1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/icache.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/sweeper.hpp"
  51 #include "services/memoryService.hpp"
  52 #include "trace/tracing.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/vmError.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Compilation.hpp"
  58 #include "c1/c1_Compiler.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "opto/c2compiler.hpp"
  62 #include "opto/compile.hpp"
  63 #include "opto/node.hpp"
  64 #endif
  65 
  66 // Helper class for printing in CodeCache
  67 class CodeBlob_sizes {
  68  private:
  69   int count;
  70   int total_size;
  71   int header_size;
  72   int code_size;
  73   int stub_size;
  74   int relocation_size;
  75   int scopes_oop_size;
  76   int scopes_metadata_size;
  77   int scopes_data_size;
  78   int scopes_pcs_size;
  79 
  80  public:
  81   CodeBlob_sizes() {
  82     count            = 0;
  83     total_size       = 0;
  84     header_size      = 0;
  85     code_size        = 0;
  86     stub_size        = 0;
  87     relocation_size  = 0;
  88     scopes_oop_size  = 0;
  89     scopes_metadata_size  = 0;
  90     scopes_data_size = 0;
  91     scopes_pcs_size  = 0;
  92   }
  93 
  94   int total()                                    { return total_size; }
  95   bool is_empty()                                { return count == 0; }
  96 
  97   void print(const char* title) {
  98     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  99                   count,
 100                   title,
 101                   (int)(total() / K),
 102                   header_size             * 100 / total_size,
 103                   relocation_size         * 100 / total_size,
 104                   code_size               * 100 / total_size,
 105                   stub_size               * 100 / total_size,
 106                   scopes_oop_size         * 100 / total_size,
 107                   scopes_metadata_size    * 100 / total_size,
 108                   scopes_data_size        * 100 / total_size,
 109                   scopes_pcs_size         * 100 / total_size);
 110   }
 111 
 112   void add(CodeBlob* cb) {
 113     count++;
 114     total_size       += cb->size();
 115     header_size      += cb->header_size();
 116     relocation_size  += cb->relocation_size();
 117     if (cb->is_nmethod()) {
 118       nmethod* nm = cb->as_nmethod_or_null();
 119       code_size        += nm->insts_size();
 120       stub_size        += nm->stub_size();
 121 
 122       scopes_oop_size  += nm->oops_size();
 123       scopes_metadata_size  += nm->metadata_size();
 124       scopes_data_size += nm->scopes_data_size();
 125       scopes_pcs_size  += nm->scopes_pcs_size();
 126     } else {
 127       code_size        += cb->code_size();
 128     }
 129   }
 130 };
 131 
 132 // Iterate over all CodeHeaps
 133 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 134 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 135 
 136 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 137 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 138 
 139 address CodeCache::_low_bound = 0;
 140 address CodeCache::_high_bound = 0;
 141 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 142 bool CodeCache::_needs_cache_clean = false;
 143 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 144 
 145 // Initialize array of CodeHeaps
 146 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 147 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 148 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 149 
 150 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 151   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 152   // Prepare error message
 153   const char* error = "Invalid code heap sizes";
 154   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 155                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 156           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 157 
 158   if (total_size > cache_size) {
 159     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 160     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 161     vm_exit_during_initialization(error, message);
 162   } else if (all_set && total_size != cache_size) {
 163     // All code heap sizes were explicitly set: total_size must equal cache_size
 164     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 165     vm_exit_during_initialization(error, message);
 166   }
 167 }
 168 
 169 void CodeCache::initialize_heaps() {
 170   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 171   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 172   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 173   size_t min_size           = os::vm_page_size();
 174   size_t cache_size         = ReservedCodeCacheSize;
 175   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 176   size_t profiled_size      = ProfiledCodeHeapSize;
 177   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 178   // Check if total size set via command line flags exceeds the reserved size
 179   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 180                    (profiled_set     ? profiled_size     : min_size),
 181                    (non_profiled_set ? non_profiled_size : min_size),
 182                    cache_size,
 183                    non_nmethod_set && profiled_set && non_profiled_set);
 184 
 185   // Determine size of compiler buffers
 186   size_t code_buffers_size = 0;
 187 #ifdef COMPILER1
 188   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 189   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 190   code_buffers_size += c1_count * Compiler::code_buffer_size();
 191 #endif
 192 #ifdef COMPILER2
 193   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 194   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 195   // Initial size of constant table (this may be increased if a compiled method needs more space)
 196   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 197 #endif
 198 
 199   // Increase default non_nmethod_size to account for compiler buffers
 200   if (!non_nmethod_set) {
 201     non_nmethod_size += code_buffers_size;
 202   }
 203   // Calculate default CodeHeap sizes if not set by user
 204   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 205     // Check if we have enough space for the non-nmethod code heap
 206     if (cache_size > non_nmethod_size) {
 207       // Use the default value for non_nmethod_size and one half of the
 208       // remaining size for non-profiled and one half for profiled methods
 209       size_t remaining_size = cache_size - non_nmethod_size;
 210       profiled_size = remaining_size / 2;
 211       non_profiled_size = remaining_size - profiled_size;
 212     } else {
 213       // Use all space for the non-nmethod heap and set other heaps to minimal size
 214       non_nmethod_size = cache_size - 2 * min_size;
 215       profiled_size = min_size;
 216       non_profiled_size = min_size;
 217     }
 218   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 219     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 220     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 221     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 222     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 223     if (non_profiled_set) {
 224       if (!profiled_set) {
 225         // Adapt size of profiled code heap
 226         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 227           // Not enough space available, set to minimum size
 228           diff_size += profiled_size - min_size;
 229           profiled_size = min_size;
 230         } else {
 231           profiled_size += diff_size;
 232           diff_size = 0;
 233         }
 234       }
 235     } else if (profiled_set) {
 236       // Adapt size of non-profiled code heap
 237       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 238         // Not enough space available, set to minimum size
 239         diff_size += non_profiled_size - min_size;
 240         non_profiled_size = min_size;
 241       } else {
 242         non_profiled_size += diff_size;
 243         diff_size = 0;
 244       }
 245     } else if (non_nmethod_set) {
 246       // Distribute remaining size between profiled and non-profiled code heaps
 247       diff_size = cache_size - non_nmethod_size;
 248       profiled_size = diff_size / 2;
 249       non_profiled_size = diff_size - profiled_size;
 250       diff_size = 0;
 251     }
 252     if (diff_size != 0) {
 253       // Use non-nmethod code heap for remaining space requirements
 254       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 255       non_nmethod_size += diff_size;
 256     }
 257   }
 258 
 259   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 260   if(!heap_available(CodeBlobType::MethodProfiled)) {
 261     non_profiled_size += profiled_size;
 262     profiled_size = 0;
 263   }
 264   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 265   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 266     non_nmethod_size += non_profiled_size;
 267     non_profiled_size = 0;
 268   }
 269   // Make sure we have enough space for VM internal code
 270   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 271   if (non_nmethod_size < (min_code_cache_size + code_buffers_size)) {
 272     vm_exit_during_initialization(err_msg(
 273         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 274         non_nmethod_size/K, (min_code_cache_size + code_buffers_size)/K));
 275   }
 276 
 277   // Verify sizes and update flag values
 278   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 279   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 280   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 281   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 282 
 283   // Align CodeHeaps
 284   size_t alignment = heap_alignment();
 285   non_nmethod_size = align_up(non_nmethod_size, alignment);
 286   profiled_size   = align_down(profiled_size, alignment);
 287 
 288   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 289   // parts for the individual heaps. The memory layout looks like this:
 290   // ---------- high -----------
 291   //    Non-profiled nmethods
 292   //      Profiled nmethods
 293   //         Non-nmethods
 294   // ---------- low ------------
 295   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 296   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 297   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 298   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 299   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 300 
 301   // Non-nmethods (stubs, adapters, ...)
 302   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 303   // Tier 2 and tier 3 (profiled) methods
 304   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 305   // Tier 1 and tier 4 (non-profiled) methods and native methods
 306   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 307 }
 308 
 309 size_t CodeCache::heap_alignment() {
 310   // If large page support is enabled, align code heaps according to large
 311   // page size to make sure that code cache is covered by large pages.
 312   const size_t page_size = os::can_execute_large_page_memory() ?
 313              os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
 314              os::vm_page_size();
 315   return MAX2(page_size, (size_t) os::vm_allocation_granularity());
 316 }
 317 
 318 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 319   // Determine alignment
 320   const size_t page_size = os::can_execute_large_page_memory() ?
 321           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 322                os::page_size_for_region_aligned(size, 8)) :
 323           os::vm_page_size();
 324   const size_t granularity = os::vm_allocation_granularity();
 325   const size_t r_align = MAX2(page_size, granularity);
 326   const size_t r_size = align_up(size, r_align);
 327   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 328     MAX2(page_size, granularity);
 329 
 330   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 331 
 332   if (!rs.is_reserved()) {
 333     vm_exit_during_initialization("Could not reserve enough space for code cache");
 334   }
 335 
 336   // Initialize bounds
 337   _low_bound = (address)rs.base();
 338   _high_bound = _low_bound + rs.size();
 339 
 340   return rs;
 341 }
 342 
 343 bool CodeCache::heap_available(int code_blob_type) {
 344   if (!SegmentedCodeCache) {
 345     // No segmentation: use a single code heap
 346     return (code_blob_type == CodeBlobType::All);
 347   } else if (Arguments::is_interpreter_only()) {
 348     // Interpreter only: we don't need any method code heaps
 349     return (code_blob_type == CodeBlobType::NonNMethod);
 350   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 351     // Tiered compilation: use all code heaps
 352     return (code_blob_type < CodeBlobType::All);
 353   } else {
 354     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 355     return (code_blob_type == CodeBlobType::NonNMethod) ||
 356            (code_blob_type == CodeBlobType::MethodNonProfiled);
 357   }
 358 }
 359 
 360 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 361   switch(code_blob_type) {
 362   case CodeBlobType::NonNMethod:
 363     return "NonNMethodCodeHeapSize";
 364     break;
 365   case CodeBlobType::MethodNonProfiled:
 366     return "NonProfiledCodeHeapSize";
 367     break;
 368   case CodeBlobType::MethodProfiled:
 369     return "ProfiledCodeHeapSize";
 370     break;
 371   }
 372   ShouldNotReachHere();
 373   return NULL;
 374 }
 375 
 376 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 377   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 378     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 379   } else {
 380     return lhs->code_blob_type() - rhs->code_blob_type();
 381   }
 382 }
 383 
 384 void CodeCache::add_heap(CodeHeap* heap) {
 385   assert(!Universe::is_fully_initialized(), "late heap addition?");
 386 
 387   _heaps->insert_sorted<code_heap_compare>(heap);
 388 
 389   int type = heap->code_blob_type();
 390   if (code_blob_type_accepts_compiled(type)) {
 391     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 392   }
 393   if (code_blob_type_accepts_nmethod(type)) {
 394     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 395   }
 396 }
 397 
 398 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 399   // Check if heap is needed
 400   if (!heap_available(code_blob_type)) {
 401     return;
 402   }
 403 
 404   // Create CodeHeap
 405   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 406   add_heap(heap);
 407 
 408   // Reserve Space
 409   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 410   size_initial = align_up(size_initial, os::vm_page_size());
 411   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 412     vm_exit_during_initialization("Could not reserve enough space for code cache");
 413   }
 414 
 415   // Register the CodeHeap
 416   MemoryService::add_code_heap_memory_pool(heap, name);
 417 }
 418 
 419 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 420   assert(cb != NULL, "CodeBlob is null");
 421   FOR_ALL_HEAPS(heap) {
 422     if ((*heap)->contains_blob(cb)) {
 423       return *heap;
 424     }
 425   }
 426   ShouldNotReachHere();
 427   return NULL;
 428 }
 429 
 430 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 431   FOR_ALL_HEAPS(heap) {
 432     if ((*heap)->accepts(code_blob_type)) {
 433       return *heap;
 434     }
 435   }
 436   return NULL;
 437 }
 438 
 439 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 440   assert_locked_or_safepoint(CodeCache_lock);
 441   assert(heap != NULL, "heap is null");
 442   return (CodeBlob*)heap->first();
 443 }
 444 
 445 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 446   if (heap_available(code_blob_type)) {
 447     return first_blob(get_code_heap(code_blob_type));
 448   } else {
 449     return NULL;
 450   }
 451 }
 452 
 453 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 454   assert_locked_or_safepoint(CodeCache_lock);
 455   assert(heap != NULL, "heap is null");
 456   return (CodeBlob*)heap->next(cb);
 457 }
 458 
 459 /**
 460  * Do not seize the CodeCache lock here--if the caller has not
 461  * already done so, we are going to lose bigtime, since the code
 462  * cache will contain a garbage CodeBlob until the caller can
 463  * run the constructor for the CodeBlob subclass he is busy
 464  * instantiating.
 465  */
 466 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 467   // Possibly wakes up the sweeper thread.
 468   NMethodSweeper::notify(code_blob_type);
 469   assert_locked_or_safepoint(CodeCache_lock);
 470   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 471   if (size <= 0) {
 472     return NULL;
 473   }
 474   CodeBlob* cb = NULL;
 475 
 476   // Get CodeHeap for the given CodeBlobType
 477   CodeHeap* heap = get_code_heap(code_blob_type);
 478   assert(heap != NULL, "heap is null");
 479 
 480   while (true) {
 481     cb = (CodeBlob*)heap->allocate(size);
 482     if (cb != NULL) break;
 483     if (!heap->expand_by(CodeCacheExpansionSize)) {
 484       // Save original type for error reporting
 485       if (orig_code_blob_type == CodeBlobType::All) {
 486         orig_code_blob_type = code_blob_type;
 487       }
 488       // Expansion failed
 489       if (SegmentedCodeCache) {
 490         // Fallback solution: Try to store code in another code heap.
 491         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 492         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 493         // and force stack scanning if less than 10% of the code heap are free.
 494         int type = code_blob_type;
 495         switch (type) {
 496         case CodeBlobType::NonNMethod:
 497           type = CodeBlobType::MethodNonProfiled;
 498           break;
 499         case CodeBlobType::MethodNonProfiled:
 500           type = CodeBlobType::MethodProfiled;
 501           break;
 502         case CodeBlobType::MethodProfiled:
 503           // Avoid loop if we already tried that code heap
 504           if (type == orig_code_blob_type) {
 505             type = CodeBlobType::MethodNonProfiled;
 506           }
 507           break;
 508         }
 509         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 510           if (PrintCodeCacheExtension) {
 511             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 512                           heap->name(), get_code_heap(type)->name());
 513           }
 514           return allocate(size, type, orig_code_blob_type);
 515         }
 516       }
 517       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 518       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 519       return NULL;
 520     }
 521     if (PrintCodeCacheExtension) {
 522       ResourceMark rm;
 523       if (_nmethod_heaps->length() >= 1) {
 524         tty->print("%s", heap->name());
 525       } else {
 526         tty->print("CodeCache");
 527       }
 528       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 529                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 530                     (address)heap->high() - (address)heap->low_boundary());
 531     }
 532   }
 533   print_trace("allocation", cb, size);
 534   return cb;
 535 }
 536 
 537 void CodeCache::free(CodeBlob* cb) {
 538   assert_locked_or_safepoint(CodeCache_lock);
 539   CodeHeap* heap = get_code_heap(cb);
 540   print_trace("free", cb);
 541   if (cb->is_nmethod()) {
 542     heap->set_nmethod_count(heap->nmethod_count() - 1);
 543     if (((nmethod *)cb)->has_dependencies()) {
 544       _number_of_nmethods_with_dependencies--;
 545     }
 546   }
 547   if (cb->is_adapter_blob()) {
 548     heap->set_adapter_count(heap->adapter_count() - 1);
 549   }
 550 
 551   // Get heap for given CodeBlob and deallocate
 552   get_code_heap(cb)->deallocate(cb);
 553 
 554   assert(heap->blob_count() >= 0, "sanity check");
 555 }
 556 
 557 void CodeCache::commit(CodeBlob* cb) {
 558   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 559   assert_locked_or_safepoint(CodeCache_lock);
 560   CodeHeap* heap = get_code_heap(cb);
 561   if (cb->is_nmethod()) {
 562     heap->set_nmethod_count(heap->nmethod_count() + 1);
 563     if (((nmethod *)cb)->has_dependencies()) {
 564       _number_of_nmethods_with_dependencies++;
 565     }
 566   }
 567   if (cb->is_adapter_blob()) {
 568     heap->set_adapter_count(heap->adapter_count() + 1);
 569   }
 570 
 571   // flush the hardware I-cache
 572   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 573 }
 574 
 575 bool CodeCache::contains(void *p) {
 576   // S390 uses contains() in current_frame(), which is used before
 577   // code cache initialization if NativeMemoryTracking=detail is set.
 578   S390_ONLY(if (_heaps == NULL) return false;)
 579   // It should be ok to call contains without holding a lock.
 580   FOR_ALL_HEAPS(heap) {
 581     if ((*heap)->contains(p)) {
 582       return true;
 583     }
 584   }
 585   return false;
 586 }
 587 
 588 bool CodeCache::contains(nmethod *nm) {
 589   return contains((void *)nm);
 590 }
 591 
 592 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 593 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 594 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 595 CodeBlob* CodeCache::find_blob(void* start) {
 596   CodeBlob* result = find_blob_unsafe(start);
 597   // We could potentially look up non_entrant methods
 598   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 599   return result;
 600 }
 601 
 602 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 603 // what you are doing)
 604 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 605   // NMT can walk the stack before code cache is created
 606   if (_heaps != NULL && !_heaps->is_empty()) {
 607     FOR_ALL_HEAPS(heap) {
 608       CodeBlob* result = (*heap)->find_blob_unsafe(start);
 609       if (result != NULL) {
 610         return result;
 611       }
 612     }
 613   }
 614   return NULL;
 615 }
 616 
 617 nmethod* CodeCache::find_nmethod(void* start) {
 618   CodeBlob* cb = find_blob(start);
 619   assert(cb->is_nmethod(), "did not find an nmethod");
 620   return (nmethod*)cb;
 621 }
 622 
 623 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 624   assert_locked_or_safepoint(CodeCache_lock);
 625   FOR_ALL_HEAPS(heap) {
 626     FOR_ALL_BLOBS(cb, *heap) {
 627       f(cb);
 628     }
 629   }
 630 }
 631 
 632 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 633   assert_locked_or_safepoint(CodeCache_lock);
 634   NMethodIterator iter;
 635   while(iter.next()) {
 636     f(iter.method());
 637   }
 638 }
 639 
 640 void CodeCache::metadata_do(void f(Metadata* m)) {
 641   assert_locked_or_safepoint(CodeCache_lock);
 642   NMethodIterator iter;
 643   while(iter.next_alive()) {
 644     iter.method()->metadata_do(f);
 645   }
 646   AOTLoader::metadata_do(f);
 647 }
 648 
 649 int CodeCache::alignment_unit() {
 650   return (int)_heaps->first()->alignment_unit();
 651 }
 652 
 653 int CodeCache::alignment_offset() {
 654   return (int)_heaps->first()->alignment_offset();
 655 }
 656 
 657 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 658 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 659   assert_locked_or_safepoint(CodeCache_lock);
 660   CompiledMethodIterator iter;
 661   while(iter.next_alive()) {
 662     iter.method()->do_unloading(is_alive, unloading_occurred);
 663   }
 664 }
 665 
 666 void CodeCache::blobs_do(CodeBlobClosure* f) {
 667   assert_locked_or_safepoint(CodeCache_lock);
 668   FOR_ALL_NMETHOD_HEAPS(heap) {
 669     FOR_ALL_BLOBS(cb, *heap) {
 670       if (cb->is_alive()) {
 671         f->do_code_blob(cb);
 672 #ifdef ASSERT
 673         if (cb->is_nmethod())
 674         ((nmethod*)cb)->verify_scavenge_root_oops();
 675 #endif //ASSERT
 676       }
 677     }
 678   }
 679 }
 680 
 681 // Walk the list of methods which might contain non-perm oops.
 682 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 683   assert_locked_or_safepoint(CodeCache_lock);
 684 
 685   if (UseG1GC) {
 686     return;
 687   }
 688 
 689   const bool fix_relocations = f->fix_relocations();
 690   debug_only(mark_scavenge_root_nmethods());
 691 
 692   nmethod* prev = NULL;
 693   nmethod* cur = scavenge_root_nmethods();
 694   while (cur != NULL) {
 695     debug_only(cur->clear_scavenge_root_marked());
 696     assert(cur->scavenge_root_not_marked(), "");
 697     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 698 
 699     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 700     if (TraceScavenge) {
 701       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 702     }
 703     if (is_live) {
 704       // Perform cur->oops_do(f), maybe just once per nmethod.
 705       f->do_code_blob(cur);
 706     }
 707     nmethod* const next = cur->scavenge_root_link();
 708     // The scavengable nmethod list must contain all methods with scavengable
 709     // oops. It is safe to include more nmethod on the list, but we do not
 710     // expect any live non-scavengable nmethods on the list.
 711     if (fix_relocations) {
 712       if (!is_live || !cur->detect_scavenge_root_oops()) {
 713         unlink_scavenge_root_nmethod(cur, prev);
 714       } else {
 715         prev = cur;
 716       }
 717     }
 718     cur = next;
 719   }
 720 
 721   // Check for stray marks.
 722   debug_only(verify_perm_nmethods(NULL));
 723 }
 724 
 725 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 726   assert_locked_or_safepoint(CodeCache_lock);
 727 
 728   if (UseG1GC) {
 729     return;
 730   }
 731 
 732   nm->set_on_scavenge_root_list();
 733   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 734   set_scavenge_root_nmethods(nm);
 735   print_trace("add_scavenge_root", nm);
 736 }
 737 
 738 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 739   assert_locked_or_safepoint(CodeCache_lock);
 740 
 741   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 742          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 743 
 744   assert(!UseG1GC, "G1 does not use the scavenge_root_nmethods list");
 745 
 746   print_trace("unlink_scavenge_root", nm);
 747   if (prev == NULL) {
 748     set_scavenge_root_nmethods(nm->scavenge_root_link());
 749   } else {
 750     prev->set_scavenge_root_link(nm->scavenge_root_link());
 751   }
 752   nm->set_scavenge_root_link(NULL);
 753   nm->clear_on_scavenge_root_list();
 754 }
 755 
 756 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 757   assert_locked_or_safepoint(CodeCache_lock);
 758 
 759   if (UseG1GC) {
 760     return;
 761   }
 762 
 763   print_trace("drop_scavenge_root", nm);
 764   nmethod* prev = NULL;
 765   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 766     if (cur == nm) {
 767       unlink_scavenge_root_nmethod(cur, prev);
 768       return;
 769     }
 770     prev = cur;
 771   }
 772   assert(false, "should have been on list");
 773 }
 774 
 775 void CodeCache::prune_scavenge_root_nmethods() {
 776   assert_locked_or_safepoint(CodeCache_lock);
 777 
 778   if (UseG1GC) {
 779     return;
 780   }
 781 
 782   debug_only(mark_scavenge_root_nmethods());
 783 
 784   nmethod* last = NULL;
 785   nmethod* cur = scavenge_root_nmethods();
 786   while (cur != NULL) {
 787     nmethod* next = cur->scavenge_root_link();
 788     debug_only(cur->clear_scavenge_root_marked());
 789     assert(cur->scavenge_root_not_marked(), "");
 790     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 791 
 792     if (!cur->is_zombie() && !cur->is_unloaded()
 793         && cur->detect_scavenge_root_oops()) {
 794       // Keep it.  Advance 'last' to prevent deletion.
 795       last = cur;
 796     } else {
 797       // Prune it from the list, so we don't have to look at it any more.
 798       print_trace("prune_scavenge_root", cur);
 799       unlink_scavenge_root_nmethod(cur, last);
 800     }
 801     cur = next;
 802   }
 803 
 804   // Check for stray marks.
 805   debug_only(verify_perm_nmethods(NULL));
 806 }
 807 
 808 #ifndef PRODUCT
 809 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 810   if (UseG1GC) {
 811     return;
 812   }
 813 
 814   // While we are here, verify the integrity of the list.
 815   mark_scavenge_root_nmethods();
 816   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 817     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 818     cur->clear_scavenge_root_marked();
 819   }
 820   verify_perm_nmethods(f);
 821 }
 822 
 823 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 824 void CodeCache::mark_scavenge_root_nmethods() {
 825   NMethodIterator iter;
 826   while(iter.next_alive()) {
 827     nmethod* nm = iter.method();
 828     assert(nm->scavenge_root_not_marked(), "clean state");
 829     if (nm->on_scavenge_root_list())
 830       nm->set_scavenge_root_marked();
 831   }
 832 }
 833 
 834 // If the closure is given, run it on the unlisted nmethods.
 835 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 836 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 837   NMethodIterator iter;
 838   while(iter.next_alive()) {
 839     nmethod* nm = iter.method();
 840     bool call_f = (f_or_null != NULL);
 841     assert(nm->scavenge_root_not_marked(), "must be already processed");
 842     if (nm->on_scavenge_root_list())
 843       call_f = false;  // don't show this one to the client
 844     nm->verify_scavenge_root_oops();
 845     if (call_f)  f_or_null->do_code_blob(nm);
 846   }
 847 }
 848 #endif //PRODUCT
 849 
 850 void CodeCache::verify_clean_inline_caches() {
 851 #ifdef ASSERT
 852   NMethodIterator iter;
 853   while(iter.next_alive()) {
 854     nmethod* nm = iter.method();
 855     assert(!nm->is_unloaded(), "Tautology");
 856     nm->verify_clean_inline_caches();
 857     nm->verify();
 858   }
 859 #endif
 860 }
 861 
 862 void CodeCache::verify_icholder_relocations() {
 863 #ifdef ASSERT
 864   // make sure that we aren't leaking icholders
 865   int count = 0;
 866   FOR_ALL_HEAPS(heap) {
 867     FOR_ALL_BLOBS(cb, *heap) {
 868       CompiledMethod *nm = cb->as_compiled_method_or_null();
 869       if (nm != NULL) {
 870         count += nm->verify_icholder_relocations();
 871       }
 872     }
 873   }
 874   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 875          CompiledICHolder::live_count(), "must agree");
 876 #endif
 877 }
 878 
 879 void CodeCache::gc_prologue() {
 880 }
 881 
 882 void CodeCache::gc_epilogue() {
 883   assert_locked_or_safepoint(CodeCache_lock);
 884   NOT_DEBUG(if (needs_cache_clean())) {
 885     CompiledMethodIterator iter;
 886     while(iter.next_alive()) {
 887       CompiledMethod* cm = iter.method();
 888       assert(!cm->is_unloaded(), "Tautology");
 889       DEBUG_ONLY(if (needs_cache_clean())) {
 890         cm->cleanup_inline_caches();
 891       }
 892       DEBUG_ONLY(cm->verify());
 893       DEBUG_ONLY(cm->verify_oop_relocations());
 894     }
 895   }
 896 
 897   set_needs_cache_clean(false);
 898   prune_scavenge_root_nmethods();
 899 
 900   verify_icholder_relocations();
 901 }
 902 
 903 void CodeCache::verify_oops() {
 904   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 905   VerifyOopClosure voc;
 906   NMethodIterator iter;
 907   while(iter.next_alive()) {
 908     nmethod* nm = iter.method();
 909     nm->oops_do(&voc);
 910     nm->verify_oop_relocations();
 911   }
 912 }
 913 
 914 int CodeCache::blob_count(int code_blob_type) {
 915   CodeHeap* heap = get_code_heap(code_blob_type);
 916   return (heap != NULL) ? heap->blob_count() : 0;
 917 }
 918 
 919 int CodeCache::blob_count() {
 920   int count = 0;
 921   FOR_ALL_HEAPS(heap) {
 922     count += (*heap)->blob_count();
 923   }
 924   return count;
 925 }
 926 
 927 int CodeCache::nmethod_count(int code_blob_type) {
 928   CodeHeap* heap = get_code_heap(code_blob_type);
 929   return (heap != NULL) ? heap->nmethod_count() : 0;
 930 }
 931 
 932 int CodeCache::nmethod_count() {
 933   int count = 0;
 934   FOR_ALL_NMETHOD_HEAPS(heap) {
 935     count += (*heap)->nmethod_count();
 936   }
 937   return count;
 938 }
 939 
 940 int CodeCache::adapter_count(int code_blob_type) {
 941   CodeHeap* heap = get_code_heap(code_blob_type);
 942   return (heap != NULL) ? heap->adapter_count() : 0;
 943 }
 944 
 945 int CodeCache::adapter_count() {
 946   int count = 0;
 947   FOR_ALL_HEAPS(heap) {
 948     count += (*heap)->adapter_count();
 949   }
 950   return count;
 951 }
 952 
 953 address CodeCache::low_bound(int code_blob_type) {
 954   CodeHeap* heap = get_code_heap(code_blob_type);
 955   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 956 }
 957 
 958 address CodeCache::high_bound(int code_blob_type) {
 959   CodeHeap* heap = get_code_heap(code_blob_type);
 960   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
 961 }
 962 
 963 size_t CodeCache::capacity() {
 964   size_t cap = 0;
 965   FOR_ALL_NMETHOD_HEAPS(heap) {
 966     cap += (*heap)->capacity();
 967   }
 968   return cap;
 969 }
 970 
 971 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 972   CodeHeap* heap = get_code_heap(code_blob_type);
 973   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 974 }
 975 
 976 size_t CodeCache::unallocated_capacity() {
 977   size_t unallocated_cap = 0;
 978   FOR_ALL_NMETHOD_HEAPS(heap) {
 979     unallocated_cap += (*heap)->unallocated_capacity();
 980   }
 981   return unallocated_cap;
 982 }
 983 
 984 size_t CodeCache::max_capacity() {
 985   size_t max_cap = 0;
 986   FOR_ALL_NMETHOD_HEAPS(heap) {
 987     max_cap += (*heap)->max_capacity();
 988   }
 989   return max_cap;
 990 }
 991 
 992 /**
 993  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 994  * is free, reverse_free_ratio() returns 4.
 995  */
 996 double CodeCache::reverse_free_ratio(int code_blob_type) {
 997   CodeHeap* heap = get_code_heap(code_blob_type);
 998   if (heap == NULL) {
 999     return 0;
1000   }
1001 
1002   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1003   double max_capacity = (double)heap->max_capacity();
1004   double result = max_capacity / unallocated_capacity;
1005   assert (max_capacity >= unallocated_capacity, "Must be");
1006   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1007   return result;
1008 }
1009 
1010 size_t CodeCache::bytes_allocated_in_freelists() {
1011   size_t allocated_bytes = 0;
1012   FOR_ALL_NMETHOD_HEAPS(heap) {
1013     allocated_bytes += (*heap)->allocated_in_freelist();
1014   }
1015   return allocated_bytes;
1016 }
1017 
1018 int CodeCache::allocated_segments() {
1019   int number_of_segments = 0;
1020   FOR_ALL_NMETHOD_HEAPS(heap) {
1021     number_of_segments += (*heap)->allocated_segments();
1022   }
1023   return number_of_segments;
1024 }
1025 
1026 size_t CodeCache::freelists_length() {
1027   size_t length = 0;
1028   FOR_ALL_NMETHOD_HEAPS(heap) {
1029     length += (*heap)->freelist_length();
1030   }
1031   return length;
1032 }
1033 
1034 void icache_init();
1035 
1036 void CodeCache::initialize() {
1037   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1038 #ifdef COMPILER2
1039   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1040 #endif
1041   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1042   // This was originally just a check of the alignment, causing failure, instead, round
1043   // the code cache to the page size.  In particular, Solaris is moving to a larger
1044   // default page size.
1045   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1046 
1047   if (SegmentedCodeCache) {
1048     // Use multiple code heaps
1049     initialize_heaps();
1050   } else {
1051     // Use a single code heap
1052     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1053     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1054     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1055     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1056     add_heap(rs, "CodeCache", CodeBlobType::All);
1057   }
1058 
1059   // Initialize ICache flush mechanism
1060   // This service is needed for os::register_code_area
1061   icache_init();
1062 
1063   // Give OS a chance to register generated code area.
1064   // This is used on Windows 64 bit platforms to register
1065   // Structured Exception Handlers for our generated code.
1066   os::register_code_area((char*)low_bound(), (char*)high_bound());
1067 }
1068 
1069 void codeCache_init() {
1070   CodeCache::initialize();
1071   // Load AOT libraries and add AOT code heaps.
1072   AOTLoader::initialize();
1073 }
1074 
1075 //------------------------------------------------------------------------------------------------
1076 
1077 int CodeCache::number_of_nmethods_with_dependencies() {
1078   return _number_of_nmethods_with_dependencies;
1079 }
1080 
1081 void CodeCache::clear_inline_caches() {
1082   assert_locked_or_safepoint(CodeCache_lock);
1083   CompiledMethodIterator iter;
1084   while(iter.next_alive()) {
1085     iter.method()->clear_inline_caches();
1086   }
1087 }
1088 
1089 void CodeCache::cleanup_inline_caches() {
1090   assert_locked_or_safepoint(CodeCache_lock);
1091   NMethodIterator iter;
1092   while(iter.next_alive()) {
1093     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1094   }
1095 }
1096 
1097 // Keeps track of time spent for checking dependencies
1098 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1099 
1100 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1101   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1102   int number_of_marked_CodeBlobs = 0;
1103 
1104   // search the hierarchy looking for nmethods which are affected by the loading of this class
1105 
1106   // then search the interfaces this class implements looking for nmethods
1107   // which might be dependent of the fact that an interface only had one
1108   // implementor.
1109   // nmethod::check_all_dependencies works only correctly, if no safepoint
1110   // can happen
1111   NoSafepointVerifier nsv;
1112   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1113     Klass* d = str.klass();
1114     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1115   }
1116 
1117 #ifndef PRODUCT
1118   if (VerifyDependencies) {
1119     // Object pointers are used as unique identifiers for dependency arguments. This
1120     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1121     dependentCheckTime.start();
1122     nmethod::check_all_dependencies(changes);
1123     dependentCheckTime.stop();
1124   }
1125 #endif
1126 
1127   return number_of_marked_CodeBlobs;
1128 }
1129 
1130 CompiledMethod* CodeCache::find_compiled(void* start) {
1131   CodeBlob *cb = find_blob(start);
1132   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1133   return (CompiledMethod*)cb;
1134 }
1135 
1136 bool CodeCache::is_far_target(address target) {
1137 #if INCLUDE_AOT
1138   return NativeCall::is_far_call(_low_bound,  target) ||
1139          NativeCall::is_far_call(_high_bound, target);
1140 #else
1141   return false;
1142 #endif
1143 }
1144 
1145 #ifdef HOTSWAP
1146 int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1147   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1148   int number_of_marked_CodeBlobs = 0;
1149 
1150   // Deoptimize all methods of the evolving class itself
1151   Array<Method*>* old_methods = dependee->methods();
1152   for (int i = 0; i < old_methods->length(); i++) {
1153     ResourceMark rm;
1154     Method* old_method = old_methods->at(i);
1155     CompiledMethod* nm = old_method->code();
1156     if (nm != NULL) {
1157       nm->mark_for_deoptimization();
1158       number_of_marked_CodeBlobs++;
1159     }
1160   }
1161 
1162   CompiledMethodIterator iter;
1163   while(iter.next_alive()) {
1164     CompiledMethod* nm = iter.method();
1165     if (nm->is_marked_for_deoptimization()) {
1166       // ...Already marked in the previous pass; don't count it again.
1167     } else if (nm->is_evol_dependent_on(dependee)) {
1168       ResourceMark rm;
1169       nm->mark_for_deoptimization();
1170       number_of_marked_CodeBlobs++;
1171     } else  {
1172       // flush caches in case they refer to a redefined Method*
1173       nm->clear_inline_caches();
1174     }
1175   }
1176 
1177   return number_of_marked_CodeBlobs;
1178 }
1179 #endif // HOTSWAP
1180 
1181 
1182 // Deoptimize all methods
1183 void CodeCache::mark_all_nmethods_for_deoptimization() {
1184   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1185   CompiledMethodIterator iter;
1186   while(iter.next_alive()) {
1187     CompiledMethod* nm = iter.method();
1188     if (!nm->method()->is_method_handle_intrinsic()) {
1189       nm->mark_for_deoptimization();
1190     }
1191   }
1192 }
1193 
1194 int CodeCache::mark_for_deoptimization(Method* dependee) {
1195   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1196   int number_of_marked_CodeBlobs = 0;
1197 
1198   CompiledMethodIterator iter;
1199   while(iter.next_alive()) {
1200     CompiledMethod* nm = iter.method();
1201     if (nm->is_dependent_on_method(dependee)) {
1202       ResourceMark rm;
1203       nm->mark_for_deoptimization();
1204       number_of_marked_CodeBlobs++;
1205     }
1206   }
1207 
1208   return number_of_marked_CodeBlobs;
1209 }
1210 
1211 void CodeCache::make_marked_nmethods_not_entrant() {
1212   assert_locked_or_safepoint(CodeCache_lock);
1213   CompiledMethodIterator iter;
1214   while(iter.next_alive()) {
1215     CompiledMethod* nm = iter.method();
1216     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1217       nm->make_not_entrant();
1218     }
1219   }
1220 }
1221 
1222 // Flushes compiled methods dependent on dependee.
1223 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1224   assert_lock_strong(Compile_lock);
1225 
1226   if (number_of_nmethods_with_dependencies() == 0) return;
1227 
1228   // CodeCache can only be updated by a thread_in_VM and they will all be
1229   // stopped during the safepoint so CodeCache will be safe to update without
1230   // holding the CodeCache_lock.
1231 
1232   KlassDepChange changes(dependee);
1233 
1234   // Compute the dependent nmethods
1235   if (mark_for_deoptimization(changes) > 0) {
1236     // At least one nmethod has been marked for deoptimization
1237     VM_Deoptimize op;
1238     VMThread::execute(&op);
1239   }
1240 }
1241 
1242 #ifdef HOTSWAP
1243 // Flushes compiled methods dependent on dependee in the evolutionary sense
1244 void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1245   // --- Compile_lock is not held. However we are at a safepoint.
1246   assert_locked_or_safepoint(Compile_lock);
1247   if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1248 
1249   // CodeCache can only be updated by a thread_in_VM and they will all be
1250   // stopped during the safepoint so CodeCache will be safe to update without
1251   // holding the CodeCache_lock.
1252 
1253   // Compute the dependent nmethods
1254   if (mark_for_evol_deoptimization(ev_k) > 0) {
1255     // At least one nmethod has been marked for deoptimization
1256 
1257     // All this already happens inside a VM_Operation, so we'll do all the work here.
1258     // Stuff copied from VM_Deoptimize and modified slightly.
1259 
1260     // We do not want any GCs to happen while we are in the middle of this VM operation
1261     ResourceMark rm;
1262     DeoptimizationMarker dm;
1263 
1264     // Deoptimize all activations depending on marked nmethods
1265     Deoptimization::deoptimize_dependents();
1266 
1267     // Make the dependent methods not entrant
1268     make_marked_nmethods_not_entrant();
1269   }
1270 }
1271 #endif // HOTSWAP
1272 
1273 
1274 // Flushes compiled methods dependent on dependee
1275 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1276   // --- Compile_lock is not held. However we are at a safepoint.
1277   assert_locked_or_safepoint(Compile_lock);
1278 
1279   // CodeCache can only be updated by a thread_in_VM and they will all be
1280   // stopped dring the safepoint so CodeCache will be safe to update without
1281   // holding the CodeCache_lock.
1282 
1283   // Compute the dependent nmethods
1284   if (mark_for_deoptimization(m_h()) > 0) {
1285     // At least one nmethod has been marked for deoptimization
1286 
1287     // All this already happens inside a VM_Operation, so we'll do all the work here.
1288     // Stuff copied from VM_Deoptimize and modified slightly.
1289 
1290     // We do not want any GCs to happen while we are in the middle of this VM operation
1291     ResourceMark rm;
1292     DeoptimizationMarker dm;
1293 
1294     // Deoptimize all activations depending on marked nmethods
1295     Deoptimization::deoptimize_dependents();
1296 
1297     // Make the dependent methods not entrant
1298     make_marked_nmethods_not_entrant();
1299   }
1300 }
1301 
1302 void CodeCache::verify() {
1303   assert_locked_or_safepoint(CodeCache_lock);
1304   FOR_ALL_HEAPS(heap) {
1305     (*heap)->verify();
1306     FOR_ALL_BLOBS(cb, *heap) {
1307       if (cb->is_alive()) {
1308         cb->verify();
1309       }
1310     }
1311   }
1312 }
1313 
1314 // A CodeHeap is full. Print out warning and report event.
1315 PRAGMA_DIAG_PUSH
1316 PRAGMA_FORMAT_NONLITERAL_IGNORED
1317 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1318   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1319   CodeHeap* heap = get_code_heap(code_blob_type);
1320   assert(heap != NULL, "heap is null");
1321 
1322   if ((heap->full_count() == 0) || print) {
1323     // Not yet reported for this heap, report
1324     if (SegmentedCodeCache) {
1325       ResourceMark rm;
1326       stringStream msg1_stream, msg2_stream;
1327       msg1_stream.print("%s is full. Compiler has been disabled.",
1328                         get_code_heap_name(code_blob_type));
1329       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1330                  get_code_heap_flag_name(code_blob_type));
1331       const char *msg1 = msg1_stream.as_string();
1332       const char *msg2 = msg2_stream.as_string();
1333 
1334       log_warning(codecache)(msg1);
1335       log_warning(codecache)(msg2);
1336       warning(msg1);
1337       warning(msg2);
1338     } else {
1339       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1340       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1341 
1342       log_warning(codecache)(msg1);
1343       log_warning(codecache)(msg2);
1344       warning(msg1);
1345       warning(msg2);
1346     }
1347     ResourceMark rm;
1348     stringStream s;
1349     // Dump code cache  into a buffer before locking the tty,
1350     {
1351       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1352       print_summary(&s);
1353     }
1354     ttyLocker ttyl;
1355     tty->print("%s", s.as_string());
1356   }
1357 
1358   heap->report_full();
1359 
1360   EventCodeCacheFull event;
1361   if (event.should_commit()) {
1362     event.set_codeBlobType((u1)code_blob_type);
1363     event.set_startAddress((u8)heap->low_boundary());
1364     event.set_commitedTopAddress((u8)heap->high());
1365     event.set_reservedTopAddress((u8)heap->high_boundary());
1366     event.set_entryCount(heap->blob_count());
1367     event.set_methodCount(heap->nmethod_count());
1368     event.set_adaptorCount(heap->adapter_count());
1369     event.set_unallocatedCapacity(heap->unallocated_capacity());
1370     event.set_fullCount(heap->full_count());
1371     event.commit();
1372   }
1373 }
1374 PRAGMA_DIAG_POP
1375 
1376 void CodeCache::print_memory_overhead() {
1377   size_t wasted_bytes = 0;
1378   FOR_ALL_NMETHOD_HEAPS(heap) {
1379       CodeHeap* curr_heap = *heap;
1380       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1381         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1382         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1383       }
1384   }
1385   // Print bytes that are allocated in the freelist
1386   ttyLocker ttl;
1387   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1388   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1389   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1390   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1391 }
1392 
1393 //------------------------------------------------------------------------------------------------
1394 // Non-product version
1395 
1396 #ifndef PRODUCT
1397 
1398 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1399   if (PrintCodeCache2) {  // Need to add a new flag
1400     ResourceMark rm;
1401     if (size == 0)  size = cb->size();
1402     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1403   }
1404 }
1405 
1406 void CodeCache::print_internals() {
1407   int nmethodCount = 0;
1408   int runtimeStubCount = 0;
1409   int adapterCount = 0;
1410   int deoptimizationStubCount = 0;
1411   int uncommonTrapStubCount = 0;
1412   int bufferBlobCount = 0;
1413   int total = 0;
1414   int nmethodAlive = 0;
1415   int nmethodNotEntrant = 0;
1416   int nmethodZombie = 0;
1417   int nmethodUnloaded = 0;
1418   int nmethodJava = 0;
1419   int nmethodNative = 0;
1420   int max_nm_size = 0;
1421   ResourceMark rm;
1422 
1423   int i = 0;
1424   FOR_ALL_NMETHOD_HEAPS(heap) {
1425     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1426       tty->print_cr("-- %s --", (*heap)->name());
1427     }
1428     FOR_ALL_BLOBS(cb, *heap) {
1429       total++;
1430       if (cb->is_nmethod()) {
1431         nmethod* nm = (nmethod*)cb;
1432 
1433         if (Verbose && nm->method() != NULL) {
1434           ResourceMark rm;
1435           char *method_name = nm->method()->name_and_sig_as_C_string();
1436           tty->print("%s", method_name);
1437           if(nm->is_alive()) { tty->print_cr(" alive"); }
1438           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1439           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1440         }
1441 
1442         nmethodCount++;
1443 
1444         if(nm->is_alive()) { nmethodAlive++; }
1445         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1446         if(nm->is_zombie()) { nmethodZombie++; }
1447         if(nm->is_unloaded()) { nmethodUnloaded++; }
1448         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1449 
1450         if(nm->method() != NULL && nm->is_java_method()) {
1451           nmethodJava++;
1452           max_nm_size = MAX2(max_nm_size, nm->size());
1453         }
1454       } else if (cb->is_runtime_stub()) {
1455         runtimeStubCount++;
1456       } else if (cb->is_deoptimization_stub()) {
1457         deoptimizationStubCount++;
1458       } else if (cb->is_uncommon_trap_stub()) {
1459         uncommonTrapStubCount++;
1460       } else if (cb->is_adapter_blob()) {
1461         adapterCount++;
1462       } else if (cb->is_buffer_blob()) {
1463         bufferBlobCount++;
1464       }
1465     }
1466   }
1467 
1468   int bucketSize = 512;
1469   int bucketLimit = max_nm_size / bucketSize + 1;
1470   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1471   memset(buckets, 0, sizeof(int) * bucketLimit);
1472 
1473   NMethodIterator iter;
1474   while(iter.next()) {
1475     nmethod* nm = iter.method();
1476     if(nm->method() != NULL && nm->is_java_method()) {
1477       buckets[nm->size() / bucketSize]++;
1478     }
1479   }
1480 
1481   tty->print_cr("Code Cache Entries (total of %d)",total);
1482   tty->print_cr("-------------------------------------------------");
1483   tty->print_cr("nmethods: %d",nmethodCount);
1484   tty->print_cr("\talive: %d",nmethodAlive);
1485   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1486   tty->print_cr("\tzombie: %d",nmethodZombie);
1487   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1488   tty->print_cr("\tjava: %d",nmethodJava);
1489   tty->print_cr("\tnative: %d",nmethodNative);
1490   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1491   tty->print_cr("adapters: %d",adapterCount);
1492   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1493   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1494   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1495   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1496   tty->print_cr("-------------------------------------------------");
1497 
1498   for(int i=0; i<bucketLimit; i++) {
1499     if(buckets[i] != 0) {
1500       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1501       tty->fill_to(40);
1502       tty->print_cr("%d",buckets[i]);
1503     }
1504   }
1505 
1506   FREE_C_HEAP_ARRAY(int, buckets);
1507   print_memory_overhead();
1508 }
1509 
1510 #endif // !PRODUCT
1511 
1512 void CodeCache::print() {
1513   print_summary(tty);
1514 
1515 #ifndef PRODUCT
1516   if (!Verbose) return;
1517 
1518   CodeBlob_sizes live;
1519   CodeBlob_sizes dead;
1520 
1521   FOR_ALL_NMETHOD_HEAPS(heap) {
1522     FOR_ALL_BLOBS(cb, *heap) {
1523       if (!cb->is_alive()) {
1524         dead.add(cb);
1525       } else {
1526         live.add(cb);
1527       }
1528     }
1529   }
1530 
1531   tty->print_cr("CodeCache:");
1532   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1533 
1534   if (!live.is_empty()) {
1535     live.print("live");
1536   }
1537   if (!dead.is_empty()) {
1538     dead.print("dead");
1539   }
1540 
1541   if (WizardMode) {
1542      // print the oop_map usage
1543     int code_size = 0;
1544     int number_of_blobs = 0;
1545     int number_of_oop_maps = 0;
1546     int map_size = 0;
1547     FOR_ALL_NMETHOD_HEAPS(heap) {
1548       FOR_ALL_BLOBS(cb, *heap) {
1549         if (cb->is_alive()) {
1550           number_of_blobs++;
1551           code_size += cb->code_size();
1552           ImmutableOopMapSet* set = cb->oop_maps();
1553           if (set != NULL) {
1554             number_of_oop_maps += set->count();
1555             map_size           += set->nr_of_bytes();
1556           }
1557         }
1558       }
1559     }
1560     tty->print_cr("OopMaps");
1561     tty->print_cr("  #blobs    = %d", number_of_blobs);
1562     tty->print_cr("  code size = %d", code_size);
1563     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1564     tty->print_cr("  map size  = %d", map_size);
1565   }
1566 
1567 #endif // !PRODUCT
1568 }
1569 
1570 void CodeCache::print_summary(outputStream* st, bool detailed) {
1571   FOR_ALL_HEAPS(heap_iterator) {
1572     CodeHeap* heap = (*heap_iterator);
1573     size_t total = (heap->high_boundary() - heap->low_boundary());
1574     if (_heaps->length() >= 1) {
1575       st->print("%s:", heap->name());
1576     } else {
1577       st->print("CodeCache:");
1578     }
1579     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1580                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1581                  total/K, (total - heap->unallocated_capacity())/K,
1582                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1583 
1584     if (detailed) {
1585       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1586                    p2i(heap->low_boundary()),
1587                    p2i(heap->high()),
1588                    p2i(heap->high_boundary()));
1589     }
1590   }
1591 
1592   if (detailed) {
1593     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1594                        " adapters=" UINT32_FORMAT,
1595                        blob_count(), nmethod_count(), adapter_count());
1596     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1597                  "enabled" : Arguments::mode() == Arguments::_int ?
1598                  "disabled (interpreter mode)" :
1599                  "disabled (not enough contiguous free space left)");
1600   }
1601 }
1602 
1603 void CodeCache::print_codelist(outputStream* st) {
1604   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1605 
1606   NMethodIterator iter;
1607   while(iter.next_alive()) {
1608     nmethod* nm = iter.method();
1609     ResourceMark rm;
1610     char *method_name = nm->method()->name_and_sig_as_C_string();
1611     st->print_cr("%d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1612                  nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
1613                  (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1614   }
1615 }
1616 
1617 void CodeCache::print_layout(outputStream* st) {
1618   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1619   ResourceMark rm;
1620   print_summary(st, true);
1621 }
1622 
1623 void CodeCache::log_state(outputStream* st) {
1624   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1625             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1626             blob_count(), nmethod_count(), adapter_count(),
1627             unallocated_capacity());
1628 }
1629