1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "prims/resolvedMethodTable.hpp"
  78 #include "runtime/atomic.hpp"
  79 #include "runtime/init.hpp"
  80 #include "runtime/orderAccess.inline.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "utilities/align.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/stack.inline.hpp"
  85 
  86 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  87 
  88 // INVARIANTS/NOTES
  89 //
  90 // All allocation activity covered by the G1CollectedHeap interface is
  91 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  92 // and allocate_new_tlab, which are the "entry" points to the
  93 // allocation code from the rest of the JVM.  (Note that this does not
  94 // apply to TLAB allocation, which is not part of this interface: it
  95 // is done by clients of this interface.)
  96 
  97 // Local to this file.
  98 
  99 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 100   bool _concurrent;
 101 public:
 102   RefineCardTableEntryClosure() : _concurrent(true) { }
 103 
 104   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 105     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 120  private:
 121   size_t _num_dirtied;
 122   G1CollectedHeap* _g1h;
 123   G1SATBCardTableLoggingModRefBS* _g1_bs;
 124 
 125   HeapRegion* region_for_card(jbyte* card_ptr) const {
 126     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 127   }
 128 
 129   bool will_become_free(HeapRegion* hr) const {
 130     // A region will be freed by free_collection_set if the region is in the
 131     // collection set and has not had an evacuation failure.
 132     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 133   }
 134 
 135  public:
 136   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 137     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 138 
 139   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 140     HeapRegion* hr = region_for_card(card_ptr);
 141 
 142     // Should only dirty cards in regions that won't be freed.
 143     if (!will_become_free(hr)) {
 144       *card_ptr = CardTableModRefBS::dirty_card_val();
 145       _num_dirtied++;
 146     }
 147 
 148     return true;
 149   }
 150 
 151   size_t num_dirtied()   const { return _num_dirtied; }
 152 };
 153 
 154 
 155 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 156   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 160   // The from card cache is not the memory that is actually committed. So we cannot
 161   // take advantage of the zero_filled parameter.
 162   reset_from_card_cache(start_idx, num_regions);
 163 }
 164 
 165 // Returns true if the reference points to an object that
 166 // can move in an incremental collection.
 167 bool G1CollectedHeap::is_scavengable(const void* p) {
 168   HeapRegion* hr = heap_region_containing(p);
 169   return !hr->is_pinned();
 170 }
 171 
 172 // Private methods.
 173 
 174 HeapRegion*
 175 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 176   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 177   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 178     if (!_secondary_free_list.is_empty()) {
 179       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 180                                       "secondary_free_list has %u entries",
 181                                       _secondary_free_list.length());
 182       // It looks as if there are free regions available on the
 183       // secondary_free_list. Let's move them to the free_list and try
 184       // again to allocate from it.
 185       append_secondary_free_list();
 186 
 187       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 188              "empty we should have moved at least one entry to the free_list");
 189       HeapRegion* res = _hrm.allocate_free_region(is_old);
 190       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 191                                       "allocated " HR_FORMAT " from secondary_free_list",
 192                                       HR_FORMAT_PARAMS(res));
 193       return res;
 194     }
 195 
 196     // Wait here until we get notified either when (a) there are no
 197     // more free regions coming or (b) some regions have been moved on
 198     // the secondary_free_list.
 199     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 200   }
 201 
 202   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 203                                   "could not allocate from secondary_free_list");
 204   return NULL;
 205 }
 206 
 207 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 208   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 209          "the only time we use this to allocate a humongous region is "
 210          "when we are allocating a single humongous region");
 211 
 212   HeapRegion* res;
 213   if (G1StressConcRegionFreeing) {
 214     if (!_secondary_free_list.is_empty()) {
 215       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 216                                       "forced to look at the secondary_free_list");
 217       res = new_region_try_secondary_free_list(is_old);
 218       if (res != NULL) {
 219         return res;
 220       }
 221     }
 222   }
 223 
 224   res = _hrm.allocate_free_region(is_old);
 225 
 226   if (res == NULL) {
 227     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 228                                     "res == NULL, trying the secondary_free_list");
 229     res = new_region_try_secondary_free_list(is_old);
 230   }
 231   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 232     // Currently, only attempts to allocate GC alloc regions set
 233     // do_expand to true. So, we should only reach here during a
 234     // safepoint. If this assumption changes we might have to
 235     // reconsider the use of _expand_heap_after_alloc_failure.
 236     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 237 
 238     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 239                               word_size * HeapWordSize);
 240 
 241     if (expand(word_size * HeapWordSize)) {
 242       // Given that expand() succeeded in expanding the heap, and we
 243       // always expand the heap by an amount aligned to the heap
 244       // region size, the free list should in theory not be empty.
 245       // In either case allocate_free_region() will check for NULL.
 246       res = _hrm.allocate_free_region(is_old);
 247     } else {
 248       _expand_heap_after_alloc_failure = false;
 249     }
 250   }
 251   return res;
 252 }
 253 
 254 HeapWord*
 255 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 256                                                            uint num_regions,
 257                                                            size_t word_size,
 258                                                            AllocationContext_t context) {
 259   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 260   assert(is_humongous(word_size), "word_size should be humongous");
 261   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 262 
 263   // Index of last region in the series.
 264   uint last = first + num_regions - 1;
 265 
 266   // We need to initialize the region(s) we just discovered. This is
 267   // a bit tricky given that it can happen concurrently with
 268   // refinement threads refining cards on these regions and
 269   // potentially wanting to refine the BOT as they are scanning
 270   // those cards (this can happen shortly after a cleanup; see CR
 271   // 6991377). So we have to set up the region(s) carefully and in
 272   // a specific order.
 273 
 274   // The word size sum of all the regions we will allocate.
 275   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 276   assert(word_size <= word_size_sum, "sanity");
 277 
 278   // This will be the "starts humongous" region.
 279   HeapRegion* first_hr = region_at(first);
 280   // The header of the new object will be placed at the bottom of
 281   // the first region.
 282   HeapWord* new_obj = first_hr->bottom();
 283   // This will be the new top of the new object.
 284   HeapWord* obj_top = new_obj + word_size;
 285 
 286   // First, we need to zero the header of the space that we will be
 287   // allocating. When we update top further down, some refinement
 288   // threads might try to scan the region. By zeroing the header we
 289   // ensure that any thread that will try to scan the region will
 290   // come across the zero klass word and bail out.
 291   //
 292   // NOTE: It would not have been correct to have used
 293   // CollectedHeap::fill_with_object() and make the space look like
 294   // an int array. The thread that is doing the allocation will
 295   // later update the object header to a potentially different array
 296   // type and, for a very short period of time, the klass and length
 297   // fields will be inconsistent. This could cause a refinement
 298   // thread to calculate the object size incorrectly.
 299   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 300 
 301   // Next, pad out the unused tail of the last region with filler
 302   // objects, for improved usage accounting.
 303   // How many words we use for filler objects.
 304   size_t word_fill_size = word_size_sum - word_size;
 305 
 306   // How many words memory we "waste" which cannot hold a filler object.
 307   size_t words_not_fillable = 0;
 308 
 309   if (word_fill_size >= min_fill_size()) {
 310     fill_with_objects(obj_top, word_fill_size);
 311   } else if (word_fill_size > 0) {
 312     // We have space to fill, but we cannot fit an object there.
 313     words_not_fillable = word_fill_size;
 314     word_fill_size = 0;
 315   }
 316 
 317   // We will set up the first region as "starts humongous". This
 318   // will also update the BOT covering all the regions to reflect
 319   // that there is a single object that starts at the bottom of the
 320   // first region.
 321   first_hr->set_starts_humongous(obj_top, word_fill_size);
 322   first_hr->set_allocation_context(context);
 323   // Then, if there are any, we will set up the "continues
 324   // humongous" regions.
 325   HeapRegion* hr = NULL;
 326   for (uint i = first + 1; i <= last; ++i) {
 327     hr = region_at(i);
 328     hr->set_continues_humongous(first_hr);
 329     hr->set_allocation_context(context);
 330   }
 331 
 332   // Up to this point no concurrent thread would have been able to
 333   // do any scanning on any region in this series. All the top
 334   // fields still point to bottom, so the intersection between
 335   // [bottom,top] and [card_start,card_end] will be empty. Before we
 336   // update the top fields, we'll do a storestore to make sure that
 337   // no thread sees the update to top before the zeroing of the
 338   // object header and the BOT initialization.
 339   OrderAccess::storestore();
 340 
 341   // Now, we will update the top fields of the "continues humongous"
 342   // regions except the last one.
 343   for (uint i = first; i < last; ++i) {
 344     hr = region_at(i);
 345     hr->set_top(hr->end());
 346   }
 347 
 348   hr = region_at(last);
 349   // If we cannot fit a filler object, we must set top to the end
 350   // of the humongous object, otherwise we cannot iterate the heap
 351   // and the BOT will not be complete.
 352   hr->set_top(hr->end() - words_not_fillable);
 353 
 354   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 355          "obj_top should be in last region");
 356 
 357   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 358 
 359   assert(words_not_fillable == 0 ||
 360          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 361          "Miscalculation in humongous allocation");
 362 
 363   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 364 
 365   for (uint i = first; i <= last; ++i) {
 366     hr = region_at(i);
 367     _humongous_set.add(hr);
 368     _hr_printer.alloc(hr);
 369   }
 370 
 371   return new_obj;
 372 }
 373 
 374 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 375   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 376   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 377 }
 378 
 379 // If could fit into free regions w/o expansion, try.
 380 // Otherwise, if can expand, do so.
 381 // Otherwise, if using ex regions might help, try with ex given back.
 382 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 383   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   uint first = G1_NO_HRM_INDEX;
 388   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 389 
 390   if (obj_regions == 1) {
 391     // Only one region to allocate, try to use a fast path by directly allocating
 392     // from the free lists. Do not try to expand here, we will potentially do that
 393     // later.
 394     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 395     if (hr != NULL) {
 396       first = hr->hrm_index();
 397     }
 398   } else {
 399     // We can't allocate humongous regions spanning more than one region while
 400     // cleanupComplete() is running, since some of the regions we find to be
 401     // empty might not yet be added to the free list. It is not straightforward
 402     // to know in which list they are on so that we can remove them. We only
 403     // need to do this if we need to allocate more than one region to satisfy the
 404     // current humongous allocation request. If we are only allocating one region
 405     // we use the one-region region allocation code (see above), that already
 406     // potentially waits for regions from the secondary free list.
 407     wait_while_free_regions_coming();
 408     append_secondary_free_list_if_not_empty_with_lock();
 409 
 410     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 411     // are lucky enough to find some.
 412     first = _hrm.find_contiguous_only_empty(obj_regions);
 413     if (first != G1_NO_HRM_INDEX) {
 414       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 415     }
 416   }
 417 
 418   if (first == G1_NO_HRM_INDEX) {
 419     // Policy: We could not find enough regions for the humongous object in the
 420     // free list. Look through the heap to find a mix of free and uncommitted regions.
 421     // If so, try expansion.
 422     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 423     if (first != G1_NO_HRM_INDEX) {
 424       // We found something. Make sure these regions are committed, i.e. expand
 425       // the heap. Alternatively we could do a defragmentation GC.
 426       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 427                                     word_size * HeapWordSize);
 428 
 429       _hrm.expand_at(first, obj_regions, workers());
 430       g1_policy()->record_new_heap_size(num_regions());
 431 
 432 #ifdef ASSERT
 433       for (uint i = first; i < first + obj_regions; ++i) {
 434         HeapRegion* hr = region_at(i);
 435         assert(hr->is_free(), "sanity");
 436         assert(hr->is_empty(), "sanity");
 437         assert(is_on_master_free_list(hr), "sanity");
 438       }
 439 #endif
 440       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 441     } else {
 442       // Policy: Potentially trigger a defragmentation GC.
 443     }
 444   }
 445 
 446   HeapWord* result = NULL;
 447   if (first != G1_NO_HRM_INDEX) {
 448     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 449                                                        word_size, context);
 450     assert(result != NULL, "it should always return a valid result");
 451 
 452     // A successful humongous object allocation changes the used space
 453     // information of the old generation so we need to recalculate the
 454     // sizes and update the jstat counters here.
 455     g1mm()->update_sizes();
 456   }
 457 
 458   _verifier->verify_region_sets_optional();
 459 
 460   return result;
 461 }
 462 
 463 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 464   assert_heap_not_locked_and_not_at_safepoint();
 465   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 466 
 467   uint dummy_gc_count_before;
 468   uint dummy_gclocker_retry_count = 0;
 469   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 470 }
 471 
 472 HeapWord*
 473 G1CollectedHeap::mem_allocate(size_t word_size,
 474                               bool*  gc_overhead_limit_was_exceeded) {
 475   assert_heap_not_locked_and_not_at_safepoint();
 476 
 477   // Loop until the allocation is satisfied, or unsatisfied after GC.
 478   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 479     uint gc_count_before;
 480 
 481     HeapWord* result = NULL;
 482     if (!is_humongous(word_size)) {
 483       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 484     } else {
 485       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 486     }
 487     if (result != NULL) {
 488       return result;
 489     }
 490 
 491     // Create the garbage collection operation...
 492     VM_G1CollectForAllocation op(gc_count_before, word_size);
 493     op.set_allocation_context(AllocationContext::current());
 494 
 495     // ...and get the VM thread to execute it.
 496     VMThread::execute(&op);
 497 
 498     if (op.prologue_succeeded() && op.pause_succeeded()) {
 499       // If the operation was successful we'll return the result even
 500       // if it is NULL. If the allocation attempt failed immediately
 501       // after a Full GC, it's unlikely we'll be able to allocate now.
 502       HeapWord* result = op.result();
 503       if (result != NULL && !is_humongous(word_size)) {
 504         // Allocations that take place on VM operations do not do any
 505         // card dirtying and we have to do it here. We only have to do
 506         // this for non-humongous allocations, though.
 507         dirty_young_block(result, word_size);
 508       }
 509       return result;
 510     } else {
 511       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 512         return NULL;
 513       }
 514       assert(op.result() == NULL,
 515              "the result should be NULL if the VM op did not succeed");
 516     }
 517 
 518     // Give a warning if we seem to be looping forever.
 519     if ((QueuedAllocationWarningCount > 0) &&
 520         (try_count % QueuedAllocationWarningCount == 0)) {
 521       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 522     }
 523   }
 524 
 525   ShouldNotReachHere();
 526   return NULL;
 527 }
 528 
 529 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 530                                                    AllocationContext_t context,
 531                                                    uint* gc_count_before_ret,
 532                                                    uint* gclocker_retry_count_ret) {
 533   // Make sure you read the note in attempt_allocation_humongous().
 534 
 535   assert_heap_not_locked_and_not_at_safepoint();
 536   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 537          "be called for humongous allocation requests");
 538 
 539   // We should only get here after the first-level allocation attempt
 540   // (attempt_allocation()) failed to allocate.
 541 
 542   // We will loop until a) we manage to successfully perform the
 543   // allocation or b) we successfully schedule a collection which
 544   // fails to perform the allocation. b) is the only case when we'll
 545   // return NULL.
 546   HeapWord* result = NULL;
 547   for (int try_count = 1; /* we'll return */; try_count += 1) {
 548     bool should_try_gc;
 549     uint gc_count_before;
 550 
 551     {
 552       MutexLockerEx x(Heap_lock);
 553       result = _allocator->attempt_allocation_locked(word_size, context);
 554       if (result != NULL) {
 555         return result;
 556       }
 557 
 558       if (GCLocker::is_active_and_needs_gc()) {
 559         if (g1_policy()->can_expand_young_list()) {
 560           // No need for an ergo verbose message here,
 561           // can_expand_young_list() does this when it returns true.
 562           result = _allocator->attempt_allocation_force(word_size, context);
 563           if (result != NULL) {
 564             return result;
 565           }
 566         }
 567         should_try_gc = false;
 568       } else {
 569         // The GCLocker may not be active but the GCLocker initiated
 570         // GC may not yet have been performed (GCLocker::needs_gc()
 571         // returns true). In this case we do not try this GC and
 572         // wait until the GCLocker initiated GC is performed, and
 573         // then retry the allocation.
 574         if (GCLocker::needs_gc()) {
 575           should_try_gc = false;
 576         } else {
 577           // Read the GC count while still holding the Heap_lock.
 578           gc_count_before = total_collections();
 579           should_try_gc = true;
 580         }
 581       }
 582     }
 583 
 584     if (should_try_gc) {
 585       bool succeeded;
 586       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 587                                    GCCause::_g1_inc_collection_pause);
 588       if (result != NULL) {
 589         assert(succeeded, "only way to get back a non-NULL result");
 590         return result;
 591       }
 592 
 593       if (succeeded) {
 594         // If we get here we successfully scheduled a collection which
 595         // failed to allocate. No point in trying to allocate
 596         // further. We'll just return NULL.
 597         MutexLockerEx x(Heap_lock);
 598         *gc_count_before_ret = total_collections();
 599         return NULL;
 600       }
 601     } else {
 602       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 603         MutexLockerEx x(Heap_lock);
 604         *gc_count_before_ret = total_collections();
 605         return NULL;
 606       }
 607       // The GCLocker is either active or the GCLocker initiated
 608       // GC has not yet been performed. Stall until it is and
 609       // then retry the allocation.
 610       GCLocker::stall_until_clear();
 611       (*gclocker_retry_count_ret) += 1;
 612     }
 613 
 614     // We can reach here if we were unsuccessful in scheduling a
 615     // collection (because another thread beat us to it) or if we were
 616     // stalled due to the GC locker. In either can we should retry the
 617     // allocation attempt in case another thread successfully
 618     // performed a collection and reclaimed enough space. We do the
 619     // first attempt (without holding the Heap_lock) here and the
 620     // follow-on attempt will be at the start of the next loop
 621     // iteration (after taking the Heap_lock).
 622     result = _allocator->attempt_allocation(word_size, context);
 623     if (result != NULL) {
 624       return result;
 625     }
 626 
 627     // Give a warning if we seem to be looping forever.
 628     if ((QueuedAllocationWarningCount > 0) &&
 629         (try_count % QueuedAllocationWarningCount == 0)) {
 630       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 631                       "retries %d times", try_count);
 632     }
 633   }
 634 
 635   ShouldNotReachHere();
 636   return NULL;
 637 }
 638 
 639 void G1CollectedHeap::begin_archive_alloc_range() {
 640   assert_at_safepoint(true /* should_be_vm_thread */);
 641   if (_archive_allocator == NULL) {
 642     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 643   }
 644 }
 645 
 646 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 647   // Allocations in archive regions cannot be of a size that would be considered
 648   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 649   // may be different at archive-restore time.
 650   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 651 }
 652 
 653 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 654   assert_at_safepoint(true /* should_be_vm_thread */);
 655   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 656   if (is_archive_alloc_too_large(word_size)) {
 657     return NULL;
 658   }
 659   return _archive_allocator->archive_mem_allocate(word_size);
 660 }
 661 
 662 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 663                                               size_t end_alignment_in_bytes) {
 664   assert_at_safepoint(true /* should_be_vm_thread */);
 665   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 666 
 667   // Call complete_archive to do the real work, filling in the MemRegion
 668   // array with the archive regions.
 669   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 670   delete _archive_allocator;
 671   _archive_allocator = NULL;
 672 }
 673 
 674 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 675   assert(ranges != NULL, "MemRegion array NULL");
 676   assert(count != 0, "No MemRegions provided");
 677   MemRegion reserved = _hrm.reserved();
 678   for (size_t i = 0; i < count; i++) {
 679     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 680       return false;
 681     }
 682   }
 683   return true;
 684 }
 685 
 686 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 687   assert(!is_init_completed(), "Expect to be called at JVM init time");
 688   assert(ranges != NULL, "MemRegion array NULL");
 689   assert(count != 0, "No MemRegions provided");
 690   MutexLockerEx x(Heap_lock);
 691 
 692   MemRegion reserved = _hrm.reserved();
 693   HeapWord* prev_last_addr = NULL;
 694   HeapRegion* prev_last_region = NULL;
 695 
 696   // Temporarily disable pretouching of heap pages. This interface is used
 697   // when mmap'ing archived heap data in, so pre-touching is wasted.
 698   FlagSetting fs(AlwaysPreTouch, false);
 699 
 700   // Enable archive object checking used by G1MarkSweep. We have to let it know
 701   // about each archive range, so that objects in those ranges aren't marked.
 702   G1ArchiveAllocator::enable_archive_object_check();
 703 
 704   // For each specified MemRegion range, allocate the corresponding G1
 705   // regions and mark them as archive regions. We expect the ranges in
 706   // ascending starting address order, without overlap.
 707   for (size_t i = 0; i < count; i++) {
 708     MemRegion curr_range = ranges[i];
 709     HeapWord* start_address = curr_range.start();
 710     size_t word_size = curr_range.word_size();
 711     HeapWord* last_address = curr_range.last();
 712     size_t commits = 0;
 713 
 714     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 715               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 716               p2i(start_address), p2i(last_address));
 717     guarantee(start_address > prev_last_addr,
 718               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 719               p2i(start_address), p2i(prev_last_addr));
 720     prev_last_addr = last_address;
 721 
 722     // Check for ranges that start in the same G1 region in which the previous
 723     // range ended, and adjust the start address so we don't try to allocate
 724     // the same region again. If the current range is entirely within that
 725     // region, skip it, just adjusting the recorded top.
