1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "gc/shared/vmGCOperations.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "logging/log.hpp"
  37 #include "logging/logStream.inline.hpp"
  38 #include "memory/allocation.inline.hpp"
  39 #ifdef ASSERT
  40 #include "memory/guardedMemory.hpp"
  41 #endif
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/privilegedStack.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/os.inline.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/vm_version.hpp"
  58 #include "services/attachListener.hpp"
  59 #include "services/mallocTracker.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "services/nmtCommon.hpp"
  62 #include "services/threadService.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 
  67 # include <signal.h>
  68 # include <errno.h>
  69 
  70 OSThread*         os::_starting_thread    = NULL;
  71 address           os::_polling_page       = NULL;
  72 volatile int32_t* os::_mem_serialize_page = NULL;
  73 uintptr_t         os::_serialize_page_mask = 0;
  74 volatile unsigned int os::_rand_seed      = 1;
  75 int               os::_processor_count    = 0;
  76 int               os::_initial_active_processor_count = 0;
  77 size_t            os::_page_sizes[os::page_sizes_max];
  78 
  79 #ifndef PRODUCT
  80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  81 julong os::alloc_bytes = 0;         // # of bytes allocated
  82 julong os::num_frees = 0;           // # of calls to free
  83 julong os::free_bytes = 0;          // # of bytes freed
  84 #endif
  85 
  86 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  87 
  88 void os_init_globals() {
  89   // Called from init_globals().
  90   // See Threads::create_vm() in thread.cpp, and init.cpp.
  91   os::init_globals();
  92 }
  93 
  94 // Fill in buffer with current local time as an ISO-8601 string.
  95 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  96 // Returns buffer, or NULL if it failed.
  97 // This would mostly be a call to
  98 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  99 // except that on Windows the %z behaves badly, so we do it ourselves.
 100 // Also, people wanted milliseconds on there,
 101 // and strftime doesn't do milliseconds.
 102 char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
 103   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 104   //                                      1         2
 105   //                             12345678901234567890123456789
 106   // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
 107   static const size_t needed_buffer = 29;
 108 
 109   // Sanity check the arguments
 110   if (buffer == NULL) {
 111     assert(false, "NULL buffer");
 112     return NULL;
 113   }
 114   if (buffer_length < needed_buffer) {
 115     assert(false, "buffer_length too small");
 116     return NULL;
 117   }
 118   // Get the current time
 119   jlong milliseconds_since_19700101 = javaTimeMillis();
 120   const int milliseconds_per_microsecond = 1000;
 121   const time_t seconds_since_19700101 =
 122     milliseconds_since_19700101 / milliseconds_per_microsecond;
 123   const int milliseconds_after_second =
 124     milliseconds_since_19700101 % milliseconds_per_microsecond;
 125   // Convert the time value to a tm and timezone variable
 126   struct tm time_struct;
 127   if (utc) {
 128     if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 129       assert(false, "Failed gmtime_pd");
 130       return NULL;
 131     }
 132   } else {
 133     if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 134       assert(false, "Failed localtime_pd");
 135       return NULL;
 136     }
 137   }
 138 #if defined(_ALLBSD_SOURCE)
 139   const time_t zone = (time_t) time_struct.tm_gmtoff;
 140 #else
 141   const time_t zone = timezone;
 142 #endif
 143 
 144   // If daylight savings time is in effect,
 145   // we are 1 hour East of our time zone
 146   const time_t seconds_per_minute = 60;
 147   const time_t minutes_per_hour = 60;
 148   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 149   time_t UTC_to_local = zone;
 150   if (time_struct.tm_isdst > 0) {
 151     UTC_to_local = UTC_to_local - seconds_per_hour;
 152   }
 153 
 154   // No offset when dealing with UTC
 155   if (utc) {
 156     UTC_to_local = 0;
 157   }
 158 
 159   // Compute the time zone offset.
 160   //    localtime_pd() sets timezone to the difference (in seconds)
 161   //    between UTC and and local time.
 162   //    ISO 8601 says we need the difference between local time and UTC,
 163   //    we change the sign of the localtime_pd() result.
 164   const time_t local_to_UTC = -(UTC_to_local);
 165   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 166   char sign_local_to_UTC = '+';
 167   time_t abs_local_to_UTC = local_to_UTC;
 168   if (local_to_UTC < 0) {
 169     sign_local_to_UTC = '-';
 170     abs_local_to_UTC = -(abs_local_to_UTC);
 171   }
 172   // Convert time zone offset seconds to hours and minutes.
 173   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 174   const time_t zone_min =
 175     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 176 
 177   // Print an ISO 8601 date and time stamp into the buffer
 178   const int year = 1900 + time_struct.tm_year;
 179   const int month = 1 + time_struct.tm_mon;
 180   const int printed = jio_snprintf(buffer, buffer_length,
 181                                    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
 182                                    year,
 183                                    month,
 184                                    time_struct.tm_mday,
 185                                    time_struct.tm_hour,
 186                                    time_struct.tm_min,
 187                                    time_struct.tm_sec,
 188                                    milliseconds_after_second,
 189                                    sign_local_to_UTC,
 190                                    zone_hours,
 191                                    zone_min);
 192   if (printed == 0) {
 193     assert(false, "Failed jio_printf");
 194     return NULL;
 195   }
 196   return buffer;
 197 }
 198 
 199 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 200 #ifdef ASSERT
 201   if (!(!thread->is_Java_thread() ||
 202          Thread::current() == thread  ||
 203          Threads_lock->owned_by_self()
 204          || thread->is_Compiler_thread()
 205         )) {
 206     assert(false, "possibility of dangling Thread pointer");
 207   }
 208 #endif
 209 
 210   if (p >= MinPriority && p <= MaxPriority) {
 211     int priority = java_to_os_priority[p];
 212     return set_native_priority(thread, priority);
 213   } else {
 214     assert(false, "Should not happen");
 215     return OS_ERR;
 216   }
 217 }
 218 
 219 // The mapping from OS priority back to Java priority may be inexact because
 220 // Java priorities can map M:1 with native priorities. If you want the definite
 221 // Java priority then use JavaThread::java_priority()
 222 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 223   int p;
 224   int os_prio;
 225   OSReturn ret = get_native_priority(thread, &os_prio);
 226   if (ret != OS_OK) return ret;
 227 
 228   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 229     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 230   } else {
 231     // niceness values are in reverse order
 232     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 233   }
 234   priority = (ThreadPriority)p;
 235   return OS_OK;
 236 }
 237 
 238 
 239 // --------------------- sun.misc.Signal (optional) ---------------------
 240 
 241 
 242 // SIGBREAK is sent by the keyboard to query the VM state
 243 #ifndef SIGBREAK
 244 #define SIGBREAK SIGQUIT
 245 #endif
 246 
 247 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 248 
 249 
 250 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 251   os::set_priority(thread, NearMaxPriority);
 252   while (true) {
 253     int sig;
 254     {
 255       // FIXME : Currently we have not decided what should be the status
 256       //         for this java thread blocked here. Once we decide about
 257       //         that we should fix this.
