1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_bsd.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 // put OS-includes here
  74 # include <sys/types.h>
  75 # include <sys/mman.h>
  76 # include <sys/stat.h>
  77 # include <sys/select.h>
  78 # include <pthread.h>
  79 # include <signal.h>
  80 # include <errno.h>
  81 # include <dlfcn.h>
  82 # include <stdio.h>
  83 # include <unistd.h>
  84 # include <sys/resource.h>
  85 # include <pthread.h>
  86 # include <sys/stat.h>
  87 # include <sys/time.h>
  88 # include <sys/times.h>
  89 # include <sys/utsname.h>
  90 # include <sys/socket.h>
  91 # include <sys/wait.h>
  92 # include <time.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <sys/param.h>
  99 # include <sys/sysctl.h>
 100 # include <sys/ipc.h>
 101 # include <sys/shm.h>
 102 #ifndef __APPLE__
 103 # include <link.h>
 104 #endif
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 # include <sys/syscall.h>
 109 
 110 #if defined(__FreeBSD__) || defined(__NetBSD__)
 111   #include <elf.h>
 112 #endif
 113 
 114 #ifdef __APPLE__
 115   #include <mach/mach.h> // semaphore_* API
 116   #include <mach-o/dyld.h>
 117   #include <sys/proc_info.h>
 118   #include <objc/objc-auto.h>
 119 #endif
 120 
 121 #ifndef MAP_ANONYMOUS
 122   #define MAP_ANONYMOUS MAP_ANON
 123 #endif
 124 
 125 #define MAX_PATH    (2 * K)
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Bsd::_physical_memory = 0;
 135 
 136 #ifdef __APPLE__
 137 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 138 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 139 #else
 140 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 #endif
 142 pthread_t os::Bsd::_main_thread;
 143 int os::Bsd::_page_size = -1;
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Bsd::available_memory();
 169 }
 170 
 171 // available here means free
 172 julong os::Bsd::available_memory() {
 173   uint64_t available = physical_memory() >> 2;
 174 #ifdef __APPLE__
 175   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 176   vm_statistics64_data_t vmstat;
 177   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 178                                          (host_info64_t)&vmstat, &count);
 179   assert(kerr == KERN_SUCCESS,
 180          "host_statistics64 failed - check mach_host_self() and count");
 181   if (kerr == KERN_SUCCESS) {
 182     available = vmstat.free_count * os::vm_page_size();
 183   }
 184 #endif
 185   return available;
 186 }
 187 
 188 julong os::physical_memory() {
 189   return Bsd::physical_memory();
 190 }
 191 
 192 // Return true if user is running as root.
 193 
 194 bool os::have_special_privileges() {
 195   static bool init = false;
 196   static bool privileges = false;
 197   if (!init) {
 198     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 199     init = true;
 200   }
 201   return privileges;
 202 }
 203 
 204 
 205 
 206 // Cpu architecture string
 207 #if   defined(ZERO)
 208 static char cpu_arch[] = ZERO_LIBARCH;
 209 #elif defined(IA64)
 210 static char cpu_arch[] = "ia64";
 211 #elif defined(IA32)
 212 static char cpu_arch[] = "i386";
 213 #elif defined(AMD64)
 214 static char cpu_arch[] = "amd64";
 215 #elif defined(ARM)
 216 static char cpu_arch[] = "arm";
 217 #elif defined(PPC32)
 218 static char cpu_arch[] = "ppc";
 219 #elif defined(SPARC)
 220   #ifdef _LP64
 221 static char cpu_arch[] = "sparcv9";
 222   #else
 223 static char cpu_arch[] = "sparc";
 224   #endif
 225 #else
 226   #error Add appropriate cpu_arch setting
 227 #endif
 228 
 229 // Compiler variant
 230 #ifdef COMPILER2
 231   #define COMPILER_VARIANT "server"
 232 #else
 233   #define COMPILER_VARIANT "client"
 234 #endif
 235 
 236 
 237 void os::Bsd::initialize_system_info() {
 238   int mib[2];
 239   size_t len;
 240   int cpu_val;
 241   julong mem_val;
 242 
 243   // get processors count via hw.ncpus sysctl
 244   mib[0] = CTL_HW;
 245   mib[1] = HW_NCPU;
 246   len = sizeof(cpu_val);
 247   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 248     assert(len == sizeof(cpu_val), "unexpected data size");
 249     set_processor_count(cpu_val);
 250   } else {
 251     set_processor_count(1);   // fallback
 252   }
 253 
 254   // get physical memory via hw.memsize sysctl (hw.memsize is used
 255   // since it returns a 64 bit value)
 256   mib[0] = CTL_HW;
 257 
 258 #if defined (HW_MEMSIZE) // Apple
 259   mib[1] = HW_MEMSIZE;
 260 #elif defined(HW_PHYSMEM) // Most of BSD
 261   mib[1] = HW_PHYSMEM;
 262 #elif defined(HW_REALMEM) // Old FreeBSD
 263   mib[1] = HW_REALMEM;
 264 #else
 265   #error No ways to get physmem
 266 #endif
 267 
 268   len = sizeof(mem_val);
 269   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 270     assert(len == sizeof(mem_val), "unexpected data size");
 271     _physical_memory = mem_val;
 272   } else {
 273     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 274   }
 275 
 276 #ifdef __OpenBSD__
 277   {
 278     // limit _physical_memory memory view on OpenBSD since
 279     // datasize rlimit restricts us anyway.
 280     struct rlimit limits;
 281     getrlimit(RLIMIT_DATA, &limits);
 282     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 283   }
 284 #endif
 285 }
 286 
 287 #ifdef __APPLE__
 288 static const char *get_home() {
 289   const char *home_dir = ::getenv("HOME");
 290   if ((home_dir == NULL) || (*home_dir == '\0')) {
 291     struct passwd *passwd_info = getpwuid(geteuid());
 292     if (passwd_info != NULL) {
 293       home_dir = passwd_info->pw_dir;
 294     }
 295   }
 296 
 297   return home_dir;
 298 }
 299 #endif
 300 
 301 void os::init_system_properties_values() {
 302   // The next steps are taken in the product version:
 303   //
 304   // Obtain the JAVA_HOME value from the location of libjvm.so.
 305   // This library should be located at:
 306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 307   //
 308   // If "/jre/lib/" appears at the right place in the path, then we
 309   // assume libjvm.so is installed in a JDK and we use this path.
 310   //
 311   // Otherwise exit with message: "Could not create the Java virtual machine."
 312   //
 313   // The following extra steps are taken in the debugging version:
 314   //
 315   // If "/jre/lib/" does NOT appear at the right place in the path
 316   // instead of exit check for $JAVA_HOME environment variable.
 317   //
 318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 320   // it looks like libjvm.so is installed there
 321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 322   //
 323   // Otherwise exit.
 324   //
 325   // Important note: if the location of libjvm.so changes this
 326   // code needs to be changed accordingly.
 327 
 328   // See ld(1):
 329   //      The linker uses the following search paths to locate required
 330   //      shared libraries:
 331   //        1: ...
 332   //        ...
 333   //        7: The default directories, normally /lib and /usr/lib.
 334 #ifndef DEFAULT_LIBPATH
 335   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 336 #endif
 337 
 338 // Base path of extensions installed on the system.
 339 #define SYS_EXT_DIR     "/usr/java/packages"
 340 #define EXTENSIONS_DIR  "/lib/ext"
 341 
 342 #ifndef __APPLE__
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 360     pslash = strrchr(buf, '/');
 361     if (pslash != NULL) {
 362       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 363     }
 364     Arguments::set_dll_dir(buf);
 365 
 366     if (pslash != NULL) {
 367       pslash = strrchr(buf, '/');
 368       if (pslash != NULL) {
 369         *pslash = '\0';          // Get rid of /<arch>.
 370         pslash = strrchr(buf, '/');
 371         if (pslash != NULL) {
 372           *pslash = '\0';        // Get rid of /lib.
 373         }
 374       }
 375     }
 376     Arguments::set_java_home(buf);
 377     set_boot_path('/', ':');
 378   }
 379 
 380   // Where to look for native libraries.
 381   //
 382   // Note: Due to a legacy implementation, most of the library path
 383   // is set in the launcher. This was to accomodate linking restrictions
 384   // on legacy Bsd implementations (which are no longer supported).
 385   // Eventually, all the library path setting will be done here.
 386   //
 387   // However, to prevent the proliferation of improperly built native
 388   // libraries, the new path component /usr/java/packages is added here.
 389   // Eventually, all the library path setting will be done here.
 390   {
 391     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 392     // should always exist (until the legacy problem cited above is
 393     // addressed).
 394     const char *v = ::getenv("LD_LIBRARY_PATH");
 395     const char *v_colon = ":";
 396     if (v == NULL) { v = ""; v_colon = ""; }
 397     // That's +1 for the colon and +1 for the trailing '\0'.
 398     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 399                                                      strlen(v) + 1 +
 400                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 401                                                      mtInternal);
 402     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 403     Arguments::set_library_path(ld_library_path);
 404     FREE_C_HEAP_ARRAY(char, ld_library_path);
 405   }
 406 
 407   // Extensions directories.
 408   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 409   Arguments::set_ext_dirs(buf);
 410 
 411   FREE_C_HEAP_ARRAY(char, buf);
 412 
 413 #else // __APPLE__
 414 
 415   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 416   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 417 
 418   const char *user_home_dir = get_home();
 419   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 420   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 421     sizeof(SYS_EXTENSIONS_DIRS);
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 429   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443 #ifdef STATIC_BUILD
 444     strcat(buf, "/lib");
 445 #endif
 446 
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';          // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     set_boot_path('/', ':');
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Bsd implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 474     // can specify a directory inside an app wrapper
 475     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 476     const char *l_colon = ":";
 477     if (l == NULL) { l = ""; l_colon = ""; }
 478 
 479     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 480     const char *v_colon = ":";
 481     if (v == NULL) { v = ""; v_colon = ""; }
 482 
 483     // Apple's Java6 has "." at the beginning of java.library.path.
 484     // OpenJDK on Windows has "." at the end of java.library.path.
 485     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 486     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 487     // "." is appended to the end of java.library.path. Yes, this
 488     // could cause a change in behavior, but Apple's Java6 behavior
 489     // can be achieved by putting "." at the beginning of the
 490     // JAVA_LIBRARY_PATH environment variable.
 491     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 492                                                      strlen(v) + 1 + strlen(l) + 1 +
 493                                                      system_ext_size + 3,
 494                                                      mtInternal);
 495     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 496             v, v_colon, l, l_colon, user_home_dir);
 497     Arguments::set_library_path(ld_library_path);
 498     FREE_C_HEAP_ARRAY(char, ld_library_path);
 499   }
 500 
 501   // Extensions directories.
 502   //
 503   // Note that the space for the colon and the trailing null are provided
 504   // by the nulls included by the sizeof operator (so actually one byte more
 505   // than necessary is allocated).
 506   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 507           user_home_dir, Arguments::get_java_home());
 508   Arguments::set_ext_dirs(buf);
 509 
 510   FREE_C_HEAP_ARRAY(char, buf);
 511 
 512 #undef SYS_EXTENSIONS_DIR
 513 #undef SYS_EXTENSIONS_DIRS
 514 
 515 #endif // __APPLE__
 516 
 517 #undef SYS_EXT_DIR
 518 #undef EXTENSIONS_DIR
 519 }
 520 
 521 ////////////////////////////////////////////////////////////////////////////////
 522 // breakpoint support
 523 
 524 void os::breakpoint() {
 525   BREAKPOINT;
 526 }
 527 
 528 extern "C" void breakpoint() {
 529   // use debugger to set breakpoint here
 530 }
 531 
 532 ////////////////////////////////////////////////////////////////////////////////
 533 // signal support
 534 
 535 debug_only(static bool signal_sets_initialized = false);
 536 static sigset_t unblocked_sigs, vm_sigs;
 537 
 538 bool os::Bsd::is_sig_ignored(int sig) {
 539   struct sigaction oact;
 540   sigaction(sig, (struct sigaction*)NULL, &oact);
 541   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 542                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 543   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 544     return true;
 545   } else {
 546     return false;
 547   }
 548 }
 549 
 550 void os::Bsd::signal_sets_init() {
 551   // Should also have an assertion stating we are still single-threaded.
 552   assert(!signal_sets_initialized, "Already initialized");
 553   // Fill in signals that are necessarily unblocked for all threads in
 554   // the VM. Currently, we unblock the following signals:
 555   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 556   //                         by -Xrs (=ReduceSignalUsage));
 557   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 558   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 559   // the dispositions or masks wrt these signals.
 560   // Programs embedding the VM that want to use the above signals for their
 561   // own purposes must, at this time, use the "-Xrs" option to prevent
 562   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 563   // (See bug 4345157, and other related bugs).
 564   // In reality, though, unblocking these signals is really a nop, since
 565   // these signals are not blocked by default.
 566   sigemptyset(&unblocked_sigs);
 567   sigaddset(&unblocked_sigs, SIGILL);
 568   sigaddset(&unblocked_sigs, SIGSEGV);
 569   sigaddset(&unblocked_sigs, SIGBUS);
 570   sigaddset(&unblocked_sigs, SIGFPE);
 571   sigaddset(&unblocked_sigs, SR_signum);
 572 
 573   if (!ReduceSignalUsage) {
 574     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 575       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 576 
 577     }
 578     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 579       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 580     }
 581     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 582       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 583     }
 584   }
 585   // Fill in signals that are blocked by all but the VM thread.
 586   sigemptyset(&vm_sigs);
 587   if (!ReduceSignalUsage) {
 588     sigaddset(&vm_sigs, BREAK_SIGNAL);
 589   }
 590   debug_only(signal_sets_initialized = true);
 591 
 592 }
 593 
 594 // These are signals that are unblocked while a thread is running Java.
 595 // (For some reason, they get blocked by default.)
 596 sigset_t* os::Bsd::unblocked_signals() {
 597   assert(signal_sets_initialized, "Not initialized");
 598   return &unblocked_sigs;
 599 }
 600 
 601 // These are the signals that are blocked while a (non-VM) thread is
 602 // running Java. Only the VM thread handles these signals.
 603 sigset_t* os::Bsd::vm_signals() {
 604   assert(signal_sets_initialized, "Not initialized");
 605   return &vm_sigs;
 606 }
 607 
 608 void os::Bsd::hotspot_sigmask(Thread* thread) {
 609 
 610   //Save caller's signal mask before setting VM signal mask
 611   sigset_t caller_sigmask;
 612   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 613 
 614   OSThread* osthread = thread->osthread();
 615   osthread->set_caller_sigmask(caller_sigmask);
 616 
 617   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 618 
 619   if (!ReduceSignalUsage) {
 620     if (thread->is_VM_thread()) {
 621       // Only the VM thread handles BREAK_SIGNAL ...
