/* * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "classfile/systemDictionary.hpp" #include "gc/shared/collectedHeap.hpp" #include "interpreter/interpreter.hpp" #include "oops/arrayOop.hpp" #include "oops/markOop.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/os.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/align.hpp" void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) { const Register temp_reg = R12_scratch2; verify_oop(receiver); load_klass(temp_reg, receiver); if (TrapBasedICMissChecks) { trap_ic_miss_check(temp_reg, iCache); } else { Label L; cmpd(CCR0, temp_reg, iCache); beq(CCR0, L); //load_const_optimized(temp_reg, SharedRuntime::get_ic_miss_stub(), R0); calculate_address_from_global_toc(temp_reg, SharedRuntime::get_ic_miss_stub(), true, true, false); mtctr(temp_reg); bctr(); align(32, 12); bind(L); } } void C1_MacroAssembler::explicit_null_check(Register base) { Unimplemented(); } void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes) { // Avoid stack bang as first instruction. It may get overwritten by patch_verified_entry. const Register return_pc = R20; mflr(return_pc); // Make sure there is enough stack space for this method's activation. assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect"); generate_stack_overflow_check(bang_size_in_bytes); std(return_pc, _abi(lr), R1_SP); // SP->lr = return_pc push_frame(frame_size_in_bytes, R0); // SP -= frame_size_in_bytes } void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) { Unimplemented(); // Currently unused. //if (C1Breakpoint) illtrap(); //inline_cache_check(receiver, ic_klass); } void C1_MacroAssembler::verified_entry() { if (C1Breakpoint) illtrap(); // build frame } void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) { assert_different_registers(Rmark, Roop, Rbox, Rscratch); Label done, cas_failed, slow_int; // The following move must be the first instruction of emitted since debug // information may be generated for it. // Load object header. ld(Rmark, oopDesc::mark_offset_in_bytes(), Roop); verify_oop(Roop); // Save object being locked into the BasicObjectLock... std(Roop, BasicObjectLock::obj_offset_in_bytes(), Rbox); if (UseBiasedLocking) { biased_locking_enter(CCR0, Roop, Rmark, Rscratch, R0, done, &slow_int); } // ... and mark it unlocked. ori(Rmark, Rmark, markOopDesc::unlocked_value); // Save unlocked object header into the displaced header location on the stack. std(Rmark, BasicLock::displaced_header_offset_in_bytes(), Rbox); // Compare object markOop with Rmark and if equal exchange Rscratch with object markOop. assert(oopDesc::mark_offset_in_bytes() == 0, "cas must take a zero displacement"); cmpxchgd(/*flag=*/CCR0, /*current_value=*/Rscratch, /*compare_value=*/Rmark, /*exchange_value=*/Rbox, /*where=*/Roop/*+0==mark_offset_in_bytes*/, MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &cas_failed, /*check without membar and ldarx first*/true); // If compare/exchange succeeded we found an unlocked object and we now have locked it // hence we are done. b(done); bind(slow_int); b(slow_case); // far bind(cas_failed); // We did not find an unlocked object so see if this is a recursive case. sub(Rscratch, Rscratch, R1_SP); load_const_optimized(R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place)); and_(R0/*==0?*/, Rscratch, R0); std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), Rbox); bne(CCR0, slow_int); bind(done); } void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) { assert_different_registers(Rmark, Roop, Rbox); Label slow_int, done; Address mark_addr(Roop, oopDesc::mark_offset_in_bytes()); assert(mark_addr.disp() == 0, "cas must take a zero displacement"); if (UseBiasedLocking) { // Load the object out of the BasicObjectLock. ld(Roop, BasicObjectLock::obj_offset_in_bytes(), Rbox); verify_oop(Roop); biased_locking_exit(CCR0, Roop, R0, done); } // Test first it it is a fast recursive unlock. ld(Rmark, BasicLock::displaced_header_offset_in_bytes(), Rbox); cmpdi(CCR0, Rmark, 0); beq(CCR0, done); if (!UseBiasedLocking) { // Load object. ld(Roop, BasicObjectLock::obj_offset_in_bytes(), Rbox); verify_oop(Roop); } // Check if it is still a light weight lock, this is is true if we see // the stack address of the basicLock in the markOop of the object. cmpxchgd(/*flag=*/CCR0, /*current_value=*/R0, /*compare_value=*/Rbox, /*exchange_value=*/Rmark, /*where=*/Roop, MacroAssembler::MemBarRel, MacroAssembler::cmpxchgx_hint_release_lock(), noreg, &slow_int); b(done); bind(slow_int); b(slow_case); // far // Done bind(done); } void C1_MacroAssembler::try_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register, must be global register for incr_allocated_bytes Register t2, // temp register Label& slow_case // continuation point if fast allocation fails ) { if (UseTLAB) { tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); } else { eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); RegisterOrConstant size_in_bytes = var_size_in_bytes->is_valid() ? RegisterOrConstant(var_size_in_bytes) : RegisterOrConstant(con_size_in_bytes); incr_allocated_bytes(size_in_bytes, t1, t2); } } void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { assert_different_registers(obj, klass, len, t1, t2); if (UseBiasedLocking && !len->is_valid()) { ld(t1, in_bytes(Klass::prototype_header_offset()), klass); } else { load_const_optimized(t1, (intx)markOopDesc::prototype()); } std(t1, oopDesc::mark_offset_in_bytes(), obj); store_klass(obj, klass); if (len->is_valid()) { stw(len, arrayOopDesc::length_offset_in_bytes(), obj); } else if (UseCompressedClassPointers) { // Otherwise length is in the class gap. store_klass_gap(obj); } } void C1_MacroAssembler::initialize_body(Register base, Register index) { assert_different_registers(base, index); srdi(index, index, LogBytesPerWord); clear_memory_doubleword(base, index); } void C1_MacroAssembler::initialize_body(Register obj, Register tmp1, Register tmp2, int obj_size_in_bytes, int hdr_size_in_bytes) { const int index = (obj_size_in_bytes - hdr_size_in_bytes) / HeapWordSize; // 2x unrolled loop is shorter with more than 9 HeapWords. if (index <= 9) { clear_memory_unrolled(obj, index, R0, hdr_size_in_bytes); } else { const Register base_ptr = tmp1, cnt_dwords = tmp2; addi(base_ptr, obj, hdr_size_in_bytes); // Compute address of first element. clear_memory_doubleword(base_ptr, cnt_dwords, R0, index); } } void C1_MacroAssembler::allocate_object( Register obj, // result: pointer to object after successful allocation Register t1, // temp register Register t2, // temp register Register t3, // temp register int hdr_size, // object header size in words int obj_size, // object size in words Register klass, // object klass Label& slow_case // continuation point if fast allocation fails ) { assert_different_registers(obj, t1, t2, t3, klass); // allocate space & initialize header if (!is_simm16(obj_size * wordSize)) { // Would need to use extra register to load // object size => go the slow case for now. b(slow_case); return; } try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case); initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2); } void C1_MacroAssembler::initialize_object( Register obj, // result: pointer to object after successful allocation Register klass, // object klass Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2 // temp register ) { const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); #ifdef ASSERT { lwz(t1, in_bytes(Klass::layout_helper_offset()), klass); if (var_size_in_bytes != noreg) { cmpw(CCR0, t1, var_size_in_bytes); } else { cmpwi(CCR0, t1, con_size_in_bytes); } asm_assert_eq("bad size in initialize_object", 0x753); } #endif // Initialize body. if (var_size_in_bytes != noreg) { // Use a loop. addi(t1, obj, hdr_size_in_bytes); // Compute address of first