/* * Copyright (c) 2012, 2013 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "asm/assembler.hpp" #include "compiler/disassembler.hpp" #include "loadlib_aix.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "misc_aix.hpp" #include "porting_aix.hpp" #include "runtime/os.hpp" #include "runtime/thread.hpp" #include "utilities/align.hpp" #include "utilities/debug.hpp" #include #include #include #include ////////////////////////////////// // Provide implementation for dladdr based on LoadedLibraries pool and // traceback table scan // Search traceback table in stack, // return procedure name from trace back table. #define MAX_FUNC_SEARCH_LEN 0x10000 #define PTRDIFF_BYTES(p1,p2) (((ptrdiff_t)p1) - ((ptrdiff_t)p2)) // Typedefs for stackslots, stack pointers, pointers to op codes. typedef unsigned long stackslot_t; typedef stackslot_t* stackptr_t; typedef unsigned int* codeptr_t; // Unfortunately, the interface of dladdr makes the implementator // responsible for maintaining memory for function name/library // name. I guess this is because most OS's keep those values as part // of the mapped executable image ready to use. On AIX, this doesn't // work, so I have to keep the returned strings. For now, I do this in // a primitive string map. Should this turn out to be a performance // problem, a better hashmap has to be used. class fixed_strings { struct node : public CHeapObj { char* v; node* next; }; node* first; public: fixed_strings() : first(0) {} ~fixed_strings() { node* n = first; while (n) { node* p = n; n = n->next; os::free(p->v); delete p; } } char* intern(const char* s) { for (node* n = first; n; n = n->next) { if (strcmp(n->v, s) == 0) { return n->v; } } node* p = new node; p->v = os::strdup_check_oom(s); p->next = first; first = p; return p->v; } }; static fixed_strings dladdr_fixed_strings; bool AixSymbols::get_function_name ( address pc0, // [in] program counter char* p_name, size_t namelen, // [out] optional: function name ("" if not available) int* p_displacement, // [out] optional: displacement (-1 if not available) const struct tbtable** p_tb, // [out] optional: ptr to traceback table to get further // information (NULL if not available) bool demangle // [in] whether to demangle the name ) { struct tbtable* tb = 0; unsigned int searchcount = 0; // initialize output parameters if (p_name && namelen > 0) { *p_name = '\0'; } if (p_displacement) { *p_displacement = -1; } if (p_tb) { *p_tb = NULL; } codeptr_t pc = (codeptr_t)pc0; // weed out obvious bogus states if (pc < (codeptr_t)0x1000) { trcVerbose("invalid program counter"); return false; } // We see random but frequent crashes in this function since some months mainly on shutdown // (-XX:+DumpInfoAtExit). It appears the page we are reading is randomly disappearing while // we read it (?). // As the pc cannot be trusted to be anything sensible lets make all reads via SafeFetch. Also // bail if this is not a text address right now. if (!LoadedLibraries::find_for_text_address(pc, NULL)) { trcVerbose("not a text address"); return false; } // .. (Note that is_readable_pointer returns true if safefetch stubs are not there yet; // in that case I try reading the traceback table unsafe - I rather risk secondary crashes in // error files than not having a callstack.) #define CHECK_POINTER_READABLE(p) \ if (!MiscUtils::is_readable_pointer(p)) { \ trcVerbose("pc not readable"); \ return false; \ } codeptr_t pc2 = (codeptr_t) pc; // Make sure the pointer is word aligned. pc2 = (codeptr_t) align_up((char*)pc2, 4); CHECK_POINTER_READABLE(pc2) // Find start of traceback table. // (starts after code, is marked by word-aligned (32bit) zeros) while ((*pc2 != NULL) && (searchcount++ < MAX_FUNC_SEARCH_LEN)) { CHECK_POINTER_READABLE(pc2) pc2++; } if (*pc2 != 0) { trcVerbose("no traceback table found"); return false; } // // Set up addressability to the traceback table // tb = (struct tbtable*) (pc2 + 1); // Is this really a traceback table? No way to be sure but // some indicators we can check. if (tb->tb.lang >= 0xf && tb->tb.lang <= 0xfb) { // Language specifiers, go from 0 (C) to 14 (Objective C). // According to spec, 0xf-0xfa reserved, 0xfb-0xff reserved for ibm. trcVerbose("no traceback table found"); return false; } // Existence of fields in the tbtable extension are contingent upon // specific fields in the base table. Check for their existence so // that we can address the function name if it exists. pc2 = (codeptr_t) tb + sizeof(struct tbtable_short)/sizeof(int); if (tb->tb.fixedparms != 0 || tb->tb.floatparms != 0) pc2++; CHECK_POINTER_READABLE(pc2) if (tb->tb.has_tboff == TRUE) { // I want to know the displacement const unsigned int tb_offset = *pc2; codeptr_t start_of_procedure = (codeptr_t)(((char*)tb) - 4 - tb_offset); // (-4 to omit leading 0000) // Weed out the cases where we did find the wrong traceback table. if (pc < start_of_procedure) { trcVerbose("no traceback table found"); return false; } // return the displacement if (p_displacement) { (*p_displacement) = (int) PTRDIFF_BYTES(pc, start_of_procedure); } pc2++; } else { // return -1 for displacement if (p_displacement) { (*p_displacement) = -1; } } if (tb->tb.int_hndl == TRUE) pc2++; if (tb->tb.has_ctl == TRUE) pc2 += (*pc2) + 1; // don't care CHECK_POINTER_READABLE(pc2) // // return function name if it exists. // if (p_name && namelen > 0) { if (tb->tb.name_present) { // Copy name from text because it may not be zero terminated. const short l = MIN2(*((short*)pc2), namelen - 1); // Be very careful. int i = 0; char* const p = (char*)pc2 + sizeof(short); while (i < l && MiscUtils::is_readable_pointer(p + i)) { p_name[i] = p[i]; i++; } p_name[i] = '\0'; // If it is a C++ name, try and demangle it using the Demangle interface (see demangle.h). if (demangle) { char* rest; Name* const name = Demangle(p_name, rest); if (name) { const char* const demangled_name = name->Text(); if (demangled_name) { strncpy(p_name, demangled_name, namelen-1); p_name[namelen-1] = '\0'; } delete name; } } } else { strncpy(p_name, "", namelen-1); p_name[namelen-1] = '\0'; } } // Return traceback table, if user wants it. if (p_tb) { (*p_tb) = tb; } return true; } bool AixSymbols::get_module_name(address pc, char* p_name, size_t namelen) { if (p_name && namelen > 0) { p_name[0] = '\0'; loaded_module_t lm; if (LoadedLibraries::find_for_text_address(pc, &lm) != NULL) { strncpy(p_name, lm.shortname, namelen); p_name[namelen - 1] = '\0'; return true; } } return false; } // Special implementation of dladdr for Aix based on LoadedLibraries // Note: dladdr returns non-zero for ok, 0 for error! // Note: dladdr is not posix, but a non-standard GNU extension. So this tries to // fulfill the contract of dladdr on Linux (see http://linux.die.net/man/3/dladdr) // Note: addr may be both an AIX function descriptor or a real code pointer // to the entry of a function. extern "C" int dladdr(void* addr, Dl_info* info) { if (!addr) { return 0; } assert(info, ""); int rc = 0; const char* const ZEROSTRING = ""; // Always return a string, even if a "" one. Linux dladdr manpage // does not say anything about returning NULL info->dli_fname = ZEROSTRING; info->dli_sname = ZEROSTRING; info->dli_saddr = NULL; address p = (address) addr; loaded_module_t lm; bool found = false; enum { noclue, code, data } type = noclue; trcVerbose("dladdr(%p)...", p); // Note: input address may be a function. I accept both a pointer to // the entry of a function and a pointer to the function decriptor. // (see ppc64 ABI) found = LoadedLibraries::find_for_text_address(p, &lm); if (found) { type = code; } if (!found) { // Not a pointer into any text segment. Is it a function descriptor? const FunctionDescriptor* const pfd = (const FunctionDescriptor*) p; p = pfd->entry(); if (p) { found = LoadedLibraries::find_for_text_address(p, &lm); if (found) { type = code; } } } if (!found) { // Neither direct code pointer nor function descriptor. A data ptr? p = (address)addr; found = LoadedLibraries::find_for_data_address(p, &lm); if (found) { type = data; } } // If we did find the shared library this address belongs to (either // code or data segment) resolve library path and, if possible, the // symbol name. if (found) { // No need to intern the libpath, that one is already interned one layer below. info->dli_fname = lm.path; if (type == code) { // For code symbols resolve function name and displacement. Use // displacement to calc start of function. char funcname[256] = ""; int displacement = 0; if (AixSymbols::get_function_name(p, funcname, sizeof(funcname), &displacement, NULL, true)) { if (funcname[0] != '\0') { const char* const interned = dladdr_fixed_strings.intern(funcname); info->dli_sname = interned; trcVerbose("... function name: %s ...", interned); } // From the displacement calculate the start of the function. if (displacement != -1) { info->dli_saddr = p - displacement; } else { info->dli_saddr = p; } } else { // No traceback table found. Just assume the pointer is it. info->dli_saddr = p; } } else if (type == data) { // For data symbols. info->dli_saddr = p; } else { ShouldNotReachHere(); } rc = 1; // success: return 1 [sic] } // sanity checks. if (rc) { assert(info->dli_fname, ""); assert(info->dli_sname, ""); assert(info->dli_saddr, ""); } return rc; // error: return 0 [sic] } ///////////////////////////////////////////////////////////////////////////// // Native callstack dumping // Print the traceback table for one stack frame. static void print_tbtable (outputStream* st, const struct tbtable* p_tb) { if (p_tb == NULL) { st->print(""); return; } switch(p_tb->tb.lang) { case TB_C: st->print("C"); break; case TB_FORTRAN: st->print("FORTRAN"); break; case TB_PASCAL: st->print("PASCAL"); break; case TB_ADA: st->print("ADA"); break; case TB_PL1: st->print("PL1"); break; case TB_BASIC: st->print("BASIC"); break; case TB_LISP: st->print("LISP"); break; case TB_COBOL: st->print("COBOL"); break; case TB_MODULA2: st->print("MODULA2"); break; case TB_CPLUSPLUS: st->print("C++"); break; case TB_RPG: st->print("RPG"); break; case TB_PL8: st->print("PL8"); break; case TB_ASM: st->print("ASM"); break; case TB_HPJ: st->print("HPJ"); break; default: st->print("unknown"); } st->print(" "); if (p_tb->tb.globallink) { st->print("globallink "); } if (p_tb->tb.is_eprol) { st->print("eprol "); } if (p_tb->tb.int_proc) { st->print("int_proc "); } if (p_tb->tb.tocless) { st->print("tocless "); } if (p_tb->tb.fp_present) { st->print("fp_present "); } if (p_tb->tb.int_hndl) { st->print("interrupt_handler "); } if (p_tb->tb.uses_alloca) { st->print("uses_alloca "); } if (p_tb->tb.saves_cr) { st->print("saves_cr "); } if (p_tb->tb.saves_lr) { st->print("saves_lr "); } if (p_tb->tb.stores_bc) { st->print("stores_bc "); } if (p_tb->tb.fixup) { st->print("fixup "); } if (p_tb->tb.fpr_saved > 0) { st->print("fpr_saved:%d ", p_tb->tb.fpr_saved); } if (p_tb->tb.gpr_saved > 0) { st->print("gpr_saved:%d ", p_tb->tb.gpr_saved); } if (p_tb->tb.fixedparms > 0) { st->print("fixedparms:%d ", p_tb->tb.fixedparms); } if (p_tb->tb.floatparms > 0) { st->print("floatparms:%d ", p_tb->tb.floatparms); } if (p_tb->tb.parmsonstk > 0) { st->print("parmsonstk:%d", p_tb->tb.parmsonstk); } } // Print information for pc (module, function, displacement, traceback table) // on one line. static void print_info_for_pc (outputStream* st, codeptr_t pc, char* buf, size_t buf_size, bool demangle) { const struct tbtable* tb = NULL; int displacement = -1; if (!MiscUtils::is_readable_pointer(pc)) { st->print("(invalid)"); return; } if (AixSymbols::get_module_name((address)pc, buf, buf_size)) { st->print("%s", buf); } else { st->print("(unknown module)"); } st->print("::"); if (AixSymbols::get_function_name((address)pc, buf, buf_size, &displacement, &tb, demangle)) { st->print("%s", buf); } else { st->print("(unknown function)"); } if (displacement == -1) { st->print("+?"); } else { st->print("+0x%x", displacement); } if (tb) { st->fill_to(64); st->print(" ("); print_tbtable(st, tb); st->print(")"); } } static void print_stackframe(outputStream* st, stackptr_t sp, char* buf, size_t buf_size, bool demangle) { stackptr_t sp2 = sp; // skip backchain sp2++; // skip crsave sp2++; // retrieve lrsave. That is the only info I need to get the function/displacement codeptr_t lrsave = (codeptr_t) *(sp2); st->print (PTR64_FORMAT " - " PTR64_FORMAT " ", sp2, lrsave); if (lrsave != NULL) { print_info_for_pc(st, lrsave, buf, buf_size, demangle); } } // Function to check a given stack pointer against given stack limits. static bool is_valid_stackpointer(stackptr_t sp, stackptr_t stack_base, size_t stack_size) { if (((uintptr_t)sp) & 0x7) { return false; } if (sp > stack_base) { return false; } if (sp < (stackptr_t) ((address)stack_base - stack_size)) { return false; } return true; } // Returns true if function is a valid codepointer. static bool is_valid_codepointer(codeptr_t p) { if (!p) { return false; } if (((uintptr_t)p) & 0x3) { return false; } if (LoadedLibraries::find_for_text_address(p, NULL) == NULL) { return false; } return true; } // Function tries to guess if the given combination of stack pointer, stack base // and stack size is a valid stack frame. static bool is_valid_frame (stackptr_t p, stackptr_t stack_base, size_t stack_size) { if (!is_valid_stackpointer(p, stack_base, stack_size)) { return false; } // First check - the occurrence of a valid backchain pointer up the stack, followed by a // valid codeptr, counts as a good candidate. stackptr_t sp2 = (stackptr_t) *p; if (is_valid_stackpointer(sp2, stack_base, stack_size) && // found a valid stack pointer in the stack... ((sp2 - p) > 6) && // ... pointing upwards and not into my frame... is_valid_codepointer((codeptr_t)(*(sp2 + 2)))) // ... followed by a code pointer after two slots... { return true; } return false; } // Try to relocate a stack back chain in a given stack. // Used in callstack dumping, when the backchain is broken by an overwriter static stackptr_t try_find_backchain (stackptr_t last_known_good_frame, stackptr_t stack_base, size_t stack_size) { if (!is_valid_stackpointer(last_known_good_frame, stack_base, stack_size)) { return NULL; } stackptr_t sp = last_known_good_frame; sp += 6; // Omit next fixed frame slots. while (sp < stack_base) { if (is_valid_frame(sp, stack_base, stack_size)) { return sp; } sp ++; } return NULL; } static void decode_instructions_at_pc(const char* header, codeptr_t pc, int num_before, int num_after, outputStream* st) { // TODO: PPC port Disassembler::decode(pc, 16, 16, st); } void AixNativeCallstack::print_callstack_for_context(outputStream* st, const ucontext_t* context, bool demangle, char* buf, size_t buf_size) { #define MAX_CALLSTACK_DEPTH 50 unsigned long* sp; unsigned long* sp_last; int frame; // To print the first frame, use the current value of iar: // current entry indicated by iar (the current pc) codeptr_t cur_iar = 0; stackptr_t cur_sp = 0; codeptr_t cur_rtoc = 0; codeptr_t cur_lr = 0; const ucontext_t* uc = (const ucontext_t*) context; // fallback: use the current context ucontext_t local_context; if (!uc) { st->print_cr("No context given, using current context."); if (getcontext(&local_context) == 0) { uc = &local_context; } else { st->print_cr("No context given and getcontext failed. "); return; } } cur_iar = (codeptr_t)uc->uc_mcontext.jmp_context.iar; cur_sp = (stackptr_t)uc->uc_mcontext.jmp_context.gpr[1]; cur_rtoc = (codeptr_t)uc->uc_mcontext.jmp_context.gpr[2]; cur_lr = (codeptr_t)uc->uc_mcontext.jmp_context.lr; // syntax used here: // n -------------- <-- stack_base, stack_to // n-1 | | // ... | older | // ... | frames | | // | | | stack grows downward // ... | younger | | // ... | frames | V // | | // |------------| <-- cur_sp, current stack ptr // | | // | unsused | // | stack | // | | // . . // . . // . . // . . // | | // 0 -------------- <-- stack_from // // Retrieve current stack base, size from the current thread. If there is none, // retrieve it from the OS. stackptr_t stack_base = NULL; size_t stack_size = NULL; { AixMisc::stackbounds_t stackbounds; if (!AixMisc::query_stack_bounds_for_current_thread(&stackbounds)) { st->print_cr("Cannot retrieve stack bounds."); return; } stack_base = (stackptr_t)stackbounds.base; stack_size = stackbounds.size; } st->print_cr("------ current frame:"); st->print("iar: " PTR64_FORMAT " ", p2i(cur_iar)); print_info_for_pc(st, cur_iar, buf, buf_size, demangle); st->cr(); if (cur_iar && MiscUtils::is_readable_pointer(cur_iar)) { decode_instructions_at_pc( "Decoded instructions at iar:", cur_iar, 32, 16, st); } // Print out lr too, which may be interesting if we did jump to some bogus location; // in those cases the new frame is not built up yet and the caller location is only // preserved via lr register. st->print("lr: " PTR64_FORMAT " ", p2i(cur_lr)); print_info_for_pc(st, cur_lr, buf, buf_size, demangle); st->cr(); if (cur_lr && MiscUtils::is_readable_pointer(cur_lr)) { decode_instructions_at_pc( "Decoded instructions at lr:", cur_lr, 32, 16, st); } // Check and print sp. st->print("sp: " PTR64_FORMAT " ", p2i(cur_sp)); if (!is_valid_stackpointer(cur_sp, stack_base, stack_size)) { st->print("(invalid) "); goto cleanup; } else { st->print("(base - 0x%X) ", PTRDIFF_BYTES(stack_base, cur_sp)); } st->cr(); // Check and print rtoc. st->print("rtoc: " PTR64_FORMAT " ", p2i(cur_rtoc)); if (cur_rtoc == NULL || cur_rtoc == (codeptr_t)-1 || !MiscUtils::is_readable_pointer(cur_rtoc)) { st->print("(invalid)"); } else if (((uintptr_t)cur_rtoc) & 0x7) { st->print("(unaligned)"); } st->cr(); st->print_cr("|---stackaddr----| |----lrsave------|: "); /// // Walk callstack. // // (if no context was given, use the current stack) sp = (unsigned long*)(*(unsigned long*)cur_sp); // Stack pointer sp_last = cur_sp; frame = 0; while (frame < MAX_CALLSTACK_DEPTH) { // Check sp. bool retry = false; if (sp == NULL) { // The backchain pointer was NULL. This normally means the end of the chain. But the // stack might be corrupted, and it may be worth looking for the stack chain. if (is_valid_stackpointer(sp_last, stack_base, stack_size) && (stack_base - 0x10) > sp_last) { // If we are not within 0x10 stackslots of the stack base, we assume that this // is indeed not the end of the chain but that the stack was corrupted. So lets try to // find the end of the chain. st->print_cr("*** back chain pointer is NULL - end of stack or broken backchain ? ***"); retry = true; } else { st->print_cr("*** end of backchain ***"); goto end_walk_callstack; } } else if (!is_valid_stackpointer(sp, stack_base, stack_size)) { st->print_cr("*** stack pointer invalid - backchain corrupted (" PTR_FORMAT ") ***", p2i(sp)); retry = true; } else if (sp < sp_last) { st->print_cr("invalid stack pointer: " PTR_FORMAT " (not monotone raising)", p2i(sp)); retry = true; } // If backchain is broken, try to recover, by manually scanning the stack for a pattern // which looks like a valid stack. if (retry) { st->print_cr("trying to recover and find backchain..."); sp = try_find_backchain(sp_last, stack_base, stack_size); if (sp) { st->print_cr("found something which looks like a backchain at " PTR64_FORMAT ", after 0x%x bytes... ", p2i(sp), PTRDIFF_BYTES(sp, sp_last)); } else { st->print_cr("did not find a backchain, giving up."); goto end_walk_callstack; } } // Print stackframe. print_stackframe(st, sp, buf, buf_size, demangle); st->cr(); frame ++; // Next stack frame and link area. sp_last = sp; sp = (unsigned long*)(*sp); } // Prevent endless loops in case of invalid callstacks. if (frame == MAX_CALLSTACK_DEPTH) { st->print_cr("...(stopping after %d frames.", MAX_CALLSTACK_DEPTH); } end_walk_callstack: st->print_cr("-----------------------"); cleanup: return; } bool AixMisc::query_stack_bounds_for_current_thread(stackbounds_t* out) { // Information about this api can be found (a) in the pthread.h header and // (b) in http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_getthrds_np.htm // // The use of this API to find out the current stack is kind of undefined. // But after a lot of tries and asking IBM about it, I concluded that it is safe // enough for cases where I let the pthread library create its stacks. For cases // where I create an own stack and pass this to pthread_create, it seems not to // work (the returned stack size in that case is 0). pthread_t tid = pthread_self(); struct __pthrdsinfo pinfo; char dummy[1]; // Just needed to satisfy pthread_getthrds_np. int dummy_size = sizeof(dummy); memset(&pinfo, 0, sizeof(pinfo)); const int rc = pthread_getthrds_np(&tid, PTHRDSINFO_QUERY_ALL, &pinfo, sizeof(pinfo), dummy, &dummy_size); if (rc != 0) { fprintf(stderr, "pthread_getthrds_np failed (%d)\n", rc); fflush(stdout); return false; } // The following may happen when invoking pthread_getthrds_np on a pthread // running on a user provided stack (when handing down a stack to pthread // create, see pthread_attr_setstackaddr). // Not sure what to do then. if (pinfo.__pi_stackend == NULL || pinfo.__pi_stackaddr == NULL) { fprintf(stderr, "pthread_getthrds_np - invalid values\n"); fflush(stdout); return false; } // Note: we get three values from pthread_getthrds_np: // __pi_stackaddr, __pi_stacksize, __pi_stackend // // high addr --------------------- base, high // // | pthread internal data, like ~2K // | // | --------------------- __pi_stackend (usually not page aligned, (xxxxF890)) // | // | // | // | // | // | // | --------------------- (__pi_stackend - __pi_stacksize) // | // | padding to align the following AIX guard pages, if enabled. // | // V --------------------- __pi_stackaddr low, base - size // // low addr AIX guard pages, if enabled (AIXTHREAD_GUARDPAGES > 0) // out->base = (address)pinfo.__pi_stackend; address low = (address)pinfo.__pi_stackaddr; out->size = out->base - low; return true; }