 258       sig = os::signal_wait();
 259     }
 260     if (sig == os::sigexitnum_pd()) {
 261        // Terminate the signal thread
 262        return;
 263     }
 264 
 265     switch (sig) {
 266       case SIGBREAK: {
 267         // Check if the signal is a trigger to start the Attach Listener - in that
 268         // case don't print stack traces.
 269         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 270           continue;
 271         }
 272         // Print stack traces
 273         // Any SIGBREAK operations added here should make sure to flush
 274         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 275         // Each module also prints an extra carriage return after its output.
 276         VM_PrintThreads op;
 277         VMThread::execute(&op);
 278         VM_PrintJNI jni_op;
 279         VMThread::execute(&jni_op);
 280         VM_FindDeadlocks op1(tty);
 281         VMThread::execute(&op1);
 282         Universe::print_heap_at_SIGBREAK();
 283         if (PrintClassHistogram) {
 284           VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
 285           VMThread::execute(&op1);
 286         }
 287         if (JvmtiExport::should_post_data_dump()) {
 288           JvmtiExport::post_data_dump();
 289         }
 290         break;
 291       }
 292       default: {
 293         // Dispatch the signal to java
 294         HandleMark hm(THREAD);
 295         Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
 296         if (klass != NULL) {
 297           JavaValue result(T_VOID);
 298           JavaCallArguments args;
 299           args.push_int(sig);
 300           JavaCalls::call_static(
 301             &result,
 302             klass,
 303             vmSymbols::dispatch_name(),
 304             vmSymbols::int_void_signature(),
 305             &args,
 306             THREAD
 307           );
 308         }
 309         if (HAS_PENDING_EXCEPTION) {
 310           // tty is initialized early so we don't expect it to be null, but
 311           // if it is we can't risk doing an initialization that might
 312           // trigger additional out-of-memory conditions
 313           if (tty != NULL) {
 314             char klass_name[256];
 315             char tmp_sig_name[16];
 316             const char* sig_name = "UNKNOWN";
 317             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 318               name()->as_klass_external_name(klass_name, 256);
 319             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 320               sig_name = tmp_sig_name;
 321             warning("Exception %s occurred dispatching signal %s to handler"
 322                     "- the VM may need to be forcibly terminated",
 323                     klass_name, sig_name );
 324           }
 325           CLEAR_PENDING_EXCEPTION;
 326         }
 327       }
 328     }
 329   }
 330 }
 331 
 332 void os::init_before_ergo() {
 333   initialize_initial_active_processor_count();
 334   // We need to initialize large page support here because ergonomics takes some
 335   // decisions depending on large page support and the calculated large page size.
 336   large_page_init();
 337 
 338   // We need to adapt the configured number of stack protection pages given
 339   // in 4K pages to the actual os page size. We must do this before setting
 340   // up minimal stack sizes etc. in os::init_2().
 341   JavaThread::set_stack_red_zone_size     (align_up(StackRedPages      * 4 * K, vm_page_size()));
 342   JavaThread::set_stack_yellow_zone_size  (align_up(StackYellowPages   * 4 * K, vm_page_size()));
 343   JavaThread::set_stack_reserved_zone_size(align_up(StackReservedPages * 4 * K, vm_page_size()));
 344   JavaThread::set_stack_shadow_zone_size  (align_up(StackShadowPages   * 4 * K, vm_page_size()));
 345 
 346   // VM version initialization identifies some characteristics of the
 347   // platform that are used during ergonomic decisions.
 348   VM_Version::init_before_ergo();
 349 }
 350 
 351 void os::signal_init(TRAPS) {
 352   if (!ReduceSignalUsage) {
 353     // Setup JavaThread for processing signals
 354     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 355     InstanceKlass* ik = InstanceKlass::cast(k);
 356     instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
 357 
 358     const char thread_name[] = "Signal Dispatcher";
 359     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 360 
 361     // Initialize thread_oop to put it into the system threadGroup
 362     Handle thread_group (THREAD, Universe::system_thread_group());
 363     JavaValue result(T_VOID);
 364     JavaCalls::call_special(&result, thread_oop,
 365                            ik,
 366                            vmSymbols::object_initializer_name(),
 367                            vmSymbols::threadgroup_string_void_signature(),
 368                            thread_group,
 369                            string,
 370                            CHECK);
 371 
 372     Klass* group = SystemDictionary::ThreadGroup_klass();
 373     JavaCalls::call_special(&result,
 374                             thread_group,
 375                             group,
 376                             vmSymbols::add_method_name(),
 377                             vmSymbols::thread_void_signature(),
 378                             thread_oop,         // ARG 1
 379                             CHECK);
 380 
 381     os::signal_init_pd();
 382 
 383     { MutexLocker mu(Threads_lock);
 384       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 385 
 386       // At this point it may be possible that no osthread was created for the
 387       // JavaThread due to lack of memory. We would have to throw an exception
 388       // in that case. However, since this must work and we do not allow
 389       // exceptions anyway, check and abort if this fails.
 390       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 391         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 392                                       os::native_thread_creation_failed_msg());
 393       }
 394 
 395       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 396       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 397       java_lang_Thread::set_daemon(thread_oop());
 398 
 399       signal_thread->set_threadObj(thread_oop());
 400       Threads::add(signal_thread);
 401       Thread::start(signal_thread);
 402     }
 403     // Handle ^BREAK
 404     os::signal(SIGBREAK, os::user_handler());
 405   }
 406 }
 407 
 408 
 409 void os::terminate_signal_thread() {
 410   if (!ReduceSignalUsage)
 411     signal_notify(sigexitnum_pd());
 412 }
 413 
 414 
 415 // --------------------- loading libraries ---------------------
 416 
 417 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 418 extern struct JavaVM_ main_vm;
 419 
 420 static void* _native_java_library = NULL;
 421 
 422 void* os::native_java_library() {
 423   if (_native_java_library == NULL) {
 424     char buffer[JVM_MAXPATHLEN];
 425     char ebuf[1024];
 426 
 427     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 428     // always able to find it when the loading executable is outside the JDK.
 429     // In order to keep working with 1.2 we ignore any loading errors.
 430     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 431                        "verify")) {
 432       dll_load(buffer, ebuf, sizeof(ebuf));
 433     }
 434 
 435     // Load java dll
 436     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 437                        "java")) {
 438       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 439     }
 440     if (_native_java_library == NULL) {
 441       vm_exit_during_initialization("Unable to load native library", ebuf);
 442     }
 443 
 444 #if defined(__OpenBSD__)
 445     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 446     // ignore errors
 447     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 448                        "net")) {
 449       dll_load(buffer, ebuf, sizeof(ebuf));
 450     }
 451 #endif
 452   }
 453   return _native_java_library;
 454 }
 455 
 456 /*
 457  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 458  * If check_lib == true then we are looking for an
 459  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 460  * this library is statically linked into the image.