element. addi(t2, var_size_in_bytes, -hdr_size_in_bytes); // Compute size of body. initialize_body(t1, t2); } else if (con_size_in_bytes > hdr_size_in_bytes) { // Use a loop. initialize_body(obj, t1, t2, con_size_in_bytes, hdr_size_in_bytes); } if (CURRENT_ENV->dtrace_alloc_probes()) { Unimplemented(); // assert(obj == O0, "must be"); // call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), // relocInfo::runtime_call_type); } verify_oop(obj); } void C1_MacroAssembler::allocate_array( Register obj, // result: pointer to array after successful allocation Register len, // array length Register t1, // temp register Register t2, // temp register Register t3, // temp register int hdr_size, // object header size in words int elt_size, // element size in bytes Register klass, // object klass Label& slow_case // continuation point if fast allocation fails ) { assert_different_registers(obj, len, t1, t2, t3, klass); // Determine alignment mask. assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); int log2_elt_size = exact_log2(elt_size); // Check for negative or excessive length. size_t max_length = max_array_allocation_length >> log2_elt_size; if (UseTLAB) { size_t max_tlab = align_up(ThreadLocalAllocBuffer::max_size() >> log2_elt_size, 64*K); if (max_tlab < max_length) { max_length = max_tlab; } } load_const_optimized(t1, max_length); cmpld(CCR0, len, t1); bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case); // compute array size // note: If 0 <= len <= max_length, len*elt_size + header + alignment is // smaller or equal to the largest integer; also, since top is always // aligned, we can do the alignment here instead of at the end address // computation. const Register arr_size = t1; Register arr_len_in_bytes = len; if (elt_size != 1) { sldi(t1, len, log2_elt_size); arr_len_in_bytes = t1; } addi(arr_size, arr_len_in_bytes, hdr_size * wordSize + MinObjAlignmentInBytesMask); // Add space for header & alignment. clrrdi(arr_size, arr_size, LogMinObjAlignmentInBytes); // Align array size. // Allocate space & initialize header. if (UseTLAB) { tlab_allocate(obj, arr_size, 0, t2, slow_case); } else { eden_allocate(obj, arr_size, 0, t2, t3, slow_case); } initialize_header(obj, klass, len, t2, t3); // Initialize body. const Register base = t2; const Register index = t3; addi(base, obj, hdr_size * wordSize); // compute address of first element addi(index, arr_size, -(hdr_size * wordSize)); // compute index = number of bytes to clear initialize_body(base, index); if (CURRENT_ENV->dtrace_alloc_probes()) { Unimplemented(); //assert(obj == O0, "must be"); //call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), // relocInfo::runtime_call_type); } verify_oop(obj); } #ifndef PRODUCT void C1_MacroAssembler::verify_stack_oop(int stack_offset) { verify_oop_addr((RegisterOrConstant)(stack_offset + STACK_BIAS), R1_SP, "broken oop in stack slot"); } void C1_MacroAssembler::verify_not_null_oop(Register r) { Label not_null; cmpdi(CCR0, r, 0); bne(CCR0, not_null); stop("non-null oop required"); bind(not_null); if (!VerifyOops) return; verify_oop(r); } #endif // PRODUCT void C1_MacroAssembler::null_check(Register r, Label* Lnull) { if (TrapBasedNullChecks) { // SIGTRAP based trap_null_check(r); } else { // explicit //const address exception_entry = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id); assert(Lnull != NULL, "must have Label for explicit check"); cmpdi(CCR0, r, 0); bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::equal), *Lnull); } } address C1_MacroAssembler::call_c_with_frame_resize(address dest, int frame_resize) { if (frame_resize) { resize_frame(-frame_resize, R0); } #if defined(ABI_ELFv2) address return_pc = call_c(dest, relocInfo::runtime_call_type); #else address return_pc = call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, dest), relocInfo::runtime_call_type); #endif if (frame_resize) { resize_frame(frame_resize, R0); } return return_pc; }