153 
1154 #ifdef min
1155 #undef min
1156 #endif
1157 
1158 #define max(a,b) Do_not_use_max_use_MAX2_instead
1159 #define min(a,b) Do_not_use_min_use_MIN2_instead
1160 
1161 // It is necessary to use templates here. Having normal overloaded
1162 // functions does not work because it is necessary to provide both 32-
1163 // and 64-bit overloaded functions, which does not work, and having
1164 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1165 // will be even more error-prone than macros.
1166 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1167 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1168 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1169 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1170 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1171 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1172 
1173 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1174 
1175 // true if x is a power of 2, false otherwise
1176 inline bool is_power_of_2(intptr_t x) {
1177   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1178 }
1179 
1180 // long version of is_power_of_2
1181 inline bool is_power_of_2_long(jlong x) {
1182   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1183 }
1184 
1185 // Returns largest i such that 2^i <= x.
1186 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1187 // If x == 0, the function returns -1.
1188 inline int log2_intptr(intptr_t x) {
1189   int i = -1;
1190   uintptr_t p = 1;
1191   while (p != 0 && p <= (uintptr_t)x) {
1192     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1193     i++; p *= 2;
1194   }
1195   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1196   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1197   return i;
1198 }
1199 
1200 //* largest i such that 2^i <= x
1201 //  A negative value of 'x' will return '63'
1202 inline int log2_long(jlong x) {
1203   int i = -1;
1204   julong p =  1;
1205   while (p != 0 && p <= (julong)x) {
1206     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1207     i++; p *= 2;
1208   }
1209   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1210   // (if p = 0 then overflow occurred and i = 63)
1211   return i;
1212 }
1213 
1214 //* the argument must be exactly a power of 2
1215 inline int exact_log2(intptr_t x) {
1216   #ifdef ASSERT
1217     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1218   #endif
1219   return log2_intptr(x);
1220 }
1221 
1222 //* the argument must be exactly a power of 2
1223 inline int exact_log2_long(jlong x) {
1224   #ifdef ASSERT
1225     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1226   #endif
1227   return log2_long(x);
1228 }
1229 
1230 
1231 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1232 inline intptr_t round_to(intptr_t x, uintx s) {
1233   #ifdef ASSERT
1234     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1235   #endif
1236   const uintx m = s - 1;
1237   return mask_bits(x + m, ~m);
1238 }
1239 
1240 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1241 inline intptr_t round_down(intptr_t x, uintx s) {
1242   #ifdef ASSERT
1243     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1244   #endif
1245   const uintx m = s - 1;
1246   return mask_bits(x, ~m);
1247 }
1248 
1249 
1250 inline bool is_odd (intx x) { return x & 1;      }
1251 inline bool is_even(intx x) { return !is_odd(x); }
1252 
1253 // "to" should be greater than "from."
1254 inline intx byte_size(void* from, void* to) {
1255   return (address)to - (address)from;
1256 }
1257 
1258 //----------------------------------------------------------------------------------------------------
1259 // Avoid non-portable casts with these routines (DEPRECATED)
1260 
1261 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1262 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1263 
1264 // Given sequence of four bytes, build into a 32-bit word
1265 // following the conventions used in class files.
1266 // On the 386, this could be realized with a simple address cast.
1267 //
1268 
1269 // This routine takes eight bytes:
1270 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1271   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1272        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1273        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1274        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1275        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1276        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1277        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1278        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1279 }
1280 
1281 // This routine takes four bytes:
1282 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1283   return  (( u4(c1) << 24 )  &  0xff000000)
1284        |  (( u4(c2) << 16 )  &  0x00ff0000)
1285        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1286        |  (( u4(c4) <<  0 )  &  0x000000ff);
1287 }
1288 
1289 // And this one works if the four bytes are contiguous in memory:
1290 inline u4 build_u4_from( u1* p ) {
1291   return  build_u4_from( p[0], p[1], p[2], p[3] );
1292 }
1293 
1294 // Ditto for two-byte ints:
1295 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1296   return  u2((( u2(c1) <<  8 )  &  0xff00)
1297           |  (( u2(c2) <<  0 )  &  0x00ff));
1298 }
1299 
1300 // And this one works if the two bytes are contiguous in memory:
1301 inline u2 build_u2_from( u1* p ) {
1302   return  build_u2_from( p[0], p[1] );
1303 }
1304 
1305 // Ditto for floats:
1306 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1307   u4 u = build_u4_from( c1, c2, c3, c4 );
1308   return  *(jfloat*)&u;
1309 }
1310 
1311 inline jfloat build_float_from( u1* p ) {
1312   u4 u = build_u4_from( p );
1313   return  *(jfloat*)&u;
1314 }
1315 
1316 
1317 // now (64-bit) longs
1318 
1319 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1320   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1321        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1322        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1323        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1324        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1325        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1326        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1327        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1328 }
1329 
1330 inline jlong build_long_from( u1* p ) {
1331   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1332 }
1333 
1334 
1335 // Doubles, too!
1336 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1337   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1338   return  *(jdouble*)&u;
1339 }
1340 
1341 inline jdouble build_double_from( u1* p ) {
1342   jlong u = build_long_from( p );
1343   return  *(jdouble*)&u;
1344 }
1345 
1346 
1347 // Portable routines to go the other way:
1348 
1349 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1350   c1 = u1(x >> 8);
1351   c2 = u1(x);
1352 }
1353 
1354 inline void explode_short_to( u2 x, u1* p ) {
1355   explode_short_to( x, p[0], p[1]);
1356 }
1357 
1358 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1359   c1 = u1(x >> 24);
1360   c2 = u1(x >> 16);
1361   c3 = u1(x >>  8);
1362   c4 = u1(x);
1363 }
1364 
1365 inline void explode_int_to( u4 x, u1* p ) {
1366   explode_int_to( x, p[0], p[1], p[2], p[3]);
1367 }
1368 
1369 
1370 // Pack and extract shorts to/from ints:
1371 
1372 inline int extract_low_short_from_int(jint x) {
1373   return x & 0xffff;
1374 }
1375 
1376 inline int extract_high_short_from_int(jint x) {
1377   return (x >> 16) & 0xffff;
1378 }
1379 
1380 inline int build_int_from_shorts( jushort low, jushort high ) {
1381   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1382 }
1383 
1384 // Convert pointer to intptr_t, for use in printing pointers.
1385 inline intptr_t p2i(const void * p) {
1386   return (intptr_t) p;
1387 }
1388 
1389 // swap a & b
1390 template<class T> static void swap(T& a, T& b) {
1391   T tmp = a;
1392   a = b;
1393   b = tmp;
1394 }
1395 
1396 // Printf-style formatters for fixed- and variable-width types as pointers and
1397 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1398 // doesn't provide appropriate definitions, they should be provided in
1399 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1400 
1401 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1402 
1403 // Format 32-bit quantities.
1404 #define INT32_FORMAT           "%" PRId32
1405 #define UINT32_FORMAT          "%" PRIu32
1406 #define INT32_FORMAT_W(width)  "%" #width PRId32
1407 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1408 
1409 #define PTR32_FORMAT           "0x%08" PRIx32
1410 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1411 
1412 // Format 64-bit quantities.
1413 #define INT64_FORMAT           "%" PRId64
1414 #define UINT64_FORMAT          "%" PRIu64
1415 #define UINT64_FORMAT_X        "%" PRIx64
1416 #define INT64_FORMAT_W(width)  "%" #width PRId64
1417 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1418 
1419 #define PTR64_FORMAT           "0x%016" PRIx64
1420 
1421 // Format jlong, if necessary
1422 #ifndef JLONG_FORMAT
1423 #define JLONG_FORMAT           INT64_FORMAT
1424 #endif
1425 #ifndef JULONG_FORMAT
1426 #define JULONG_FORMAT          UINT64_FORMAT
1427 #endif
1428 #ifndef JULONG_FORMAT_X
1429 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1430 #endif
1431 
1432 // Format pointers which change size between 32- and 64-bit.
1433 #ifdef  _LP64
1434 #define INTPTR_FORMAT "0x%016" PRIxPTR
1435 #define PTR_FORMAT    "0x%016" PRIxPTR
1436 #else   // !_LP64
1437 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1438 #define PTR_FORMAT    "0x%08"  PRIxPTR
1439 #endif  // _LP64
1440 
1441 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1442 
1443 #define SSIZE_FORMAT             "%"   PRIdPTR
1444 #define SIZE_FORMAT              "%"   PRIuPTR
1445 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1446 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1447 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1448 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1449 
1450 #define INTX_FORMAT           "%" PRIdPTR
1451 #define UINTX_FORMAT          "%" PRIuPTR
1452 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1453 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1454 
1455 
1456 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1457 
1458 //----------------------------------------------------------------------------------------------------
1459 // Sum and product which can never overflow: they wrap, just like the
1460 // Java operations.  Note that we don't intend these to be used for
1461 // general-purpose arithmetic: their purpose is to emulate Java
1462 // operations.
1463 
1464 // The goal of this code to avoid undefined or implementation-defined
1465 // behavior.  The use of an lvalue to reference cast is explicitly
1466 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1467 // 15 in C++03]
1468 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1469 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1470   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1471   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1472   return reinterpret_cast<TYPE&>(ures);                 \
1473 }
1474 
1475 JAVA_INTEGER_OP(+, java_add, jint, juint)
1476 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1477 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1478 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1479 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1480 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1481 
1482 #undef JAVA_INTEGER_OP
1483 
1484 // Dereference vptr
1485 // All C++ compilers that we know of have the vtbl pointer in the first
1486 // word.  If there are exceptions, this function needs to be made compiler
1487 // specific.
1488 static inline void* dereference_vptr(const void* addr) {
1489   return *(void**)addr;
1490 }
1491 
1492 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP