1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_PTRQUEUE_HPP
  26 #define SHARE_VM_GC_G1_PTRQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "utilities/align.hpp"
  30 #include "utilities/sizes.hpp"
  31 
  32 // There are various techniques that require threads to be able to log
  33 // addresses.  For example, a generational write barrier might log
  34 // the addresses of modified old-generation objects.  This type supports
  35 // this operation.
  36 
  37 class BufferNode;
  38 class PtrQueueSet;
  39 class PtrQueue VALUE_OBJ_CLASS_SPEC {
  40   friend class VMStructs;
  41 
  42   // Noncopyable - not defined.
  43   PtrQueue(const PtrQueue&);
  44   PtrQueue& operator=(const PtrQueue&);
  45 
  46   // The ptr queue set to which this queue belongs.
  47   PtrQueueSet* const _qset;
  48 
  49   // Whether updates should be logged.
  50   bool _active;
  51 
  52   // If true, the queue is permanent, and doesn't need to deallocate
  53   // its buffer in the destructor (since that obtains a lock which may not
  54   // be legally locked by then.
  55   const bool _permanent;
  56 
  57   // The (byte) index at which an object was last enqueued.  Starts at
  58   // capacity_in_bytes (indicating an empty buffer) and goes towards zero.
  59   // Value is always pointer-size aligned.
  60   size_t _index;
  61 
  62   // Size of the current buffer, in bytes.
  63   // Value is always pointer-size aligned.
  64   size_t _capacity_in_bytes;
  65 
  66   static const size_t _element_size = sizeof(void*);
  67 
  68   // Get the capacity, in bytes.  The capacity must have been set.
  69   size_t capacity_in_bytes() const {
  70     assert(_capacity_in_bytes > 0, "capacity not set");
  71     return _capacity_in_bytes;
  72   }
  73 
  74   void set_capacity(size_t entries) {
  75     size_t byte_capacity = index_to_byte_index(entries);
  76     assert(_capacity_in_bytes == 0 || _capacity_in_bytes == byte_capacity,
  77            "changing capacity " SIZE_FORMAT " -> " SIZE_FORMAT,
  78            _capacity_in_bytes, byte_capacity);
  79     _capacity_in_bytes = byte_capacity;
  80   }
  81 
  82   static size_t byte_index_to_index(size_t ind) {
  83     assert(is_aligned(ind, _element_size), "precondition");
  84     return ind / _element_size;
  85   }
  86 
  87   static size_t index_to_byte_index(size_t ind) {
  88     return ind * _element_size;
  89   }
  90 
  91 protected:
  92   // The buffer.
  93   void** _buf;
  94 
  95   size_t index() const {
  96     return byte_index_to_index(_index);
  97   }
  98 
  99   void set_index(size_t new_index) {
 100     size_t byte_index = index_to_byte_index(new_index);
 101     assert(byte_index <= capacity_in_bytes(), "precondition");
 102     _index = byte_index;
 103   }
 104 
 105   size_t capacity() const {
 106     return byte_index_to_index(capacity_in_bytes());
 107   }
 108 
 109   // If there is a lock associated with this buffer, this is that lock.
 110   Mutex* _lock;
 111 
 112   PtrQueueSet* qset() { return _qset; }
 113   bool is_permanent() const { return _permanent; }
 114 
 115   // Process queue entries and release resources.
 116   void flush_impl();
 117 
 118   // Initialize this queue to contain a null buffer, and be part of the
 119   // given PtrQueueSet.
 120   PtrQueue(PtrQueueSet* qset, bool permanent = false, bool active = false);
 121 
 122   // Requires queue flushed or permanent.
 123   ~PtrQueue();
 124 
 125 public:
 126 
 127   // Associate a lock with a ptr queue.
 128   void set_lock(Mutex* lock) { _lock = lock; }
 129 
 130   // Forcibly set empty.
 131   void reset() {
 132     if (_buf != NULL) {
 133       _index = capacity_in_bytes();
 134     }
 135   }
 136 
 137   void enqueue(volatile void* ptr) {
 138     enqueue((void*)(ptr));
 139   }
 140 
 141   // Enqueues the given "obj".
 142   void enqueue(void* ptr) {
 143     if (!_active) return;
 144     else enqueue_known_active(ptr);
 145   }
 146 
 147   // This method is called when we're doing the zero index handling
 148   // and gives a chance to the queues to do any pre-enqueueing
 149   // processing they might want to do on the buffer. It should return
 150   // true if the buffer should be enqueued, or false if enough
 151   // entries were cleared from it so that it can be re-used. It should
 152   // not return false if the buffer is still full (otherwise we can
 153   // get into an infinite loop).
 154   virtual bool should_enqueue_buffer() { return true; }
 155   void handle_zero_index();
 156   void locking_enqueue_completed_buffer(BufferNode* node);
 157 
 158   void enqueue_known_active(void* ptr);
 159 
 160   // Return the size of the in-use region.
 161   size_t size() const {
 162     size_t result = 0;
 163     if (_buf != NULL) {
 164       assert(_index <= capacity_in_bytes(), "Invariant");
 165       result = byte_index_to_index(capacity_in_bytes() - _index);
 166     }
 167     return result;
 168   }
 169 
 170   bool is_empty() const {
 171     return _buf == NULL || capacity_in_bytes() == _index;
 172   }
 173 
 174   // Set the "active" property of the queue to "b".  An enqueue to an
 175   // inactive thread is a no-op.  Setting a queue to inactive resets its
 176   // log to the empty state.
 177   void set_active(bool b) {
 178     _active = b;
 179     if (!b && _buf != NULL) {
 180       reset();
 181     } else if (b && _buf != NULL) {
 182       assert(index() == capacity(),
 183              "invariant: queues are empty when activated.");
 184     }
 185   }
 186 
 187   bool is_active() const { return _active; }
 188 
 189   // To support compiler.
 190 
 191 protected:
 192   template<typename Derived>
 193   static ByteSize byte_offset_of_index() {
 194     return byte_offset_of(Derived, _index);
 195   }
 196 
 197   static ByteSize byte_width_of_index() { return in_ByteSize(sizeof(size_t)); }
 198 
 199   template<typename Derived>
 200   static ByteSize byte_offset_of_buf() {
 201     return byte_offset_of(Derived, _buf);
 202   }
 203 
 204   static ByteSize byte_width_of_buf() { return in_ByteSize(_element_size); }
 205 
 206   template<typename Derived>
 207   static ByteSize byte_offset_of_active() {
 208     return byte_offset_of(Derived, _active);
 209   }
 210 
 211   static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
 212 
 213 };
 214 
 215 class BufferNode {
 216   size_t _index;
 217   BufferNode* _next;
 218   void* _buffer[1];             // Pseudo flexible array member.
 219 
 220   BufferNode() : _index(0), _next(NULL) { }
 221   ~BufferNode() { }
 222 
 223   static size_t buffer_offset() {
 224     return offset_of(BufferNode, _buffer);
 225   }
 226 
 227 public:
 228   BufferNode* next() const     { return _next;  }
 229   void set_next(BufferNode* n) { _next = n;     }
 230   size_t index() const         { return _index; }
 231   void set_index(size_t i)     { _index = i; }
 232 
 233   // Allocate a new BufferNode with the "buffer" having size elements.
 234   static BufferNode* allocate(size_t size);
 235 
 236   // Free a BufferNode.
 237   static void deallocate(BufferNode* node);
 238 
 239   // Return the BufferNode containing the buffer, after setting its index.
 240   static BufferNode* make_node_from_buffer(void** buffer, size_t index) {
 241     BufferNode* node =
 242       reinterpret_cast<BufferNode*>(
 243         reinterpret_cast<char*>(buffer) - buffer_offset());
 244     node->set_index(index);
 245     return node;
 246   }
 247 
 248   // Return the buffer for node.
 249   static void** make_buffer_from_node(BufferNode *node) {
 250     // &_buffer[0] might lead to index out of bounds warnings.
 251     return reinterpret_cast<void**>(
 252       reinterpret_cast<char*>(node) + buffer_offset());
 253   }
 254 };
 255 
 256 // A PtrQueueSet represents resources common to a set of pointer queues.
 257 // In particular, the individual queues allocate buffers from this shared
 258 // set, and return completed buffers to the set.
 259 // All these variables are are protected by the TLOQ_CBL_mon. XXX ???
 260 class PtrQueueSet VALUE_OBJ_CLASS_SPEC {
 261 private:
 262   // The size of all buffers in the set.
 263   size_t _buffer_size;
 264 
 265 protected:
 266   Monitor* _cbl_mon;  // Protects the fields below.
 267   BufferNode* _completed_buffers_head;
 268   BufferNode* _completed_buffers_tail;
 269   size_t _n_completed_buffers;
 270   int _process_completed_threshold;
 271   volatile bool _process_completed;
 272 
 273   // This (and the interpretation of the first element as a "next"
 274   // pointer) are protected by the TLOQ_FL_lock.
 275   Mutex* _fl_lock;
 276   BufferNode* _buf_free_list;
 277   size_t _buf_free_list_sz;
 278   // Queue set can share a freelist. The _fl_owner variable
 279   // specifies the owner. It is set to "this" by default.
 280   PtrQueueSet* _fl_owner;
 281 
 282   bool _all_active;
 283 
 284   // If true, notify_all on _cbl_mon when the threshold is reached.
 285   bool _notify_when_complete;
 286 
 287   // Maximum number of elements allowed on completed queue: after that,
 288   // enqueuer does the work itself.  Zero indicates no maximum.
 289   int _max_completed_queue;
 290   size_t _completed_queue_padding;
 291 
 292   size_t completed_buffers_list_length();
 293   void assert_completed_buffer_list_len_correct_locked();
 294   void assert_completed_buffer_list_len_correct();
 295 
 296 protected:
 297   // A mutator thread does the the work of processing a buffer.
 298   // Returns "true" iff the work is complete (and the buffer may be
 299   // deallocated).
 300   virtual bool mut_process_buffer(BufferNode* node) {
 301     ShouldNotReachHere();
 302     return false;
 303   }
 304 
 305   // Create an empty ptr queue set.
 306   PtrQueueSet(bool notify_when_complete = false);
 307   ~PtrQueueSet();
 308 
 309   // Because of init-order concerns, we can't pass these as constructor
 310   // arguments.
 311   void initialize(Monitor* cbl_mon,
 312                   Mutex* fl_lock,
 313                   int process_completed_threshold,
 314                   int max_completed_queue,
 315                   PtrQueueSet *fl_owner = NULL);
 316 
 317 public:
 318 
 319   // Return the buffer for a BufferNode of size buffer_size().
 320   void** allocate_buffer();
 321 
 322   // Return an empty buffer to the free list.  The node is required
 323   // to have been allocated with a size of buffer_size().
 324   void deallocate_buffer(BufferNode* node);
 325 
 326   // Declares that "buf" is a complete buffer.
 327   void enqueue_complete_buffer(BufferNode* node);
 328 
 329   // To be invoked by the mutator.
 330   bool process_or_enqueue_complete_buffer(BufferNode* node);
 331 
 332   bool completed_buffers_exist_dirty() {
 333     return _n_completed_buffers > 0;
 334   }
 335 
 336   bool process_completed_buffers() { return _process_completed; }
 337   void set_process_completed(bool x) { _process_completed = x; }
 338 
 339   bool is_active() { return _all_active; }
 340 
 341   // Set the buffer size.  Should be called before any "enqueue" operation
 342   // can be called.  And should only be called once.
 343   void set_buffer_size(size_t sz);
 344 
 345   // Get the buffer size.  Must have been set.
 346   size_t buffer_size() const {
 347     assert(_buffer_size > 0, "buffer size not set");
 348     return _buffer_size;
 349   }
 350 
 351   // Get/Set the number of completed buffers that triggers log processing.
 352   void set_process_completed_threshold(int sz) { _process_completed_threshold = sz; }
 353   int process_completed_threshold() const { return _process_completed_threshold; }
 354 
 355   // Must only be called at a safe point.  Indicates that the buffer free
 356   // list size may be reduced, if that is deemed desirable.
 357   void reduce_free_list();
 358 
 359   size_t completed_buffers_num() { return _n_completed_buffers; }
 360 
 361   void merge_bufferlists(PtrQueueSet* src);
 362 
 363   void set_max_completed_queue(int m) { _max_completed_queue = m; }
 364   int max_completed_queue() { return _max_completed_queue; }
 365 
 366   void set_completed_queue_padding(size_t padding) { _completed_queue_padding = padding; }
 367   size_t completed_queue_padding() { return _completed_queue_padding; }
 368 
 369   // Notify the consumer if the number of buffers crossed the threshold
 370   void notify_if_necessary();
 371 };
 372 
 373 #endif // SHARE_VM_GC_G1_PTRQUEUE_HPP