 461  * If check_lib == false then we will look for the appropriate symbol in the
 462  * executable if agent_lib->is_static_lib() == true or in the shared library
 463  * referenced by 'handle'.
 464  */
 465 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 466                               const char *syms[], size_t syms_len) {
 467   assert(agent_lib != NULL, "sanity check");
 468   const char *lib_name;
 469   void *handle = agent_lib->os_lib();
 470   void *entryName = NULL;
 471   char *agent_function_name;
 472   size_t i;
 473 
 474   // If checking then use the agent name otherwise test is_static_lib() to
 475   // see how to process this lookup
 476   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 477   for (i = 0; i < syms_len; i++) {
 478     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 479     if (agent_function_name == NULL) {
 480       break;
 481     }
 482     entryName = dll_lookup(handle, agent_function_name);
 483     FREE_C_HEAP_ARRAY(char, agent_function_name);
 484     if (entryName != NULL) {
 485       break;
 486     }
 487   }
 488   return entryName;
 489 }
 490 
 491 // See if the passed in agent is statically linked into the VM image.
 492 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 493                             size_t syms_len) {
 494   void *ret;
 495   void *proc_handle;
 496   void *save_handle;
 497 
 498   assert(agent_lib != NULL, "sanity check");
 499   if (agent_lib->name() == NULL) {
 500     return false;
 501   }
 502   proc_handle = get_default_process_handle();
 503   // Check for Agent_OnLoad/Attach_lib_name function
 504   save_handle = agent_lib->os_lib();
 505   // We want to look in this process' symbol table.
 506   agent_lib->set_os_lib(proc_handle);
 507   ret = find_agent_function(agent_lib, true, syms, syms_len);
 508   if (ret != NULL) {
 509     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 510     agent_lib->set_valid();
 511     agent_lib->set_static_lib(true);
 512     return true;
 513   }
 514   agent_lib->set_os_lib(save_handle);
 515   return false;
 516 }
 517 
 518 // --------------------- heap allocation utilities ---------------------
 519 
 520 char *os::strdup(const char *str, MEMFLAGS flags) {
 521   size_t size = strlen(str);
 522   char *dup_str = (char *)malloc(size + 1, flags);
 523   if (dup_str == NULL) return NULL;
 524   strcpy(dup_str, str);
 525   return dup_str;
 526 }
 527 
 528 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
 529   char* p = os::strdup(str, flags);
 530   if (p == NULL) {
 531     vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
 532   }
 533   return p;
 534 }
 535 
 536 
 537 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 538 
 539 #ifdef ASSERT
 540 
 541 static void verify_memory(void* ptr) {
 542   GuardedMemory guarded(ptr);
 543   if (!guarded.verify_guards()) {
 544     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 545     tty->print_cr("## memory stomp:");
 546     guarded.print_on(tty);
 547     fatal("memory stomping error");
 548   }
 549 }
 550 
 551 #endif
 552 
 553 //
 554 // This function supports testing of the malloc out of memory
 555 // condition without really running the system out of memory.
 556 //
 557 static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
 558   if (MallocMaxTestWords > 0) {
 559     jint words = (jint)(alloc_size / BytesPerWord);
 560 
 561     if ((cur_malloc_words + words) > MallocMaxTestWords) {
 562       return true;
 563     }
 564     Atomic::add(words, (volatile jint *)&cur_malloc_words);
 565   }
 566   return false;
 567 }
 568 
 569 void* os::malloc(size_t size, MEMFLAGS flags) {
 570   return os::malloc(size, flags, CALLER_PC);
 571 }
 572 
 573 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 574   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 575   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 576 
 577 #ifdef ASSERT
 578   // checking for the WatcherThread and crash_protection first
 579   // since os::malloc can be called when the libjvm.{dll,so} is
 580   // first loaded and we don't have a thread yet.
 581   // try to find the thread after we see that the watcher thread
 582   // exists and has crash protection.
 583   WatcherThread *wt = WatcherThread::watcher_thread();
 584   if (wt != NULL && wt->has_crash_protection()) {
 585     Thread* thread = Thread::current_or_null();
 586     if (thread == wt) {
 587       assert(!wt->has_crash_protection(),
 588           "Can't malloc with crash protection from WatcherThread");
 589     }
 590   }
 591 #endif
 592 
 593   if (size == 0) {
 594     // return a valid pointer if size is zero
 595     // if NULL is returned the calling functions assume out of memory.
 596     size = 1;
 597   }
 598 
 599   // NMT support
 600   NMT_TrackingLevel level = MemTracker::tracking_level();
 601   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 602 
 603 #ifndef ASSERT
 604   const size_t alloc_size = size + nmt_header_size;
 605 #else
 606   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 607   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 608     return NULL;
 609   }
 610 #endif
 611 
 612   // For the test flag -XX:MallocMaxTestWords
 613   if (has_reached_max_malloc_test_peak(size)) {
 614     return NULL;
 615   }
 616 
 617   u_char* ptr;
 618   ptr = (u_char*)::malloc(alloc_size);
 619 
 620 #ifdef ASSERT
 621   if (ptr == NULL) {
 622     return NULL;
 623   }
 624   // Wrap memory with guard
 625   GuardedMemory guarded(ptr, size + nmt_header_size);
 626   ptr = guarded.get_user_ptr();
 627 #endif
 628   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 629     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 630     breakpoint();
 631   }
 632   debug_only(if (paranoid) verify_memory(ptr));
 633   if (PrintMalloc && tty != NULL) {
 634     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 635   }
 636 
 637   // we do not track guard memory
 638   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 639 }
 640 
 641 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 642   return os::realloc(memblock, size, flags, CALLER_PC);
 643 }
 644 
 645 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 646 
 647   // For the test flag -XX:MallocMaxTestWords
 648   if (has_reached_max_malloc_test_peak(size)) {
 649     return NULL;
 650   }
 651 
 652   if (size == 0) {
 653     // return a valid pointer if size is zero
 654     // if NULL is returned the calling functions assume out of memory.