 726     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 727     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 728       start_address = start_region->end();
 729       if (start_address > last_address) {
 730         increase_used(word_size * HeapWordSize);
 731         start_region->set_top(last_address + 1);
 732         continue;
 733       }
 734       start_region->set_top(start_address);
 735       curr_range = MemRegion(start_address, last_address + 1);
 736       start_region = _hrm.addr_to_region(start_address);
 737     }
 738 
 739     // Perform the actual region allocation, exiting if it fails.
 740     // Then note how much new space we have allocated.
 741     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 742       return false;
 743     }
 744     increase_used(word_size * HeapWordSize);
 745     if (commits != 0) {
 746       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 747                                 HeapRegion::GrainWords * HeapWordSize * commits);
 748 
 749     }
 750 
 751     // Mark each G1 region touched by the range as archive, add it to the old set,
 752     // and set the allocation context and top.
 753     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 754     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 755     prev_last_region = last_region;
 756 
 757     while (curr_region != NULL) {
 758       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 759              "Region already in use (index %u)", curr_region->hrm_index());
 760       curr_region->set_allocation_context(AllocationContext::system());
 761       curr_region->set_archive();
 762       _hr_printer.alloc(curr_region);
 763       _old_set.add(curr_region);
 764       if (curr_region != last_region) {
 765         curr_region->set_top(curr_region->end());
 766         curr_region = _hrm.next_region_in_heap(curr_region);
 767       } else {
 768         curr_region->set_top(last_address + 1);
 769         curr_region = NULL;
 770       }
 771     }
 772 
 773     // Notify mark-sweep of the archive range.
 774     G1ArchiveAllocator::set_range_archive(curr_range, true);
 775   }
 776   return true;
 777 }
 778 
 779 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 780   assert(!is_init_completed(), "Expect to be called at JVM init time");
 781   assert(ranges != NULL, "MemRegion array NULL");
 782   assert(count != 0, "No MemRegions provided");
 783   MemRegion reserved = _hrm.reserved();
 784   HeapWord *prev_last_addr = NULL;
 785   HeapRegion* prev_last_region = NULL;
 786 
 787   // For each MemRegion, create filler objects, if needed, in the G1 regions
 788   // that contain the address range. The address range actually within the
 789   // MemRegion will not be modified. That is assumed to have been initialized
 790   // elsewhere, probably via an mmap of archived heap data.
 791   MutexLockerEx x(Heap_lock);
 792   for (size_t i = 0; i < count; i++) {
 793     HeapWord* start_address = ranges[i].start();
 794     HeapWord* last_address = ranges[i].last();
 795 
 796     assert(reserved.contains(start_address) && reserved.contains(last_address),
 797            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 798            p2i(start_address), p2i(last_address));
 799     assert(start_address > prev_last_addr,
 800            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 801            p2i(start_address), p2i(prev_last_addr));
 802 
 803     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 804     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 805     HeapWord* bottom_address = start_region->bottom();
 806 
 807     // Check for a range beginning in the same region in which the
 808     // previous one ended.
 809     if (start_region == prev_last_region) {
 810       bottom_address = prev_last_addr + 1;
 811     }
 812 
 813     // Verify that the regions were all marked as archive regions by
 814     // alloc_archive_regions.
 815     HeapRegion* curr_region = start_region;
 816     while (curr_region != NULL) {
 817       guarantee(curr_region->is_archive(),
 818                 "Expected archive region at index %u", curr_region->hrm_index());
 819       if (curr_region != last_region) {
 820         curr_region = _hrm.next_region_in_heap(curr_region);
 821       } else {
 822         curr_region = NULL;
 823       }
 824     }
 825 
 826     prev_last_addr = last_address;
 827     prev_last_region = last_region;
 828 
 829     // Fill the memory below the allocated range with dummy object(s),
 830     // if the region bottom does not match the range start, or if the previous
 831     // range ended within the same G1 region, and there is a gap.
 832     if (start_address != bottom_address) {
 833       size_t fill_size = pointer_delta(start_address, bottom_address);
 834       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 835       increase_used(fill_size * HeapWordSize);
 836     }
 837   }
 838 }
 839 
 840 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 841                                                      uint* gc_count_before_ret,
 842                                                      uint* gclocker_retry_count_ret) {
 843   assert_heap_not_locked_and_not_at_safepoint();
 844   assert(!is_humongous(word_size), "attempt_allocation() should not "
 845          "be called for humongous allocation requests");
 846 
 847   AllocationContext_t context = AllocationContext::current();
 848   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 849 
 850   if (result == NULL) {
 851     result = attempt_allocation_slow(word_size,
 852                                      context,
 853                                      gc_count_before_ret,
 854                                      gclocker_retry_count_ret);
 855   }
 856   assert_heap_not_locked();
 857   if (result != NULL) {
 858     dirty_young_block(result, word_size);
 859   }
 860   return result;
 861 }
 862 
 863 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 864   assert(!is_init_completed(), "Expect to be called at JVM init time");
 865   assert(ranges != NULL, "MemRegion array NULL");
 866   assert(count != 0, "No MemRegions provided");
 867   MemRegion reserved = _hrm.reserved();
 868   HeapWord* prev_last_addr = NULL;
 869   HeapRegion* prev_last_region = NULL;
 870   size_t size_used = 0;
 871   size_t uncommitted_regions = 0;
 872 
 873   // For each Memregion, free the G1 regions that constitute it, and
 874   // notify mark-sweep that the range is no longer to be considered 'archive.'
 875   MutexLockerEx x(Heap_lock);
 876   for (size_t i = 0; i < count; i++) {
 877     HeapWord* start_address = ranges[i].start();
 878     HeapWord* last_address = ranges[i].last();
 879 
 880     assert(reserved.contains(start_address) && reserved.contains(last_address),
 881            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 882            p2i(start_address), p2i(last_address));
 883     assert(start_address > prev_last_addr,
 884            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 885            p2i(start_address), p2i(prev_last_addr));
 886     size_used += ranges[i].byte_size();
 887     prev_last_addr = last_address;
 888 
 889     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 890     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 891 
 892     // Check for ranges that start in the same G1 region in which the previous
 893     // range ended, and adjust the start address so we don't try to free
 894     // the same region again. If the current range is entirely within that
 895     // region, skip it.
 896     if (start_region == prev_last_region) {
 897       start_address = start_region->end();
 898       if (start_address > last_address) {
 899         continue;
 900       }
 901       start_region = _hrm.addr_to_region(start_address);
 902     }
 903     prev_last_region = last_region;
 904 
 905     // After verifying that each region was marked as an archive region by
 906     // alloc_archive_regions, set it free and empty and uncommit it.
 907     HeapRegion* curr_region = start_region;
 908     while (curr_region != NULL) {
 909       guarantee(curr_region->is_archive(),
 910                 "Expected archive region at index %u", curr_region->hrm_index());
 911       uint curr_index = curr_region->hrm_index();
 912       _old_set.remove(curr_region);
 913       curr_region->set_free();
 914       curr_region->set_top(curr_region->bottom());
 915       if (curr_region != last_region) {
 916         curr_region = _hrm.next_region_in_heap(curr_region);
 917       } else {
 918         curr_region = NULL;
 919       }
 920       _hrm.shrink_at(curr_index, 1);
 921       uncommitted_regions++;
 922     }
 923 
 924     // Notify mark-sweep that this is no longer an archive range.
 925     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 926   }
 927 
 928   if (uncommitted_regions != 0) {
 929     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 930                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 931   }
 932   decrease_used(size_used);
 933 }
 934 
 935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 936                                                         uint* gc_count_before_ret,
 937                                                         uint* gclocker_retry_count_ret) {
 938   // The structure of this method has a lot of similarities to
 939   // attempt_allocation_slow(). The reason these two were not merged
 940   // into a single one is that such a method would require several "if
 941   // allocation is not humongous do this, otherwise do that"
 942   // conditional paths which would obscure its flow. In fact, an early
 943   // version of this code did use a unified method which was harder to
 944   // follow and, as a result, it had subtle bugs that were hard to
 945   // track down. So keeping these two methods separate allows each to
 946   // be more readable. It will be good to keep these two in sync as
 947   // much as possible.
 948 
 949   assert_heap_not_locked_and_not_at_safepoint();
 950   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 951          "should only be called for humongous allocations");
 952 
 953   // Humongous objects can exhaust the heap quickly, so we should check if we
 954   // need to start a marking cycle at each humongous object allocation. We do
 955   // the check before we do the actual allocation. The reason for doing it
 956   // before the allocation is that we avoid having to keep track of the newly
 957   // allocated memory while we do a GC.
 958   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 959                                            word_size)) {
 960     collect(GCCause::_g1_humongous_allocation);
 961   }
 962 
 963   // We will loop until a) we manage to successfully perform the
 964   // allocation or b) we successfully schedule a collection which
 965   // fails to perform the allocation. b) is the only case when we'll
 966   // return NULL.
 967   HeapWord* result = NULL;
 968   for (int try_count = 1; /* we'll return */; try_count += 1) {
 969     bool should_try_gc;
 970     uint gc_count_before;
 971 
 972     {
 973       MutexLockerEx x(Heap_lock);
 974 
 975       // Given that humongous objects are not allocated in young
 976       // regions, we'll first try to do the allocation without doing a
 977       // collection hoping that there's enough space in the heap.
 978       result = humongous_obj_allocate(word_size, AllocationContext::current());
 979       if (result != NULL) {
 980         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 981         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 982         return result;
 983       }
 984 
 985       if (GCLocker::is_active_and_needs_gc()) {
 986         should_try_gc = false;
 987       } else {
 988          // The GCLocker may not be active but the GCLocker initiated
 989         // GC may not yet have been performed (GCLocker::needs_gc()
 990         // returns true). In this case we do not try this GC and
 991         // wait until the GCLocker initiated GC is performed, and
 992         // then retry the allocation.
 993         if (GCLocker::needs_gc()) {
 994           should_try_gc = false;
 995         } else {
 996           // Read the GC count while still holding the Heap_lock.
 997           gc_count_before = total_collections();
 998           should_try_gc = true;
 999         }
1000       }
1001     }
1002 
1003     if (should_try_gc) {
1004       // If we failed to allocate the humongous object, we should try to
1005       // do a collection pause (if we're allowed) in case it reclaims
1006       // enough space for the allocation to succeed after the pause.
1007 
1008       bool succeeded;
1009       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1010                                    GCCause::_g1_humongous_allocation);
1011       if (result != NULL) {
1012         assert(succeeded, "only way to get back a non-NULL result");
1013         return result;
1014       }
1015 
1016       if (succeeded) {
1017         // If we get here we successfully scheduled a collection which
1018         // failed to allocate. No point in trying to allocate
1019         // further. We'll just return NULL.
1020         MutexLockerEx x(Heap_lock);
1021         *gc_count_before_ret = total_collections();
1022         return NULL;
1023       }
1024     } else {
1025       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1026         MutexLockerEx x(Heap_lock);
1027         *gc_count_before_ret = total_collections();
1028         return NULL;
1029       }
1030       // The GCLocker is either active or the GCLocker initiated
1031       // GC has not yet been performed. Stall until it is and
1032       // then retry the allocation.
1033       GCLocker::stall_until_clear();
1034       (*gclocker_retry_count_ret) += 1;
1035     }
1036 
1037     // We can reach here if we were unsuccessful in scheduling a
1038     // collection (because another thread beat us to it) or if we were
1039     // stalled due to the GC locker. In either can we should retry the
1040     // allocation attempt in case another thread successfully
1041     // performed a collection and reclaimed enough space.  Give a
1042     // warning if we seem to be looping forever.
1043 
1044     if ((QueuedAllocationWarningCount > 0) &&
1045         (try_count % QueuedAllocationWarningCount == 0)) {
1046       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1047                       "retries %d times", try_count);
1048     }
1049   }
1050 
1051   ShouldNotReachHere();
1052   return NULL;
1053 }
1054 
1055 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1056                                                            AllocationContext_t context,
1057                                                            bool expect_null_mutator_alloc_region) {
1058   assert_at_safepoint(true /* should_be_vm_thread */);
1059   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1060          "the current alloc region was unexpectedly found to be non-NULL");
1061 
1062   if (!is_humongous(word_size)) {
1063     return _allocator->attempt_allocation_locked(word_size, context);
1064   } else {
1065     HeapWord* result = humongous_obj_allocate(word_size, context);
1066     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1067       collector_state()->set_initiate_conc_mark_if_possible(true);
1068     }
1069     return result;
1070   }
1071 
1072   ShouldNotReachHere();
1073 }
1074 
1075 class PostMCRemSetClearClosure: public HeapRegionClosure {
1076   G1CollectedHeap* _g1h;
1077   ModRefBarrierSet* _mr_bs;
1078 public:
1079   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1080     _g1h(g1h), _mr_bs(mr_bs) {}
1081 
1082   bool doHeapRegion(HeapRegion* r) {
1083     HeapRegionRemSet* hrrs = r->rem_set();
1084 
1085     _g1h->reset_gc_time_stamps(r);
1086 
1087     if (r->is_continues_humongous()) {
1088       // We'll assert that the strong code root list and RSet is empty
1089       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1090       assert(hrrs->occupied() == 0, "RSet should be empty");
1091     } else {
1092       hrrs->clear();
1093     }
1094     // You might think here that we could clear just the cards
1095     // corresponding to the used region.  But no: if we leave a dirty card
1096     // in a region we might allocate into, then it would prevent that card
1097     // from being enqueued, and cause it to be missed.
1098     // Re: the performance cost: we shouldn't be doing full GC anyway!
1099     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1100 
1101     return false;
1102   }
1103 };
1104 
1105 void G1CollectedHeap::clear_rsets_post_compaction() {
1106   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1107   heap_region_iterate(&rs_clear);
1108 }
1109 
1110 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1111   G1CollectedHeap*   _g1h;
1112   RebuildRSOopClosure _cl;
1113 public:
1114   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1115     _cl(g1->g1_rem_set(), worker_i),
1116     _g1h(g1)
1117   { }
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     if (!r->is_continues_humongous()) {
1121       _cl.set_from(r);
1122       r->oop_iterate(&_cl);
1123     }
1124     return false;
1125   }
1126 };
1127 
1128 class ParRebuildRSTask: public AbstractGangTask {
1129   G1CollectedHeap* _g1;
1130   HeapRegionClaimer _hrclaimer;
1131 
1132 public:
1133   ParRebuildRSTask(G1CollectedHeap* g1) :
1134       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1135 
1136   void work(uint worker_id) {
1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1138     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1139   }
1140 };
1141 
1142 class PostCompactionPrinterClosure: public HeapRegionClosure {
1143 private:
1144   G1HRPrinter* _hr_printer;
1145 public:
1146   bool doHeapRegion(HeapRegion* hr) {
1147     assert(!hr->is_young(), "not expecting to find young regions");
1148     _hr_printer->post_compaction(hr);
1149     return false;
1150   }
1151 
1152   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1153     : _hr_printer(hr_printer) { }
1154 };
1155 
1156 void G1CollectedHeap::print_hrm_post_compaction() {
1157   if (_hr_printer.is_active()) {
1158     PostCompactionPrinterClosure cl(hr_printer());
1159     heap_region_iterate(&cl);
1160   }
1161 
1162 }
1163 
1164 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1165                                          bool clear_all_soft_refs) {
1166   assert_at_safepoint(true /* should_be_vm_thread */);
1167 
1168   if (GCLocker::check_active_before_gc()) {
1169     return false;
1170   }
1171 
1172   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1173   gc_timer->register_gc_start();
1174 
1175   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1176   GCIdMark gc_id_mark;
1177   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1178 
1179   SvcGCMarker sgcm(SvcGCMarker::FULL);
1180   ResourceMark rm;
1181 
1182   print_heap_before_gc();
1183   print_heap_regions();
1184   trace_heap_before_gc(gc_tracer);
1185 
1186   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1187 
1188   _verifier->verify_region_sets_optional();
1189 
1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1191                            collector_policy()->should_clear_all_soft_refs();
1192 
1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1194 
1195   {
1196     IsGCActiveMark x;
1197 
1198     // Timing
1199     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1200     GCTraceCPUTime tcpu;
1201 
1202     {
1203       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1204       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1205       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1206 
1207       G1HeapTransition heap_transition(this);
1208       g1_policy()->record_full_collection_start();
1209 
1210       // Note: When we have a more flexible GC logging framework that
1211       // allows us to add optional attributes to a GC log record we
1212       // could consider timing and reporting how long we wait in the
1213       // following two methods.
1214       wait_while_free_regions_coming();
1215       // If we start the compaction before the CM threads finish
1216       // scanning the root regions we might trip them over as we'll
1217       // be moving objects / updating references. So let's wait until
1218       // they are done. By telling them to abort, they should complete
1219       // early.
1220       _cm->root_regions()->abort();
1221       _cm->root_regions()->wait_until_scan_finished();
1222       append_secondary_free_list_if_not_empty_with_lock();
1223 
1224       gc_prologue(true);
1225       increment_total_collections(true /* full gc */);
1226       increment_old_marking_cycles_started();
1227 
1228       assert(used() == recalculate_used(), "Should be equal");
1229 
1230       _verifier->verify_before_gc();
1231 
1232       _verifier->check_bitmaps("Full GC Start");
1233       pre_full_gc_dump(gc_timer);
1234 
1235 #if defined(COMPILER2) || INCLUDE_JVMCI
1236       DerivedPointerTable::clear();
1237 #endif
1238 
1239       // Disable discovery and empty the discovered lists
1240       // for the CM ref processor.
1241       ref_processor_cm()->disable_discovery();
1242       ref_processor_cm()->abandon_partial_discovery();
1243       ref_processor_cm()->verify_no_references_recorded();
1244 
1245       // Abandon current iterations of concurrent marking and concurrent
1246       // refinement, if any are in progress.
1247       concurrent_mark()->abort();
1248 
1249       // Make sure we'll choose a new allocation region afterwards.
1250       _allocator->release_mutator_alloc_region();
1251       _allocator->abandon_gc_alloc_regions();
1252       g1_rem_set()->cleanupHRRS();
1253 
1254       // We may have added regions to the current incremental collection
1255       // set between the last GC or pause and now. We need to clear the
1256       // incremental collection set and then start rebuilding it afresh
1257       // after this full GC.
1258       abandon_collection_set(collection_set());
1259 
1260       tear_down_region_sets(false /* free_list_only */);
1261       collector_state()->set_gcs_are_young(true);
1262 
1263       // See the comments in g1CollectedHeap.hpp and
1264       // G1CollectedHeap::ref_processing_init() about
1265       // how reference processing currently works in G1.
1266 
1267       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1268       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1269 
1270       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1271       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1272 
1273       ref_processor_stw()->enable_discovery();
1274       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1275 
1276       // Do collection work
1277       {
1278         HandleMark hm;  // Discard invalid handles created during gc
1279         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1280       }
1281 
1282       assert(num_free_regions() == 0, "we should not have added any free regions");
1283       rebuild_region_sets(false /* free_list_only */);
1284 
1285       // Enqueue any discovered reference objects that have
1286       // not been removed from the discovered lists.
1287       ref_processor_stw()->enqueue_discovered_references();
1288 
1289 #if defined(COMPILER2) || INCLUDE_JVMCI
1290       DerivedPointerTable::update_pointers();
1291 #endif
1292 
1293       MemoryService::track_memory_usage();
1294 
1295       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1296       ref_processor_stw()->verify_no_references_recorded();
1297 
1298       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1299       ClassLoaderDataGraph::purge();
1300       MetaspaceAux::verify_metrics();
1301 
1302       // Note: since we've just done a full GC, concurrent
1303       // marking is no longer active. Therefore we need not
1304       // re-enable reference discovery for the CM ref processor.
1305       // That will be done at the start of the next marking cycle.
1306       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1307       ref_processor_cm()->verify_no_references_recorded();
1308 
1309       reset_gc_time_stamp();
1310       // Since everything potentially moved, we will clear all remembered
1311       // sets, and clear all cards.  Later we will rebuild remembered
1312       // sets. We will also reset the GC time stamps of the regions.
1313       clear_rsets_post_compaction();
1314       check_gc_time_stamps();
1315 
1316       resize_if_necessary_after_full_collection();
1317 
1318       // We should do this after we potentially resize the heap so
1319       // that all the COMMIT / UNCOMMIT events are generated before
1320       // the compaction events.
1321       print_hrm_post_compaction();
1322 
1323       if (_hot_card_cache->use_cache()) {
1324         _hot_card_cache->reset_card_counts();
1325         _hot_card_cache->reset_hot_cache();
1326       }
1327 
1328       // Rebuild remembered sets of all regions.
1329       uint n_workers =
1330         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1331                                                 workers()->active_workers(),
1332                                                 Threads::number_of_non_daemon_threads());
1333       workers()->update_active_workers(n_workers);
1334       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1335 
1336       ParRebuildRSTask rebuild_rs_task(this);
1337       workers()->run_task(&rebuild_rs_task);
1338 
1339       // Rebuild the strong code root lists for each region
1340       rebuild_strong_code_roots();
1341 
1342       if (true) { // FIXME
1343         MetaspaceGC::compute_new_size();
1344       }
1345 
1346 #ifdef TRACESPINNING
1347       ParallelTaskTerminator::print_termination_counts();
1348 #endif
1349 
1350       // Discard all rset updates
1351       JavaThread::dirty_card_queue_set().abandon_logs();
1352       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1353 
1354       // At this point there should be no regions in the
1355       // entire heap tagged as young.
1356       assert(check_young_list_empty(), "young list should be empty at this point");
1357 
1358       // Update the number of full collections that have been completed.
1359       increment_old_marking_cycles_completed(false /* concurrent */);
1360 
1361       _hrm.verify_optional();
1362       _verifier->verify_region_sets_optional();
1363 
1364       _verifier->verify_after_gc();
1365 
1366       // Clear the previous marking bitmap, if needed for bitmap verification.
1367       // Note we cannot do this when we clear the next marking bitmap in
1368       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1369       // objects marked during a full GC against the previous bitmap.
1370       // But we need to clear it before calling check_bitmaps below since
1371       // the full GC has compacted objects and updated TAMS but not updated
1372       // the prev bitmap.
1373       if (G1VerifyBitmaps) {
1374         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1375         _cm->clear_prev_bitmap(workers());
1376       }
1377       _verifier->check_bitmaps("Full GC End");
1378 
1379       start_new_collection_set();
1380 
1381       _allocator->init_mutator_alloc_region();
1382 
1383       g1_policy()->record_full_collection_end();
1384 
1385       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1386       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1387       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1388       // before any GC notifications are raised.
1389       g1mm()->update_sizes();
1390 
1391       gc_epilogue(true);
1392 
1393       heap_transition.print();
1394 
1395       print_heap_after_gc();
1396       print_heap_regions();
1397       trace_heap_after_gc(gc_tracer);
1398 
1399       post_full_gc_dump(gc_timer);
1400     }
1401 
1402     gc_timer->register_gc_end();
1403     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1404   }
1405 
1406   return true;
1407 }
1408 
1409 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1410   // Currently, there is no facility in the do_full_collection(bool) API to notify
1411   // the caller that the collection did not succeed (e.g., because it was locked
1412   // out by the GC locker). So, right now, we'll ignore the return value.
1413   bool dummy = do_full_collection(true,                /* explicit_gc */
1414                                   clear_all_soft_refs);
1415 }
1416 
1417 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1418   // Include bytes that will be pre-allocated to support collections, as "used".
1419   const size_t used_after_gc = used();
1420   const size_t capacity_after_gc = capacity();
1421   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1422 
1423   // This is enforced in arguments.cpp.
1424   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1425          "otherwise the code below doesn't make sense");
1426 
1427   // We don't have floating point command-line arguments
1428   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1429   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1430   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1431   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1432 
1433   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1434   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1435 
1436   // We have to be careful here as these two calculations can overflow
1437   // 32-bit size_t's.
1438   double used_after_gc_d = (double) used_after_gc;
1439   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1440   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1441 
1442   // Let's make sure that they are both under the max heap size, which
1443   // by default will make them fit into a size_t.
1444   double desired_capacity_upper_bound = (double) max_heap_size;
1445   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1446                                     desired_capacity_upper_bound);
1447   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1448                                     desired_capacity_upper_bound);
1449 
1450   // We can now safely turn them into size_t's.
1451   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1452   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1453 
1454   // This assert only makes sense here, before we adjust them
1455   // with respect to the min and max heap size.
1456   assert(minimum_desired_capacity <= maximum_desired_capacity,
1457          "minimum_desired_capacity = " SIZE_FORMAT ", "
1458          "maximum_desired_capacity = " SIZE_FORMAT,
1459          minimum_desired_capacity, maximum_desired_capacity);
1460 
1461   // Should not be greater than the heap max size. No need to adjust
1462   // it with respect to the heap min size as it's a lower bound (i.e.,
1463   // we'll try to make the capacity larger than it, not smaller).
1464   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1465   // Should not be less than the heap min size. No need to adjust it
1466   // with respect to the heap max size as it's an upper bound (i.e.,
1467   // we'll try to make the capacity smaller than it, not greater).
1468   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1469 
1470   if (capacity_after_gc < minimum_desired_capacity) {
1471     // Don't expand unless it's significant
1472     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1473 
1474     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1475                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1476                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1477 
1478     expand(expand_bytes, _workers);
1479 
1480     // No expansion, now see if we want to shrink
1481   } else if (capacity_after_gc > maximum_desired_capacity) {
1482     // Capacity too large, compute shrinking size
1483     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1484 
1485     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1486                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1487                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1488 
1489     shrink(shrink_bytes);
1490   }
1491 }
1492 
1493 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1494                                                             AllocationContext_t context,
1495                                                             bool do_gc,
1496                                                             bool clear_all_soft_refs,
1497                                                             bool expect_null_mutator_alloc_region,
1498                                                             bool* gc_succeeded) {
1499   *gc_succeeded = true;
1500   // Let's attempt the allocation first.
1501   HeapWord* result =
1502     attempt_allocation_at_safepoint(word_size,
1503                                     context,
1504                                     expect_null_mutator_alloc_region);
1505   if (result != NULL) {
1506     assert(*gc_succeeded, "sanity");
1507     return result;
1508   }
1509 
1510   // In a G1 heap, we're supposed to keep allocation from failing by
1511   // incremental pauses.  Therefore, at least for now, we'll favor
1512   // expansion over collection.  (This might change in the future if we can
1513   // do something smarter than full collection to satisfy a failed alloc.)
1514   result = expand_and_allocate(word_size, context);
1515   if (result != NULL) {
1516     assert(*gc_succeeded, "sanity");
1517     return result;
1518   }
1519 
1520   if (do_gc) {
1521     // Expansion didn't work, we'll try to do a Full GC.
1522     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1523                                        clear_all_soft_refs);
1524   }
1525 
1526   return NULL;
1527 }
1528 
1529 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1530                                                      AllocationContext_t context,
1531                                                      bool* succeeded) {
1532   assert_at_safepoint(true /* should_be_vm_thread */);
1533 
1534   // Attempts to allocate followed by Full GC.
1535   HeapWord* result =
1536     satisfy_failed_allocation_helper(word_size,
1537                                      context,
1538                                      true,  /* do_gc */
1539                                      false, /* clear_all_soft_refs */
1540                                      false, /* expect_null_mutator_alloc_region */
1541                                      succeeded);
1542 
1543   if (result != NULL || !*succeeded) {
1544     return result;
1545   }
1546 
1547   // Attempts to allocate followed by Full GC that will collect all soft references.
1548   result = satisfy_failed_allocation_helper(word_size,
1549                                             context,
1550                                             true, /* do_gc */
1551                                             true, /* clear_all_soft_refs */
1552                                             true, /* expect_null_mutator_alloc_region */
1553                                             succeeded);
1554 
1555   if (result != NULL || !*succeeded) {
1556     return result;
1557   }
1558 
1559   // Attempts to allocate, no GC
1560   result = satisfy_failed_allocation_helper(word_size,
1561                                             context,
1562                                             false, /* do_gc */
1563                                             false, /* clear_all_soft_refs */
1564                                             true,  /* expect_null_mutator_alloc_region */
1565                                             succeeded);
1566 
1567   if (result != NULL) {
1568     assert(*succeeded, "sanity");
1569     return result;
1570   }
1571 
1572   assert(!collector_policy()->should_clear_all_soft_refs(),
1573          "Flag should have been handled and cleared prior to this point");
1574 
1575   // What else?  We might try synchronous finalization later.  If the total
1576   // space available is large enough for the allocation, then a more
1577   // complete compaction phase than we've tried so far might be
1578   // appropriate.
1579   assert(*succeeded, "sanity");
1580   return NULL;
1581 }
1582 
1583 // Attempting to expand the heap sufficiently
1584 // to support an allocation of the given "word_size".  If
1585 // successful, perform the allocation and return the address of the
1586 // allocated block, or else "NULL".
1587 
1588 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1589   assert_at_safepoint(true /* should_be_vm_thread */);
1590 
1591   _verifier->verify_region_sets_optional();
1592 
1593   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1594   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1595                             word_size * HeapWordSize);
1596 
1597 
1598   if (expand(expand_bytes, _workers)) {
1599     _hrm.verify_optional();
1600     _verifier->verify_region_sets_optional();
1601     return attempt_allocation_at_safepoint(word_size,
1602                                            context,
1603                                            false /* expect_null_mutator_alloc_region */);
1604   }
1605   return NULL;
1606 }
1607 
1608 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1609   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1610   aligned_expand_bytes = align_up(aligned_expand_bytes,
1611                                        HeapRegion::GrainBytes);
1612 
1613   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1614                             expand_bytes, aligned_expand_bytes);
1615 
1616   if (is_maximal_no_gc()) {
1617     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1618     return false;
1619   }
1620 
1621   double expand_heap_start_time_sec = os::elapsedTime();
1622   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1623   assert(regions_to_expand > 0, "Must expand by at least one region");
1624 
1625   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1626   if (expand_time_ms != NULL) {
1627     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1628   }
1629 
1630   if (expanded_by > 0) {
1631     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1632     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1633     g1_policy()->record_new_heap_size(num_regions());
1634   } else {
1635     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1636 
1637     // The expansion of the virtual storage space was unsuccessful.
1638     // Let's see if it was because we ran out of swap.
1639     if (G1ExitOnExpansionFailure &&
1640         _hrm.available() >= regions_to_expand) {
1641       // We had head room...
1642       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1643     }
1644   }
1645   return regions_to_expand > 0;
1646 }
1647 
1648 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1649   size_t aligned_shrink_bytes =
1650     ReservedSpace::page_align_size_down(shrink_bytes);
1651   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1652                                          HeapRegion::GrainBytes);
1653   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1654 
1655   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1656   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1657 
1658 
1659   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1660                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1661   if (num_regions_removed > 0) {
1662     g1_policy()->record_new_heap_size(num_regions());
1663   } else {
1664     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1665   }
1666 }
1667 
1668 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1669   _verifier->verify_region_sets_optional();
1670 
1671   // We should only reach here at the end of a Full GC which means we
1672   // should not not be holding to any GC alloc regions. The method
1673   // below will make sure of that and do any remaining clean up.
1674   _allocator->abandon_gc_alloc_regions();
1675 
1676   // Instead of tearing down / rebuilding the free lists here, we
1677   // could instead use the remove_all_pending() method on free_list to
1678   // remove only the ones that we need to remove.
1679   tear_down_region_sets(true /* free_list_only */);
1680   shrink_helper(shrink_bytes);
1681   rebuild_region_sets(true /* free_list_only */);
1682 
1683   _hrm.verify_optional();
1684   _verifier->verify_region_sets_optional();
1685 }
1686 
1687 // Public methods.
1688 
1689 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1690   CollectedHeap(),
1691   _collector_policy(collector_policy),
1692   _g1_policy(create_g1_policy()),
1693   _collection_set(this, _g1_policy),
1694   _dirty_card_queue_set(false),
1695   _is_alive_closure_cm(this),
1696   _is_alive_closure_stw(this),
1697   _ref_processor_cm(NULL),
1698   _ref_processor_stw(NULL),
1699   _bot(NULL),
1700   _hot_card_cache(NULL),
1701   _g1_rem_set(NULL),
1702   _cg1r(NULL),
1703   _g1mm(NULL),
1704   _refine_cte_cl(NULL),
1705   _preserved_marks_set(true /* in_c_heap */),
1706   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1707   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1708   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1709   _humongous_reclaim_candidates(),
1710   _has_humongous_reclaim_candidates(false),
1711   _archive_allocator(NULL),
1712   _free_regions_coming(false),
1713   _gc_time_stamp(0),
1714   _summary_bytes_used(0),
1715   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1716   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1717   _expand_heap_after_alloc_failure(true),
1718   _old_marking_cycles_started(0),
1719   _old_marking_cycles_completed(0),
1720   _in_cset_fast_test(),
1721   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1722   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1723 
1724   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1725                           /* are_GC_task_threads */true,
1726                           /* are_ConcurrentGC_threads */false);
1727   _workers->initialize_workers();
1728   _verifier = new G1HeapVerifier(this);
1729 
1730   _allocator = G1Allocator::create_allocator(this);
1731 
1732   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1733 
1734   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1735 
1736   // Override the default _filler_array_max_size so that no humongous filler
1737   // objects are created.
1738   _filler_array_max_size = _humongous_object_threshold_in_words;
1739 
1740   uint n_queues = ParallelGCThreads;
1741   _task_queues = new RefToScanQueueSet(n_queues);
1742 
1743   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1744 
1745   for (uint i = 0; i < n_queues; i++) {
1746     RefToScanQueue* q = new RefToScanQueue();
1747     q->initialize();
1748     _task_queues->register_queue(i, q);
1749     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1750   }
1751 
1752   // Initialize the G1EvacuationFailureALot counters and flags.
1753   NOT_PRODUCT(reset_evacuation_should_fail();)
1754 
1755   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1756 }
1757 
1758 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1759                                                                  size_t size,
1760                                                                  size_t translation_factor) {
1761   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1762   // Allocate a new reserved space, preferring to use large pages.
1763   ReservedSpace rs(size, preferred_page_size);
1764   G1RegionToSpaceMapper* result  =
1765     G1RegionToSpaceMapper::create_mapper(rs,
1766                                          size,
1767                                          rs.alignment(),
1768                                          HeapRegion::GrainBytes,
1769                                          translation_factor,
1770                                          mtGC);
1771 
1772   os::trace_page_sizes_for_requested_size(description,
1773                                           size,
1774                                           preferred_page_size,
1775                                           rs.alignment(),
1776                                           rs.base(),
1777                                           rs.size());
1778 
1779   return result;
1780 }
1781 
1782 jint G1CollectedHeap::initialize() {
1783   CollectedHeap::pre_initialize();
1784   os::enable_vtime();
1785 
1786   // Necessary to satisfy locking discipline assertions.
1787 
1788   MutexLocker x(Heap_lock);
1789 
1790   // While there are no constraints in the GC code that HeapWordSize
1791   // be any particular value, there are multiple other areas in the
1792   // system which believe this to be true (e.g. oop->object_size in some
1793   // cases incorrectly returns the size in wordSize units rather than
1794   // HeapWordSize).
1795   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1796 
1797   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1798   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1799   size_t heap_alignment = collector_policy()->heap_alignment();
1800 
1801   // Ensure that the sizes are properly aligned.
1802   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1803   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1804   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1805 
1806   _refine_cte_cl = new RefineCardTableEntryClosure();
1807 
1808   jint ecode = JNI_OK;
1809   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1810   if (_cg1r == NULL) {
1811     return ecode;
1812   }
1813 
1814   // Reserve the maximum.
1815 
1816   // When compressed oops are enabled, the preferred heap base
1817   // is calculated by subtracting the requested size from the
1818   // 32Gb boundary and using the result as the base address for
1819   // heap reservation. If the requested size is not aligned to
1820   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1821   // into the ReservedHeapSpace constructor) then the actual
1822   // base of the reserved heap may end up differing from the
1823   // address that was requested (i.e. the preferred heap base).
1824   // If this happens then we could end up using a non-optimal
1825   // compressed oops mode.
1826 
1827   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1828                                                  heap_alignment);
1829 
1830   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1831 
1832   // Create the barrier set for the entire reserved region.
1833   G1SATBCardTableLoggingModRefBS* bs
1834     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1835   bs->initialize();
1836   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1837   set_barrier_set(bs);
1838 
1839   // Create the hot card cache.
1840   _hot_card_cache = new G1HotCardCache(this);
1841 
1842   // Also create a G1 rem set.
1843   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1844 
1845   // Carve out the G1 part of the heap.
1846   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1847   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1848   G1RegionToSpaceMapper* heap_storage =
1849     G1RegionToSpaceMapper::create_mapper(g1_rs,
1850                                          g1_rs.size(),
1851                                          page_size,
1852                                          HeapRegion::GrainBytes,
1853                                          1,
1854                                          mtJavaHeap);
1855   os::trace_page_sizes("Heap",
1856                        collector_policy()->min_heap_byte_size(),
1857                        max_byte_size,
1858                        page_size,
1859                        heap_rs.base(),
1860                        heap_rs.size());
1861   heap_storage->set_mapping_changed_listener(&_listener);
1862 
1863   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1864   G1RegionToSpaceMapper* bot_storage =
1865     create_aux_memory_mapper("Block Offset Table",
1866                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1867                              G1BlockOffsetTable::heap_map_factor());
1868 
1869   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1870   G1RegionToSpaceMapper* cardtable_storage =
1871     create_aux_memory_mapper("Card Table",
1872                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1873                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1874 
1875   G1RegionToSpaceMapper* card_counts_storage =
1876     create_aux_memory_mapper("Card Counts Table",
1877                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1878                              G1CardCounts::heap_map_factor());
1879 
1880   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1881   G1RegionToSpaceMapper* prev_bitmap_storage =
1882     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1883   G1RegionToSpaceMapper* next_bitmap_storage =
1884     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1885 
1886   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1887   g1_barrier_set()->initialize(cardtable_storage);
1888   // Do later initialization work for concurrent refinement.
1889   _hot_card_cache->initialize(card_counts_storage);
1890 
1891   // 6843694 - ensure that the maximum region index can fit
1892   // in the remembered set structures.
1893   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1894   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1895 
1896   g1_rem_set()->initialize(max_capacity(), max_regions());
1897 
1898   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1899   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1900   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1901             "too many cards per region");
1902 
1903   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1904 
1905   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1906 
1907   {
1908     HeapWord* start = _hrm.reserved().start();
1909     HeapWord* end = _hrm.reserved().end();
1910     size_t granularity = HeapRegion::GrainBytes;
1911 
1912     _in_cset_fast_test.initialize(start, end, granularity);
1913     _humongous_reclaim_candidates.initialize(start, end, granularity);
1914   }
1915 
1916   // Create the G1ConcurrentMark data structure and thread.
1917   // (Must do this late, so that "max_regions" is defined.)
1918   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1919   if (_cm == NULL || !_cm->completed_initialization()) {
1920     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1921     return JNI_ENOMEM;
1922   }
1923   _cmThread = _cm->cmThread();
1924 
1925   // Now expand into the initial heap size.
1926   if (!expand(init_byte_size, _workers)) {
1927     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1928     return JNI_ENOMEM;
1929   }
1930 
1931   // Perform any initialization actions delegated to the policy.
1932   g1_policy()->init(this, &_collection_set);
1933 
1934   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1935                                                SATB_Q_FL_lock,
1936                                                G1SATBProcessCompletedThreshold,
1937                                                Shared_SATB_Q_lock);
1938 
1939   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1940                                                 DirtyCardQ_CBL_mon,
1941                                                 DirtyCardQ_FL_lock,
1942                                                 (int)concurrent_g1_refine()->yellow_zone(),
1943                                                 (int)concurrent_g1_refine()->red_zone(),
1944                                                 Shared_DirtyCardQ_lock,
1945                                                 NULL,  // fl_owner
1946                                                 true); // init_free_ids
1947 
1948   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1949                                     DirtyCardQ_CBL_mon,
1950                                     DirtyCardQ_FL_lock,
1951                                     -1, // never trigger processing
1952                                     -1, // no limit on length
1953                                     Shared_DirtyCardQ_lock,
1954                                     &JavaThread::dirty_card_queue_set());
1955 
1956   // Here we allocate the dummy HeapRegion that is required by the
1957   // G1AllocRegion class.
1958   HeapRegion* dummy_region = _hrm.get_dummy_region();
1959 
1960   // We'll re-use the same region whether the alloc region will
1961   // require BOT updates or not and, if it doesn't, then a non-young
1962   // region will complain that it cannot support allocations without
1963   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1964   dummy_region->set_eden();
1965   // Make sure it's full.
1966   dummy_region->set_top(dummy_region->end());
1967   G1AllocRegion::setup(this, dummy_region);
1968 
1969   _allocator->init_mutator_alloc_region();
1970 
1971   // Do create of the monitoring and management support so that
1972   // values in the heap have been properly initialized.
1973   _g1mm = new G1MonitoringSupport(this);
1974 
1975   G1StringDedup::initialize();
1976 
1977   _preserved_marks_set.init(ParallelGCThreads);
1978 
1979   _collection_set.initialize(max_regions());
1980 
1981   return JNI_OK;
1982 }
1983 
1984 void G1CollectedHeap::stop() {
1985   // Stop all concurrent threads. We do this to make sure these threads
1986   // do not continue to execute and access resources (e.g. logging)
1987   // that are destroyed during shutdown.
1988   _cg1r->stop();
1989   _cmThread->stop();
1990   if (G1StringDedup::is_enabled()) {
1991     G1StringDedup::stop();
1992   }
1993 }
1994 
1995 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1996   return HeapRegion::max_region_size();
1997 }
1998 
1999 void G1CollectedHeap::post_initialize() {
2000   ref_processing_init();
2001 }
2002 
2003 void G1CollectedHeap::ref_processing_init() {
2004   // Reference processing in G1 currently works as follows:
2005   //
2006   // * There are two reference processor instances. One is
2007   //   used to record and process discovered references
2008   //   during concurrent marking; the other is used to
2009   //   record and process references during STW pauses
2010   //   (both full and incremental).
