1 /*
   2  * Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
  26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
  27 
  28 #include "utilities/stack.hpp"
  29 
  30 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
  31                      size_t max_size):
  32   _seg_size(segment_size),
  33   _max_cache_size(max_cache_size),
  34   _max_size(adjust_max_size(max_size, segment_size))
  35 {
  36   assert(_max_size % _seg_size == 0, "not a multiple");
  37 }
  38 
  39 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
  40 {
  41   assert(seg_size > 0, "cannot be 0");
  42   assert(max_size >= seg_size || max_size == 0, "max_size too small");
  43   const size_t limit = max_uintx - (seg_size - 1);
  44   if (max_size == 0 || max_size > limit) {
  45     max_size = limit;
  46   }
  47   return (max_size + seg_size - 1) / seg_size * seg_size;
  48 }
  49 
  50 template <class E, MEMFLAGS F>
  51 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
  52   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
  53 {
  54   reset(true);
  55 }
  56 
  57 template <class E, MEMFLAGS F>
  58 void Stack<E, F>::push(E item)
  59 {
  60   assert(!is_full(), "pushing onto a full stack");
  61   if (this->_cur_seg_size == this->_seg_size) {
  62     push_segment();
  63   }
  64   this->_cur_seg[this->_cur_seg_size] = item;
  65   ++this->_cur_seg_size;
  66 }
  67 
  68 template <class E, MEMFLAGS F>
  69 E Stack<E, F>::pop()
  70 {
  71   assert(!is_empty(), "popping from an empty stack");
  72   if (this->_cur_seg_size == 1) {
  73     E tmp = _cur_seg[--this->_cur_seg_size];
  74     pop_segment();
  75     return tmp;
  76   }
  77   return this->_cur_seg[--this->_cur_seg_size];
  78 }
  79 
  80 template <class E, MEMFLAGS F>
  81 void Stack<E, F>::clear(bool clear_cache)
  82 {
  83   free_segments(_cur_seg);
  84   if (clear_cache) free_segments(_cache);
  85   reset(clear_cache);
  86 }
  87 
  88 template <class E, MEMFLAGS F>
  89 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
  90 {
  91   const size_t elem_sz = sizeof(E);
  92   const size_t ptr_sz = sizeof(E*);
  93   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
  94   if (elem_sz < ptr_sz) {
  95     return align_up(seg_size * elem_sz, ptr_sz) / elem_sz;
  96   }
  97   return seg_size;
  98 }
  99 
 100 template <class E, MEMFLAGS F>
 101 size_t Stack<E, F>::link_offset() const
 102 {
 103   return align_up(this->_seg_size * sizeof(E), sizeof(E*));
 104 }
 105 
 106 template <class E, MEMFLAGS F>
 107 size_t Stack<E, F>::segment_bytes() const
 108 {
 109   return link_offset() + sizeof(E*);
 110 }
 111 
 112 template <class E, MEMFLAGS F>
 113 E** Stack<E, F>::link_addr(E* seg) const
 114 {
 115   return (E**) ((char*)seg + link_offset());
 116 }
 117 
 118 template <class E, MEMFLAGS F>
 119 E* Stack<E, F>::get_link(E* seg) const
 120 {
 121   return *link_addr(seg);
 122 }
 123 
 124 template <class E, MEMFLAGS F>
 125 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
 126 {
 127   *link_addr(new_seg) = old_seg;
 128   return new_seg;
 129 }
 130 
 131 template <class E, MEMFLAGS F>
 132 E* Stack<E, F>::alloc(size_t bytes)
 133 {
 134   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
 135 }
 136 
 137 template <class E, MEMFLAGS F>
 138 void Stack<E, F>::free(E* addr, size_t bytes)
 139 {
 140   FREE_C_HEAP_ARRAY(char, (char*) addr);
 141 }
 142 
 143 // Stack is used by the GC code and in some hot paths a lot of the Stack
 144 // code gets inlined. This is generally good, but when too much code has
 145 // been inlined, no further inlining is allowed by GCC. Therefore we need
 146 // to prevent parts of the slow path in Stack to be inlined to allow other
 147 // code to be.
 148 template <class E, MEMFLAGS F>
 149 NOINLINE void Stack<E, F>::push_segment()
 150 {
 151   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
 152   E* next;
 153   if (this->_cache_size > 0) {
 154     // Use a cached segment.