 655     size = 1;
 656   }
 657 
 658 #ifndef ASSERT
 659   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 660   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 661    // NMT support
 662   void* membase = MemTracker::record_free(memblock);
 663   NMT_TrackingLevel level = MemTracker::tracking_level();
 664   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 665   void* ptr = ::realloc(membase, size + nmt_header_size);
 666   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 667 #else
 668   if (memblock == NULL) {
 669     return os::malloc(size, memflags, stack);
 670   }
 671   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 672     tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
 673     breakpoint();
 674   }
 675   // NMT support
 676   void* membase = MemTracker::malloc_base(memblock);
 677   verify_memory(membase);
 678   // always move the block
 679   void* ptr = os::malloc(size, memflags, stack);
 680   if (PrintMalloc && tty != NULL) {
 681     tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
 682   }
 683   // Copy to new memory if malloc didn't fail
 684   if ( ptr != NULL ) {
 685     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 686     // Guard's user data contains NMT header
 687     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 688     memcpy(ptr, memblock, MIN2(size, memblock_size));
 689     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
 690     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 691       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 692       breakpoint();
 693     }
 694     os::free(memblock);
 695   }
 696   return ptr;
 697 #endif
 698 }
 699 
 700 
 701 void  os::free(void *memblock) {
 702   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 703 #ifdef ASSERT
 704   if (memblock == NULL) return;
 705   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 706     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
 707     breakpoint();
 708   }
 709   void* membase = MemTracker::record_free(memblock);
 710   verify_memory(membase);
 711 
 712   GuardedMemory guarded(membase);
 713   size_t size = guarded.get_user_size();
 714   inc_stat_counter(&free_bytes, size);
 715   membase = guarded.release_for_freeing();
 716   if (PrintMalloc && tty != NULL) {
 717       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
 718   }
 719   ::free(membase);
 720 #else
 721   void* membase = MemTracker::record_free(memblock);
 722   ::free(membase);
 723 #endif
 724 }
 725 
 726 void os::init_random(unsigned int initval) {
 727   _rand_seed = initval;
 728 }
 729 
 730 
 731 static int random_helper(unsigned int rand_seed) {
 732   /* standard, well-known linear congruential random generator with
 733    * next_rand = (16807*seed) mod (2**31-1)
 734    * see
 735    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 736    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 737    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 738    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 739   */
 740   const unsigned int a = 16807;
 741   const unsigned int m = 2147483647;
 742   const int q = m / a;        assert(q == 127773, "weird math");
 743   const int r = m % a;        assert(r == 2836, "weird math");
 744 
 745   // compute az=2^31p+q
 746   unsigned int lo = a * (rand_seed & 0xFFFF);
 747   unsigned int hi = a * (rand_seed >> 16);
 748   lo += (hi & 0x7FFF) << 16;
 749 
 750   // if q overflowed, ignore the overflow and increment q
 751   if (lo > m) {
 752     lo &= m;
 753     ++lo;
 754   }
 755   lo += hi >> 15;
 756 
 757   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 758   if (lo > m) {
 759     lo &= m;
 760     ++lo;
 761   }
 762   return lo;
 763 }
 764 
 765 int os::random() {
 766   // Make updating the random seed thread safe.
 767   while (true) {
 768     unsigned int seed = _rand_seed;
 769     int rand = random_helper(seed);
 770     if (Atomic::cmpxchg(rand, &_rand_seed, seed) == seed) {
 771       return rand;
 772     }
 773   }
 774 }
 775 
 776 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 777 // conditions in which a thread is first started are different from those in which
 778 // a suspension is resumed.  These differences make it hard for us to apply the
 779 // tougher checks when starting threads that we want to do when resuming them.
 780 // However, when start_thread is called as a result of Thread.start, on a Java
 781 // thread, the operation is synchronized on the Java Thread object.  So there
 782 // cannot be a race to start the thread and hence for the thread to exit while
 783 // we are working on it.  Non-Java threads that start Java threads either have
 784 // to do so in a context in which races are impossible, or should do appropriate
 785 // locking.
 786 
 787 void os::start_thread(Thread* thread) {
 788   // guard suspend/resume
 789   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 790   OSThread* osthread = thread->osthread();
 791   osthread->set_state(RUNNABLE);
 792   pd_start_thread(thread);
 793 }
 794 
 795 void os::abort(bool dump_core) {
 796   abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
 797 }
 798 
 799 //---------------------------------------------------------------------------
 800 // Helper functions for fatal error handler
 801 
 802 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 803   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 804 
 805   int cols = 0;
 806   int cols_per_line = 0;
 807   switch (unitsize) {
 808     case 1: cols_per_line = 16; break;
 809     case 2: cols_per_line = 8;  break;
 810     case 4: cols_per_line = 4;  break;
 811     case 8: cols_per_line = 2;  break;
 812     default: return;
 813   }
 814 
 815   address p = start;
 816   st->print(PTR_FORMAT ":   ", p2i(start));
 817   while (p < end) {
 818     switch (unitsize) {
 819       case 1: st->print("%02x", *(u1*)p); break;
 820       case 2: st->print("%04x", *(u2*)p); break;
 821       case 4: st->print("%08x", *(u4*)p); break;
 822       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 823     }
 824     p += unitsize;
 825     cols++;
 826     if (cols >= cols_per_line && p < end) {
 827        cols = 0;
 828        st->cr();
 829        st->print(PTR_FORMAT ":   ", p2i(p));
 830     } else {
 831        st->print(" ");
 832     }
 833   }
 834   st->cr();
 835 }
 836 
 837 void os::print_environment_variables(outputStream* st, const char** env_list) {
 838   if (env_list) {
 839     st->print_cr("Environment Variables:");
 840 
 841     for (int i = 0; env_list[i] != NULL; i++) {
 842       char *envvar = ::getenv(env_list[i]);
 843       if (envvar != NULL) {
 844         st->print("%s", env_list[i]);
 845         st->print("=");
 846         st->print_cr("%s", envvar);
 847       }
 848     }
 849   }
 850 }
 851 
 852 void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
 853   // cpu
 854   st->print("CPU:");
 855   st->print("total %d", os::processor_count());
 856   // It's not safe to query number of active processors after crash
 857   // st->print("(active %d)", os::active_processor_count()); but we can
 858   // print the initial number of active processors.
 859   // We access the raw value here because the assert in the accessor will
 860   // fail if the crash occurs before initialization of this value.
 861   st->print(" (initial active %d)", _initial_active_processor_count);
 862   st->print(" %s", VM_Version::features_string());
 863   st->cr();
 864   pd_print_cpu_info(st, buf, buflen);
 865 }
 866 
 867 // Print a one line string summarizing the cpu, number of cores, memory, and operating system version
 868 void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
 869   st->print("Host: ");
 870 #ifndef PRODUCT
 871   if (get_host_name(buf, buflen)) {
 872     st->print("%s, ", buf);
 873   }
 874 #endif // PRODUCT
 875   get_summary_cpu_info(buf, buflen);
 876   st->print("%s, ", buf);
 877   size_t mem = physical_memory()/G;
 878   if (mem == 0) {  // for low memory systems
 879     mem = physical_memory()/M;
 880     st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
 881   } else {
 882     st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
 883   }
 884   get_summary_os_info(buf, buflen);
 885   st->print_raw(buf);
 886   st->cr();
 887 }
 888 
 889 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
 890   const int secs_per_day  = 86400;
 891   const int secs_per_hour = 3600;
 892   const int secs_per_min  = 60;
 893 
 894   time_t tloc;
 895   (void)time(&tloc);
 896   char* timestring = ctime(&tloc);  // ctime adds newline.
 897   // edit out the newline
 898   char* nl = strchr(timestring, '\n');
 899   if (nl != NULL) {
 900     *nl = '\0';
 901   }
 902 
 903   struct tm tz;
 904   if (localtime_pd(&tloc, &tz) != NULL) {
 905     ::strftime(buf, buflen, "%Z", &tz);
 906     st->print("Time: %s %s", timestring, buf);
 907   } else {
 908     st->print("Time: %s", timestring);
 909   }
 910 
 911   double t = os::elapsedTime();
 912   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 913   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 914   //       before printf. We lost some precision, but who cares?
 915   int eltime = (int)t;  // elapsed time in seconds
 916 
 917   // print elapsed time in a human-readable format:
 918   int eldays = eltime / secs_per_day;
 919   int day_secs = eldays * secs_per_day;
 920   int elhours = (eltime - day_secs) / secs_per_hour;
 921   int hour_secs = elhours * secs_per_hour;
 922   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 923   int minute_secs = elmins * secs_per_min;
 924   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 925   st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 926 }
 927 
 928 // moved from debug.cpp (used to be find()) but still called from there
 929 // The verbose parameter is only set by the debug code in one case
 930 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 931   address addr = (address)x;
 932   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 933   if (b != NULL) {
 934     if (b->is_buffer_blob()) {
 935       // the interpreter is generated into a buffer blob
 936       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 937       if (i != NULL) {
 938         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
 939         i->print_on(st);
 940         return;
 941       }
 942       if (Interpreter::contains(addr)) {
 943         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 944                      " (not bytecode specific)", p2i(addr));
 945         return;
 946       }
 947       //
 948       if (AdapterHandlerLibrary::contains(b)) {
 949         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
 950         AdapterHandlerLibrary::print_handler_on(st, b);
 951       }
 952       // the stubroutines are generated into a buffer blob
 953       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 954       if (d != NULL) {
 955         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
 956         d->print_on(st);
 957         st->cr();
 958         return;
 959       }
 960       if (StubRoutines::contains(addr)) {
 961         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
 962         return;
 963       }
 964       // the InlineCacheBuffer is using stubs generated into a buffer blob
 965       if (InlineCacheBuffer::contains(addr)) {
 966         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
 967         return;
 968       }
 969       VtableStub* v = VtableStubs::stub_containing(addr);
 970       if (v != NULL) {
 971         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
 972         v->print_on(st);
 973         st->cr();
 974         return;
 975       }
 976     }
 977     nmethod* nm = b->as_nmethod_or_null();
 978     if (nm != NULL) {
 979       ResourceMark rm;
 980       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 981                 p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
 982       if (verbose) {
 983         st->print(" for ");
 984         nm->method()->print_value_on(st);
 985       }
 986       st->cr();
 987       nm->print_nmethod(verbose);
 988       return;
 989     }
 990     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
 991     b->print_on(st);
 992     return;
 993   }
 994 
 995   if (Universe::heap()->is_in(addr)) {
 996     HeapWord* p = Universe::heap()->block_start(addr);
 997     bool print = false;
 998     // If we couldn't find it it just may mean that heap wasn't parsable
 999     // See if we were just given an oop directly
1000     if (p != NULL && Universe::heap()->block_is_obj(p)) {
1001       print = true;
1002     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
1003       p = (HeapWord*) addr;
1004       print = true;
1005     }
1006     if (print) {
1007       if (p == (HeapWord*) addr) {
1008         st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
1009       } else {
1010         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
1011       }
1012       oop(p)->print_on(st);
1013       return;
1014     }
1015   } else {
1016     if (Universe::heap()->is_in_reserved(addr)) {
1017       st->print_cr(INTPTR_FORMAT " is an unallocated location "
1018                    "in the heap", p2i(addr));
1019       return;
1020     }
1021   }
1022   if (JNIHandles::is_global_handle((jobject) addr)) {
1023     st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1024     return;
1025   }
1026   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1027     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1028     return;
1029   }
1030 #ifndef PRODUCT
1031   // we don't keep the block list in product mode
1032   if (JNIHandleBlock::any_contains((jobject) addr)) {
1033     st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1034     return;
1035   }
1036 #endif
1037 
1038   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1039     // Check for privilege stack
1040     if (thread->privileged_stack_top() != NULL &&
1041         thread->privileged_stack_top()->contains(addr)) {
1042       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1043                    "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1044       if (verbose) thread->print_on(st);
1045       return;
1046     }
1047     // If the addr is a java thread print information about that.
1048     if (addr == (address)thread) {
1049       if (verbose) {
1050         thread->print_on(st);
1051       } else {
1052         st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1053       }
1054       return;
1055     }
1056     // If the addr is in the stack region for this thread then report that
1057     // and print thread info
1058     if (thread->on_local_stack(addr)) {
1059       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1060                    INTPTR_FORMAT, p2i(addr), p2i(thread));
1061       if (verbose) thread->print_on(st);
1062       return;
1063     }
1064 
1065   }
1066 
1067   // Check if in metaspace and print types that have vptrs (only method now)
1068   if (Metaspace::contains(addr)) {
1069     if (Method::has_method_vptr((const void*)addr)) {
1070       ((Method*)addr)->print_value_on(st);
1071       st->cr();
1072     } else {
1073       // Use addr->print() from the debugger instead (not here)
1074       st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1075     }
1076     return;
1077   }
1078 
1079   // Try an OS specific find
1080   if (os::find(addr, st)) {
1081     return;
1082   }
1083 
1084   st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1085 }
1086 
1087 // Looks like all platforms except IA64 can use the same function to check
1088 // if C stack is walkable beyond current frame. The check for fp() is not
1089 // necessary on Sparc, but it's harmless.
1090 bool os::is_first_C_frame(frame* fr) {
1091 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1092   // On IA64 we have to check if the callers bsp is still valid
1093   // (i.e. within the register stack bounds).
1094   // Notice: this only works for threads created by the VM and only if
1095   // we walk the current stack!!! If we want to be able to walk
1096   // arbitrary other threads, we'll have to somehow store the thread
1097   // object in the frame.
1098   Thread *thread = Thread::current();
1099   if ((address)fr->fp() <=
1100       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1101     // This check is a little hacky, because on Linux the first C
1102     // frame's ('start_thread') register stack frame starts at
1103     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1104     // ('__pthread_bound_body') register stack frame seems to really
1105     // start at "register_stack_base".
1106     return true;
1107   } else {
1108     return false;
1109   }
1110 #elif defined(IA64) && defined(_WIN32)
1111   return true;
1112 #else
1113   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1114   // Check usp first, because if that's bad the other accessors may fault
1115   // on some architectures.  Ditto ufp second, etc.
1116   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1117   // sp on amd can be 32 bit aligned.
1118   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1119 
1120   uintptr_t usp    = (uintptr_t)fr->sp();
1121   if ((usp & sp_align_mask) != 0) return true;
1122 
1123   uintptr_t ufp    = (uintptr_t)fr->fp();
1124   if ((ufp & fp_align_mask) != 0) return true;
1125 
1126   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1127   if ((old_sp & sp_align_mask) != 0) return true;
1128   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1129 
1130   uintptr_t old_fp = (uintptr_t)fr->link();
1131   if ((old_fp & fp_align_mask) != 0) return true;
1132   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1133 
1134   // stack grows downwards; if old_fp is below current fp or if the stack
1135   // frame is too large, either the stack is corrupted or fp is not saved
1136   // on stack (i.e. on x86, ebp may be used as general register). The stack
1137   // is not walkable beyond current frame.
1138   if (old_fp < ufp) return true;
1139   if (old_fp - ufp > 64 * K) return true;
1140 
1141   return false;
1142 #endif
1143 }
1144 
1145 
1146 // Set up the boot classpath.
1147 
1148 char* os::format_boot_path(const char* format_string,
1149                            const char* home,
1150                            int home_len,
1151                            char fileSep,
1152                            char pathSep) {
1153     assert((fileSep == '/' && pathSep == ':') ||
1154            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1155 
1156     // Scan the format string to determine the length of the actual
1157     // boot classpath, and handle platform dependencies as well.
1158     int formatted_path_len = 0;
1159     const char* p;
1160     for (p = format_string; *p != 0; ++p) {
1161         if (*p == '%') formatted_path_len += home_len - 1;
1162         ++formatted_path_len;
1163     }
1164 
1165     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1166     if (formatted_path == NULL) {
1167         return NULL;
1168     }
1169 
1170     // Create boot classpath from format, substituting separator chars and
1171     // java home directory.
1172     char* q = formatted_path;
1173     for (p = format_string; *p != 0; ++p) {
1174         switch (*p) {
1175         case '%':
1176             strcpy(q, home);
1177             q += home_len;
1178             break;
1179         case '/':
1180             *q++ = fileSep;
1181             break;
1182         case ':':
1183             *q++ = pathSep;
1184             break;
1185         default:
1186             *q++ = *p;
1187         }
1188     }
1189     *q = '\0';
1190 
1191     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1192     return formatted_path;
1193 }
1194 
1195 bool os::set_boot_path(char fileSep, char pathSep) {
1196   const char* home = Arguments::get_java_home();
1197   int home_len = (int)strlen(home);
1198 
1199   struct stat st;
1200 
1201   // modular image if "modules" jimage exists
1202   char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1203   if (jimage == NULL) return false;
1204   bool has_jimage = (os::stat(jimage, &st) == 0);
1205   if (has_jimage) {
1206     Arguments::set_sysclasspath(jimage, true);
1207     FREE_C_HEAP_ARRAY(char, jimage);
1208     return true;
1209   }
1210   FREE_C_HEAP_ARRAY(char, jimage);
1211 
1212   // check if developer build with exploded modules
1213   char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
1214   if (base_classes == NULL) return false;
1215   if (os::stat(base_classes, &st) == 0) {
1216     Arguments::set_sysclasspath(base_classes, false);
1217     FREE_C_HEAP_ARRAY(char, base_classes);
1218     return true;
1219   }
1220   FREE_C_HEAP_ARRAY(char, base_classes);
1221 
1222   return false;
1223 }
1224 
1225 /*
1226  * Splits a path, based on its separator, the number of
1227  * elements is returned back in n.
1228  * It is the callers responsibility to:
1229  *   a> check the value of n, and n may be 0.
1230  *   b> ignore any empty path elements
1231  *   c> free up the data.
1232  */
1233 char** os::split_path(const char* path, int* n) {
1234   *n = 0;
1235   if (path == NULL || strlen(path) == 0) {
1236     return NULL;
1237   }
1238   const char psepchar = *os::path_separator();
1239   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1240   if (inpath == NULL) {
1241     return NULL;
1242   }
1243   strcpy(inpath, path);
1244   int count = 1;
1245   char* p = strchr(inpath, psepchar);
1246   // Get a count of elements to allocate memory
1247   while (p != NULL) {
1248     count++;
1249     p++;
1250     p = strchr(p, psepchar);
1251   }
1252   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1253   if (opath == NULL) {
1254     return NULL;
1255   }
1256 
1257   // do the actual splitting
1258   p = inpath;
1259   for (int i = 0 ; i < count ; i++) {
1260     size_t len = strcspn(p, os::path_separator());
1261     if (len > JVM_MAXPATHLEN) {
1262       return NULL;
1263     }
1264     // allocate the string and add terminator storage
1265     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1266     if (s == NULL) {
1267       return NULL;
1268     }
1269     strncpy(s, p, len);
1270     s[len] = '\0';
1271     opath[i] = s;
1272     p += len + 1;
1273   }
1274   FREE_C_HEAP_ARRAY(char, inpath);
1275   *n = count;
1276   return opath;
1277 }
1278 
1279 void os::set_memory_serialize_page(address page) {
1280   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1281   _mem_serialize_page = (volatile int32_t *)page;
1282   // We initialize the serialization page shift count here
1283   // We assume a cache line size of 64 bytes
1284   assert(SerializePageShiftCount == count, "JavaThread size changed; "
1285          "SerializePageShiftCount constant should be %d", count);
1286   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1287 }
1288 
1289 static volatile intptr_t SerializePageLock = 0;
1290 
1291 // This method is called from signal handler when SIGSEGV occurs while the current
1292 // thread tries to store to the "read-only" memory serialize page during state
1293 // transition.
1294 void os::block_on_serialize_page_trap() {
1295   log_debug(safepoint)("Block until the serialize page permission restored");
1296 
1297   // When VMThread is holding the SerializePageLock during modifying the
1298   // access permission of the memory serialize page, the following call
1299   // will block until the permission of that page is restored to rw.
1300   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1301   // this case, it's OK as the signal is synchronous and we know precisely when
1302   // it can occur.
1303   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1304   Thread::muxRelease(&SerializePageLock);
1305 }
1306 
1307 // Serialize all thread state variables
1308 void os::serialize_thread_states() {
1309   // On some platforms such as Solaris & Linux, the time duration of the page
1310   // permission restoration is observed to be much longer than expected  due to
1311   // scheduler starvation problem etc. To avoid the long synchronization
1312   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1313   // the mutator thread if such case is encountered. See bug 6546278 for details.
1314   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1315   os::protect_memory((char *)os::get_memory_serialize_page(),
1316                      os::vm_page_size(), MEM_PROT_READ);
1317   os::protect_memory((char *)os::get_memory_serialize_page(),
1318                      os::vm_page_size(), MEM_PROT_RW);
1319   Thread::muxRelease(&SerializePageLock);
1320 }
1321 
1322 // Returns true if the current stack pointer is above the stack shadow
1323 // pages, false otherwise.
1324 bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1325   if (!thread->is_Java_thread()) return false;
1326   // Check if we have StackShadowPages above the yellow zone.  This parameter
1327   // is dependent on the depth of the maximum VM call stack possible from
1328   // the handler for stack overflow.  'instanceof' in the stack overflow
1329   // handler or a println uses at least 8k stack of VM and native code
1330   // respectively.
1331   const int framesize_in_bytes =
1332     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1333 
1334   address limit = ((JavaThread*)thread)->stack_end() +
1335                   (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1336 
1337   return sp > (limit + framesize_in_bytes);
1338 }
1339 
1340 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1341   assert(min_pages > 0, "sanity");
1342   if (UseLargePages) {
1343     const size_t max_page_size = region_size / min_pages;
1344 
1345     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1346       const size_t page_size = _page_sizes[i];
1347       if (page_size <= max_page_size) {
1348         if (!must_be_aligned || is_aligned(region_size, page_size)) {
1349           return page_size;
1350         }
1351       }
1352     }
1353   }
1354 
1355   return vm_page_size();
1356 }
1357 
1358 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1359   return page_size_for_region(region_size, min_pages, true);
1360 }
1361 
1362 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1363   return page_size_for_region(region_size, min_pages, false);
1364 }
1365 
1366 static const char* errno_to_string (int e, bool short_text) {
1367   #define ALL_SHARED_ENUMS(X) \
1368     X(E2BIG, "Argument list too long") \
1369     X(EACCES, "Permission denied") \
1370     X(EADDRINUSE, "Address in use") \
1371     X(EADDRNOTAVAIL, "Address not available") \
1372     X(EAFNOSUPPORT, "Address family not supported") \
1373     X(EAGAIN, "Resource unavailable, try again") \
1374     X(EALREADY, "Connection already in progress") \
1375     X(EBADF, "Bad file descriptor") \
1376     X(EBADMSG, "Bad message") \
1377     X(EBUSY, "Device or resource busy") \
1378     X(ECANCELED, "Operation canceled") \
1379     X(ECHILD, "No child processes") \
1380     X(ECONNABORTED, "Connection aborted") \
1381     X(ECONNREFUSED, "Connection refused") \
1382     X(ECONNRESET, "Connection reset") \
1383     X(EDEADLK, "Resource deadlock would occur") \
1384     X(EDESTADDRREQ, "Destination address required") \
1385     X(EDOM, "Mathematics argument out of domain of function") \
1386     X(EEXIST, "File exists") \
1387     X(EFAULT, "Bad address") \
1388     X(EFBIG, "File too large") \
1389     X(EHOSTUNREACH, "Host is unreachable") \
1390     X(EIDRM, "Identifier removed") \
1391     X(EILSEQ, "Illegal byte sequence") \
1392     X(EINPROGRESS, "Operation in progress") \
1393     X(EINTR, "Interrupted function") \
1394     X(EINVAL, "Invalid argument") \
1395     X(EIO, "I/O error") \
1396     X(EISCONN, "Socket is connected") \
1397     X(EISDIR, "Is a directory") \
1398     X(ELOOP, "Too many levels of symbolic links") \
1399     X(EMFILE, "Too many open files") \
1400     X(EMLINK, "Too many links") \
1401     X(EMSGSIZE, "Message too large") \
1402     X(ENAMETOOLONG, "Filename too long") \
1403     X(ENETDOWN, "Network is down") \
1404     X(ENETRESET, "Connection aborted by network") \
1405     X(ENETUNREACH, "Network unreachable") \
1406     X(ENFILE, "Too many files open in system") \
1407     X(ENOBUFS, "No buffer space available") \
1408     X(ENODATA, "No message is available on the STREAM head read queue") \
1409     X(ENODEV, "No such device") \
1410     X(ENOENT, "No such file or directory") \
1411     X(ENOEXEC, "Executable file format error") \
1412     X(ENOLCK, "No locks available") \
1413     X(ENOLINK, "Reserved") \
1414     X(ENOMEM, "Not enough space") \
1415     X(ENOMSG, "No message of the desired type") \
1416     X(ENOPROTOOPT, "Protocol not available") \
1417     X(ENOSPC, "No space left on device") \
1418     X(ENOSR, "No STREAM resources") \
1419     X(ENOSTR, "Not a STREAM") \
1420     X(ENOSYS, "Function not supported") \
1421     X(ENOTCONN, "The socket is not connected") \
1422     X(ENOTDIR, "Not a directory") \
1423     X(ENOTEMPTY, "Directory not empty") \
1424     X(ENOTSOCK, "Not a socket") \
1425     X(ENOTSUP, "Not supported") \
1426     X(ENOTTY, "Inappropriate I/O control operation") \
1427     X(ENXIO, "No such device or address") \
1428     X(EOPNOTSUPP, "Operation not supported on socket") \
1429     X(EOVERFLOW, "Value too large to be stored in data type") \
1430     X(EPERM, "Operation not permitted") \
1431     X(EPIPE, "Broken pipe") \
1432     X(EPROTO, "Protocol error") \
1433     X(EPROTONOSUPPORT, "Protocol not supported") \
1434     X(EPROTOTYPE, "Protocol wrong type for socket") \
1435     X(ERANGE, "Result too large") \
1436     X(EROFS, "Read-only file system") \
1437     X(ESPIPE, "Invalid seek") \
1438     X(ESRCH, "No such process") \
1439     X(ETIME, "Stream ioctl() timeout") \
1440     X(ETIMEDOUT, "Connection timed out") \
1441     X(ETXTBSY, "Text file busy") \
1442     X(EWOULDBLOCK, "Operation would block") \
1443     X(EXDEV, "Cross-device link")
1444 
1445   #define DEFINE_ENTRY(e, text) { e, #e, text },
1446 
1447   static const struct {
1448     int v;
1449     const char* short_text;
1450     const char* long_text;
1451   } table [] = {
1452 
1453     ALL_SHARED_ENUMS(DEFINE_ENTRY)
1454 
1455     // The following enums are not defined on all platforms.
1456     #ifdef ESTALE
1457     DEFINE_ENTRY(ESTALE, "Reserved")
1458     #endif
1459     #ifdef EDQUOT
1460     DEFINE_ENTRY(EDQUOT, "Reserved")
1461     #endif
1462     #ifdef EMULTIHOP
1463     DEFINE_ENTRY(EMULTIHOP, "Reserved")
1464     #endif
1465 
1466     // End marker.
