1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/block.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "opto/coalesce.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/idealGraphPrinter.hpp"
  38 #include "opto/indexSet.hpp"
  39 #include "opto/machnode.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rootnode.hpp"
  44 
  45 #ifndef PRODUCT
  46 void LRG::dump() const {
  47   ttyLocker ttyl;
  48   tty->print("%d ",num_regs());
  49   _mask.dump();
  50   if( _msize_valid ) {
  51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  53   } else {
  54     tty->print(", #?(%d) ",_mask.Size());
  55   }
  56 
  57   tty->print("EffDeg: ");
  58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  59   else tty->print("? ");
  60 
  61   if( is_multidef() ) {
  62     tty->print("MultiDef ");
  63     if (_defs != NULL) {
  64       tty->print("(");
  65       for (int i = 0; i < _defs->length(); i++) {
  66         tty->print("N%d ", _defs->at(i)->_idx);
  67       }
  68       tty->print(") ");
  69     }
  70   }
  71   else if( _def == 0 ) tty->print("Dead ");
  72   else tty->print("Def: N%d ",_def->_idx);
  73 
  74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  75   // Flags
  76   if( _is_oop ) tty->print("Oop ");
  77   if( _is_float ) tty->print("Float ");
  78   if( _is_vector ) tty->print("Vector ");
  79   if( _was_spilled1 ) tty->print("Spilled ");
  80   if( _was_spilled2 ) tty->print("Spilled2 ");
  81   if( _direct_conflict ) tty->print("Direct_conflict ");
  82   if( _fat_proj ) tty->print("Fat ");
  83   if( _was_lo ) tty->print("Lo ");
  84   if( _has_copy ) tty->print("Copy ");
  85   if( _at_risk ) tty->print("Risk ");
  86 
  87   if( _must_spill ) tty->print("Must_spill ");
  88   if( _is_bound ) tty->print("Bound ");
  89   if( _msize_valid ) {
  90     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  91   }
  92 
  93   tty->cr();
  94 }
  95 #endif
  96 
  97 // Compute score from cost and area.  Low score is best to spill.
  98 static double raw_score( double cost, double area ) {
  99   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
 100 }
 101 
 102 double LRG::score() const {
 103   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
 104   // Bigger area lowers score, encourages spilling this live range.
 105   // Bigger cost raise score, prevents spilling this live range.
 106   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
 107   // to turn a divide by a constant into a multiply by the reciprical).
 108   double score = raw_score( _cost, _area);
 109 
 110   // Account for area.  Basically, LRGs covering large areas are better
 111   // to spill because more other LRGs get freed up.
 112   if( _area == 0.0 )            // No area?  Then no progress to spill
 113     return 1e35;
 114 
 115   if( _was_spilled2 )           // If spilled once before, we are unlikely
 116     return score + 1e30;        // to make progress again.
 117 
 118   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 119     return score + 1e17;        // Probably no progress to spill
 120 
 121   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 122     return score + 1e10;        // Likely no progress to spill
 123 
 124   return score;
 125 }
 126 
 127 #define NUMBUCKS 3
 128 
 129 // Straight out of Tarjan's union-find algorithm
 130 uint LiveRangeMap::find_compress(uint lrg) {
 131   uint cur = lrg;
 132   uint next = _uf_map.at(cur);
 133   while (next != cur) { // Scan chain of equivalences
 134     assert( next < cur, "always union smaller");
 135     cur = next; // until find a fixed-point
 136     next = _uf_map.at(cur);
 137   }
 138 
 139   // Core of union-find algorithm: update chain of
 140   // equivalences to be equal to the root.
 141   while (lrg != next) {
 142     uint tmp = _uf_map.at(lrg);
 143     _uf_map.at_put(lrg, next);
 144     lrg = tmp;
 145   }
 146   return lrg;
 147 }
 148 
 149 // Reset the Union-Find map to identity
 150 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
 151   _max_lrg_id= max_lrg_id;
 152   // Force the Union-Find mapping to be at least this large
 153   _uf_map.at_put_grow(_max_lrg_id, 0);
 154   // Initialize it to be the ID mapping.
 155   for (uint i = 0; i < _max_lrg_id; ++i) {
 156     _uf_map.at_put(i, i);
 157   }
 158 }
 159 
 160 // Make all Nodes map directly to their final live range; no need for
 161 // the Union-Find mapping after this call.
 162 void LiveRangeMap::compress_uf_map_for_nodes() {
 163   // For all Nodes, compress mapping
 164   uint unique = _names.length();
 165   for (uint i = 0; i < unique; ++i) {
 166     uint lrg = _names.at(i);
 167     uint compressed_lrg = find(lrg);
 168     if (lrg != compressed_lrg) {
 169       _names.at_put(i, compressed_lrg);
 170     }
 171   }
 172 }
 173 
 174 // Like Find above, but no path compress, so bad asymptotic behavior
 175 uint LiveRangeMap::find_const(uint lrg) const {
 176   if (!lrg) {
 177     return lrg; // Ignore the zero LRG
 178   }
 179 
 180   // Off the end?  This happens during debugging dumps when you got
 181   // brand new live ranges but have not told the allocator yet.
 182   if (lrg >= _max_lrg_id) {
 183     return lrg;
 184   }
 185 
 186   uint next = _uf_map.at(lrg);
 187   while (next != lrg) { // Scan chain of equivalences
 188     assert(next < lrg, "always union smaller");
 189     lrg = next; // until find a fixed-point
 190     next = _uf_map.at(lrg);
 191   }
 192   return next;
 193 }
 194 
 195 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
 196   : PhaseRegAlloc(unique, cfg, matcher,
 197 #ifndef PRODUCT
 198        print_chaitin_statistics
 199 #else
 200        NULL
 201 #endif
 202        )
 203   , _lrg_map(Thread::current()->resource_area(), unique)
 204   , _live(0)
 205   , _spilled_once(Thread::current()->resource_area())
 206   , _spilled_twice(Thread::current()->resource_area())
 207   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
 208   , _oldphi(unique)
 209   , _scheduling_info_generated(scheduling_info_generated)
 210   , _sched_int_pressure(0, INTPRESSURE)
 211   , _sched_float_pressure(0, FLOATPRESSURE)
 212   , _scratch_int_pressure(0, INTPRESSURE)
 213   , _scratch_float_pressure(0, FLOATPRESSURE)
 214 #ifndef PRODUCT
 215   , _trace_spilling(C->directive()->TraceSpillingOption)
 216 #endif
 217 {
 218   Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
 219 
 220   _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
 221 
 222   // Build a list of basic blocks, sorted by frequency
 223   _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
 224   // Experiment with sorting strategies to speed compilation
 225   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 226   Block **buckets[NUMBUCKS];             // Array of buckets
 227   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 228   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 229   for (uint i = 0; i < NUMBUCKS; i++) {
 230     buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
 231     buckcnt[i] = 0;
 232     // Bump by three orders of magnitude each time
 233     cutoff *= 0.001;
 234     buckval[i] = cutoff;
 235     for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
 236       buckets[i][j] = NULL;
 237     }
 238   }
 239   // Sort blocks into buckets
 240   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
 241     for (uint j = 0; j < NUMBUCKS; j++) {
 242       if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
 243         // Assign block to end of list for appropriate bucket
 244         buckets[j][buckcnt[j]++] = _cfg.get_block(i);
 245         break; // kick out of inner loop
 246       }
 247     }
 248   }
 249   // Dump buckets into final block array
 250   uint blkcnt = 0;
 251   for (uint i = 0; i < NUMBUCKS; i++) {
 252     for (uint j = 0; j < buckcnt[i]; j++) {
 253       _blks[blkcnt++] = buckets[i][j];
 254     }
 255   }
 256 
 257   assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
 258 }
 259 
 260 // union 2 sets together.
 261 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
 262   uint src = _lrg_map.find(src_n);
 263   uint dst = _lrg_map.find(dst_n);
 264   assert(src, "");
 265   assert(dst, "");
 266   assert(src < _lrg_map.max_lrg_id(), "oob");
 267   assert(dst < _lrg_map.max_lrg_id(), "oob");
 268   assert(src < dst, "always union smaller");
 269   _lrg_map.uf_map(dst, src);
 270 }
 271 
 272 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
 273   // Make the Node->LRG mapping
 274   _lrg_map.extend(x->_idx,lrg);
 275   // Make the Union-Find mapping an identity function
 276   _lrg_map.uf_extend(lrg, lrg);
 277 }
 278 
 279 
 280 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
 281   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
 282   DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
 283   int found_projs = 0;
 284   uint cnt = orig->outcnt();
 285   for (uint i = 0; i < cnt; i++) {
 286     Node* proj = orig->raw_out(i);
 287     if (proj->is_MachProj()) {
 288       assert(proj->outcnt() == 0, "only kill projections are expected here");
 289       assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
 290       found_projs++;
 291       // Copy kill projections after the cloned node
 292       Node* kills = proj->clone();
 293       kills->set_req(0, copy);
 294       b->insert_node(kills, idx++);
 295       _cfg.map_node_to_block(kills, b);
 296       new_lrg(kills, max_lrg_id++);
 297     }
 298   }
 299   return found_projs;
 300 }
 301 
 302 // Renumber the live ranges to compact them.  Makes the IFG smaller.
 303 void PhaseChaitin::compact() {
 304   Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
 305 
 306   // Current the _uf_map contains a series of short chains which are headed
 307   // by a self-cycle.  All the chains run from big numbers to little numbers.
 308   // The Find() call chases the chains & shortens them for the next Find call.
 309   // We are going to change this structure slightly.  Numbers above a moving
 310   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
 311   // compacted live range with no further chaining.  There are no chains or
 312   // cycles below 'i', so the Find call no longer works.
 313   uint j=1;
 314   uint i;
 315   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
 316     uint lr = _lrg_map.uf_live_range_id(i);
 317     // Ignore unallocated live ranges
 318     if (!lr) {
 319       continue;
 320     }
 321     assert(lr <= i, "");
 322     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
 323   }
 324   // Now change the Node->LR mapping to reflect the compacted names
 325   uint unique = _lrg_map.size();
 326   for (i = 0; i < unique; i++) {
 327     uint lrg_id = _lrg_map.live_range_id(i);
 328     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
 329   }
 330 
 331   // Reset the Union-Find mapping
 332   _lrg_map.reset_uf_map(j);
 333 }
 334 
 335 void PhaseChaitin::Register_Allocate() {
 336 
 337   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 338   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 339   // registers) is the outgoing argument area; above that is the spill/temp
 340   // area.  These are all "frame_slots".  Arg_slots start at the zero
 341   // stack_slots and count up to the known arg_size.  Frame_slots start at
 342   // the stack_slot #arg_size and go up.  After allocation I map stack
 343   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 344   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 345 
 346   _trip_cnt = 0;
 347   _alternate = 0;
 348   _matcher._allocation_started = true;
 349 
 350   ResourceArea split_arena;     // Arena for Split local resources
 351   ResourceArea live_arena;      // Arena for liveness & IFG info
 352   ResourceMark rm(&live_arena);
 353 
 354   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 355   // liveness is JUST for coalescing, then I can get some mileage by renaming
 356   // all copy-related live ranges low and then using the max copy-related
 357   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 358   // build a subset of LIVE and IFG just for copies.
 359   PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
 360 
 361   // Need IFG for coalescing and coloring
 362   PhaseIFG ifg(&live_arena);
 363   _ifg = &ifg;
 364 
 365   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 366   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 367   // - effectively ending SSA form.  This requires either coalescing live
 368   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 369   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 370   // We will attempt to coalesce such "virtual copies" before we manifest
 371   // them for real.
 372   de_ssa();
 373 
 374 #ifdef ASSERT
 375   // Veify the graph before RA.
 376   verify(&live_arena);
 377 #endif
 378 
 379   {
 380     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 381     _live = NULL;                 // Mark live as being not available
 382     rm.reset_to_mark();           // Reclaim working storage
 383     IndexSet::reset_memory(C, &live_arena);
 384     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
 385     gather_lrg_masks( false );    // Collect LRG masks
 386     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
 387     _live = &live;                // Mark LIVE as being available
 388   }
 389 
 390   // Base pointers are currently "used" by instructions which define new
 391   // derived pointers.  This makes base pointers live up to the where the
 392   // derived pointer is made, but not beyond.  Really, they need to be live
 393   // across any GC point where the derived value is live.  So this code looks
 394   // at all the GC points, and "stretches" the live range of any base pointer
 395   // to the GC point.
 396   if (stretch_base_pointer_live_ranges(&live_arena)) {
 397     Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
 398     // Since some live range stretched, I need to recompute live
 399     _live = NULL;
 400     rm.reset_to_mark();         // Reclaim working storage
 401     IndexSet::reset_memory(C, &live_arena);
 402     ifg.init(_lrg_map.max_lrg_id());
 403     gather_lrg_masks(false);
 404     live.compute(_lrg_map.max_lrg_id());
 405     _live = &live;
 406   }
 407   // Create the interference graph using virtual copies
 408   build_ifg_virtual();  // Include stack slots this time
 409 
 410   // The IFG is/was triangular.  I am 'squaring it up' so Union can run
 411   // faster.  Union requires a 'for all' operation which is slow on the
 412   // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 413   // meaning I can visit all the Nodes neighbors less than a Node in time
 414   // O(# of neighbors), but I have to visit all the Nodes greater than a
 415   // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 416   _ifg->SquareUp();
 417 
 418   // Aggressive (but pessimistic) copy coalescing.
 419   // This pass works on virtual copies.  Any virtual copies which are not
 420   // coalesced get manifested as actual copies
 421   {
 422     Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
 423 
 424     PhaseAggressiveCoalesce coalesce(*this);
 425     coalesce.coalesce_driver();
 426     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 427     // not match the Phi itself, insert a copy.
 428     coalesce.insert_copies(_matcher);
 429     if (C->failing()) {
 430       return;
 431     }
 432   }
 433 
 434   // After aggressive coalesce, attempt a first cut at coloring.
 435   // To color, we need the IFG and for that we need LIVE.
 436   {
 437     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 438     _live = NULL;
 439     rm.reset_to_mark();           // Reclaim working storage
 440     IndexSet::reset_memory(C, &live_arena);
 441     ifg.init(_lrg_map.max_lrg_id());
 442     gather_lrg_masks( true );
 443     live.compute(_lrg_map.max_lrg_id());
 444     _live = &live;
 445   }
 446 
 447   // Build physical interference graph
 448   uint must_spill = 0;
 449   must_spill = build_ifg_physical(&live_arena);
 450   // If we have a guaranteed spill, might as well spill now
 451   if (must_spill) {
 452     if(!_lrg_map.max_lrg_id()) {
 453       return;
 454     }
 455     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 456     C->check_node_count(10*must_spill, "out of nodes before split");
 457     if (C->failing()) {
 458       return;
 459     }
 460 
 461     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 462     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 463     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 464     // or we failed to split
 465     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 466     if (C->failing()) {
 467       return;
 468     }
 469 
 470     NOT_PRODUCT(C->verify_graph_edges();)
 471 
 472     compact();                  // Compact LRGs; return new lower max lrg
 473 
 474     {
 475       Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 476       _live = NULL;
 477       rm.reset_to_mark();         // Reclaim working storage
 478       IndexSet::reset_memory(C, &live_arena);
 479       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
 480       gather_lrg_masks( true );   // Collect intersect mask
 481       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
 482       _live = &live;
 483     }
 484     build_ifg_physical(&live_arena);
 485     _ifg->SquareUp();
 486     _ifg->Compute_Effective_Degree();
 487     // Only do conservative coalescing if requested
 488     if (OptoCoalesce) {
 489       Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
 490       // Conservative (and pessimistic) copy coalescing of those spills
 491       PhaseConservativeCoalesce coalesce(*this);
 492       // If max live ranges greater than cutoff, don't color the stack.
 493       // This cutoff can be larger than below since it is only done once.
 494       coalesce.coalesce_driver();
 495     }
 496     _lrg_map.compress_uf_map_for_nodes();
 497 
 498 #ifdef ASSERT
 499     verify(&live_arena, true);
 500 #endif
 501   } else {
 502     ifg.SquareUp();
 503     ifg.Compute_Effective_Degree();
 504 #ifdef ASSERT
 505     set_was_low();
 506 #endif
 507   }
 508 
 509   // Prepare for Simplify & Select
 510   cache_lrg_info();           // Count degree of LRGs
 511 
 512   // Simplify the InterFerence Graph by removing LRGs of low degree.
 513   // LRGs of low degree are trivially colorable.
 514   Simplify();
 515 
 516   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 517   // Return whether or not something spills.
 518   uint spills = Select( );
 519 
 520   // If we spill, split and recycle the entire thing
 521   while( spills ) {
 522     if( _trip_cnt++ > 24 ) {
 523       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 524       if( _trip_cnt > 27 ) {
 525         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 526         return;
 527       }
 528     }
 529 
 530     if (!_lrg_map.max_lrg_id()) {
 531       return;
 532     }
 533     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 534     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 535     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 536     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
 537     if (C->failing()) {
 538       return;
 539     }
 540 
 541     compact(); // Compact LRGs; return new lower max lrg
 542 
 543     // Nuke the live-ness and interference graph and LiveRanGe info
 544     {
 545       Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
 546       _live = NULL;
 547       rm.reset_to_mark();         // Reclaim working storage
 548       IndexSet::reset_memory(C, &live_arena);
 549       ifg.init(_lrg_map.max_lrg_id());
 550 
 551       // Create LiveRanGe array.
 552       // Intersect register masks for all USEs and DEFs
 553       gather_lrg_masks(true);
 554       live.compute(_lrg_map.max_lrg_id());
 555       _live = &live;
 556     }
 557     must_spill = build_ifg_physical(&live_arena);
 558     _ifg->SquareUp();
 559     _ifg->Compute_Effective_Degree();
 560 
 561     // Only do conservative coalescing if requested
 562     if (OptoCoalesce) {
 563       Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
 564       // Conservative (and pessimistic) copy coalescing
 565       PhaseConservativeCoalesce coalesce(*this);
 566       // Check for few live ranges determines how aggressive coalesce is.
 567       coalesce.coalesce_driver();
 568     }
 569     _lrg_map.compress_uf_map_for_nodes();
 570 #ifdef ASSERT
 571     verify(&live_arena, true);
 572 #endif
 573     cache_lrg_info();           // Count degree of LRGs
 574 
 575     // Simplify the InterFerence Graph by removing LRGs of low degree.
 576     // LRGs of low degree are trivially colorable.
 577     Simplify();
 578 
 579     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 580     // Return whether or not something spills.
 581     spills = Select();
 582   }
 583 
 584   // Count number of Simplify-Select trips per coloring success.
 585   _allocator_attempts += _trip_cnt + 1;
 586   _allocator_successes += 1;
 587 
 588   // Peephole remove copies
 589   post_allocate_copy_removal();
 590 
 591   // Merge multidefs if multiple defs representing the same value are used in a single block.
 592   merge_multidefs();
 593 
 594 #ifdef ASSERT
 595   // Veify the graph after RA.
 596   verify(&live_arena);
 597 #endif
 598 
 599   // max_reg is past the largest *register* used.
 600   // Convert that to a frame_slot number.
 601   if (_max_reg <= _matcher._new_SP) {
 602     _framesize = C->out_preserve_stack_slots();
 603   }
 604   else {
 605     _framesize = _max_reg -_matcher._new_SP;
 606   }
 607   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 608 
 609   // This frame must preserve the required fp alignment
 610   _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
 611   assert(_framesize <= 1000000, "sanity check");
 612 #ifndef PRODUCT
 613   _total_framesize += _framesize;
 614   if ((int)_framesize > _max_framesize) {
 615     _max_framesize = _framesize;
 616   }
 617 #endif
 618 
 619   // Convert CISC spills
 620   fixup_spills();
 621 
 622   // Log regalloc results
 623   CompileLog* log = Compile::current()->log();
 624   if (log != NULL) {
 625     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 626   }
 627 
 628   if (C->failing()) {
 629     return;
 630   }
 631 
 632   NOT_PRODUCT(C->verify_graph_edges();)
 633 
 634   // Move important info out of the live_arena to longer lasting storage.
 635   alloc_node_regs(_lrg_map.size());
 636   for (uint i=0; i < _lrg_map.size(); i++) {
 637     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
 638       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
 639       if (!lrg.alive()) {
 640         set_bad(i);
 641       } else if (lrg.num_regs() == 1) {
 642         set1(i, lrg.reg());
 643       } else {                  // Must be a register-set
 644         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
 645           // Live ranges record the highest register in their mask.
 646           // We want the low register for the AD file writer's convenience.
 647           OptoReg::Name hi = lrg.reg(); // Get hi register
 648           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
 649           // We have to use pair [lo,lo+1] even for wide vectors because
 650           // the rest of code generation works only with pairs. It is safe
 651           // since for registers encoding only 'lo' is used.
 652           // Second reg from pair is used in ScheduleAndBundle on SPARC where
 653           // vector max size is 8 which corresponds to registers pair.
 654           // It is also used in BuildOopMaps but oop operations are not
 655           // vectorized.
 656           set2(i, lo);
 657         } else {                // Misaligned; extract 2 bits
 658           OptoReg::Name hi = lrg.reg(); // Get hi register
 659           lrg.Remove(hi);       // Yank from mask
 660           int lo = lrg.mask().find_first_elem(); // Find lo
 661           set_pair(i, hi, lo);
 662         }
 663       }
 664       if( lrg._is_oop ) _node_oops.set(i);
 665     } else {
 666       set_bad(i);
 667     }
 668   }
 669 
 670   // Done!
 671   _live = NULL;
 672   _ifg = NULL;
 673   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
 674 }
 675 
 676 void PhaseChaitin::de_ssa() {
 677   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 678   // number.  A few get the ZERO live range number.  These do not
 679   // get allocated, but instead rely on correct scheduling to ensure that
 680   // only one instance is simultaneously live at a time.
 681   uint lr_counter = 1;
 682   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 683     Block* block = _cfg.get_block(i);
 684     uint cnt = block->number_of_nodes();
 685 
 686     // Handle all the normal Nodes in the block
 687     for( uint j = 0; j < cnt; j++ ) {
 688       Node *n = block->get_node(j);
 689       // Pre-color to the zero live range, or pick virtual register
 690       const RegMask &rm = n->out_RegMask();
 691       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
 692     }
 693   }
 694 
 695   // Reset the Union-Find mapping to be identity
 696   _lrg_map.reset_uf_map(lr_counter);
 697 }
 698 
 699 void PhaseChaitin::mark_ssa() {
 700   // Use ssa names to populate the live range maps or if no mask
 701   // is available, use the 0 entry.
 702   uint max_idx = 0;
 703   for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
 704     Block* block = _cfg.get_block(i);
 705     uint cnt = block->number_of_nodes();
 706 
 707     // Handle all the normal Nodes in the block
 708     for ( uint j = 0; j < cnt; j++ ) {
 709       Node *n = block->get_node(j);
 710       // Pre-color to the zero live range, or pick virtual register
 711       const RegMask &rm = n->out_RegMask();
 712       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
 713       max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
 714     }
 715   }
 716   _lrg_map.set_max_lrg_id(max_idx+1);
 717 
 718   // Reset the Union-Find mapping to be identity
 719   _lrg_map.reset_uf_map(max_idx+1);
 720 }
 721 
 722 
 723 // Gather LiveRanGe information, including register masks.  Modification of
 724 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 725 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 726 
 727   // Nail down the frame pointer live range
 728   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
 729   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 730 
 731   // For all blocks
 732   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
 733     Block* block = _cfg.get_block(i);
 734 
 735     // For all instructions
 736     for (uint j = 1; j < block->number_of_nodes(); j++) {
 737       Node* n = block->get_node(j);
 738       uint input_edge_start =1; // Skip control most nodes
 739       bool is_machine_node = false;
 740       if (n->is_Mach()) {
 741         is_machine_node = true;
 742         input_edge_start = n->as_Mach()->oper_input_base();
 743       }
 744       uint idx = n->is_Copy();
 745 
 746       // Get virtual register number, same as LiveRanGe index
 747       uint vreg = _lrg_map.live_range_id(n);
 748       LRG& lrg = lrgs(vreg);
 749       if (vreg) {              // No vreg means un-allocable (e.g. memory)
 750 
 751         // Collect has-copy bit
 752         if (idx) {
 753           lrg._has_copy = 1;
 754           uint clidx = _lrg_map.live_range_id(n->in(idx));
 755           LRG& copy_src = lrgs(clidx);
 756           copy_src._has_copy = 1;
 757         }
 758 
 759         // Check for float-vs-int live range (used in register-pressure
 760         // calculations)
 761         const Type *n_type = n->bottom_type();
 762         if (n_type->is_floatingpoint()) {
 763           lrg._is_float = 1;
 764         }
 765 
 766         // Check for twice prior spilling.  Once prior spilling might have
 767         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 768         // further spilling is unlikely to make progress.
 769         if (_spilled_once.test(n->_idx)) {
 770           lrg._was_spilled1 = 1;
 771           if (_spilled_twice.test(n->_idx)) {
 772             lrg._was_spilled2 = 1;
 773           }
 774         }
 775 
 776 #ifndef PRODUCT
 777         if (trace_spilling() && lrg._def != NULL) {
 778           // collect defs for MultiDef printing
 779           if (lrg._defs == NULL) {
 780             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
 781             lrg._defs->append(lrg._def);
 782           }
 783           lrg._defs->append(n);
 784         }
 785 #endif
 786 
 787         // Check for a single def LRG; these can spill nicely
 788         // via rematerialization.  Flag as NULL for no def found
 789         // yet, or 'n' for single def or -1 for many defs.
 790         lrg._def = lrg._def ? NodeSentinel : n;
 791 
 792         // Limit result register mask to acceptable registers
 793         const RegMask &rm = n->out_RegMask();
 794         lrg.AND( rm );
 795 
 796         uint ireg = n->ideal_reg();
 797         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 798                 "oops must be in Op_RegP's" );
 799 
 800         // Check for vector live range (only if vector register is used).
 801         // On SPARC vector uses RegD which could be misaligned so it is not
 802         // processes as vector in RA.
 803         if (RegMask::is_vector(ireg))
 804           lrg._is_vector = 1;
 805         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
 806                "vector must be in vector registers");
 807 
 808         // Check for bound register masks
 809         const RegMask &lrgmask = lrg.mask();
 810         if (lrgmask.is_bound(ireg)) {
 811           lrg._is_bound = 1;
 812         }
 813 
 814         // Check for maximum frequency value
 815         if (lrg._maxfreq < block->_freq) {
 816           lrg._maxfreq = block->_freq;
 817         }
 818 
 819         // Check for oop-iness, or long/double
 820         // Check for multi-kill projection
 821         switch (ireg) {
 822         case MachProjNode::fat_proj:
 823           // Fat projections have size equal to number of registers killed
 824           lrg.set_num_regs(rm.Size());
 825           lrg.set_reg_pressure(lrg.num_regs());
 826           lrg._fat_proj = 1;
 827           lrg._is_bound = 1;
 828           break;
 829         case Op_RegP:
 830 #ifdef _LP64
 831           lrg.set_num_regs(2);  // Size is 2 stack words
 832 #else
 833           lrg.set_num_regs(1);  // Size is 1 stack word
 834 #endif
 835           // Register pressure is tracked relative to the maximum values
 836           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
 837           // and relative to other types which compete for the same regs.
 838           //
 839           // The following table contains suggested values based on the
 840           // architectures as defined in each .ad file.
 841           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
 842           // compile-speed or performance.
 843           // Note1:
 844           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
 845           // since .ad registers are defined as high and low halves.
 846           // These reg_pressure values remain compatible with the code
 847           // in is_high_pressure() which relates get_invalid_mask_size(),
 848           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
 849           // Note2:
 850           // SPARC -d32 has 24 registers available for integral values,
 851           // but only 10 of these are safe for 64-bit longs.
 852           // Using set_reg_pressure(2) for both int and long means
 853           // the allocator will believe it can fit 26 longs into
 854           // registers.  Using 2 for longs and 1 for ints means the
 855           // allocator will attempt to put 52 integers into registers.
 856           // The settings below limit this problem to methods with
 857           // many long values which are being run on 32-bit SPARC.
 858           //
 859           // ------------------- reg_pressure --------------------
 860           // Each entry is reg_pressure_per_value,number_of_regs
 861           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 862           // IA32     2     1     1          1    1          6           6
 863           // IA64     1     1     1          1    1         50          41
 864           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 865           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 866           // AMD64    1     1     1          1    1         14          15
 867           // -----------------------------------------------------
 868 #if defined(SPARC)
 869           lrg.set_reg_pressure(2);  // use for v9 as well
 870 #else
 871           lrg.set_reg_pressure(1);  // normally one value per register
 872 #endif
 873           if( n_type->isa_oop_ptr() ) {
 874             lrg._is_oop = 1;
 875           }
 876           break;
 877         case Op_RegL:           // Check for long or double
 878         case Op_RegD:
 879           lrg.set_num_regs(2);
 880           // Define platform specific register pressure
 881 #if defined(SPARC) || defined(ARM32)
 882           lrg.set_reg_pressure(2);
 883 #elif defined(IA32)
 884           if( ireg == Op_RegL ) {
 885             lrg.set_reg_pressure(2);
 886           } else {
 887             lrg.set_reg_pressure(1);
 888           }
 889 #else
 890           lrg.set_reg_pressure(1);  // normally one value per register
 891 #endif
 892           // If this def of a double forces a mis-aligned double,
 893           // flag as '_fat_proj' - really flag as allowing misalignment
 894           // AND changes how we count interferences.  A mis-aligned
 895           // double can interfere with TWO aligned pairs, or effectively
 896           // FOUR registers!
 897           if (rm.is_misaligned_pair()) {
 898             lrg._fat_proj = 1;
 899             lrg._is_bound = 1;
 900           }
 901           break;
 902         case Op_RegF:
 903         case Op_RegI:
 904         case Op_RegN:
 905         case Op_RegFlags:
 906         case 0:                 // not an ideal register
 907           lrg.set_num_regs(1);
 908 #ifdef SPARC
 909           lrg.set_reg_pressure(2);
 910 #else
 911           lrg.set_reg_pressure(1);
 912 #endif
 913           break;
 914         case Op_VecS:
 915           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
 916           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
 917           lrg.set_num_regs(RegMask::SlotsPerVecS);
 918           lrg.set_reg_pressure(1);
 919           break;
 920         case Op_VecD:
 921           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
 922           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
 923           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
 924           lrg.set_num_regs(RegMask::SlotsPerVecD);
 925           lrg.set_reg_pressure(1);
 926           break;
 927         case Op_VecX:
 928           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
 929           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
 930           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
 931           lrg.set_num_regs(RegMask::SlotsPerVecX);
 932           lrg.set_reg_pressure(1);
 933           break;
 934         case Op_VecY:
 935           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
 936           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
 937           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
 938           lrg.set_num_regs(RegMask::SlotsPerVecY);
 939           lrg.set_reg_pressure(1);
 940           break;
 941         case Op_VecZ:
 942           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
 943           assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
 944           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
 945           lrg.set_num_regs(RegMask::SlotsPerVecZ);
 946           lrg.set_reg_pressure(1);
 947           break;
 948         default:
 949           ShouldNotReachHere();
 950         }
 951       }
 952 
 953       // Now do the same for inputs
 954       uint cnt = n->req();
 955       // Setup for CISC SPILLING
 956       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
 957       if( UseCISCSpill && after_aggressive ) {
 958         inp = n->cisc_operand();
 959         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
 960           // Convert operand number to edge index number
 961           inp = n->as_Mach()->operand_index(inp);
 962       }
 963 
 964       // Prepare register mask for each input
 965       for( uint k = input_edge_start; k < cnt; k++ ) {
 966         uint vreg = _lrg_map.live_range_id(n->in(k));
 967         if (!vreg) {
 968           continue;
 969         }
 970 
 971         // If this instruction is CISC Spillable, add the flags
 972         // bit to its appropriate input
 973         if( UseCISCSpill && after_aggressive && inp == k ) {
 974 #ifndef PRODUCT
 975           if( TraceCISCSpill ) {
 976             tty->print("  use_cisc_RegMask: ");
 977             n->dump();
 978           }
 979 #endif
 980           n->as_Mach()->use_cisc_RegMask();
 981         }
 982 
 983         if (is_machine_node && _scheduling_info_generated) {
 984           MachNode* cur_node = n->as_Mach();
 985           // this is cleaned up by register allocation
 986           if (k >= cur_node->num_opnds()) continue;
 987         }
 988 
 989         LRG &lrg = lrgs(vreg);
 990         // // Testing for floating point code shape
 991         // Node *test = n->in(k);
 992         // if( test->is_Mach() ) {
 993         //   MachNode *m = test->as_Mach();
 994         //   int  op = m->ideal_Opcode();
 995         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
 996         //     int zzz = 1;
 997         //   }
 998         // }
 999 
1000         // Limit result register mask to acceptable registers.
1001         // Do not limit registers from uncommon uses before
1002         // AggressiveCoalesce.  This effectively pre-virtual-splits
1003         // around uncommon uses of common defs.
1004         const RegMask &rm = n->in_RegMask(k);
1005         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1006           // Since we are BEFORE aggressive coalesce, leave the register
1007           // mask untrimmed by the call.  This encourages more coalescing.
1008           // Later, AFTER aggressive, this live range will have to spill
1009           // but the spiller handles slow-path calls very nicely.
1010         } else {
1011           lrg.AND( rm );
1012         }
1013 
1014         // Check for bound register masks
1015         const RegMask &lrgmask = lrg.mask();
1016         uint kreg = n->in(k)->ideal_reg();
1017         bool is_vect = RegMask::is_vector(kreg);
1018         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
1019                is_vect || kreg == Op_RegD || kreg == Op_RegL,
1020                "vector must be in vector registers");
1021         if (lrgmask.is_bound(kreg))
1022           lrg._is_bound = 1;
1023 
1024         // If this use of a double forces a mis-aligned double,
1025         // flag as '_fat_proj' - really flag as allowing misalignment
1026         // AND changes how we count interferences.  A mis-aligned
1027         // double can interfere with TWO aligned pairs, or effectively
1028         // FOUR registers!
1029 #ifdef ASSERT
1030         if (is_vect && !_scheduling_info_generated) {
1031           if (lrg.num_regs() != 0) {
1032             assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1033             assert(!lrg._fat_proj, "sanity");
1034             assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1035           } else {
1036             assert(n->is_Phi(), "not all inputs processed only if Phi");
1037           }
1038         }
1039 #endif
1040         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1041           lrg._fat_proj = 1;
1042           lrg._is_bound = 1;
1043         }
1044         // if the LRG is an unaligned pair, we will have to spill
1045         // so clear the LRG's register mask if it is not already spilled
1046         if (!is_vect && !n->is_SpillCopy() &&
1047             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1048             lrgmask.is_misaligned_pair()) {
1049           lrg.Clear();
1050         }
1051 
1052         // Check for maximum frequency value
1053         if (lrg._maxfreq < block->_freq) {
1054           lrg._maxfreq = block->_freq;
1055         }
1056 
1057       } // End for all allocated inputs
1058     } // end for all instructions
1059   } // end for all blocks
1060 
1061   // Final per-liverange setup
1062   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1063     LRG &lrg = lrgs(i2);
1064     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1065     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1066       lrg.clear_to_sets();
1067     }
1068     lrg.compute_set_mask_size();
1069     if (lrg.not_free()) {      // Handle case where we lose from the start
1070       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1071       lrg._direct_conflict = 1;
1072     }
1073     lrg.set_degree(0);          // no neighbors in IFG yet
1074   }
1075 }
1076 
1077 // Set the was-lo-degree bit.  Conservative coalescing should not change the
1078 // colorability of the graph.  If any live range was of low-degree before
1079 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1080 // The bit is checked in Simplify.
1081 void PhaseChaitin::set_was_low() {
1082 #ifdef ASSERT
1083   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1084     int size = lrgs(i).num_regs();
1085     uint old_was_lo = lrgs(i)._was_lo;
1086     lrgs(i)._was_lo = 0;
1087     if( lrgs(i).lo_degree() ) {
1088       lrgs(i)._was_lo = 1;      // Trivially of low degree
1089     } else {                    // Else check the Brigg's assertion
1090       // Brigg's observation is that the lo-degree neighbors of a
1091       // hi-degree live range will not interfere with the color choices
1092       // of said hi-degree live range.  The Simplify reverse-stack-coloring
1093       // order takes care of the details.  Hence you do not have to count
1094       // low-degree neighbors when determining if this guy colors.
1095       int briggs_degree = 0;
1096       IndexSet *s = _ifg->neighbors(i);
1097       IndexSetIterator elements(s);
1098       uint lidx;
1099       while((lidx = elements.next()) != 0) {
1100         if( !lrgs(lidx).lo_degree() )
1101           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1102       }
1103       if( briggs_degree < lrgs(i).degrees_of_freedom() )
1104         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1105     }
1106     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1107   }
1108 #endif
1109 }
1110 
1111 #define REGISTER_CONSTRAINED 16
1112 
1113 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1114 void PhaseChaitin::cache_lrg_info( ) {
1115   Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1116 
1117   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1118     LRG &lrg = lrgs(i);
1119 
1120     // Check for being of low degree: means we can be trivially colored.
1121     // Low degree, dead or must-spill guys just get to simplify right away
1122     if( lrg.lo_degree() ||
1123        !lrg.alive() ||
1124         lrg._must_spill ) {
1125       // Split low degree list into those guys that must get a
1126       // register and those that can go to register or stack.
1127       // The idea is LRGs that can go register or stack color first when
1128       // they have a good chance of getting a register.  The register-only
1129       // lo-degree live ranges always get a register.
1130       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1131       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1132         lrg._next = _lo_stk_degree;
1133         _lo_stk_degree = i;
1134       } else {
1135         lrg._next = _lo_degree;
1136         _lo_degree = i;
1137       }
1138     } else {                    // Else high degree
1139       lrgs(_hi_degree)._prev = i;
1140       lrg._next = _hi_degree;
1141       lrg._prev = 0;
1142       _hi_degree = i;
1143     }
1144   }
1145 }
1146 
1147 // Simplify the IFG by removing LRGs of low degree that have NO copies
1148 void PhaseChaitin::Pre_Simplify( ) {
1149 
1150   // Warm up the lo-degree no-copy list
1151   int lo_no_copy = 0;
1152   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1153     if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1154         !lrgs(i).alive() ||
1155         lrgs(i)._must_spill) {
1156       lrgs(i)._next = lo_no_copy;
1157       lo_no_copy = i;
1158     }
1159   }
1160 
1161   while( lo_no_copy ) {
1162     uint lo = lo_no_copy;
1163     lo_no_copy = lrgs(lo)._next;
1164     int size = lrgs(lo).num_regs();
1165 
1166     // Put the simplified guy on the simplified list.
1167     lrgs(lo)._next = _simplified;
1168     _simplified = lo;
1169 
1170     // Yank this guy from the IFG.
1171     IndexSet *adj = _ifg->remove_node( lo );
1172 
1173     // If any neighbors' degrees fall below their number of
1174     // allowed registers, then put that neighbor on the low degree
1175     // list.  Note that 'degree' can only fall and 'numregs' is
1176     // unchanged by this action.  Thus the two are equal at most once,
1177     // so LRGs hit the lo-degree worklists at most once.
1178     IndexSetIterator elements(adj);
1179     uint neighbor;
1180     while ((neighbor = elements.next()) != 0) {
1181       LRG *n = &lrgs(neighbor);
1182       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1183 
1184       // Check for just becoming of-low-degree
1185       if( n->just_lo_degree() && !n->_has_copy ) {
1186         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1187         // Put on lo-degree list
1188         n->_next = lo_no_copy;
1189         lo_no_copy = neighbor;
1190       }
1191     }
1192   } // End of while lo-degree no_copy worklist not empty
1193 
1194   // No more lo-degree no-copy live ranges to simplify
1195 }
1196 
1197 // Simplify the IFG by removing LRGs of low degree.
1198 void PhaseChaitin::Simplify( ) {
1199   Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1200 
1201   while( 1 ) {                  // Repeat till simplified it all
1202     // May want to explore simplifying lo_degree before _lo_stk_degree.
1203     // This might result in more spills coloring into registers during
1204     // Select().
1205     while( _lo_degree || _lo_stk_degree ) {
1206       // If possible, pull from lo_stk first
1207       uint lo;
1208       if( _lo_degree ) {
1209         lo = _lo_degree;
1210         _lo_degree = lrgs(lo)._next;
1211       } else {
1212         lo = _lo_stk_degree;
1213         _lo_stk_degree = lrgs(lo)._next;
1214       }
1215 
1216       // Put the simplified guy on the simplified list.
1217       lrgs(lo)._next = _simplified;
1218       _simplified = lo;
1219       // If this guy is "at risk" then mark his current neighbors
1220       if( lrgs(lo)._at_risk ) {
1221         IndexSetIterator elements(_ifg->neighbors(lo));
1222         uint datum;
1223         while ((datum = elements.next()) != 0) {
1224           lrgs(datum)._risk_bias = lo;
1225         }
1226       }
1227 
1228       // Yank this guy from the IFG.
1229       IndexSet *adj = _ifg->remove_node( lo );
1230 
1231       // If any neighbors' degrees fall below their number of
1232       // allowed registers, then put that neighbor on the low degree
1233       // list.  Note that 'degree' can only fall and 'numregs' is
1234       // unchanged by this action.  Thus the two are equal at most once,
1235       // so LRGs hit the lo-degree worklist at most once.
1236       IndexSetIterator elements(adj);
1237       uint neighbor;
1238       while ((neighbor = elements.next()) != 0) {
1239         LRG *n = &lrgs(neighbor);
1240 #ifdef ASSERT
1241         if( VerifyOpto || VerifyRegisterAllocator ) {
1242           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1243         }
1244 #endif
1245 
1246         // Check for just becoming of-low-degree just counting registers.
1247         // _must_spill live ranges are already on the low degree list.
1248         if( n->just_lo_degree() && !n->_must_spill ) {
1249           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1250           // Pull from hi-degree list
1251           uint prev = n->_prev;
1252           uint next = n->_next;
1253           if( prev ) lrgs(prev)._next = next;
1254           else _hi_degree = next;
1255           lrgs(next)._prev = prev;
1256           n->_next = _lo_degree;
1257           _lo_degree = neighbor;
1258         }
1259       }
1260     } // End of while lo-degree/lo_stk_degree worklist not empty
1261 
1262     // Check for got everything: is hi-degree list empty?
1263     if( !_hi_degree ) break;
1264 
1265     // Time to pick a potential spill guy
1266     uint lo_score = _hi_degree;
1267     double score = lrgs(lo_score).score();
1268     double area = lrgs(lo_score)._area;
1269     double cost = lrgs(lo_score)._cost;
1270     bool bound = lrgs(lo_score)._is_bound;
1271 
1272     // Find cheapest guy
1273     debug_only( int lo_no_simplify=0; );
1274     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1275       assert( !(*_ifg->_yanked)[i], "" );
1276       // It's just vaguely possible to move hi-degree to lo-degree without
1277       // going through a just-lo-degree stage: If you remove a double from
1278       // a float live range it's degree will drop by 2 and you can skip the
1279       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1280       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1281       if( lrgs(i).lo_degree() ) {
1282         lo_score = i;
1283         break;
1284       }
1285       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1286       double iscore = lrgs(i).score();
1287       double iarea = lrgs(i)._area;
1288       double icost = lrgs(i)._cost;
1289       bool ibound = lrgs(i)._is_bound;
1290 
1291       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1292       // wins.  Ties happen because all live ranges in question have spilled
1293       // a few times before and the spill-score adds a huge number which
1294       // washes out the low order bits.  We are choosing the lesser of 2
1295       // evils; in this case pick largest area to spill.
1296       // Ties also happen when live ranges are defined and used only inside
1297       // one block. In which case their area is 0 and score set to max.
1298       // In such case choose bound live range over unbound to free registers
1299       // or with smaller cost to spill.
1300       if( iscore < score ||
1301           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1302           (iscore == score && iarea == area &&
1303            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1304         lo_score = i;
1305         score = iscore;
1306         area = iarea;
1307         cost = icost;
1308         bound = ibound;
1309       }
1310     }
1311     LRG *lo_lrg = &lrgs(lo_score);
1312     // The live range we choose for spilling is either hi-degree, or very
1313     // rarely it can be low-degree.  If we choose a hi-degree live range
1314     // there better not be any lo-degree choices.
1315     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1316 
1317     // Pull from hi-degree list
1318     uint prev = lo_lrg->_prev;
1319     uint next = lo_lrg->_next;
1320     if( prev ) lrgs(prev)._next = next;
1321     else _hi_degree = next;
1322     lrgs(next)._prev = prev;
1323     // Jam him on the lo-degree list, despite his high degree.
1324     // Maybe he'll get a color, and maybe he'll spill.
1325     // Only Select() will know.
1326     lrgs(lo_score)._at_risk = true;
1327     _lo_degree = lo_score;
1328     lo_lrg->_next = 0;
1329 
1330   } // End of while not simplified everything
1331 
1332 }
1333 
1334 // Is 'reg' register legal for 'lrg'?
1335 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1336   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1337       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1338     // RA uses OptoReg which represent the highest element of a registers set.
1339     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1340     // in which XMMd is used by RA to represent such vectors. A double value
1341     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1342     // The register mask uses largest bits set of overlapping register sets.
1343     // On x86 with AVX it uses 8 bits for each XMM registers set.
1344     //
1345     // The 'lrg' already has cleared-to-set register mask (done in Select()
1346     // before calling choose_color()). Passing mask.Member(reg) check above
1347     // indicates that the size (num_regs) of 'reg' set is less or equal to
1348     // 'lrg' set size.
1349     // For set size 1 any register which is member of 'lrg' mask is legal.
1350     if (lrg.num_regs()==1)
1351       return true;
1352     // For larger sets only an aligned register with the same set size is legal.
1353     int mask = lrg.num_regs()-1;
1354     if ((reg&mask) == mask)
1355       return true;
1356   }
1357   return false;
1358 }
1359 
1360 // Choose a color using the biasing heuristic
1361 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1362 
1363   // Check for "at_risk" LRG's
1364   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1365   if( risk_lrg != 0 ) {
1366     // Walk the colored neighbors of the "at_risk" candidate
1367     // Choose a color which is both legal and already taken by a neighbor
1368     // of the "at_risk" candidate in order to improve the chances of the
1369     // "at_risk" candidate of coloring
1370     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1371     uint datum;
1372     while ((datum = elements.next()) != 0) {
1373       OptoReg::Name reg = lrgs(datum).reg();
1374       // If this LRG's register is legal for us, choose it
1375       if (is_legal_reg(lrg, reg, chunk))
1376         return reg;
1377     }
1378   }
1379 
1380   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1381   if( copy_lrg != 0 ) {
1382     // If he has a color,
1383     if( !(*(_ifg->_yanked))[copy_lrg] ) {
1384       OptoReg::Name reg = lrgs(copy_lrg).reg();
1385       //  And it is legal for you,
1386       if (is_legal_reg(lrg, reg, chunk))
1387         return reg;
1388     } else if( chunk == 0 ) {
1389       // Choose a color which is legal for him
1390       RegMask tempmask = lrg.mask();
1391       tempmask.AND(lrgs(copy_lrg).mask());
1392       tempmask.clear_to_sets(lrg.num_regs());
1393       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1394       if (OptoReg::is_valid(reg))
1395         return reg;
1396     }
1397   }
1398 
1399   // If no bias info exists, just go with the register selection ordering
1400   if (lrg._is_vector || lrg.num_regs() == 2) {
1401     // Find an aligned set
1402     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1403   }
1404 
1405   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1406   // copy removal to remove many more copies, by preventing a just-assigned
1407   // register from being repeatedly assigned.
1408   OptoReg::Name reg = lrg.mask().find_first_elem();
1409   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1410     // This 'Remove; find; Insert' idiom is an expensive way to find the
1411     // SECOND element in the mask.
1412     lrg.Remove(reg);
1413     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1414     lrg.Insert(reg);
1415     if( OptoReg::is_reg(reg2))
1416       reg = reg2;
1417   }
1418   return OptoReg::add( reg, chunk );
1419 }
1420 
1421 // Choose a color in the current chunk
1422 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1423   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1424   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1425 
1426   if( lrg.num_regs() == 1 ||    // Common Case
1427       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1428     // Use a heuristic to "bias" the color choice
1429     return bias_color(lrg, chunk);
1430 
1431   assert(!lrg._is_vector, "should be not vector here" );
1432   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1433 
1434   // Fat-proj case or misaligned double argument.
1435   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1436          lrg.num_regs() == 2,"fat projs exactly color" );
1437   assert( !chunk, "always color in 1st chunk" );
1438   // Return the highest element in the set.
1439   return lrg.mask().find_last_elem();
1440 }
1441 
1442 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1443 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1444 // everything going back is guaranteed a color.  Select that color.  If some
1445 // hi-degree LRG cannot get a color then we record that we must spill.
1446 uint PhaseChaitin::Select( ) {
1447   Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1448 
1449   uint spill_reg = LRG::SPILL_REG;
1450   _max_reg = OptoReg::Name(0);  // Past max register used
1451   while( _simplified ) {
1452     // Pull next LRG from the simplified list - in reverse order of removal
1453     uint lidx = _simplified;
1454     LRG *lrg = &lrgs(lidx);
1455     _simplified = lrg->_next;
1456 
1457 
1458 #ifndef PRODUCT
1459     if (trace_spilling()) {
1460       ttyLocker ttyl;
1461       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1462                     lrg->degrees_of_freedom());
1463       lrg->dump();
1464     }
1465 #endif
1466 
1467     // Re-insert into the IFG
1468     _ifg->re_insert(lidx);
1469     if( !lrg->alive() ) continue;
1470     // capture allstackedness flag before mask is hacked
1471     const int is_allstack = lrg->mask().is_AllStack();
1472 
1473     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1474     // to avoid the GOTO, although the refactored code will not
1475     // be much clearer.  We arrive here IFF we have a stack-based
1476     // live range that cannot color in the current chunk, and it
1477     // has to move into the next free stack chunk.
1478     int chunk = 0;              // Current chunk is first chunk
1479     retry_next_chunk:
1480 
1481     // Remove neighbor colors
1482     IndexSet *s = _ifg->neighbors(lidx);
1483 
1484     debug_only(RegMask orig_mask = lrg->mask();)
1485     IndexSetIterator elements(s);
1486     uint neighbor;
1487     while ((neighbor = elements.next()) != 0) {
1488       // Note that neighbor might be a spill_reg.  In this case, exclusion
1489       // of its color will be a no-op, since the spill_reg chunk is in outer
1490       // space.  Also, if neighbor is in a different chunk, this exclusion
1491       // will be a no-op.  (Later on, if lrg runs out of possible colors in
1492       // its chunk, a new chunk of color may be tried, in which case
1493       // examination of neighbors is started again, at retry_next_chunk.)
1494       LRG &nlrg = lrgs(neighbor);
1495       OptoReg::Name nreg = nlrg.reg();
1496       // Only subtract masks in the same chunk
1497       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1498 #ifndef PRODUCT
1499         uint size = lrg->mask().Size();
1500         RegMask rm = lrg->mask();
1501 #endif
1502         lrg->SUBTRACT(nlrg.mask());
1503 #ifndef PRODUCT
1504         if (trace_spilling() && lrg->mask().Size() != size) {
1505           ttyLocker ttyl;
1506           tty->print("L%d ", lidx);
1507           rm.dump();
1508           tty->print(" intersected L%d ", neighbor);
1509           nlrg.mask().dump();
1510           tty->print(" removed ");
1511           rm.SUBTRACT(lrg->mask());
1512           rm.dump();
1513           tty->print(" leaving ");
1514           lrg->mask().dump();
1515           tty->cr();
1516         }
1517 #endif
1518       }
1519     }
1520     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1521     // Aligned pairs need aligned masks
1522     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1523     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1524       lrg->clear_to_sets();
1525     }
1526 
1527     // Check if a color is available and if so pick the color
1528     OptoReg::Name reg = choose_color( *lrg, chunk );
1529 #ifdef SPARC
1530     debug_only(lrg->compute_set_mask_size());
1531     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1532 #endif
1533 
1534     //---------------
1535     // If we fail to color and the AllStack flag is set, trigger
1536     // a chunk-rollover event
1537     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1538       // Bump register mask up to next stack chunk
1539       chunk += RegMask::CHUNK_SIZE;
1540       lrg->Set_All();
1541 
1542       goto retry_next_chunk;
1543     }
1544 
1545     //---------------
1546     // Did we get a color?
1547     else if( OptoReg::is_valid(reg)) {
1548 #ifndef PRODUCT
1549       RegMask avail_rm = lrg->mask();
1550 #endif
1551 
1552       // Record selected register
1553       lrg->set_reg(reg);
1554 
1555       if( reg >= _max_reg )     // Compute max register limit
1556         _max_reg = OptoReg::add(reg,1);
1557       // Fold reg back into normal space
1558       reg = OptoReg::add(reg,-chunk);
1559 
1560       // If the live range is not bound, then we actually had some choices
1561       // to make.  In this case, the mask has more bits in it than the colors
1562       // chosen.  Restrict the mask to just what was picked.
1563       int n_regs = lrg->num_regs();
1564       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1565       if (n_regs == 1 || !lrg->_fat_proj) {
1566         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1567         lrg->Clear();           // Clear the mask
1568         lrg->Insert(reg);       // Set regmask to match selected reg
1569         // For vectors and pairs, also insert the low bit of the pair
1570         for (int i = 1; i < n_regs; i++)
1571           lrg->Insert(OptoReg::add(reg,-i));
1572         lrg->set_mask_size(n_regs);
1573       } else {                  // Else fatproj
1574         // mask must be equal to fatproj bits, by definition
1575       }
1576 #ifndef PRODUCT
1577       if (trace_spilling()) {
1578         ttyLocker ttyl;
1579         tty->print("L%d selected ", lidx);
1580         lrg->mask().dump();
1581         tty->print(" from ");
1582         avail_rm.dump();
1583         tty->cr();
1584       }
1585 #endif
1586       // Note that reg is the highest-numbered register in the newly-bound mask.
1587     } // end color available case
1588 
1589     //---------------
1590     // Live range is live and no colors available
1591     else {
1592       assert( lrg->alive(), "" );
1593       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1594               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1595       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1596 
1597       // Assign the special spillreg register
1598       lrg->set_reg(OptoReg::Name(spill_reg++));
1599       // Do not empty the regmask; leave mask_size lying around
1600       // for use during Spilling
1601 #ifndef PRODUCT
1602       if( trace_spilling() ) {
1603         ttyLocker ttyl;
1604         tty->print("L%d spilling with neighbors: ", lidx);
1605         s->dump();
1606         debug_only(tty->print(" original mask: "));
1607         debug_only(orig_mask.dump());
1608         dump_lrg(lidx);
1609       }
1610 #endif
1611     } // end spill case
1612 
1613   }
1614 
1615   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1616 }
1617 
1618 // Copy 'was_spilled'-edness from the source Node to the dst Node.
1619 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1620   if( _spilled_once.test(src->_idx) ) {
1621     _spilled_once.set(dst->_idx);
1622     lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1623     if( _spilled_twice.test(src->_idx) ) {
1624       _spilled_twice.set(dst->_idx);
1625       lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1626     }
1627   }
1628 }
1629 
1630 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1631 void PhaseChaitin::set_was_spilled( Node *n ) {
1632   if( _spilled_once.test_set(n->_idx) )
1633     _spilled_twice.set(n->_idx);
1634 }
1635 
1636 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1637 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1638 void PhaseChaitin::fixup_spills() {
1639   // This function does only cisc spill work.
1640   if( !UseCISCSpill ) return;
1641 
1642   Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1643 
1644   // Grab the Frame Pointer
1645   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1646 
1647   // For all blocks
1648   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1649     Block* block = _cfg.get_block(i);
1650 
1651     // For all instructions in block
1652     uint last_inst = block->end_idx();
1653     for (uint j = 1; j <= last_inst; j++) {
1654       Node* n = block->get_node(j);
1655 
1656       // Dead instruction???
1657       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1658               C->top() == n ||  // Or the random TOP node
1659               n->is_Proj(),     // Or a fat-proj kill node
1660               "No dead instructions after post-alloc" );
1661 
1662       int inp = n->cisc_operand();
1663       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1664         // Convert operand number to edge index number
1665         MachNode *mach = n->as_Mach();
1666         inp = mach->operand_index(inp);
1667         Node *src = n->in(inp);   // Value to load or store
1668         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1669         OptoReg::Name src_reg = lrg_cisc.reg();
1670         // Doubles record the HIGH register of an adjacent pair.
1671         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1672         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1673           // This is a CISC Spill, get stack offset and construct new node
1674 #ifndef PRODUCT
1675           if( TraceCISCSpill ) {
1676             tty->print("    reg-instr:  ");
1677             n->dump();
1678           }
1679 #endif
1680           int stk_offset = reg2offset(src_reg);
1681           // Bailout if we might exceed node limit when spilling this instruction
1682           C->check_node_count(0, "out of nodes fixing spills");
1683           if (C->failing())  return;
1684           // Transform node
1685           MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1686           cisc->set_req(inp,fp);          // Base register is frame pointer
1687           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1688             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1689             cisc->ins_req(1,src);         // Requires a memory edge
1690           }
1691           block->map_node(cisc, j);          // Insert into basic block
1692           n->subsume_by(cisc, C); // Correct graph
1693           //
1694           ++_used_cisc_instructions;
1695 #ifndef PRODUCT
1696           if( TraceCISCSpill ) {
1697             tty->print("    cisc-instr: ");
1698             cisc->dump();
1699           }
1700 #endif
1701         } else {
1702 #ifndef PRODUCT
1703           if( TraceCISCSpill ) {
1704             tty->print("    using reg-instr: ");
1705             n->dump();
1706           }
1707 #endif
1708           ++_unused_cisc_instructions;    // input can be on stack
1709         }
1710       }
1711 
1712     } // End of for all instructions
1713 
1714   } // End of for all blocks
1715 }
1716 
1717 // Helper to stretch above; recursively discover the base Node for a
1718 // given derived Node.  Easy for AddP-related machine nodes, but needs
1719 // to be recursive for derived Phis.
1720 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1721   // See if already computed; if so return it
1722   if( derived_base_map[derived->_idx] )
1723     return derived_base_map[derived->_idx];
1724 
1725   // See if this happens to be a base.
1726   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1727   // pointers derived from NULL!  These are always along paths that
1728   // can't happen at run-time but the optimizer cannot deduce it so
1729   // we have to handle it gracefully.
1730   assert(!derived->bottom_type()->isa_narrowoop() ||
1731           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1732   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1733   // If its an OOP with a non-zero offset, then it is derived.
1734   if( tj == NULL || tj->_offset == 0 ) {
1735     derived_base_map[derived->_idx] = derived;
1736     return derived;
1737   }
1738   // Derived is NULL+offset?  Base is NULL!
1739   if( derived->is_Con() ) {
1740     Node *base = _matcher.mach_null();
1741     assert(base != NULL, "sanity");
1742     if (base->in(0) == NULL) {
1743       // Initialize it once and make it shared:
1744       // set control to _root and place it into Start block
1745       // (where top() node is placed).
1746       base->init_req(0, _cfg.get_root_node());
1747       Block *startb = _cfg.get_block_for_node(C->top());
1748       uint node_pos = startb->find_node(C->top());
1749       startb->insert_node(base, node_pos);
1750       _cfg.map_node_to_block(base, startb);
1751       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1752 
1753       // The loadConP0 might have projection nodes depending on architecture
1754       // Add the projection nodes to the CFG
1755       for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1756         Node* use = base->fast_out(i);
1757         if (use->is_MachProj()) {
1758           startb->insert_node(use, ++node_pos);
1759           _cfg.map_node_to_block(use, startb);
1760           new_lrg(use, maxlrg++);
1761         }
1762       }
1763     }
1764     if (_lrg_map.live_range_id(base) == 0) {
1765       new_lrg(base, maxlrg++);
1766     }
1767     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1768     derived_base_map[derived->_idx] = base;
1769     return base;
1770   }
1771 
1772   // Check for AddP-related opcodes
1773   if (!derived->is_Phi()) {
1774     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1775     Node *base = derived->in(AddPNode::Base);
1776     derived_base_map[derived->_idx] = base;
1777     return base;
1778   }
1779 
1780   // Recursively find bases for Phis.
1781   // First check to see if we can avoid a base Phi here.
1782   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1783   uint i;
1784   for( i = 2; i < derived->req(); i++ )
1785     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1786       break;
1787   // Went to the end without finding any different bases?
1788   if( i == derived->req() ) {   // No need for a base Phi here
1789     derived_base_map[derived->_idx] = base;
1790     return base;
1791   }
1792 
1793   // Now we see we need a base-Phi here to merge the bases
1794   const Type *t = base->bottom_type();
1795   base = new PhiNode( derived->in(0), t );
1796   for( i = 1; i < derived->req(); i++ ) {
1797     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1798     t = t->meet(base->in(i)->bottom_type());
1799   }
1800   base->as_Phi()->set_type(t);
1801 
1802   // Search the current block for an existing base-Phi
1803   Block *b = _cfg.get_block_for_node(derived);
1804   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1805     Node *phi = b->get_node(i);
1806     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1807       b->insert_node(base,  i); // Must insert created Phi here as base
1808       _cfg.map_node_to_block(base, b);
1809       new_lrg(base,maxlrg++);
1810       break;
1811     }
1812     // See if Phi matches.
1813     uint j;
1814     for( j = 1; j < base->req(); j++ )
1815       if( phi->in(j) != base->in(j) &&
1816           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1817         break;
1818     if( j == base->req() ) {    // All inputs match?
1819       base = phi;               // Then use existing 'phi' and drop 'base'
1820       break;
1821     }
1822   }
1823 
1824 
1825   // Cache info for later passes
1826   derived_base_map[derived->_idx] = base;
1827   return base;
1828 }
1829 
1830 // At each Safepoint, insert extra debug edges for each pair of derived value/
1831 // base pointer that is live across the Safepoint for oopmap building.  The
1832 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1833 // required edge set.
1834 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1835   int must_recompute_live = false;
1836   uint maxlrg = _lrg_map.max_lrg_id();
1837   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1838   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1839 
1840   // For all blocks in RPO do...
1841   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1842     Block* block = _cfg.get_block(i);
1843     // Note use of deep-copy constructor.  I cannot hammer the original
1844     // liveout bits, because they are needed by the following coalesce pass.
1845     IndexSet liveout(_live->live(block));
1846 
1847     for (uint j = block->end_idx() + 1; j > 1; j--) {
1848       Node* n = block->get_node(j - 1);
1849 
1850       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1851       // like to see in the same register.  Compare uses the loop-phi and so
1852       // extends its live range BUT cannot be part of the cycle.  If this
1853       // extended live range overlaps with the update of the loop-phi value
1854       // we need both alive at the same time -- which requires at least 1
1855       // copy.  But because Intel has only 2-address registers we end up with
1856       // at least 2 copies, one before the loop-phi update instruction and
1857       // one after.  Instead we split the input to the compare just after the
1858       // phi.
1859       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1860         Node *phi = n->in(1);
1861         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1862           Block *phi_block = _cfg.get_block_for_node(phi);
1863           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1864             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1865             Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1866             insert_proj( phi_block, 1, spill, maxlrg++ );
1867             n->set_req(1,spill);
1868             must_recompute_live = true;
1869           }
1870         }
1871       }
1872 
1873       // Get value being defined
1874       uint lidx = _lrg_map.live_range_id(n);
1875       // Ignore the occasional brand-new live range
1876       if (lidx && lidx < _lrg_map.max_lrg_id()) {
1877         // Remove from live-out set
1878         liveout.remove(lidx);
1879 
1880         // Copies do not define a new value and so do not interfere.
1881         // Remove the copies source from the liveout set before interfering.
1882         uint idx = n->is_Copy();
1883         if (idx) {
1884           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1885         }
1886       }
1887 
1888       // Found a safepoint?
1889       JVMState *jvms = n->jvms();
1890       if( jvms ) {
1891         // Now scan for a live derived pointer
1892         IndexSetIterator elements(&liveout);
1893         uint neighbor;
1894         while ((neighbor = elements.next()) != 0) {
1895           // Find reaching DEF for base and derived values
1896           // This works because we are still in SSA during this call.
1897           Node *derived = lrgs(neighbor)._def;
1898           const TypePtr *tj = derived->bottom_type()->isa_ptr();
1899           assert(!derived->bottom_type()->isa_narrowoop() ||
1900                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1901           // If its an OOP with a non-zero offset, then it is derived.
1902           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1903             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1904             assert(base->_idx < _lrg_map.size(), "");
1905             // Add reaching DEFs of derived pointer and base pointer as a
1906             // pair of inputs
1907             n->add_req(derived);
1908             n->add_req(base);
1909 
1910             // See if the base pointer is already live to this point.
1911             // Since I'm working on the SSA form, live-ness amounts to
1912             // reaching def's.  So if I find the base's live range then
1913             // I know the base's def reaches here.
1914             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1915                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1916                  (_lrg_map.live_range_id(base) > 0) && // not a constant
1917                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1918               // Base pointer is not currently live.  Since I stretched
1919               // the base pointer to here and it crosses basic-block
1920               // boundaries, the global live info is now incorrect.
1921               // Recompute live.
1922               must_recompute_live = true;
1923             } // End of if base pointer is not live to debug info
1924           }
1925         } // End of scan all live data for derived ptrs crossing GC point
1926       } // End of if found a GC point
1927 
1928       // Make all inputs live
1929       if (!n->is_Phi()) {      // Phi function uses come from prior block
1930         for (uint k = 1; k < n->req(); k++) {
1931           uint lidx = _lrg_map.live_range_id(n->in(k));
1932           if (lidx < _lrg_map.max_lrg_id()) {
1933             liveout.insert(lidx);
1934           }
1935         }
1936       }
1937 
1938     } // End of forall instructions in block
1939     liveout.clear();  // Free the memory used by liveout.
1940 
1941   } // End of forall blocks
1942   _lrg_map.set_max_lrg_id(maxlrg);
1943 
1944   // If I created a new live range I need to recompute live
1945   if (maxlrg != _ifg->_maxlrg) {
1946     must_recompute_live = true;
1947   }
1948 
1949   return must_recompute_live != 0;
1950 }
1951 
1952 // Extend the node to LRG mapping
1953 
1954 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1955   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1956 }
1957 
1958 #ifndef PRODUCT
1959 void PhaseChaitin::dump(const Node *n) const {
1960   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1961   tty->print("L%d",r);
1962   if (r && n->Opcode() != Op_Phi) {
1963     if( _node_regs ) {          // Got a post-allocation copy of allocation?
1964       tty->print("[");
1965       OptoReg::Name second = get_reg_second(n);
1966       if( OptoReg::is_valid(second) ) {
1967         if( OptoReg::is_reg(second) )
1968           tty->print("%s:",Matcher::regName[second]);
1969         else
1970           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1971       }
1972       OptoReg::Name first = get_reg_first(n);
1973       if( OptoReg::is_reg(first) )
1974         tty->print("%s]",Matcher::regName[first]);
1975       else
1976          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1977     } else
1978     n->out_RegMask().dump();
1979   }
1980   tty->print("/N%d\t",n->_idx);
1981   tty->print("%s === ", n->Name());
1982   uint k;
1983   for (k = 0; k < n->req(); k++) {
1984     Node *m = n->in(k);
1985     if (!m) {
1986       tty->print("_ ");
1987     }
1988     else {
1989       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1990       tty->print("L%d",r);
1991       // Data MultiNode's can have projections with no real registers.
1992       // Don't die while dumping them.
1993       int op = n->Opcode();
1994       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1995         if( _node_regs ) {
1996           tty->print("[");
1997           OptoReg::Name second = get_reg_second(n->in(k));
1998           if( OptoReg::is_valid(second) ) {
1999             if( OptoReg::is_reg(second) )
2000               tty->print("%s:",Matcher::regName[second]);
2001             else
2002               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2003                          reg2offset_unchecked(second));
2004           }
2005           OptoReg::Name first = get_reg_first(n->in(k));
2006           if( OptoReg::is_reg(first) )
2007             tty->print("%s]",Matcher::regName[first]);
2008           else
2009             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2010                        reg2offset_unchecked(first));
2011         } else
2012           n->in_RegMask(k).dump();
2013       }
2014       tty->print("/N%d ",m->_idx);
2015     }
2016   }
2017   if( k < n->len() && n->in(k) ) tty->print("| ");
2018   for( ; k < n->len(); k++ ) {
2019     Node *m = n->in(k);
2020     if(!m) {
2021       break;
2022     }
2023     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2024     tty->print("L%d",r);
2025     tty->print("/N%d ",m->_idx);
2026   }
2027   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2028   else n->dump_spec(tty);
2029   if( _spilled_once.test(n->_idx ) ) {
2030     tty->print(" Spill_1");
2031     if( _spilled_twice.test(n->_idx ) )
2032       tty->print(" Spill_2");
2033   }
2034   tty->print("\n");
2035 }
2036 
2037 void PhaseChaitin::dump(const Block *b) const {
2038   b->dump_head(&_cfg);
2039 
2040   // For all instructions
2041   for( uint j = 0; j < b->number_of_nodes(); j++ )
2042     dump(b->get_node(j));
2043   // Print live-out info at end of block
2044   if( _live ) {
2045     tty->print("Liveout: ");
2046     IndexSet *live = _live->live(b);
2047     IndexSetIterator elements(live);
2048     tty->print("{");
2049     uint i;
2050     while ((i = elements.next()) != 0) {
2051       tty->print("L%d ", _lrg_map.find_const(i));
2052     }
2053     tty->print_cr("}");
2054   }
2055   tty->print("\n");
2056 }
2057 
2058 void PhaseChaitin::dump() const {
2059   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2060               _matcher._new_SP, _framesize );
2061 
2062   // For all blocks
2063   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2064     dump(_cfg.get_block(i));
2065   }
2066   // End of per-block dump
2067   tty->print("\n");
2068 
2069   if (!_ifg) {
2070     tty->print("(No IFG.)\n");
2071     return;
2072   }
2073 
2074   // Dump LRG array
2075   tty->print("--- Live RanGe Array ---\n");
2076   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2077     tty->print("L%d: ",i2);
2078     if (i2 < _ifg->_maxlrg) {
2079       lrgs(i2).dump();
2080     }
2081     else {
2082       tty->print_cr("new LRG");
2083     }
2084   }
2085   tty->cr();
2086 
2087   // Dump lo-degree list
2088   tty->print("Lo degree: ");
2089   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2090     tty->print("L%d ",i3);
2091   tty->cr();
2092 
2093   // Dump lo-stk-degree list
2094   tty->print("Lo stk degree: ");
2095   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2096     tty->print("L%d ",i4);
2097   tty->cr();
2098 
2099   // Dump lo-degree list
2100   tty->print("Hi degree: ");
2101   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2102     tty->print("L%d ",i5);
2103   tty->cr();
2104 }
2105 
2106 void PhaseChaitin::dump_degree_lists() const {
2107   // Dump lo-degree list
2108   tty->print("Lo degree: ");
2109   for( uint i = _lo_degree; i; i = lrgs(i)._next )
2110     tty->print("L%d ",i);
2111   tty->cr();
2112 
2113   // Dump lo-stk-degree list
2114   tty->print("Lo stk degree: ");
2115   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2116     tty->print("L%d ",i2);
2117   tty->cr();
2118 
2119   // Dump lo-degree list
2120   tty->print("Hi degree: ");
2121   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2122     tty->print("L%d ",i3);
2123   tty->cr();
2124 }
2125 
2126 void PhaseChaitin::dump_simplified() const {
2127   tty->print("Simplified: ");
2128   for( uint i = _simplified; i; i = lrgs(i)._next )
2129     tty->print("L%d ",i);
2130   tty->cr();
2131 }
2132 
2133 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2134   if ((int)reg < 0)
2135     sprintf(buf, "<OptoReg::%d>", (int)reg);
2136   else if (OptoReg::is_reg(reg))
2137     strcpy(buf, Matcher::regName[reg]);
2138   else
2139     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2140             pc->reg2offset(reg));
2141   return buf+strlen(buf);
2142 }
2143 
2144 // Dump a register name into a buffer.  Be intelligent if we get called
2145 // before allocation is complete.
2146 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
2147   if( this == NULL ) {          // Not got anything?
2148     sprintf(buf,"N%d",n->_idx); // Then use Node index
2149   } else if( _node_regs ) {
2150     // Post allocation, use direct mappings, no LRG info available
2151     print_reg( get_reg_first(n), this, buf );
2152   } else {
2153     uint lidx = _lrg_map.find_const(n); // Grab LRG number
2154     if( !_ifg ) {
2155       sprintf(buf,"L%d",lidx);  // No register binding yet
2156     } else if( !lidx ) {        // Special, not allocated value
2157       strcpy(buf,"Special");
2158     } else {
2159       if (lrgs(lidx)._is_vector) {
2160         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2161           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2162         else
2163           sprintf(buf,"L%d",lidx); // No register binding yet
2164       } else if( (lrgs(lidx).num_regs() == 1)
2165                  ? lrgs(lidx).mask().is_bound1()
2166                  : lrgs(lidx).mask().is_bound_pair() ) {
2167         // Hah!  We have a bound machine register
2168         print_reg( lrgs(lidx).reg(), this, buf );
2169       } else {
2170         sprintf(buf,"L%d",lidx); // No register binding yet
2171       }
2172     }
2173   }
2174   return buf+strlen(buf);
2175 }
2176 
2177 void PhaseChaitin::dump_for_spill_split_recycle() const {
2178   if( WizardMode && (PrintCompilation || PrintOpto) ) {
2179     // Display which live ranges need to be split and the allocator's state
2180     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2181     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2182       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2183         tty->print("L%d: ", bidx);
2184         lrgs(bidx).dump();
2185       }
2186     }
2187     tty->cr();
2188     dump();
2189   }
2190 }
2191 
2192 void PhaseChaitin::dump_frame() const {
2193   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2194   const TypeTuple *domain = C->tf()->domain();
2195   const int        argcnt = domain->cnt() - TypeFunc::Parms;
2196 
2197   // Incoming arguments in registers dump
2198   for( int k = 0; k < argcnt; k++ ) {
2199     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2200     if( OptoReg::is_reg(parmreg))  {
2201       const char *reg_name = OptoReg::regname(parmreg);
2202       tty->print("#r%3.3d %s", parmreg, reg_name);
2203       parmreg = _matcher._parm_regs[k].second();
2204       if( OptoReg::is_reg(parmreg))  {
2205         tty->print(":%s", OptoReg::regname(parmreg));
2206       }
2207       tty->print("   : parm %d: ", k);
2208       domain->field_at(k + TypeFunc::Parms)->dump();
2209       tty->cr();
2210     }
2211   }
2212 
2213   // Check for un-owned padding above incoming args
2214   OptoReg::Name reg = _matcher._new_SP;
2215   if( reg > _matcher._in_arg_limit ) {
2216     reg = OptoReg::add(reg, -1);
2217     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2218   }
2219 
2220   // Incoming argument area dump
2221   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2222   while( reg > begin_in_arg ) {
2223     reg = OptoReg::add(reg, -1);
2224     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2225     int j;
2226     for( j = 0; j < argcnt; j++) {
2227       if( _matcher._parm_regs[j].first() == reg ||
2228           _matcher._parm_regs[j].second() == reg ) {
2229         tty->print("parm %d: ",j);
2230         domain->field_at(j + TypeFunc::Parms)->dump();
2231         tty->cr();
2232         break;
2233       }
2234     }
2235     if( j >= argcnt )
2236       tty->print_cr("HOLE, owned by SELF");
2237   }
2238 
2239   // Old outgoing preserve area
2240   while( reg > _matcher._old_SP ) {
2241     reg = OptoReg::add(reg, -1);
2242     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2243   }
2244 
2245   // Old SP
2246   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2247     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2248 
2249   // Preserve area dump
2250   int fixed_slots = C->fixed_slots();
2251   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2252   OptoReg::Name return_addr = _matcher.return_addr();
2253 
2254   reg = OptoReg::add(reg, -1);
2255   while (OptoReg::is_stack(reg)) {
2256     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2257     if (return_addr == reg) {
2258       tty->print_cr("return address");
2259     } else if (reg >= begin_in_preserve) {
2260       // Preserved slots are present on x86
2261       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2262         tty->print_cr("saved fp register");
2263       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2264                VerifyStackAtCalls)
2265         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2266       else
2267         tty->print_cr("in_preserve");
2268     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2269       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2270     } else {
2271       tty->print_cr("pad2, stack alignment");
2272     }
2273     reg = OptoReg::add(reg, -1);
2274   }
2275 
2276   // Spill area dump
2277   reg = OptoReg::add(_matcher._new_SP, _framesize );
2278   while( reg > _matcher._out_arg_limit ) {
2279     reg = OptoReg::add(reg, -1);
2280     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2281   }
2282 
2283   // Outgoing argument area dump
2284   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2285     reg = OptoReg::add(reg, -1);
2286     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2287   }
2288 
2289   // Outgoing new preserve area
2290   while( reg > _matcher._new_SP ) {
2291     reg = OptoReg::add(reg, -1);
2292     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2293   }
2294   tty->print_cr("#");
2295 }
2296 
2297 void PhaseChaitin::dump_bb( uint pre_order ) const {
2298   tty->print_cr("---dump of B%d---",pre_order);
2299   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2300     Block* block = _cfg.get_block(i);
2301     if (block->_pre_order == pre_order) {
2302       dump(block);
2303     }
2304   }
2305 }
2306 
2307 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2308   tty->print_cr("---dump of L%d---",lidx);
2309 
2310   if (_ifg) {
2311     if (lidx >= _lrg_map.max_lrg_id()) {
2312       tty->print("Attempt to print live range index beyond max live range.\n");
2313       return;
2314     }
2315     tty->print("L%d: ",lidx);
2316     if (lidx < _ifg->_maxlrg) {
2317       lrgs(lidx).dump();
2318     } else {
2319       tty->print_cr("new LRG");
2320     }
2321   }
2322   if( _ifg && lidx < _ifg->_maxlrg) {
2323     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2324     _ifg->neighbors(lidx)->dump();
2325     tty->cr();
2326   }
2327   // For all blocks
2328   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2329     Block* block = _cfg.get_block(i);
2330     int dump_once = 0;
2331 
2332     // For all instructions
2333     for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2334       Node *n = block->get_node(j);
2335       if (_lrg_map.find_const(n) == lidx) {
2336         if (!dump_once++) {
2337           tty->cr();
2338           block->dump_head(&_cfg);
2339         }
2340         dump(n);
2341         continue;
2342       }
2343       if (!defs_only) {
2344         uint cnt = n->req();
2345         for( uint k = 1; k < cnt; k++ ) {
2346           Node *m = n->in(k);
2347           if (!m)  {
2348             continue;  // be robust in the dumper
2349           }
2350           if (_lrg_map.find_const(m) == lidx) {
2351             if (!dump_once++) {
2352               tty->cr();
2353               block->dump_head(&_cfg);
2354             }
2355             dump(n);
2356           }
2357         }
2358       }
2359     }
2360   } // End of per-block dump
2361   tty->cr();
2362 }
2363 #endif // not PRODUCT
2364 
2365 int PhaseChaitin::_final_loads  = 0;
2366 int PhaseChaitin::_final_stores = 0;
2367 int PhaseChaitin::_final_memoves= 0;
2368 int PhaseChaitin::_final_copies = 0;
2369 double PhaseChaitin::_final_load_cost  = 0;
2370 double PhaseChaitin::_final_store_cost = 0;
2371 double PhaseChaitin::_final_memove_cost= 0;
2372 double PhaseChaitin::_final_copy_cost  = 0;
2373 int PhaseChaitin::_conserv_coalesce = 0;
2374 int PhaseChaitin::_conserv_coalesce_pair = 0;
2375 int PhaseChaitin::_conserv_coalesce_trie = 0;
2376 int PhaseChaitin::_conserv_coalesce_quad = 0;
2377 int PhaseChaitin::_post_alloc = 0;
2378 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2379 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2380 int PhaseChaitin::_used_cisc_instructions   = 0;
2381 int PhaseChaitin::_unused_cisc_instructions = 0;
2382 int PhaseChaitin::_allocator_attempts       = 0;
2383 int PhaseChaitin::_allocator_successes      = 0;
2384 
2385 #ifndef PRODUCT
2386 uint PhaseChaitin::_high_pressure           = 0;
2387 uint PhaseChaitin::_low_pressure            = 0;
2388 
2389 void PhaseChaitin::print_chaitin_statistics() {
2390   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2391   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2392   tty->print_cr("Adjusted spill cost = %7.0f.",
2393                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2394                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2395   tty->print("Conservatively coalesced %d copies, %d pairs",
2396                 _conserv_coalesce, _conserv_coalesce_pair);
2397   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2398     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2399   tty->print_cr(", %d post alloc.", _post_alloc);
2400   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2401     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2402                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2403   if( _used_cisc_instructions || _unused_cisc_instructions )
2404     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2405                    _used_cisc_instructions, _unused_cisc_instructions);
2406   if( _allocator_successes != 0 )
2407     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2408   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2409 }
2410 #endif // not PRODUCT