1 /*
   2  * Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 #include "precompiled.hpp"
  25 #include "gc/shared/collectedHeap.hpp"
  26 #include "gc/shared/collectorPolicy.hpp"
  27 #include "gc/shared/gcLocker.hpp"
  28 #include "logging/log.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/binaryTreeDictionary.hpp"
  31 #include "memory/filemap.hpp"
  32 #include "memory/freeList.hpp"
  33 #include "memory/metachunk.hpp"
  34 #include "memory/metaspace.hpp"
  35 #include "memory/metaspaceGCThresholdUpdater.hpp"
  36 #include "memory/metaspaceShared.hpp"
  37 #include "memory/metaspaceTracer.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.hpp"
  40 #include "runtime/atomic.hpp"
  41 #include "runtime/globals.hpp"
  42 #include "runtime/init.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/mutex.hpp"
  45 #include "runtime/orderAccess.inline.hpp"
  46 #include "services/memTracker.hpp"
  47 #include "services/memoryService.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
  53 typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
  54 
  55 // Set this constant to enable slow integrity checking of the free chunk lists
  56 const bool metaspace_slow_verify = false;
  57 
  58 size_t const allocation_from_dictionary_limit = 4 * K;
  59 
  60 MetaWord* last_allocated = 0;
  61 
  62 size_t Metaspace::_compressed_class_space_size;
  63 const MetaspaceTracer* Metaspace::_tracer = NULL;
  64 
  65 // Used in declarations in SpaceManager and ChunkManager
  66 enum ChunkIndex {
  67   ZeroIndex = 0,
  68   SpecializedIndex = ZeroIndex,
  69   SmallIndex = SpecializedIndex + 1,
  70   MediumIndex = SmallIndex + 1,
  71   HumongousIndex = MediumIndex + 1,
  72   NumberOfFreeLists = 3,
  73   NumberOfInUseLists = 4
  74 };
  75 
  76 enum ChunkSizes {    // in words.
  77   ClassSpecializedChunk = 128,
  78   SpecializedChunk = 128,
  79   ClassSmallChunk = 256,
  80   SmallChunk = 512,
  81   ClassMediumChunk = 4 * K,
  82   MediumChunk = 8 * K
  83 };
  84 
  85 static ChunkIndex next_chunk_index(ChunkIndex i) {
  86   assert(i < NumberOfInUseLists, "Out of bound");
  87   return (ChunkIndex) (i+1);
  88 }
  89 
  90 volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
  91 uint MetaspaceGC::_shrink_factor = 0;
  92 bool MetaspaceGC::_should_concurrent_collect = false;
  93 
  94 typedef class FreeList<Metachunk> ChunkList;
  95 
  96 // Manages the global free lists of chunks.
  97 class ChunkManager : public CHeapObj<mtInternal> {
  98   friend class TestVirtualSpaceNodeTest;
  99 
 100   // Free list of chunks of different sizes.
 101   //   SpecializedChunk
 102   //   SmallChunk
 103   //   MediumChunk
 104   //   HumongousChunk
 105   ChunkList _free_chunks[NumberOfFreeLists];
 106 
 107   //   HumongousChunk
 108   ChunkTreeDictionary _humongous_dictionary;
 109 
 110   // ChunkManager in all lists of this type
 111   size_t _free_chunks_total;
 112   size_t _free_chunks_count;
 113 
 114   // Return the fixed chunk size for the given list index
 115   size_t list_chunk_size(ChunkIndex index) const;
 116 
 117   void dec_free_chunks_total(size_t v) {
 118     assert(_free_chunks_count > 0 &&
 119              _free_chunks_total > 0,
 120              "About to go negative");
 121     Atomic::add_ptr(-1, &_free_chunks_count);
 122     jlong minus_v = (jlong) - (jlong) v;
 123     Atomic::add_ptr(minus_v, &_free_chunks_total);
 124   }
 125 
 126   // Debug support
 127 
 128   size_t sum_free_chunks();
 129   size_t sum_free_chunks_count();
 130 
 131   void locked_verify_free_chunks_total();
 132   void slow_locked_verify_free_chunks_total() {
 133     if (metaspace_slow_verify) {
 134       locked_verify_free_chunks_total();
 135     }
 136   }
 137   void locked_verify_free_chunks_count();
 138   void slow_locked_verify_free_chunks_count() {
 139     if (metaspace_slow_verify) {
 140       locked_verify_free_chunks_count();
 141     }
 142   }
 143   void verify_free_chunks_count();
 144 
 145  public:
 146 
 147   ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
 148       : _free_chunks_total(0), _free_chunks_count(0) {
 149     _free_chunks[SpecializedIndex].set_size(specialized_size);
 150     _free_chunks[SmallIndex].set_size(small_size);
 151     _free_chunks[MediumIndex].set_size(medium_size);
 152   }
 153 
 154   // add or delete (return) a chunk to the global freelist.
 155   Metachunk* chunk_freelist_allocate(size_t word_size);
 156 
 157   // Map a size to a list index assuming that there are lists
 158   // for special, small, medium, and humongous chunks.
 159   ChunkIndex list_index(size_t size) const;
 160 
 161   // Remove the chunk from its freelist.  It is
 162   // expected to be on one of the _free_chunks[] lists.
 163   void remove_chunk(Metachunk* chunk);
 164 
 165   // Add the simple linked list of chunks to the freelist of chunks
 166   // of type index.
 167   void return_chunks(ChunkIndex index, Metachunk* chunks);
 168 
 169   // Total of the space in the free chunks list
 170   size_t free_chunks_total_words();
 171   size_t free_chunks_total_bytes();
 172 
 173   // Number of chunks in the free chunks list
 174   size_t free_chunks_count();
 175 
 176   void inc_free_chunks_total(size_t v, size_t count = 1) {
 177     Atomic::add_ptr(count, &_free_chunks_count);
 178     Atomic::add_ptr(v, &_free_chunks_total);
 179   }
 180   ChunkTreeDictionary* humongous_dictionary() {
 181     return &_humongous_dictionary;
 182   }
 183 
 184   ChunkList* free_chunks(ChunkIndex index);
 185 
 186   // Returns the list for the given chunk word size.
 187   ChunkList* find_free_chunks_list(size_t word_size);
 188 
 189   // Remove from a list by size.  Selects list based on size of chunk.
 190   Metachunk* free_chunks_get(size_t chunk_word_size);
 191 
 192 #define index_bounds_check(index)                                         \
 193   assert(index == SpecializedIndex ||                                     \
 194          index == SmallIndex ||                                           \
 195          index == MediumIndex ||                                          \
 196          index == HumongousIndex, "Bad index: %d", (int) index)
 197 
 198   size_t num_free_chunks(ChunkIndex index) const {
 199     index_bounds_check(index);
 200 
 201     if (index == HumongousIndex) {
 202       return _humongous_dictionary.total_free_blocks();
 203     }
 204 
 205     ssize_t count = _free_chunks[index].count();
 206     return count == -1 ? 0 : (size_t) count;
 207   }
 208 
 209   size_t size_free_chunks_in_bytes(ChunkIndex index) const {
 210     index_bounds_check(index);
 211 
 212     size_t word_size = 0;
 213     if (index == HumongousIndex) {
 214       word_size = _humongous_dictionary.total_size();
 215     } else {
 216       const size_t size_per_chunk_in_words = _free_chunks[index].size();
 217       word_size = size_per_chunk_in_words * num_free_chunks(index);
 218     }
 219 
 220     return word_size * BytesPerWord;
 221   }
 222 
 223   MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
 224     return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
 225                                          num_free_chunks(SmallIndex),
 226                                          num_free_chunks(MediumIndex),
 227                                          num_free_chunks(HumongousIndex),
 228                                          size_free_chunks_in_bytes(SpecializedIndex),
 229                                          size_free_chunks_in_bytes(SmallIndex),
 230                                          size_free_chunks_in_bytes(MediumIndex),
 231                                          size_free_chunks_in_bytes(HumongousIndex));
 232   }
 233 
 234   // Debug support
 235   void verify();
 236   void slow_verify() {
 237     if (metaspace_slow_verify) {
 238       verify();
 239     }
 240   }
 241   void locked_verify();
 242   void slow_locked_verify() {
 243     if (metaspace_slow_verify) {
 244       locked_verify();
 245     }
 246   }
 247   void verify_free_chunks_total();
 248 
 249   void locked_print_free_chunks(outputStream* st);
 250   void locked_print_sum_free_chunks(outputStream* st);
 251 
 252   void print_on(outputStream* st) const;
 253 };
 254 
 255 void ChunkManager_test_list_index() {
 256   ChunkManager manager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
 257 
 258   // Test previous bug where a query for a humongous class metachunk,
 259   // incorrectly matched the non-class medium metachunk size.
 260   {
 261     assert(MediumChunk > ClassMediumChunk, "Precondition for test");
 262 
 263     ChunkIndex index = manager.list_index(MediumChunk);
 264 
 265     assert(index == HumongousIndex,
 266            "Requested size is larger than ClassMediumChunk,"
 267            " so should return HumongousIndex. Got index: %d", (int)index);
 268   }
 269 
 270   // Check the specified sizes as well.
 271   {
 272     ChunkIndex index = manager.list_index(ClassSpecializedChunk);
 273     assert(index == SpecializedIndex, "Wrong index returned. Got index: %d", (int)index);
 274   }
 275   {
 276     ChunkIndex index = manager.list_index(ClassSmallChunk);
 277     assert(index == SmallIndex, "Wrong index returned. Got index: %d", (int)index);
 278   }
 279   {
 280     ChunkIndex index = manager.list_index(ClassMediumChunk);
 281     assert(index == MediumIndex, "Wrong index returned. Got index: %d", (int)index);
 282   }
 283   {
 284     ChunkIndex index = manager.list_index(ClassMediumChunk + 1);
 285     assert(index == HumongousIndex, "Wrong index returned. Got index: %d", (int)index);
 286   }
 287 }
 288 
 289 class SmallBlocks : public CHeapObj<mtClass> {
 290   const static uint _small_block_max_size = sizeof(TreeChunk<Metablock,  FreeList<Metablock> >)/HeapWordSize;
 291   const static uint _small_block_min_size = sizeof(Metablock)/HeapWordSize;
 292 
 293  private:
 294   FreeList<Metablock> _small_lists[_small_block_max_size - _small_block_min_size];
 295 
 296   FreeList<Metablock>& list_at(size_t word_size) {
 297     assert(word_size >= _small_block_min_size, "There are no metaspace objects less than %u words", _small_block_min_size);
 298     return _small_lists[word_size - _small_block_min_size];
 299   }
 300 
 301  public:
 302   SmallBlocks() {
 303     for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
 304       uint k = i - _small_block_min_size;
 305       _small_lists[k].set_size(i);
 306     }
 307   }
 308 
 309   size_t total_size() const {
 310     size_t result = 0;
 311     for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
 312       uint k = i - _small_block_min_size;
 313       result = result + _small_lists[k].count() * _small_lists[k].size();
 314     }
 315     return result;
 316   }
 317 
 318   static uint small_block_max_size() { return _small_block_max_size; }
 319   static uint small_block_min_size() { return _small_block_min_size; }
 320 
 321   MetaWord* get_block(size_t word_size) {
 322     if (list_at(word_size).count() > 0) {
 323       MetaWord* new_block = (MetaWord*) list_at(word_size).get_chunk_at_head();
 324       return new_block;
 325     } else {
 326       return NULL;
 327     }
 328   }
 329   void return_block(Metablock* free_chunk, size_t word_size) {
 330     list_at(word_size).return_chunk_at_head(free_chunk, false);
 331     assert(list_at(word_size).count() > 0, "Should have a chunk");
 332   }
 333 
 334   void print_on(outputStream* st) const {
 335     st->print_cr("SmallBlocks:");
 336     for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
 337       uint k = i - _small_block_min_size;
 338       st->print_cr("small_lists size " SIZE_FORMAT " count " SIZE_FORMAT, _small_lists[k].size(), _small_lists[k].count());
 339     }
 340   }
 341 };
 342 
 343 // Used to manage the free list of Metablocks (a block corresponds
 344 // to the allocation of a quantum of metadata).
 345 class BlockFreelist : public CHeapObj<mtClass> {
 346   BlockTreeDictionary* const _dictionary;
 347   SmallBlocks* _small_blocks;
 348 
 349   // Only allocate and split from freelist if the size of the allocation
 350   // is at least 1/4th the size of the available block.
 351   const static int WasteMultiplier = 4;
 352 
 353   // Accessors
 354   BlockTreeDictionary* dictionary() const { return _dictionary; }
 355   SmallBlocks* small_blocks() {
 356     if (_small_blocks == NULL) {
 357       _small_blocks = new SmallBlocks();
 358     }
 359     return _small_blocks;
 360   }
 361 
 362  public:
 363   BlockFreelist();
 364   ~BlockFreelist();
 365 
 366   // Get and return a block to the free list
 367   MetaWord* get_block(size_t word_size);
 368   void return_block(MetaWord* p, size_t word_size);
 369 
 370   size_t total_size() const  {
 371     size_t result = dictionary()->total_size();
 372     if (_small_blocks != NULL) {
 373       result = result + _small_blocks->total_size();
 374     }
 375     return result;
 376   }
 377 
 378   static size_t min_dictionary_size()   { return TreeChunk<Metablock, FreeList<Metablock> >::min_size(); }
 379   void print_on(outputStream* st) const;
 380 };
 381 
 382 // A VirtualSpaceList node.
 383 class VirtualSpaceNode : public CHeapObj<mtClass> {
 384   friend class VirtualSpaceList;
 385 
 386   // Link to next VirtualSpaceNode
 387   VirtualSpaceNode* _next;
 388 
 389   // total in the VirtualSpace
 390   MemRegion _reserved;
 391   ReservedSpace _rs;
 392   VirtualSpace _virtual_space;
 393   MetaWord* _top;
 394   // count of chunks contained in this VirtualSpace
 395   uintx _container_count;
 396 
 397   // Convenience functions to access the _virtual_space
 398   char* low()  const { return virtual_space()->low(); }
 399   char* high() const { return virtual_space()->high(); }
 400 
 401   // The first Metachunk will be allocated at the bottom of the
 402   // VirtualSpace
 403   Metachunk* first_chunk() { return (Metachunk*) bottom(); }
 404 
 405   // Committed but unused space in the virtual space
 406   size_t free_words_in_vs() const;
 407  public:
 408 
 409   VirtualSpaceNode(size_t byte_size);
 410   VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
 411   ~VirtualSpaceNode();
 412 
 413   // Convenience functions for logical bottom and end
 414   MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
 415   MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
 416 
 417   bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
 418 
 419   size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
 420   size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
 421 
 422   bool is_pre_committed() const { return _virtual_space.special(); }
 423 
 424   // address of next available space in _virtual_space;
 425   // Accessors
 426   VirtualSpaceNode* next() { return _next; }
 427   void set_next(VirtualSpaceNode* v) { _next = v; }
 428 
 429   void set_reserved(MemRegion const v) { _reserved = v; }
 430   void set_top(MetaWord* v) { _top = v; }
 431 
 432   // Accessors
 433   MemRegion* reserved() { return &_reserved; }
 434   VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
 435 
 436   // Returns true if "word_size" is available in the VirtualSpace
 437   bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
 438 
 439   MetaWord* top() const { return _top; }
 440   void inc_top(size_t word_size) { _top += word_size; }
 441 
 442   uintx container_count() { return _container_count; }
 443   void inc_container_count();
 444   void dec_container_count();
 445 #ifdef ASSERT
 446   uintx container_count_slow();
 447   void verify_container_count();
 448 #endif
 449 
 450   // used and capacity in this single entry in the list
 451   size_t used_words_in_vs() const;
 452   size_t capacity_words_in_vs() const;
 453 
 454   bool initialize();
 455 
 456   // get space from the virtual space
 457   Metachunk* take_from_committed(size_t chunk_word_size);
 458 
 459   // Allocate a chunk from the virtual space and return it.
 460   Metachunk* get_chunk_vs(size_t chunk_word_size);
 461 
 462   // Expands/shrinks the committed space in a virtual space.  Delegates
 463   // to Virtualspace
 464   bool expand_by(size_t min_words, size_t preferred_words);
 465 
 466   // In preparation for deleting this node, remove all the chunks
 467   // in the node from any freelist.
 468   void purge(ChunkManager* chunk_manager);
 469 
 470   // If an allocation doesn't fit in the current node a new node is created.
 471   // Allocate chunks out of the remaining committed space in this node
 472   // to avoid wasting that memory.
 473   // This always adds up because all the chunk sizes are multiples of
 474   // the smallest chunk size.
 475   void retire(ChunkManager* chunk_manager);
 476 
 477 #ifdef ASSERT
 478   // Debug support
 479   void mangle();
 480 #endif
 481 
 482   void print_on(outputStream* st) const;
 483 };
 484 
 485 #define assert_is_ptr_aligned(ptr, alignment) \
 486   assert(is_ptr_aligned(ptr, alignment),      \
 487          PTR_FORMAT " is not aligned to "     \
 488          SIZE_FORMAT, p2i(ptr), alignment)
 489 
 490 #define assert_is_size_aligned(size, alignment) \
 491   assert(is_size_aligned(size, alignment),      \
 492          SIZE_FORMAT " is not aligned to "      \
 493          SIZE_FORMAT, size, alignment)
 494 
 495 
 496 // Decide if large pages should be committed when the memory is reserved.
 497 static bool should_commit_large_pages_when_reserving(size_t bytes) {
 498   if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
 499     size_t words = bytes / BytesPerWord;
 500     bool is_class = false; // We never reserve large pages for the class space.