 155     next = _cache;
 156     _cache = get_link(_cache);
 157     --this->_cache_size;
 158   } else {
 159     next = alloc(segment_bytes());
 160     DEBUG_ONLY(zap_segment(next, true);)
 161   }
 162   const bool at_empty_transition = is_empty();
 163   this->_cur_seg = set_link(next, _cur_seg);
 164   this->_cur_seg_size = 0;
 165   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
 166   DEBUG_ONLY(verify(at_empty_transition);)
 167 }
 168 
 169 template <class E, MEMFLAGS F>
 170 void Stack<E, F>::pop_segment()
 171 {
 172   assert(this->_cur_seg_size == 0, "current segment is not empty");
 173   E* const prev = get_link(_cur_seg);
 174   if (this->_cache_size < this->_max_cache_size) {
 175     // Add the current segment to the cache.
 176     DEBUG_ONLY(zap_segment(_cur_seg, false);)
 177     _cache = set_link(_cur_seg, _cache);
 178     ++this->_cache_size;
 179   } else {
 180     DEBUG_ONLY(zap_segment(_cur_seg, true);)
 181     free(_cur_seg, segment_bytes());
 182   }
 183   const bool at_empty_transition = prev == NULL;
 184   this->_cur_seg = prev;
 185   this->_cur_seg_size = this->_seg_size;
 186   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
 187   DEBUG_ONLY(verify(at_empty_transition);)
 188 }
 189 
 190 template <class E, MEMFLAGS F>
 191 void Stack<E, F>::free_segments(E* seg)
 192 {
 193   const size_t bytes = segment_bytes();
 194   while (seg != NULL) {
 195     E* const prev = get_link(seg);
 196     free(seg, bytes);
 197     seg = prev;
 198   }
 199 }
 200 
 201 template <class E, MEMFLAGS F>
 202 void Stack<E, F>::reset(bool reset_cache)
 203 {
 204   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
 205   this->_full_seg_size = 0;
 206   _cur_seg = NULL;
 207   if (reset_cache) {
 208     this->_cache_size = 0;
 209     _cache = NULL;
 210   }
 211 }
 212 
 213 #ifdef ASSERT
 214 template <class E, MEMFLAGS F>
 215 void Stack<E, F>::verify(bool at_empty_transition) const
 216 {
 217   assert(size() <= this->max_size(), "stack exceeded bounds");
 218   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
 219   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
 220 
 221   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
 222   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
 223   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
 224 
 225   if (is_empty()) {
 226     assert(this->_cur_seg_size == this->segment_size(), "sanity");
 227   }
 228 }
 229 
 230 template <class E, MEMFLAGS F>
 231 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
 232 {
 233   if (!ZapStackSegments) return;
 234   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
 235   uint32_t* cur = (uint32_t*)seg;
 236   const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
 237   while (cur < end) {
 238     *cur++ = 0xfadfaded;
 239   }
 240 }
 241 #endif
 242 
 243 template <class E, MEMFLAGS F>
 244 E* ResourceStack<E, F>::alloc(size_t bytes)
 245 {
 246   return (E*) resource_allocate_bytes(bytes);
 247 }
 248 
 249 template <class E, MEMFLAGS F>
 250 void ResourceStack<E, F>::free(E* addr, size_t bytes)
 251 {
 252   resource_free_bytes((char*) addr, bytes);
 253 }
 254 
 255 template <class E, MEMFLAGS F>
 256 void StackIterator<E, F>::sync()
 257 {
 258   _full_seg_size = _stack._full_seg_size;
 259   _cur_seg_size = _stack._cur_seg_size;
 260   _cur_seg = _stack._cur_seg;
 261 }
 262 
 263 template <class E, MEMFLAGS F>
 264 E* StackIterator<E, F>::next_addr()
 265 {
 266   assert(!is_empty(), "no items left");
 267   if (_cur_seg_size == 1) {
 268     E* addr = _cur_seg;
 269     _cur_seg = _stack.get_link(_cur_seg);
 270     _cur_seg_size = _stack.segment_size();
 271     _full_seg_size -= _stack.segment_size();
 272     return addr;
 273   }
 274   return _cur_seg + --_cur_seg_size;
 275 }
 276 
 277 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP