1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 // Size of interpreter code.  Increase if too small.  Interpreter will
  51 // fail with a guarantee ("not enough space for interpreter generation");
  52 // if too small.
  53 // Run with +PrintInterpreter to get the VM to print out the size.
  54 // Max size with JVMTI
  55 // The sethi() instruction generates lots more instructions when shell
  56 // stack limit is unlimited, so that's why this is much bigger.
  57 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  58 
  59 // Generation of Interpreter
  60 //
  61 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  62 
  63 
  64 #define __ _masm->
  65 
  66 
  67 //----------------------------------------------------------------------------------------------------
  68 
  69 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
  70 // O0, O1, O2 etc..
  71 // Doubles are passed in D0, D2, D4
  72 // We store the signature of the first 16 arguments in the first argument
  73 // slot because it will be overwritten prior to calling the native
  74 // function, with the pointer to the JNIEnv.
  75 // If LP64 there can be up to 16 floating point arguments in registers
  76 // or 6 integer registers.
  77 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  78 
  79   enum {
  80     non_float  = 0,
  81     float_sig  = 1,
  82     double_sig = 2,
  83     sig_mask   = 3
  84   };
  85 
  86   address entry = __ pc();
  87   Argument argv(0, true);
  88 
  89   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  90   // outer interpreter frame
  91   //
  92   __ set_last_Java_frame(FP, noreg);
  93   // make sure the interpreter frame we've pushed has a valid return pc
  94   __ mov(O7, I7);
  95   __ mov(Lmethod, G3_scratch);
  96   __ mov(Llocals, G4_scratch);
  97   __ save_frame(0);
  98   __ mov(G2_thread, L7_thread_cache);
  99   __ add(argv.address_in_frame(), O3);
 100   __ mov(G2_thread, O0);
 101   __ mov(G3_scratch, O1);
 102   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 103   __ delayed()->mov(G4_scratch, O2);
 104   __ mov(L7_thread_cache, G2_thread);
 105   __ reset_last_Java_frame();
 106 
 107 
 108   // load the register arguments (the C code packed them as varargs)
 109   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 110   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 111   __ mov( G3_scratch, G4_scratch);
 112   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 113   Label done;
 114   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 115     Label NonFloatArg;
 116     Label LoadFloatArg;
 117     Label LoadDoubleArg;
 118     Label NextArg;
 119     Address a = ldarg.address_in_frame();
 120     __ andcc(G4_scratch, sig_mask, G3_scratch);
 121     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 122     __ delayed()->nop();
 123 
 124     __ cmp(G3_scratch, float_sig );
 125     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 126     __ delayed()->nop();
 127 
 128     __ cmp(G3_scratch, double_sig );
 129     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 130     __ delayed()->nop();
 131 
 132     __ bind(NonFloatArg);
 133     // There are only 6 integer register arguments!
 134     if ( ldarg.is_register() )
 135       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 136     else {
 137     // Optimization, see if there are any more args and get out prior to checking
 138     // all 16 float registers.  My guess is that this is rare.
 139     // If is_register is false, then we are done the first six integer args.
 140       __ br_null_short(G4_scratch, Assembler::pt, done);
 141     }
 142     __ ba(NextArg);
 143     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 144 
 145     __ bind(LoadFloatArg);
 146     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 147     __ ba(NextArg);
 148     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 149 
 150     __ bind(LoadDoubleArg);
 151     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 152     __ ba(NextArg);
 153     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 154 
 155     __ bind(NextArg);
 156   }
 157 
 158   __ bind(done);
 159   __ ret();
 160   __ delayed()->restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 161 
 162   return entry;
 163 }
 164 
 165 void TemplateInterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 166 
 167   // Generate code to initiate compilation on the counter overflow.
 168 
 169   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 170   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 171   // and the second is only used when the first is true.  We pass zero for both.
 172   // The call returns the address of the verified entry point for the method or NULL
 173   // if the compilation did not complete (either went background or bailed out).
 174   __ set((int)false, O2);
 175   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 176   // returns verified_entry_point or NULL
 177   // we ignore it in any case
 178   __ ba_short(Lcontinue);
 179 }
 180 
 181 
 182 // End of helpers
 183 
 184 // Various method entries
 185 
 186 // Abstract method entry
 187 // Attempt to execute abstract method. Throw exception
 188 //
 189 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 190   address entry = __ pc();
 191   // abstract method entry
 192   // throw exception
 193   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 194   // the call_VM checks for exception, so we should never return here.
 195   __ should_not_reach_here();
 196   return entry;
 197 }
 198 
 199 void TemplateInterpreterGenerator::save_native_result(void) {
 200   // result potentially in O0/O1: save it across calls
 201   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 202 
 203   // result potentially in F0/F1: save it across calls
 204   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 205 
 206   // save and restore any potential method result value around the unlocking operation
 207   __ stf(FloatRegisterImpl::D, F0, d_tmp);
 208   __ stx(O0, l_tmp);
 209 }
 210 
 211 void TemplateInterpreterGenerator::restore_native_result(void) {
 212   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 213   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 214 
 215   // Restore any method result value
 216   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
 217   __ ldx(l_tmp, O0);
 218 }
 219 
 220 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 221   assert(!pass_oop || message == NULL, "either oop or message but not both");
 222   address entry = __ pc();
 223   // expression stack must be empty before entering the VM if an exception happened
 224   __ empty_expression_stack();
 225   // load exception object
 226   __ set((intptr_t)name, G3_scratch);
 227   if (pass_oop) {
 228     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 229   } else {
 230     __ set((intptr_t)message, G4_scratch);
 231     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 232   }
 233   // throw exception
 234   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 235   AddressLiteral thrower(Interpreter::throw_exception_entry());
 236   __ jump_to(thrower, G3_scratch);
 237   __ delayed()->nop();
 238   return entry;
 239 }
 240 
 241 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 242   address entry = __ pc();
 243   // expression stack must be empty before entering the VM if an exception
 244   // happened
 245   __ empty_expression_stack();
 246   // load exception object
 247   __ call_VM(Oexception,
 248              CAST_FROM_FN_PTR(address,
 249                               InterpreterRuntime::throw_ClassCastException),
 250              Otos_i);
 251   __ should_not_reach_here();
 252   return entry;
 253 }
 254 
 255 
 256 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 257   address entry = __ pc();
 258   // expression stack must be empty before entering the VM if an exception happened
 259   __ empty_expression_stack();
 260   // convention: expect aberrant index in register G3_scratch, then shuffle the
 261   // index to G4_scratch for the VM call
 262   __ mov(G3_scratch, G4_scratch);
 263   __ set((intptr_t)name, G3_scratch);
 264   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 265   __ should_not_reach_here();
 266   return entry;
 267 }
 268 
 269 
 270 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 271   address entry = __ pc();
 272   // expression stack must be empty before entering the VM if an exception happened
 273   __ empty_expression_stack();
 274   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 275   __ should_not_reach_here();
 276   return entry;
 277 }
 278 
 279 
 280 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 281   address entry = __ pc();
 282 
 283   if (state == atos) {
 284     __ profile_return_type(O0, G3_scratch, G1_scratch);
 285   }
 286 
 287   // The callee returns with the stack possibly adjusted by adapter transition
 288   // We remove that possible adjustment here.
 289   // All interpreter local registers are untouched. Any result is passed back
 290   // in the O0/O1 or float registers. Before continuing, the arguments must be
 291   // popped from the java expression stack; i.e., Lesp must be adjusted.
 292 
 293   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 294 
 295   const Register cache = G3_scratch;
 296   const Register index  = G1_scratch;
 297   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 298 
 299   const Register flags = cache;
 300   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 301   const Register parameter_size = flags;
 302   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 303   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 304   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 305 
 306   __ check_and_handle_popframe(Gtemp);
 307   __ check_and_handle_earlyret(Gtemp);
 308 
 309   __ dispatch_next(state, step);
 310 
 311   return entry;
 312 }
 313 
 314 
 315 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 316   address entry = __ pc();
 317   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 318 #if INCLUDE_JVMCI
 319   // Check if we need to take lock at entry of synchronized method.  This can
 320   // only occur on method entry so emit it only for vtos with step 0.
 321   if (UseJVMCICompiler && state == vtos && step == 0) {
 322     Label L;
 323     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 324     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 325     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 326     // Clear flag.
 327     __ stbool(G0, pending_monitor_enter_addr);
 328     // Take lock.
 329     lock_method();
 330     __ bind(L);
 331   } else {
 332 #ifdef ASSERT
 333     if (UseJVMCICompiler) {
 334       Label L;
 335       Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 336       __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 337       __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 338       __ stop("unexpected pending monitor in deopt entry");
 339       __ bind(L);
 340     }
 341 #endif
 342   }
 343 #endif
 344   { Label L;
 345     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 346     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 347     __ br_null_short(Gtemp, Assembler::pt, L);
 348     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 349     __ should_not_reach_here();
 350     __ bind(L);
 351   }
 352   __ dispatch_next(state, step);
 353   return entry;
 354 }
 355 
 356 // A result handler converts/unboxes a native call result into
 357 // a java interpreter/compiler result. The current frame is an
 358 // interpreter frame. The activation frame unwind code must be
 359 // consistent with that of TemplateTable::_return(...). In the
 360 // case of native methods, the caller's SP was not modified.
 361 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 362   address entry = __ pc();
 363   Register Itos_i  = Otos_i ->after_save();
 364   Register Itos_l  = Otos_l ->after_save();
 365   Register Itos_l1 = Otos_l1->after_save();
 366   Register Itos_l2 = Otos_l2->after_save();
 367   switch (type) {
 368     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 369     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 370     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 371     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 372     case T_LONG   :
 373     case T_INT    : __ mov(O0, Itos_i);                         break;
 374     case T_VOID   : /* nothing to do */                         break;
 375     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 376     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 377     case T_OBJECT :
 378       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 379       __ verify_oop(Itos_i);
 380       break;
 381     default       : ShouldNotReachHere();
 382   }
 383   __ ret();                           // return from interpreter activation
 384   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 385   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 386   return entry;
 387 }
 388 
 389 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 390   address entry = __ pc();
 391   __ push(state);
 392   __ call_VM(noreg, runtime_entry);
 393   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 394   return entry;
 395 }
 396 
 397 
 398 //
 399 // Helpers for commoning out cases in the various type of method entries.
 400 //
 401 
 402 // increment invocation count & check for overflow
 403 //
 404 // Note: checking for negative value instead of overflow
 405 //       so we have a 'sticky' overflow test
 406 //
 407 // Lmethod: method
 408 // ??: invocation counter
 409 //
 410 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 411   // Note: In tiered we increment either counters in MethodCounters* or in
 412   // MDO depending if we're profiling or not.
 413   const Register G3_method_counters = G3_scratch;
 414   Label done;
 415 
 416   if (TieredCompilation) {
 417     const int increment = InvocationCounter::count_increment;
 418     Label no_mdo;
 419     if (ProfileInterpreter) {
 420       // If no method data exists, go to profile_continue.
 421       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 422       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 423       // Increment counter
 424       Address mdo_invocation_counter(G4_scratch,
 425                                      in_bytes(MethodData::invocation_counter_offset()) +
 426                                      in_bytes(InvocationCounter::counter_offset()));
 427       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 428       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 429                                  G3_scratch, Lscratch,
 430                                  Assembler::zero, overflow);
 431       __ ba_short(done);
 432     }
 433 
 434     // Increment counter in MethodCounters*
 435     __ bind(no_mdo);
 436     Address invocation_counter(G3_method_counters,
 437             in_bytes(MethodCounters::invocation_counter_offset()) +
 438             in_bytes(InvocationCounter::counter_offset()));
 439     __ get_method_counters(Lmethod, G3_method_counters, done);
 440     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 441     __ increment_mask_and_jump(invocation_counter, increment, mask,
 442                                G4_scratch, Lscratch,
 443                                Assembler::zero, overflow);
 444     __ bind(done);
 445   } else { // not TieredCompilation
 446     // Update standard invocation counters
 447     __ get_method_counters(Lmethod, G3_method_counters, done);
 448     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 449     if (ProfileInterpreter) {
 450       Address interpreter_invocation_counter(G3_method_counters,
 451             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 452       __ ld(interpreter_invocation_counter, G4_scratch);
 453       __ inc(G4_scratch);
 454       __ st(G4_scratch, interpreter_invocation_counter);
 455     }
 456 
 457     if (ProfileInterpreter && profile_method != NULL) {
 458       // Test to see if we should create a method data oop
 459       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 460       __ ld(profile_limit, G1_scratch);
 461       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 462 
 463       // if no method data exists, go to profile_method
 464       __ test_method_data_pointer(*profile_method);
 465     }
 466 
 467     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 468     __ ld(invocation_limit, G3_scratch);
 469     __ cmp(O0, G3_scratch);
 470     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 471     __ delayed()->nop();
 472     __ bind(done);
 473   }
 474 }
 475 
 476 // Allocate monitor and lock method (asm interpreter)
 477 // ebx - Method*
 478 //
 479 void TemplateInterpreterGenerator::lock_method() {
 480   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 481 
 482 #ifdef ASSERT
 483  { Label ok;
 484    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 485    __ br( Assembler::notZero, false, Assembler::pt, ok);
 486    __ delayed()->nop();
 487    __ stop("method doesn't need synchronization");
 488    __ bind(ok);
 489   }
 490 #endif // ASSERT
 491 
 492   // get synchronization object to O0
 493   { Label done;
 494     __ btst(JVM_ACC_STATIC, O0);
 495     __ br( Assembler::zero, true, Assembler::pt, done);
 496     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 497 
 498     // lock the mirror, not the Klass*
 499     __ load_mirror(O0, Lmethod);
 500 
 501 #ifdef ASSERT
 502     __ tst(O0);
 503     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 504 #endif // ASSERT
 505 
 506     __ bind(done);
 507   }
 508 
 509   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 510   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 511   // __ untested("lock_object from method entry");
 512   __ lock_object(Lmonitors, O0);
 513 }
 514 
 515 // See if we've got enough room on the stack for locals plus overhead below
 516 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 517 // without going through the signal handler, i.e., reserved and yellow zones
 518 // will not be made usable. The shadow zone must suffice to handle the
 519 // overflow.
 520 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 521                                                                  Register Rscratch) {
 522   const int page_size = os::vm_page_size();
 523   Label after_frame_check;
 524 
 525   assert_different_registers(Rframe_size, Rscratch);
 526 
 527   __ set(page_size, Rscratch);
 528   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 529 
 530   // Get the stack overflow limit, and in debug, verify it is non-zero.
 531   __ ld_ptr(G2_thread, JavaThread::stack_overflow_limit_offset(), Rscratch);
 532 #ifdef ASSERT
 533   Label limit_ok;
 534   __ br_notnull_short(Rscratch, Assembler::pn, limit_ok);
 535   __ stop("stack overflow limit is zero in generate_stack_overflow_check");
 536   __ bind(limit_ok);
 537 #endif
 538 
 539   // Add in the size of the frame (which is the same as subtracting it from the
 540   // SP, which would take another register.
 541   __ add(Rscratch, Rframe_size, Rscratch);
 542 
 543   // The frame is greater than one page in size, so check against
 544   // the bottom of the stack.
 545   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 546 
 547   // The stack will overflow, throw an exception.
 548 
 549   // Note that SP is restored to sender's sp (in the delay slot). This
 550   // is necessary if the sender's frame is an extended compiled frame
 551   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 552   // adaptations.
 553 
 554   // Note also that the restored frame is not necessarily interpreted.
 555   // Use the shared runtime version of the StackOverflowError.
 556   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 557   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 558   __ jump_to(stub, Rscratch);
 559   __ delayed()->mov(O5_savedSP, SP);
 560 
 561   // If you get to here, then there is enough stack space.
 562   __ bind(after_frame_check);
 563 }
 564 
 565 
 566 //
 567 // Generate a fixed interpreter frame. This is identical setup for interpreted
 568 // methods and for native methods hence the shared code.
 569 
 570 
 571 //----------------------------------------------------------------------------------------------------
 572 // Stack frame layout
 573 //
 574 // When control flow reaches any of the entry types for the interpreter
 575 // the following holds ->
 576 //
 577 // C2 Calling Conventions:
 578 //
 579 // The entry code below assumes that the following registers are set
 580 // when coming in:
 581 //    G5_method: holds the Method* of the method to call
 582 //    Lesp:    points to the TOS of the callers expression stack
 583 //             after having pushed all the parameters
 584 //
 585 // The entry code does the following to setup an interpreter frame
 586 //   pop parameters from the callers stack by adjusting Lesp
 587 //   set O0 to Lesp
 588 //   compute X = (max_locals - num_parameters)
 589 //   bump SP up by X to accommodate the extra locals
 590 //   compute X = max_expression_stack
 591 //               + vm_local_words
 592 //               + 16 words of register save area
 593 //   save frame doing a save sp, -X, sp growing towards lower addresses
 594 //   set Lbcp, Lmethod, LcpoolCache
 595 //   set Llocals to i0
 596 //   set Lmonitors to FP - rounded_vm_local_words
 597 //   set Lesp to Lmonitors - 4
 598 //
 599 //  The frame has now been setup to do the rest of the entry code
 600 
 601 // Try this optimization:  Most method entries could live in a
 602 // "one size fits all" stack frame without all the dynamic size
 603 // calculations.  It might be profitable to do all this calculation
 604 // statically and approximately for "small enough" methods.
 605 
 606 //-----------------------------------------------------------------------------------------------
 607 
 608 // C1 Calling conventions
 609 //
 610 // Upon method entry, the following registers are setup:
 611 //
 612 // g2 G2_thread: current thread
 613 // g5 G5_method: method to activate
 614 // g4 Gargs  : pointer to last argument
 615 //
 616 //
 617 // Stack:
 618 //
 619 // +---------------+ <--- sp
 620 // |               |
 621 // : reg save area :
 622 // |               |
 623 // +---------------+ <--- sp + 0x40
 624 // |               |
 625 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 626 // |               |
 627 // +---------------+ <--- sp + 0x5c
 628 // |               |
 629 // :     free      :
 630 // |               |
 631 // +---------------+ <--- Gargs
 632 // |               |
 633 // :   arguments   :
 634 // |               |
 635 // +---------------+
 636 // |               |
 637 //
 638 //
 639 //
 640 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 641 //
 642 // +---------------+ <--- sp
 643 // |               |
 644 // : reg save area :
 645 // |               |
 646 // +---------------+ <--- sp + 0x40
 647 // |               |
 648 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 649 // |               |
 650 // +---------------+ <--- sp + 0x5c
 651 // |               |
 652 // :               :
 653 // |               | <--- Lesp
 654 // +---------------+ <--- Lmonitors (fp - 0x18)
 655 // |   VM locals   |
 656 // +---------------+ <--- fp
 657 // |               |
 658 // : reg save area :
 659 // |               |
 660 // +---------------+ <--- fp + 0x40
 661 // |               |
 662 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 663 // |               |
 664 // +---------------+ <--- fp + 0x5c
 665 // |               |
 666 // :     free      :
 667 // |               |
 668 // +---------------+
 669 // |               |
 670 // : nonarg locals :
 671 // |               |
 672 // +---------------+
 673 // |               |
 674 // :   arguments   :
 675 // |               | <--- Llocals
 676 // +---------------+ <--- Gargs
 677 // |               |
 678 
 679 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 680   //
 681   //
 682   // The entry code sets up a new interpreter frame in 4 steps:
 683   //
 684   // 1) Increase caller's SP by for the extra local space needed:
 685   //    (check for overflow)
 686   //    Efficient implementation of xload/xstore bytecodes requires
 687   //    that arguments and non-argument locals are in a contiguously
 688   //    addressable memory block => non-argument locals must be
 689   //    allocated in the caller's frame.
 690   //
 691   // 2) Create a new stack frame and register window:
 692   //    The new stack frame must provide space for the standard
 693   //    register save area, the maximum java expression stack size,
 694   //    the monitor slots (0 slots initially), and some frame local
 695   //    scratch locations.
 696   //
 697   // 3) The following interpreter activation registers must be setup:
 698   //    Lesp       : expression stack pointer
 699   //    Lbcp       : bytecode pointer
 700   //    Lmethod    : method
 701   //    Llocals    : locals pointer
 702   //    Lmonitors  : monitor pointer
 703   //    LcpoolCache: constant pool cache
 704   //
 705   // 4) Initialize the non-argument locals if necessary:
 706   //    Non-argument locals may need to be initialized to NULL
 707   //    for GC to work. If the oop-map information is accurate
 708   //    (in the absence of the JSR problem), no initialization
 709   //    is necessary.
 710   //
 711   // (gri - 2/25/2000)
 712 
 713 
 714   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong );
 715 
 716   const int extra_space =
 717     rounded_vm_local_words +                   // frame local scratch space
 718     Method::extra_stack_entries() +            // extra stack for jsr 292
 719     frame::memory_parameter_word_sp_offset +   // register save area
 720     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 721 
 722   const Register Glocals_size = G3;
 723   const Register RconstMethod = Glocals_size;
 724   const Register Otmp1 = O3;
 725   const Register Otmp2 = O4;
 726   // Lscratch can't be used as a temporary because the call_stub uses
 727   // it to assert that the stack frame was setup correctly.
 728   const Address constMethod       (G5_method, Method::const_offset());
 729   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 730 
 731   __ ld_ptr( constMethod, RconstMethod );
 732   __ lduh( size_of_parameters, Glocals_size);
 733 
 734   // Gargs points to first local + BytesPerWord
 735   // Set the saved SP after the register window save
 736   //
 737   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 738   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 739   __ add(Gargs, Otmp1, Gargs);
 740 
 741   if (native_call) {
 742     __ calc_mem_param_words( Glocals_size, Gframe_size );
 743     __ add( Gframe_size,  extra_space, Gframe_size);
 744     __ round_to( Gframe_size, WordsPerLong );
 745     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 746 
 747     // Native calls don't need the stack size check since they have no
 748     // expression stack and the arguments are already on the stack and
 749     // we only add a handful of words to the stack.
 750   } else {
 751 
 752     //
 753     // Compute number of locals in method apart from incoming parameters
 754     //
 755     const Address size_of_locals(Otmp1, ConstMethod::size_of_locals_offset());
 756     __ ld_ptr(constMethod, Otmp1);
 757     __ lduh(size_of_locals, Otmp1);
 758     __ sub(Otmp1, Glocals_size, Glocals_size);
 759     __ round_to(Glocals_size, WordsPerLong);
 760     __ sll(Glocals_size, Interpreter::logStackElementSize, Glocals_size);
 761 
 762     // See if the frame is greater than one page in size. If so,
 763     // then we need to verify there is enough stack space remaining.
 764     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 765     __ ld_ptr(constMethod, Gframe_size);
 766     __ lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);
 767     __ add(Gframe_size, extra_space, Gframe_size);
 768     __ round_to(Gframe_size, WordsPerLong);
 769     __ sll(Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 770 
 771     // Add in java locals size for stack overflow check only
 772     __ add(Gframe_size, Glocals_size, Gframe_size);
 773 
 774     const Register Otmp2 = O4;
 775     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 776     generate_stack_overflow_check(Gframe_size, Otmp1);
 777 
 778     __ sub(Gframe_size, Glocals_size, Gframe_size);
 779 
 780     //
 781     // bump SP to accommodate the extra locals
 782     //
 783     __ sub(SP, Glocals_size, SP);
 784   }
 785 
 786   //
 787   // now set up a stack frame with the size computed above
 788   //
 789   __ neg( Gframe_size );
 790   __ save( SP, Gframe_size, SP );
 791 
 792   //
 793   // now set up all the local cache registers
 794   //
 795   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 796   // that all present references to Lbyte_code initialize the register
 797   // immediately before use
 798   if (native_call) {
 799     __ mov(G0, Lbcp);
 800   } else {
 801     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 802     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 803   }
 804   __ mov( G5_method, Lmethod);                 // set Lmethod
 805   // Get mirror and store it in the frame as GC root for this Method*
 806   Register mirror = LcpoolCache;
 807   __ load_mirror(mirror, Lmethod);
 808   __ st_ptr(mirror, FP, (frame::interpreter_frame_mirror_offset * wordSize) + STACK_BIAS);
 809   __ get_constant_pool_cache(LcpoolCache);     // set LcpoolCache
 810   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 811   __ add(Lmonitors, STACK_BIAS, Lmonitors);    // Account for 64 bit stack bias
 812   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 813 
 814   // setup interpreter activation registers
 815   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 816 
 817   if (ProfileInterpreter) {
 818     __ set_method_data_pointer();
 819   }
 820 
 821 }
 822 
 823 // Method entry for java.lang.ref.Reference.get.
 824 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 825 #if INCLUDE_ALL_GCS
 826   // Code: _aload_0, _getfield, _areturn
 827   // parameter size = 1
 828   //
 829   // The code that gets generated by this routine is split into 2 parts:
 830   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 831   //    2. The slow path - which is an expansion of the regular method entry.
 832   //
 833   // Notes:-
 834   // * In the G1 code we do not check whether we need to block for
 835   //   a safepoint. If G1 is enabled then we must execute the specialized
 836   //   code for Reference.get (except when the Reference object is null)
 837   //   so that we can log the value in the referent field with an SATB
 838   //   update buffer.
 839   //   If the code for the getfield template is modified so that the
 840   //   G1 pre-barrier code is executed when the current method is
 841   //   Reference.get() then going through the normal method entry
 842   //   will be fine.
 843   // * The G1 code can, however, check the receiver object (the instance
 844   //   of java.lang.Reference) and jump to the slow path if null. If the
 845   //   Reference object is null then we obviously cannot fetch the referent
 846   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 847   //   regular method entry code to generate the NPE.
 848   //
 849   // This code is based on generate_accessor_enty.
 850 
 851   address entry = __ pc();
 852 
 853   const int referent_offset = java_lang_ref_Reference::referent_offset;
 854   guarantee(referent_offset > 0, "referent offset not initialized");
 855 
 856   if (UseG1GC) {
 857      Label slow_path;
 858 
 859     // In the G1 code we don't check if we need to reach a safepoint. We
 860     // continue and the thread will safepoint at the next bytecode dispatch.
 861 
 862     // Check if local 0 != NULL
 863     // If the receiver is null then it is OK to jump to the slow path.
 864     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 865     // check if local 0 == NULL and go the slow path
 866     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 867 
 868 
 869     // Load the value of the referent field.
 870     if (Assembler::is_simm13(referent_offset)) {
 871       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 872     } else {
 873       __ set(referent_offset, G3_scratch);
 874       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 875     }
 876 
 877     // Generate the G1 pre-barrier code to log the value of
 878     // the referent field in an SATB buffer. Note with
 879     // these parameters the pre-barrier does not generate
 880     // the load of the previous value
 881 
 882     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 883                             Otos_i /* pre_val */,
 884                             G3_scratch /* tmp */,
 885                             true /* preserve_o_regs */);
 886 
 887     // _areturn
 888     __ retl();                      // return from leaf routine
 889     __ delayed()->mov(O5_savedSP, SP);
 890 
 891     // Generate regular method entry
 892     __ bind(slow_path);
 893     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 894     return entry;
 895   }
 896 #endif // INCLUDE_ALL_GCS
 897 
 898   // If G1 is not enabled then attempt to go through the accessor entry point
 899   // Reference.get is an accessor
 900   return NULL;
 901 }
 902 
 903 /**
 904  * Method entry for static native methods:
 905  *   int java.util.zip.CRC32.update(int crc, int b)
 906  */
 907 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 908 
 909   if (UseCRC32Intrinsics) {
 910     address entry = __ pc();
 911 
 912     Label L_slow_path;
 913     // If we need a safepoint check, generate full interpreter entry.
 914     ExternalAddress state(SafepointSynchronize::address_of_state());
 915     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 916     __ set(SafepointSynchronize::_not_synchronized, O3);
 917     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 918 
 919     // Load parameters
 920     const Register crc   = O0; // initial crc
 921     const Register val   = O1; // byte to update with
 922     const Register table = O2; // address of 256-entry lookup table
 923 
 924     __ ldub(Gargs, 3, val);
 925     __ lduw(Gargs, 8, crc);
 926 
 927     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
 928 
 929     __ not1(crc); // ~crc
 930     __ clruwu(crc);
 931     __ update_byte_crc32(crc, val, table);
 932     __ not1(crc); // ~crc
 933 
 934     // result in O0
 935     __ retl();
 936     __ delayed()->nop();
 937 
 938     // generate a vanilla native entry as the slow path
 939     __ bind(L_slow_path);
 940     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 941     return entry;
 942   }
 943   return NULL;
 944 }
 945 
 946 /**
 947  * Method entry for static native methods:
 948  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 949  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 950  */
 951 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 952 
 953   if (UseCRC32Intrinsics) {
 954     address entry = __ pc();
 955 
 956     Label L_slow_path;
 957     // If we need a safepoint check, generate full interpreter entry.
 958     ExternalAddress state(SafepointSynchronize::address_of_state());
 959     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 960     __ set(SafepointSynchronize::_not_synchronized, O3);
 961     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 962 
 963     // Load parameters from the stack
 964     const Register crc    = O0; // initial crc
 965     const Register buf    = O1; // source java byte array address
 966     const Register len    = O2; // len
 967     const Register offset = O3; // offset
 968 
 969     // Arguments are reversed on java expression stack
 970     // Calculate address of start element
 971     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
 972       __ lduw(Gargs, 0,  len);
 973       __ lduw(Gargs, 8,  offset);
 974       __ ldx( Gargs, 16, buf);
 975       __ lduw(Gargs, 32, crc);
 976       __ add(buf, offset, buf);
 977     } else {
 978       __ lduw(Gargs, 0,  len);
 979       __ lduw(Gargs, 8,  offset);
 980       __ ldx( Gargs, 16, buf);
 981       __ lduw(Gargs, 24, crc);
 982       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
 983       __ add(buf, offset, buf);
 984     }
 985 
 986     // Call the crc32 kernel
 987     __ MacroAssembler::save_thread(L7_thread_cache);
 988     __ kernel_crc32(crc, buf, len, O3);
 989     __ MacroAssembler::restore_thread(L7_thread_cache);
 990 
 991     // result in O0
 992     __ retl();
 993     __ delayed()->nop();
 994 
 995     // generate a vanilla native entry as the slow path
 996     __ bind(L_slow_path);
 997     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 998     return entry;
 999   }
1000   return NULL;
1001 }
1002 
1003 /**
1004  * Method entry for intrinsic-candidate (non-native) methods:
1005  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1006  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1007  * Unlike CRC32, CRC32C does not have any methods marked as native
1008  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1009  */
1010 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1011 
1012   if (UseCRC32CIntrinsics) {
1013     address entry = __ pc();
1014 
1015     // Load parameters from the stack
1016     const Register crc    = O0; // initial crc
1017     const Register buf    = O1; // source java byte array address
1018     const Register offset = O2; // offset
1019     const Register end    = O3; // index of last element to process
1020     const Register len    = O2; // len argument to the kernel
1021     const Register table  = O3; // crc32c lookup table address
1022 
1023     // Arguments are reversed on java expression stack
1024     // Calculate address of start element
1025     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1026       __ lduw(Gargs, 0,  end);
1027       __ lduw(Gargs, 8,  offset);
1028       __ ldx( Gargs, 16, buf);
1029       __ lduw(Gargs, 32, crc);
1030       __ add(buf, offset, buf);
1031       __ sub(end, offset, len);
1032     } else {
1033       __ lduw(Gargs, 0,  end);
1034       __ lduw(Gargs, 8,  offset);
1035       __ ldx( Gargs, 16, buf);
1036       __ lduw(Gargs, 24, crc);
1037       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1038       __ add(buf, offset, buf);
1039       __ sub(end, offset, len);
1040     }
1041 
1042     // Call the crc32c kernel
1043     __ MacroAssembler::save_thread(L7_thread_cache);
1044     __ kernel_crc32c(crc, buf, len, table);
1045     __ MacroAssembler::restore_thread(L7_thread_cache);
1046 
1047     // result in O0
1048     __ retl();
1049     __ delayed()->nop();
1050 
1051     return entry;
1052   }
1053   return NULL;
1054 }
1055 
1056 /* Math routines only partially supported.
1057  *
1058  *   Providing support for fma (float/double) only.
1059  */
1060 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind)
1061 {
1062   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
1063 
1064   address entry = __ pc();
1065 
1066   switch (kind) {
1067     case Interpreter::java_lang_math_fmaF:
1068       if (UseFMA) {
1069         // float .fma(float a, float b, float c)
1070         const FloatRegister ra = F1;
1071         const FloatRegister rb = F2;
1072         const FloatRegister rc = F3;
1073         const FloatRegister rd = F0; // Result.
1074 
1075         __ ldf(FloatRegisterImpl::S, Gargs,  0, rc);
1076         __ ldf(FloatRegisterImpl::S, Gargs,  8, rb);
1077         __ ldf(FloatRegisterImpl::S, Gargs, 16, ra);
1078 
1079         __ fmadd(FloatRegisterImpl::S, ra, rb, rc, rd);
1080         __ retl();  // Result in F0 (rd).
1081         __ delayed()->mov(O5_savedSP, SP);
1082 
1083         return entry;
1084       }
1085       break;
1086     case Interpreter::java_lang_math_fmaD:
1087       if (UseFMA) {
1088         // double .fma(double a, double b, double c)
1089         const FloatRegister ra = F2; // D1
1090         const FloatRegister rb = F4; // D2
1091         const FloatRegister rc = F6; // D3
1092         const FloatRegister rd = F0; // D0 Result.
1093 
1094         __ ldf(FloatRegisterImpl::D, Gargs,  0, rc);
1095         __ ldf(FloatRegisterImpl::D, Gargs, 16, rb);
1096         __ ldf(FloatRegisterImpl::D, Gargs, 32, ra);
1097 
1098         __ fmadd(FloatRegisterImpl::D, ra, rb, rc, rd);
1099         __ retl();  // Result in D0 (rd).
1100         __ delayed()->mov(O5_savedSP, SP);
1101 
1102         return entry;
1103       }
1104       break;
1105     default:
1106       break;
1107   }
1108   return NULL;
1109 }
1110 
1111 // TODO: rather than touching all pages, check against stack_overflow_limit and bang yellow page to
1112 // generate exception
1113 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1114   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1115   // Note that we do the banging after the frame is setup, since the exception
1116   // handling code expects to find a valid interpreter frame on the stack.
1117   // Doing the banging earlier fails if the caller frame is not an interpreter
1118   // frame.
1119   // (Also, the exception throwing code expects to unlock any synchronized
1120   // method receiver, so do the banging after locking the receiver.)
1121 
1122   // Bang each page in the shadow zone. We can't assume it's been done for
1123   // an interpreter frame with greater than a page of locals, so each page
1124   // needs to be checked.  Only true for non-native.
1125   if (UseStackBanging) {
1126     const int page_size = os::vm_page_size();
1127     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1128     const int start_page = native_call ? n_shadow_pages : 1;
1129     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1130       __ bang_stack_with_offset(pages*page_size);
1131     }
1132   }
1133 }
1134 
1135 //
1136 // Interpreter stub for calling a native method. (asm interpreter)
1137 // This sets up a somewhat different looking stack for calling the native method
1138 // than the typical interpreter frame setup.
1139 //
1140 
1141 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1142   address entry = __ pc();
1143 
1144   // the following temporary registers are used during frame creation
1145   const Register Gtmp1 = G3_scratch ;
1146   const Register Gtmp2 = G1_scratch;
1147   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1148 
1149   // make sure registers are different!
1150   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1151 
1152   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
1153 
1154   const Register Glocals_size = G3;
1155   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1156 
1157   // make sure method is native & not abstract
1158   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1159 #ifdef ASSERT
1160   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1161   { Label L;
1162     __ btst(JVM_ACC_NATIVE, Gtmp1);
1163     __ br(Assembler::notZero, false, Assembler::pt, L);
1164     __ delayed()->nop();
1165     __ stop("tried to execute non-native method as native");
1166     __ bind(L);
1167   }
1168   { Label L;
1169     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1170     __ br(Assembler::zero, false, Assembler::pt, L);
1171     __ delayed()->nop();
1172     __ stop("tried to execute abstract method as non-abstract");
1173     __ bind(L);
1174   }
1175 #endif // ASSERT
1176 
1177  // generate the code to allocate the interpreter stack frame
1178   generate_fixed_frame(true);
1179 
1180   //
1181   // No locals to initialize for native method
1182   //
1183 
1184   // this slot will be set later, we initialize it to null here just in
1185   // case we get a GC before the actual value is stored later
1186   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
1187 
1188   const Address do_not_unlock_if_synchronized(G2_thread,
1189     JavaThread::do_not_unlock_if_synchronized_offset());
1190   // Since at this point in the method invocation the exception handler
1191   // would try to exit the monitor of synchronized methods which hasn't
1192   // been entered yet, we set the thread local variable
1193   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1194   // runtime, exception handling i.e. unlock_if_synchronized_method will
1195   // check this thread local flag.
1196   // This flag has two effects, one is to force an unwind in the topmost
1197   // interpreter frame and not perform an unlock while doing so.
1198 
1199   __ movbool(true, G3_scratch);
1200   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1201 
1202   // increment invocation counter and check for overflow
1203   //
1204   // Note: checking for negative value instead of overflow
1205   //       so we have a 'sticky' overflow test (may be of
1206   //       importance as soon as we have true MT/MP)
1207   Label invocation_counter_overflow;
1208   Label Lcontinue;
1209   if (inc_counter) {
1210     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1211 
1212   }
1213   __ bind(Lcontinue);
1214 
1215   bang_stack_shadow_pages(true);
1216 
1217   // reset the _do_not_unlock_if_synchronized flag
1218   __ stbool(G0, do_not_unlock_if_synchronized);
1219 
1220   // check for synchronized methods
1221   // Must happen AFTER invocation_counter check and stack overflow check,
1222   // so method is not locked if overflows.
1223 
1224   if (synchronized) {
1225     lock_method();
1226   } else {
1227 #ifdef ASSERT
1228     { Label ok;
1229       __ ld(Laccess_flags, O0);
1230       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1231       __ br( Assembler::zero, false, Assembler::pt, ok);
1232       __ delayed()->nop();
1233       __ stop("method needs synchronization");
1234       __ bind(ok);
1235     }
1236 #endif // ASSERT
1237   }
1238 
1239 
1240   // start execution
1241   __ verify_thread();
1242 
1243   // JVMTI support
1244   __ notify_method_entry();
1245 
1246   // native call
1247 
1248   // (note that O0 is never an oop--at most it is a handle)
1249   // It is important not to smash any handles created by this call,
1250   // until any oop handle in O0 is dereferenced.
1251 
1252   // (note that the space for outgoing params is preallocated)
1253 
1254   // get signature handler
1255   { Label L;
1256     Address signature_handler(Lmethod, Method::signature_handler_offset());
1257     __ ld_ptr(signature_handler, G3_scratch);
1258     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1259     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1260     __ ld_ptr(signature_handler, G3_scratch);
1261     __ bind(L);
1262   }
1263 
1264   // Push a new frame so that the args will really be stored in
1265   // Copy a few locals across so the new frame has the variables
1266   // we need but these values will be dead at the jni call and
1267   // therefore not gc volatile like the values in the current
1268   // frame (Lmethod in particular)
1269 
1270   // Flush the method pointer to the register save area
1271   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1272   __ mov(Llocals, O1);
1273 
1274   // calculate where the mirror handle body is allocated in the interpreter frame:
1275   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1276 
1277   // Calculate current frame size
1278   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1279   __ save(SP, O3, SP);        // Allocate an identical sized frame
1280 
1281   // Note I7 has leftover trash. Slow signature handler will fill it in
1282   // should we get there. Normal jni call will set reasonable last_Java_pc
1283   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1284   // in it).
1285 
1286   // Load interpreter frame's Lmethod into same register here
1287 
1288   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1289 
1290   __ mov(I1, Llocals);
1291   __ mov(I2, Lscratch2);     // save the address of the mirror
1292 
1293 
1294   // ONLY Lmethod and Llocals are valid here!
1295 
1296   // call signature handler, It will move the arg properly since Llocals in current frame
1297   // matches that in outer frame
1298 
1299   __ callr(G3_scratch, 0);
1300   __ delayed()->nop();
1301 
1302   // Result handler is in Lscratch
1303 
1304   // Reload interpreter frame's Lmethod since slow signature handler may block
1305   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1306 
1307   { Label not_static;
1308 
1309     __ ld(Laccess_flags, O0);
1310     __ btst(JVM_ACC_STATIC, O0);
1311     __ br( Assembler::zero, false, Assembler::pt, not_static);
1312     // get native function entry point(O0 is a good temp until the very end)
1313     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1314     // for static methods insert the mirror argument
1315     __ load_mirror(O1, Lmethod);
1316 #ifdef ASSERT
1317     if (!PrintSignatureHandlers)  // do not dirty the output with this
1318     { Label L;
1319       __ br_notnull_short(O1, Assembler::pt, L);
1320       __ stop("mirror is missing");
1321       __ bind(L);
1322     }
1323 #endif // ASSERT
1324     __ st_ptr(O1, Lscratch2, 0);
1325     __ mov(Lscratch2, O1);
1326     __ bind(not_static);
1327   }
1328 
1329   // At this point, arguments have been copied off of stack into
1330   // their JNI positions, which are O1..O5 and SP[68..].
1331   // Oops are boxed in-place on the stack, with handles copied to arguments.
1332   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1333 
1334 #ifdef ASSERT
1335   { Label L;
1336     __ br_notnull_short(O0, Assembler::pt, L);
1337     __ stop("native entry point is missing");
1338     __ bind(L);
1339   }
1340 #endif // ASSERT
1341 
1342   //
1343   // setup the frame anchor
1344   //
1345   // The scavenge function only needs to know that the PC of this frame is
1346   // in the interpreter method entry code, it doesn't need to know the exact
1347   // PC and hence we can use O7 which points to the return address from the
1348   // previous call in the code stream (signature handler function)
1349   //
1350   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1351   // we have pushed the extra frame in order to protect the volatile register(s)
1352   // in that frame when we return from the jni call
1353   //
1354 
1355   __ set_last_Java_frame(FP, O7);
1356   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1357                    // not meaningless information that'll confuse me.
1358 
1359   // flush the windows now. We don't care about the current (protection) frame
1360   // only the outer frames
1361 
1362   __ flushw();
1363 
1364   // mark windows as flushed
1365   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1366   __ set(JavaFrameAnchor::flushed, G3_scratch);
1367   __ st(G3_scratch, flags);
1368 
1369   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1370 
1371   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1372 #ifdef ASSERT
1373   { Label L;
1374     __ ld(thread_state, G3_scratch);
1375     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1376     __ stop("Wrong thread state in native stub");
1377     __ bind(L);
1378   }
1379 #endif // ASSERT
1380   __ set(_thread_in_native, G3_scratch);
1381   __ st(G3_scratch, thread_state);
1382 
1383   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1384   __ save_thread(L7_thread_cache); // save Gthread
1385   __ callr(O0, 0);
1386   __ delayed()->
1387      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1388 
1389   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1390 
1391   __ restore_thread(L7_thread_cache); // restore G2_thread
1392   __ reinit_heapbase();
1393 
1394   // must we block?
1395 
1396   // Block, if necessary, before resuming in _thread_in_Java state.
1397   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1398   { Label no_block;
1399     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1400 
1401     // Switch thread to "native transition" state before reading the synchronization state.
1402     // This additional state is necessary because reading and testing the synchronization
1403     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1404     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1405     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1406     //     Thread A is resumed to finish this native method, but doesn't block here since it
1407     //     didn't see any synchronization is progress, and escapes.
1408     __ set(_thread_in_native_trans, G3_scratch);
1409     __ st(G3_scratch, thread_state);
1410     if (os::is_MP()) {
1411       if (UseMembar) {
1412         // Force this write out before the read below
1413         __ membar(Assembler::StoreLoad);
1414       } else {
1415         // Write serialization page so VM thread can do a pseudo remote membar.
1416         // We use the current thread pointer to calculate a thread specific
1417         // offset to write to within the page. This minimizes bus traffic
1418         // due to cache line collision.
1419         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1420       }
1421     }
1422     __ load_contents(sync_state, G3_scratch);
1423     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1424 
1425     Label L;
1426     __ br(Assembler::notEqual, false, Assembler::pn, L);
1427     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1428     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1429     __ bind(L);
1430 
1431     // Block.  Save any potential method result value before the operation and
1432     // use a leaf call to leave the last_Java_frame setup undisturbed.
1433     save_native_result();
1434     __ call_VM_leaf(L7_thread_cache,
1435                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1436                     G2_thread);
1437 
1438     // Restore any method result value
1439     restore_native_result();
1440     __ bind(no_block);
1441   }
1442 
1443   // Clear the frame anchor now
1444 
1445   __ reset_last_Java_frame();
1446 
1447   // Move the result handler address
1448   __ mov(Lscratch, G3_scratch);
1449   // return possible result to the outer frame
1450   __ restore(O0, G0, O0);
1451 
1452   // Move result handler to expected register
1453   __ mov(G3_scratch, Lscratch);
1454 
1455   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1456   // switch to thread_in_Java.
1457 
1458   __ set(_thread_in_Java, G3_scratch);
1459   __ st(G3_scratch, thread_state);
1460 
1461   if (CheckJNICalls) {
1462     // clear_pending_jni_exception_check
1463     __ st_ptr(G0, G2_thread, JavaThread::pending_jni_exception_check_fn_offset());
1464   }
1465 
1466   // reset handle block
1467   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1468   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1469 
1470   // If we have an oop result store it where it will be safe for any further gc
1471   // until we return now that we've released the handle it might be protected by
1472 
1473   { Label no_oop, store_result;
1474 
1475     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1476     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1477     // Unbox oop result, e.g. JNIHandles::resolve value in O0.
1478     __ br_null(O0, false, Assembler::pn, store_result); // Use NULL as-is.
1479     __ delayed()->andcc(O0, JNIHandles::weak_tag_mask, G0); // Test for jweak
1480     __ brx(Assembler::zero, true, Assembler::pt, store_result);
1481     __ delayed()->ld_ptr(O0, 0, O0); // Maybe resolve (untagged) jobject.
1482     // Resolve jweak.
1483     __ ld_ptr(O0, -JNIHandles::weak_tag_value, O0);
1484 #if INCLUDE_ALL_GCS
1485     if (UseG1GC) {
1486       __ g1_write_barrier_pre(noreg /* obj */,
1487                               noreg /* index */,
1488                               0 /* offset */,
1489                               O0 /* pre_val */,
1490                               G3_scratch /* tmp */,
1491                               true /* preserve_o_regs */);
1492     }
1493 #endif // INCLUDE_ALL_GCS
1494     __ bind(store_result);
1495     // Store it where gc will look for it and result handler expects it.
1496     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1497 
1498     __ bind(no_oop);
1499 
1500   }
1501 
1502 
1503   // handle exceptions (exception handling will handle unlocking!)
1504   { Label L;
1505     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1506     __ ld_ptr(exception_addr, Gtemp);
1507     __ br_null_short(Gtemp, Assembler::pt, L);
1508     // Note: This could be handled more efficiently since we know that the native
1509     //       method doesn't have an exception handler. We could directly return
1510     //       to the exception handler for the caller.
1511     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1512     __ should_not_reach_here();
1513     __ bind(L);
1514   }
1515 
1516   // JVMTI support (preserves thread register)
1517   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1518 
1519   if (synchronized) {
1520     // save and restore any potential method result value around the unlocking operation
1521     save_native_result();
1522 
1523     __ add( __ top_most_monitor(), O1);
1524     __ unlock_object(O1);
1525 
1526     restore_native_result();
1527   }
1528 
1529   // dispose of return address and remove activation
1530 #ifdef ASSERT
1531   { Label ok;
1532     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1533     __ stop("bad I5_savedSP value");
1534     __ should_not_reach_here();
1535     __ bind(ok);
1536   }
1537 #endif
1538   __ jmp(Lscratch, 0);
1539   __ delayed()->nop();
1540 
1541   if (inc_counter) {
1542     // handle invocation counter overflow
1543     __ bind(invocation_counter_overflow);
1544     generate_counter_overflow(Lcontinue);
1545   }
1546 
1547   return entry;
1548 }
1549 
1550 
1551 // Generic method entry to (asm) interpreter
1552 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1553   address entry = __ pc();
1554 
1555   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1556 
1557   // the following temporary registers are used during frame creation
1558   const Register Gtmp1 = G3_scratch ;
1559   const Register Gtmp2 = G1_scratch;
1560 
1561   // make sure registers are different!
1562   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1563 
1564   const Address constMethod       (G5_method, Method::const_offset());
1565   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1566   // and use in the asserts.
1567   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1568 
1569   const Register Glocals_size = G3;
1570   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1571 
1572   // make sure method is not native & not abstract
1573   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1574 #ifdef ASSERT
1575   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1576   { Label L;
1577     __ btst(JVM_ACC_NATIVE, Gtmp1);
1578     __ br(Assembler::zero, false, Assembler::pt, L);
1579     __ delayed()->nop();
1580     __ stop("tried to execute native method as non-native");
1581     __ bind(L);
1582   }
1583   { Label L;
1584     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1585     __ br(Assembler::zero, false, Assembler::pt, L);
1586     __ delayed()->nop();
1587     __ stop("tried to execute abstract method as non-abstract");
1588     __ bind(L);
1589   }
1590 #endif // ASSERT
1591 
1592   // generate the code to allocate the interpreter stack frame
1593 
1594   generate_fixed_frame(false);
1595 
1596   //
1597   // Code to initialize the extra (i.e. non-parm) locals
1598   //
1599   Register init_value = noreg;    // will be G0 if we must clear locals
1600   // The way the code was setup before zerolocals was always true for vanilla java entries.
1601   // It could only be false for the specialized entries like accessor or empty which have
1602   // no extra locals so the testing was a waste of time and the extra locals were always
1603   // initialized. We removed this extra complication to already over complicated code.
1604 
1605   init_value = G0;
1606   Label clear_loop;
1607 
1608   const Register RconstMethod = O1;
1609   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1610   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1611 
1612   // NOTE: If you change the frame layout, this code will need to
1613   // be updated!
1614   __ ld_ptr( constMethod, RconstMethod );
1615   __ lduh( size_of_locals, O2 );
1616   __ lduh( size_of_parameters, O1 );
1617   __ sll( O2, Interpreter::logStackElementSize, O2);
1618   __ sll( O1, Interpreter::logStackElementSize, O1 );
1619   __ sub( Llocals, O2, O2 );
1620   __ sub( Llocals, O1, O1 );
1621 
1622   __ bind( clear_loop );
1623   __ inc( O2, wordSize );
1624 
1625   __ cmp( O2, O1 );
1626   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1627   __ delayed()->st_ptr( init_value, O2, 0 );
1628 
1629   const Address do_not_unlock_if_synchronized(G2_thread,
1630     JavaThread::do_not_unlock_if_synchronized_offset());
1631   // Since at this point in the method invocation the exception handler
1632   // would try to exit the monitor of synchronized methods which hasn't
1633   // been entered yet, we set the thread local variable
1634   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1635   // runtime, exception handling i.e. unlock_if_synchronized_method will
1636   // check this thread local flag.
1637   __ movbool(true, G3_scratch);
1638   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1639 
1640   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1641   // increment invocation counter and check for overflow
1642   //
1643   // Note: checking for negative value instead of overflow
1644   //       so we have a 'sticky' overflow test (may be of
1645   //       importance as soon as we have true MT/MP)
1646   Label invocation_counter_overflow;
1647   Label profile_method;
1648   Label profile_method_continue;
1649   Label Lcontinue;
1650   if (inc_counter) {
1651     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1652     if (ProfileInterpreter) {
1653       __ bind(profile_method_continue);
1654     }
1655   }
1656   __ bind(Lcontinue);
1657 
1658   bang_stack_shadow_pages(false);
1659 
1660   // reset the _do_not_unlock_if_synchronized flag
1661   __ stbool(G0, do_not_unlock_if_synchronized);
1662 
1663   // check for synchronized methods
1664   // Must happen AFTER invocation_counter check and stack overflow check,
1665   // so method is not locked if overflows.
1666 
1667   if (synchronized) {
1668     lock_method();
1669   } else {
1670 #ifdef ASSERT
1671     { Label ok;
1672       __ ld(access_flags, O0);
1673       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1674       __ br( Assembler::zero, false, Assembler::pt, ok);
1675       __ delayed()->nop();
1676       __ stop("method needs synchronization");
1677       __ bind(ok);
1678     }
1679 #endif // ASSERT
1680   }
1681 
1682   // start execution
1683 
1684   __ verify_thread();
1685 
1686   // jvmti support
1687   __ notify_method_entry();
1688 
1689   // start executing instructions
1690   __ dispatch_next(vtos);
1691 
1692 
1693   if (inc_counter) {
1694     if (ProfileInterpreter) {
1695       // We have decided to profile this method in the interpreter
1696       __ bind(profile_method);
1697 
1698       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1699       __ set_method_data_pointer_for_bcp();
1700       __ ba_short(profile_method_continue);
1701     }
1702 
1703     // handle invocation counter overflow
1704     __ bind(invocation_counter_overflow);
1705     generate_counter_overflow(Lcontinue);
1706   }
1707 
1708   return entry;
1709 }
1710 
1711 //----------------------------------------------------------------------------------------------------
1712 // Exceptions
1713 void TemplateInterpreterGenerator::generate_throw_exception() {
1714 
1715   // Entry point in previous activation (i.e., if the caller was interpreted)
1716   Interpreter::_rethrow_exception_entry = __ pc();
1717   // O0: exception
1718 
1719   // entry point for exceptions thrown within interpreter code
1720   Interpreter::_throw_exception_entry = __ pc();
1721   __ verify_thread();
1722   // expression stack is undefined here
1723   // O0: exception, i.e. Oexception
1724   // Lbcp: exception bcp
1725   __ verify_oop(Oexception);
1726 
1727 
1728   // expression stack must be empty before entering the VM in case of an exception
1729   __ empty_expression_stack();
1730   // find exception handler address and preserve exception oop
1731   // call C routine to find handler and jump to it
1732   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1733   __ push_ptr(O1); // push exception for exception handler bytecodes
1734 
1735   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1736   __ delayed()->nop();
1737 
1738 
1739   // if the exception is not handled in the current frame
1740   // the frame is removed and the exception is rethrown
1741   // (i.e. exception continuation is _rethrow_exception)
1742   //
1743   // Note: At this point the bci is still the bxi for the instruction which caused
1744   //       the exception and the expression stack is empty. Thus, for any VM calls
1745   //       at this point, GC will find a legal oop map (with empty expression stack).
1746 
1747   // in current activation
1748   // tos: exception
1749   // Lbcp: exception bcp
1750 
1751   //
1752   // JVMTI PopFrame support
1753   //
1754 
1755   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1756   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1757   // Set the popframe_processing bit in popframe_condition indicating that we are
1758   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1759   // popframe handling cycles.
1760 
1761   __ ld(popframe_condition_addr, G3_scratch);
1762   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1763   __ stw(G3_scratch, popframe_condition_addr);
1764 
1765   // Empty the expression stack, as in normal exception handling
1766   __ empty_expression_stack();
1767   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1768 
1769   {
1770     // Check to see whether we are returning to a deoptimized frame.
1771     // (The PopFrame call ensures that the caller of the popped frame is
1772     // either interpreted or compiled and deoptimizes it if compiled.)
1773     // In this case, we can't call dispatch_next() after the frame is
1774     // popped, but instead must save the incoming arguments and restore
1775     // them after deoptimization has occurred.
1776     //
1777     // Note that we don't compare the return PC against the
1778     // deoptimization blob's unpack entry because of the presence of
1779     // adapter frames in C2.
1780     Label caller_not_deoptimized;
1781     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1782     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1783 
1784     const Register Gtmp1 = G3_scratch;
1785     const Register Gtmp2 = G1_scratch;
1786     const Register RconstMethod = Gtmp1;
1787     const Address constMethod(Lmethod, Method::const_offset());
1788     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1789 
1790     // Compute size of arguments for saving when returning to deoptimized caller
1791     __ ld_ptr(constMethod, RconstMethod);
1792     __ lduh(size_of_parameters, Gtmp1);
1793     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1794     __ sub(Llocals, Gtmp1, Gtmp2);
1795     __ add(Gtmp2, wordSize, Gtmp2);
1796     // Save these arguments
1797     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1798     // Inform deoptimization that it is responsible for restoring these arguments
1799     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1800     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1801     __ st(Gtmp1, popframe_condition_addr);
1802 
1803     // Return from the current method
1804     // The caller's SP was adjusted upon method entry to accomodate
1805     // the callee's non-argument locals. Undo that adjustment.
1806     __ ret();
1807     __ delayed()->restore(I5_savedSP, G0, SP);
1808 
1809     __ bind(caller_not_deoptimized);
1810   }
1811 
1812   // Clear the popframe condition flag
1813   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1814 
1815   // Get out of the current method (how this is done depends on the particular compiler calling
1816   // convention that the interpreter currently follows)
1817   // The caller's SP was adjusted upon method entry to accomodate
1818   // the callee's non-argument locals. Undo that adjustment.
1819   __ restore(I5_savedSP, G0, SP);
1820   // The method data pointer was incremented already during
1821   // call profiling. We have to restore the mdp for the current bcp.
1822   if (ProfileInterpreter) {
1823     __ set_method_data_pointer_for_bcp();
1824   }
1825 
1826 #if INCLUDE_JVMTI
1827   { Label L_done;
1828 
1829     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1830     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1831 
1832     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1833     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1834 
1835     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1836 
1837     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1838     __ delayed()->nop();
1839 
1840     __ st_ptr(G1_scratch, Lesp, wordSize);
1841     __ bind(L_done);
1842   }
1843 #endif // INCLUDE_JVMTI
1844 
1845   // Resume bytecode interpretation at the current bcp
1846   __ dispatch_next(vtos);
1847   // end of JVMTI PopFrame support
1848 
1849   Interpreter::_remove_activation_entry = __ pc();
1850 
1851   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1852   __ pop_ptr(Oexception);                                  // get exception
1853 
1854   // Intel has the following comment:
1855   //// remove the activation (without doing throws on illegalMonitorExceptions)
1856   // They remove the activation without checking for bad monitor state.
1857   // %%% We should make sure this is the right semantics before implementing.
1858 
1859   __ set_vm_result(Oexception);
1860   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1861 
1862   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1863 
1864   __ get_vm_result(Oexception);
1865   __ verify_oop(Oexception);
1866 
1867   const int return_reg_adjustment = frame::pc_return_offset;
1868   Address issuing_pc_addr(I7, return_reg_adjustment);
1869 
1870   // We are done with this activation frame; find out where to go next.
1871   // The continuation point will be an exception handler, which expects
1872   // the following registers set up:
1873   //
1874   // Oexception: exception
1875   // Oissuing_pc: the local call that threw exception
1876   // Other On: garbage
1877   // In/Ln:  the contents of the caller's register window
1878   //
1879   // We do the required restore at the last possible moment, because we
1880   // need to preserve some state across a runtime call.
1881   // (Remember that the caller activation is unknown--it might not be
1882   // interpreted, so things like Lscratch are useless in the caller.)
1883 
1884   // Although the Intel version uses call_C, we can use the more
1885   // compact call_VM.  (The only real difference on SPARC is a
1886   // harmlessly ignored [re]set_last_Java_frame, compared with
1887   // the Intel code which lacks this.)
1888   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1889   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1890   __ super_call_VM_leaf(L7_thread_cache,
1891                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1892                         G2_thread, Oissuing_pc->after_save());
1893 
1894   // The caller's SP was adjusted upon method entry to accomodate
1895   // the callee's non-argument locals. Undo that adjustment.
1896   __ JMP(O0, 0);                         // return exception handler in caller
1897   __ delayed()->restore(I5_savedSP, G0, SP);
1898 
1899   // (same old exception object is already in Oexception; see above)
1900   // Note that an "issuing PC" is actually the next PC after the call
1901 }
1902 
1903 
1904 //
1905 // JVMTI ForceEarlyReturn support
1906 //
1907 
1908 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1909   address entry = __ pc();
1910 
1911   __ empty_expression_stack();
1912   __ load_earlyret_value(state);
1913 
1914   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1915   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1916 
1917   // Clear the earlyret state
1918   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1919 
1920   __ remove_activation(state,
1921                        /* throw_monitor_exception */ false,
1922                        /* install_monitor_exception */ false);
1923 
1924   // The caller's SP was adjusted upon method entry to accomodate
1925   // the callee's non-argument locals. Undo that adjustment.
1926   __ ret();                             // return to caller
1927   __ delayed()->restore(I5_savedSP, G0, SP);
1928 
1929   return entry;
1930 } // end of JVMTI ForceEarlyReturn support
1931 
1932 
1933 //------------------------------------------------------------------------------------------------------------------------
1934 // Helper for vtos entry point generation
1935 
1936 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1937   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1938   Label L;
1939   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1940   fep = __ pc(); __ push_f();   __ ba_short(L);
1941   dep = __ pc(); __ push_d();   __ ba_short(L);
1942   lep = __ pc(); __ push_l();   __ ba_short(L);
1943   iep = __ pc(); __ push_i();
1944   bep = cep = sep = iep;                        // there aren't any
1945   vep = __ pc(); __ bind(L);                    // fall through
1946   generate_and_dispatch(t);
1947 }
1948 
1949 // --------------------------------------------------------------------------------
1950 
1951 // Non-product code
1952 #ifndef PRODUCT
1953 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1954   address entry = __ pc();
1955 
1956   __ push(state);
1957   __ mov(O7, Lscratch); // protect return address within interpreter
1958 
1959   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1960   __ mov( Otos_l2, G3_scratch );
1961   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1962   __ mov(Lscratch, O7); // restore return address
1963   __ pop(state);
1964   __ retl();
1965   __ delayed()->nop();
1966 
1967   return entry;
1968 }
1969 
1970 
1971 // helpers for generate_and_dispatch
1972 
1973 void TemplateInterpreterGenerator::count_bytecode() {
1974   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1975 }
1976 
1977 
1978 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1979   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
1980 }
1981 
1982 
1983 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1984   AddressLiteral index   (&BytecodePairHistogram::_index);
1985   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
1986 
1987   // get index, shift out old bytecode, bring in new bytecode, and store it
1988   // _index = (_index >> log2_number_of_codes) |
1989   //          (bytecode << log2_number_of_codes);
1990 
1991   __ load_contents(index, G4_scratch);
1992   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
1993   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
1994   __ or3( G3_scratch,  G4_scratch, G4_scratch );
1995   __ store_contents(G4_scratch, index, G3_scratch);
1996 
1997   // bump bucket contents
1998   // _counters[_index] ++;
1999 
2000   __ set(counters, G3_scratch);                       // loads into G3_scratch
2001   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2002   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2003   __ ld (G3_scratch, 0, G4_scratch);
2004   __ inc (G4_scratch);
2005   __ st (G4_scratch, 0, G3_scratch);
2006 }
2007 
2008 
2009 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2010   // Call a little run-time stub to avoid blow-up for each bytecode.
2011   // The run-time runtime saves the right registers, depending on
2012   // the tosca in-state for the given template.
2013   address entry = Interpreter::trace_code(t->tos_in());
2014   guarantee(entry != NULL, "entry must have been generated");
2015   __ call(entry, relocInfo::none);
2016   __ delayed()->nop();
2017 }
2018 
2019 
2020 void TemplateInterpreterGenerator::stop_interpreter_at() {
2021   AddressLiteral counter(&BytecodeCounter::_counter_value);
2022   __ load_contents(counter, G3_scratch);
2023   AddressLiteral stop_at(&StopInterpreterAt);
2024   __ load_ptr_contents(stop_at, G4_scratch);
2025   __ cmp(G3_scratch, G4_scratch);
2026   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2027 }
2028 #endif // not PRODUCT