 501     if (MetaspaceGC::can_expand(words, is_class) &&
 502         MetaspaceGC::allowed_expansion() >= words) {
 503       return true;
 504     }
 505   }
 506 
 507   return false;
 508 }
 509 
 510   // byte_size is the size of the associated virtualspace.
 511 VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
 512   assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
 513 
 514 #if INCLUDE_CDS
 515   // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
 516   // configurable address, generally at the top of the Java heap so other
 517   // memory addresses don't conflict.
 518   if (DumpSharedSpaces) {
 519     bool large_pages = false; // No large pages when dumping the CDS archive.
 520     char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
 521 
 522     _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base);
 523     if (_rs.is_reserved()) {
 524       assert(shared_base == 0 || _rs.base() == shared_base, "should match");
 525     } else {
 526       // Get a mmap region anywhere if the SharedBaseAddress fails.
 527       _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
 528     }
 529     MetaspaceShared::initialize_shared_rs(&_rs);
 530   } else
 531 #endif
 532   {
 533     bool large_pages = should_commit_large_pages_when_reserving(bytes);
 534 
 535     _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
 536   }
 537 
 538   if (_rs.is_reserved()) {
 539     assert(_rs.base() != NULL, "Catch if we get a NULL address");
 540     assert(_rs.size() != 0, "Catch if we get a 0 size");
 541     assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
 542     assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());
 543 
 544     MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
 545   }
 546 }
 547 
 548 void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
 549   Metachunk* chunk = first_chunk();
 550   Metachunk* invalid_chunk = (Metachunk*) top();
 551   while (chunk < invalid_chunk ) {
 552     assert(chunk->is_tagged_free(), "Should be tagged free");
 553     MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
 554     chunk_manager->remove_chunk(chunk);
 555     assert(chunk->next() == NULL &&
 556            chunk->prev() == NULL,
 557            "Was not removed from its list");
 558     chunk = (Metachunk*) next;
 559   }
 560 }
 561 
 562 #ifdef ASSERT
 563 uintx VirtualSpaceNode::container_count_slow() {
 564   uintx count = 0;
 565   Metachunk* chunk = first_chunk();
 566   Metachunk* invalid_chunk = (Metachunk*) top();
 567   while (chunk < invalid_chunk ) {
 568     MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
 569     // Don't count the chunks on the free lists.  Those are
 570     // still part of the VirtualSpaceNode but not currently
 571     // counted.
 572     if (!chunk->is_tagged_free()) {
 573       count++;
 574     }
 575     chunk = (Metachunk*) next;
 576   }
 577   return count;
 578 }
 579 #endif
 580 
 581 // List of VirtualSpaces for metadata allocation.
 582 class VirtualSpaceList : public CHeapObj<mtClass> {
 583   friend class VirtualSpaceNode;
 584 
 585   enum VirtualSpaceSizes {
 586     VirtualSpaceSize = 256 * K
 587   };
 588 
 589   // Head of the list
 590   VirtualSpaceNode* _virtual_space_list;
 591   // virtual space currently being used for allocations
 592   VirtualSpaceNode* _current_virtual_space;
 593 
 594   // Is this VirtualSpaceList used for the compressed class space
 595   bool _is_class;
 596 
 597   // Sum of reserved and committed memory in the virtual spaces
 598   size_t _reserved_words;
 599   size_t _committed_words;
 600 
 601   // Number of virtual spaces
 602   size_t _virtual_space_count;
 603 
 604   ~VirtualSpaceList();
 605 
 606   VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
 607 
 608   void set_virtual_space_list(VirtualSpaceNode* v) {
 609     _virtual_space_list = v;
 610   }
 611   void set_current_virtual_space(VirtualSpaceNode* v) {
 612     _current_virtual_space = v;
 613   }
 614 
 615   void link_vs(VirtualSpaceNode* new_entry);
 616 
 617   // Get another virtual space and add it to the list.  This
 618   // is typically prompted by a failed attempt to allocate a chunk
 619   // and is typically followed by the allocation of a chunk.
 620   bool create_new_virtual_space(size_t vs_word_size);
 621 
 622   // Chunk up the unused committed space in the current
 623   // virtual space and add the chunks to the free list.
 624   void retire_current_virtual_space();
 625 
 626  public:
 627   VirtualSpaceList(size_t word_size);
 628   VirtualSpaceList(ReservedSpace rs);
 629 
 630   size_t free_bytes();
 631 
 632   Metachunk* get_new_chunk(size_t word_size,
 633                            size_t grow_chunks_by_words,
 634                            size_t medium_chunk_bunch);
 635 
 636   bool expand_node_by(VirtualSpaceNode* node,
 637                       size_t min_words,
 638                       size_t preferred_words);
 639 
 640   bool expand_by(size_t min_words,
 641                  size_t preferred_words);
 642 
 643   VirtualSpaceNode* current_virtual_space() {
 644     return _current_virtual_space;
 645   }
 646 
 647   bool is_class() const { return _is_class; }
 648 
 649   bool initialization_succeeded() { return _virtual_space_list != NULL; }
 650 
 651   size_t reserved_words()  { return _reserved_words; }
 652   size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
 653   size_t committed_words() { return _committed_words; }
 654   size_t committed_bytes() { return committed_words() * BytesPerWord; }
 655 
 656   void inc_reserved_words(size_t v);
 657   void dec_reserved_words(size_t v);
 658   void inc_committed_words(size_t v);
 659   void dec_committed_words(size_t v);
 660   void inc_virtual_space_count();
 661   void dec_virtual_space_count();
 662 
 663   bool contains(const void* ptr);
 664 
 665   // Unlink empty VirtualSpaceNodes and free it.
 666   void purge(ChunkManager* chunk_manager);
 667 
 668   void print_on(outputStream* st) const;
 669 
 670   class VirtualSpaceListIterator : public StackObj {
 671     VirtualSpaceNode* _virtual_spaces;
 672    public:
 673     VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
 674       _virtual_spaces(virtual_spaces) {}
 675 
 676     bool repeat() {
 677       return _virtual_spaces != NULL;
 678     }
 679 
 680     VirtualSpaceNode* get_next() {
 681       VirtualSpaceNode* result = _virtual_spaces;
 682       if (_virtual_spaces != NULL) {
 683         _virtual_spaces = _virtual_spaces->next();
 684       }
 685       return result;
 686     }
 687   };
 688 };
 689 
 690 class Metadebug : AllStatic {
 691   // Debugging support for Metaspaces
 692   static int _allocation_fail_alot_count;
 693 
 694  public:
 695 
 696   static void init_allocation_fail_alot_count();
 697 #ifdef ASSERT
 698   static bool test_metadata_failure();
 699 #endif
 700 };
 701 
 702 int Metadebug::_allocation_fail_alot_count = 0;
 703 
 704 //  SpaceManager - used by Metaspace to handle allocations
 705 class SpaceManager : public CHeapObj<mtClass> {
 706   friend class Metaspace;
 707   friend class Metadebug;
 708 
 709  private:
 710 
 711   // protects allocations
 712   Mutex* const _lock;
 713 
 714   // Type of metadata allocated.
 715   Metaspace::MetadataType _mdtype;
 716 
 717   // List of chunks in use by this SpaceManager.  Allocations
 718   // are done from the current chunk.  The list is used for deallocating
 719   // chunks when the SpaceManager is freed.
 720   Metachunk* _chunks_in_use[NumberOfInUseLists];
 721   Metachunk* _current_chunk;
 722 
 723   // Maximum number of small chunks to allocate to a SpaceManager
 724   static uint const _small_chunk_limit;
 725 
 726   // Sum of all space in allocated chunks
 727   size_t _allocated_blocks_words;
 728 
 729   // Sum of all allocated chunks
 730   size_t _allocated_chunks_words;
 731   size_t _allocated_chunks_count;
 732 
 733   // Free lists of blocks are per SpaceManager since they
 734   // are assumed to be in chunks in use by the SpaceManager
 735   // and all chunks in use by a SpaceManager are freed when
 736   // the class loader using the SpaceManager is collected.
 737   BlockFreelist* _block_freelists;
 738 
 739   // protects virtualspace and chunk expansions
 740   static const char*  _expand_lock_name;
 741   static const int    _expand_lock_rank;
 742   static Mutex* const _expand_lock;
 743 
 744  private:
 745   // Accessors
 746   Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
 747   void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
 748     _chunks_in_use[index] = v;
 749   }
 750 
 751   BlockFreelist* block_freelists() const { return _block_freelists; }
 752 
 753   Metaspace::MetadataType mdtype() { return _mdtype; }
 754 
 755   VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
 756   ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
 757 
 758   Metachunk* current_chunk() const { return _current_chunk; }
 759   void set_current_chunk(Metachunk* v) {
 760     _current_chunk = v;
 761   }
 762 
 763   Metachunk* find_current_chunk(size_t word_size);
 764 
 765   // Add chunk to the list of chunks in use
 766   void add_chunk(Metachunk* v, bool make_current);
 767   void retire_current_chunk();
 768 
 769   Mutex* lock() const { return _lock; }
 770 
 771   const char* chunk_size_name(ChunkIndex index) const;
 772 
 773  protected:
 774   void initialize();
 775 
 776  public:
 777   SpaceManager(Metaspace::MetadataType mdtype,
 778                Mutex* lock);
 779   ~SpaceManager();
 780 
 781   enum ChunkMultiples {
 782     MediumChunkMultiple = 4
 783   };
 784 
 785   bool is_class() { return _mdtype == Metaspace::ClassType; }
 786 
 787   // Accessors
 788   size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
 789   size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
 790   size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
 791   size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }
 792 
 793   size_t smallest_chunk_size()  { return specialized_chunk_size(); }
 794 
 795   size_t allocated_blocks_words() const { return _allocated_blocks_words; }
 796   size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
 797   size_t allocated_chunks_words() const { return _allocated_chunks_words; }
 798   size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; }
 799   size_t allocated_chunks_count() const { return _allocated_chunks_count; }
 800 
 801   bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
 802 
 803   static Mutex* expand_lock() { return _expand_lock; }
 804 
 805   // Increment the per Metaspace and global running sums for Metachunks
 806   // by the given size.  This is used when a Metachunk to added to
 807   // the in-use list.
 808   void inc_size_metrics(size_t words);
 809   // Increment the per Metaspace and global running sums Metablocks by the given
 810   // size.  This is used when a Metablock is allocated.
 811   void inc_used_metrics(size_t words);
 812   // Delete the portion of the running sums for this SpaceManager. That is,
 813   // the globals running sums for the Metachunks and Metablocks are
 814   // decremented for all the Metachunks in-use by this SpaceManager.
 815   void dec_total_from_size_metrics();
 816 
 817   // Set the sizes for the initial chunks.
 818   void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
 819                                size_t* chunk_word_size,
 820                                size_t* class_chunk_word_size);
 821 
 822   size_t sum_capacity_in_chunks_in_use() const;
 823   size_t sum_used_in_chunks_in_use() const;
 824   size_t sum_free_in_chunks_in_use() const;
 825   size_t sum_waste_in_chunks_in_use() const;
 826   size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
 827 
 828   size_t sum_count_in_chunks_in_use();
 829   size_t sum_count_in_chunks_in_use(ChunkIndex i);
 830 
 831   Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
 832 
 833   // Block allocation and deallocation.
 834   // Allocates a block from the current chunk
 835   MetaWord* allocate(size_t word_size);
 836   // Allocates a block from a small chunk
 837   MetaWord* get_small_chunk_and_allocate(size_t word_size);
 838 
 839   // Helper for allocations
 840   MetaWord* allocate_work(size_t word_size);
 841 
 842   // Returns a block to the per manager freelist
 843   void deallocate(MetaWord* p, size_t word_size);
 844 
 845   // Based on the allocation size and a minimum chunk size,
 846   // returned chunk size (for expanding space for chunk allocation).
 847   size_t calc_chunk_size(size_t allocation_word_size);
 848 
 849   // Called when an allocation from the current chunk fails.
 850   // Gets a new chunk (may require getting a new virtual space),
 851   // and allocates from that chunk.
 852   MetaWord* grow_and_allocate(size_t word_size);
 853 
 854   // Notify memory usage to MemoryService.
 855   void track_metaspace_memory_usage();
 856 
 857   // debugging support.
 858 
 859   void dump(outputStream* const out) const;
 860   void print_on(outputStream* st) const;
 861   void locked_print_chunks_in_use_on(outputStream* st) const;
 862 
 863   void verify();
 864   void verify_chunk_size(Metachunk* chunk);
 865 #ifdef ASSERT
 866   void verify_allocated_blocks_words();
 867 #endif
 868 
 869   // This adjusts the size given to be greater than the minimum allocation size in
 870   // words for data in metaspace.  Esentially the minimum size is currently 3 words.
 871   size_t get_allocation_word_size(size_t word_size) {
 872     size_t byte_size = word_size * BytesPerWord;
 873 
 874     size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
 875     raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());
 876 
 877     size_t raw_word_size = raw_bytes_size / BytesPerWord;
 878     assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
 879 
 880     return raw_word_size;
 881   }
 882 };
 883 
 884 uint const SpaceManager::_small_chunk_limit = 4;
 885 
 886 const char* SpaceManager::_expand_lock_name =
 887   "SpaceManager chunk allocation lock";
 888 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
 889 Mutex* const SpaceManager::_expand_lock =
 890   new Mutex(SpaceManager::_expand_lock_rank,
 891             SpaceManager::_expand_lock_name,
 892             Mutex::_allow_vm_block_flag,
 893             Monitor::_safepoint_check_never);
 894 
 895 void VirtualSpaceNode::inc_container_count() {
 896   assert_lock_strong(SpaceManager::expand_lock());
 897   _container_count++;
 898 }
 899 
 900 void VirtualSpaceNode::dec_container_count() {
 901   assert_lock_strong(SpaceManager::expand_lock());
 902   _container_count--;
 903 }
 904 
 905 #ifdef ASSERT
 906 void VirtualSpaceNode::verify_container_count() {
 907   assert(_container_count == container_count_slow(),
 908          "Inconsistency in container_count _container_count " UINTX_FORMAT
 909          " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow());
 910 }
 911 #endif
 912 
 913 // BlockFreelist methods
 914 
 915 BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()), _small_blocks(NULL) {}
 916 
 917 BlockFreelist::~BlockFreelist() {
 918   delete _dictionary;
 919   if (_small_blocks != NULL) {
 920     delete _small_blocks;
 921   }
 922 }
 923 
 924 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
 925   assert(word_size >= SmallBlocks::small_block_min_size(), "never return dark matter");
 926 
 927   Metablock* free_chunk = ::new (p) Metablock(word_size);
 928   if (word_size < SmallBlocks::small_block_max_size()) {
 929     small_blocks()->return_block(free_chunk, word_size);
 930   } else {
 931   dictionary()->return_chunk(free_chunk);
 932 }
 933   log_trace(gc, metaspace, freelist, blocks)("returning block at " INTPTR_FORMAT " size = "
 934             SIZE_FORMAT, p2i(free_chunk), word_size);
 935 }
 936 
 937 MetaWord* BlockFreelist::get_block(size_t word_size) {
 938   assert(word_size >= SmallBlocks::small_block_min_size(), "never get dark matter");
 939 
 940   // Try small_blocks first.
 941   if (word_size < SmallBlocks::small_block_max_size()) {
 942     // Don't create small_blocks() until needed.  small_blocks() allocates the small block list for
 943     // this space manager.
 944     MetaWord* new_block = (MetaWord*) small_blocks()->get_block(word_size);
 945     if (new_block != NULL) {
 946       log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
 947               p2i(new_block), word_size);
 948       return new_block;
 949     }
 950   }
 951 
 952   if (word_size < BlockFreelist::min_dictionary_size()) {
 953     // If allocation in small blocks fails, this is Dark Matter.  Too small for dictionary.
 954     return NULL;
 955   }
 956 
 957   Metablock* free_block =
 958     dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
 959   if (free_block == NULL) {
 960     return NULL;
 961   }
 962 
 963   const size_t block_size = free_block->size();
 964   if (block_size > WasteMultiplier * word_size) {
 965     return_block((MetaWord*)free_block, block_size);
 966     return NULL;
 967   }
 968 
 969   MetaWord* new_block = (MetaWord*)free_block;
 970   assert(block_size >= word_size, "Incorrect size of block from freelist");
 971   const size_t unused = block_size - word_size;
 972   if (unused >= SmallBlocks::small_block_min_size()) {
 973     return_block(new_block + word_size, unused);
 974   }
 975 
 976   log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
 977             p2i(new_block), word_size);
 978   return new_block;
 979 }
 980 
 981 void BlockFreelist::print_on(outputStream* st) const {
 982   dictionary()->print_free_lists(st);
 983   if (_small_blocks != NULL) {
 984     _small_blocks->print_on(st);
 985   }
 986 }
 987 
 988 // VirtualSpaceNode methods
 989 
 990 VirtualSpaceNode::~VirtualSpaceNode() {
 991   _rs.release();
 992 #ifdef ASSERT
 993   size_t word_size = sizeof(*this) / BytesPerWord;
 994   Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
 995 #endif
 996 }
 997 
 998 size_t VirtualSpaceNode::used_words_in_vs() const {
 999   return pointer_delta(top(), bottom(), sizeof(MetaWord));
1000 }
1001 
1002 // Space committed in the VirtualSpace
1003 size_t VirtualSpaceNode::capacity_words_in_vs() const {
1004   return pointer_delta(end(), bottom(), sizeof(MetaWord));
1005 }
1006 
1007 size_t VirtualSpaceNode::free_words_in_vs() const {
1008   return pointer_delta(end(), top(), sizeof(MetaWord));
1009 }
1010 
1011 // Allocates the chunk from the virtual space only.