2011   // * Both ref processors need to 'span' the entire heap as
2012   //   the regions in the collection set may be dotted around.
2013   //
2014   // * For the concurrent marking ref processor:
2015   //   * Reference discovery is enabled at initial marking.
2016   //   * Reference discovery is disabled and the discovered
2017   //     references processed etc during remarking.
2018   //   * Reference discovery is MT (see below).
2019   //   * Reference discovery requires a barrier (see below).
2020   //   * Reference processing may or may not be MT
2021   //     (depending on the value of ParallelRefProcEnabled
2022   //     and ParallelGCThreads).
2023   //   * A full GC disables reference discovery by the CM
2024   //     ref processor and abandons any entries on it's
2025   //     discovered lists.
2026   //
2027   // * For the STW processor:
2028   //   * Non MT discovery is enabled at the start of a full GC.
2029   //   * Processing and enqueueing during a full GC is non-MT.
2030   //   * During a full GC, references are processed after marking.
2031   //
2032   //   * Discovery (may or may not be MT) is enabled at the start
2033   //     of an incremental evacuation pause.
2034   //   * References are processed near the end of a STW evacuation pause.
2035   //   * For both types of GC:
2036   //     * Discovery is atomic - i.e. not concurrent.
2037   //     * Reference discovery will not need a barrier.
2038 
2039   MemRegion mr = reserved_region();
2040 
2041   // Concurrent Mark ref processor
2042   _ref_processor_cm =
2043     new ReferenceProcessor(mr,    // span
2044                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2045                                 // mt processing
2046                            ParallelGCThreads,
2047                                 // degree of mt processing
2048                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2049                                 // mt discovery
2050                            MAX2(ParallelGCThreads, ConcGCThreads),
2051                                 // degree of mt discovery
2052                            false,
2053                                 // Reference discovery is not atomic
2054                            &_is_alive_closure_cm);
2055                                 // is alive closure
2056                                 // (for efficiency/performance)
2057 
2058   // STW ref processor
2059   _ref_processor_stw =
2060     new ReferenceProcessor(mr,    // span
2061                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2062                                 // mt processing
2063                            ParallelGCThreads,
2064                                 // degree of mt processing
2065                            (ParallelGCThreads > 1),
2066                                 // mt discovery
2067                            ParallelGCThreads,
2068                                 // degree of mt discovery
2069                            true,
2070                                 // Reference discovery is atomic
2071                            &_is_alive_closure_stw);
2072                                 // is alive closure
2073                                 // (for efficiency/performance)
2074 }
2075 
2076 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2077   return _collector_policy;
2078 }
2079 
2080 size_t G1CollectedHeap::capacity() const {
2081   return _hrm.length() * HeapRegion::GrainBytes;
2082 }
2083 
2084 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2085   hr->reset_gc_time_stamp();
2086 }
2087 
2088 #ifndef PRODUCT
2089 
2090 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2091 private:
2092   unsigned _gc_time_stamp;
2093   bool _failures;
2094 
2095 public:
2096   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2097     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2098 
2099   virtual bool doHeapRegion(HeapRegion* hr) {
2100     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2101     if (_gc_time_stamp != region_gc_time_stamp) {
2102       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2103                             region_gc_time_stamp, _gc_time_stamp);
2104       _failures = true;
2105     }
2106     return false;
2107   }
2108 
2109   bool failures() { return _failures; }
2110 };
2111 
2112 void G1CollectedHeap::check_gc_time_stamps() {
2113   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2114   heap_region_iterate(&cl);
2115   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2116 }
2117 #endif // PRODUCT
2118 
2119 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2120   _hot_card_cache->drain(cl, worker_i);
2121 }
2122 
2123 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2124   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2125   size_t n_completed_buffers = 0;
2126   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2127     n_completed_buffers++;
2128   }
2129   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2130   dcqs.clear_n_completed_buffers();
2131   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2132 }
2133 
2134 // Computes the sum of the storage used by the various regions.
2135 size_t G1CollectedHeap::used() const {
2136   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2137   if (_archive_allocator != NULL) {
2138     result += _archive_allocator->used();
2139   }
2140   return result;
2141 }
2142 
2143 size_t G1CollectedHeap::used_unlocked() const {
2144   return _summary_bytes_used;
2145 }
2146 
2147 class SumUsedClosure: public HeapRegionClosure {
2148   size_t _used;
2149 public:
2150   SumUsedClosure() : _used(0) {}
2151   bool doHeapRegion(HeapRegion* r) {
2152     _used += r->used();
2153     return false;
2154   }
2155   size_t result() { return _used; }
2156 };
2157 
2158 size_t G1CollectedHeap::recalculate_used() const {
2159   double recalculate_used_start = os::elapsedTime();
2160 
2161   SumUsedClosure blk;
2162   heap_region_iterate(&blk);
2163 
2164   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2165   return blk.result();
2166 }
2167 
2168 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2169   switch (cause) {
2170     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2171     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2172     case GCCause::_update_allocation_context_stats_inc: return true;
2173     case GCCause::_wb_conc_mark:                        return true;
2174     default :                                           return false;
2175   }
2176 }
2177 
2178 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2179   switch (cause) {
2180     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2181     case GCCause::_g1_humongous_allocation: return true;
2182     default:                                return is_user_requested_concurrent_full_gc(cause);
2183   }
2184 }
2185 
2186 #ifndef PRODUCT
2187 void G1CollectedHeap::allocate_dummy_regions() {
2188   // Let's fill up most of the region
2189   size_t word_size = HeapRegion::GrainWords - 1024;
2190   // And as a result the region we'll allocate will be humongous.
2191   guarantee(is_humongous(word_size), "sanity");
2192 
2193   // _filler_array_max_size is set to humongous object threshold
2194   // but temporarily change it to use CollectedHeap::fill_with_object().
2195   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2196 
2197   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2198     // Let's use the existing mechanism for the allocation
2199     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2200                                                  AllocationContext::system());
2201     if (dummy_obj != NULL) {
2202       MemRegion mr(dummy_obj, word_size);
2203       CollectedHeap::fill_with_object(mr);
2204     } else {
2205       // If we can't allocate once, we probably cannot allocate
2206       // again. Let's get out of the loop.
2207       break;
2208     }
2209   }
2210 }
2211 #endif // !PRODUCT
2212 
2213 void G1CollectedHeap::increment_old_marking_cycles_started() {
2214   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2215          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2216          "Wrong marking cycle count (started: %d, completed: %d)",
2217          _old_marking_cycles_started, _old_marking_cycles_completed);
2218 
2219   _old_marking_cycles_started++;
2220 }
2221 
2222 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2223   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2224 
2225   // We assume that if concurrent == true, then the caller is a
2226   // concurrent thread that was joined the Suspendible Thread
2227   // Set. If there's ever a cheap way to check this, we should add an
2228   // assert here.
2229 
2230   // Given that this method is called at the end of a Full GC or of a
2231   // concurrent cycle, and those can be nested (i.e., a Full GC can
2232   // interrupt a concurrent cycle), the number of full collections
2233   // completed should be either one (in the case where there was no
2234   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2235   // behind the number of full collections started.
2236 
2237   // This is the case for the inner caller, i.e. a Full GC.
2238   assert(concurrent ||
2239          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2240          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2241          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2242          "is inconsistent with _old_marking_cycles_completed = %u",
2243          _old_marking_cycles_started, _old_marking_cycles_completed);
2244 
2245   // This is the case for the outer caller, i.e. the concurrent cycle.
2246   assert(!concurrent ||
2247          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2248          "for outer caller (concurrent cycle): "
2249          "_old_marking_cycles_started = %u "
2250          "is inconsistent with _old_marking_cycles_completed = %u",
2251          _old_marking_cycles_started, _old_marking_cycles_completed);
2252 
2253   _old_marking_cycles_completed += 1;
2254 
2255   // We need to clear the "in_progress" flag in the CM thread before
2256   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2257   // is set) so that if a waiter requests another System.gc() it doesn't
2258   // incorrectly see that a marking cycle is still in progress.
2259   if (concurrent) {
2260     _cmThread->set_idle();
2261   }
2262 
2263   // This notify_all() will ensure that a thread that called
2264   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2265   // and it's waiting for a full GC to finish will be woken up. It is
2266   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2267   FullGCCount_lock->notify_all();
2268 }
2269 
2270 void G1CollectedHeap::collect(GCCause::Cause cause) {
2271   assert_heap_not_locked();
2272 
2273   uint gc_count_before;
2274   uint old_marking_count_before;
2275   uint full_gc_count_before;
2276   bool retry_gc;
2277 
2278   do {
2279     retry_gc = false;
2280 
2281     {
2282       MutexLocker ml(Heap_lock);
2283 
2284       // Read the GC count while holding the Heap_lock
2285       gc_count_before = total_collections();
2286       full_gc_count_before = total_full_collections();
2287       old_marking_count_before = _old_marking_cycles_started;
2288     }
2289 
2290     if (should_do_concurrent_full_gc(cause)) {
2291       // Schedule an initial-mark evacuation pause that will start a
2292       // concurrent cycle. We're setting word_size to 0 which means that
2293       // we are not requesting a post-GC allocation.
2294       VM_G1IncCollectionPause op(gc_count_before,
2295                                  0,     /* word_size */
2296                                  true,  /* should_initiate_conc_mark */
2297                                  g1_policy()->max_pause_time_ms(),
2298                                  cause);
2299       op.set_allocation_context(AllocationContext::current());
2300 
2301       VMThread::execute(&op);
2302       if (!op.pause_succeeded()) {
2303         if (old_marking_count_before == _old_marking_cycles_started) {
2304           retry_gc = op.should_retry_gc();
2305         } else {
2306           // A Full GC happened while we were trying to schedule the
2307           // initial-mark GC. No point in starting a new cycle given
2308           // that the whole heap was collected anyway.
2309         }
2310 
2311         if (retry_gc) {
2312           if (GCLocker::is_active_and_needs_gc()) {
2313             GCLocker::stall_until_clear();
2314           }
2315         }
2316       }
2317     } else {
2318       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2319           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2320 
2321         // Schedule a standard evacuation pause. We're setting word_size
2322         // to 0 which means that we are not requesting a post-GC allocation.
2323         VM_G1IncCollectionPause op(gc_count_before,
2324                                    0,     /* word_size */
2325                                    false, /* should_initiate_conc_mark */
2326                                    g1_policy()->max_pause_time_ms(),
2327                                    cause);
2328         VMThread::execute(&op);
2329       } else {
2330         // Schedule a Full GC.
2331         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2332         VMThread::execute(&op);
2333       }
2334     }
2335   } while (retry_gc);
2336 }
2337 
2338 bool G1CollectedHeap::is_in(const void* p) const {
2339   if (_hrm.reserved().contains(p)) {
2340     // Given that we know that p is in the reserved space,
2341     // heap_region_containing() should successfully
2342     // return the containing region.
2343     HeapRegion* hr = heap_region_containing(p);
2344     return hr->is_in(p);
2345   } else {
2346     return false;
2347   }
2348 }
2349 
2350 #ifdef ASSERT
2351 bool G1CollectedHeap::is_in_exact(const void* p) const {
2352   bool contains = reserved_region().contains(p);
2353   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2354   if (contains && available) {
2355     return true;
2356   } else {
2357     return false;
2358   }
2359 }
2360 #endif
2361 
2362 // Iteration functions.
2363 
2364 // Iterates an ObjectClosure over all objects within a HeapRegion.
2365 
2366 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2367   ObjectClosure* _cl;
2368 public:
2369   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2370   bool doHeapRegion(HeapRegion* r) {
2371     if (!r->is_continues_humongous()) {
2372       r->object_iterate(_cl);
2373     }
2374     return false;
2375   }
2376 };
2377 
2378 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2379   IterateObjectClosureRegionClosure blk(cl);
2380   heap_region_iterate(&blk);
2381 }
2382 
2383 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2384   _hrm.iterate(cl);
2385 }
2386 
2387 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2388                                               uint worker_id,
2389                                               HeapRegionClaimer *hrclaimer) const {
2390   _hrm.par_iterate(cl, worker_id, hrclaimer);
2391 }
2392 
2393 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2394   _collection_set.iterate(cl);
2395 }
2396 
2397 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2398   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2399 }
2400 
2401 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2402   HeapRegion* result = _hrm.next_region_in_heap(from);
2403   while (result != NULL && result->is_pinned()) {
2404     result = _hrm.next_region_in_heap(result);
2405   }
2406   return result;
2407 }
2408 
2409 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2410   HeapRegion* hr = heap_region_containing(addr);
2411   return hr->block_start(addr);
2412 }
2413 
2414 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2415   HeapRegion* hr = heap_region_containing(addr);
2416   return hr->block_size(addr);
2417 }
2418 
2419 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2420   HeapRegion* hr = heap_region_containing(addr);
2421   return hr->block_is_obj(addr);
2422 }
2423 
2424 bool G1CollectedHeap::supports_tlab_allocation() const {
2425   return true;
2426 }
2427 
2428 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2429   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2430 }
2431 
2432 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2433   return _eden.length() * HeapRegion::GrainBytes;
2434 }
2435 
2436 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2437 // must be equal to the humongous object limit.
2438 size_t G1CollectedHeap::max_tlab_size() const {
2439   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2440 }
2441 
2442 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2443   AllocationContext_t context = AllocationContext::current();
2444   return _allocator->unsafe_max_tlab_alloc(context);
2445 }
2446 
2447 size_t G1CollectedHeap::max_capacity() const {
2448   return _hrm.reserved().byte_size();
2449 }
2450 
2451 jlong G1CollectedHeap::millis_since_last_gc() {
2452   // See the notes in GenCollectedHeap::millis_since_last_gc()
2453   // for more information about the implementation.
2454   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2455     _g1_policy->collection_pause_end_millis();
2456   if (ret_val < 0) {
2457     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2458       ". returning zero instead.", ret_val);
2459     return 0;
2460   }
2461   return ret_val;
2462 }
2463 
2464 void G1CollectedHeap::prepare_for_verify() {
2465   _verifier->prepare_for_verify();
2466 }
2467 
2468 void G1CollectedHeap::verify(VerifyOption vo) {
2469   _verifier->verify(vo);
2470 }
2471 
2472 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2473   return true;
2474 }
2475 
2476 const char* const* G1CollectedHeap::concurrent_phases() const {
2477   return _cmThread->concurrent_phases();
2478 }
2479 
2480 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2481   return _cmThread->request_concurrent_phase(phase);
2482 }
2483 
2484 class PrintRegionClosure: public HeapRegionClosure {
2485   outputStream* _st;
2486 public:
2487   PrintRegionClosure(outputStream* st) : _st(st) {}
2488   bool doHeapRegion(HeapRegion* r) {
2489     r->print_on(_st);
2490     return false;
2491   }
2492 };
2493 
2494 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2495                                        const HeapRegion* hr,
2496                                        const VerifyOption vo) const {
2497   switch (vo) {
2498   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2499   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2500   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2501   default:                            ShouldNotReachHere();
2502   }
2503   return false; // keep some compilers happy
2504 }
2505 
2506 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2507                                        const VerifyOption vo) const {
2508   switch (vo) {
2509   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2510   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2511   case VerifyOption_G1UseMarkWord: {
2512     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2513     return !obj->is_gc_marked() && !hr->is_archive();
2514   }
2515   default:                            ShouldNotReachHere();
2516   }
2517   return false; // keep some compilers happy
2518 }
2519 
2520 void G1CollectedHeap::print_heap_regions() const {
2521   Log(gc, heap, region) log;
2522   if (log.is_trace()) {
2523     ResourceMark rm;
2524     print_regions_on(log.trace_stream());
2525   }
2526 }
2527 
2528 void G1CollectedHeap::print_on(outputStream* st) const {
2529   st->print(" %-20s", "garbage-first heap");
2530   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2531             capacity()/K, used_unlocked()/K);
2532   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2533             p2i(_hrm.reserved().start()),
2534             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2535             p2i(_hrm.reserved().end()));
2536   st->cr();
2537   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2538   uint young_regions = young_regions_count();
2539   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2540             (size_t) young_regions * HeapRegion::GrainBytes / K);
2541   uint survivor_regions = survivor_regions_count();
2542   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2543             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2544   st->cr();
2545   MetaspaceAux::print_on(st);
2546 }
2547 
2548 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2549   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2550                "HS=humongous(starts), HC=humongous(continues), "
2551                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2552                "AC=allocation context, "
2553                "TAMS=top-at-mark-start (previous, next)");
2554   PrintRegionClosure blk(st);
2555   heap_region_iterate(&blk);
2556 }
2557 
2558 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2559   print_on(st);
2560 
2561   // Print the per-region information.
2562   print_regions_on(st);
2563 }
2564 
2565 void G1CollectedHeap::print_on_error(outputStream* st) const {
2566   this->CollectedHeap::print_on_error(st);
2567 
2568   if (_cm != NULL) {
2569     st->cr();
2570     _cm->print_on_error(st);
2571   }
2572 }
2573 
2574 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2575   workers()->print_worker_threads_on(st);
2576   _cmThread->print_on(st);
2577   st->cr();
2578   _cm->print_worker_threads_on(st);
2579   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2580   if (G1StringDedup::is_enabled()) {
2581     G1StringDedup::print_worker_threads_on(st);
2582   }
2583 }
2584 
2585 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2586   workers()->threads_do(tc);
2587   tc->do_thread(_cmThread);
2588   _cm->threads_do(tc);
2589   _cg1r->threads_do(tc); // also iterates over the sample thread
2590   if (G1StringDedup::is_enabled()) {
2591     G1StringDedup::threads_do(tc);
2592   }
2593 }
2594 
2595 void G1CollectedHeap::print_tracing_info() const {
2596   g1_rem_set()->print_summary_info();
2597   concurrent_mark()->print_summary_info();
2598 }
2599 
2600 #ifndef PRODUCT
2601 // Helpful for debugging RSet issues.
2602 
2603 class PrintRSetsClosure : public HeapRegionClosure {
2604 private:
2605   const char* _msg;
2606   size_t _occupied_sum;
2607 
2608 public:
2609   bool doHeapRegion(HeapRegion* r) {
2610     HeapRegionRemSet* hrrs = r->rem_set();
2611     size_t occupied = hrrs->occupied();
2612     _occupied_sum += occupied;
2613 
2614     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2615     if (occupied == 0) {
2616       tty->print_cr("  RSet is empty");
2617     } else {
2618       hrrs->print();
2619     }
2620     tty->print_cr("----------");
2621     return false;
2622   }
2623 
2624   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2625     tty->cr();
2626     tty->print_cr("========================================");
2627     tty->print_cr("%s", msg);
2628     tty->cr();
2629   }
2630 
2631   ~PrintRSetsClosure() {
2632     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2633     tty->print_cr("========================================");
2634     tty->cr();
2635   }
2636 };
2637 
2638 void G1CollectedHeap::print_cset_rsets() {
2639   PrintRSetsClosure cl("Printing CSet RSets");
2640   collection_set_iterate(&cl);
2641 }
2642 
2643 void G1CollectedHeap::print_all_rsets() {
2644   PrintRSetsClosure cl("Printing All RSets");;
2645   heap_region_iterate(&cl);
2646 }
2647 #endif // PRODUCT
2648 
2649 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2650 
2651   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2652   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2653   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2654 
2655   size_t eden_capacity_bytes =
2656     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2657 
2658   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2659   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2660                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2661 }
2662 
2663 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2664   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2665                        stats->unused(), stats->used(), stats->region_end_waste(),
2666                        stats->regions_filled(), stats->direct_allocated(),
2667                        stats->failure_used(), stats->failure_waste());
2668 }
2669 
2670 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2671   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2672   gc_tracer->report_gc_heap_summary(when, heap_summary);
2673 
2674   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2675   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2676 }
2677 
2678 G1CollectedHeap* G1CollectedHeap::heap() {
2679   CollectedHeap* heap = Universe::heap();
2680   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2681   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2682   return (G1CollectedHeap*)heap;
2683 }
2684 
2685 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2686   // always_do_update_barrier = false;
2687   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2688 
2689   double start = os::elapsedTime();
2690   // Fill TLAB's and such
2691   accumulate_statistics_all_tlabs();
2692   ensure_parsability(true);
2693   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2694 
2695   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2696 }
2697 
2698 void G1CollectedHeap::gc_epilogue(bool full) {
2699   // we are at the end of the GC. Total collections has already been increased.
2700   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2701 
2702   // FIXME: what is this about?
2703   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2704   // is set.
2705 #if defined(COMPILER2) || INCLUDE_JVMCI
2706   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2707 #endif
2708   // always_do_update_barrier = true;
2709 
2710   double start = os::elapsedTime();
2711   resize_all_tlabs();
2712   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2713 
2714   allocation_context_stats().update(full);
2715 
2716   // We have just completed a GC. Update the soft reference
2717   // policy with the new heap occupancy
2718   Universe::update_heap_info_at_gc();
2719 }
2720 
2721 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2722                                                uint gc_count_before,
2723                                                bool* succeeded,
2724                                                GCCause::Cause gc_cause) {
2725   assert_heap_not_locked_and_not_at_safepoint();
2726   VM_G1IncCollectionPause op(gc_count_before,
2727                              word_size,
2728                              false, /* should_initiate_conc_mark */
2729                              g1_policy()->max_pause_time_ms(),
2730                              gc_cause);
2731 
2732   op.set_allocation_context(AllocationContext::current());
2733   VMThread::execute(&op);
2734 
2735   HeapWord* result = op.result();
2736   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2737   assert(result == NULL || ret_succeeded,
2738          "the result should be NULL if the VM did not succeed");
2739   *succeeded = ret_succeeded;
2740 
2741   assert_heap_not_locked();
2742   return result;
2743 }
2744 
2745 void
2746 G1CollectedHeap::doConcurrentMark() {
2747   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2748   if (!_cmThread->in_progress()) {
2749     _cmThread->set_started();
2750     CGC_lock->notify();
2751   }
2752 }
2753 
2754 size_t G1CollectedHeap::pending_card_num() {
2755   size_t extra_cards = 0;
2756   JavaThread *curr = Threads::first();
2757   while (curr != NULL) {
2758     DirtyCardQueue& dcq = curr->dirty_card_queue();
2759     extra_cards += dcq.size();
2760     curr = curr->next();
2761   }
2762   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2763   size_t buffer_size = dcqs.buffer_size();
2764   size_t buffer_num = dcqs.completed_buffers_num();
2765 
2766   return buffer_size * buffer_num + extra_cards;
2767 }
2768 
2769 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2770  private:
2771   size_t _total_humongous;
2772   size_t _candidate_humongous;
2773 
2774   DirtyCardQueue _dcq;
2775 
2776   // We don't nominate objects with many remembered set entries, on
2777   // the assumption that such objects are likely still live.
2778   bool is_remset_small(HeapRegion* region) const {
2779     HeapRegionRemSet* const rset = region->rem_set();
2780     return G1EagerReclaimHumongousObjectsWithStaleRefs
2781       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2782       : rset->is_empty();
2783   }
2784 
2785   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2786     assert(region->is_starts_humongous(), "Must start a humongous object");
2787 
2788     oop obj = oop(region->bottom());
2789 
2790     // Dead objects cannot be eager reclaim candidates. Due to class
2791     // unloading it is unsafe to query their classes so we return early.
2792     if (heap->is_obj_dead(obj, region)) {
2793       return false;
2794     }
2795 
2796     // Candidate selection must satisfy the following constraints
2797     // while concurrent marking is in progress:
2798     //
2799     // * In order to maintain SATB invariants, an object must not be
2800     // reclaimed if it was allocated before the start of marking and
2801     // has not had its references scanned.  Such an object must have
2802     // its references (including type metadata) scanned to ensure no
2803     // live objects are missed by the marking process.  Objects
2804     // allocated after the start of concurrent marking don't need to
2805     // be scanned.
2806     //
2807     // * An object must not be reclaimed if it is on the concurrent
2808     // mark stack.  Objects allocated after the start of concurrent
2809     // marking are never pushed on the mark stack.
2810     //
2811     // Nominating only objects allocated after the start of concurrent
2812     // marking is sufficient to meet both constraints.  This may miss
2813     // some objects that satisfy the constraints, but the marking data
2814     // structures don't support efficiently performing the needed
2815     // additional tests or scrubbing of the mark stack.
2816     //
2817     // However, we presently only nominate is_typeArray() objects.
2818     // A humongous object containing references induces remembered
2819     // set entries on other regions.  In order to reclaim such an
2820     // object, those remembered sets would need to be cleaned up.
2821     //
2822     // We also treat is_typeArray() objects specially, allowing them
2823     // to be reclaimed even if allocated before the start of
2824     // concurrent mark.  For this we rely on mark stack insertion to
2825     // exclude is_typeArray() objects, preventing reclaiming an object
2826     // that is in the mark stack.  We also rely on the metadata for
2827     // such objects to be built-in and so ensured to be kept live.
2828     // Frequent allocation and drop of large binary blobs is an
2829     // important use case for eager reclaim, and this special handling
2830     // may reduce needed headroom.
2831 
2832     return obj->is_typeArray() && is_remset_small(region);
2833   }
2834 
2835  public:
2836   RegisterHumongousWithInCSetFastTestClosure()
2837   : _total_humongous(0),
2838     _candidate_humongous(0),
2839     _dcq(&JavaThread::dirty_card_queue_set()) {
2840   }
2841 
2842   virtual bool doHeapRegion(HeapRegion* r) {
2843     if (!r->is_starts_humongous()) {
2844       return false;
2845     }
2846     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2847 
2848     bool is_candidate = humongous_region_is_candidate(g1h, r);
2849     uint rindex = r->hrm_index();
2850     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2851     if (is_candidate) {
2852       _candidate_humongous++;
2853       g1h->register_humongous_region_with_cset(rindex);
2854       // Is_candidate already filters out humongous object with large remembered sets.
2855       // If we have a humongous object with a few remembered sets, we simply flush these
2856       // remembered set entries into the DCQS. That will result in automatic
2857       // re-evaluation of their remembered set entries during the following evacuation
2858       // phase.
2859       if (!r->rem_set()->is_empty()) {
2860         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2861                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2862         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2863         HeapRegionRemSetIterator hrrs(r->rem_set());
2864         size_t card_index;
2865         while (hrrs.has_next(card_index)) {
2866           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2867           // The remembered set might contain references to already freed
2868           // regions. Filter out such entries to avoid failing card table
2869           // verification.
2870           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2871             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2872               *card_ptr = CardTableModRefBS::dirty_card_val();
2873               _dcq.enqueue(card_ptr);
2874             }
2875           }
2876         }
2877         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2878                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2879                hrrs.n_yielded(), r->rem_set()->occupied());
2880         r->rem_set()->clear_locked();
2881       }
2882       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2883     }
2884     _total_humongous++;
2885 
2886     return false;
2887   }
2888 
2889   size_t total_humongous() const { return _total_humongous; }
2890   size_t candidate_humongous() const { return _candidate_humongous; }
2891 
2892   void flush_rem_set_entries() { _dcq.flush(); }
2893 };
2894 
2895 void G1CollectedHeap::register_humongous_regions_with_cset() {
2896   if (!G1EagerReclaimHumongousObjects) {
2897     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2898     return;
2899   }
2900   double time = os::elapsed_counter();
2901 
2902   // Collect reclaim candidate information and register candidates with cset.
2903   RegisterHumongousWithInCSetFastTestClosure cl;
2904   heap_region_iterate(&cl);
2905 
2906   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2907   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2908                                                                   cl.total_humongous(),
2909                                                                   cl.candidate_humongous());
2910   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2911 
2912   // Finally flush all remembered set entries to re-check into the global DCQS.
2913   cl.flush_rem_set_entries();
2914 }
2915 
2916 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2917   public:
2918     bool doHeapRegion(HeapRegion* hr) {
2919       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2920         hr->verify_rem_set();
2921       }
2922       return false;
2923     }
2924 };
2925 
2926 uint G1CollectedHeap::num_task_queues() const {
2927   return _task_queues->size();
2928 }
2929 
2930 #if TASKQUEUE_STATS
2931 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2932   st->print_raw_cr("GC Task Stats");
2933   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2934   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2935 }
2936 
2937 void G1CollectedHeap::print_taskqueue_stats() const {
2938   if (!log_is_enabled(Trace, gc, task, stats)) {
2939     return;
2940   }
2941   Log(gc, task, stats) log;
2942   ResourceMark rm;
2943   outputStream* st = log.trace_stream();
2944 
2945   print_taskqueue_stats_hdr(st);
2946 
2947   TaskQueueStats totals;
2948   const uint n = num_task_queues();
2949   for (uint i = 0; i < n; ++i) {
2950     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2951     totals += task_queue(i)->stats;
2952   }
2953   st->print_raw("tot "); totals.print(st); st->cr();
2954 
2955   DEBUG_ONLY(totals.verify());
2956 }
2957 
2958 void G1CollectedHeap::reset_taskqueue_stats() {
2959   const uint n = num_task_queues();
2960   for (uint i = 0; i < n; ++i) {
2961     task_queue(i)->stats.reset();
2962   }
2963 }
2964 #endif // TASKQUEUE_STATS
2965 
2966 void G1CollectedHeap::wait_for_root_region_scanning() {
2967   double scan_wait_start = os::elapsedTime();
2968   // We have to wait until the CM threads finish scanning the
2969   // root regions as it's the only way to ensure that all the
2970   // objects on them have been correctly scanned before we start
2971   // moving them during the GC.
2972   bool waited = _cm->root_regions()->wait_until_scan_finished();
2973   double wait_time_ms = 0.0;
2974   if (waited) {
2975     double scan_wait_end = os::elapsedTime();
2976     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2977   }
2978   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2979 }
2980 
2981 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2982 private:
2983   G1HRPrinter* _hr_printer;
2984 public:
2985   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2986 
2987   virtual bool doHeapRegion(HeapRegion* r) {
2988     _hr_printer->cset(r);
2989     return false;
2990   }
2991 };
2992 
2993 void G1CollectedHeap::start_new_collection_set() {
2994   collection_set()->start_incremental_building();
2995 
2996   clear_cset_fast_test();
2997 
2998   guarantee(_eden.length() == 0, "eden should have been cleared");
2999   g1_policy()->transfer_survivors_to_cset(survivor());
3000 }
3001 
3002 bool
3003 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3004   assert_at_safepoint(true /* should_be_vm_thread */);
3005   guarantee(!is_gc_active(), "collection is not reentrant");
3006 
3007   if (GCLocker::check_active_before_gc()) {
3008     return false;
3009   }
3010 
3011   _gc_timer_stw->register_gc_start();
3012 
3013   GCIdMark gc_id_mark;
3014   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3015 
3016   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3017   ResourceMark rm;
3018 
3019   g1_policy()->note_gc_start();
3020 
3021   wait_for_root_region_scanning();
3022 
3023   print_heap_before_gc();
3024   print_heap_regions();
3025   trace_heap_before_gc(_gc_tracer_stw);
3026 
3027   _verifier->verify_region_sets_optional();
3028   _verifier->verify_dirty_young_regions();
3029 
3030   // We should not be doing initial mark unless the conc mark thread is running
3031   if (!_cmThread->should_terminate()) {
3032     // This call will decide whether this pause is an initial-mark
3033     // pause. If it is, during_initial_mark_pause() will return true
3034     // for the duration of this pause.
3035     g1_policy()->decide_on_conc_mark_initiation();
3036   }
3037 
3038   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3039   assert(!collector_state()->during_initial_mark_pause() ||
3040           collector_state()->gcs_are_young(), "sanity");
3041 
3042   // We also do not allow mixed GCs during marking.
3043   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3044 
3045   // Record whether this pause is an initial mark. When the current
3046   // thread has completed its logging output and it's safe to signal
3047   // the CM thread, the flag's value in the policy has been reset.
3048   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3049 
3050   // Inner scope for scope based logging, timers, and stats collection
3051   {
3052     EvacuationInfo evacuation_info;
3053 
3054     if (collector_state()->during_initial_mark_pause()) {
3055       // We are about to start a marking cycle, so we increment the
3056       // full collection counter.
3057       increment_old_marking_cycles_started();
3058       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3059     }
3060 
3061     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3062 
3063     GCTraceCPUTime tcpu;
3064 
3065     FormatBuffer<> gc_string("Pause ");
3066     if (collector_state()->during_initial_mark_pause()) {
3067       gc_string.append("Initial Mark");
3068     } else if (collector_state()->gcs_are_young()) {
3069       gc_string.append("Young");
3070     } else {
3071       gc_string.append("Mixed");
3072     }
3073     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3074 
3075     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3076                                                                   workers()->active_workers(),
3077                                                                   Threads::number_of_non_daemon_threads());
3078     workers()->update_active_workers(active_workers);
3079     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3080 
3081     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3082     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3083 
3084     // If the secondary_free_list is not empty, append it to the
3085     // free_list. No need to wait for the cleanup operation to finish;
3086     // the region allocation code will check the secondary_free_list
3087     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3088     // set, skip this step so that the region allocation code has to
3089     // get entries from the secondary_free_list.
3090     if (!G1StressConcRegionFreeing) {
3091       append_secondary_free_list_if_not_empty_with_lock();
3092     }
3093 
3094     G1HeapTransition heap_transition(this);
3095     size_t heap_used_bytes_before_gc = used();
3096 
3097     // Don't dynamically change the number of GC threads this early.  A value of
3098     // 0 is used to indicate serial work.  When parallel work is done,
3099     // it will be set.
3100 
3101     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3102       IsGCActiveMark x;
3103 
3104       gc_prologue(false);
3105       increment_total_collections(false /* full gc */);
3106       increment_gc_time_stamp();
3107 
3108       if (VerifyRememberedSets) {
3109         log_info(gc, verify)("[Verifying RemSets before GC]");
3110         VerifyRegionRemSetClosure v_cl;
3111         heap_region_iterate(&v_cl);
3112       }
3113 
3114       _verifier->verify_before_gc();
3115 
3116       _verifier->check_bitmaps("GC Start");
3117 
3118 #if defined(COMPILER2) || INCLUDE_JVMCI
3119       DerivedPointerTable::clear();
3120 #endif
3121 
3122       // Please see comment in g1CollectedHeap.hpp and
3123       // G1CollectedHeap::ref_processing_init() to see how
3124       // reference processing currently works in G1.
3125 
3126       // Enable discovery in the STW reference processor
3127       if (g1_policy()->should_process_references()) {
3128         ref_processor_stw()->enable_discovery();
3129       } else {
3130         ref_processor_stw()->disable_discovery();
3131       }
3132 
3133       {
3134         // We want to temporarily turn off discovery by the
3135         // CM ref processor, if necessary, and turn it back on
3136         // on again later if we do. Using a scoped
3137         // NoRefDiscovery object will do this.
3138         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3139 
3140         // Forget the current alloc region (we might even choose it to be part
3141         // of the collection set!).
3142         _allocator->release_mutator_alloc_region();
3143 
3144         // This timing is only used by the ergonomics to handle our pause target.
3145         // It is unclear why this should not include the full pause. We will
3146         // investigate this in CR 7178365.
3147         //
3148         // Preserving the old comment here if that helps the investigation:
3149         //
3150         // The elapsed time induced by the start time below deliberately elides
3151         // the possible verification above.
3152         double sample_start_time_sec = os::elapsedTime();
3153 
3154         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3155 
3156         if (collector_state()->during_initial_mark_pause()) {
3157           concurrent_mark()->checkpointRootsInitialPre();
3158         }
3159 
3160         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3161 
3162         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3163 
3164         // Make sure the remembered sets are up to date. This needs to be
3165         // done before register_humongous_regions_with_cset(), because the
3166         // remembered sets are used there to choose eager reclaim candidates.
3167         // If the remembered sets are not up to date we might miss some
3168         // entries that need to be handled.
3169         g1_rem_set()->cleanupHRRS();
3170 
3171         register_humongous_regions_with_cset();
3172 
3173         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3174 
3175         // We call this after finalize_cset() to
3176         // ensure that the CSet has been finalized.
3177         _cm->verify_no_cset_oops();
3178 
3179         if (_hr_printer.is_active()) {
3180           G1PrintCollectionSetClosure cl(&_hr_printer);
3181           _collection_set.iterate(&cl);
3182         }
3183 
3184         // Initialize the GC alloc regions.
3185         _allocator->init_gc_alloc_regions(evacuation_info);
3186 
3187         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3188         pre_evacuate_collection_set();
3189 
3190         // Actually do the work...
3191         evacuate_collection_set(evacuation_info, &per_thread_states);
3192 
3193         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3194 
3195         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3196         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3197 
3198         eagerly_reclaim_humongous_regions();
3199 
3200         record_obj_copy_mem_stats();
3201         _survivor_evac_stats.adjust_desired_plab_sz();
3202         _old_evac_stats.adjust_desired_plab_sz();
3203 
3204         double start = os::elapsedTime();
3205         start_new_collection_set();
3206         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3207 
3208         if (evacuation_failed()) {
3209           set_used(recalculate_used());
3210           if (_archive_allocator != NULL) {
3211             _archive_allocator->clear_used();
3212           }
3213           for (uint i = 0; i < ParallelGCThreads; i++) {
3214             if (_evacuation_failed_info_array[i].has_failed()) {
3215               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3216             }
3217           }
3218         } else {
3219           // The "used" of the the collection set have already been subtracted
3220           // when they were freed.  Add in the bytes evacuated.
3221           increase_used(g1_policy()->bytes_copied_during_gc());
3222         }
3223 
3224         if (collector_state()->during_initial_mark_pause()) {
3225           // We have to do this before we notify the CM threads that
3226           // they can start working to make sure that all the
3227           // appropriate initialization is done on the CM object.
3228           concurrent_mark()->checkpointRootsInitialPost();
3229           collector_state()->set_mark_in_progress(true);
3230           // Note that we don't actually trigger the CM thread at
3231           // this point. We do that later when we're sure that
3232           // the current thread has completed its logging output.
3233         }
3234 
3235         allocate_dummy_regions();
3236 
3237         _allocator->init_mutator_alloc_region();
3238 
3239         {
3240           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3241           if (expand_bytes > 0) {
3242             size_t bytes_before = capacity();
3243             // No need for an ergo logging here,
3244             // expansion_amount() does this when it returns a value > 0.
3245             double expand_ms;
3246             if (!expand(expand_bytes, _workers, &expand_ms)) {
3247               // We failed to expand the heap. Cannot do anything about it.
3248             }
3249             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3250           }
3251         }
3252 
3253         // We redo the verification but now wrt to the new CSet which
3254         // has just got initialized after the previous CSet was freed.
3255         _cm->verify_no_cset_oops();
3256 
3257         // This timing is only used by the ergonomics to handle our pause target.
3258         // It is unclear why this should not include the full pause. We will
3259         // investigate this in CR 7178365.
3260         double sample_end_time_sec = os::elapsedTime();
3261         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3262         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3263         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3264 
3265         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3266         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3267 
3268         MemoryService::track_memory_usage();
3269 
3270         if (VerifyRememberedSets) {
3271           log_info(gc, verify)("[Verifying RemSets after GC]");
3272           VerifyRegionRemSetClosure v_cl;
3273           heap_region_iterate(&v_cl);
3274         }
3275 
3276         _verifier->verify_after_gc();
3277         _verifier->check_bitmaps("GC End");
3278 
3279         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3280         ref_processor_stw()->verify_no_references_recorded();
3281 
3282         // CM reference discovery will be re-enabled if necessary.
3283       }
3284 
3285 #ifdef TRACESPINNING
3286       ParallelTaskTerminator::print_termination_counts();
3287 #endif
3288 
3289       gc_epilogue(false);
3290     }
3291 
3292     // Print the remainder of the GC log output.
3293     if (evacuation_failed()) {
3294       log_info(gc)("To-space exhausted");
3295     }
3296 
3297     g1_policy()->print_phases();
3298     heap_transition.print();
3299 
3300     // It is not yet to safe to tell the concurrent mark to
3301     // start as we have some optional output below. We don't want the
3302     // output from the concurrent mark thread interfering with this
3303     // logging output either.
3304 
3305     _hrm.verify_optional();
3306     _verifier->verify_region_sets_optional();
3307 
3308     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3309     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3310 
3311     print_heap_after_gc();
3312     print_heap_regions();
3313     trace_heap_after_gc(_gc_tracer_stw);
3314 
3315     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3316     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3317     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3318     // before any GC notifications are raised.
3319     g1mm()->update_sizes();
3320 
3321     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3322     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3323     _gc_timer_stw->register_gc_end();
3324     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3325   }
3326   // It should now be safe to tell the concurrent mark thread to start
3327   // without its logging output interfering with the logging output
3328   // that came from the pause.
3329 
3330   if (should_start_conc_mark) {
3331     // CAUTION: after the doConcurrentMark() call below,
3332     // the concurrent marking thread(s) could be running
3333     // concurrently with us. Make sure that anything after
3334     // this point does not assume that we are the only GC thread
3335     // running. Note: of course, the actual marking work will
3336     // not start until the safepoint itself is released in
3337     // SuspendibleThreadSet::desynchronize().
3338     doConcurrentMark();
3339   }
3340 
3341   return true;
3342 }
3343 
3344 void G1CollectedHeap::remove_self_forwarding_pointers() {
3345   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3346   workers()->run_task(&rsfp_task);
3347 }
3348 
3349 void G1CollectedHeap::restore_after_evac_failure() {
3350   double remove_self_forwards_start = os::elapsedTime();
3351 
3352   remove_self_forwarding_pointers();
3353   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3354   _preserved_marks_set.restore(&task_executor);
3355 
3356   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3357 }
3358 
3359 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3360   if (!_evacuation_failed) {
3361     _evacuation_failed = true;
3362   }
3363 
3364   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3365   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3366 }
3367 
3368 bool G1ParEvacuateFollowersClosure::offer_termination() {
3369   G1ParScanThreadState* const pss = par_scan_state();
3370   start_term_time();
3371   const bool res = terminator()->offer_termination();
3372   end_term_time();
3373   return res;
3374 }
3375 
3376 void G1ParEvacuateFollowersClosure::do_void() {
3377   G1ParScanThreadState* const pss = par_scan_state();
3378   pss->trim_queue();
3379   do {
3380     pss->steal_and_trim_queue(queues());
3381   } while (!offer_termination());
3382 }
3383 
3384 class G1ParTask : public AbstractGangTask {
3385 protected:
3386   G1CollectedHeap*         _g1h;
3387   G1ParScanThreadStateSet* _pss;
3388   RefToScanQueueSet*       _queues;
3389   G1RootProcessor*         _root_processor;
3390   ParallelTaskTerminator   _terminator;
3391   uint                     _n_workers;
3392 
3393 public:
3394   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3395     : AbstractGangTask("G1 collection"),
3396       _g1h(g1h),
3397       _pss(per_thread_states),
3398       _queues(task_queues),
3399       _root_processor(root_processor),
3400       _terminator(n_workers, _queues),
3401       _n_workers(n_workers)
3402   {}
3403 
3404   void work(uint worker_id) {
3405     if (worker_id >= _n_workers) return;  // no work needed this round
3406 
3407     double start_sec = os::elapsedTime();
3408     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3409 
3410     {
3411       ResourceMark rm;
3412       HandleMark   hm;
3413 
3414       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3415 
3416       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3417       pss->set_ref_processor(rp);
3418 
3419       double start_strong_roots_sec = os::elapsedTime();
3420 
3421       _root_processor->evacuate_roots(pss->closures(), worker_id);
3422 
3423       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3424       // treating the nmethods visited to act as roots for concurrent marking.
3425       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3426       // objects copied by the current evacuation.
3427       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3428                                                       pss->closures()->weak_codeblobs(),
3429                                                       worker_id);
3430 
3431       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3432 
3433       double term_sec = 0.0;
3434       size_t evac_term_attempts = 0;
3435       {
3436         double start = os::elapsedTime();
3437         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3438         evac.do_void();
3439 
3440         evac_term_attempts = evac.term_attempts();
3441         term_sec = evac.term_time();
3442         double elapsed_sec = os::elapsedTime() - start;
3443         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3444         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3445         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3446       }
3447 
3448       assert(pss->queue_is_empty(), "should be empty");
3449 
3450       if (log_is_enabled(Debug, gc, task, stats)) {
3451         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3452         size_t lab_waste;
3453         size_t lab_undo_waste;
3454         pss->waste(lab_waste, lab_undo_waste);
3455         _g1h->print_termination_stats(worker_id,
3456                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3457                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3458                                       term_sec * 1000.0,                          /* evac term time */
3459                                       evac_term_attempts,                         /* evac term attempts */
3460                                       lab_waste,                                  /* alloc buffer waste */
3461                                       lab_undo_waste                              /* undo waste */
3462                                       );
3463       }
3464 
3465       // Close the inner scope so that the ResourceMark and HandleMark
3466       // destructors are executed here and are included as part of the
3467       // "GC Worker Time".
3468     }
3469     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3470   }
3471 };
3472 
3473 void G1CollectedHeap::print_termination_stats_hdr() {
3474   log_debug(gc, task, stats)("GC Termination Stats");
3475   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3476   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3477   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3478 }
3479 
3480 void G1CollectedHeap::print_termination_stats(uint worker_id,
3481                                               double elapsed_ms,
3482                                               double strong_roots_ms,
3483                                               double term_ms,
3484                                               size_t term_attempts,
3485                                               size_t alloc_buffer_waste,
3486                                               size_t undo_waste) const {
3487   log_debug(gc, task, stats)
3488               ("%3d %9.2f %9.2f %6.2f "
3489                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3490                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3491                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3492                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3493                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3494                alloc_buffer_waste * HeapWordSize / K,
3495                undo_waste * HeapWordSize / K);
3496 }
3497 
3498 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3499 private:
3500   BoolObjectClosure* _is_alive;
3501   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3502 
3503   int _initial_string_table_size;
3504   int _initial_symbol_table_size;
3505 
3506   bool  _process_strings;
3507   int _strings_processed;
3508   int _strings_removed;
3509 
3510   bool  _process_symbols;
3511   int _symbols_processed;
3512   int _symbols_removed;
3513 
3514   bool _process_string_dedup;
3515 
3516 public:
3517   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3518     AbstractGangTask("String/Symbol Unlinking"),
3519     _is_alive(is_alive),
3520     _dedup_closure(is_alive, NULL, false),
3521     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3522     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3523     _process_string_dedup(process_string_dedup) {
3524 
3525     _initial_string_table_size = StringTable::the_table()->table_size();
3526     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3527     if (process_strings) {
3528       StringTable::clear_parallel_claimed_index();
3529     }
3530     if (process_symbols) {
3531       SymbolTable::clear_parallel_claimed_index();
3532     }
3533   }
3534 
3535   ~G1StringAndSymbolCleaningTask() {
3536     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3537               "claim value %d after unlink less than initial string table size %d",
3538               StringTable::parallel_claimed_index(), _initial_string_table_size);
3539     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3540               "claim value %d after unlink less than initial symbol table size %d",
3541               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3542 
3543     log_info(gc, stringtable)(
3544         "Cleaned string and symbol table, "
3545         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3546         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3547         strings_processed(), strings_removed(),
3548         symbols_processed(), symbols_removed());
3549   }
3550 
3551   void work(uint worker_id) {
3552     int strings_processed = 0;
3553     int strings_removed = 0;
3554     int symbols_processed = 0;
3555     int symbols_removed = 0;
3556     if (_process_strings) {
3557       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3558       Atomic::add(strings_processed, &_strings_processed);
3559       Atomic::add(strings_removed, &_strings_removed);
3560     }
3561     if (_process_symbols) {
3562       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3563       Atomic::add(symbols_processed, &_symbols_processed);
3564       Atomic::add(symbols_removed, &_symbols_removed);
3565     }
3566     if (_process_string_dedup) {
3567       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3568     }
3569   }
3570 
3571   size_t strings_processed() const { return (size_t)_strings_processed; }
3572   size_t strings_removed()   const { return (size_t)_strings_removed; }
3573 
3574   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3575   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3576 };
3577 
3578 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3579 private:
3580   static Monitor* _lock;
3581 
3582   BoolObjectClosure* const _is_alive;
3583   const bool               _unloading_occurred;
3584   const uint               _num_workers;
3585 
3586   // Variables used to claim nmethods.
3587   CompiledMethod* _first_nmethod;
3588   volatile CompiledMethod* _claimed_nmethod;
3589 
3590   // The list of nmethods that need to be processed by the second pass.
3591   volatile CompiledMethod* _postponed_list;
3592   volatile uint            _num_entered_barrier;
3593 
3594  public:
3595   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3596       _is_alive(is_alive),
3597       _unloading_occurred(unloading_occurred),
3598       _num_workers(num_workers),
3599       _first_nmethod(NULL),
3600       _claimed_nmethod(NULL),
3601       _postponed_list(NULL),
3602       _num_entered_barrier(0)
3603   {
3604     CompiledMethod::increase_unloading_clock();
3605     // Get first alive nmethod
3606     CompiledMethodIterator iter = CompiledMethodIterator();
3607     if(iter.next_alive()) {
3608       _first_nmethod = iter.method();
3609     }
3610     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3611   }
3612 
3613   ~G1CodeCacheUnloadingTask() {
3614     CodeCache::verify_clean_inline_caches();
3615 
3616     CodeCache::set_needs_cache_clean(false);
3617     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3618 
3619     CodeCache::verify_icholder_relocations();
3620   }
3621 
3622  private:
3623   void add_to_postponed_list(CompiledMethod* nm) {
3624       CompiledMethod* old;
3625       do {
3626         old = (CompiledMethod*)_postponed_list;
3627         nm->set_unloading_next(old);
3628       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3629   }
3630 
3631   void clean_nmethod(CompiledMethod* nm) {
3632     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3633 
3634     if (postponed) {
3635       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3636       add_to_postponed_list(nm);
3637     }
3638 
3639     // Mark that this thread has been cleaned/unloaded.
3640     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3641     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3642   }
3643 
3644   void clean_nmethod_postponed(CompiledMethod* nm) {
3645     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3646   }
3647 
3648   static const int MaxClaimNmethods = 16;
3649 
3650   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3651     CompiledMethod* first;
3652     CompiledMethodIterator last;
3653 
3654     do {
3655       *num_claimed_nmethods = 0;
3656 
3657       first = (CompiledMethod*)_claimed_nmethod;
3658       last = CompiledMethodIterator(first);
3659 
3660       if (first != NULL) {
3661 
3662         for (int i = 0; i < MaxClaimNmethods; i++) {
3663           if (!last.next_alive()) {
3664             break;
3665           }
3666           claimed_nmethods[i] = last.method();
3667           (*num_claimed_nmethods)++;
3668         }
3669       }
3670 
3671     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3672   }
3673 
3674   CompiledMethod* claim_postponed_nmethod() {
3675     CompiledMethod* claim;
3676     CompiledMethod* next;
3677 
3678     do {
3679       claim = (CompiledMethod*)_postponed_list;
3680       if (claim == NULL) {
3681         return NULL;
3682       }
3683 
3684       next = claim->unloading_next();
3685 
3686     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3687 
3688     return claim;
3689   }
3690 
3691  public:
3692   // Mark that we're done with the first pass of nmethod cleaning.
3693   void barrier_mark(uint worker_id) {
3694     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3695     _num_entered_barrier++;
3696     if (_num_entered_barrier == _num_workers) {
3697       ml.notify_all();
3698     }
3699   }
3700 
3701   // See if we have to wait for the other workers to
3702   // finish their first-pass nmethod cleaning work.
3703   void barrier_wait(uint worker_id) {
3704     if (_num_entered_barrier < _num_workers) {
3705       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3706       while (_num_entered_barrier < _num_workers) {
3707           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3708       }
3709     }
3710   }
3711 
3712   // Cleaning and unloading of nmethods. Some work has to be postponed
3713   // to the second pass, when we know which nmethods survive.
3714   void work_first_pass(uint worker_id) {
3715     // The first nmethods is claimed by the first worker.
3716     if (worker_id == 0 && _first_nmethod != NULL) {
3717       clean_nmethod(_first_nmethod);
3718       _first_nmethod = NULL;
3719     }
3720 
3721     int num_claimed_nmethods;
3722     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3723 
3724     while (true) {
3725       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3726 
3727       if (num_claimed_nmethods == 0) {
3728         break;
3729       }
3730 
3731       for (int i = 0; i < num_claimed_nmethods; i++) {
3732         clean_nmethod(claimed_nmethods[i]);
3733       }
3734     }
3735   }
3736 
3737   void work_second_pass(uint worker_id) {
3738     CompiledMethod* nm;
3739     // Take care of postponed nmethods.
3740     while ((nm = claim_postponed_nmethod()) != NULL) {
3741       clean_nmethod_postponed(nm);
3742     }
3743   }
3744 };
3745 
3746 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3747 
3748 class G1KlassCleaningTask : public StackObj {
3749   BoolObjectClosure*                      _is_alive;
3750   volatile jint                           _clean_klass_tree_claimed;
3751   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3752 
3753  public:
3754   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3755       _is_alive(is_alive),
3756       _clean_klass_tree_claimed(0),
3757       _klass_iterator() {
3758   }
3759 
3760  private:
3761   bool claim_clean_klass_tree_task() {
3762     if (_clean_klass_tree_claimed) {
3763       return false;
3764     }
3765 
3766     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3767   }
3768 
3769   InstanceKlass* claim_next_klass() {
3770     Klass* klass;
3771     do {
3772       klass =_klass_iterator.next_klass();
3773     } while (klass != NULL && !klass->is_instance_klass());
3774 
3775     // this can be null so don't call InstanceKlass::cast
3776     return static_cast<InstanceKlass*>(klass);
3777   }
3778 
3779 public:
3780 
3781   void clean_klass(InstanceKlass* ik) {
3782     ik->clean_weak_instanceklass_links(_is_alive);
3783   }
3784 
3785   void work() {
3786     ResourceMark rm;
3787 
3788     // One worker will clean the subklass/sibling klass tree.
3789     if (claim_clean_klass_tree_task()) {
3790       Klass::clean_subklass_tree(_is_alive);
3791     }
3792 
3793     // All workers will help cleaning the classes,
3794     InstanceKlass* klass;
3795     while ((klass = claim_next_klass()) != NULL) {
3796       clean_klass(klass);
3797     }
3798   }
3799 };
3800 
3801 class G1ResolvedMethodCleaningTask : public StackObj {
3802   BoolObjectClosure* _is_alive;
3803   volatile jint      _resolved_method_task_claimed;
3804 public:
3805   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3806       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3807 
3808   bool claim_resolved_method_task() {
3809     if (_resolved_method_task_claimed) {
3810       return false;
3811     }
3812     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3813   }
3814 
3815   // These aren't big, one thread can do it all.
3816   void work() {
3817     if (claim_resolved_method_task()) {
3818       ResolvedMethodTable::unlink(_is_alive);
3819     }
3820   }
3821 };
3822 
3823 
3824 // To minimize the remark pause times, the tasks below are done in parallel.
3825 class G1ParallelCleaningTask : public AbstractGangTask {
3826 private:
3827   G1StringAndSymbolCleaningTask _string_symbol_task;
3828   G1CodeCacheUnloadingTask      _code_cache_task;
3829   G1KlassCleaningTask           _klass_cleaning_task;
3830   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3831 
3832 public:
3833   // The constructor is run in the VMThread.
3834   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3835       AbstractGangTask("Parallel Cleaning"),
3836       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3837       _code_cache_task(num_workers, is_alive, unloading_occurred),
3838       _klass_cleaning_task(is_alive),
3839       _resolved_method_cleaning_task(is_alive) {
3840   }
3841 
3842   // The parallel work done by all worker threads.
3843   void work(uint worker_id) {
3844     // Do first pass of code cache cleaning.
3845     _code_cache_task.work_first_pass(worker_id);
3846 
3847     // Let the threads mark that the first pass is done.
3848     _code_cache_task.barrier_mark(worker_id);
3849 
3850     // Clean the Strings and Symbols.
3851     _string_symbol_task.work(worker_id);
3852 
3853     // Clean unreferenced things in the ResolvedMethodTable
3854     _resolved_method_cleaning_task.work();
3855 
3856     // Wait for all workers to finish the first code cache cleaning pass.
3857     _code_cache_task.barrier_wait(worker_id);
3858 
3859     // Do the second code cache cleaning work, which realize on
3860     // the liveness information gathered during the first pass.
3861     _code_cache_task.work_second_pass(worker_id);
3862 
3863     // Clean all klasses that were not unloaded.
3864     _klass_cleaning_task.work();
3865   }
3866 };
3867 
3868 
3869 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3870                                         bool class_unloading_occurred) {
3871   uint n_workers = workers()->active_workers();
3872 
3873   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3874   workers()->run_task(&g1_unlink_task);
3875 }
3876 
3877 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3878                                        bool process_strings,
3879                                        bool process_symbols,
3880                                        bool process_string_dedup) {
3881   if (!process_strings && !process_symbols && !process_string_dedup) {
3882     // Nothing to clean.
3883     return;
3884   }
3885 
3886   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3887   workers()->run_task(&g1_unlink_task);
3888 
3889 }
3890 
3891 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3892  private:
3893   DirtyCardQueueSet* _queue;
3894   G1CollectedHeap* _g1h;
3895  public:
3896   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3897     _queue(queue), _g1h(g1h) { }
3898 
3899   virtual void work(uint worker_id) {
3900     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3901     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3902 
3903     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3904     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3905 
3906     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3907   }
3908 };
3909 
3910 void G1CollectedHeap::redirty_logged_cards() {
3911   double redirty_logged_cards_start = os::elapsedTime();
3912 
3913   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3914   dirty_card_queue_set().reset_for_par_iteration();
3915   workers()->run_task(&redirty_task);
3916 
3917   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3918   dcq.merge_bufferlists(&dirty_card_queue_set());
3919   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3920 
3921   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3922 }
3923 
3924 // Weak Reference Processing support
3925 
3926 // An always "is_alive" closure that is used to preserve referents.
3927 // If the object is non-null then it's alive.  Used in the preservation
3928 // of referent objects that are pointed to by reference objects
3929 // discovered by the CM ref processor.
3930 class G1AlwaysAliveClosure: public BoolObjectClosure {
3931   G1CollectedHeap* _g1;
3932 public:
3933   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3934   bool do_object_b(oop p) {
3935     if (p != NULL) {
3936       return true;
3937     }
3938     return false;
3939   }
3940 };
3941 
3942 bool G1STWIsAliveClosure::do_object_b(oop p) {
3943   // An object is reachable if it is outside the collection set,
3944   // or is inside and copied.
3945   return !_g1->is_in_cset(p) || p->is_forwarded();
3946 }
3947 
3948 // Non Copying Keep Alive closure
3949 class G1KeepAliveClosure: public OopClosure {
3950   G1CollectedHeap* _g1;
3951 public:
3952   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3953   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3954   void do_oop(oop* p) {
3955     oop obj = *p;
3956     assert(obj != NULL, "the caller should have filtered out NULL values");
3957 
3958     const InCSetState cset_state = _g1->in_cset_state(obj);
3959     if (!cset_state.is_in_cset_or_humongous()) {
3960       return;
3961     }
3962     if (cset_state.is_in_cset()) {
3963       assert( obj->is_forwarded(), "invariant" );
3964       *p = obj->forwardee();
3965     } else {
3966       assert(!obj->is_forwarded(), "invariant" );
3967       assert(cset_state.is_humongous(),
3968              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3969       _g1->set_humongous_is_live(obj);
3970     }
3971   }
3972 };
3973 
3974 // Copying Keep Alive closure - can be called from both
3975 // serial and parallel code as long as different worker
3976 // threads utilize different G1ParScanThreadState instances
3977 // and different queues.
3978 
3979 class G1CopyingKeepAliveClosure: public OopClosure {
3980   G1CollectedHeap*         _g1h;
3981   OopClosure*              _copy_non_heap_obj_cl;
3982   G1ParScanThreadState*    _par_scan_state;
3983 
3984 public:
3985   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3986                             OopClosure* non_heap_obj_cl,
3987                             G1ParScanThreadState* pss):
3988     _g1h(g1h),
3989     _copy_non_heap_obj_cl(non_heap_obj_cl),
3990     _par_scan_state(pss)
3991   {}
3992 
3993   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3994   virtual void do_oop(      oop* p) { do_oop_work(p); }
3995 
3996   template <class T> void do_oop_work(T* p) {
3997     oop obj = oopDesc::load_decode_heap_oop(p);
3998 
3999     if (_g1h->is_in_cset_or_humongous(obj)) {
4000       // If the referent object has been forwarded (either copied
4001       // to a new location or to itself in the event of an
4002       // evacuation failure) then we need to update the reference
4003       // field and, if both reference and referent are in the G1
4004       // heap, update the RSet for the referent.
4005       //
4006       // If the referent has not been forwarded then we have to keep
4007       // it alive by policy. Therefore we have copy the referent.
4008       //
4009       // If the reference field is in the G1 heap then we can push
4010       // on the PSS queue. When the queue is drained (after each
4011       // phase of reference processing) the object and it's followers
4012       // will be copied, the reference field set to point to the
4013       // new location, and the RSet updated. Otherwise we need to
4014       // use the the non-heap or metadata closures directly to copy
4015       // the referent object and update the pointer, while avoiding
4016       // updating the RSet.
4017 
4018       if (_g1h->is_in_g1_reserved(p)) {
4019         _par_scan_state->push_on_queue(p);
4020       } else {
4021         assert(!Metaspace::contains((const void*)p),
4022                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4023         _copy_non_heap_obj_cl->do_oop(p);
4024       }
4025     }
4026   }
4027 };
4028 
4029 // Serial drain queue closure. Called as the 'complete_gc'
4030 // closure for each discovered list in some of the
4031 // reference processing phases.
4032 
4033 class G1STWDrainQueueClosure: public VoidClosure {
4034 protected:
4035   G1CollectedHeap* _g1h;
4036   G1ParScanThreadState* _par_scan_state;
4037 
4038   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4039 
4040 public:
4041   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4042     _g1h(g1h),
4043     _par_scan_state(pss)
4044   { }
4045 
4046   void do_void() {
4047     G1ParScanThreadState* const pss = par_scan_state();
4048     pss->trim_queue();
4049   }
4050 };
4051 
4052 // Parallel Reference Processing closures
4053 
4054 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4055 // processing during G1 evacuation pauses.
4056 
4057 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4058 private:
4059   G1CollectedHeap*          _g1h;
4060   G1ParScanThreadStateSet*  _pss;
4061   RefToScanQueueSet*        _queues;
4062   WorkGang*                 _workers;
4063   uint                      _active_workers;
4064 
4065 public:
4066   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4067                            G1ParScanThreadStateSet* per_thread_states,
4068                            WorkGang* workers,
4069                            RefToScanQueueSet *task_queues,
4070                            uint n_workers) :
4071     _g1h(g1h),
4072     _pss(per_thread_states),
4073     _queues(task_queues),
4074     _workers(workers),
4075     _active_workers(n_workers)
4076   {
4077     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4078   }
4079 
4080   // Executes the given task using concurrent marking worker threads.
4081   virtual void execute(ProcessTask& task);
4082   virtual void execute(EnqueueTask& task);
4083 };
4084 
4085 // Gang task for possibly parallel reference processing
4086 
4087 class G1STWRefProcTaskProxy: public AbstractGangTask {
4088   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4089   ProcessTask&     _proc_task;
4090   G1CollectedHeap* _g1h;
4091   G1ParScanThreadStateSet* _pss;
4092   RefToScanQueueSet* _task_queues;
4093   ParallelTaskTerminator* _terminator;
4094 
4095 public:
4096   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4097                         G1CollectedHeap* g1h,
4098                         G1ParScanThreadStateSet* per_thread_states,
4099                         RefToScanQueueSet *task_queues,
4100                         ParallelTaskTerminator* terminator) :
4101     AbstractGangTask("Process reference objects in parallel"),
4102     _proc_task(proc_task),
4103     _g1h(g1h),
4104     _pss(per_thread_states),
4105     _task_queues(task_queues),
4106     _terminator(terminator)
4107   {}
4108 
4109   virtual void work(uint worker_id) {
4110     // The reference processing task executed by a single worker.
4111     ResourceMark rm;
4112     HandleMark   hm;
4113 
4114     G1STWIsAliveClosure is_alive(_g1h);
4115 
4116     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4117     pss->set_ref_processor(NULL);
4118 
4119     // Keep alive closure.
4120     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4121 
4122     // Complete GC closure
4123     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4124 
4125     // Call the reference processing task's work routine.
4126     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4127 
4128     // Note we cannot assert that the refs array is empty here as not all
4129     // of the processing tasks (specifically phase2 - pp2_work) execute
4130     // the complete_gc closure (which ordinarily would drain the queue) so
4131     // the queue may not be empty.
4132   }
4133 };
4134 
4135 // Driver routine for parallel reference processing.
4136 // Creates an instance of the ref processing gang
4137 // task and has the worker threads execute it.
4138 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4139   assert(_workers != NULL, "Need parallel worker threads.");
4140 
4141   ParallelTaskTerminator terminator(_active_workers, _queues);
4142   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4143 
4144   _workers->run_task(&proc_task_proxy);
4145 }
4146 
4147 // Gang task for parallel reference enqueueing.
4148 
4149 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4150   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4151   EnqueueTask& _enq_task;
4152 
4153 public:
4154   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4155     AbstractGangTask("Enqueue reference objects in parallel"),
4156     _enq_task(enq_task)
4157   { }
4158 
4159   virtual void work(uint worker_id) {
4160     _enq_task.work(worker_id);
4161   }
4162 };
4163 
4164 // Driver routine for parallel reference enqueueing.
4165 // Creates an instance of the ref enqueueing gang
4166 // task and has the worker threads execute it.
4167 
4168 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4169   assert(_workers != NULL, "Need parallel worker threads.");
4170 
4171   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4172 
4173   _workers->run_task(&enq_task_proxy);
4174 }
4175 
4176 // End of weak reference support closures
4177 
4178 // Abstract task used to preserve (i.e. copy) any referent objects
4179 // that are in the collection set and are pointed to by reference
4180 // objects discovered by the CM ref processor.
4181 
4182 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4183 protected:
4184   G1CollectedHeap*         _g1h;
4185   G1ParScanThreadStateSet* _pss;
4186   RefToScanQueueSet*       _queues;
4187   ParallelTaskTerminator   _terminator;
4188   uint                     _n_workers;
4189 
4190 public:
4191   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4192     AbstractGangTask("ParPreserveCMReferents"),
4193     _g1h(g1h),
4194     _pss(per_thread_states),
4195     _queues(task_queues),
4196     _terminator(workers, _queues),
4197     _n_workers(workers)
4198   {
4199     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4200   }
4201 
4202   void work(uint worker_id) {
4203     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4204 
4205     ResourceMark rm;
4206     HandleMark   hm;
4207 
4208     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4209     pss->set_ref_processor(NULL);
4210     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4211 
4212     // Is alive closure
4213     G1AlwaysAliveClosure always_alive(_g1h);
4214 
4215     // Copying keep alive closure. Applied to referent objects that need
4216     // to be copied.
4217     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4218 
4219     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4220 
4221     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4222     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4223 
4224     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4225     // So this must be true - but assert just in case someone decides to
4226     // change the worker ids.
4227     assert(worker_id < limit, "sanity");
4228     assert(!rp->discovery_is_atomic(), "check this code");
4229 
4230     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4231     for (uint idx = worker_id; idx < limit; idx += stride) {
4232       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4233 
4234       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4235       while (iter.has_next()) {
4236         // Since discovery is not atomic for the CM ref processor, we
4237         // can see some null referent objects.
4238         iter.load_ptrs(DEBUG_ONLY(true));
4239         oop ref = iter.obj();
4240 
4241         // This will filter nulls.
4242         if (iter.is_referent_alive()) {
4243           iter.make_referent_alive();
4244         }
4245         iter.move_to_next();
4246       }
4247     }
4248 
4249     // Drain the queue - which may cause stealing
4250     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4251     drain_queue.do_void();
4252     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4253     assert(pss->queue_is_empty(), "should be");
4254   }
4255 };
4256 
4257 void G1CollectedHeap::process_weak_jni_handles() {
4258   double ref_proc_start = os::elapsedTime();
4259 
4260   G1STWIsAliveClosure is_alive(this);
4261   G1KeepAliveClosure keep_alive(this);
4262   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4263 
4264   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4265   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4266 }
4267 
4268 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4269   // Any reference objects, in the collection set, that were 'discovered'
4270   // by the CM ref processor should have already been copied (either by
4271   // applying the external root copy closure to the discovered lists, or
4272   // by following an RSet entry).
4273   //
4274   // But some of the referents, that are in the collection set, that these
4275   // reference objects point to may not have been copied: the STW ref
4276   // processor would have seen that the reference object had already
4277   // been 'discovered' and would have skipped discovering the reference,
4278   // but would not have treated the reference object as a regular oop.
4279   // As a result the copy closure would not have been applied to the
4280   // referent object.
4281   //
4282   // We need to explicitly copy these referent objects - the references
4283   // will be processed at the end of remarking.
4284   //
4285   // We also need to do this copying before we process the reference
4286   // objects discovered by the STW ref processor in case one of these
4287   // referents points to another object which is also referenced by an
4288   // object discovered by the STW ref processor.
4289   double preserve_cm_referents_time = 0.0;
4290 
4291   // To avoid spawning task when there is no work to do, check that
4292   // a concurrent cycle is active and that some references have been
4293   // discovered.
4294   if (concurrent_mark()->cmThread()->during_cycle() &&
4295       ref_processor_cm()->has_discovered_references()) {
4296     double preserve_cm_referents_start = os::elapsedTime();
4297     uint no_of_gc_workers = workers()->active_workers();
4298     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4299                                                    per_thread_states,
4300                                                    no_of_gc_workers,
4301                                                    _task_queues);
4302     workers()->run_task(&keep_cm_referents);
4303     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4304   }
4305 
4306   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4307 }
4308 
4309 // Weak Reference processing during an evacuation pause (part 1).
4310 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4311   double ref_proc_start = os::elapsedTime();
4312 
4313   ReferenceProcessor* rp = _ref_processor_stw;
4314   assert(rp->discovery_enabled(), "should have been enabled");
4315 
4316   // Closure to test whether a referent is alive.
4317   G1STWIsAliveClosure is_alive(this);
4318 
4319   // Even when parallel reference processing is enabled, the processing
4320   // of JNI refs is serial and performed serially by the current thread
4321   // rather than by a worker. The following PSS will be used for processing
4322   // JNI refs.
4323 
4324   // Use only a single queue for this PSS.
4325   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4326   pss->set_ref_processor(NULL);
4327   assert(pss->queue_is_empty(), "pre-condition");
4328 
4329   // Keep alive closure.
4330   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4331 
4332   // Serial Complete GC closure
4333   G1STWDrainQueueClosure drain_queue(this, pss);
4334 
4335   // Setup the soft refs policy...
4336   rp->setup_policy(false);
4337 
4338   ReferenceProcessorStats stats;
4339   if (!rp->processing_is_mt()) {
4340     // Serial reference processing...
4341     stats = rp->process_discovered_references(&is_alive,
4342                                               &keep_alive,
4343                                               &drain_queue,
4344                                               NULL,
4345                                               _gc_timer_stw);
4346   } else {
4347     uint no_of_gc_workers = workers()->active_workers();
4348 
4349     // Parallel reference processing
4350     assert(no_of_gc_workers <= rp->max_num_q(),
4351            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4352            no_of_gc_workers,  rp->max_num_q());
4353 
4354     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4355     stats = rp->process_discovered_references(&is_alive,
4356                                               &keep_alive,
4357                                               &drain_queue,
4358                                               &par_task_executor,
4359                                               _gc_timer_stw);
4360   }
4361 
4362   _gc_tracer_stw->report_gc_reference_stats(stats);
4363 
4364   // We have completed copying any necessary live referent objects.
4365   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4366 
4367   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4368   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4369 }
4370 
4371 // Weak Reference processing during an evacuation pause (part 2).
4372 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4373   double ref_enq_start = os::elapsedTime();
4374 
4375   ReferenceProcessor* rp = _ref_processor_stw;
4376   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4377 
4378   // Now enqueue any remaining on the discovered lists on to
4379   // the pending list.
4380   if (!rp->processing_is_mt()) {
4381     // Serial reference processing...
4382     rp->enqueue_discovered_references();
4383   } else {
4384     // Parallel reference enqueueing
4385 
4386     uint n_workers = workers()->active_workers();
4387 
4388     assert(n_workers <= rp->max_num_q(),
4389            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4390            n_workers,  rp->max_num_q());
4391 
4392     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4393     rp->enqueue_discovered_references(&par_task_executor);
4394   }
4395 
4396   rp->verify_no_references_recorded();
4397   assert(!rp->discovery_enabled(), "should have been disabled");
4398 
4399   // FIXME
4400   // CM's reference processing also cleans up the string and symbol tables.
4401   // Should we do that here also? We could, but it is a serial operation
4402   // and could significantly increase the pause time.
4403 
4404   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4405   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4406 }
4407 
4408 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4409   double merge_pss_time_start = os::elapsedTime();
4410   per_thread_states->flush();
4411   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4412 }
4413 
4414 void G1CollectedHeap::pre_evacuate_collection_set() {
4415   _expand_heap_after_alloc_failure = true;
4416   _evacuation_failed = false;
4417 
4418   // Disable the hot card cache.
4419   _hot_card_cache->reset_hot_cache_claimed_index();
4420   _hot_card_cache->set_use_cache(false);
4421 
4422   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4423   _preserved_marks_set.assert_empty();
4424 
4425   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4426 
4427   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4428   if (collector_state()->during_initial_mark_pause()) {
4429     double start_clear_claimed_marks = os::elapsedTime();
4430 
4431     ClassLoaderDataGraph::clear_claimed_marks();
4432 
4433     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4434     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4435   }
4436 }
4437 
4438 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4439   // Should G1EvacuationFailureALot be in effect for this GC?
4440   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4441 
4442   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4443 
4444   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4445 
4446   double start_par_time_sec = os::elapsedTime();
4447   double end_par_time_sec;
4448 
4449   {
4450     const uint n_workers = workers()->active_workers();
4451     G1RootProcessor root_processor(this, n_workers);
4452     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4453 
4454     print_termination_stats_hdr();
4455 
4456     workers()->run_task(&g1_par_task);
4457     end_par_time_sec = os::elapsedTime();
4458 
4459     // Closing the inner scope will execute the destructor
4460     // for the G1RootProcessor object. We record the current
4461     // elapsed time before closing the scope so that time
4462     // taken for the destructor is NOT included in the
4463     // reported parallel time.
4464   }
4465 
4466   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4467   phase_times->record_par_time(par_time_ms);
4468 
4469   double code_root_fixup_time_ms =
4470         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4471   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4472 }
4473 
4474 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4475   // Process any discovered reference objects - we have
4476   // to do this _before_ we retire the GC alloc regions
4477   // as we may have to copy some 'reachable' referent
4478   // objects (and their reachable sub-graphs) that were
4479   // not copied during the pause.
4480   if (g1_policy()->should_process_references()) {
4481     preserve_cm_referents(per_thread_states);
4482     process_discovered_references(per_thread_states);
4483   } else {
4484     ref_processor_stw()->verify_no_references_recorded();
4485     process_weak_jni_handles();
4486   }
4487 
4488   if (G1StringDedup::is_enabled()) {
4489     double fixup_start = os::elapsedTime();
4490 
4491     G1STWIsAliveClosure is_alive(this);
4492     G1KeepAliveClosure keep_alive(this);
4493     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4494 
4495     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4496     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4497   }
4498 
4499   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4500 
4501   if (evacuation_failed()) {
4502     restore_after_evac_failure();
4503 
4504     // Reset the G1EvacuationFailureALot counters and flags
4505     // Note: the values are reset only when an actual
4506     // evacuation failure occurs.
4507     NOT_PRODUCT(reset_evacuation_should_fail();)
4508   }
4509 
4510   _preserved_marks_set.assert_empty();
4511 
4512   // Enqueue any remaining references remaining on the STW
4513   // reference processor's discovered lists. We need to do
4514   // this after the card table is cleaned (and verified) as
4515   // the act of enqueueing entries on to the pending list
4516   // will log these updates (and dirty their associated
4517   // cards). We need these updates logged to update any
4518   // RSets.
4519   if (g1_policy()->should_process_references()) {
4520     enqueue_discovered_references(per_thread_states);
4521   } else {
4522     g1_policy()->phase_times()->record_ref_enq_time(0);
4523   }
4524 
4525   _allocator->release_gc_alloc_regions(evacuation_info);
4526 
4527   merge_per_thread_state_info(per_thread_states);
4528 
4529   // Reset and re-enable the hot card cache.
4530   // Note the counts for the cards in the regions in the
4531   // collection set are reset when the collection set is freed.
4532   _hot_card_cache->reset_hot_cache();
4533   _hot_card_cache->set_use_cache(true);
4534 
4535   purge_code_root_memory();
4536 
4537   redirty_logged_cards();
4538 #if defined(COMPILER2) || INCLUDE_JVMCI
4539   double start = os::elapsedTime();
4540   DerivedPointerTable::update_pointers();
4541   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4542 #endif
4543   g1_policy()->print_age_table();
4544 }
4545 
4546 void G1CollectedHeap::record_obj_copy_mem_stats() {
4547   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4548 
4549   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4550                                                create_g1_evac_summary(&_old_evac_stats));
4551 }
4552 
4553 void G1CollectedHeap::free_region(HeapRegion* hr,
4554                                   FreeRegionList* free_list,
4555                                   bool skip_remset,
4556                                   bool skip_hot_card_cache,
4557                                   bool locked) {
4558   assert(!hr->is_free(), "the region should not be free");
4559   assert(!hr->is_empty(), "the region should not be empty");
4560   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4561   assert(free_list != NULL, "pre-condition");
4562 
4563   if (G1VerifyBitmaps) {
4564     MemRegion mr(hr->bottom(), hr->end());
4565     concurrent_mark()->clearRangePrevBitmap(mr);
4566   }
4567 
4568   // Clear the card counts for this region.
4569   // Note: we only need to do this if the region is not young
4570   // (since we don't refine cards in young regions).
4571   if (!skip_hot_card_cache && !hr->is_young()) {
4572     _hot_card_cache->reset_card_counts(hr);
4573   }
4574   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4575   free_list->add_ordered(hr);
4576 }
4577 
4578 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4579                                             FreeRegionList* free_list,
4580                                             bool skip_remset) {
4581   assert(hr->is_humongous(), "this is only for humongous regions");
4582   assert(free_list != NULL, "pre-condition");
4583   hr->clear_humongous();
4584   free_region(hr, free_list, skip_remset);
4585 }
4586 
4587 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4588                                            const uint humongous_regions_removed) {
4589   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4590     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4591     _old_set.bulk_remove(old_regions_removed);
4592     _humongous_set.bulk_remove(humongous_regions_removed);
4593   }
4594 
4595 }
4596 
4597 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4598   assert(list != NULL, "list can't be null");
4599   if (!list->is_empty()) {
4600     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4601     _hrm.insert_list_into_free_list(list);
4602   }
4603 }
4604 
4605 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4606   decrease_used(bytes);
4607 }
4608 
4609 class G1ParScrubRemSetTask: public AbstractGangTask {
4610 protected:
4611   G1RemSet* _g1rs;
4612   HeapRegionClaimer _hrclaimer;
4613 
4614 public:
4615   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4616     AbstractGangTask("G1 ScrubRS"),
4617     _g1rs(g1_rs),
4618     _hrclaimer(num_workers) {
4619   }
4620 
4621   void work(uint worker_id) {
4622     _g1rs->scrub(worker_id, &_hrclaimer);
4623   }
4624 };
4625 
4626 void G1CollectedHeap::scrub_rem_set() {
4627   uint num_workers = workers()->active_workers();
4628   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4629   workers()->run_task(&g1_par_scrub_rs_task);
4630 }
4631 
4632 class G1FreeCollectionSetTask : public AbstractGangTask {
4633 private:
4634 
4635   // Closure applied to all regions in the collection set to do work that needs to
4636   // be done serially in a single thread.
4637   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4638   private:
4639     EvacuationInfo* _evacuation_info;
4640     const size_t* _surviving_young_words;
4641 
4642     // Bytes used in successfully evacuated regions before the evacuation.
4643     size_t _before_used_bytes;
4644     // Bytes used in unsucessfully evacuated regions before the evacuation
4645     size_t _after_used_bytes;
4646 
4647     size_t _bytes_allocated_in_old_since_last_gc;
4648 
4649     size_t _failure_used_words;
4650     size_t _failure_waste_words;
4651 
4652     FreeRegionList _local_free_list;
4653   public:
4654     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4655       HeapRegionClosure(),
4656       _evacuation_info(evacuation_info),
4657       _surviving_young_words(surviving_young_words),
4658       _before_used_bytes(0),
4659       _after_used_bytes(0),
4660       _bytes_allocated_in_old_since_last_gc(0),
4661       _failure_used_words(0),
4662       _failure_waste_words(0),
4663       _local_free_list("Local Region List for CSet Freeing") {
4664     }
4665 
4666     virtual bool doHeapRegion(HeapRegion* r) {
4667       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4668 
4669       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4670       g1h->clear_in_cset(r);
4671 
4672       if (r->is_young()) {
4673         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4674                "Young index %d is wrong for region %u of type %s with %u young regions",
4675                r->young_index_in_cset(),
4676                r->hrm_index(),
4677                r->get_type_str(),
4678                g1h->collection_set()->young_region_length());
4679         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4680         r->record_surv_words_in_group(words_survived);
4681       }
4682 
4683       if (!r->evacuation_failed()) {
4684         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4685         _before_used_bytes += r->used();
4686         g1h->free_region(r,
4687                          &_local_free_list,
4688                          true, /* skip_remset */
4689                          true, /* skip_hot_card_cache */
4690                          true  /* locked */);
4691       } else {
4692         r->uninstall_surv_rate_group();
4693         r->set_young_index_in_cset(-1);
4694         r->set_evacuation_failed(false);
4695         // When moving a young gen region to old gen, we "allocate" that whole region
4696         // there. This is in addition to any already evacuated objects. Notify the
4697         // policy about that.
4698         // Old gen regions do not cause an additional allocation: both the objects
4699         // still in the region and the ones already moved are accounted for elsewhere.
4700         if (r->is_young()) {
4701           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4702         }
4703         // The region is now considered to be old.
4704         r->set_old();
4705         // Do some allocation statistics accounting. Regions that failed evacuation
4706         // are always made old, so there is no need to update anything in the young
4707         // gen statistics, but we need to update old gen statistics.
4708         size_t used_words = r->marked_bytes() / HeapWordSize;
4709 
4710         _failure_used_words += used_words;
4711         _failure_waste_words += HeapRegion::GrainWords - used_words;
4712 
4713         g1h->old_set_add(r);
4714         _after_used_bytes += r->used();
4715       }
4716       return false;
4717     }
4718 
4719     void complete_work() {
4720       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4721 
4722       _evacuation_info->set_regions_freed(_local_free_list.length());
4723       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4724 
4725       g1h->prepend_to_freelist(&_local_free_list);
4726       g1h->decrement_summary_bytes(_before_used_bytes);
4727 
4728       G1Policy* policy = g1h->g1_policy();
4729       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4730 
4731       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4732     }
4733   };
4734 
4735   G1CollectionSet* _collection_set;
4736   G1SerialFreeCollectionSetClosure _cl;
4737   const size_t* _surviving_young_words;
4738 
4739   size_t _rs_lengths;
4740 
4741   volatile jint _serial_work_claim;
4742 
4743   struct WorkItem {
4744     uint region_idx;
4745     bool is_young;
4746     bool evacuation_failed;
4747 
4748     WorkItem(HeapRegion* r) {
4749       region_idx = r->hrm_index();
4750       is_young = r->is_young();
4751       evacuation_failed = r->evacuation_failed();
4752     }
4753   };
4754 
4755   volatile size_t _parallel_work_claim;
4756   size_t _num_work_items;
4757   WorkItem* _work_items;
4758 
4759   void do_serial_work() {
4760     // Need to grab the lock to be allowed to modify the old region list.
4761     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4762     _collection_set->iterate(&_cl);
4763   }
4764 
4765   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4766     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4767 
4768     HeapRegion* r = g1h->region_at(region_idx);
4769     assert(!g1h->is_on_master_free_list(r), "sanity");
4770 
4771     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4772 
4773     if (!is_young) {
4774       g1h->_hot_card_cache->reset_card_counts(r);
4775     }
4776 
4777     if (!evacuation_failed) {
4778       r->rem_set()->clear_locked();
4779     }
4780   }
4781 
4782   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4783   private:
4784     size_t _cur_idx;
4785     WorkItem* _work_items;
4786   public:
4787     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4788 
4789     virtual bool doHeapRegion(HeapRegion* r) {
4790       _work_items[_cur_idx++] = WorkItem(r);
4791       return false;
4792     }
4793   };
4794 
4795   void prepare_work() {
4796     G1PrepareFreeCollectionSetClosure cl(_work_items);
4797     _collection_set->iterate(&cl);
4798   }
4799 
4800   void complete_work() {
4801     _cl.complete_work();
4802 
4803     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4804     policy->record_max_rs_lengths(_rs_lengths);
4805     policy->cset_regions_freed();
4806   }
4807 public:
4808   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4809     AbstractGangTask("G1 Free Collection Set"),
4810     _cl(evacuation_info, surviving_young_words),
4811     _collection_set(collection_set),
4812     _surviving_young_words(surviving_young_words),
4813     _serial_work_claim(0),
4814     _rs_lengths(0),
4815     _parallel_work_claim(0),
4816     _num_work_items(collection_set->region_length()),
4817     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4818     prepare_work();
4819   }
4820 
4821   ~G1FreeCollectionSetTask() {
4822     complete_work();
4823     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4824   }
4825 
4826   // Chunk size for work distribution. The chosen value has been determined experimentally
4827   // to be a good tradeoff between overhead and achievable parallelism.
4828   static uint chunk_size() { return 32; }
4829 
4830   virtual void work(uint worker_id) {
4831     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4832 
4833     // Claim serial work.
4834     if (_serial_work_claim == 0) {
4835       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4836       if (value == 0) {
4837         double serial_time = os::elapsedTime();
4838         do_serial_work();
4839         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4840       }
4841     }
4842 
4843     // Start parallel work.
4844     double young_time = 0.0;
4845     bool has_young_time = false;
4846     double non_young_time = 0.0;
4847     bool has_non_young_time = false;
4848 
4849     while (true) {
4850       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4851       size_t cur = end - chunk_size();
4852 
4853       if (cur >= _num_work_items) {
4854         break;
4855       }
4856 
4857       double start_time = os::elapsedTime();
4858 
4859       end = MIN2(end, _num_work_items);
4860 
4861       for (; cur < end; cur++) {
4862         bool is_young = _work_items[cur].is_young;
4863 
4864         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4865 
4866         double end_time = os::elapsedTime();
4867         double time_taken = end_time - start_time;
4868         if (is_young) {
4869           young_time += time_taken;
4870           has_young_time = true;
4871         } else {
4872           non_young_time += time_taken;
4873           has_non_young_time = true;
4874         }
4875         start_time = end_time;
4876       }
4877     }
4878 
4879     if (has_young_time) {
4880       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4881     }
4882     if (has_non_young_time) {
4883       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4884     }
4885   }
4886 };
4887 
4888 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4889   _eden.clear();
4890 
4891   double free_cset_start_time = os::elapsedTime();
4892 
4893   {
4894     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4895     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4896 
4897     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4898 
4899     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4900                         cl.name(),
4901                         num_workers,
4902                         _collection_set.region_length());
4903     workers()->run_task(&cl, num_workers);
4904   }
4905   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4906 
4907   collection_set->clear();
4908 }
4909 
4910 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4911  private:
4912   FreeRegionList* _free_region_list;
4913   HeapRegionSet* _proxy_set;
4914   uint _humongous_objects_reclaimed;
4915   uint _humongous_regions_reclaimed;
4916   size_t _freed_bytes;
4917  public:
4918 
4919   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4920     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4921   }
4922 
4923   virtual bool doHeapRegion(HeapRegion* r) {
4924     if (!r->is_starts_humongous()) {
4925       return false;
4926     }
4927 
4928     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4929 
4930     oop obj = (oop)r->bottom();
4931     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4932 
4933     // The following checks whether the humongous object is live are sufficient.
4934     // The main additional check (in addition to having a reference from the roots
4935     // or the young gen) is whether the humongous object has a remembered set entry.
4936     //
4937     // A humongous object cannot be live if there is no remembered set for it
4938     // because:
4939     // - there can be no references from within humongous starts regions referencing
4940     // the object because we never allocate other objects into them.
4941     // (I.e. there are no intra-region references that may be missed by the
4942     // remembered set)
4943     // - as soon there is a remembered set entry to the humongous starts region
4944     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4945     // until the end of a concurrent mark.
4946     //
4947     // It is not required to check whether the object has been found dead by marking
4948     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4949     // all objects allocated during that time are considered live.
4950     // SATB marking is even more conservative than the remembered set.
4951     // So if at this point in the collection there is no remembered set entry,
4952     // nobody has a reference to it.
4953     // At the start of collection we flush all refinement logs, and remembered sets
4954     // are completely up-to-date wrt to references to the humongous object.
4955     //
4956     // Other implementation considerations:
4957     // - never consider object arrays at this time because they would pose
4958     // considerable effort for cleaning up the the remembered sets. This is
4959     // required because stale remembered sets might reference locations that
4960     // are currently allocated into.
4961     uint region_idx = r->hrm_index();
4962     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4963         !r->rem_set()->is_empty()) {
4964       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4965                                region_idx,
4966                                (size_t)obj->size() * HeapWordSize,
4967                                p2i(r->bottom()),
4968                                r->rem_set()->occupied(),
4969                                r->rem_set()->strong_code_roots_list_length(),
4970                                next_bitmap->isMarked(r->bottom()),
4971                                g1h->is_humongous_reclaim_candidate(region_idx),
4972                                obj->is_typeArray()
4973                               );
4974       return false;
4975     }
4976 
4977     guarantee(obj->is_typeArray(),
4978               "Only eagerly reclaiming type arrays is supported, but the object "
4979               PTR_FORMAT " is not.", p2i(r->bottom()));
4980 
4981     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4982                              region_idx,
4983                              (size_t)obj->size() * HeapWordSize,
4984                              p2i(r->bottom()),
4985                              r->rem_set()->occupied(),
4986                              r->rem_set()->strong_code_roots_list_length(),
4987                              next_bitmap->isMarked(r->bottom()),
4988                              g1h->is_humongous_reclaim_candidate(region_idx),
4989                              obj->is_typeArray()
4990                             );
4991 
4992     // Need to clear mark bit of the humongous object if already set.
4993     if (next_bitmap->isMarked(r->bottom())) {
4994       next_bitmap->clear(r->bottom());
4995     }
4996     _humongous_objects_reclaimed++;
4997     do {
4998       HeapRegion* next = g1h->next_region_in_humongous(r);
4999       _freed_bytes += r->used();
5000       r->set_containing_set(NULL);
5001       _humongous_regions_reclaimed++;
5002       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5003       r = next;
5004     } while (r != NULL);
5005 
5006     return false;
5007   }
5008 
5009   uint humongous_objects_reclaimed() {
5010     return _humongous_objects_reclaimed;
5011   }
5012 
5013   uint humongous_regions_reclaimed() {
5014     return _humongous_regions_reclaimed;
5015   }
5016 
5017   size_t bytes_freed() const {
5018     return _freed_bytes;
5019   }
5020 };
5021 
5022 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5023   assert_at_safepoint(true);
5024 
5025   if (!G1EagerReclaimHumongousObjects ||
5026       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5027     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5028     return;
5029   }
5030 
5031   double start_time = os::elapsedTime();
5032 
5033   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5034 
5035   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5036   heap_region_iterate(&cl);
5037 
5038   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5039 
5040   G1HRPrinter* hrp = hr_printer();
5041   if (hrp->is_active()) {
5042     FreeRegionListIterator iter(&local_cleanup_list);
5043     while (iter.more_available()) {
5044       HeapRegion* hr = iter.get_next();
5045       hrp->cleanup(hr);
5046     }
5047   }
5048 
5049   prepend_to_freelist(&local_cleanup_list);
5050   decrement_summary_bytes(cl.bytes_freed());
5051 
5052   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5053                                                                     cl.humongous_objects_reclaimed());
5054 }
5055 
5056 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5057 public:
5058   virtual bool doHeapRegion(HeapRegion* r) {
5059     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5060     G1CollectedHeap::heap()->clear_in_cset(r);
5061     r->set_young_index_in_cset(-1);
5062     return false;
5063   }
5064 };
5065 
5066 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5067   G1AbandonCollectionSetClosure cl;
5068   collection_set->iterate(&cl);
5069 
5070   collection_set->clear();
5071   collection_set->stop_incremental_building();
5072 }
5073 
5074 void G1CollectedHeap::set_free_regions_coming() {
5075   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5076 
5077   assert(!free_regions_coming(), "pre-condition");
5078   _free_regions_coming = true;
5079 }
5080 
5081 void G1CollectedHeap::reset_free_regions_coming() {
5082   assert(free_regions_coming(), "pre-condition");
5083 
5084   {
5085     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5086     _free_regions_coming = false;
5087     SecondaryFreeList_lock->notify_all();
5088   }
5089 
5090   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5091 }
5092 
5093 void G1CollectedHeap::wait_while_free_regions_coming() {
5094   // Most of the time we won't have to wait, so let's do a quick test
5095   // first before we take the lock.
5096   if (!free_regions_coming()) {
5097     return;
5098   }
5099 
5100   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5101 
5102   {
5103     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5104     while (free_regions_coming()) {
5105       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5106     }
5107   }
5108 
5109   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5110 }
5111 
5112 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5113   return _allocator->is_retained_old_region(hr);
5114 }
5115 
5116 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5117   _eden.add(hr);
5118   _g1_policy->set_region_eden(hr);
5119 }
5120 
5121 #ifdef ASSERT
5122 
5123 class NoYoungRegionsClosure: public HeapRegionClosure {
5124 private:
5125   bool _success;
5126 public:
5127   NoYoungRegionsClosure() : _success(true) { }
5128   bool doHeapRegion(HeapRegion* r) {
5129     if (r->is_young()) {
5130       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5131                             p2i(r->bottom()), p2i(r->end()));
5132       _success = false;
5133     }
5134     return false;
5135   }
5136   bool success() { return _success; }
5137 };
5138 
5139 bool G1CollectedHeap::check_young_list_empty() {
5140   bool ret = (young_regions_count() == 0);
5141 
5142   NoYoungRegionsClosure closure;
5143   heap_region_iterate(&closure);
5144   ret = ret && closure.success();
5145 
5146   return ret;
5147 }
5148 
5149 #endif // ASSERT
5150 
5151 class TearDownRegionSetsClosure : public HeapRegionClosure {
5152 private:
5153   HeapRegionSet *_old_set;
5154 
5155 public:
5156   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5157 
5158   bool doHeapRegion(HeapRegion* r) {
5159     if (r->is_old()) {
5160       _old_set->remove(r);
5161     } else if(r->is_young()) {
5162       r->uninstall_surv_rate_group();
5163     } else {
5164       // We ignore free regions, we'll empty the free list afterwards.
5165       // We ignore humongous regions, we're not tearing down the
5166       // humongous regions set.
5167       assert(r->is_free() || r->is_humongous(),
5168              "it cannot be another type");
5169     }
5170     return false;
5171   }
5172 
5173   ~TearDownRegionSetsClosure() {
5174     assert(_old_set->is_empty(), "post-condition");
5175   }
5176 };
5177 
5178 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5179   assert_at_safepoint(true /* should_be_vm_thread */);
5180 
5181   if (!free_list_only) {
5182     TearDownRegionSetsClosure cl(&_old_set);
5183     heap_region_iterate(&cl);
5184 
5185     // Note that emptying the _young_list is postponed and instead done as
5186     // the first step when rebuilding the regions sets again. The reason for
5187     // this is that during a full GC string deduplication needs to know if
5188     // a collected region was young or old when the full GC was initiated.
5189   }
5190   _hrm.remove_all_free_regions();
5191 }
5192 
5193 void G1CollectedHeap::increase_used(size_t bytes) {
5194   _summary_bytes_used += bytes;
5195 }
5196 
5197 void G1CollectedHeap::decrease_used(size_t bytes) {
5198   assert(_summary_bytes_used >= bytes,
5199          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5200          _summary_bytes_used, bytes);
5201   _summary_bytes_used -= bytes;
5202 }
5203 
5204 void G1CollectedHeap::set_used(size_t bytes) {
5205   _summary_bytes_used = bytes;
5206 }
5207 
5208 class RebuildRegionSetsClosure : public HeapRegionClosure {
5209 private:
5210   bool            _free_list_only;
5211   HeapRegionSet*   _old_set;
5212   HeapRegionManager*   _hrm;
5213   size_t          _total_used;
5214 
5215 public:
5216   RebuildRegionSetsClosure(bool free_list_only,
5217                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5218     _free_list_only(free_list_only),
5219     _old_set(old_set), _hrm(hrm), _total_used(0) {
5220     assert(_hrm->num_free_regions() == 0, "pre-condition");
5221     if (!free_list_only) {
5222       assert(_old_set->is_empty(), "pre-condition");
5223     }
5224   }
5225 
5226   bool doHeapRegion(HeapRegion* r) {
5227     if (r->is_empty()) {
5228       // Add free regions to the free list
5229       r->set_free();
5230       r->set_allocation_context(AllocationContext::system());
5231       _hrm->insert_into_free_list(r);
5232     } else if (!_free_list_only) {
5233 
5234       if (r->is_humongous()) {
5235         // We ignore humongous regions. We left the humongous set unchanged.
5236       } else {
5237         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5238         // We now consider all regions old, so register as such. Leave
5239         // archive regions set that way, however, while still adding
5240         // them to the old set.
5241         if (!r->is_archive()) {
5242           r->set_old();
5243         }
5244         _old_set->add(r);
5245       }
5246       _total_used += r->used();
5247     }
5248 
5249     return false;
5250   }
5251 
5252   size_t total_used() {
5253     return _total_used;
5254   }
5255 };
5256 
5257 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5258   assert_at_safepoint(true /* should_be_vm_thread */);
5259 
5260   if (!free_list_only) {
5261     _eden.clear();
5262     _survivor.clear();
5263   }
5264 
5265   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5266   heap_region_iterate(&cl);
5267 
5268   if (!free_list_only) {
5269     set_used(cl.total_used());
5270     if (_archive_allocator != NULL) {
5271       _archive_allocator->clear_used();
5272     }
5273   }
5274   assert(used_unlocked() == recalculate_used(),
5275          "inconsistent used_unlocked(), "
5276          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5277          used_unlocked(), recalculate_used());
5278 }
5279 
5280 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5281   _refine_cte_cl->set_concurrent(concurrent);
5282 }
5283 
5284 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5285   HeapRegion* hr = heap_region_containing(p);
5286   return hr->is_in(p);
5287 }
5288 
5289 // Methods for the mutator alloc region
5290 
5291 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5292                                                       bool force) {
5293   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5294   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5295   if (force || should_allocate) {
5296     HeapRegion* new_alloc_region = new_region(word_size,
5297                                               false /* is_old */,
5298                                               false /* do_expand */);
5299     if (new_alloc_region != NULL) {
5300       set_region_short_lived_locked(new_alloc_region);
5301       _hr_printer.alloc(new_alloc_region, !should_allocate);
5302       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5303       return new_alloc_region;
5304     }
5305   }
5306   return NULL;
5307 }
5308 
5309 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5310                                                   size_t allocated_bytes) {
5311   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5312   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5313 
5314   collection_set()->add_eden_region(alloc_region);
5315   increase_used(allocated_bytes);
5316   _hr_printer.retire(alloc_region);
5317   // We update the eden sizes here, when the region is retired,
5318   // instead of when it's allocated, since this is the point that its
5319   // used space has been recored in _summary_bytes_used.
5320   g1mm()->update_eden_size();
5321 }
5322 
5323 // Methods for the GC alloc regions
5324 
5325 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5326   if (dest.is_old()) {
5327     return true;
5328   } else {
5329     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5330   }
5331 }
5332 
5333 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5334   assert(FreeList_lock->owned_by_self(), "pre-condition");
5335 
5336   if (!has_more_regions(dest)) {
5337     return NULL;
5338   }
5339 
5340   const bool is_survivor = dest.is_young();
5341 
5342   HeapRegion* new_alloc_region = new_region(word_size,
5343                                             !is_survivor,
5344                                             true /* do_expand */);
5345   if (new_alloc_region != NULL) {
5346     // We really only need to do this for old regions given that we
5347     // should never scan survivors. But it doesn't hurt to do it
5348     // for survivors too.
5349     new_alloc_region->record_timestamp();
5350     if (is_survivor) {
5351       new_alloc_region->set_survivor();
5352       _survivor.add(new_alloc_region);
5353       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5354     } else {
5355       new_alloc_region->set_old();
5356       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5357     }
5358     _hr_printer.alloc(new_alloc_region);
5359     bool during_im = collector_state()->during_initial_mark_pause();
5360     new_alloc_region->note_start_of_copying(during_im);
5361     return new_alloc_region;
5362   }
5363   return NULL;
5364 }
5365 
5366 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5367                                              size_t allocated_bytes,
5368                                              InCSetState dest) {
5369   bool during_im = collector_state()->during_initial_mark_pause();
5370   alloc_region->note_end_of_copying(during_im);
5371   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5372   if (dest.is_old()) {
5373     _old_set.add(alloc_region);
5374   }
5375   _hr_printer.retire(alloc_region);
5376 }
5377 
5378 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5379   bool expanded = false;
5380   uint index = _hrm.find_highest_free(&expanded);
5381 
5382   if (index != G1_NO_HRM_INDEX) {
5383     if (expanded) {
5384       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5385                                 HeapRegion::GrainWords * HeapWordSize);
5386     }
5387     _hrm.allocate_free_regions_starting_at(index, 1);
5388     return region_at(index);
5389   }
5390   return NULL;
5391 }
5392 
5393 // Optimized nmethod scanning
5394 
5395 class RegisterNMethodOopClosure: public OopClosure {
5396   G1CollectedHeap* _g1h;
5397   nmethod* _nm;
5398 
5399   template <class T> void do_oop_work(T* p) {
5400     T heap_oop = oopDesc::load_heap_oop(p);
5401     if (!oopDesc::is_null(heap_oop)) {
5402       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5403       HeapRegion* hr = _g1h->heap_region_containing(obj);
5404       assert(!hr->is_continues_humongous(),
5405              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5406              " starting at " HR_FORMAT,
5407              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5408 
5409       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5410       hr->add_strong_code_root_locked(_nm);
5411     }
5412   }
5413 
5414 public:
5415   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5416     _g1h(g1h), _nm(nm) {}
5417 
5418   void do_oop(oop* p)       { do_oop_work(p); }
5419   void do_oop(narrowOop* p) { do_oop_work(p); }
5420 };
5421 
5422 class UnregisterNMethodOopClosure: public OopClosure {
5423   G1CollectedHeap* _g1h;
5424   nmethod* _nm;
5425 
5426   template <class T> void do_oop_work(T* p) {
5427     T heap_oop = oopDesc::load_heap_oop(p);
5428     if (!oopDesc::is_null(heap_oop)) {
5429       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5430       HeapRegion* hr = _g1h->heap_region_containing(obj);
5431       assert(!hr->is_continues_humongous(),
5432              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5433              " starting at " HR_FORMAT,
5434              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5435 
5436       hr->remove_strong_code_root(_nm);
5437     }
5438   }
5439 
5440 public:
5441   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5442     _g1h(g1h), _nm(nm) {}
5443 
5444   void do_oop(oop* p)       { do_oop_work(p); }
5445   void do_oop(narrowOop* p) { do_oop_work(p); }
5446 };
5447 
5448 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5449   CollectedHeap::register_nmethod(nm);
5450 
5451   guarantee(nm != NULL, "sanity");
5452   RegisterNMethodOopClosure reg_cl(this, nm);
5453   nm->oops_do(&reg_cl);
5454 }
5455 
5456 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5457   CollectedHeap::unregister_nmethod(nm);
5458 
5459   guarantee(nm != NULL, "sanity");
5460   UnregisterNMethodOopClosure reg_cl(this, nm);
5461   nm->oops_do(&reg_cl, true);
5462 }
5463 
5464 void G1CollectedHeap::purge_code_root_memory() {
5465   double purge_start = os::elapsedTime();
5466   G1CodeRootSet::purge();
5467   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5468   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5469 }
5470 
5471 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5472   G1CollectedHeap* _g1h;
5473 
5474 public:
5475   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5476     _g1h(g1h) {}
5477 
5478   void do_code_blob(CodeBlob* cb) {
5479     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5480     if (nm == NULL) {
5481       return;
5482     }
5483 
5484     if (ScavengeRootsInCode) {
5485       _g1h->register_nmethod(nm);
5486     }
5487   }
5488 };
5489 
5490 void G1CollectedHeap::rebuild_strong_code_roots() {
5491   RebuildStrongCodeRootClosure blob_cl(this);
5492   CodeCache::blobs_do(&blob_cl);
5493 }