 622       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 623     } else {
 624       // ... all other threads block BREAK_SIGNAL
 625       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 626     }
 627   }
 628 }
 629 
 630 
 631 //////////////////////////////////////////////////////////////////////////////
 632 // create new thread
 633 
 634 #ifdef __APPLE__
 635 // library handle for calling objc_registerThreadWithCollector()
 636 // without static linking to the libobjc library
 637   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 638   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 639 typedef void (*objc_registerThreadWithCollector_t)();
 640 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 641 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 642 #endif
 643 
 644 #ifdef __APPLE__
 645 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 646   // Additional thread_id used to correlate threads in SA
 647   thread_identifier_info_data_t     m_ident_info;
 648   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 649 
 650   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 651               (thread_info_t) &m_ident_info, &count);
 652 
 653   return m_ident_info.thread_id;
 654 }
 655 #endif
 656 
 657 // Thread start routine for all newly created threads
 658 static void *thread_native_entry(Thread *thread) {
 659   // Try to randomize the cache line index of hot stack frames.
 660   // This helps when threads of the same stack traces evict each other's
 661   // cache lines. The threads can be either from the same JVM instance, or
 662   // from different JVM instances. The benefit is especially true for
 663   // processors with hyperthreading technology.
 664   static int counter = 0;
 665   int pid = os::current_process_id();
 666   alloca(((pid ^ counter++) & 7) * 128);
 667 
 668   thread->initialize_thread_current();
 669 
 670   OSThread* osthread = thread->osthread();
 671   Monitor* sync = osthread->startThread_lock();
 672 
 673   osthread->set_thread_id(os::Bsd::gettid());
 674 
 675   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 676     os::current_thread_id(), (uintx) pthread_self());
 677 
 678 #ifdef __APPLE__
 679   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 680   guarantee(unique_thread_id != 0, "unique thread id was not found");
 681   osthread->set_unique_thread_id(unique_thread_id);
 682 #endif
 683   // initialize signal mask for this thread
 684   os::Bsd::hotspot_sigmask(thread);
 685 
 686   // initialize floating point control register
 687   os::Bsd::init_thread_fpu_state();
 688 
 689 #ifdef __APPLE__
 690   // register thread with objc gc
 691   if (objc_registerThreadWithCollectorFunction != NULL) {
 692     objc_registerThreadWithCollectorFunction();
 693   }
 694 #endif
 695 
 696   // handshaking with parent thread
 697   {
 698     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 699 
 700     // notify parent thread
 701     osthread->set_state(INITIALIZED);
 702     sync->notify_all();
 703 
 704     // wait until os::start_thread()
 705     while (osthread->get_state() == INITIALIZED) {
 706       sync->wait(Mutex::_no_safepoint_check_flag);
 707     }
 708   }
 709 
 710   // call one more level start routine
 711   thread->run();
 712 
 713   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 714     os::current_thread_id(), (uintx) pthread_self());
 715 
 716   // If a thread has not deleted itself ("delete this") as part of its
 717   // termination sequence, we have to ensure thread-local-storage is
 718   // cleared before we actually terminate. No threads should ever be
 719   // deleted asynchronously with respect to their termination.
 720   if (Thread::current_or_null_safe() != NULL) {
 721     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 722     thread->clear_thread_current();
 723   }
 724 
 725   return 0;
 726 }
 727 
 728 bool os::create_thread(Thread* thread, ThreadType thr_type,
 729                        size_t req_stack_size) {
 730   assert(thread->osthread() == NULL, "caller responsible");
 731 
 732   // Allocate the OSThread object
 733   OSThread* osthread = new OSThread(NULL, NULL);
 734   if (osthread == NULL) {
 735     return false;
 736   }
 737 
 738   // set the correct thread state
 739   osthread->set_thread_type(thr_type);
 740 
 741   // Initial state is ALLOCATED but not INITIALIZED
 742   osthread->set_state(ALLOCATED);
 743 
 744   thread->set_osthread(osthread);
 745 
 746   // init thread attributes
 747   pthread_attr_t attr;
 748   pthread_attr_init(&attr);
 749   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 750 
 751   // calculate stack size if it's not specified by caller
 752   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 753   int status = pthread_attr_setstacksize(&attr, stack_size);
 754   assert_status(status == 0, status, "pthread_attr_setstacksize");
 755 
 756   ThreadState state;
 757 
 758   {
 759     pthread_t tid;
 760     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 761 
 762     char buf[64];
 763     if (ret == 0) {
 764       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 765         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 766     } else {
 767       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 768         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 769     }
 770 
 771     pthread_attr_destroy(&attr);
 772 
 773     if (ret != 0) {
 774       // Need to clean up stuff we've allocated so far
 775       thread->set_osthread(NULL);
 776       delete osthread;
 777       return false;
 778     }
 779 
 780     // Store pthread info into the OSThread
 781     osthread->set_pthread_id(tid);
 782 
 783     // Wait until child thread is either initialized or aborted
 784     {
 785       Monitor* sync_with_child = osthread->startThread_lock();
 786       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 787       while ((state = osthread->get_state()) == ALLOCATED) {
 788         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 789       }
 790     }
 791 
 792   }
 793 
 794   // Aborted due to thread limit being reached
 795   if (state == ZOMBIE) {
 796     thread->set_osthread(NULL);
 797     delete osthread;
 798     return false;
 799   }
 800 
 801   // The thread is returned suspended (in state INITIALIZED),
 802   // and is started higher up in the call chain
 803   assert(state == INITIALIZED, "race condition");
 804   return true;
 805 }
 806 
 807 /////////////////////////////////////////////////////////////////////////////
 808 // attach existing thread
 809 
 810 // bootstrap the main thread
 811 bool os::create_main_thread(JavaThread* thread) {
 812   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 813   return create_attached_thread(thread);
 814 }
 815 
 816 bool os::create_attached_thread(JavaThread* thread) {
 817 #ifdef ASSERT
 818   thread->verify_not_published();
 819 #endif
 820 
 821   // Allocate the OSThread object
 822   OSThread* osthread = new OSThread(NULL, NULL);
 823 
 824   if (osthread == NULL) {
 825     return false;
 826   }
 827 
 828   osthread->set_thread_id(os::Bsd::gettid());
 829 
 830   // Store pthread info into the OSThread
 831 #ifdef __APPLE__
 832   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 833   guarantee(unique_thread_id != 0, "just checking");
 834   osthread->set_unique_thread_id(unique_thread_id);
 835 #endif
 836   osthread->set_pthread_id(::pthread_self());
 837 
 838   // initialize floating point control register
 839   os::Bsd::init_thread_fpu_state();
 840 
 841   // Initial thread state is RUNNABLE
 842   osthread->set_state(RUNNABLE);
 843 
 844   thread->set_osthread(osthread);
 845 
 846   // initialize signal mask for this thread
 847   // and save the caller's signal mask
 848   os::Bsd::hotspot_sigmask(thread);
 849 
 850   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 851     os::current_thread_id(), (uintx) pthread_self());
 852 
 853   return true;
 854 }
 855 
 856 void os::pd_start_thread(Thread* thread) {
 857   OSThread * osthread = thread->osthread();
 858   assert(osthread->get_state() != INITIALIZED, "just checking");
 859   Monitor* sync_with_child = osthread->startThread_lock();
 860   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 861   sync_with_child->notify();
 862 }
 863 
 864 // Free Bsd resources related to the OSThread
 865 void os::free_thread(OSThread* osthread) {
 866   assert(osthread != NULL, "osthread not set");
 867 
 868   // We are told to free resources of the argument thread,
 869   // but we can only really operate on the current thread.
 870   assert(Thread::current()->osthread() == osthread,
 871          "os::free_thread but not current thread");
 872 
 873   // Restore caller's signal mask
 874   sigset_t sigmask = osthread->caller_sigmask();
 875   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 876 
 877   delete osthread;
 878 }
 879 
 880 ////////////////////////////////////////////////////////////////////////////////
 881 // time support
 882 
 883 // Time since start-up in seconds to a fine granularity.
 884 // Used by VMSelfDestructTimer and the MemProfiler.
 885 double os::elapsedTime() {
 886 
 887   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 888 }
 889 
 890 jlong os::elapsed_counter() {
 891   return javaTimeNanos() - initial_time_count;
 892 }
 893 
 894 jlong os::elapsed_frequency() {
 895   return NANOSECS_PER_SEC; // nanosecond resolution
 896 }
 897 
 898 bool os::supports_vtime() { return true; }
 899 bool os::enable_vtime()   { return false; }
 900 bool os::vtime_enabled()  { return false; }
 901 
 902 double os::elapsedVTime() {
 903   // better than nothing, but not much
 904   return elapsedTime();
 905 }
 906 
 907 jlong os::javaTimeMillis() {
 908   timeval time;
 909   int status = gettimeofday(&time, NULL);
 910   assert(status != -1, "bsd error");
 911   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 912 }
 913 
 914 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 915   timeval time;
 916   int status = gettimeofday(&time, NULL);
 917   assert(status != -1, "bsd error");
 918   seconds = jlong(time.tv_sec);
 919   nanos = jlong(time.tv_usec) * 1000;
 920 }
 921 
 922 #ifndef __APPLE__
 923   #ifndef CLOCK_MONOTONIC
 924     #define CLOCK_MONOTONIC (1)
 925   #endif
 926 #endif
 927 
 928 #ifdef __APPLE__
 929 void os::Bsd::clock_init() {
 930   mach_timebase_info(&_timebase_info);
 931 }
 932 #else
 933 void os::Bsd::clock_init() {
 934   struct timespec res;
 935   struct timespec tp;
 936   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 937       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 938     // yes, monotonic clock is supported
 939     _clock_gettime = ::clock_gettime;
 940   }
 941 }
 942 #endif
 943 
 944 
 945 
 946 #ifdef __APPLE__
 947 
 948 jlong os::javaTimeNanos() {
 949   const uint64_t tm = mach_absolute_time();
 950   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 951   const uint64_t prev = Bsd::_max_abstime;
 952   if (now <= prev) {
 953     return prev;   // same or retrograde time;
 954   }
 955   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
 956   assert(obsv >= prev, "invariant");   // Monotonicity
 957   // If the CAS succeeded then we're done and return "now".
 958   // If the CAS failed and the observed value "obsv" is >= now then
 959   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 960   // some other thread raced this thread and installed a new value, in which case
 961   // we could either (a) retry the entire operation, (b) retry trying to install now
 962   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 963   // we might discard a higher "now" value in deference to a slightly lower but freshly
 964   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 965   // to (a) or (b) -- and greatly reduces coherence traffic.
 966   // We might also condition (c) on the magnitude of the delta between obsv and now.
 967   // Avoiding excessive CAS operations to hot RW locations is critical.
 968   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 969   return (prev == obsv) ? now : obsv;
 970 }
 971 
 972 #else // __APPLE__
 973 
 974 jlong os::javaTimeNanos() {
 975   if (os::supports_monotonic_clock()) {
 976     struct timespec tp;
 977     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
 978     assert(status == 0, "gettime error");
 979     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 980     return result;
 981   } else {
 982     timeval time;
 983     int status = gettimeofday(&time, NULL);
 984     assert(status != -1, "bsd error");
 985     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 986     return 1000 * usecs;
 987   }
 988 }
 989 
 990 #endif // __APPLE__
 991 
 992 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 993   if (os::supports_monotonic_clock()) {
 994     info_ptr->max_value = ALL_64_BITS;
 995 
 996     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
 997     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
 998     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
 999   } else {
1000     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1001     info_ptr->max_value = ALL_64_BITS;
1002 
1003     // gettimeofday is a real time clock so it skips
1004     info_ptr->may_skip_backward = true;
1005     info_ptr->may_skip_forward = true;
1006   }
1007 
1008   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1009 }
1010 
1011 // Return the real, user, and system times in seconds from an
1012 // arbitrary fixed point in the past.
1013 bool os::getTimesSecs(double* process_real_time,
1014                       double* process_user_time,
1015                       double* process_system_time) {
1016   struct tms ticks;
1017   clock_t real_ticks = times(&ticks);
1018 
1019   if (real_ticks == (clock_t) (-1)) {
1020     return false;
1021   } else {
1022     double ticks_per_second = (double) clock_tics_per_sec;
1023     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1024     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1025     *process_real_time = ((double) real_ticks) / ticks_per_second;
1026 
1027     return true;
1028   }
1029 }
1030 
1031 
1032 char * os::local_time_string(char *buf, size_t buflen) {
1033   struct tm t;
1034   time_t long_time;
1035   time(&long_time);
1036   localtime_r(&long_time, &t);
1037   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1038                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1039                t.tm_hour, t.tm_min, t.tm_sec);
1040   return buf;
1041 }
1042 
1043 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1044   return localtime_r(clock, res);
1045 }
1046 
1047 ////////////////////////////////////////////////////////////////////////////////
1048 // runtime exit support
1049 
1050 // Note: os::shutdown() might be called very early during initialization, or
1051 // called from signal handler. Before adding something to os::shutdown(), make
1052 // sure it is async-safe and can handle partially initialized VM.
1053 void os::shutdown() {
1054 
1055   // allow PerfMemory to attempt cleanup of any persistent resources
1056   perfMemory_exit();
1057 
1058   // needs to remove object in file system
1059   AttachListener::abort();
1060 
1061   // flush buffered output, finish log files
1062   ostream_abort();
1063 
1064   // Check for abort hook
1065   abort_hook_t abort_hook = Arguments::abort_hook();
1066   if (abort_hook != NULL) {
1067     abort_hook();
1068   }
1069 
1070 }
1071 
1072 // Note: os::abort() might be called very early during initialization, or
1073 // called from signal handler. Before adding something to os::abort(), make
1074 // sure it is async-safe and can handle partially initialized VM.
1075 void os::abort(bool dump_core, void* siginfo, const void* context) {
1076   os::shutdown();
1077   if (dump_core) {
1078 #ifndef PRODUCT
1079     fdStream out(defaultStream::output_fd());
1080     out.print_raw("Current thread is ");
1081     char buf[16];
1082     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1083     out.print_raw_cr(buf);
1084     out.print_raw_cr("Dumping core ...");
1085 #endif
1086     ::abort(); // dump core
1087   }
1088 
1089   ::exit(1);
1090 }
1091 
1092 // Die immediately, no exit hook, no abort hook, no cleanup.
1093 void os::die() {
1094   // _exit() on BsdThreads only kills current thread
1095   ::abort();
1096 }
1097 
1098 // This method is a copy of JDK's sysGetLastErrorString
1099 // from src/solaris/hpi/src/system_md.c
1100 
1101 size_t os::lasterror(char *buf, size_t len) {
1102   if (errno == 0)  return 0;
1103 
1104   const char *s = os::strerror(errno);
1105   size_t n = ::strlen(s);
1106   if (n >= len) {
1107     n = len - 1;
1108   }
1109   ::strncpy(buf, s, n);
1110   buf[n] = '\0';
1111   return n;
1112 }
1113 
1114 // Information of current thread in variety of formats
1115 pid_t os::Bsd::gettid() {
1116   int retval = -1;
1117 
1118 #ifdef __APPLE__ //XNU kernel
1119   // despite the fact mach port is actually not a thread id use it
1120   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1121   retval = ::pthread_mach_thread_np(::pthread_self());
1122   guarantee(retval != 0, "just checking");
1123   return retval;
1124 
1125 #else
1126   #ifdef __FreeBSD__
1127   retval = syscall(SYS_thr_self);
1128   #else
1129     #ifdef __OpenBSD__
1130   retval = syscall(SYS_getthrid);
1131     #else
1132       #ifdef __NetBSD__
1133   retval = (pid_t) syscall(SYS__lwp_self);
1134       #endif
1135     #endif
1136   #endif
1137 #endif
1138 
1139   if (retval == -1) {
1140     return getpid();
1141   }
1142 }
1143 
1144 intx os::current_thread_id() {
1145 #ifdef __APPLE__
1146   return (intx)::pthread_mach_thread_np(::pthread_self());
1147 #else
1148   return (intx)::pthread_self();
1149 #endif
1150 }
1151 
1152 int os::current_process_id() {
1153 
1154   // Under the old bsd thread library, bsd gives each thread
1155   // its own process id. Because of this each thread will return
1156   // a different pid if this method were to return the result
1157   // of getpid(2). Bsd provides no api that returns the pid
1158   // of the launcher thread for the vm. This implementation
1159   // returns a unique pid, the pid of the launcher thread
1160   // that starts the vm 'process'.
1161 
1162   // Under the NPTL, getpid() returns the same pid as the
1163   // launcher thread rather than a unique pid per thread.
1164   // Use gettid() if you want the old pre NPTL behaviour.
1165 
1166   // if you are looking for the result of a call to getpid() that
1167   // returns a unique pid for the calling thread, then look at the
1168   // OSThread::thread_id() method in osThread_bsd.hpp file
1169 
1170   return (int)(_initial_pid ? _initial_pid : getpid());
1171 }
1172 
1173 // DLL functions
1174 
1175 #define JNI_LIB_PREFIX "lib"
1176 #ifdef __APPLE__
1177   #define JNI_LIB_SUFFIX ".dylib"
1178 #else
1179   #define JNI_LIB_SUFFIX ".so"
1180 #endif
1181 
1182 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1183 
1184 // This must be hard coded because it's the system's temporary
1185 // directory not the java application's temp directory, ala java.io.tmpdir.
1186 #ifdef __APPLE__
1187 // macosx has a secure per-user temporary directory
1188 char temp_path_storage[PATH_MAX];
1189 const char* os::get_temp_directory() {
1190   static char *temp_path = NULL;
1191   if (temp_path == NULL) {
1192     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1193     if (pathSize == 0 || pathSize > PATH_MAX) {
1194       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1195     }
1196     temp_path = temp_path_storage;
1197   }
1198   return temp_path;
1199 }
1200 #else // __APPLE__
1201 const char* os::get_temp_directory() { return "/tmp"; }
1202 #endif // __APPLE__
1203 
1204 static bool file_exists(const char* filename) {
1205   struct stat statbuf;
1206   if (filename == NULL || strlen(filename) == 0) {
1207     return false;
1208   }
1209   return os::stat(filename, &statbuf) == 0;
1210 }
1211 
1212 bool os::dll_build_name(char* buffer, size_t buflen,
1213                         const char* pname, const char* fname) {
1214   bool retval = false;
1215   // Copied from libhpi
1216   const size_t pnamelen = pname ? strlen(pname) : 0;
1217 
1218   // Return error on buffer overflow.
1219   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1220     return retval;
1221   }
1222 
1223   if (pnamelen == 0) {
1224     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1225     retval = true;
1226   } else if (strchr(pname, *os::path_separator()) != NULL) {
1227     int n;
1228     char** pelements = split_path(pname, &n);
1229     if (pelements == NULL) {
1230       return false;
1231     }
1232     for (int i = 0; i < n; i++) {
1233       // Really shouldn't be NULL, but check can't hurt
1234       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1235         continue; // skip the empty path values
1236       }
1237       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1238                pelements[i], fname);
1239       if (file_exists(buffer)) {
1240         retval = true;
1241         break;
1242       }
1243     }
1244     // release the storage
1245     for (int i = 0; i < n; i++) {
1246       if (pelements[i] != NULL) {
1247         FREE_C_HEAP_ARRAY(char, pelements[i]);
1248       }
1249     }
1250     if (pelements != NULL) {
1251       FREE_C_HEAP_ARRAY(char*, pelements);
1252     }
1253   } else {
1254     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1255     retval = true;
1256   }
1257   return retval;
1258 }
1259 
1260 // check if addr is inside libjvm.so
1261 bool os::address_is_in_vm(address addr) {
1262   static address libjvm_base_addr;
1263   Dl_info dlinfo;
1264 
1265   if (libjvm_base_addr == NULL) {
1266     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1267       libjvm_base_addr = (address)dlinfo.dli_fbase;
1268     }
1269     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1270   }
1271 
1272   if (dladdr((void *)addr, &dlinfo) != 0) {
1273     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1274   }
1275 
1276   return false;
1277 }
1278 
1279 
1280 #define MACH_MAXSYMLEN 256
1281 
1282 bool os::dll_address_to_function_name(address addr, char *buf,
1283                                       int buflen, int *offset,
1284                                       bool demangle) {
1285   // buf is not optional, but offset is optional
1286   assert(buf != NULL, "sanity check");
1287 
1288   Dl_info dlinfo;
1289   char localbuf[MACH_MAXSYMLEN];
1290 
1291   if (dladdr((void*)addr, &dlinfo) != 0) {
1292     // see if we have a matching symbol
1293     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1294       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1295         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1296       }
1297       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1298       return true;
1299     }
1300     // no matching symbol so try for just file info
1301     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1302       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1303                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1304         return true;
1305       }
1306     }
1307 
1308     // Handle non-dynamic manually:
1309     if (dlinfo.dli_fbase != NULL &&
1310         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1311                         dlinfo.dli_fbase)) {
1312       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1313         jio_snprintf(buf, buflen, "%s", localbuf);
1314       }
1315       return true;
1316     }
1317   }
1318   buf[0] = '\0';
1319   if (offset != NULL) *offset = -1;
1320   return false;
1321 }
1322 
1323 // ported from solaris version
1324 bool os::dll_address_to_library_name(address addr, char* buf,
1325                                      int buflen, int* offset) {
1326   // buf is not optional, but offset is optional
1327   assert(buf != NULL, "sanity check");
1328 
1329   Dl_info dlinfo;
1330 
1331   if (dladdr((void*)addr, &dlinfo) != 0) {
1332     if (dlinfo.dli_fname != NULL) {
1333       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1334     }
1335     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1336       *offset = addr - (address)dlinfo.dli_fbase;
1337     }
1338     return true;
1339   }
1340 
1341   buf[0] = '\0';
1342   if (offset) *offset = -1;
1343   return false;
1344 }
1345 
1346 // Loads .dll/.so and
1347 // in case of error it checks if .dll/.so was built for the
1348 // same architecture as Hotspot is running on
1349 
1350 #ifdef __APPLE__
1351 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1352 #ifdef STATIC_BUILD
1353   return os::get_default_process_handle();
1354 #else
1355   void * result= ::dlopen(filename, RTLD_LAZY);
1356   if (result != NULL) {
1357     // Successful loading
1358     return result;
1359   }
1360 
1361   // Read system error message into ebuf
1362   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1363   ebuf[ebuflen-1]='\0';
1364 
1365   return NULL;
1366 #endif // STATIC_BUILD
1367 }
1368 #else
1369 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1370 #ifdef STATIC_BUILD
1371   return os::get_default_process_handle();
1372 #else
1373   void * result= ::dlopen(filename, RTLD_LAZY);
1374   if (result != NULL) {
1375     // Successful loading
1376     return result;
1377   }
1378 
1379   Elf32_Ehdr elf_head;
1380 
1381   // Read system error message into ebuf
1382   // It may or may not be overwritten below
1383   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1384   ebuf[ebuflen-1]='\0';
1385   int diag_msg_max_length=ebuflen-strlen(ebuf);
1386   char* diag_msg_buf=ebuf+strlen(ebuf);
1387 
1388   if (diag_msg_max_length==0) {
1389     // No more space in ebuf for additional diagnostics message
1390     return NULL;
1391   }
1392 
1393 
1394   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1395 
1396   if (file_descriptor < 0) {
1397     // Can't open library, report dlerror() message
1398     return NULL;
1399   }
1400 
1401   bool failed_to_read_elf_head=
1402     (sizeof(elf_head)!=
1403      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1404 
1405   ::close(file_descriptor);
1406   if (failed_to_read_elf_head) {
1407     // file i/o error - report dlerror() msg
1408     return NULL;
1409   }
1410 
1411   typedef struct {
1412     Elf32_Half  code;         // Actual value as defined in elf.h
1413     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1414     char        elf_class;    // 32 or 64 bit
1415     char        endianess;    // MSB or LSB
1416     char*       name;         // String representation
1417   } arch_t;
1418 
1419   #ifndef EM_486
1420     #define EM_486          6               /* Intel 80486 */
1421   #endif
1422 
1423   #ifndef EM_MIPS_RS3_LE
1424     #define EM_MIPS_RS3_LE  10              /* MIPS */
1425   #endif
1426 
1427   #ifndef EM_PPC64
1428     #define EM_PPC64        21              /* PowerPC64 */
1429   #endif
1430 
1431   #ifndef EM_S390
1432     #define EM_S390         22              /* IBM System/390 */
1433   #endif
1434 
1435   #ifndef EM_IA_64
1436     #define EM_IA_64        50              /* HP/Intel IA-64 */
1437   #endif
1438 
1439   #ifndef EM_X86_64
1440     #define EM_X86_64       62              /* AMD x86-64 */
1441   #endif
1442 
1443   static const arch_t arch_array[]={
1444     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1445     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1446     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1447     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1448     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1449     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1450     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1451     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1452     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1453     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1454     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1455     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1456     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1457     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1458     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1459     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1460   };
1461 
1462   #if  (defined IA32)
1463   static  Elf32_Half running_arch_code=EM_386;
1464   #elif   (defined AMD64)
1465   static  Elf32_Half running_arch_code=EM_X86_64;
1466   #elif  (defined IA64)
1467   static  Elf32_Half running_arch_code=EM_IA_64;
1468   #elif  (defined __sparc) && (defined _LP64)
1469   static  Elf32_Half running_arch_code=EM_SPARCV9;
1470   #elif  (defined __sparc) && (!defined _LP64)
1471   static  Elf32_Half running_arch_code=EM_SPARC;
1472   #elif  (defined __powerpc64__)
1473   static  Elf32_Half running_arch_code=EM_PPC64;
1474   #elif  (defined __powerpc__)
1475   static  Elf32_Half running_arch_code=EM_PPC;
1476   #elif  (defined ARM)
1477   static  Elf32_Half running_arch_code=EM_ARM;
1478   #elif  (defined S390)
1479   static  Elf32_Half running_arch_code=EM_S390;
1480   #elif  (defined ALPHA)
1481   static  Elf32_Half running_arch_code=EM_ALPHA;
1482   #elif  (defined MIPSEL)
1483   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1484   #elif  (defined PARISC)
1485   static  Elf32_Half running_arch_code=EM_PARISC;
1486   #elif  (defined MIPS)
1487   static  Elf32_Half running_arch_code=EM_MIPS;
1488   #elif  (defined M68K)
1489   static  Elf32_Half running_arch_code=EM_68K;
1490   #else
1491     #error Method os::dll_load requires that one of following is defined:\
1492          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1493   #endif
1494 
1495   // Identify compatability class for VM's architecture and library's architecture
1496   // Obtain string descriptions for architectures
1497 
1498   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1499   int running_arch_index=-1;
1500 
1501   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1502     if (running_arch_code == arch_array[i].code) {
1503       running_arch_index    = i;
1504     }
1505     if (lib_arch.code == arch_array[i].code) {
1506       lib_arch.compat_class = arch_array[i].compat_class;
1507       lib_arch.name         = arch_array[i].name;
1508     }
1509   }
1510 
1511   assert(running_arch_index != -1,
1512          "Didn't find running architecture code (running_arch_code) in arch_array");
1513   if (running_arch_index == -1) {
1514     // Even though running architecture detection failed
1515     // we may still continue with reporting dlerror() message
1516     return NULL;
1517   }
1518 
1519   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1520     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1521     return NULL;
1522   }
1523 
1524 #ifndef S390
1525   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1526     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1527     return NULL;
1528   }
1529 #endif // !S390
1530 
1531   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1532     if (lib_arch.name!=NULL) {
1533       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1534                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1535                  lib_arch.name, arch_array[running_arch_index].name);
1536     } else {
1537       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1538                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1539                  lib_arch.code,
1540                  arch_array[running_arch_index].name);
1541     }
1542   }
1543 
1544   return NULL;
1545 #endif // STATIC_BUILD
1546 }
1547 #endif // !__APPLE__
1548 
1549 void* os::get_default_process_handle() {
1550 #ifdef __APPLE__
1551   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1552   // to avoid finding unexpected symbols on second (or later)
1553   // loads of a library.
1554   return (void*)::dlopen(NULL, RTLD_FIRST);
1555 #else
1556   return (void*)::dlopen(NULL, RTLD_LAZY);
1557 #endif
1558 }
1559 
1560 // XXX: Do we need a lock around this as per Linux?
1561 void* os::dll_lookup(void* handle, const char* name) {
1562   return dlsym(handle, name);
1563 }
1564 
1565 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1566   outputStream * out = (outputStream *) param;
1567   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1568   return 0;
1569 }
1570 
1571 void os::print_dll_info(outputStream *st) {
1572   st->print_cr("Dynamic libraries:");
1573   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1574     st->print_cr("Error: Cannot print dynamic libraries.");
1575   }
1576 }
1577 
1578 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1579 #ifdef RTLD_DI_LINKMAP
1580   Dl_info dli;
1581   void *handle;
1582   Link_map *map;
1583   Link_map *p;
1584 
1585   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1586       dli.dli_fname == NULL) {
1587     return 1;
1588   }
1589   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1590   if (handle == NULL) {
1591     return 1;
1592   }
1593   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1594   if (map == NULL) {
1595     dlclose(handle);
1596     return 1;
1597   }
1598 
1599   while (map->l_prev != NULL)
1600     map = map->l_prev;
1601 
1602   while (map != NULL) {
1603     // Value for top_address is returned as 0 since we don't have any information about module size
1604     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1605       dlclose(handle);
1606       return 1;
1607     }
1608     map = map->l_next;
1609   }
1610 
1611   dlclose(handle);
1612 #elif defined(__APPLE__)
1613   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1614     // Value for top_address is returned as 0 since we don't have any information about module size
1615     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1616       return 1;
1617     }
1618   }
1619   return 0;
1620 #else
1621   return 1;
1622 #endif
1623 }
1624 
1625 void os::get_summary_os_info(char* buf, size_t buflen) {
1626   // These buffers are small because we want this to be brief
1627   // and not use a lot of stack while generating the hs_err file.
1628   char os[100];
1629   size_t size = sizeof(os);
1630   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1631   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1632 #ifdef __APPLE__
1633       strncpy(os, "Darwin", sizeof(os));
1634 #elif __OpenBSD__
1635       strncpy(os, "OpenBSD", sizeof(os));
1636 #else
1637       strncpy(os, "BSD", sizeof(os));
1638 #endif
1639   }
1640 
1641   char release[100];
1642   size = sizeof(release);
1643   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1644   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1645       // if error, leave blank
1646       strncpy(release, "", sizeof(release));
1647   }
1648   snprintf(buf, buflen, "%s %s", os, release);
1649 }
1650 
1651 void os::print_os_info_brief(outputStream* st) {
1652   os::Posix::print_uname_info(st);
1653 }
1654 
1655 void os::print_os_info(outputStream* st) {
1656   st->print("OS:");
1657 
1658   os::Posix::print_uname_info(st);
1659 
1660   os::Posix::print_rlimit_info(st);
1661 
1662   os::Posix::print_load_average(st);
1663 }
1664 
1665 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1666   // Nothing to do for now.
1667 }
1668 
1669 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1670   unsigned int mhz;
1671   size_t size = sizeof(mhz);
1672   int mib[] = { CTL_HW, HW_CPU_FREQ };
1673   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1674     mhz = 1;  // looks like an error but can be divided by
1675   } else {
1676     mhz /= 1000000;  // reported in millions
1677   }
1678 
1679   char model[100];
1680   size = sizeof(model);
1681   int mib_model[] = { CTL_HW, HW_MODEL };
1682   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1683     strncpy(model, cpu_arch, sizeof(model));
1684   }
1685 
1686   char machine[100];
1687   size = sizeof(machine);
1688   int mib_machine[] = { CTL_HW, HW_MACHINE };
1689   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1690       strncpy(machine, "", sizeof(machine));
1691   }
1692 
1693   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1694 }
1695 
1696 void os::print_memory_info(outputStream* st) {
1697 
1698   st->print("Memory:");
1699   st->print(" %dk page", os::vm_page_size()>>10);
1700 
1701   st->print(", physical " UINT64_FORMAT "k",
1702             os::physical_memory() >> 10);
1703   st->print("(" UINT64_FORMAT "k free)",
1704             os::available_memory() >> 10);
1705   st->cr();
1706 }
1707 
1708 static void print_signal_handler(outputStream* st, int sig,
1709                                  char* buf, size_t buflen);
1710 
1711 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1712   st->print_cr("Signal Handlers:");
1713   print_signal_handler(st, SIGSEGV, buf, buflen);
1714   print_signal_handler(st, SIGBUS , buf, buflen);
1715   print_signal_handler(st, SIGFPE , buf, buflen);
1716   print_signal_handler(st, SIGPIPE, buf, buflen);
1717   print_signal_handler(st, SIGXFSZ, buf, buflen);
1718   print_signal_handler(st, SIGILL , buf, buflen);
1719   print_signal_handler(st, SR_signum, buf, buflen);
1720   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1721   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1722   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1723   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1724 }
1725 
1726 static char saved_jvm_path[MAXPATHLEN] = {0};
1727 
1728 // Find the full path to the current module, libjvm
1729 void os::jvm_path(char *buf, jint buflen) {
1730   // Error checking.
1731   if (buflen < MAXPATHLEN) {
1732     assert(false, "must use a large-enough buffer");
1733     buf[0] = '\0';
1734     return;
1735   }
1736   // Lazy resolve the path to current module.
1737   if (saved_jvm_path[0] != 0) {
1738     strcpy(buf, saved_jvm_path);
1739     return;
1740   }
1741 
1742   char dli_fname[MAXPATHLEN];
1743   bool ret = dll_address_to_library_name(
1744                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1745                                          dli_fname, sizeof(dli_fname), NULL);
1746   assert(ret, "cannot locate libjvm");
1747   char *rp = NULL;
1748   if (ret && dli_fname[0] != '\0') {
1749     rp = os::Posix::realpath(dli_fname, buf, buflen);
1750   }
1751   if (rp == NULL) {
1752     return;
1753   }
1754 
1755   if (Arguments::sun_java_launcher_is_altjvm()) {
1756     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1757     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1758     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1759     // appears at the right place in the string, then assume we are
1760     // installed in a JDK and we're done. Otherwise, check for a
1761     // JAVA_HOME environment variable and construct a path to the JVM
1762     // being overridden.
1763 
1764     const char *p = buf + strlen(buf) - 1;
1765     for (int count = 0; p > buf && count < 5; ++count) {
1766       for (--p; p > buf && *p != '/'; --p)
1767         /* empty */ ;
1768     }
1769 
1770     if (strncmp(p, "/jre/lib/", 9) != 0) {
1771       // Look for JAVA_HOME in the environment.
1772       char* java_home_var = ::getenv("JAVA_HOME");
1773       if (java_home_var != NULL && java_home_var[0] != 0) {
1774         char* jrelib_p;
1775         int len;
1776 
1777         // Check the current module name "libjvm"
1778         p = strrchr(buf, '/');
1779         assert(strstr(p, "/libjvm") == p, "invalid library name");
1780 
1781         rp = os::Posix::realpath(java_home_var, buf, buflen);
1782         if (rp == NULL) {
1783           return;
1784         }
1785 
1786         // determine if this is a legacy image or modules image
1787         // modules image doesn't have "jre" subdirectory
1788         len = strlen(buf);
1789         assert(len < buflen, "Ran out of buffer space");
1790         jrelib_p = buf + len;
1791 
1792         // Add the appropriate library subdir
1793         snprintf(jrelib_p, buflen-len, "/jre/lib");
1794         if (0 != access(buf, F_OK)) {
1795           snprintf(jrelib_p, buflen-len, "/lib");
1796         }
1797 
1798         // Add the appropriate client or server subdir
1799         len = strlen(buf);
1800         jrelib_p = buf + len;
1801         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1802         if (0 != access(buf, F_OK)) {
1803           snprintf(jrelib_p, buflen-len, "%s", "");
1804         }
1805 
1806         // If the path exists within JAVA_HOME, add the JVM library name
1807         // to complete the path to JVM being overridden.  Otherwise fallback
1808         // to the path to the current library.
1809         if (0 == access(buf, F_OK)) {
1810           // Use current module name "libjvm"
1811           len = strlen(buf);
1812           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1813         } else {
1814           // Fall back to path of current library
1815           rp = os::Posix::realpath(dli_fname, buf, buflen);
1816           if (rp == NULL) {
1817             return;
1818           }
1819         }
1820       }
1821     }
1822   }
1823 
1824   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1825   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1826 }
1827 
1828 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1829   // no prefix required, not even "_"
1830 }
1831 
1832 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1833   // no suffix required
1834 }
1835 
1836 ////////////////////////////////////////////////////////////////////////////////
1837 // sun.misc.Signal support
1838 
1839 static volatile jint sigint_count = 0;
1840 
1841 static void UserHandler(int sig, void *siginfo, void *context) {
1842   // 4511530 - sem_post is serialized and handled by the manager thread. When
1843   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1844   // don't want to flood the manager thread with sem_post requests.
1845   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1846     return;
1847   }
1848 
1849   // Ctrl-C is pressed during error reporting, likely because the error
1850   // handler fails to abort. Let VM die immediately.
1851   if (sig == SIGINT && VMError::is_error_reported()) {
1852     os::die();
1853   }
1854 
1855   os::signal_notify(sig);
1856 }
1857 
1858 void* os::user_handler() {
1859   return CAST_FROM_FN_PTR(void*, UserHandler);
1860 }
1861 
1862 extern "C" {
1863   typedef void (*sa_handler_t)(int);
1864   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1865 }
1866 
1867 void* os::signal(int signal_number, void* handler) {
1868   struct sigaction sigAct, oldSigAct;
1869 
1870   sigfillset(&(sigAct.sa_mask));
1871   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1872   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1873 
1874   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1875     // -1 means registration failed
1876     return (void *)-1;
1877   }
1878 
1879   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1880 }
1881 
1882 void os::signal_raise(int signal_number) {
1883   ::raise(signal_number);
1884 }
1885 
1886 // The following code is moved from os.cpp for making this
1887 // code platform specific, which it is by its very nature.
1888 
1889 // Will be modified when max signal is changed to be dynamic
1890 int os::sigexitnum_pd() {
1891   return NSIG;
1892 }
1893 
1894 // a counter for each possible signal value
1895 static volatile jint pending_signals[NSIG+1] = { 0 };
1896 
1897 // Bsd(POSIX) specific hand shaking semaphore.
1898 #ifdef __APPLE__
1899 typedef semaphore_t os_semaphore_t;
1900 
1901   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1902   #define SEM_WAIT(sem)           semaphore_wait(sem)
1903   #define SEM_POST(sem)           semaphore_signal(sem)
1904   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1905 #else
1906 typedef sem_t os_semaphore_t;
1907 
1908   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1909   #define SEM_WAIT(sem)           sem_wait(&sem)
1910   #define SEM_POST(sem)           sem_post(&sem)
1911   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1912 #endif
1913 
1914 #ifdef __APPLE__
1915 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1916 
1917 static const char* sem_init_strerror(kern_return_t value) {
1918   switch (value) {
1919     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1920     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1921     default:                     return "Unknown";
1922   }
1923 }
1924 
1925 OSXSemaphore::OSXSemaphore(uint value) {
1926   kern_return_t ret = SEM_INIT(_semaphore, value);
1927 
1928   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1929 }
1930 
1931 OSXSemaphore::~OSXSemaphore() {
1932   SEM_DESTROY(_semaphore);
1933 }
1934 
1935 void OSXSemaphore::signal(uint count) {
1936   for (uint i = 0; i < count; i++) {
1937     kern_return_t ret = SEM_POST(_semaphore);
1938 
1939     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1940   }
1941 }
1942 
1943 void OSXSemaphore::wait() {
1944   kern_return_t ret;
1945   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1946     // Semaphore was interrupted. Retry.
1947   }
1948   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1949 }
1950 
1951 jlong OSXSemaphore::currenttime() {
1952   struct timeval tv;
1953   gettimeofday(&tv, NULL);
1954   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1955 }
1956 
1957 bool OSXSemaphore::trywait() {
1958   return timedwait(0, 0);
1959 }
1960 
1961 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1962   kern_return_t kr = KERN_ABORTED;
1963   mach_timespec_t waitspec;
1964   waitspec.tv_sec = sec;
1965   waitspec.tv_nsec = nsec;
1966 
1967   jlong starttime = currenttime();
1968 
1969   kr = semaphore_timedwait(_semaphore, waitspec);
1970   while (kr == KERN_ABORTED) {
1971     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1972 
1973     jlong current = currenttime();
1974     jlong passedtime = current - starttime;
1975 
1976     if (passedtime >= totalwait) {
1977       waitspec.tv_sec = 0;
1978       waitspec.tv_nsec = 0;
1979     } else {
1980       jlong waittime = totalwait - (current - starttime);
1981       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1982       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1983     }
1984 
1985     kr = semaphore_timedwait(_semaphore, waitspec);
1986   }
1987 
1988   return kr == KERN_SUCCESS;
1989 }
1990 
1991 #else
1992 // Use POSIX implementation of semaphores.
1993 
1994 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
1995   struct timespec ts;
1996   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1997 
1998   return ts;
1999 }
2000 
2001 #endif // __APPLE__
2002 
2003 static os_semaphore_t sig_sem;
2004 
2005 #ifdef __APPLE__
2006 static OSXSemaphore sr_semaphore;
2007 #else
2008 static PosixSemaphore sr_semaphore;
2009 #endif
2010 
2011 void os::signal_init_pd() {
2012   // Initialize signal structures
2013   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2014 
2015   // Initialize signal semaphore
2016   ::SEM_INIT(sig_sem, 0);
2017 }
2018 
2019 void os::signal_notify(int sig) {
2020   Atomic::inc(&pending_signals[sig]);
2021   ::SEM_POST(sig_sem);
2022 }
2023 
2024 static int check_pending_signals(bool wait) {
2025   Atomic::store(0, &sigint_count);
2026   for (;;) {
2027     for (int i = 0; i < NSIG + 1; i++) {
2028       jint n = pending_signals[i];
2029       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2030         return i;
2031       }
2032     }
2033     if (!wait) {
2034       return -1;
2035     }
2036     JavaThread *thread = JavaThread::current();
2037     ThreadBlockInVM tbivm(thread);
2038 
2039     bool threadIsSuspended;
2040     do {
2041       thread->set_suspend_equivalent();
2042       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2043       ::SEM_WAIT(sig_sem);
2044 
2045       // were we externally suspended while we were waiting?
2046       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2047       if (threadIsSuspended) {
2048         // The semaphore has been incremented, but while we were waiting
2049         // another thread suspended us. We don't want to continue running
2050         // while suspended because that would surprise the thread that
2051         // suspended us.
2052         ::SEM_POST(sig_sem);
2053 
2054         thread->java_suspend_self();
2055       }
2056     } while (threadIsSuspended);
2057   }
2058 }
2059 
2060 int os::signal_lookup() {
2061   return check_pending_signals(false);
2062 }
2063 
2064 int os::signal_wait() {
2065   return check_pending_signals(true);
2066 }
2067 
2068 ////////////////////////////////////////////////////////////////////////////////
2069 // Virtual Memory
2070 
2071 int os::vm_page_size() {
2072   // Seems redundant as all get out
2073   assert(os::Bsd::page_size() != -1, "must call os::init");
2074   return os::Bsd::page_size();
2075 }
2076 
2077 // Solaris allocates memory by pages.
2078 int os::vm_allocation_granularity() {
2079   assert(os::Bsd::page_size() != -1, "must call os::init");
2080   return os::Bsd::page_size();
2081 }
2082 
2083 // Rationale behind this function:
2084 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2085 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2086 //  samples for JITted code. Here we create private executable mapping over the code cache
2087 //  and then we can use standard (well, almost, as mapping can change) way to provide
2088 //  info for the reporting script by storing timestamp and location of symbol
2089 void bsd_wrap_code(char* base, size_t size) {
2090   static volatile jint cnt = 0;
2091 
2092   if (!UseOprofile) {
2093     return;
2094   }
2095 
2096   char buf[PATH_MAX + 1];
2097   int num = Atomic::add(1, &cnt);
2098 
2099   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2100            os::get_temp_directory(), os::current_process_id(), num);
2101   unlink(buf);
2102 
2103   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2104 
2105   if (fd != -1) {
2106     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2107     if (rv != (off_t)-1) {
2108       if (::write(fd, "", 1) == 1) {
2109         mmap(base, size,
2110              PROT_READ|PROT_WRITE|PROT_EXEC,
2111              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2112       }
2113     }
2114     ::close(fd);
2115     unlink(buf);
2116   }
2117 }
2118 
2119 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2120                                     int err) {
2121   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2122           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2123           os::errno_name(err), err);
2124 }
2125 
2126 // NOTE: Bsd kernel does not really reserve the pages for us.
2127 //       All it does is to check if there are enough free pages
2128 //       left at the time of mmap(). This could be a potential
2129 //       problem.
2130 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2131   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2132 #ifdef __OpenBSD__
2133   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2134   if (::mprotect(addr, size, prot) == 0) {
2135     return true;
2136   }
2137 #else
2138   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2139                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2140   if (res != (uintptr_t) MAP_FAILED) {
2141     return true;
2142   }
2143 #endif
2144 
2145   // Warn about any commit errors we see in non-product builds just
2146   // in case mmap() doesn't work as described on the man page.
2147   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2148 
2149   return false;
2150 }
2151 
2152 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2153                           bool exec) {
2154   // alignment_hint is ignored on this OS
2155   return pd_commit_memory(addr, size, exec);
2156 }
2157 
2158 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2159                                   const char* mesg) {
2160   assert(mesg != NULL, "mesg must be specified");
2161   if (!pd_commit_memory(addr, size, exec)) {
2162     // add extra info in product mode for vm_exit_out_of_memory():
2163     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2164     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2165   }
2166 }
2167 
2168 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2169                                   size_t alignment_hint, bool exec,
2170                                   const char* mesg) {
2171   // alignment_hint is ignored on this OS
2172   pd_commit_memory_or_exit(addr, size, exec, mesg);
2173 }
2174 
2175 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2176 }
2177 
2178 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2179   ::madvise(addr, bytes, MADV_DONTNEED);
2180 }
2181 
2182 void os::numa_make_global(char *addr, size_t bytes) {
2183 }
2184 
2185 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2186 }
2187 
2188 bool os::numa_topology_changed()   { return false; }
2189 
2190 size_t os::numa_get_groups_num() {
2191   return 1;
2192 }
2193 
2194 int os::numa_get_group_id() {
2195   return 0;
2196 }
2197 
2198 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2199   if (size > 0) {
2200     ids[0] = 0;
2201     return 1;
2202   }
2203   return 0;
2204 }
2205 
2206 bool os::get_page_info(char *start, page_info* info) {
2207   return false;
2208 }
2209 
2210 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2211   return end;
2212 }
2213 
2214 
2215 bool os::pd_uncommit_memory(char* addr, size_t size) {
2216 #ifdef __OpenBSD__
2217   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2218   return ::mprotect(addr, size, PROT_NONE) == 0;
2219 #else
2220   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2221                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2222   return res  != (uintptr_t) MAP_FAILED;
2223 #endif
2224 }
2225 
2226 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2227   return os::commit_memory(addr, size, !ExecMem);
2228 }
2229 
2230 // If this is a growable mapping, remove the guard pages entirely by
2231 // munmap()ping them.  If not, just call uncommit_memory().
2232 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2233   return os::uncommit_memory(addr, size);
2234 }
2235 
2236 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2237 // at 'requested_addr'. If there are existing memory mappings at the same
2238 // location, however, they will be overwritten. If 'fixed' is false,
2239 // 'requested_addr' is only treated as a hint, the return value may or
2240 // may not start from the requested address. Unlike Bsd mmap(), this
2241 // function returns NULL to indicate failure.
2242 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2243   char * addr;
2244   int flags;
2245 
2246   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2247   if (fixed) {
2248     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2249     flags |= MAP_FIXED;
2250   }
2251 
2252   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2253   // touch an uncommitted page. Otherwise, the read/write might
2254   // succeed if we have enough swap space to back the physical page.
2255   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2256                        flags, -1, 0);
2257 
2258   return addr == MAP_FAILED ? NULL : addr;
2259 }
2260 
2261 static int anon_munmap(char * addr, size_t size) {
2262   return ::munmap(addr, size) == 0;
2263 }
2264 
2265 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2266                             size_t alignment_hint) {
2267   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2268 }
2269 
2270 bool os::pd_release_memory(char* addr, size_t size) {
2271   return anon_munmap(addr, size);
2272 }
2273 
2274 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2275   // Bsd wants the mprotect address argument to be page aligned.
2276   char* bottom = (char*)align_down((intptr_t)addr, os::Bsd::page_size());
2277 
2278   // According to SUSv3, mprotect() should only be used with mappings
2279   // established by mmap(), and mmap() always maps whole pages. Unaligned
2280   // 'addr' likely indicates problem in the VM (e.g. trying to change
2281   // protection of malloc'ed or statically allocated memory). Check the
2282   // caller if you hit this assert.
2283   assert(addr == bottom, "sanity check");
2284 
2285   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2286   return ::mprotect(bottom, size, prot) == 0;
2287 }
2288 
2289 // Set protections specified
2290 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2291                         bool is_committed) {
2292   unsigned int p = 0;
2293   switch (prot) {
2294   case MEM_PROT_NONE: p = PROT_NONE; break;
2295   case MEM_PROT_READ: p = PROT_READ; break;
2296   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2297   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2298   default:
2299     ShouldNotReachHere();
2300   }
2301   // is_committed is unused.
2302   return bsd_mprotect(addr, bytes, p);
2303 }
2304 
2305 bool os::guard_memory(char* addr, size_t size) {
2306   return bsd_mprotect(addr, size, PROT_NONE);
2307 }
2308 
2309 bool os::unguard_memory(char* addr, size_t size) {
2310   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2311 }
2312 
2313 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2314   return false;
2315 }
2316 
2317 // Large page support
2318 
2319 static size_t _large_page_size = 0;
2320 
2321 void os::large_page_init() {
2322 }
2323 
2324 
2325 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2326   fatal("This code is not used or maintained.");
2327 
2328   // "exec" is passed in but not used.  Creating the shared image for
2329   // the code cache doesn't have an SHM_X executable permission to check.
2330   assert(UseLargePages && UseSHM, "only for SHM large pages");
2331 
2332   key_t key = IPC_PRIVATE;
2333   char *addr;
2334 
2335   bool warn_on_failure = UseLargePages &&
2336                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2337                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2338 
2339   // Create a large shared memory region to attach to based on size.
2340   // Currently, size is the total size of the heap
2341   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2342   if (shmid == -1) {
2343     // Possible reasons for shmget failure:
2344     // 1. shmmax is too small for Java heap.
2345     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2346     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2347     // 2. not enough large page memory.
2348     //    > check available large pages: cat /proc/meminfo
2349     //    > increase amount of large pages:
2350     //          echo new_value > /proc/sys/vm/nr_hugepages
2351     //      Note 1: different Bsd may use different name for this property,
2352     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2353     //      Note 2: it's possible there's enough physical memory available but
2354     //            they are so fragmented after a long run that they can't
2355     //            coalesce into large pages. Try to reserve large pages when
2356     //            the system is still "fresh".
2357     if (warn_on_failure) {
2358       warning("Failed to reserve shared memory (errno = %d).", errno);
2359     }
2360     return NULL;
2361   }
2362 
2363   // attach to the region
2364   addr = (char*)shmat(shmid, req_addr, 0);
2365   int err = errno;
2366 
2367   // Remove shmid. If shmat() is successful, the actual shared memory segment
2368   // will be deleted when it's detached by shmdt() or when the process
2369   // terminates. If shmat() is not successful this will remove the shared
2370   // segment immediately.
2371   shmctl(shmid, IPC_RMID, NULL);
2372 
2373   if ((intptr_t)addr == -1) {
2374     if (warn_on_failure) {
2375       warning("Failed to attach shared memory (errno = %d).", err);
2376     }
2377     return NULL;
2378   }
2379 
2380   // The memory is committed
2381   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2382 
2383   return addr;
2384 }
2385 
2386 bool os::release_memory_special(char* base, size_t bytes) {
2387   if (MemTracker::tracking_level() > NMT_minimal) {
2388     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2389     // detaching the SHM segment will also delete it, see reserve_memory_special()
2390     int rslt = shmdt(base);
2391     if (rslt == 0) {
2392       tkr.record((address)base, bytes);
2393       return true;
2394     } else {
2395       return false;
2396     }
2397   } else {
2398     return shmdt(base) == 0;
2399   }
2400 }
2401 
2402 size_t os::large_page_size() {
2403   return _large_page_size;
2404 }
2405 
2406 // HugeTLBFS allows application to commit large page memory on demand;
2407 // with SysV SHM the entire memory region must be allocated as shared
2408 // memory.
2409 bool os::can_commit_large_page_memory() {
2410   return UseHugeTLBFS;
2411 }
2412 
2413 bool os::can_execute_large_page_memory() {
2414   return UseHugeTLBFS;
2415 }
2416 
2417 // Reserve memory at an arbitrary address, only if that area is
2418 // available (and not reserved for something else).
2419 
2420 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2421   const int max_tries = 10;
2422   char* base[max_tries];
2423   size_t size[max_tries];
2424   const size_t gap = 0x000000;
2425 
2426   // Assert only that the size is a multiple of the page size, since
2427   // that's all that mmap requires, and since that's all we really know
2428   // about at this low abstraction level.  If we need higher alignment,
2429   // we can either pass an alignment to this method or verify alignment
2430   // in one of the methods further up the call chain.  See bug 5044738.
2431   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2432 
2433   // Repeatedly allocate blocks until the block is allocated at the
2434   // right spot.
2435 
2436   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2437   // if kernel honors the hint then we can return immediately.
2438   char * addr = anon_mmap(requested_addr, bytes, false);
2439   if (addr == requested_addr) {
2440     return requested_addr;
2441   }
2442 
2443   if (addr != NULL) {
2444     // mmap() is successful but it fails to reserve at the requested address
2445     anon_munmap(addr, bytes);
2446   }
2447 
2448   int i;
2449   for (i = 0; i < max_tries; ++i) {
2450     base[i] = reserve_memory(bytes);
2451 
2452     if (base[i] != NULL) {
2453       // Is this the block we wanted?
2454       if (base[i] == requested_addr) {
2455         size[i] = bytes;
2456         break;
2457       }
2458 
2459       // Does this overlap the block we wanted? Give back the overlapped
2460       // parts and try again.
2461 
2462       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2463       if (top_overlap >= 0 && top_overlap < bytes) {
2464         unmap_memory(base[i], top_overlap);
2465         base[i] += top_overlap;
2466         size[i] = bytes - top_overlap;
2467       } else {
2468         size_t bottom_overlap = base[i] + bytes - requested_addr;
2469         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2470           unmap_memory(requested_addr, bottom_overlap);
2471           size[i] = bytes - bottom_overlap;
2472         } else {
2473           size[i] = bytes;
2474         }
2475       }
2476     }
2477   }
2478 
2479   // Give back the unused reserved pieces.
2480 
2481   for (int j = 0; j < i; ++j) {
2482     if (base[j] != NULL) {
2483       unmap_memory(base[j], size[j]);
2484     }
2485   }
2486 
2487   if (i < max_tries) {
2488     return requested_addr;
2489   } else {
2490     return NULL;
2491   }
2492 }
2493 
2494 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2495   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2496 }
2497 
2498 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2499   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2500 }
2501 
2502 void os::naked_short_sleep(jlong ms) {
2503   struct timespec req;
2504 
2505   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2506   req.tv_sec = 0;
2507   if (ms > 0) {
2508     req.tv_nsec = (ms % 1000) * 1000000;
2509   } else {
2510     req.tv_nsec = 1;
2511   }
2512 
2513   nanosleep(&req, NULL);
2514 
2515   return;
2516 }
2517 
2518 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2519 void os::infinite_sleep() {
2520   while (true) {    // sleep forever ...
2521     ::sleep(100);   // ... 100 seconds at a time
2522   }
2523 }
2524 
2525 // Used to convert frequent JVM_Yield() to nops
2526 bool os::dont_yield() {
2527   return DontYieldALot;
2528 }
2529 
2530 void os::naked_yield() {
2531   sched_yield();
2532 }
2533 
2534 ////////////////////////////////////////////////////////////////////////////////
2535 // thread priority support
2536 
2537 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2538 // only supports dynamic priority, static priority must be zero. For real-time
2539 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2540 // However, for large multi-threaded applications, SCHED_RR is not only slower
2541 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2542 // of 5 runs - Sep 2005).
2543 //
2544 // The following code actually changes the niceness of kernel-thread/LWP. It
2545 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2546 // not the entire user process, and user level threads are 1:1 mapped to kernel
2547 // threads. It has always been the case, but could change in the future. For
2548 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2549 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2550 
2551 #if !defined(__APPLE__)
2552 int os::java_to_os_priority[CriticalPriority + 1] = {
2553   19,              // 0 Entry should never be used
2554 
2555    0,              // 1 MinPriority
2556    3,              // 2
2557    6,              // 3
2558 
2559   10,              // 4
2560   15,              // 5 NormPriority
2561   18,              // 6
2562 
2563   21,              // 7
2564   25,              // 8
2565   28,              // 9 NearMaxPriority
2566 
2567   31,              // 10 MaxPriority
2568 
2569   31               // 11 CriticalPriority
2570 };
2571 #else
2572 // Using Mach high-level priority assignments
2573 int os::java_to_os_priority[CriticalPriority + 1] = {
2574    0,              // 0 Entry should never be used (MINPRI_USER)
2575 
2576   27,              // 1 MinPriority
2577   28,              // 2
2578   29,              // 3
2579 
2580   30,              // 4
2581   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2582   32,              // 6
2583 
2584   33,              // 7
2585   34,              // 8
2586   35,              // 9 NearMaxPriority
2587 
2588   36,              // 10 MaxPriority
2589 
2590   36               // 11 CriticalPriority
2591 };
2592 #endif
2593 
2594 static int prio_init() {
2595   if (ThreadPriorityPolicy == 1) {
2596     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2597     // if effective uid is not root. Perhaps, a more elegant way of doing
2598     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2599     if (geteuid() != 0) {
2600       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2601         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2602       }
2603       ThreadPriorityPolicy = 0;
2604     }
2605   }
2606   if (UseCriticalJavaThreadPriority) {
2607     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2608   }
2609   return 0;
2610 }
2611 
2612 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2613   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2614 
2615 #ifdef __OpenBSD__
2616   // OpenBSD pthread_setprio starves low priority threads
2617   return OS_OK;
2618 #elif defined(__FreeBSD__)
2619   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2620 #elif defined(__APPLE__) || defined(__NetBSD__)
2621   struct sched_param sp;
2622   int policy;
2623   pthread_t self = pthread_self();
2624 
2625   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2626     return OS_ERR;
2627   }
2628 
2629   sp.sched_priority = newpri;
2630   if (pthread_setschedparam(self, policy, &sp) != 0) {
2631     return OS_ERR;
2632   }
2633 
2634   return OS_OK;
2635 #else
2636   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2637   return (ret == 0) ? OS_OK : OS_ERR;
2638 #endif
2639 }
2640 
2641 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2642   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2643     *priority_ptr = java_to_os_priority[NormPriority];
2644     return OS_OK;
2645   }
2646 
2647   errno = 0;
2648 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2649   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2650 #elif defined(__APPLE__) || defined(__NetBSD__)
2651   int policy;
2652   struct sched_param sp;
2653 
2654   pthread_getschedparam(pthread_self(), &policy, &sp);
2655   *priority_ptr = sp.sched_priority;
2656 #else
2657   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2658 #endif
2659   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2660 }
2661 
2662 // Hint to the underlying OS that a task switch would not be good.
2663 // Void return because it's a hint and can fail.
2664 void os::hint_no_preempt() {}
2665 
2666 ////////////////////////////////////////////////////////////////////////////////
2667 // suspend/resume support
2668 
2669 //  the low-level signal-based suspend/resume support is a remnant from the
2670 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2671 //  within hotspot. Now there is a single use-case for this:
2672 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2673 //      that runs in the watcher thread.
2674 //  The remaining code is greatly simplified from the more general suspension
2675 //  code that used to be used.
2676 //
2677 //  The protocol is quite simple:
2678 //  - suspend:
2679 //      - sends a signal to the target thread
2680 //      - polls the suspend state of the osthread using a yield loop
2681 //      - target thread signal handler (SR_handler) sets suspend state
2682 //        and blocks in sigsuspend until continued
2683 //  - resume:
2684 //      - sets target osthread state to continue
2685 //      - sends signal to end the sigsuspend loop in the SR_handler
2686 //
2687 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2688 //  but is checked for NULL in SR_handler as a thread termination indicator.
2689 
2690 static void resume_clear_context(OSThread *osthread) {
2691   osthread->set_ucontext(NULL);
2692   osthread->set_siginfo(NULL);
2693 }
2694 
2695 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2696   osthread->set_ucontext(context);
2697   osthread->set_siginfo(siginfo);
2698 }
2699 
2700 // Handler function invoked when a thread's execution is suspended or
2701 // resumed. We have to be careful that only async-safe functions are
2702 // called here (Note: most pthread functions are not async safe and
2703 // should be avoided.)
2704 //
2705 // Note: sigwait() is a more natural fit than sigsuspend() from an
2706 // interface point of view, but sigwait() prevents the signal hander
2707 // from being run. libpthread would get very confused by not having
2708 // its signal handlers run and prevents sigwait()'s use with the
2709 // mutex granting granting signal.
2710 //
2711 // Currently only ever called on the VMThread or JavaThread
2712 //
2713 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2714   // Save and restore errno to avoid confusing native code with EINTR
2715   // after sigsuspend.
2716   int old_errno = errno;
2717 
2718   Thread* thread = Thread::current_or_null_safe();
2719   assert(thread != NULL, "Missing current thread in SR_handler");
2720 
2721   // On some systems we have seen signal delivery get "stuck" until the signal
2722   // mask is changed as part of thread termination. Check that the current thread
2723   // has not already terminated (via SR_lock()) - else the following assertion
2724   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2725   // destructor has completed.
2726 
2727   if (thread->SR_lock() == NULL) {
2728     return;
2729   }
2730 
2731   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2732 
2733   OSThread* osthread = thread->osthread();
2734 
2735   os::SuspendResume::State current = osthread->sr.state();
2736   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2737     suspend_save_context(osthread, siginfo, context);
2738 
2739     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2740     os::SuspendResume::State state = osthread->sr.suspended();
2741     if (state == os::SuspendResume::SR_SUSPENDED) {
2742       sigset_t suspend_set;  // signals for sigsuspend()
2743 
2744       // get current set of blocked signals and unblock resume signal
2745       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2746       sigdelset(&suspend_set, SR_signum);
2747 
2748       sr_semaphore.signal();
2749       // wait here until we are resumed
2750       while (1) {
2751         sigsuspend(&suspend_set);
2752 
2753         os::SuspendResume::State result = osthread->sr.running();
2754         if (result == os::SuspendResume::SR_RUNNING) {
2755           sr_semaphore.signal();
2756           break;
2757         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2758           ShouldNotReachHere();
2759         }
2760       }
2761 
2762     } else if (state == os::SuspendResume::SR_RUNNING) {
2763       // request was cancelled, continue
2764     } else {
2765       ShouldNotReachHere();
2766     }
2767 
2768     resume_clear_context(osthread);
2769   } else if (current == os::SuspendResume::SR_RUNNING) {
2770     // request was cancelled, continue
2771   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2772     // ignore
2773   } else {
2774     // ignore
2775   }
2776 
2777   errno = old_errno;
2778 }
2779 
2780 
2781 static int SR_initialize() {
2782   struct sigaction act;
2783   char *s;
2784   // Get signal number to use for suspend/resume
2785   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2786     int sig = ::strtol(s, 0, 10);
2787     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2788         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2789       SR_signum = sig;
2790     } else {
2791       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2792               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2793     }
2794   }
2795 
2796   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2797          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2798 
2799   sigemptyset(&SR_sigset);
2800   sigaddset(&SR_sigset, SR_signum);
2801 
2802   // Set up signal handler for suspend/resume
2803   act.sa_flags = SA_RESTART|SA_SIGINFO;
2804   act.sa_handler = (void (*)(int)) SR_handler;
2805 
2806   // SR_signum is blocked by default.
2807   // 4528190 - We also need to block pthread restart signal (32 on all
2808   // supported Bsd platforms). Note that BsdThreads need to block
2809   // this signal for all threads to work properly. So we don't have
2810   // to use hard-coded signal number when setting up the mask.
2811   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2812 
2813   if (sigaction(SR_signum, &act, 0) == -1) {
2814     return -1;
2815   }
2816 
2817   // Save signal flag
2818   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2819   return 0;
2820 }
2821 
2822 static int sr_notify(OSThread* osthread) {
2823   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2824   assert_status(status == 0, status, "pthread_kill");
2825   return status;
2826 }
2827 
2828 // "Randomly" selected value for how long we want to spin
2829 // before bailing out on suspending a thread, also how often
2830 // we send a signal to a thread we want to resume
2831 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2832 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2833 
2834 // returns true on success and false on error - really an error is fatal
2835 // but this seems the normal response to library errors
2836 static bool do_suspend(OSThread* osthread) {
2837   assert(osthread->sr.is_running(), "thread should be running");
2838   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2839 
2840   // mark as suspended and send signal
2841   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2842     // failed to switch, state wasn't running?
2843     ShouldNotReachHere();
2844     return false;
2845   }
2846 
2847   if (sr_notify(osthread) != 0) {
2848     ShouldNotReachHere();
2849   }
2850 
2851   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2852   while (true) {
2853     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2854       break;
2855     } else {
2856       // timeout
2857       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2858       if (cancelled == os::SuspendResume::SR_RUNNING) {
2859         return false;
2860       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2861         // make sure that we consume the signal on the semaphore as well
2862         sr_semaphore.wait();
2863         break;
2864       } else {
2865         ShouldNotReachHere();
2866         return false;
2867       }
2868     }
2869   }
2870 
2871   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2872   return true;
2873 }
2874 
2875 static void do_resume(OSThread* osthread) {
2876   assert(osthread->sr.is_suspended(), "thread should be suspended");
2877   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2878 
2879   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2880     // failed to switch to WAKEUP_REQUEST
2881     ShouldNotReachHere();
2882     return;
2883   }
2884 
2885   while (true) {
2886     if (sr_notify(osthread) == 0) {
2887       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2888         if (osthread->sr.is_running()) {
2889           return;
2890         }
2891       }
2892     } else {
2893       ShouldNotReachHere();
2894     }
2895   }
2896 
2897   guarantee(osthread->sr.is_running(), "Must be running!");
2898 }
2899 
2900 ///////////////////////////////////////////////////////////////////////////////////
2901 // signal handling (except suspend/resume)
2902 
2903 // This routine may be used by user applications as a "hook" to catch signals.
2904 // The user-defined signal handler must pass unrecognized signals to this
2905 // routine, and if it returns true (non-zero), then the signal handler must
2906 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2907 // routine will never retun false (zero), but instead will execute a VM panic
2908 // routine kill the process.
2909 //
2910 // If this routine returns false, it is OK to call it again.  This allows
2911 // the user-defined signal handler to perform checks either before or after
2912 // the VM performs its own checks.  Naturally, the user code would be making
2913 // a serious error if it tried to handle an exception (such as a null check
2914 // or breakpoint) that the VM was generating for its own correct operation.
2915 //
2916 // This routine may recognize any of the following kinds of signals:
2917 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2918 // It should be consulted by handlers for any of those signals.
2919 //
2920 // The caller of this routine must pass in the three arguments supplied
2921 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2922 // field of the structure passed to sigaction().  This routine assumes that
2923 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2924 //
2925 // Note that the VM will print warnings if it detects conflicting signal
2926 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2927 //
2928 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2929                                                void* ucontext,
2930                                                int abort_if_unrecognized);
2931 
2932 void signalHandler(int sig, siginfo_t* info, void* uc) {
2933   assert(info != NULL && uc != NULL, "it must be old kernel");
2934   int orig_errno = errno;  // Preserve errno value over signal handler.
2935   JVM_handle_bsd_signal(sig, info, uc, true);
2936   errno = orig_errno;
2937 }
2938 
2939 
2940 // This boolean allows users to forward their own non-matching signals
2941 // to JVM_handle_bsd_signal, harmlessly.
2942 bool os::Bsd::signal_handlers_are_installed = false;
2943 
2944 // For signal-chaining
2945 struct sigaction sigact[NSIG];
2946 uint32_t sigs = 0;
2947 #if (32 < NSIG-1)
2948 #error "Not all signals can be encoded in sigs. Adapt its type!"
2949 #endif
2950 bool os::Bsd::libjsig_is_loaded = false;
2951 typedef struct sigaction *(*get_signal_t)(int);
2952 get_signal_t os::Bsd::get_signal_action = NULL;
2953 
2954 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2955   struct sigaction *actp = NULL;
2956 
2957   if (libjsig_is_loaded) {
2958     // Retrieve the old signal handler from libjsig
2959     actp = (*get_signal_action)(sig);
2960   }
2961   if (actp == NULL) {
2962     // Retrieve the preinstalled signal handler from jvm
2963     actp = get_preinstalled_handler(sig);
2964   }
2965 
2966   return actp;
2967 }
2968 
2969 static bool call_chained_handler(struct sigaction *actp, int sig,
2970                                  siginfo_t *siginfo, void *context) {
2971   // Call the old signal handler
2972   if (actp->sa_handler == SIG_DFL) {
2973     // It's more reasonable to let jvm treat it as an unexpected exception
2974     // instead of taking the default action.
2975     return false;
2976   } else if (actp->sa_handler != SIG_IGN) {
2977     if ((actp->sa_flags & SA_NODEFER) == 0) {
2978       // automaticlly block the signal
2979       sigaddset(&(actp->sa_mask), sig);
2980     }
2981 
2982     sa_handler_t hand;
2983     sa_sigaction_t sa;
2984     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2985     // retrieve the chained handler
2986     if (siginfo_flag_set) {
2987       sa = actp->sa_sigaction;
2988     } else {
2989       hand = actp->sa_handler;
2990     }
2991 
2992     if ((actp->sa_flags & SA_RESETHAND) != 0) {
2993       actp->sa_handler = SIG_DFL;
2994     }
2995 
2996     // try to honor the signal mask
2997     sigset_t oset;
2998     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2999 
3000     // call into the chained handler
3001     if (siginfo_flag_set) {
3002       (*sa)(sig, siginfo, context);
3003     } else {
3004       (*hand)(sig);
3005     }
3006 
3007     // restore the signal mask
3008     pthread_sigmask(SIG_SETMASK, &oset, 0);
3009   }
3010   // Tell jvm's signal handler the signal is taken care of.
3011   return true;
3012 }
3013 
3014 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3015   bool chained = false;
3016   // signal-chaining
3017   if (UseSignalChaining) {
3018     struct sigaction *actp = get_chained_signal_action(sig);
3019     if (actp != NULL) {
3020       chained = call_chained_handler(actp, sig, siginfo, context);
3021     }
3022   }
3023   return chained;
3024 }
3025 
3026 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3027   if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3028     return &sigact[sig];
3029   }
3030   return NULL;
3031 }
3032 
3033 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3034   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3035   sigact[sig] = oldAct;
3036   sigs |= (uint32_t)1 << (sig-1);
3037 }
3038 
3039 // for diagnostic
3040 int sigflags[NSIG];
3041 
3042 int os::Bsd::get_our_sigflags(int sig) {
3043   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3044   return sigflags[sig];
3045 }
3046 
3047 void os::Bsd::set_our_sigflags(int sig, int flags) {
3048   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3049   if (sig > 0 && sig < NSIG) {
3050     sigflags[sig] = flags;
3051   }
3052 }
3053 
3054 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3055   // Check for overwrite.
3056   struct sigaction oldAct;
3057   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3058 
3059   void* oldhand = oldAct.sa_sigaction
3060                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3061                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3062   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3063       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3064       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3065     if (AllowUserSignalHandlers || !set_installed) {
3066       // Do not overwrite; user takes responsibility to forward to us.
3067       return;
3068     } else if (UseSignalChaining) {
3069       // save the old handler in jvm
3070       save_preinstalled_handler(sig, oldAct);
3071       // libjsig also interposes the sigaction() call below and saves the
3072       // old sigaction on it own.
3073     } else {
3074       fatal("Encountered unexpected pre-existing sigaction handler "
3075             "%#lx for signal %d.", (long)oldhand, sig);
3076     }
3077   }
3078 
3079   struct sigaction sigAct;
3080   sigfillset(&(sigAct.sa_mask));
3081   sigAct.sa_handler = SIG_DFL;
3082   if (!set_installed) {
3083     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3084   } else {
3085     sigAct.sa_sigaction = signalHandler;
3086     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3087   }
3088 #ifdef __APPLE__
3089   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3090   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3091   // if the signal handler declares it will handle it on alternate stack.
3092   // Notice we only declare we will handle it on alt stack, but we are not
3093   // actually going to use real alt stack - this is just a workaround.
3094   // Please see ux_exception.c, method catch_mach_exception_raise for details
3095   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3096   if (sig == SIGSEGV) {
3097     sigAct.sa_flags |= SA_ONSTACK;
3098   }
3099 #endif
3100 
3101   // Save flags, which are set by ours
3102   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3103   sigflags[sig] = sigAct.sa_flags;
3104 
3105   int ret = sigaction(sig, &sigAct, &oldAct);
3106   assert(ret == 0, "check");
3107 
3108   void* oldhand2  = oldAct.sa_sigaction
3109                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3110                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3111   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3112 }
3113 
3114 // install signal handlers for signals that HotSpot needs to
3115 // handle in order to support Java-level exception handling.
3116 
3117 void os::Bsd::install_signal_handlers() {
3118   if (!signal_handlers_are_installed) {
3119     signal_handlers_are_installed = true;
3120 
3121     // signal-chaining
3122     typedef void (*signal_setting_t)();
3123     signal_setting_t begin_signal_setting = NULL;
3124     signal_setting_t end_signal_setting = NULL;
3125     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3126                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3127     if (begin_signal_setting != NULL) {
3128       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3129                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3130       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3131                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3132       libjsig_is_loaded = true;
3133       assert(UseSignalChaining, "should enable signal-chaining");
3134     }
3135     if (libjsig_is_loaded) {
3136       // Tell libjsig jvm is setting signal handlers
3137       (*begin_signal_setting)();
3138     }
3139 
3140     set_signal_handler(SIGSEGV, true);
3141     set_signal_handler(SIGPIPE, true);
3142     set_signal_handler(SIGBUS, true);
3143     set_signal_handler(SIGILL, true);
3144     set_signal_handler(SIGFPE, true);
3145     set_signal_handler(SIGXFSZ, true);
3146 
3147 #if defined(__APPLE__)
3148     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3149     // signals caught and handled by the JVM. To work around this, we reset the mach task
3150     // signal handler that's placed on our process by CrashReporter. This disables
3151     // CrashReporter-based reporting.
3152     //
3153     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3154     // on caught fatal signals.
3155     //
3156     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3157     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3158     // exception handling, while leaving the standard BSD signal handlers functional.
3159     kern_return_t kr;
3160     kr = task_set_exception_ports(mach_task_self(),
3161                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3162                                   MACH_PORT_NULL,
3163                                   EXCEPTION_STATE_IDENTITY,
3164                                   MACHINE_THREAD_STATE);
3165 
3166     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3167 #endif
3168 
3169     if (libjsig_is_loaded) {
3170       // Tell libjsig jvm finishes setting signal handlers
3171       (*end_signal_setting)();
3172     }
3173 
3174     // We don't activate signal checker if libjsig is in place, we trust ourselves
3175     // and if UserSignalHandler is installed all bets are off
3176     if (CheckJNICalls) {
3177       if (libjsig_is_loaded) {
3178         if (PrintJNIResolving) {
3179           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3180         }
3181         check_signals = false;
3182       }
3183       if (AllowUserSignalHandlers) {
3184         if (PrintJNIResolving) {
3185           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3186         }
3187         check_signals = false;
3188       }
3189     }
3190   }
3191 }
3192 
3193 
3194 /////
3195 // glibc on Bsd platform uses non-documented flag
3196 // to indicate, that some special sort of signal
3197 // trampoline is used.
3198 // We will never set this flag, and we should
3199 // ignore this flag in our diagnostic
3200 #ifdef SIGNIFICANT_SIGNAL_MASK
3201   #undef SIGNIFICANT_SIGNAL_MASK
3202 #endif
3203 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3204 
3205 static const char* get_signal_handler_name(address handler,
3206                                            char* buf, int buflen) {
3207   int offset;
3208   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3209   if (found) {
3210     // skip directory names
3211     const char *p1, *p2;
3212     p1 = buf;
3213     size_t len = strlen(os::file_separator());
3214     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3215     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3216   } else {
3217     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3218   }
3219   return buf;
3220 }
3221 
3222 static void print_signal_handler(outputStream* st, int sig,
3223                                  char* buf, size_t buflen) {
3224   struct sigaction sa;
3225 
3226   sigaction(sig, NULL, &sa);
3227 
3228   // See comment for SIGNIFICANT_SIGNAL_MASK define
3229   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3230 
3231   st->print("%s: ", os::exception_name(sig, buf, buflen));
3232 
3233   address handler = (sa.sa_flags & SA_SIGINFO)
3234     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3235     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3236 
3237   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3238     st->print("SIG_DFL");
3239   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3240     st->print("SIG_IGN");
3241   } else {
3242     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3243   }
3244 
3245   st->print(", sa_mask[0]=");
3246   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3247 
3248   address rh = VMError::get_resetted_sighandler(sig);
3249   // May be, handler was resetted by VMError?
3250   if (rh != NULL) {
3251     handler = rh;
3252     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3253   }
3254 
3255   st->print(", sa_flags=");
3256   os::Posix::print_sa_flags(st, sa.sa_flags);
3257 
3258   // Check: is it our handler?
3259   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3260       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3261     // It is our signal handler
3262     // check for flags, reset system-used one!
3263     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3264       st->print(
3265                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3266                 os::Bsd::get_our_sigflags(sig));
3267     }
3268   }
3269   st->cr();
3270 }
3271 
3272 
3273 #define DO_SIGNAL_CHECK(sig)                      \
3274   do {                                            \
3275     if (!sigismember(&check_signal_done, sig)) {  \
3276       os::Bsd::check_signal_handler(sig);         \
3277     }                                             \
3278   } while (0)
3279 
3280 // This method is a periodic task to check for misbehaving JNI applications
3281 // under CheckJNI, we can add any periodic checks here
3282 
3283 void os::run_periodic_checks() {
3284 
3285   if (check_signals == false) return;
3286 
3287   // SEGV and BUS if overridden could potentially prevent
3288   // generation of hs*.log in the event of a crash, debugging
3289   // such a case can be very challenging, so we absolutely
3290   // check the following for a good measure:
3291   DO_SIGNAL_CHECK(SIGSEGV);
3292   DO_SIGNAL_CHECK(SIGILL);
3293   DO_SIGNAL_CHECK(SIGFPE);
3294   DO_SIGNAL_CHECK(SIGBUS);
3295   DO_SIGNAL_CHECK(SIGPIPE);
3296   DO_SIGNAL_CHECK(SIGXFSZ);
3297 
3298 
3299   // ReduceSignalUsage allows the user to override these handlers
3300   // see comments at the very top and jvm_solaris.h
3301   if (!ReduceSignalUsage) {
3302     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3303     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3304     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3305     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3306   }
3307 
3308   DO_SIGNAL_CHECK(SR_signum);
3309 }
3310 
3311 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3312 
3313 static os_sigaction_t os_sigaction = NULL;
3314 
3315 void os::Bsd::check_signal_handler(int sig) {
3316   char buf[O_BUFLEN];
3317   address jvmHandler = NULL;
3318 
3319 
3320   struct sigaction act;
3321   if (os_sigaction == NULL) {
3322     // only trust the default sigaction, in case it has been interposed
3323     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3324     if (os_sigaction == NULL) return;
3325   }
3326 
3327   os_sigaction(sig, (struct sigaction*)NULL, &act);
3328 
3329 
3330   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3331 
3332   address thisHandler = (act.sa_flags & SA_SIGINFO)
3333     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3334     : CAST_FROM_FN_PTR(address, act.sa_handler);
3335 
3336 
3337   switch (sig) {
3338   case SIGSEGV:
3339   case SIGBUS:
3340   case SIGFPE:
3341   case SIGPIPE:
3342   case SIGILL:
3343   case SIGXFSZ:
3344     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3345     break;
3346 
3347   case SHUTDOWN1_SIGNAL:
3348   case SHUTDOWN2_SIGNAL:
3349   case SHUTDOWN3_SIGNAL:
3350   case BREAK_SIGNAL:
3351     jvmHandler = (address)user_handler();
3352     break;
3353 
3354   default:
3355     if (sig == SR_signum) {
3356       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3357     } else {
3358       return;
3359     }
3360     break;
3361   }
3362 
3363   if (thisHandler != jvmHandler) {
3364     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3365     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3366     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3367     // No need to check this sig any longer
3368     sigaddset(&check_signal_done, sig);
3369     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3370     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3371       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3372                     exception_name(sig, buf, O_BUFLEN));
3373     }
3374   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3375     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3376     tty->print("expected:");
3377     os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3378     tty->cr();
3379     tty->print("  found:");
3380     os::Posix::print_sa_flags(tty, act.sa_flags);
3381     tty->cr();
3382     // No need to check this sig any longer
3383     sigaddset(&check_signal_done, sig);
3384   }
3385 
3386   // Dump all the signal
3387   if (sigismember(&check_signal_done, sig)) {
3388     print_signal_handlers(tty, buf, O_BUFLEN);
3389   }
3390 }
3391 
3392 extern void report_error(char* file_name, int line_no, char* title,
3393                          char* format, ...);
3394 
3395 // this is called _before_ the most of global arguments have been parsed
3396 void os::init(void) {
3397   char dummy;   // used to get a guess on initial stack address
3398 
3399   // With BsdThreads the JavaMain thread pid (primordial thread)
3400   // is different than the pid of the java launcher thread.
3401   // So, on Bsd, the launcher thread pid is passed to the VM
3402   // via the sun.java.launcher.pid property.
3403   // Use this property instead of getpid() if it was correctly passed.
3404   // See bug 6351349.
3405   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3406 
3407   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3408 
3409   clock_tics_per_sec = CLK_TCK;
3410 
3411   init_random(1234567);
3412 
3413   ThreadCritical::initialize();
3414 
3415   Bsd::set_page_size(getpagesize());
3416   if (Bsd::page_size() == -1) {
3417     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3418   }
3419   init_page_sizes((size_t) Bsd::page_size());
3420 
3421   Bsd::initialize_system_info();
3422 
3423   // main_thread points to the aboriginal thread
3424   Bsd::_main_thread = pthread_self();
3425 
3426   Bsd::clock_init();
3427   initial_time_count = javaTimeNanos();
3428 
3429 #ifdef __APPLE__
3430   // XXXDARWIN
3431   // Work around the unaligned VM callbacks in hotspot's
3432   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3433   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3434   // alignment when doing symbol lookup. To work around this, we force early
3435   // binding of all symbols now, thus binding when alignment is known-good.
3436   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3437 #endif
3438 
3439   os::Posix::init();
3440 }
3441 
3442 // To install functions for atexit system call
3443 extern "C" {
3444   static void perfMemory_exit_helper() {
3445     perfMemory_exit();
3446   }
3447 }
3448 
3449 // this is called _after_ the global arguments have been parsed
3450 jint os::init_2(void) {
3451 
3452   os::Posix::init_2();
3453 
3454   // Allocate a single page and mark it as readable for safepoint polling
3455   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3456   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3457 
3458   os::set_polling_page(polling_page);
3459   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3460 
3461   if (!UseMembar) {
3462     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3463     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3464     os::set_memory_serialize_page(mem_serialize_page);
3465     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3466   }
3467 
3468   // initialize suspend/resume support - must do this before signal_sets_init()
3469   if (SR_initialize() != 0) {
3470     perror("SR_initialize failed");
3471     return JNI_ERR;
3472   }
3473 
3474   Bsd::signal_sets_init();
3475   Bsd::install_signal_handlers();
3476 
3477   // Check and sets minimum stack sizes against command line options
3478   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3479     return JNI_ERR;
3480   }
3481 
3482   if (MaxFDLimit) {
3483     // set the number of file descriptors to max. print out error
3484     // if getrlimit/setrlimit fails but continue regardless.
3485     struct rlimit nbr_files;
3486     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3487     if (status != 0) {
3488       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3489     } else {
3490       nbr_files.rlim_cur = nbr_files.rlim_max;
3491 
3492 #ifdef __APPLE__
3493       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3494       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3495       // be used instead
3496       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3497 #endif
3498 
3499       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3500       if (status != 0) {
3501         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3502       }
3503     }
3504   }
3505 
3506   // at-exit methods are called in the reverse order of their registration.
3507   // atexit functions are called on return from main or as a result of a
3508   // call to exit(3C). There can be only 32 of these functions registered
3509   // and atexit() does not set errno.
3510 
3511   if (PerfAllowAtExitRegistration) {
3512     // only register atexit functions if PerfAllowAtExitRegistration is set.
3513     // atexit functions can be delayed until process exit time, which
3514     // can be problematic for embedded VM situations. Embedded VMs should
3515     // call DestroyJavaVM() to assure that VM resources are released.
3516 
3517     // note: perfMemory_exit_helper atexit function may be removed in
3518     // the future if the appropriate cleanup code can be added to the
3519     // VM_Exit VMOperation's doit method.
3520     if (atexit(perfMemory_exit_helper) != 0) {
3521       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3522     }
3523   }
3524 
3525   // initialize thread priority policy
3526   prio_init();
3527 
3528 #ifdef __APPLE__
3529   // dynamically link to objective c gc registration
3530   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3531   if (handleLibObjc != NULL) {
3532     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3533   }
3534 #endif
3535 
3536   return JNI_OK;
3537 }
3538 
3539 // Mark the polling page as unreadable
3540 void os::make_polling_page_unreadable(void) {
3541   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3542     fatal("Could not disable polling page");
3543   }
3544 }
3545 
3546 // Mark the polling page as readable
3547 void os::make_polling_page_readable(void) {
3548   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3549     fatal("Could not enable polling page");
3550   }
3551 }
3552 
3553 int os::active_processor_count() {
3554   return _processor_count;
3555 }
3556 
3557 void os::set_native_thread_name(const char *name) {
3558 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3559   // This is only supported in Snow Leopard and beyond
3560   if (name != NULL) {
3561     // Add a "Java: " prefix to the name
3562     char buf[MAXTHREADNAMESIZE];
3563     snprintf(buf, sizeof(buf), "Java: %s", name);
3564     pthread_setname_np(buf);
3565   }
3566 #endif
3567 }
3568 
3569 bool os::distribute_processes(uint length, uint* distribution) {
3570   // Not yet implemented.
3571   return false;
3572 }
3573 
3574 bool os::bind_to_processor(uint processor_id) {
3575   // Not yet implemented.
3576   return false;
3577 }
3578 
3579 void os::SuspendedThreadTask::internal_do_task() {
3580   if (do_suspend(_thread->osthread())) {
3581     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3582     do_task(context);
3583     do_resume(_thread->osthread());
3584   }
3585 }
3586 
3587 ///
3588 class PcFetcher : public os::SuspendedThreadTask {
3589  public:
3590   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3591   ExtendedPC result();
3592  protected:
3593   void do_task(const os::SuspendedThreadTaskContext& context);
3594  private:
3595   ExtendedPC _epc;
3596 };
3597 
3598 ExtendedPC PcFetcher::result() {
3599   guarantee(is_done(), "task is not done yet.");
3600   return _epc;
3601 }
3602 
3603 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3604   Thread* thread = context.thread();
3605   OSThread* osthread = thread->osthread();
3606   if (osthread->ucontext() != NULL) {
3607     _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3608   } else {
3609     // NULL context is unexpected, double-check this is the VMThread
3610     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3611   }
3612 }
3613 
3614 // Suspends the target using the signal mechanism and then grabs the PC before
3615 // resuming the target. Used by the flat-profiler only
3616 ExtendedPC os::get_thread_pc(Thread* thread) {
3617   // Make sure that it is called by the watcher for the VMThread
3618   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3619   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3620 
3621   PcFetcher fetcher(thread);
3622   fetcher.run();
3623   return fetcher.result();
3624 }
3625 
3626 ////////////////////////////////////////////////////////////////////////////////
3627 // debug support
3628 
3629 bool os::find(address addr, outputStream* st) {
3630   Dl_info dlinfo;
3631   memset(&dlinfo, 0, sizeof(dlinfo));
3632   if (dladdr(addr, &dlinfo) != 0) {
3633     st->print(PTR_FORMAT ": ", addr);
3634     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3635       st->print("%s+%#x", dlinfo.dli_sname,
3636                 addr - (intptr_t)dlinfo.dli_saddr);
3637     } else if (dlinfo.dli_fbase != NULL) {
3638       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3639     } else {
3640       st->print("<absolute address>");
3641     }
3642     if (dlinfo.dli_fname != NULL) {
3643       st->print(" in %s", dlinfo.dli_fname);
3644     }
3645     if (dlinfo.dli_fbase != NULL) {
3646       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3647     }
3648     st->cr();
3649 
3650     if (Verbose) {
3651       // decode some bytes around the PC
3652       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3653       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3654       address       lowest = (address) dlinfo.dli_sname;
3655       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3656       if (begin < lowest)  begin = lowest;
3657       Dl_info dlinfo2;
3658       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3659           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3660         end = (address) dlinfo2.dli_saddr;
3661       }
3662       Disassembler::decode(begin, end, st);
3663     }
3664     return true;
3665   }
3666   return false;
3667 }
3668 
3669 ////////////////////////////////////////////////////////////////////////////////
3670 // misc
3671 
3672 // This does not do anything on Bsd. This is basically a hook for being
3673 // able to use structured exception handling (thread-local exception filters)
3674 // on, e.g., Win32.
3675 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3676                               const methodHandle& method, JavaCallArguments* args,
3677                               Thread* thread) {
3678   f(value, method, args, thread);
3679 }
3680 
3681 void os::print_statistics() {
3682 }
3683 
3684 bool os::message_box(const char* title, const char* message) {
3685   int i;
3686   fdStream err(defaultStream::error_fd());
3687   for (i = 0; i < 78; i++) err.print_raw("=");
3688   err.cr();
3689   err.print_raw_cr(title);
3690   for (i = 0; i < 78; i++) err.print_raw("-");
3691   err.cr();
3692   err.print_raw_cr(message);
3693   for (i = 0; i < 78; i++) err.print_raw("=");
3694   err.cr();
3695 
3696   char buf[16];
3697   // Prevent process from exiting upon "read error" without consuming all CPU
3698   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3699 
3700   return buf[0] == 'y' || buf[0] == 'Y';
3701 }
3702 
3703 int os::stat(const char *path, struct stat *sbuf) {
3704   char pathbuf[MAX_PATH];
3705   if (strlen(path) > MAX_PATH - 1) {
3706     errno = ENAMETOOLONG;
3707     return -1;
3708   }
3709   os::native_path(strcpy(pathbuf, path));
3710   return ::stat(pathbuf, sbuf);
3711 }
3712 
3713 static inline struct timespec get_mtime(const char* filename) {
3714   struct stat st;
3715   int ret = os::stat(filename, &st);
3716   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3717 #ifdef __APPLE__
3718   return st.st_mtimespec;
3719 #else
3720   return st.st_mtim;
3721 #endif
3722 }
3723 
3724 int os::compare_file_modified_times(const char* file1, const char* file2) {
3725   struct timespec filetime1 = get_mtime(file1);
3726   struct timespec filetime2 = get_mtime(file2);
3727   int diff = filetime1.tv_sec - filetime2.tv_sec;
3728   if (diff == 0) {
3729     return filetime1.tv_nsec - filetime2.tv_nsec;
3730   }
3731   return diff;
3732 }
3733 
3734 // Is a (classpath) directory empty?
3735 bool os::dir_is_empty(const char* path) {
3736   DIR *dir = NULL;
3737   struct dirent *ptr;
3738 
3739   dir = opendir(path);
3740   if (dir == NULL) return true;
3741 
3742   // Scan the directory
3743   bool result = true;
3744   char buf[sizeof(struct dirent) + MAX_PATH];
3745   while (result && (ptr = ::readdir(dir)) != NULL) {
3746     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3747       result = false;
3748     }
3749   }
3750   closedir(dir);
3751   return result;
3752 }
3753 
3754 // This code originates from JDK's sysOpen and open64_w
3755 // from src/solaris/hpi/src/system_md.c
3756 
3757 int os::open(const char *path, int oflag, int mode) {
3758   if (strlen(path) > MAX_PATH - 1) {
3759     errno = ENAMETOOLONG;
3760     return -1;
3761   }
3762   int fd;
3763 
3764   fd = ::open(path, oflag, mode);
3765   if (fd == -1) return -1;
3766 
3767   // If the open succeeded, the file might still be a directory
3768   {
3769     struct stat buf;
3770     int ret = ::fstat(fd, &buf);
3771     int st_mode = buf.st_mode;
3772 
3773     if (ret != -1) {
3774       if ((st_mode & S_IFMT) == S_IFDIR) {
3775         errno = EISDIR;
3776         ::close(fd);
3777         return -1;
3778       }
3779     } else {
3780       ::close(fd);
3781       return -1;
3782     }
3783   }
3784 
3785   // All file descriptors that are opened in the JVM and not
3786   // specifically destined for a subprocess should have the
3787   // close-on-exec flag set.  If we don't set it, then careless 3rd
3788   // party native code might fork and exec without closing all
3789   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3790   // UNIXProcess.c), and this in turn might:
3791   //
3792   // - cause end-of-file to fail to be detected on some file
3793   //   descriptors, resulting in mysterious hangs, or
3794   //
3795   // - might cause an fopen in the subprocess to fail on a system
3796   //   suffering from bug 1085341.
3797   //
3798   // (Yes, the default setting of the close-on-exec flag is a Unix
3799   // design flaw)
3800   //
3801   // See:
3802   // 1085341: 32-bit stdio routines should support file descriptors >255
3803   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3804   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3805   //
3806 #ifdef FD_CLOEXEC
3807   {
3808     int flags = ::fcntl(fd, F_GETFD);
3809     if (flags != -1) {
3810       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3811     }
3812   }
3813 #endif
3814 
3815   return fd;
3816 }
3817 
3818 
3819 // create binary file, rewriting existing file if required
3820 int os::create_binary_file(const char* path, bool rewrite_existing) {
3821   int oflags = O_WRONLY | O_CREAT;
3822   if (!rewrite_existing) {
3823     oflags |= O_EXCL;
3824   }
3825   return ::open(path, oflags, S_IREAD | S_IWRITE);
3826 }
3827 
3828 // return current position of file pointer
3829 jlong os::current_file_offset(int fd) {
3830   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3831 }
3832 
3833 // move file pointer to the specified offset
3834 jlong os::seek_to_file_offset(int fd, jlong offset) {
3835   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3836 }
3837 
3838 // This code originates from JDK's sysAvailable
3839 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3840 
3841 int os::available(int fd, jlong *bytes) {
3842   jlong cur, end;
3843   int mode;
3844   struct stat buf;
3845 
3846   if (::fstat(fd, &buf) >= 0) {
3847     mode = buf.st_mode;
3848     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3849       int n;
3850       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3851         *bytes = n;
3852         return 1;
3853       }
3854     }
3855   }
3856   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3857     return 0;
3858   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3859     return 0;
3860   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3861     return 0;
3862   }
3863   *bytes = end - cur;
3864   return 1;
3865 }
3866 
3867 // Map a block of memory.
3868 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3869                         char *addr, size_t bytes, bool read_only,
3870                         bool allow_exec) {
3871   int prot;
3872   int flags;
3873 
3874   if (read_only) {
3875     prot = PROT_READ;
3876     flags = MAP_SHARED;
3877   } else {
3878     prot = PROT_READ | PROT_WRITE;
3879     flags = MAP_PRIVATE;
3880   }
3881 
3882   if (allow_exec) {
3883     prot |= PROT_EXEC;
3884   }
3885 
3886   if (addr != NULL) {
3887     flags |= MAP_FIXED;
3888   }
3889 
3890   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3891                                      fd, file_offset);
3892   if (mapped_address == MAP_FAILED) {
3893     return NULL;
3894   }
3895   return mapped_address;
3896 }
3897 
3898 
3899 // Remap a block of memory.
3900 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3901                           char *addr, size_t bytes, bool read_only,
3902                           bool allow_exec) {
3903   // same as map_memory() on this OS
3904   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3905                         allow_exec);
3906 }
3907 
3908 
3909 // Unmap a block of memory.
3910 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3911   return munmap(addr, bytes) == 0;
3912 }
3913 
3914 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3915 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3916 // of a thread.
3917 //
3918 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3919 // the fast estimate available on the platform.
3920 
3921 jlong os::current_thread_cpu_time() {
3922 #ifdef __APPLE__
3923   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3924 #else
3925   Unimplemented();
3926   return 0;
3927 #endif
3928 }
3929 
3930 jlong os::thread_cpu_time(Thread* thread) {
3931 #ifdef __APPLE__
3932   return os::thread_cpu_time(thread, true /* user + sys */);
3933 #else
3934   Unimplemented();
3935   return 0;
3936 #endif
3937 }
3938 
3939 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3940 #ifdef __APPLE__
3941   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3942 #else
3943   Unimplemented();
3944   return 0;
3945 #endif
3946 }
3947 
3948 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3949 #ifdef __APPLE__
3950   struct thread_basic_info tinfo;
3951   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3952   kern_return_t kr;
3953   thread_t mach_thread;
3954 
3955   mach_thread = thread->osthread()->thread_id();
3956   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3957   if (kr != KERN_SUCCESS) {
3958     return -1;
3959   }
3960 
3961   if (user_sys_cpu_time) {
3962     jlong nanos;
3963     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3964     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3965     return nanos;
3966   } else {
3967     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3968   }
3969 #else
3970   Unimplemented();
3971   return 0;
3972 #endif
3973 }
3974 
3975 
3976 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3977   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3978   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3979   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3980   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3981 }
3982 
3983 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3984   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3985   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3986   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3987   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3988 }
3989 
3990 bool os::is_thread_cpu_time_supported() {
3991 #ifdef __APPLE__
3992   return true;
3993 #else
3994   return false;
3995 #endif
3996 }
3997 
3998 // System loadavg support.  Returns -1 if load average cannot be obtained.
3999 // Bsd doesn't yet have a (official) notion of processor sets,
4000 // so just return the system wide load average.
4001 int os::loadavg(double loadavg[], int nelem) {
4002   return ::getloadavg(loadavg, nelem);
4003 }
4004 
4005 void os::pause() {
4006   char filename[MAX_PATH];
4007   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4008     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4009   } else {
4010     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4011   }
4012 
4013   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4014   if (fd != -1) {
4015     struct stat buf;
4016     ::close(fd);
4017     while (::stat(filename, &buf) == 0) {
4018       (void)::poll(NULL, 0, 100);
4019     }
4020   } else {
4021     jio_fprintf(stderr,
4022                 "Could not open pause file '%s', continuing immediately.\n", filename);
4023   }
4024 }
4025 
4026 // Darwin has no "environ" in a dynamic library.
4027 #ifdef __APPLE__
4028   #include <crt_externs.h>
4029   #define environ (*_NSGetEnviron())
4030 #else
4031 extern char** environ;
4032 #endif
4033 
4034 // Run the specified command in a separate process. Return its exit value,
4035 // or -1 on failure (e.g. can't fork a new process).
4036 // Unlike system(), this function can be called from signal handler. It
4037 // doesn't block SIGINT et al.
4038 int os::fork_and_exec(char* cmd) {
4039   const char * argv[4] = {"sh", "-c", cmd, NULL};
4040 
4041   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4042   // pthread_atfork handlers and reset pthread library. All we need is a
4043   // separate process to execve. Make a direct syscall to fork process.
4044   // On IA64 there's no fork syscall, we have to use fork() and hope for
4045   // the best...
4046   pid_t pid = fork();
4047 
4048   if (pid < 0) {
4049     // fork failed
4050     return -1;
4051 
4052   } else if (pid == 0) {
4053     // child process
4054 
4055     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4056     // first to kill every thread on the thread list. Because this list is
4057     // not reset by fork() (see notes above), execve() will instead kill
4058     // every thread in the parent process. We know this is the only thread
4059     // in the new process, so make a system call directly.
4060     // IA64 should use normal execve() from glibc to match the glibc fork()
4061     // above.
4062     execve("/bin/sh", (char* const*)argv, environ);
4063 
4064     // execve failed
4065     _exit(-1);
4066 
4067   } else  {
4068     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4069     // care about the actual exit code, for now.
4070 
4071     int status;
4072 
4073     // Wait for the child process to exit.  This returns immediately if
4074     // the child has already exited. */
4075     while (waitpid(pid, &status, 0) < 0) {
4076       switch (errno) {
4077       case ECHILD: return 0;
4078       case EINTR: break;
4079       default: return -1;
4080       }
4081     }
4082 
4083     if (WIFEXITED(status)) {
4084       // The child exited normally; get its exit code.
4085       return WEXITSTATUS(status);
4086     } else if (WIFSIGNALED(status)) {
4087       // The child exited because of a signal
4088       // The best value to return is 0x80 + signal number,
4089       // because that is what all Unix shells do, and because
4090       // it allows callers to distinguish between process exit and
4091       // process death by signal.
4092       return 0x80 + WTERMSIG(status);
4093     } else {
4094       // Unknown exit code; pass it through
4095       return status;
4096     }
4097   }
4098 }
4099 
4100 // is_headless_jre()
4101 //
4102 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4103 // in order to report if we are running in a headless jre
4104 //
4105 // Since JDK8 xawt/libmawt.so was moved into the same directory
4106 // as libawt.so, and renamed libawt_xawt.so
4107 //
4108 bool os::is_headless_jre() {
4109 #ifdef __APPLE__
4110   // We no longer build headless-only on Mac OS X
4111   return false;
4112 #else
4113   struct stat statbuf;
4114   char buf[MAXPATHLEN];
4115   char libmawtpath[MAXPATHLEN];
4116   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4117   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4118   char *p;
4119 
4120   // Get path to libjvm.so
4121   os::jvm_path(buf, sizeof(buf));
4122 
4123   // Get rid of libjvm.so
4124   p = strrchr(buf, '/');
4125   if (p == NULL) {
4126     return false;
4127   } else {
4128     *p = '\0';
4129   }
4130 
4131   // Get rid of client or server
4132   p = strrchr(buf, '/');
4133   if (p == NULL) {
4134     return false;
4135   } else {
4136     *p = '\0';
4137   }
4138 
4139   // check xawt/libmawt.so
4140   strcpy(libmawtpath, buf);
4141   strcat(libmawtpath, xawtstr);
4142   if (::stat(libmawtpath, &statbuf) == 0) return false;
4143 
4144   // check libawt_xawt.so
4145   strcpy(libmawtpath, buf);
4146   strcat(libmawtpath, new_xawtstr);
4147   if (::stat(libmawtpath, &statbuf) == 0) return false;
4148 
4149   return true;
4150 #endif
4151 }
4152 
4153 // Get the default path to the core file
4154 // Returns the length of the string
4155 int os::get_core_path(char* buffer, size_t bufferSize) {
4156   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4157 
4158   // Truncate if theoretical string was longer than bufferSize
4159   n = MIN2(n, (int)bufferSize);
4160 
4161   return n;
4162 }
4163 
4164 #ifndef PRODUCT
4165 void TestReserveMemorySpecial_test() {
4166   // No tests available for this platform
4167 }
4168 #endif
4169 
4170 bool os::start_debugging(char *buf, int buflen) {
4171   int len = (int)strlen(buf);
4172   char *p = &buf[len];
4173 
4174   jio_snprintf(p, buflen-len,
4175              "\n\n"
4176              "Do you want to debug the problem?\n\n"
4177              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4178              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4179              "Otherwise, press RETURN to abort...",
4180              os::current_process_id(), os::current_process_id(),
4181              os::current_thread_id(), os::current_thread_id());
4182 
4183   bool yes = os::message_box("Unexpected Error", buf);
4184 
4185   if (yes) {
4186     // yes, user asked VM to launch debugger
4187     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4188                      os::current_process_id(), os::current_process_id());
4189 
4190     os::fork_and_exec(buf);
4191     yes = false;
4192   }
4193   return yes;
4194 }