1012 // This interface is also used internally for debugging.  Not all
1013 // chunks removed here are necessarily used for allocation.
1014 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
1015   // Bottom of the new chunk
1016   MetaWord* chunk_limit = top();
1017   assert(chunk_limit != NULL, "Not safe to call this method");
1018 
1019   // The virtual spaces are always expanded by the
1020   // commit granularity to enforce the following condition.
1021   // Without this the is_available check will not work correctly.
1022   assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
1023       "The committed memory doesn't match the expanded memory.");
1024 
1025   if (!is_available(chunk_word_size)) {
1026     Log(gc, metaspace, freelist) log;
1027     log.debug("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size);
1028     // Dump some information about the virtual space that is nearly full
1029     ResourceMark rm;
1030     print_on(log.debug_stream());
1031     return NULL;
1032   }
1033 
1034   // Take the space  (bump top on the current virtual space).
1035   inc_top(chunk_word_size);
1036 
1037   // Initialize the chunk
1038   Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
1039   return result;
1040 }
1041 
1042 
1043 // Expand the virtual space (commit more of the reserved space)
1044 bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
1045   size_t min_bytes = min_words * BytesPerWord;
1046   size_t preferred_bytes = preferred_words * BytesPerWord;
1047 
1048   size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
1049 
1050   if (uncommitted < min_bytes) {
1051     return false;
1052   }
1053 
1054   size_t commit = MIN2(preferred_bytes, uncommitted);
1055   bool result = virtual_space()->expand_by(commit, false);
1056 
1057   assert(result, "Failed to commit memory");
1058 
1059   return result;
1060 }
1061 
1062 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
1063   assert_lock_strong(SpaceManager::expand_lock());
1064   Metachunk* result = take_from_committed(chunk_word_size);
1065   if (result != NULL) {
1066     inc_container_count();
1067   }
1068   return result;
1069 }
1070 
1071 bool VirtualSpaceNode::initialize() {
1072 
1073   if (!_rs.is_reserved()) {
1074     return false;
1075   }
1076 
1077   // These are necessary restriction to make sure that the virtual space always
1078   // grows in steps of Metaspace::commit_alignment(). If both base and size are
1079   // aligned only the middle alignment of the VirtualSpace is used.
1080   assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
1081   assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());
1082 
1083   // ReservedSpaces marked as special will have the entire memory
1084   // pre-committed. Setting a committed size will make sure that
1085   // committed_size and actual_committed_size agrees.
1086   size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
1087 
1088   bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
1089                                             Metaspace::commit_alignment());
1090   if (result) {
1091     assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
1092         "Checking that the pre-committed memory was registered by the VirtualSpace");
1093 
1094     set_top((MetaWord*)virtual_space()->low());
1095     set_reserved(MemRegion((HeapWord*)_rs.base(),
1096                  (HeapWord*)(_rs.base() + _rs.size())));
1097 
1098     assert(reserved()->start() == (HeapWord*) _rs.base(),
1099            "Reserved start was not set properly " PTR_FORMAT
1100            " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base()));
1101     assert(reserved()->word_size() == _rs.size() / BytesPerWord,
1102            "Reserved size was not set properly " SIZE_FORMAT
1103            " != " SIZE_FORMAT, reserved()->word_size(),
1104            _rs.size() / BytesPerWord);
1105   }
1106 
1107   return result;
1108 }
1109 
1110 void VirtualSpaceNode::print_on(outputStream* st) const {
1111   size_t used = used_words_in_vs();
1112   size_t capacity = capacity_words_in_vs();
1113   VirtualSpace* vs = virtual_space();
1114   st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used "
1115            "[" PTR_FORMAT ", " PTR_FORMAT ", "
1116            PTR_FORMAT ", " PTR_FORMAT ")",
1117            p2i(vs), capacity / K,
1118            capacity == 0 ? 0 : used * 100 / capacity,
1119            p2i(bottom()), p2i(top()), p2i(end()),
1120            p2i(vs->high_boundary()));
1121 }
1122 
1123 #ifdef ASSERT
1124 void VirtualSpaceNode::mangle() {
1125   size_t word_size = capacity_words_in_vs();
1126   Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1127 }
1128 #endif // ASSERT
1129 
1130 // VirtualSpaceList methods
1131 // Space allocated from the VirtualSpace
1132 
1133 VirtualSpaceList::~VirtualSpaceList() {
1134   VirtualSpaceListIterator iter(virtual_space_list());
1135   while (iter.repeat()) {
1136     VirtualSpaceNode* vsl = iter.get_next();
1137     delete vsl;
1138   }
1139 }
1140 
1141 void VirtualSpaceList::inc_reserved_words(size_t v) {
1142   assert_lock_strong(SpaceManager::expand_lock());
1143   _reserved_words = _reserved_words + v;
1144 }
1145 void VirtualSpaceList::dec_reserved_words(size_t v) {
1146   assert_lock_strong(SpaceManager::expand_lock());
1147   _reserved_words = _reserved_words - v;
1148 }
1149 
1150 #define assert_committed_below_limit()                        \
1151   assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1152          "Too much committed memory. Committed: " SIZE_FORMAT \
1153          " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
1154          MetaspaceAux::committed_bytes(), MaxMetaspaceSize);
1155 
1156 void VirtualSpaceList::inc_committed_words(size_t v) {
1157   assert_lock_strong(SpaceManager::expand_lock());
1158   _committed_words = _committed_words + v;
1159 
1160   assert_committed_below_limit();
1161 }
1162 void VirtualSpaceList::dec_committed_words(size_t v) {
1163   assert_lock_strong(SpaceManager::expand_lock());
1164   _committed_words = _committed_words - v;
1165 
1166   assert_committed_below_limit();
1167 }
1168 
1169 void VirtualSpaceList::inc_virtual_space_count() {
1170   assert_lock_strong(SpaceManager::expand_lock());
1171   _virtual_space_count++;
1172 }
1173 void VirtualSpaceList::dec_virtual_space_count() {
1174   assert_lock_strong(SpaceManager::expand_lock());
1175   _virtual_space_count--;
1176 }
1177 
1178 void ChunkManager::remove_chunk(Metachunk* chunk) {
1179   size_t word_size = chunk->word_size();
1180   ChunkIndex index = list_index(word_size);
1181   if (index != HumongousIndex) {
1182     free_chunks(index)->remove_chunk(chunk);
1183   } else {
1184     humongous_dictionary()->remove_chunk(chunk);
1185   }
1186 
1187   // Chunk is being removed from the chunks free list.
1188   dec_free_chunks_total(chunk->word_size());
1189 }
1190 
1191 // Walk the list of VirtualSpaceNodes and delete
1192 // nodes with a 0 container_count.  Remove Metachunks in
1193 // the node from their respective freelists.
1194 void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1195   assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1196   assert_lock_strong(SpaceManager::expand_lock());
1197   // Don't use a VirtualSpaceListIterator because this
1198   // list is being changed and a straightforward use of an iterator is not safe.
1199   VirtualSpaceNode* purged_vsl = NULL;
1200   VirtualSpaceNode* prev_vsl = virtual_space_list();
1201   VirtualSpaceNode* next_vsl = prev_vsl;
1202   while (next_vsl != NULL) {
1203     VirtualSpaceNode* vsl = next_vsl;
1204     DEBUG_ONLY(vsl->verify_container_count();)
1205     next_vsl = vsl->next();
1206     // Don't free the current virtual space since it will likely
1207     // be needed soon.
1208     if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1209       // Unlink it from the list
1210       if (prev_vsl == vsl) {
1211         // This is the case of the current node being the first node.
1212         assert(vsl == virtual_space_list(), "Expected to be the first node");
1213         set_virtual_space_list(vsl->next());
1214       } else {
1215         prev_vsl->set_next(vsl->next());
1216       }
1217 
1218       vsl->purge(chunk_manager);
1219       dec_reserved_words(vsl->reserved_words());
1220       dec_committed_words(vsl->committed_words());
1221       dec_virtual_space_count();
1222       purged_vsl = vsl;
1223       delete vsl;
1224     } else {
1225       prev_vsl = vsl;
1226     }
1227   }
1228 #ifdef ASSERT
1229   if (purged_vsl != NULL) {
1230     // List should be stable enough to use an iterator here.
1231     VirtualSpaceListIterator iter(virtual_space_list());
1232     while (iter.repeat()) {
1233       VirtualSpaceNode* vsl = iter.get_next();
1234       assert(vsl != purged_vsl, "Purge of vsl failed");
1235     }
1236   }
1237 #endif
1238 }
1239 
1240 
1241 // This function looks at the mmap regions in the metaspace without locking.
1242 // The chunks are added with store ordering and not deleted except for at
1243 // unloading time during a safepoint.
1244 bool VirtualSpaceList::contains(const void* ptr) {
1245   // List should be stable enough to use an iterator here because removing virtual
1246   // space nodes is only allowed at a safepoint.
1247   VirtualSpaceListIterator iter(virtual_space_list());
1248   while (iter.repeat()) {
1249     VirtualSpaceNode* vsn = iter.get_next();
1250     if (vsn->contains(ptr)) {
1251       return true;
1252     }
1253   }
1254   return false;
1255 }
1256 
1257 void VirtualSpaceList::retire_current_virtual_space() {
1258   assert_lock_strong(SpaceManager::expand_lock());
1259 
1260   VirtualSpaceNode* vsn = current_virtual_space();
1261 
1262   ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1263                                   Metaspace::chunk_manager_metadata();
1264 
1265   vsn->retire(cm);
1266 }
1267 
1268 void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1269   DEBUG_ONLY(verify_container_count();)
1270   for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1271     ChunkIndex index = (ChunkIndex)i;
1272     size_t chunk_size = chunk_manager->free_chunks(index)->size();
1273 
1274     while (free_words_in_vs() >= chunk_size) {
1275       Metachunk* chunk = get_chunk_vs(chunk_size);
1276       assert(chunk != NULL, "allocation should have been successful");
1277 
1278       chunk_manager->return_chunks(index, chunk);
1279       chunk_manager->inc_free_chunks_total(chunk_size);
1280     }
1281     DEBUG_ONLY(verify_container_count();)
1282   }
1283   assert(free_words_in_vs() == 0, "should be empty now");
1284 }
1285 
1286 VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1287                                    _is_class(false),
1288                                    _virtual_space_list(NULL),
1289                                    _current_virtual_space(NULL),
1290                                    _reserved_words(0),
1291                                    _committed_words(0),
1292                                    _virtual_space_count(0) {
1293   MutexLockerEx cl(SpaceManager::expand_lock(),
1294                    Mutex::_no_safepoint_check_flag);
1295   create_new_virtual_space(word_size);
1296 }
1297 
1298 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1299                                    _is_class(true),
1300                                    _virtual_space_list(NULL),
1301                                    _current_virtual_space(NULL),
1302                                    _reserved_words(0),
1303                                    _committed_words(0),
1304                                    _virtual_space_count(0) {
1305   MutexLockerEx cl(SpaceManager::expand_lock(),
1306                    Mutex::_no_safepoint_check_flag);
1307   VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1308   bool succeeded = class_entry->initialize();
1309   if (succeeded) {
1310     link_vs(class_entry);
1311   }
1312 }
1313 
1314 size_t VirtualSpaceList::free_bytes() {
1315   return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1316 }
1317 
1318 // Allocate another meta virtual space and add it to the list.
1319 bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1320   assert_lock_strong(SpaceManager::expand_lock());
1321 
1322   if (is_class()) {
1323     assert(false, "We currently don't support more than one VirtualSpace for"
1324                   " the compressed class space. The initialization of the"
1325                   " CCS uses another code path and should not hit this path.");
1326     return false;
1327   }
1328 
1329   if (vs_word_size == 0) {
1330     assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1331     return false;
1332   }
1333 
1334   // Reserve the space
1335   size_t vs_byte_size = vs_word_size * BytesPerWord;
1336   assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1337 
1338   // Allocate the meta virtual space and initialize it.
1339   VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1340   if (!new_entry->initialize()) {
1341     delete new_entry;
1342     return false;
1343   } else {
1344     assert(new_entry->reserved_words() == vs_word_size,
1345         "Reserved memory size differs from requested memory size");
1346     // ensure lock-free iteration sees fully initialized node
1347     OrderAccess::storestore();
1348     link_vs(new_entry);
1349     return true;
1350   }
1351 }
1352 
1353 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1354   if (virtual_space_list() == NULL) {
1355       set_virtual_space_list(new_entry);
1356   } else {
1357     current_virtual_space()->set_next(new_entry);
1358   }
1359   set_current_virtual_space(new_entry);
1360   inc_reserved_words(new_entry->reserved_words());
1361   inc_committed_words(new_entry->committed_words());
1362   inc_virtual_space_count();
1363 #ifdef ASSERT
1364   new_entry->mangle();
1365 #endif
1366   if (log_is_enabled(Trace, gc, metaspace)) {
1367     Log(gc, metaspace) log;
1368     VirtualSpaceNode* vsl = current_virtual_space();
1369     ResourceMark rm;
1370     vsl->print_on(log.trace_stream());
1371   }
1372 }
1373 
1374 bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1375                                       size_t min_words,
1376                                       size_t preferred_words) {
1377   size_t before = node->committed_words();
1378 
1379   bool result = node->expand_by(min_words, preferred_words);
1380 
1381   size_t after = node->committed_words();
1382 
1383   // after and before can be the same if the memory was pre-committed.
1384   assert(after >= before, "Inconsistency");
1385   inc_committed_words(after - before);
1386 
1387   return result;
1388 }
1389 
1390 bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1391   assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
1392   assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
1393   assert(min_words <= preferred_words, "Invalid arguments");
1394 
1395   if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1396     return  false;
1397   }
1398 
1399   size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1400   if (allowed_expansion_words < min_words) {
1401     return false;
1402   }
1403 
1404   size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1405 
1406   // Commit more memory from the the current virtual space.
1407   bool vs_expanded = expand_node_by(current_virtual_space(),
1408                                     min_words,
1409                                     max_expansion_words);
1410   if (vs_expanded) {
1411     return true;
1412   }
1413   retire_current_virtual_space();
1414 
1415   // Get another virtual space.
1416   size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1417   grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());
1418 
1419   if (create_new_virtual_space(grow_vs_words)) {
1420     if (current_virtual_space()->is_pre_committed()) {
1421       // The memory was pre-committed, so we are done here.
1422       assert(min_words <= current_virtual_space()->committed_words(),
1423           "The new VirtualSpace was pre-committed, so it"
1424           "should be large enough to fit the alloc request.");
1425       return true;
1426     }
1427 
1428     return expand_node_by(current_virtual_space(),
1429                           min_words,
1430                           max_expansion_words);
1431   }
1432 
1433   return false;
1434 }
1435 
1436 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1437                                            size_t grow_chunks_by_words,
1438                                            size_t medium_chunk_bunch) {
1439 
1440   // Allocate a chunk out of the current virtual space.
1441   Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1442 
1443   if (next != NULL) {
1444     return next;
1445   }
1446 
1447   // The expand amount is currently only determined by the requested sizes
1448   // and not how much committed memory is left in the current virtual space.
1449 
1450   size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
1451   size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
1452   if (min_word_size >= preferred_word_size) {
1453     // Can happen when humongous chunks are allocated.
1454     preferred_word_size = min_word_size;
1455   }
1456 
1457   bool expanded = expand_by(min_word_size, preferred_word_size);
1458   if (expanded) {
1459     next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1460     assert(next != NULL, "The allocation was expected to succeed after the expansion");
1461   }
1462 
1463    return next;
1464 }
1465 
1466 void VirtualSpaceList::print_on(outputStream* st) const {
1467   VirtualSpaceListIterator iter(virtual_space_list());
1468   while (iter.repeat()) {
1469     VirtualSpaceNode* node = iter.get_next();
1470     node->print_on(st);
1471   }
1472 }
1473 
1474 // MetaspaceGC methods
1475 
1476 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1477 // Within the VM operation after the GC the attempt to allocate the metadata
1478 // should succeed.  If the GC did not free enough space for the metaspace
1479 // allocation, the HWM is increased so that another virtualspace will be
1480 // allocated for the metadata.  With perm gen the increase in the perm
1481 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
1482 // metaspace policy uses those as the small and large steps for the HWM.
1483 //
1484 // After the GC the compute_new_size() for MetaspaceGC is called to
1485 // resize the capacity of the metaspaces.  The current implementation
1486 // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1487 // to resize the Java heap by some GC's.  New flags can be implemented
1488 // if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1489 // free space is desirable in the metaspace capacity to decide how much
1490 // to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1491 // free space is desirable in the metaspace capacity before decreasing
1492 // the HWM.
1493 
1494 // Calculate the amount to increase the high water mark (HWM).
1495 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1496 // another expansion is not requested too soon.  If that is not
1497 // enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1498 // If that is still not enough, expand by the size of the allocation
1499 // plus some.
1500 size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1501   size_t min_delta = MinMetaspaceExpansion;
1502   size_t max_delta = MaxMetaspaceExpansion;
1503   size_t delta = align_size_up(bytes, Metaspace::commit_alignment());
1504 
1505   if (delta <= min_delta) {
1506     delta = min_delta;
1507   } else if (delta <= max_delta) {
1508     // Don't want to hit the high water mark on the next
1509     // allocation so make the delta greater than just enough
1510     // for this allocation.
1511     delta = max_delta;
1512   } else {
1513     // This allocation is large but the next ones are probably not
1514     // so increase by the minimum.
1515     delta = delta + min_delta;
1516   }
1517 
1518   assert_is_size_aligned(delta, Metaspace::commit_alignment());
1519 
1520   return delta;
1521 }
1522 
1523 size_t MetaspaceGC::capacity_until_GC() {
1524   size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1525   assert(value >= MetaspaceSize, "Not initialized properly?");
1526   return value;
1527 }
1528 
1529 bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
1530   assert_is_size_aligned(v, Metaspace::commit_alignment());
1531 
1532   size_t capacity_until_GC = (size_t) _capacity_until_GC;
1533   size_t new_value = capacity_until_GC + v;
1534 
1535   if (new_value < capacity_until_GC) {
1536     // The addition wrapped around, set new_value to aligned max value.
1537     new_value = align_size_down(max_uintx, Metaspace::commit_alignment());
1538   }
1539 
1540   intptr_t expected = (intptr_t) capacity_until_GC;
1541   intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);
1542 
1543   if (expected != actual) {
1544     return false;
1545   }
1546 
1547   if (new_cap_until_GC != NULL) {
1548     *new_cap_until_GC = new_value;
1549   }
1550   if (old_cap_until_GC != NULL) {
1551     *old_cap_until_GC = capacity_until_GC;
1552   }
1553   return true;
1554 }
1555 
1556 size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1557   assert_is_size_aligned(v, Metaspace::commit_alignment());
1558 
1559   return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1560 }
1561 
1562 void MetaspaceGC::initialize() {
1563   // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1564   // we can't do a GC during initialization.
1565   _capacity_until_GC = MaxMetaspaceSize;
1566 }
1567 
1568 void MetaspaceGC::post_initialize() {
1569   // Reset the high-water mark once the VM initialization is done.
1570   _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
1571 }
1572 
1573 bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1574   // Check if the compressed class space is full.
1575   if (is_class && Metaspace::using_class_space()) {
1576     size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1577     if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1578       return false;
1579     }
1580   }
1581 
1582   // Check if the user has imposed a limit on the metaspace memory.
1583   size_t committed_bytes = MetaspaceAux::committed_bytes();
1584   if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1585     return false;
1586   }
1587 
1588   return true;
1589 }
1590 
1591 size_t MetaspaceGC::allowed_expansion() {
1592   size_t committed_bytes = MetaspaceAux::committed_bytes();
1593   size_t capacity_until_gc = capacity_until_GC();
1594 
1595   assert(capacity_until_gc >= committed_bytes,
1596          "capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1597          capacity_until_gc, committed_bytes);
1598 
1599   size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1600   size_t left_until_GC = capacity_until_gc - committed_bytes;
1601   size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1602 
1603   return left_to_commit / BytesPerWord;
1604 }
1605 
1606 void MetaspaceGC::compute_new_size() {
1607   assert(_shrink_factor <= 100, "invalid shrink factor");
1608   uint current_shrink_factor = _shrink_factor;
1609   _shrink_factor = 0;
1610 
1611   // Using committed_bytes() for used_after_gc is an overestimation, since the
1612   // chunk free lists are included in committed_bytes() and the memory in an
1613   // un-fragmented chunk free list is available for future allocations.
1614   // However, if the chunk free lists becomes fragmented, then the memory may
1615   // not be available for future allocations and the memory is therefore "in use".
1616   // Including the chunk free lists in the definition of "in use" is therefore
1617   // necessary. Not including the chunk free lists can cause capacity_until_GC to
1618   // shrink below committed_bytes() and this has caused serious bugs in the past.
1619   const size_t used_after_gc = MetaspaceAux::committed_bytes();
1620   const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1621 
1622   const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1623   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1624 
1625   const double min_tmp = used_after_gc / maximum_used_percentage;
1626   size_t minimum_desired_capacity =
1627     (size_t)MIN2(min_tmp, double(max_uintx));
1628   // Don't shrink less than the initial generation size
1629   minimum_desired_capacity = MAX2(minimum_desired_capacity,
1630                                   MetaspaceSize);
1631 
1632   log_trace(gc, metaspace)("MetaspaceGC::compute_new_size: ");
1633   log_trace(gc, metaspace)("    minimum_free_percentage: %6.2f  maximum_used_percentage: %6.2f",
1634                            minimum_free_percentage, maximum_used_percentage);
1635   log_trace(gc, metaspace)("     used_after_gc       : %6.1fKB", used_after_gc / (double) K);
1636 
1637 
1638   size_t shrink_bytes = 0;
1639   if (capacity_until_GC < minimum_desired_capacity) {
1640     // If we have less capacity below the metaspace HWM, then
1641     // increment the HWM.
1642     size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1643     expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1644     // Don't expand unless it's significant
1645     if (expand_bytes >= MinMetaspaceExpansion) {
1646       size_t new_capacity_until_GC = 0;
1647       bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
1648       assert(succeeded, "Should always succesfully increment HWM when at safepoint");
1649 
1650       Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1651                                                new_capacity_until_GC,
1652                                                MetaspaceGCThresholdUpdater::ComputeNewSize);
1653       log_trace(gc, metaspace)("    expanding:  minimum_desired_capacity: %6.1fKB  expand_bytes: %6.1fKB  MinMetaspaceExpansion: %6.1fKB  new metaspace HWM:  %6.1fKB",
1654                                minimum_desired_capacity / (double) K,
1655                                expand_bytes / (double) K,
1656                                MinMetaspaceExpansion / (double) K,
1657                                new_capacity_until_GC / (double) K);
1658     }
1659     return;
1660   }
1661 
1662   // No expansion, now see if we want to shrink
1663   // We would never want to shrink more than this
1664   assert(capacity_until_GC >= minimum_desired_capacity,
1665          SIZE_FORMAT " >= " SIZE_FORMAT,
1666          capacity_until_GC, minimum_desired_capacity);
1667   size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1668 
1669   // Should shrinking be considered?
1670   if (MaxMetaspaceFreeRatio < 100) {
1671     const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1672     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1673     const double max_tmp = used_after_gc / minimum_used_percentage;
1674     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1675     maximum_desired_capacity = MAX2(maximum_desired_capacity,
1676                                     MetaspaceSize);
1677     log_trace(gc, metaspace)("    maximum_free_percentage: %6.2f  minimum_used_percentage: %6.2f",
1678                              maximum_free_percentage, minimum_used_percentage);
1679     log_trace(gc, metaspace)("    minimum_desired_capacity: %6.1fKB  maximum_desired_capacity: %6.1fKB",
1680                              minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K);
1681 
1682     assert(minimum_desired_capacity <= maximum_desired_capacity,
1683            "sanity check");
1684 
1685     if (capacity_until_GC > maximum_desired_capacity) {
1686       // Capacity too large, compute shrinking size
1687       shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1688       // We don't want shrink all the way back to initSize if people call
1689       // System.gc(), because some programs do that between "phases" and then
1690       // we'd just have to grow the heap up again for the next phase.  So we
1691       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1692       // on the third call, and 100% by the fourth call.  But if we recompute
1693       // size without shrinking, it goes back to 0%.
1694       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1695 
1696       shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());
1697 
1698       assert(shrink_bytes <= max_shrink_bytes,
1699              "invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1700              shrink_bytes, max_shrink_bytes);
1701       if (current_shrink_factor == 0) {
1702         _shrink_factor = 10;
1703       } else {
1704         _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1705       }
1706       log_trace(gc, metaspace)("    shrinking:  initThreshold: %.1fK  maximum_desired_capacity: %.1fK",
1707                                MetaspaceSize / (double) K, maximum_desired_capacity / (double) K);
1708       log_trace(gc, metaspace)("    shrink_bytes: %.1fK  current_shrink_factor: %d  new shrink factor: %d  MinMetaspaceExpansion: %.1fK",
1709                                shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, MinMetaspaceExpansion / (double) K);
1710     }
1711   }
1712 
1713   // Don't shrink unless it's significant
1714   if (shrink_bytes >= MinMetaspaceExpansion &&
1715       ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1716     size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1717     Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1718                                              new_capacity_until_GC,
1719                                              MetaspaceGCThresholdUpdater::ComputeNewSize);
1720   }
1721 }
1722 
1723 // Metadebug methods
1724 
1725 void Metadebug::init_allocation_fail_alot_count() {
1726   if (MetadataAllocationFailALot) {
1727     _allocation_fail_alot_count =
1728       1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1729   }
1730 }
1731 
1732 #ifdef ASSERT
1733 bool Metadebug::test_metadata_failure() {
1734   if (MetadataAllocationFailALot &&
1735       Threads::is_vm_complete()) {
1736     if (_allocation_fail_alot_count > 0) {
1737       _allocation_fail_alot_count--;
1738     } else {
1739       log_trace(gc, metaspace, freelist)("Metadata allocation failing for MetadataAllocationFailALot");
1740       init_allocation_fail_alot_count();
1741       return true;
1742     }
1743   }
1744   return false;
1745 }
1746 #endif
1747 
1748 // ChunkManager methods
1749 
1750 size_t ChunkManager::free_chunks_total_words() {
1751   return _free_chunks_total;
1752 }
1753 
1754 size_t ChunkManager::free_chunks_total_bytes() {
1755   return free_chunks_total_words() * BytesPerWord;
1756 }
1757 
1758 size_t ChunkManager::free_chunks_count() {
1759 #ifdef ASSERT
1760   if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1761     MutexLockerEx cl(SpaceManager::expand_lock(),
1762                      Mutex::_no_safepoint_check_flag);
1763     // This lock is only needed in debug because the verification
1764     // of the _free_chunks_totals walks the list of free chunks
1765     slow_locked_verify_free_chunks_count();
1766   }
1767 #endif
1768   return _free_chunks_count;
1769 }
1770 
1771 void ChunkManager::locked_verify_free_chunks_total() {
1772   assert_lock_strong(SpaceManager::expand_lock());
1773   assert(sum_free_chunks() == _free_chunks_total,
1774          "_free_chunks_total " SIZE_FORMAT " is not the"
1775          " same as sum " SIZE_FORMAT, _free_chunks_total,
1776          sum_free_chunks());
1777 }
1778 
1779 void ChunkManager::verify_free_chunks_total() {
1780   MutexLockerEx cl(SpaceManager::expand_lock(),
1781                      Mutex::_no_safepoint_check_flag);
1782   locked_verify_free_chunks_total();
1783 }
1784 
1785 void ChunkManager::locked_verify_free_chunks_count() {
1786   assert_lock_strong(SpaceManager::expand_lock());
1787   assert(sum_free_chunks_count() == _free_chunks_count,
1788          "_free_chunks_count " SIZE_FORMAT " is not the"
1789          " same as sum " SIZE_FORMAT, _free_chunks_count,
1790          sum_free_chunks_count());
1791 }
1792 
1793 void ChunkManager::verify_free_chunks_count() {
1794 #ifdef ASSERT
1795   MutexLockerEx cl(SpaceManager::expand_lock(),
1796                      Mutex::_no_safepoint_check_flag);
1797   locked_verify_free_chunks_count();
1798 #endif
1799 }
1800 
1801 void ChunkManager::verify() {
1802   MutexLockerEx cl(SpaceManager::expand_lock(),
1803                      Mutex::_no_safepoint_check_flag);
1804   locked_verify();
1805 }
1806 
1807 void ChunkManager::locked_verify() {
1808   locked_verify_free_chunks_count();
1809   locked_verify_free_chunks_total();
1810 }
1811 
1812 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1813   assert_lock_strong(SpaceManager::expand_lock());
1814   st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1815                 _free_chunks_total, _free_chunks_count);
1816 }
1817 
1818 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1819   assert_lock_strong(SpaceManager::expand_lock());
1820   st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1821                 sum_free_chunks(), sum_free_chunks_count());
1822 }
1823 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1824   return &_free_chunks[index];
1825 }
1826 
1827 // These methods that sum the free chunk lists are used in printing
1828 // methods that are used in product builds.
1829 size_t ChunkManager::sum_free_chunks() {
1830   assert_lock_strong(SpaceManager::expand_lock());
1831   size_t result = 0;
1832   for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1833     ChunkList* list = free_chunks(i);
1834 
1835     if (list == NULL) {
1836       continue;
1837     }
1838 
1839     result = result + list->count() * list->size();
1840   }
1841   result = result + humongous_dictionary()->total_size();
1842   return result;
1843 }
1844 
1845 size_t ChunkManager::sum_free_chunks_count() {
1846   assert_lock_strong(SpaceManager::expand_lock());
1847   size_t count = 0;
1848   for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1849     ChunkList* list = free_chunks(i);
1850     if (list == NULL) {
1851       continue;
1852     }
1853     count = count + list->count();
1854   }
1855   count = count + humongous_dictionary()->total_free_blocks();
1856   return count;
1857 }
1858 
1859 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1860   ChunkIndex index = list_index(word_size);
1861   assert(index < HumongousIndex, "No humongous list");
1862   return free_chunks(index);
1863 }
1864 
1865 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1866   assert_lock_strong(SpaceManager::expand_lock());
1867 
1868   slow_locked_verify();
1869 
1870   Metachunk* chunk = NULL;
1871   if (list_index(word_size) != HumongousIndex) {
1872     ChunkList* free_list = find_free_chunks_list(word_size);
1873     assert(free_list != NULL, "Sanity check");
1874 
1875     chunk = free_list->head();
1876 
1877     if (chunk == NULL) {
1878       return NULL;
1879     }
1880 
1881     // Remove the chunk as the head of the list.
1882     free_list->remove_chunk(chunk);
1883 
1884     log_trace(gc, metaspace, freelist)("ChunkManager::free_chunks_get: free_list " PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1885                                        p2i(free_list), p2i(chunk), chunk->word_size());
1886   } else {
1887     chunk = humongous_dictionary()->get_chunk(
1888       word_size,
1889       FreeBlockDictionary<Metachunk>::atLeast);
1890 
1891     if (chunk == NULL) {
1892       return NULL;
1893     }
1894 
1895     log_debug(gc, metaspace, alloc)("Free list allocate humongous chunk size " SIZE_FORMAT " for requested size " SIZE_FORMAT " waste " SIZE_FORMAT,
1896                                     chunk->word_size(), word_size, chunk->word_size() - word_size);
1897   }
1898 
1899   // Chunk is being removed from the chunks free list.
1900   dec_free_chunks_total(chunk->word_size());
1901 
1902   // Remove it from the links to this freelist
1903   chunk->set_next(NULL);
1904   chunk->set_prev(NULL);
1905 #ifdef ASSERT
1906   // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1907   // work.
1908   chunk->set_is_tagged_free(false);
1909 #endif
1910   chunk->container()->inc_container_count();
1911 
1912   slow_locked_verify();
1913   return chunk;
1914 }
1915 
1916 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1917   assert_lock_strong(SpaceManager::expand_lock());
1918   slow_locked_verify();
1919 
1920   // Take from the beginning of the list
1921   Metachunk* chunk = free_chunks_get(word_size);
1922   if (chunk == NULL) {
1923     return NULL;
1924   }
1925 
1926   assert((word_size <= chunk->word_size()) ||
1927          list_index(chunk->word_size() == HumongousIndex),
1928          "Non-humongous variable sized chunk");
1929   Log(gc, metaspace, freelist) log;
1930   if (log.is_debug()) {
1931     size_t list_count;
1932     if (list_index(word_size) < HumongousIndex) {
1933       ChunkList* list = find_free_chunks_list(word_size);
1934       list_count = list->count();
1935     } else {
1936       list_count = humongous_dictionary()->total_count();
1937     }
1938     log.debug("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk " PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1939                p2i(this), p2i(chunk), chunk->word_size(), list_count);
1940     ResourceMark rm;
1941     locked_print_free_chunks(log.debug_stream());
1942   }
1943 
1944   return chunk;
1945 }
1946 
1947 void ChunkManager::print_on(outputStream* out) const {
1948   const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics(out);
1949 }
1950 
1951 // SpaceManager methods
1952 
1953 void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
1954                                            size_t* chunk_word_size,
1955                                            size_t* class_chunk_word_size) {
1956   switch (type) {
1957   case Metaspace::BootMetaspaceType:
1958     *chunk_word_size = Metaspace::first_chunk_word_size();
1959     *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
1960     break;
1961   case Metaspace::ROMetaspaceType:
1962     *chunk_word_size = SharedReadOnlySize / wordSize;
1963     *class_chunk_word_size = ClassSpecializedChunk;
1964     break;
1965   case Metaspace::ReadWriteMetaspaceType:
1966     *chunk_word_size = SharedReadWriteSize / wordSize;
1967     *class_chunk_word_size = ClassSpecializedChunk;
1968     break;
1969   case Metaspace::AnonymousMetaspaceType:
1970   case Metaspace::ReflectionMetaspaceType:
1971     *chunk_word_size = SpecializedChunk;
1972     *class_chunk_word_size = ClassSpecializedChunk;
1973     break;
1974   default:
1975     *chunk_word_size = SmallChunk;
1976     *class_chunk_word_size = ClassSmallChunk;
1977     break;
1978   }
1979   assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1980          "Initial chunks sizes bad: data  " SIZE_FORMAT
1981          " class " SIZE_FORMAT,
1982          *chunk_word_size, *class_chunk_word_size);
1983 }
1984 
1985 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1986   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1987   size_t free = 0;
1988   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1989     Metachunk* chunk = chunks_in_use(i);
1990     while (chunk != NULL) {
1991       free += chunk->free_word_size();
1992       chunk = chunk->next();
1993     }
1994   }
1995   return free;
1996 }
1997 
1998 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1999   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2000   size_t result = 0;
2001   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2002    result += sum_waste_in_chunks_in_use(i);
2003   }
2004 
2005   return result;
2006 }
2007 
2008 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
2009   size_t result = 0;
2010   Metachunk* chunk = chunks_in_use(index);
2011   // Count the free space in all the chunk but not the
2012   // current chunk from which allocations are still being done.
2013   while (chunk != NULL) {
2014     if (chunk != current_chunk()) {
2015       result += chunk->free_word_size();
2016     }
2017     chunk = chunk->next();
2018   }
2019   return result;
2020 }
2021 
2022 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
2023   // For CMS use "allocated_chunks_words()" which does not need the
2024   // Metaspace lock.  For the other collectors sum over the
2025   // lists.  Use both methods as a check that "allocated_chunks_words()"
2026   // is correct.  That is, sum_capacity_in_chunks() is too expensive
2027   // to use in the product and allocated_chunks_words() should be used
2028   // but allow for  checking that allocated_chunks_words() returns the same
2029   // value as sum_capacity_in_chunks_in_use() which is the definitive
2030   // answer.
2031   if (UseConcMarkSweepGC) {
2032     return allocated_chunks_words();
2033   } else {
2034     MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2035     size_t sum = 0;
2036     for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2037       Metachunk* chunk = chunks_in_use(i);
2038       while (chunk != NULL) {
2039         sum += chunk->word_size();
2040         chunk = chunk->next();
2041       }
2042     }
2043   return sum;
2044   }
2045 }
2046 
2047 size_t SpaceManager::sum_count_in_chunks_in_use() {
2048   size_t count = 0;
2049   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2050     count = count + sum_count_in_chunks_in_use(i);
2051   }
2052 
2053   return count;
2054 }
2055 
2056 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
2057   size_t count = 0;
2058   Metachunk* chunk = chunks_in_use(i);
2059   while (chunk != NULL) {
2060     count++;
2061     chunk = chunk->next();
2062   }
2063   return count;
2064 }
2065 
2066 
2067 size_t SpaceManager::sum_used_in_chunks_in_use() const {
2068   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2069   size_t used = 0;
2070   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2071     Metachunk* chunk = chunks_in_use(i);
2072     while (chunk != NULL) {
2073       used += chunk->used_word_size();
2074       chunk = chunk->next();
2075     }
2076   }
2077   return used;
2078 }
2079 
2080 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
2081 
2082   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2083     Metachunk* chunk = chunks_in_use(i);
2084     st->print("SpaceManager: %s " PTR_FORMAT,
2085                  chunk_size_name(i), p2i(chunk));
2086     if (chunk != NULL) {
2087       st->print_cr(" free " SIZE_FORMAT,
2088                    chunk->free_word_size());
2089     } else {
2090       st->cr();
2091     }
2092   }
2093 
2094   chunk_manager()->locked_print_free_chunks(st);
2095   chunk_manager()->locked_print_sum_free_chunks(st);
2096 }
2097 
2098 size_t SpaceManager::calc_chunk_size(size_t word_size) {
2099 
2100   // Decide between a small chunk and a medium chunk.  Up to
2101   // _small_chunk_limit small chunks can be allocated.
2102   // After that a medium chunk is preferred.
2103   size_t chunk_word_size;
2104   if (chunks_in_use(MediumIndex) == NULL &&
2105       sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2106     chunk_word_size = (size_t) small_chunk_size();
2107     if (word_size + Metachunk::overhead() > small_chunk_size()) {
2108       chunk_word_size = medium_chunk_size();
2109     }
2110   } else {
2111     chunk_word_size = medium_chunk_size();
2112   }
2113 
2114   // Might still need a humongous chunk.  Enforce
2115   // humongous allocations sizes to be aligned up to
2116   // the smallest chunk size.
2117   size_t if_humongous_sized_chunk =
2118     align_size_up(word_size + Metachunk::overhead(),
2119                   smallest_chunk_size());
2120   chunk_word_size =
2121     MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2122 
2123   assert(!SpaceManager::is_humongous(word_size) ||
2124          chunk_word_size == if_humongous_sized_chunk,
2125          "Size calculation is wrong, word_size " SIZE_FORMAT
2126          " chunk_word_size " SIZE_FORMAT,
2127          word_size, chunk_word_size);
2128   Log(gc, metaspace, alloc) log;
2129   if (log.is_debug() && SpaceManager::is_humongous(word_size)) {
2130     log.debug("Metadata humongous allocation:");
2131     log.debug("  word_size " PTR_FORMAT, word_size);
2132     log.debug("  chunk_word_size " PTR_FORMAT, chunk_word_size);
2133     log.debug("    chunk overhead " PTR_FORMAT, Metachunk::overhead());
2134   }
2135   return chunk_word_size;
2136 }
2137 
2138 void SpaceManager::track_metaspace_memory_usage() {
2139   if (is_init_completed()) {
2140     if (is_class()) {
2141       MemoryService::track_compressed_class_memory_usage();
2142     }
2143     MemoryService::track_metaspace_memory_usage();
2144   }
2145 }
2146 
2147 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2148   assert(vs_list()->current_virtual_space() != NULL,
2149          "Should have been set");
2150   assert(current_chunk() == NULL ||
2151          current_chunk()->allocate(word_size) == NULL,
2152          "Don't need to expand");
2153   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2154 
2155   if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2156     size_t words_left = 0;
2157     size_t words_used = 0;
2158     if (current_chunk() != NULL) {
2159       words_left = current_chunk()->free_word_size();
2160       words_used = current_chunk()->used_word_size();
2161     }
2162     log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left",
2163                                        word_size, words_used, words_left);
2164   }
2165 
2166   // Get another chunk
2167   size_t grow_chunks_by_words = calc_chunk_size(word_size);
2168   Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2169 
2170   MetaWord* mem = NULL;
2171 
2172   // If a chunk was available, add it to the in-use chunk list
2173   // and do an allocation from it.
2174   if (next != NULL) {
2175     // Add to this manager's list of chunks in use.
2176     add_chunk(next, false);
2177     mem = next->allocate(word_size);
2178   }
2179 
2180   // Track metaspace memory usage statistic.
2181   track_metaspace_memory_usage();
2182 
2183   return mem;
2184 }
2185 
2186 void SpaceManager::print_on(outputStream* st) const {
2187 
2188   for (ChunkIndex i = ZeroIndex;
2189        i < NumberOfInUseLists ;
2190        i = next_chunk_index(i) ) {
2191     st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT,
2192                  p2i(chunks_in_use(i)),
2193                  chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2194   }
2195   st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2196                " Humongous " SIZE_FORMAT,
2197                sum_waste_in_chunks_in_use(SmallIndex),
2198                sum_waste_in_chunks_in_use(MediumIndex),
2199                sum_waste_in_chunks_in_use(HumongousIndex));
2200   // block free lists
2201   if (block_freelists() != NULL) {
2202     st->print_cr("total in block free lists " SIZE_FORMAT,
2203       block_freelists()->total_size());
2204   }
2205 }
2206 
2207 SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2208                            Mutex* lock) :
2209   _mdtype(mdtype),
2210   _allocated_blocks_words(0),
2211   _allocated_chunks_words(0),
2212   _allocated_chunks_count(0),
2213   _block_freelists(NULL),
2214   _lock(lock)
2215 {
2216   initialize();
2217 }
2218 
2219 void SpaceManager::inc_size_metrics(size_t words) {
2220   assert_lock_strong(SpaceManager::expand_lock());
2221   // Total of allocated Metachunks and allocated Metachunks count
2222   // for each SpaceManager
2223   _allocated_chunks_words = _allocated_chunks_words + words;
2224   _allocated_chunks_count++;
2225   // Global total of capacity in allocated Metachunks
2226   MetaspaceAux::inc_capacity(mdtype(), words);
2227   // Global total of allocated Metablocks.
2228   // used_words_slow() includes the overhead in each
2229   // Metachunk so include it in the used when the
2230   // Metachunk is first added (so only added once per
2231   // Metachunk).
2232   MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2233 }
2234 
2235 void SpaceManager::inc_used_metrics(size_t words) {
2236   // Add to the per SpaceManager total
2237   Atomic::add_ptr(words, &_allocated_blocks_words);
2238   // Add to the global total
2239   MetaspaceAux::inc_used(mdtype(), words);
2240 }
2241 
2242 void SpaceManager::dec_total_from_size_metrics() {
2243   MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2244   MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2245   // Also deduct the overhead per Metachunk
2246   MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2247 }
2248 
2249 void SpaceManager::initialize() {
2250   Metadebug::init_allocation_fail_alot_count();
2251   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2252     _chunks_in_use[i] = NULL;
2253   }
2254   _current_chunk = NULL;
2255   log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this));
2256 }
2257 
2258 void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
2259   if (chunks == NULL) {
2260     return;
2261   }
2262   ChunkList* list = free_chunks(index);
2263   assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
2264   assert_lock_strong(SpaceManager::expand_lock());
2265   Metachunk* cur = chunks;
2266 
2267   // This returns chunks one at a time.  If a new
2268   // class List can be created that is a base class
2269   // of FreeList then something like FreeList::prepend()
2270   // can be used in place of this loop
2271   while (cur != NULL) {
2272     assert(cur->container() != NULL, "Container should have been set");
2273     cur->container()->dec_container_count();
2274     // Capture the next link before it is changed
2275     // by the call to return_chunk_at_head();
2276     Metachunk* next = cur->next();
2277     DEBUG_ONLY(cur->set_is_tagged_free(true);)
2278     NOT_PRODUCT(cur->mangle(badMetaWordVal);)
2279     list->return_chunk_at_head(cur);
2280     cur = next;
2281   }
2282 }
2283 
2284 SpaceManager::~SpaceManager() {
2285   // This call this->_lock which can't be done while holding expand_lock()
2286   assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2287          "sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2288          " allocated_chunks_words() " SIZE_FORMAT,
2289          sum_capacity_in_chunks_in_use(), allocated_chunks_words());
2290 
2291   MutexLockerEx fcl(SpaceManager::expand_lock(),
2292                     Mutex::_no_safepoint_check_flag);
2293 
2294   chunk_manager()->slow_locked_verify();
2295 
2296   dec_total_from_size_metrics();
2297 
2298   Log(gc, metaspace, freelist) log;
2299   if (log.is_trace()) {
2300     log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this));
2301     ResourceMark rm;
2302     locked_print_chunks_in_use_on(log.trace_stream());
2303     if (block_freelists() != NULL) {
2304     block_freelists()->print_on(log.trace_stream());
2305   }
2306   }
2307 
2308   // Have to update before the chunks_in_use lists are emptied
2309   // below.
2310   chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
2311                                          sum_count_in_chunks_in_use());
2312 
2313   // Add all the chunks in use by this space manager
2314   // to the global list of free chunks.
2315 
2316   // Follow each list of chunks-in-use and add them to the
2317   // free lists.  Each list is NULL terminated.
2318 
2319   for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
2320     log.trace("returned " SIZE_FORMAT " %s chunks to freelist", sum_count_in_chunks_in_use(i), chunk_size_name(i));
2321     Metachunk* chunks = chunks_in_use(i);
2322     chunk_manager()->return_chunks(i, chunks);
2323     set_chunks_in_use(i, NULL);
2324     log.trace("updated freelist count " SSIZE_FORMAT " %s", chunk_manager()->free_chunks(i)->count(), chunk_size_name(i));
2325     assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2326   }
2327 
2328   // The medium chunk case may be optimized by passing the head and
2329   // tail of the medium chunk list to add_at_head().  The tail is often
2330   // the current chunk but there are probably exceptions.
2331 
2332   // Humongous chunks
2333   log.trace("returned " SIZE_FORMAT " %s humongous chunks to dictionary",
2334             sum_count_in_chunks_in_use(HumongousIndex), chunk_size_name(HumongousIndex));
2335   log.trace("Humongous chunk dictionary: ");
2336   // Humongous chunks are never the current chunk.
2337   Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
2338 
2339   while (humongous_chunks != NULL) {
2340     DEBUG_ONLY(humongous_chunks->set_is_tagged_free(true);)
2341     NOT_PRODUCT(humongous_chunks->mangle(badMetaWordVal);)
2342     log.trace(PTR_FORMAT " (" SIZE_FORMAT ") ", p2i(humongous_chunks), humongous_chunks->word_size());
2343     assert(humongous_chunks->word_size() == (size_t)
2344            align_size_up(humongous_chunks->word_size(),
2345                              smallest_chunk_size()),
2346            "Humongous chunk size is wrong: word size " SIZE_FORMAT
2347            " granularity " SIZE_FORMAT,
2348            humongous_chunks->word_size(), smallest_chunk_size());
2349     Metachunk* next_humongous_chunks = humongous_chunks->next();
2350     humongous_chunks->container()->dec_container_count();
2351     chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2352     humongous_chunks = next_humongous_chunks;
2353   }
2354   log.trace("updated dictionary count " SIZE_FORMAT " %s", chunk_manager()->humongous_dictionary()->total_count(), chunk_size_name(HumongousIndex));
2355   chunk_manager()->slow_locked_verify();
2356 
2357   if (_block_freelists != NULL) {
2358     delete _block_freelists;
2359   }
2360 }
2361 
2362 const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
2363   switch (index) {
2364     case SpecializedIndex:
2365       return "Specialized";
2366     case SmallIndex:
2367       return "Small";
2368     case MediumIndex:
2369       return "Medium";
2370     case HumongousIndex:
2371       return "Humongous";
2372     default:
2373       return NULL;
2374   }
2375 }
2376 
2377 size_t ChunkManager::list_chunk_size(ChunkIndex index) const {
2378   assert(index == SpecializedIndex || index == SmallIndex || index == MediumIndex,
2379       "Bad index: %d", (int)index);
2380 
2381   return _free_chunks[index].size();
2382 }
2383 
2384 ChunkIndex ChunkManager::list_index(size_t size) const {
2385   if (list_chunk_size(SpecializedIndex) == size) {
2386     return SpecializedIndex;
2387   }
2388   if (list_chunk_size(SmallIndex) == size) {
2389     return SmallIndex;
2390   }
2391   if (list_chunk_size(MediumIndex) == size) {
2392     return MediumIndex;
2393   }
2394 
2395   assert(size > list_chunk_size(MediumIndex), "Not a humongous chunk");
2396   return HumongousIndex;
2397 }
2398 
2399 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2400   assert_lock_strong(_lock);
2401   // Allocations and deallocations are in raw_word_size
2402   size_t raw_word_size = get_allocation_word_size(word_size);
2403   // Lazily create a block_freelist
2404   if (block_freelists() == NULL) {
2405     _block_freelists = new BlockFreelist();
2406   }
2407   block_freelists()->return_block(p, raw_word_size);
2408 }
2409 
2410 // Adds a chunk to the list of chunks in use.
2411 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2412 
2413   assert(new_chunk != NULL, "Should not be NULL");
2414   assert(new_chunk->next() == NULL, "Should not be on a list");
2415 
2416   new_chunk->reset_empty();
2417 
2418   // Find the correct list and and set the current
2419   // chunk for that list.
2420   ChunkIndex index = chunk_manager()->list_index(new_chunk->word_size());
2421 
2422   if (index != HumongousIndex) {
2423     retire_current_chunk();
2424     set_current_chunk(new_chunk);
2425     new_chunk->set_next(chunks_in_use(index));
2426     set_chunks_in_use(index, new_chunk);
2427   } else {
2428     // For null class loader data and DumpSharedSpaces, the first chunk isn't
2429     // small, so small will be null.  Link this first chunk as the current
2430     // chunk.
2431     if (make_current) {
2432       // Set as the current chunk but otherwise treat as a humongous chunk.
2433       set_current_chunk(new_chunk);
2434     }
2435     // Link at head.  The _current_chunk only points to a humongous chunk for
2436     // the null class loader metaspace (class and data virtual space managers)
2437     // any humongous chunks so will not point to the tail
2438     // of the humongous chunks list.
2439     new_chunk->set_next(chunks_in_use(HumongousIndex));
2440     set_chunks_in_use(HumongousIndex, new_chunk);
2441 
2442     assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2443   }
2444 
2445   // Add to the running sum of capacity
2446   inc_size_metrics(new_chunk->word_size());
2447 
2448   assert(new_chunk->is_empty(), "Not ready for reuse");
2449   Log(gc, metaspace, freelist) log;
2450   if (log.is_trace()) {
2451     log.trace("SpaceManager::add_chunk: " SIZE_FORMAT ") ", sum_count_in_chunks_in_use());
2452     ResourceMark rm;
2453     outputStream* out = log.trace_stream();
2454     new_chunk->print_on(out);
2455     chunk_manager()->locked_print_free_chunks(out);
2456   }
2457 }
2458 
2459 void SpaceManager::retire_current_chunk() {
2460   if (current_chunk() != NULL) {
2461     size_t remaining_words = current_chunk()->free_word_size();
2462     if (remaining_words >= BlockFreelist::min_dictionary_size()) {
2463       MetaWord* ptr = current_chunk()->allocate(remaining_words);
2464       deallocate(ptr, remaining_words);
2465       inc_used_metrics(remaining_words);
2466     }
2467   }
2468 }
2469 
2470 Metachunk* SpaceManager::get_new_chunk(size_t word_size,
2471                                        size_t grow_chunks_by_words) {
2472   // Get a chunk from the chunk freelist
2473   Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2474 
2475   if (next == NULL) {
2476     next = vs_list()->get_new_chunk(word_size,
2477                                     grow_chunks_by_words,
2478                                     medium_chunk_bunch());
2479   }
2480 
2481   Log(gc, metaspace, alloc) log;
2482   if (log.is_debug() && next != NULL &&
2483       SpaceManager::is_humongous(next->word_size())) {
2484     log.debug("  new humongous chunk word size " PTR_FORMAT, next->word_size());
2485   }
2486 
2487   return next;
2488 }
2489 
2490 /*
2491  * The policy is to allocate up to _small_chunk_limit small chunks
2492  * after which only medium chunks are allocated.  This is done to
2493  * reduce fragmentation.  In some cases, this can result in a lot
2494  * of small chunks being allocated to the point where it's not
2495  * possible to expand.  If this happens, there may be no medium chunks
2496  * available and OOME would be thrown.  Instead of doing that,
2497  * if the allocation request size fits in a small chunk, an attempt
2498  * will be made to allocate a small chunk.
2499  */
2500 MetaWord* SpaceManager::get_small_chunk_and_allocate(size_t word_size) {
2501   size_t raw_word_size = get_allocation_word_size(word_size);
2502 
2503   if (raw_word_size + Metachunk::overhead() > small_chunk_size()) {
2504     return NULL;
2505   }
2506 
2507   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2508   MutexLockerEx cl1(expand_lock(), Mutex::_no_safepoint_check_flag);
2509 
2510   Metachunk* chunk = chunk_manager()->chunk_freelist_allocate(small_chunk_size());
2511 
2512   MetaWord* mem = NULL;
2513 
2514   if (chunk != NULL) {
2515     // Add chunk to the in-use chunk list and do an allocation from it.
2516     // Add to this manager's list of chunks in use.
2517     add_chunk(chunk, false);
2518     mem = chunk->allocate(raw_word_size);
2519 
2520     inc_used_metrics(raw_word_size);
2521 
2522     // Track metaspace memory usage statistic.
2523     track_metaspace_memory_usage();
2524   }
2525 
2526   return mem;
2527 }
2528 
2529 MetaWord* SpaceManager::allocate(size_t word_size) {
2530   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2531   size_t raw_word_size = get_allocation_word_size(word_size);
2532   BlockFreelist* fl =  block_freelists();
2533   MetaWord* p = NULL;
2534   // Allocation from the dictionary is expensive in the sense that
2535   // the dictionary has to be searched for a size.  Don't allocate
2536   // from the dictionary until it starts to get fat.  Is this
2537   // a reasonable policy?  Maybe an skinny dictionary is fast enough
2538   // for allocations.  Do some profiling.  JJJ
2539   if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
2540     p = fl->get_block(raw_word_size);
2541   }
2542   if (p == NULL) {
2543     p = allocate_work(raw_word_size);
2544   }
2545 
2546   return p;
2547 }
2548 
2549 // Returns the address of spaced allocated for "word_size".
2550 // This methods does not know about blocks (Metablocks)
2551 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2552   assert_lock_strong(_lock);
2553 #ifdef ASSERT
2554   if (Metadebug::test_metadata_failure()) {
2555     return NULL;
2556   }
2557 #endif
2558   // Is there space in the current chunk?
2559   MetaWord* result = NULL;
2560 
2561   // For DumpSharedSpaces, only allocate out of the current chunk which is
2562   // never null because we gave it the size we wanted.   Caller reports out
2563   // of memory if this returns null.
2564   if (DumpSharedSpaces) {
2565     assert(current_chunk() != NULL, "should never happen");
2566     inc_used_metrics(word_size);
2567     return current_chunk()->allocate(word_size); // caller handles null result
2568   }
2569 
2570   if (current_chunk() != NULL) {
2571     result = current_chunk()->allocate(word_size);
2572   }
2573 
2574   if (result == NULL) {
2575     result = grow_and_allocate(word_size);
2576   }
2577 
2578   if (result != NULL) {
2579     inc_used_metrics(word_size);
2580     assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2581            "Head of the list is being allocated");
2582   }
2583 
2584   return result;
2585 }
2586 
2587 void SpaceManager::verify() {
2588   // If there are blocks in the dictionary, then
2589   // verification of chunks does not work since
2590   // being in the dictionary alters a chunk.
2591   if (block_freelists() != NULL && block_freelists()->total_size() == 0) {
2592     for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2593       Metachunk* curr = chunks_in_use(i);
2594       while (curr != NULL) {
2595         curr->verify();
2596         verify_chunk_size(curr);
2597         curr = curr->next();
2598       }
2599     }
2600   }
2601 }
2602 
2603 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2604   assert(is_humongous(chunk->word_size()) ||
2605          chunk->word_size() == medium_chunk_size() ||
2606          chunk->word_size() == small_chunk_size() ||
2607          chunk->word_size() == specialized_chunk_size(),
2608          "Chunk size is wrong");
2609   return;
2610 }
2611 
2612 #ifdef ASSERT
2613 void SpaceManager::verify_allocated_blocks_words() {
2614   // Verification is only guaranteed at a safepoint.
2615   assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2616     "Verification can fail if the applications is running");
2617   assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2618          "allocation total is not consistent " SIZE_FORMAT
2619          " vs " SIZE_FORMAT,
2620          allocated_blocks_words(), sum_used_in_chunks_in_use());
2621 }
2622 
2623 #endif
2624 
2625 void SpaceManager::dump(outputStream* const out) const {
2626   size_t curr_total = 0;
2627   size_t waste = 0;
2628   uint i = 0;
2629   size_t used = 0;
2630   size_t capacity = 0;
2631 
2632   // Add up statistics for all chunks in this SpaceManager.
2633   for (ChunkIndex index = ZeroIndex;
2634        index < NumberOfInUseLists;
2635        index = next_chunk_index(index)) {
2636     for (Metachunk* curr = chunks_in_use(index);
2637          curr != NULL;
2638          curr = curr->next()) {
2639       out->print("%d) ", i++);
2640       curr->print_on(out);
2641       curr_total += curr->word_size();
2642       used += curr->used_word_size();
2643       capacity += curr->word_size();
2644       waste += curr->free_word_size() + curr->overhead();;
2645     }
2646   }
2647 
2648   if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2649     if (block_freelists() != NULL) block_freelists()->print_on(out);
2650   }
2651 
2652   size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2653   // Free space isn't wasted.
2654   waste -= free;
2655 
2656   out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
2657                 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2658                 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2659 }
2660 
2661 // MetaspaceAux
2662 
2663 
2664 size_t MetaspaceAux::_capacity_words[] = {0, 0};
2665 size_t MetaspaceAux::_used_words[] = {0, 0};
2666 
2667 size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2668   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2669   return list == NULL ? 0 : list->free_bytes();
2670 }
2671 
2672 size_t MetaspaceAux::free_bytes() {
2673   return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2674 }
2675 
2676 void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2677   assert_lock_strong(SpaceManager::expand_lock());
2678   assert(words <= capacity_words(mdtype),
2679          "About to decrement below 0: words " SIZE_FORMAT
2680          " is greater than _capacity_words[%u] " SIZE_FORMAT,
2681          words, mdtype, capacity_words(mdtype));
2682   _capacity_words[mdtype] -= words;
2683 }
2684 
2685 void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2686   assert_lock_strong(SpaceManager::expand_lock());
2687   // Needs to be atomic
2688   _capacity_words[mdtype] += words;
2689 }
2690 
2691 void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2692   assert(words <= used_words(mdtype),
2693          "About to decrement below 0: words " SIZE_FORMAT
2694          " is greater than _used_words[%u] " SIZE_FORMAT,
2695          words, mdtype, used_words(mdtype));
2696   // For CMS deallocation of the Metaspaces occurs during the
2697   // sweep which is a concurrent phase.  Protection by the expand_lock()
2698   // is not enough since allocation is on a per Metaspace basis
2699   // and protected by the Metaspace lock.
2700   jlong minus_words = (jlong) - (jlong) words;
2701   Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2702 }
2703 
2704 void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2705   // _used_words tracks allocations for
2706   // each piece of metadata.  Those allocations are
2707   // generally done concurrently by different application
2708   // threads so must be done atomically.
2709   Atomic::add_ptr(words, &_used_words[mdtype]);
2710 }
2711 
2712 size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2713   size_t used = 0;
2714   ClassLoaderDataGraphMetaspaceIterator iter;
2715   while (iter.repeat()) {
2716     Metaspace* msp = iter.get_next();
2717     // Sum allocated_blocks_words for each metaspace
2718     if (msp != NULL) {
2719       used += msp->used_words_slow(mdtype);
2720     }
2721   }
2722   return used * BytesPerWord;
2723 }
2724 
2725 size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2726   size_t free = 0;
2727   ClassLoaderDataGraphMetaspaceIterator iter;
2728   while (iter.repeat()) {
2729     Metaspace* msp = iter.get_next();
2730     if (msp != NULL) {
2731       free += msp->free_words_slow(mdtype);
2732     }
2733   }
2734   return free * BytesPerWord;
2735 }
2736 
2737 size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2738   if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2739     return 0;
2740   }
2741   // Don't count the space in the freelists.  That space will be
2742   // added to the capacity calculation as needed.
2743   size_t capacity = 0;
2744   ClassLoaderDataGraphMetaspaceIterator iter;
2745   while (iter.repeat()) {
2746     Metaspace* msp = iter.get_next();
2747     if (msp != NULL) {
2748       capacity += msp->capacity_words_slow(mdtype);
2749     }
2750   }
2751   return capacity * BytesPerWord;
2752 }
2753 
2754 size_t MetaspaceAux::capacity_bytes_slow() {
2755 #ifdef PRODUCT
2756   // Use capacity_bytes() in PRODUCT instead of this function.
2757   guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2758 #endif
2759   size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2760   size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2761   assert(capacity_bytes() == class_capacity + non_class_capacity,
2762          "bad accounting: capacity_bytes() " SIZE_FORMAT
2763          " class_capacity + non_class_capacity " SIZE_FORMAT
2764          " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2765          capacity_bytes(), class_capacity + non_class_capacity,
2766          class_capacity, non_class_capacity);
2767 
2768   return class_capacity + non_class_capacity;
2769 }
2770 
2771 size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2772   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2773   return list == NULL ? 0 : list->reserved_bytes();
2774 }
2775 
2776 size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2777   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2778   return list == NULL ? 0 : list->committed_bytes();
2779 }
2780 
2781 size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2782 
2783 size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2784   ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2785   if (chunk_manager == NULL) {
2786     return 0;
2787   }
2788   chunk_manager->slow_verify();
2789   return chunk_manager->free_chunks_total_words();
2790 }
2791 
2792 size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2793   return free_chunks_total_words(mdtype) * BytesPerWord;
2794 }
2795 
2796 size_t MetaspaceAux::free_chunks_total_words() {
2797   return free_chunks_total_words(Metaspace::ClassType) +
2798          free_chunks_total_words(Metaspace::NonClassType);
2799 }
2800 
2801 size_t MetaspaceAux::free_chunks_total_bytes() {
2802   return free_chunks_total_words() * BytesPerWord;
2803 }
2804 
2805 bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2806   return Metaspace::get_chunk_manager(mdtype) != NULL;
2807 }
2808 
2809 MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2810   if (!has_chunk_free_list(mdtype)) {
2811     return MetaspaceChunkFreeListSummary();
2812   }
2813 
2814   const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2815   return cm->chunk_free_list_summary();
2816 }
2817 
2818 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2819   log_info(gc, metaspace)("Metaspace: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
2820                           prev_metadata_used/K, used_bytes()/K, reserved_bytes()/K);
2821 }
2822 
2823 void MetaspaceAux::print_on(outputStream* out) {
2824   Metaspace::MetadataType nct = Metaspace::NonClassType;
2825 
2826   out->print_cr(" Metaspace       "
2827                 "used "      SIZE_FORMAT "K, "
2828                 "capacity "  SIZE_FORMAT "K, "
2829                 "committed " SIZE_FORMAT "K, "
2830                 "reserved "  SIZE_FORMAT "K",
2831                 used_bytes()/K,
2832                 capacity_bytes()/K,
2833                 committed_bytes()/K,
2834                 reserved_bytes()/K);
2835 
2836   if (Metaspace::using_class_space()) {
2837     Metaspace::MetadataType ct = Metaspace::ClassType;
2838     out->print_cr("  class space    "
2839                   "used "      SIZE_FORMAT "K, "
2840                   "capacity "  SIZE_FORMAT "K, "
2841                   "committed " SIZE_FORMAT "K, "
2842                   "reserved "  SIZE_FORMAT "K",
2843                   used_bytes(ct)/K,
2844                   capacity_bytes(ct)/K,
2845                   committed_bytes(ct)/K,
2846                   reserved_bytes(ct)/K);
2847   }
2848 }
2849 
2850 // Print information for class space and data space separately.
2851 // This is almost the same as above.
2852 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2853   size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2854   size_t capacity_bytes = capacity_bytes_slow(mdtype);
2855   size_t used_bytes = used_bytes_slow(mdtype);
2856   size_t free_bytes = free_bytes_slow(mdtype);
2857   size_t used_and_free = used_bytes + free_bytes +
2858                            free_chunks_capacity_bytes;
2859   out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
2860              "K + unused in chunks " SIZE_FORMAT "K  + "
2861              " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2862              "K  capacity in allocated chunks " SIZE_FORMAT "K",
2863              used_bytes / K,
2864              free_bytes / K,
2865              free_chunks_capacity_bytes / K,
2866              used_and_free / K,
2867              capacity_bytes / K);
2868   // Accounting can only be correct if we got the values during a safepoint
2869   assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2870 }
2871 
2872 // Print total fragmentation for class metaspaces
2873 void MetaspaceAux::print_class_waste(outputStream* out) {
2874   assert(Metaspace::using_class_space(), "class metaspace not used");
2875   size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2876   size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2877   ClassLoaderDataGraphMetaspaceIterator iter;
2878   while (iter.repeat()) {
2879     Metaspace* msp = iter.get_next();
2880     if (msp != NULL) {
2881       cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2882       cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2883       cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2884       cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2885       cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2886       cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2887       cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2888     }
2889   }
2890   out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2891                 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2892                 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2893                 "large count " SIZE_FORMAT,
2894                 cls_specialized_count, cls_specialized_waste,
2895                 cls_small_count, cls_small_waste,
2896                 cls_medium_count, cls_medium_waste, cls_humongous_count);
2897 }
2898 
2899 // Print total fragmentation for data and class metaspaces separately
2900 void MetaspaceAux::print_waste(outputStream* out) {
2901   size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2902   size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2903 
2904   ClassLoaderDataGraphMetaspaceIterator iter;
2905   while (iter.repeat()) {
2906     Metaspace* msp = iter.get_next();
2907     if (msp != NULL) {
2908       specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2909       specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2910       small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2911       small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2912       medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2913       medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2914       humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2915     }
2916   }
2917   out->print_cr("Total fragmentation waste (words) doesn't count free space");
2918   out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2919                         SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2920                         SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2921                         "large count " SIZE_FORMAT,
2922              specialized_count, specialized_waste, small_count,
2923              small_waste, medium_count, medium_waste, humongous_count);
2924   if (Metaspace::using_class_space()) {
2925     print_class_waste(out);
2926   }
2927 }
2928 
2929 // Dump global metaspace things from the end of ClassLoaderDataGraph
2930 void MetaspaceAux::dump(outputStream* out) {
2931   out->print_cr("All Metaspace:");
2932   out->print("data space: "); print_on(out, Metaspace::NonClassType);
2933   out->print("class space: "); print_on(out, Metaspace::ClassType);
2934   print_waste(out);
2935 }
2936 
2937 void MetaspaceAux::verify_free_chunks() {
2938   Metaspace::chunk_manager_metadata()->verify();
2939   if (Metaspace::using_class_space()) {
2940     Metaspace::chunk_manager_class()->verify();
2941   }
2942 }
2943 
2944 void MetaspaceAux::verify_capacity() {
2945 #ifdef ASSERT
2946   size_t running_sum_capacity_bytes = capacity_bytes();
2947   // For purposes of the running sum of capacity, verify against capacity
2948   size_t capacity_in_use_bytes = capacity_bytes_slow();
2949   assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2950          "capacity_words() * BytesPerWord " SIZE_FORMAT
2951          " capacity_bytes_slow()" SIZE_FORMAT,
2952          running_sum_capacity_bytes, capacity_in_use_bytes);
2953   for (Metaspace::MetadataType i = Metaspace::ClassType;
2954        i < Metaspace:: MetadataTypeCount;
2955        i = (Metaspace::MetadataType)(i + 1)) {
2956     size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2957     assert(capacity_bytes(i) == capacity_in_use_bytes,
2958            "capacity_bytes(%u) " SIZE_FORMAT
2959            " capacity_bytes_slow(%u)" SIZE_FORMAT,
2960            i, capacity_bytes(i), i, capacity_in_use_bytes);
2961   }
2962 #endif
2963 }
2964 
2965 void MetaspaceAux::verify_used() {
2966 #ifdef ASSERT
2967   size_t running_sum_used_bytes = used_bytes();
2968   // For purposes of the running sum of used, verify against used
2969   size_t used_in_use_bytes = used_bytes_slow();
2970   assert(used_bytes() == used_in_use_bytes,
2971          "used_bytes() " SIZE_FORMAT
2972          " used_bytes_slow()" SIZE_FORMAT,
2973          used_bytes(), used_in_use_bytes);
2974   for (Metaspace::MetadataType i = Metaspace::ClassType;
2975        i < Metaspace:: MetadataTypeCount;
2976        i = (Metaspace::MetadataType)(i + 1)) {
2977     size_t used_in_use_bytes = used_bytes_slow(i);
2978     assert(used_bytes(i) == used_in_use_bytes,
2979            "used_bytes(%u) " SIZE_FORMAT
2980            " used_bytes_slow(%u)" SIZE_FORMAT,
2981            i, used_bytes(i), i, used_in_use_bytes);
2982   }
2983 #endif
2984 }
2985 
2986 void MetaspaceAux::verify_metrics() {
2987   verify_capacity();
2988   verify_used();
2989 }
2990 
2991 
2992 // Metaspace methods
2993 
2994 size_t Metaspace::_first_chunk_word_size = 0;
2995 size_t Metaspace::_first_class_chunk_word_size = 0;
2996 
2997 size_t Metaspace::_commit_alignment = 0;
2998 size_t Metaspace::_reserve_alignment = 0;
2999 
3000 Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
3001   initialize(lock, type);
3002 }
3003 
3004 Metaspace::~Metaspace() {
3005   delete _vsm;
3006   if (using_class_space()) {
3007     delete _class_vsm;
3008   }
3009 }
3010 
3011 VirtualSpaceList* Metaspace::_space_list = NULL;
3012 VirtualSpaceList* Metaspace::_class_space_list = NULL;
3013 
3014 ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
3015 ChunkManager* Metaspace::_chunk_manager_class = NULL;
3016 
3017 #define VIRTUALSPACEMULTIPLIER 2
3018 
3019 #ifdef _LP64
3020 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
3021 
3022 void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
3023   // Figure out the narrow_klass_base and the narrow_klass_shift.  The
3024   // narrow_klass_base is the lower of the metaspace base and the cds base
3025   // (if cds is enabled).  The narrow_klass_shift depends on the distance
3026   // between the lower base and higher address.
3027   address lower_base;
3028   address higher_address;
3029 #if INCLUDE_CDS
3030   if (UseSharedSpaces) {
3031     higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3032                           (address)(metaspace_base + compressed_class_space_size()));
3033     lower_base = MIN2(metaspace_base, cds_base);
3034   } else
3035 #endif
3036   {
3037     higher_address = metaspace_base + compressed_class_space_size();
3038     lower_base = metaspace_base;
3039 
3040     uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
3041     // If compressed class space fits in lower 32G, we don't need a base.
3042     if (higher_address <= (address)klass_encoding_max) {
3043       lower_base = 0; // Effectively lower base is zero.
3044     }
3045   }
3046 
3047   Universe::set_narrow_klass_base(lower_base);
3048 
3049   if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
3050     Universe::set_narrow_klass_shift(0);
3051   } else {
3052     assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
3053     Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
3054   }
3055 }
3056 
3057 #if INCLUDE_CDS
3058 // Return TRUE if the specified metaspace_base and cds_base are close enough
3059 // to work with compressed klass pointers.
3060 bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
3061   assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
3062   assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3063   address lower_base = MIN2((address)metaspace_base, cds_base);
3064   address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3065                                 (address)(metaspace_base + compressed_class_space_size()));
3066   return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
3067 }
3068 #endif
3069 
3070 // Try to allocate the metaspace at the requested addr.
3071 void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
3072   assert(using_class_space(), "called improperly");
3073   assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3074   assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
3075          "Metaspace size is too big");
3076   assert_is_ptr_aligned(requested_addr, _reserve_alignment);
3077   assert_is_ptr_aligned(cds_base, _reserve_alignment);
3078   assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
3079 
3080   // Don't use large pages for the class space.
3081   bool large_pages = false;
3082 
3083 #if !(defined(AARCH64) || defined(AIX))
3084   ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
3085                                              _reserve_alignment,
3086                                              large_pages,
3087                                              requested_addr);
3088 #else // AARCH64
3089   ReservedSpace metaspace_rs;
3090 
3091   // Our compressed klass pointers may fit nicely into the lower 32
3092   // bits.
3093   if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) {
3094     metaspace_rs = ReservedSpace(compressed_class_space_size(),
3095                                  _reserve_alignment,
3096                                  large_pages,
3097                                  requested_addr);
3098   }
3099 
3100   if (! metaspace_rs.is_reserved()) {
3101     // Aarch64: Try to align metaspace so that we can decode a compressed
3102     // klass with a single MOVK instruction.  We can do this iff the
3103     // compressed class base is a multiple of 4G.
3104     // Aix: Search for a place where we can find memory. If we need to load
3105     // the base, 4G alignment is helpful, too.
3106     size_t increment = AARCH64_ONLY(4*)G;
3107     for (char *a = (char*)align_ptr_up(requested_addr, increment);
3108          a < (char*)(1024*G);
3109          a += increment) {
3110       if (a == (char *)(32*G)) {
3111         // Go faster from here on. Zero-based is no longer possible.
3112         increment = 4*G;
3113       }
3114 
3115 #if INCLUDE_CDS
3116       if (UseSharedSpaces
3117           && ! can_use_cds_with_metaspace_addr(a, cds_base)) {
3118         // We failed to find an aligned base that will reach.  Fall
3119         // back to using our requested addr.
3120         metaspace_rs = ReservedSpace(compressed_class_space_size(),
3121                                      _reserve_alignment,
3122                                      large_pages,
3123                                      requested_addr);
3124         break;
3125       }
3126 #endif
3127 
3128       metaspace_rs = ReservedSpace(compressed_class_space_size(),
3129                                    _reserve_alignment,
3130                                    large_pages,
3131                                    a);
3132       if (metaspace_rs.is_reserved())
3133         break;
3134     }
3135   }
3136 
3137 #endif // AARCH64
3138 
3139   if (!metaspace_rs.is_reserved()) {
3140 #if INCLUDE_CDS
3141     if (UseSharedSpaces) {
3142       size_t increment = align_size_up(1*G, _reserve_alignment);
3143 
3144       // Keep trying to allocate the metaspace, increasing the requested_addr
3145       // by 1GB each time, until we reach an address that will no longer allow
3146       // use of CDS with compressed klass pointers.
3147       char *addr = requested_addr;
3148       while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3149              can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3150         addr = addr + increment;
3151         metaspace_rs = ReservedSpace(compressed_class_space_size(),
3152                                      _reserve_alignment, large_pages, addr);
3153       }
3154     }
3155 #endif
3156     // If no successful allocation then try to allocate the space anywhere.  If
3157     // that fails then OOM doom.  At this point we cannot try allocating the
3158     // metaspace as if UseCompressedClassPointers is off because too much
3159     // initialization has happened that depends on UseCompressedClassPointers.
3160     // So, UseCompressedClassPointers cannot be turned off at this point.
3161     if (!metaspace_rs.is_reserved()) {
3162       metaspace_rs = ReservedSpace(compressed_class_space_size(),
3163                                    _reserve_alignment, large_pages);
3164       if (!metaspace_rs.is_reserved()) {
3165         vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes",
3166                                               compressed_class_space_size()));
3167       }
3168     }
3169   }
3170 
3171   // If we got here then the metaspace got allocated.
3172   MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3173 
3174 #if INCLUDE_CDS
3175   // Verify that we can use shared spaces.  Otherwise, turn off CDS.
3176   if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3177     FileMapInfo::stop_sharing_and_unmap(
3178         "Could not allocate metaspace at a compatible address");
3179   }
3180 #endif
3181   set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3182                                   UseSharedSpaces ? (address)cds_base : 0);
3183 
3184   initialize_class_space(metaspace_rs);
3185 
3186   if (log_is_enabled(Trace, gc, metaspace)) {
3187     Log(gc, metaspace) log;
3188     ResourceMark rm;
3189     print_compressed_class_space(log.trace_stream(), requested_addr);
3190   }
3191 }
3192 
3193 void Metaspace::print_compressed_class_space(outputStream* st, const char* requested_addr) {
3194   st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d",
3195                p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift());
3196   if (_class_space_list != NULL) {
3197     address base = (address)_class_space_list->current_virtual_space()->bottom();
3198     st->print("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT,
3199                  compressed_class_space_size(), p2i(base));
3200     if (requested_addr != 0) {
3201       st->print(" Req Addr: " PTR_FORMAT, p2i(requested_addr));
3202     }
3203     st->cr();
3204   }
3205 }
3206 
3207 // For UseCompressedClassPointers the class space is reserved above the top of
3208 // the Java heap.  The argument passed in is at the base of the compressed space.
3209 void Metaspace::initialize_class_space(ReservedSpace rs) {
3210   // The reserved space size may be bigger because of alignment, esp with UseLargePages
3211   assert(rs.size() >= CompressedClassSpaceSize,
3212          SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize);
3213   assert(using_class_space(), "Must be using class space");
3214   _class_space_list = new VirtualSpaceList(rs);
3215   _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3216 
3217   if (!_class_space_list->initialization_succeeded()) {
3218     vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3219   }
3220 }
3221 
3222 #endif
3223 
3224 void Metaspace::ergo_initialize() {
3225   if (DumpSharedSpaces) {
3226     // Using large pages when dumping the shared archive is currently not implemented.
3227     FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3228   }
3229 
3230   size_t page_size = os::vm_page_size();
3231   if (UseLargePages && UseLargePagesInMetaspace) {
3232     page_size = os::large_page_size();
3233   }
3234 
3235   _commit_alignment  = page_size;
3236   _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3237 
3238   // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3239   // override if MaxMetaspaceSize was set on the command line or not.
3240   // This information is needed later to conform to the specification of the
3241   // java.lang.management.MemoryUsage API.
3242   //
3243   // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3244   // globals.hpp to the aligned value, but this is not possible, since the
3245   // alignment depends on other flags being parsed.
3246   MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3247 
3248   if (MetaspaceSize > MaxMetaspaceSize) {
3249     MetaspaceSize = MaxMetaspaceSize;
3250   }
3251 
3252   MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3253 
3254   assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3255 
3256   MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3257   MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3258 
3259   CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3260   set_compressed_class_space_size(CompressedClassSpaceSize);
3261 }
3262 
3263 void Metaspace::global_initialize() {
3264   MetaspaceGC::initialize();
3265 
3266   // Initialize the alignment for shared spaces.
3267   int max_alignment = os::vm_allocation_granularity();
3268   size_t cds_total = 0;
3269 
3270   MetaspaceShared::set_max_alignment(max_alignment);
3271 
3272   if (DumpSharedSpaces) {
3273 #if INCLUDE_CDS
3274     MetaspaceShared::estimate_regions_size();
3275 
3276     SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3277     SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3278     SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
3279     SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3280 
3281     // Initialize with the sum of the shared space sizes.  The read-only
3282     // and read write metaspace chunks will be allocated out of this and the
3283     // remainder is the misc code and data chunks.
3284     cds_total = FileMapInfo::shared_spaces_size();
3285     cds_total = align_size_up(cds_total, _reserve_alignment);
3286     _space_list = new VirtualSpaceList(cds_total/wordSize);
3287     _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3288 
3289     if (!_space_list->initialization_succeeded()) {
3290       vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3291     }
3292 
3293 #ifdef _LP64
3294     if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3295       vm_exit_during_initialization("Unable to dump shared archive.",
3296           err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3297                   SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3298                   "klass limit: " UINT64_FORMAT, cds_total, compressed_class_space_size(),
3299                   cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3300     }
3301 
3302     // Set the compressed klass pointer base so that decoding of these pointers works
3303     // properly when creating the shared archive.
3304     assert(UseCompressedOops && UseCompressedClassPointers,
3305       "UseCompressedOops and UseCompressedClassPointers must be set");
3306     Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3307     log_develop_trace(gc, metaspace)("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3308                                      p2i(_space_list->current_virtual_space()->bottom()));
3309 
3310     Universe::set_narrow_klass_shift(0);
3311 #endif // _LP64
3312 #endif // INCLUDE_CDS
3313   } else {
3314 #if INCLUDE_CDS
3315     if (UseSharedSpaces) {
3316       // If using shared space, open the file that contains the shared space
3317       // and map in the memory before initializing the rest of metaspace (so
3318       // the addresses don't conflict)
3319       address cds_address = NULL;
3320       FileMapInfo* mapinfo = new FileMapInfo();
3321 
3322       // Open the shared archive file, read and validate the header. If
3323       // initialization fails, shared spaces [UseSharedSpaces] are
3324       // disabled and the file is closed.
3325       // Map in spaces now also
3326       if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3327         cds_total = FileMapInfo::shared_spaces_size();
3328         cds_address = (address)mapinfo->header()->region_addr(0);
3329 #ifdef _LP64
3330         if (using_class_space()) {
3331           char* cds_end = (char*)(cds_address + cds_total);
3332           cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
3333           // If UseCompressedClassPointers is set then allocate the metaspace area
3334           // above the heap and above the CDS area (if it exists).
3335           allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3336           // Map the shared string space after compressed pointers
3337           // because it relies on compressed class pointers setting to work
3338           mapinfo->map_string_regions();
3339         }
3340 #endif // _LP64
3341       } else {
3342         assert(!mapinfo->is_open() && !UseSharedSpaces,
3343                "archive file not closed or shared spaces not disabled.");
3344       }
3345     }
3346 #endif // INCLUDE_CDS
3347 
3348 #ifdef _LP64
3349     if (!UseSharedSpaces && using_class_space()) {
3350       char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3351       allocate_metaspace_compressed_klass_ptrs(base, 0);
3352     }
3353 #endif // _LP64
3354 
3355     // Initialize these before initializing the VirtualSpaceList
3356     _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3357     _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3358     // Make the first class chunk bigger than a medium chunk so it's not put
3359     // on the medium chunk list.   The next chunk will be small and progress
3360     // from there.  This size calculated by -version.
3361     _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3362                                        (CompressedClassSpaceSize/BytesPerWord)*2);
3363     _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3364     // Arbitrarily set the initial virtual space to a multiple
3365     // of the boot class loader size.
3366     size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3367     word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());
3368 
3369     // Initialize the list of virtual spaces.
3370     _space_list = new VirtualSpaceList(word_size);
3371     _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3372 
3373     if (!_space_list->initialization_succeeded()) {
3374       vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3375     }
3376   }
3377 
3378   _tracer = new MetaspaceTracer();
3379 }
3380 
3381 void Metaspace::post_initialize() {
3382   MetaspaceGC::post_initialize();
3383 }
3384 
3385 Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
3386                                                size_t chunk_word_size,
3387                                                size_t chunk_bunch) {
3388   // Get a chunk from the chunk freelist
3389   Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3390   if (chunk != NULL) {
3391     return chunk;
3392   }
3393 
3394   return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3395 }
3396 
3397 void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3398 
3399   assert(space_list() != NULL,
3400     "Metadata VirtualSpaceList has not been initialized");
3401   assert(chunk_manager_metadata() != NULL,
3402     "Metadata ChunkManager has not been initialized");
3403 
3404   _vsm = new SpaceManager(NonClassType, lock);
3405   if (_vsm == NULL) {
3406     return;
3407   }
3408   size_t word_size;
3409   size_t class_word_size;
3410   vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3411 
3412   if (using_class_space()) {
3413   assert(class_space_list() != NULL,
3414     "Class VirtualSpaceList has not been initialized");
3415   assert(chunk_manager_class() != NULL,
3416     "Class ChunkManager has not been initialized");
3417 
3418     // Allocate SpaceManager for classes.
3419     _class_vsm = new SpaceManager(ClassType, lock);
3420     if (_class_vsm == NULL) {
3421       return;
3422     }
3423   }
3424 
3425   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3426 
3427   // Allocate chunk for metadata objects
3428   Metachunk* new_chunk = get_initialization_chunk(NonClassType,
3429                                                   word_size,
3430                                                   vsm()->medium_chunk_bunch());
3431   // For dumping shared archive, report error if allocation has failed.
3432   if (DumpSharedSpaces && new_chunk == NULL) {
3433     report_insufficient_metaspace(MetaspaceAux::committed_bytes() + word_size * BytesPerWord);
3434   }
3435   assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
3436   if (new_chunk != NULL) {
3437     // Add to this manager's list of chunks in use and current_chunk().
3438     vsm()->add_chunk(new_chunk, true);
3439   }
3440 
3441   // Allocate chunk for class metadata objects
3442   if (using_class_space()) {
3443     Metachunk* class_chunk = get_initialization_chunk(ClassType,
3444                                                       class_word_size,
3445                                                       class_vsm()->medium_chunk_bunch());
3446     if (class_chunk != NULL) {
3447       class_vsm()->add_chunk(class_chunk, true);
3448     } else {
3449       // For dumping shared archive, report error if allocation has failed.
3450       if (DumpSharedSpaces) {
3451         report_insufficient_metaspace(MetaspaceAux::committed_bytes() + class_word_size * BytesPerWord);
3452       }
3453     }
3454   }
3455 
3456   _alloc_record_head = NULL;
3457   _alloc_record_tail = NULL;
3458 }
3459 
3460 size_t Metaspace::align_word_size_up(size_t word_size) {
3461   size_t byte_size = word_size * wordSize;
3462   return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3463 }
3464 
3465 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3466   // DumpSharedSpaces doesn't use class metadata area (yet)
3467   // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3468   if (is_class_space_allocation(mdtype)) {
3469     return  class_vsm()->allocate(word_size);
3470   } else {
3471     return  vsm()->allocate(word_size);
3472   }
3473 }
3474 
3475 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3476   size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3477   assert(delta_bytes > 0, "Must be");
3478 
3479   size_t before = 0;
3480   size_t after = 0;
3481   MetaWord* res;
3482   bool incremented;
3483 
3484   // Each thread increments the HWM at most once. Even if the thread fails to increment
3485   // the HWM, an allocation is still attempted. This is because another thread must then
3486   // have incremented the HWM and therefore the allocation might still succeed.
3487   do {
3488     incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
3489     res = allocate(word_size, mdtype);
3490   } while (!incremented && res == NULL);
3491 
3492   if (incremented) {
3493     tracer()->report_gc_threshold(before, after,
3494                                   MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3495     log_trace(gc, metaspace)("Increase capacity to GC from " SIZE_FORMAT " to " SIZE_FORMAT, before, after);
3496   }
3497 
3498   return res;
3499 }
3500 
3501 // Space allocated in the Metaspace.  This may
3502 // be across several metadata virtual spaces.
3503 char* Metaspace::bottom() const {
3504   assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3505   return (char*)vsm()->current_chunk()->bottom();
3506 }
3507 
3508 size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3509   if (mdtype == ClassType) {
3510     return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3511   } else {
3512     return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
3513   }
3514 }
3515 
3516 size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3517   if (mdtype == ClassType) {
3518     return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3519   } else {
3520     return vsm()->sum_free_in_chunks_in_use();
3521   }
3522 }
3523 
3524 // Space capacity in the Metaspace.  It includes
3525 // space in the list of chunks from which allocations
3526 // have been made. Don't include space in the global freelist and
3527 // in the space available in the dictionary which
3528 // is already counted in some chunk.
3529 size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3530   if (mdtype == ClassType) {
3531     return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3532   } else {
3533     return vsm()->sum_capacity_in_chunks_in_use();
3534   }
3535 }
3536 
3537 size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3538   return used_words_slow(mdtype) * BytesPerWord;
3539 }
3540 
3541 size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3542   return capacity_words_slow(mdtype) * BytesPerWord;
3543 }
3544 
3545 size_t Metaspace::allocated_blocks_bytes() const {
3546   return vsm()->allocated_blocks_bytes() +
3547       (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0);
3548 }
3549 
3550 size_t Metaspace::allocated_chunks_bytes() const {
3551   return vsm()->allocated_chunks_bytes() +
3552       (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0);
3553 }
3554 
3555 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3556   assert(!SafepointSynchronize::is_at_safepoint()
3557          || Thread::current()->is_VM_thread(), "should be the VM thread");
3558 
3559   if (DumpSharedSpaces && PrintSharedSpaces) {
3560     record_deallocation(ptr, vsm()->get_allocation_word_size(word_size));
3561   }
3562 
3563   MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3564 
3565   if (is_class && using_class_space()) {
3566     class_vsm()->deallocate(ptr, word_size);
3567   } else {
3568     vsm()->deallocate(ptr, word_size);
3569   }
3570 }
3571 
3572 
3573 MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3574                               bool read_only, MetaspaceObj::Type type, TRAPS) {
3575   if (HAS_PENDING_EXCEPTION) {
3576     assert(false, "Should not allocate with exception pending");
3577     return NULL;  // caller does a CHECK_NULL too
3578   }
3579 
3580   assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3581         "ClassLoaderData::the_null_class_loader_data() should have been used.");
3582 
3583   // Allocate in metaspaces without taking out a lock, because it deadlocks
3584   // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
3585   // to revisit this for application class data sharing.
3586   if (DumpSharedSpaces) {
3587     assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3588     Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3589     MetaWord* result = space->allocate(word_size, NonClassType);
3590     if (result == NULL) {
3591       report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3592     }
3593     if (PrintSharedSpaces) {
3594       space->record_allocation(result, type, space->vsm()->get_allocation_word_size(word_size));
3595     }
3596 
3597     // Zero initialize.
3598     Copy::fill_to_words((HeapWord*)result, word_size, 0);
3599 
3600     return result;
3601   }
3602 
3603   MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3604 
3605   // Try to allocate metadata.
3606   MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3607 
3608   if (result == NULL) {
3609     tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3610 
3611     // Allocation failed.
3612     if (is_init_completed()) {
3613       // Only start a GC if the bootstrapping has completed.
3614 
3615       // Try to clean out some memory and retry.
3616       result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3617           loader_data, word_size, mdtype);
3618     }
3619   }
3620 
3621   if (result == NULL) {
3622     SpaceManager* sm;
3623     if (is_class_space_allocation(mdtype)) {
3624       sm = loader_data->metaspace_non_null()->class_vsm();
3625     } else {
3626       sm = loader_data->metaspace_non_null()->vsm();
3627     }
3628 
3629     result = sm->get_small_chunk_and_allocate(word_size);
3630 
3631     if (result == NULL) {
3632       report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3633     }
3634   }
3635 
3636   // Zero initialize.
3637   Copy::fill_to_words((HeapWord*)result, word_size, 0);
3638 
3639   return result;
3640 }
3641 
3642 size_t Metaspace::class_chunk_size(size_t word_size) {
3643   assert(using_class_space(), "Has to use class space");
3644   return class_vsm()->calc_chunk_size(word_size);
3645 }
3646 
3647 void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3648   tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3649 
3650   // If result is still null, we are out of memory.
3651   Log(gc, metaspace, freelist) log;
3652   if (log.is_info()) {
3653     log.info("Metaspace (%s) allocation failed for size " SIZE_FORMAT,
3654              is_class_space_allocation(mdtype) ? "class" : "data", word_size);
3655     ResourceMark rm;
3656     outputStream* out = log.info_stream();
3657     if (loader_data->metaspace_or_null() != NULL) {
3658       loader_data->dump(out);
3659     }
3660     MetaspaceAux::dump(out);
3661   }
3662 
3663   bool out_of_compressed_class_space = false;
3664   if (is_class_space_allocation(mdtype)) {
3665     Metaspace* metaspace = loader_data->metaspace_non_null();
3666     out_of_compressed_class_space =
3667       MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3668       (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3669       CompressedClassSpaceSize;
3670   }
3671 
3672   // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3673   const char* space_string = out_of_compressed_class_space ?
3674     "Compressed class space" : "Metaspace";
3675 
3676   report_java_out_of_memory(space_string);
3677 
3678   if (JvmtiExport::should_post_resource_exhausted()) {
3679     JvmtiExport::post_resource_exhausted(
3680         JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3681         space_string);
3682   }
3683 
3684   if (!is_init_completed()) {
3685     vm_exit_during_initialization("OutOfMemoryError", space_string);
3686   }
3687 
3688   if (out_of_compressed_class_space) {
3689     THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3690   } else {
3691     THROW_OOP(Universe::out_of_memory_error_metaspace());
3692   }
3693 }
3694 
3695 const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3696   switch (mdtype) {
3697     case Metaspace::ClassType: return "Class";
3698     case Metaspace::NonClassType: return "Metadata";
3699     default:
3700       assert(false, "Got bad mdtype: %d", (int) mdtype);
3701       return NULL;
3702   }
3703 }
3704 
3705 void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3706   assert(DumpSharedSpaces, "sanity");
3707 
3708   int byte_size = (int)word_size * wordSize;
3709   AllocRecord *rec = new AllocRecord((address)ptr, type, byte_size);
3710 
3711   if (_alloc_record_head == NULL) {
3712     _alloc_record_head = _alloc_record_tail = rec;
3713   } else if (_alloc_record_tail->_ptr + _alloc_record_tail->_byte_size == (address)ptr) {
3714     _alloc_record_tail->_next = rec;
3715     _alloc_record_tail = rec;
3716   } else {
3717     // slow linear search, but this doesn't happen that often, and only when dumping
3718     for (AllocRecord *old = _alloc_record_head; old; old = old->_next) {
3719       if (old->_ptr == ptr) {
3720         assert(old->_type == MetaspaceObj::DeallocatedType, "sanity");
3721         int remain_bytes = old->_byte_size - byte_size;
3722         assert(remain_bytes >= 0, "sanity");
3723         old->_type = type;
3724 
3725         if (remain_bytes == 0) {
3726           delete(rec);
3727         } else {
3728           address remain_ptr = address(ptr) + byte_size;
3729           rec->_ptr = remain_ptr;
3730           rec->_byte_size = remain_bytes;
3731           rec->_type = MetaspaceObj::DeallocatedType;
3732           rec->_next = old->_next;
3733           old->_byte_size = byte_size;
3734           old->_next = rec;
3735         }
3736         return;
3737       }
3738     }
3739     assert(0, "reallocating a freed pointer that was not recorded");
3740   }
3741 }
3742 
3743 void Metaspace::record_deallocation(void* ptr, size_t word_size) {
3744   assert(DumpSharedSpaces, "sanity");
3745 
3746   for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3747     if (rec->_ptr == ptr) {
3748       assert(rec->_byte_size == (int)word_size * wordSize, "sanity");
3749       rec->_type = MetaspaceObj::DeallocatedType;
3750       return;
3751     }
3752   }
3753 
3754   assert(0, "deallocating a pointer that was not recorded");
3755 }
3756 
3757 void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3758   assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3759 
3760   address last_addr = (address)bottom();
3761 
3762   for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3763     address ptr = rec->_ptr;
3764     if (last_addr < ptr) {
3765       closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3766     }
3767     closure->doit(ptr, rec->_type, rec->_byte_size);
3768     last_addr = ptr + rec->_byte_size;
3769   }
3770 
3771   address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3772   if (last_addr < top) {
3773     closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3774   }
3775 }
3776 
3777 void Metaspace::purge(MetadataType mdtype) {
3778   get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3779 }
3780 
3781 void Metaspace::purge() {
3782   MutexLockerEx cl(SpaceManager::expand_lock(),
3783                    Mutex::_no_safepoint_check_flag);
3784   purge(NonClassType);
3785   if (using_class_space()) {
3786     purge(ClassType);
3787   }
3788 }
3789 
3790 void Metaspace::print_on(outputStream* out) const {
3791   // Print both class virtual space counts and metaspace.
3792   if (Verbose) {
3793     vsm()->print_on(out);
3794     if (using_class_space()) {
3795       class_vsm()->print_on(out);
3796     }
3797   }
3798 }
3799 
3800 bool Metaspace::contains(const void* ptr) {
3801   if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3802     return true;
3803   }
3804 
3805   if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3806      return true;
3807   }
3808 
3809   return get_space_list(NonClassType)->contains(ptr);
3810 }
3811 
3812 void Metaspace::verify() {
3813   vsm()->verify();
3814   if (using_class_space()) {
3815     class_vsm()->verify();
3816   }
3817 }
3818 
3819 void Metaspace::dump(outputStream* const out) const {
3820   out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm()));
3821   vsm()->dump(out);
3822   if (using_class_space()) {
3823     out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm()));
3824     class_vsm()->dump(out);
3825   }
3826 }
3827 
3828 /////////////// Unit tests ///////////////
3829 
3830 #ifndef PRODUCT
3831 
3832 class TestMetaspaceAuxTest : AllStatic {
3833  public:
3834   static void test_reserved() {
3835     size_t reserved = MetaspaceAux::reserved_bytes();
3836 
3837     assert(reserved > 0, "assert");
3838 
3839     size_t committed  = MetaspaceAux::committed_bytes();
3840     assert(committed <= reserved, "assert");
3841 
3842     size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3843     assert(reserved_metadata > 0, "assert");
3844     assert(reserved_metadata <= reserved, "assert");
3845 
3846     if (UseCompressedClassPointers) {
3847       size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3848       assert(reserved_class > 0, "assert");
3849       assert(reserved_class < reserved, "assert");
3850     }
3851   }
3852 
3853   static void test_committed() {
3854     size_t committed = MetaspaceAux::committed_bytes();
3855 
3856     assert(committed > 0, "assert");
3857 
3858     size_t reserved  = MetaspaceAux::reserved_bytes();
3859     assert(committed <= reserved, "assert");
3860 
3861     size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3862     assert(committed_metadata > 0, "assert");
3863     assert(committed_metadata <= committed, "assert");
3864 
3865     if (UseCompressedClassPointers) {
3866       size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3867       assert(committed_class > 0, "assert");
3868       assert(committed_class < committed, "assert");
3869     }
3870   }
3871 
3872   static void test_virtual_space_list_large_chunk() {
3873     VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3874     MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3875     // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3876     // vm_allocation_granularity aligned on Windows.
3877     size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3878     large_size += (os::vm_page_size()/BytesPerWord);
3879     vs_list->get_new_chunk(large_size, large_size, 0);
3880   }
3881 
3882   static void test() {
3883     test_reserved();
3884     test_committed();
3885     test_virtual_space_list_large_chunk();
3886   }
3887 };
3888 
3889 void TestMetaspaceAux_test() {
3890   TestMetaspaceAuxTest::test();
3891 }
3892 
3893 class TestVirtualSpaceNodeTest {
3894   static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3895                                           size_t& num_small_chunks,
3896                                           size_t& num_specialized_chunks) {
3897     num_medium_chunks = words_left / MediumChunk;
3898     words_left = words_left % MediumChunk;
3899 
3900     num_small_chunks = words_left / SmallChunk;
3901     words_left = words_left % SmallChunk;
3902     // how many specialized chunks can we get?
3903     num_specialized_chunks = words_left / SpecializedChunk;
3904     assert(words_left % SpecializedChunk == 0, "should be nothing left");
3905   }
3906 
3907  public:
3908   static void test() {
3909     MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3910     const size_t vsn_test_size_words = MediumChunk  * 4;
3911     const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3912 
3913     // The chunk sizes must be multiples of eachother, or this will fail
3914     STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3915     STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3916 
3917     { // No committed memory in VSN
3918       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3919       VirtualSpaceNode vsn(vsn_test_size_bytes);
3920       vsn.initialize();
3921       vsn.retire(&cm);
3922       assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3923     }
3924 
3925     { // All of VSN is committed, half is used by chunks
3926       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3927       VirtualSpaceNode vsn(vsn_test_size_bytes);
3928       vsn.initialize();
3929       vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3930       vsn.get_chunk_vs(MediumChunk);
3931       vsn.get_chunk_vs(MediumChunk);
3932       vsn.retire(&cm);
3933       assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3934       assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3935     }
3936 
3937     const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3938     // This doesn't work for systems with vm_page_size >= 16K.
3939     if (page_chunks < MediumChunk) {
3940       // 4 pages of VSN is committed, some is used by chunks
3941       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3942       VirtualSpaceNode vsn(vsn_test_size_bytes);
3943 
3944       vsn.initialize();
3945       vsn.expand_by(page_chunks, page_chunks);
3946       vsn.get_chunk_vs(SmallChunk);
3947       vsn.get_chunk_vs(SpecializedChunk);
3948       vsn.retire(&cm);
3949 
3950       // committed - used = words left to retire
3951       const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3952 
3953       size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3954       chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3955 
3956       assert(num_medium_chunks == 0, "should not get any medium chunks");
3957       assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3958       assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3959     }
3960 
3961     { // Half of VSN is committed, a humongous chunk is used
3962       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3963       VirtualSpaceNode vsn(vsn_test_size_bytes);
3964       vsn.initialize();
3965       vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3966       vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3967       vsn.retire(&cm);
3968 
3969       const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3970       size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3971       chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3972 
3973       assert(num_medium_chunks == 0, "should not get any medium chunks");
3974       assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3975       assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3976     }
3977 
3978   }
3979 
3980 #define assert_is_available_positive(word_size) \
3981   assert(vsn.is_available(word_size), \
3982          #word_size ": " PTR_FORMAT " bytes were not available in " \
3983          "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3984          (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3985 
3986 #define assert_is_available_negative(word_size) \
3987   assert(!vsn.is_available(word_size), \
3988          #word_size ": " PTR_FORMAT " bytes should not be available in " \
3989          "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3990          (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3991 
3992   static void test_is_available_positive() {
3993     // Reserve some memory.
3994     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3995     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3996 
3997     // Commit some memory.
3998     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3999     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
4000     assert(expanded, "Failed to commit");
4001 
4002     // Check that is_available accepts the committed size.
4003     assert_is_available_positive(commit_word_size);
4004 
4005     // Check that is_available accepts half the committed size.
4006     size_t expand_word_size = commit_word_size / 2;
4007     assert_is_available_positive(expand_word_size);
4008   }
4009 
4010   static void test_is_available_negative() {
4011     // Reserve some memory.
4012     VirtualSpaceNode vsn(os::vm_allocation_granularity());
4013     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
4014 
4015     // Commit some memory.
4016     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
4017     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
4018     assert(expanded, "Failed to commit");
4019 
4020     // Check that is_available doesn't accept a too large size.
4021     size_t two_times_commit_word_size = commit_word_size * 2;
4022     assert_is_available_negative(two_times_commit_word_size);
4023   }
4024 
4025   static void test_is_available_overflow() {
4026     // Reserve some memory.
4027     VirtualSpaceNode vsn(os::vm_allocation_granularity());
4028     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
4029 
4030     // Commit some memory.
4031     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
4032     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
4033     assert(expanded, "Failed to commit");
4034 
4035     // Calculate a size that will overflow the virtual space size.
4036     void* virtual_space_max = (void*)(uintptr_t)-1;
4037     size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
4038     size_t overflow_size = bottom_to_max + BytesPerWord;
4039     size_t overflow_word_size = overflow_size / BytesPerWord;
4040 
4041     // Check that is_available can handle the overflow.
4042     assert_is_available_negative(overflow_word_size);
4043   }
4044 
4045   static void test_is_available() {
4046     TestVirtualSpaceNodeTest::test_is_available_positive();
4047     TestVirtualSpaceNodeTest::test_is_available_negative();
4048     TestVirtualSpaceNodeTest::test_is_available_overflow();
4049   }
4050 };
4051 
4052 void TestVirtualSpaceNode_test() {
4053   TestVirtualSpaceNodeTest::test();
4054   TestVirtualSpaceNodeTest::test_is_available();
4055 }
4056 #endif