1467     { -1, "Unknown errno", "Unknown error" }
1468 
1469   };
1470 
1471   #undef DEFINE_ENTRY
1472   #undef ALL_FLAGS
1473 
1474   int i = 0;
1475   while (table[i].v != -1 && table[i].v != e) {
1476     i ++;
1477   }
1478 
1479   return short_text ? table[i].short_text : table[i].long_text;
1480 
1481 }
1482 
1483 const char* os::strerror(int e) {
1484   return errno_to_string(e, false);
1485 }
1486 
1487 const char* os::errno_name(int e) {
1488   return errno_to_string(e, true);
1489 }
1490 
1491 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1492   LogTarget(Info, pagesize) log;
1493   if (log.is_enabled()) {
1494     LogStreamCHeap out(log);
1495 
1496     out.print("%s: ", str);
1497     for (int i = 0; i < count; ++i) {
1498       out.print(" " SIZE_FORMAT, page_sizes[i]);
1499     }
1500     out.cr();
1501   }
1502 }
1503 
1504 #define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1505 
1506 void os::trace_page_sizes(const char* str,
1507                           const size_t region_min_size,
1508                           const size_t region_max_size,
1509                           const size_t page_size,
1510                           const char* base,
1511                           const size_t size) {
1512 
1513   log_info(pagesize)("%s: "
1514                      " min=" SIZE_FORMAT "%s"
1515                      " max=" SIZE_FORMAT "%s"
1516                      " base=" PTR_FORMAT
1517                      " page_size=" SIZE_FORMAT "%s"
1518                      " size=" SIZE_FORMAT "%s",
1519                      str,
1520                      trace_page_size_params(region_min_size),
1521                      trace_page_size_params(region_max_size),
1522                      p2i(base),
1523                      trace_page_size_params(page_size),
1524                      trace_page_size_params(size));
1525 }
1526 
1527 void os::trace_page_sizes_for_requested_size(const char* str,
1528                                              const size_t requested_size,
1529                                              const size_t page_size,
1530                                              const size_t alignment,
1531                                              const char* base,
1532                                              const size_t size) {
1533 
1534   log_info(pagesize)("%s:"
1535                      " req_size=" SIZE_FORMAT "%s"
1536                      " base=" PTR_FORMAT
1537                      " page_size=" SIZE_FORMAT "%s"
1538                      " alignment=" SIZE_FORMAT "%s"
1539                      " size=" SIZE_FORMAT "%s",
1540                      str,
1541                      trace_page_size_params(requested_size),
1542                      p2i(base),
1543                      trace_page_size_params(page_size),
1544                      trace_page_size_params(alignment),
1545                      trace_page_size_params(size));
1546 }
1547 
1548 
1549 // This is the working definition of a server class machine:
1550 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1551 // because the graphics memory (?) sometimes masks physical memory.
1552 // If you want to change the definition of a server class machine
1553 // on some OS or platform, e.g., >=4GB on Windows platforms,
1554 // then you'll have to parameterize this method based on that state,
1555 // as was done for logical processors here, or replicate and
1556 // specialize this method for each platform.  (Or fix os to have
1557 // some inheritance structure and use subclassing.  Sigh.)
1558 // If you want some platform to always or never behave as a server
1559 // class machine, change the setting of AlwaysActAsServerClassMachine
1560 // and NeverActAsServerClassMachine in globals*.hpp.
1561 bool os::is_server_class_machine() {
1562   // First check for the early returns
1563   if (NeverActAsServerClassMachine) {
1564     return false;
1565   }
1566   if (AlwaysActAsServerClassMachine) {
1567     return true;
1568   }
1569   // Then actually look at the machine
1570   bool         result            = false;
1571   const unsigned int    server_processors = 2;
1572   const julong server_memory     = 2UL * G;
1573   // We seem not to get our full complement of memory.
1574   //     We allow some part (1/8?) of the memory to be "missing",
1575   //     based on the sizes of DIMMs, and maybe graphics cards.
1576   const julong missing_memory   = 256UL * M;
1577 
1578   /* Is this a server class machine? */
1579   if ((os::active_processor_count() >= (int)server_processors) &&
1580       (os::physical_memory() >= (server_memory - missing_memory))) {
1581     const unsigned int logical_processors =
1582       VM_Version::logical_processors_per_package();
1583     if (logical_processors > 1) {
1584       const unsigned int physical_packages =
1585         os::active_processor_count() / logical_processors;
1586       if (physical_packages >= server_processors) {
1587         result = true;
1588       }
1589     } else {
1590       result = true;
1591     }
1592   }
1593   return result;
1594 }
1595 
1596 void os::initialize_initial_active_processor_count() {
1597   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1598   _initial_active_processor_count = active_processor_count();
1599   log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1600 }
1601 
1602 void os::SuspendedThreadTask::run() {
1603   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1604   internal_do_task();
1605   _done = true;
1606 }
1607 
1608 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1609   return os::pd_create_stack_guard_pages(addr, bytes);
1610 }
1611 
1612 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1613   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1614   if (result != NULL) {
1615     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1616   }
1617 
1618   return result;
1619 }
1620 
1621 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1622    MEMFLAGS flags) {
1623   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1624   if (result != NULL) {
1625     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1626     MemTracker::record_virtual_memory_type((address)result, flags);
1627   }
1628 
1629   return result;
1630 }
1631 
1632 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1633   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1634   if (result != NULL) {
1635     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1636   }
1637   return result;
1638 }
1639 
1640 void os::split_reserved_memory(char *base, size_t size,
1641                                  size_t split, bool realloc) {
1642   pd_split_reserved_memory(base, size, split, realloc);
1643 }
1644 
1645 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1646   bool res = pd_commit_memory(addr, bytes, executable);
1647   if (res) {
1648     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1649   }
1650   return res;
1651 }
1652 
1653 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1654                               bool executable) {
1655   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1656   if (res) {
1657     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1658   }
1659   return res;
1660 }
1661 
1662 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1663                                const char* mesg) {
1664   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1665   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1666 }
1667 
1668 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1669                                bool executable, const char* mesg) {
1670   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1671   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1672 }
1673 
1674 bool os::uncommit_memory(char* addr, size_t bytes) {
1675   bool res;
1676   if (MemTracker::tracking_level() > NMT_minimal) {
1677     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1678     res = pd_uncommit_memory(addr, bytes);
1679     if (res) {
1680       tkr.record((address)addr, bytes);
1681     }
1682   } else {
1683     res = pd_uncommit_memory(addr, bytes);
1684   }
1685   return res;
1686 }
1687 
1688 bool os::release_memory(char* addr, size_t bytes) {
1689   bool res;
1690   if (MemTracker::tracking_level() > NMT_minimal) {
1691     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1692     res = pd_release_memory(addr, bytes);
1693     if (res) {
1694       tkr.record((address)addr, bytes);
1695     }
1696   } else {
1697     res = pd_release_memory(addr, bytes);
1698   }
1699   return res;
1700 }
1701 
1702 void os::pretouch_memory(void* start, void* end, size_t page_size) {
1703   for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1704     *p = 0;
1705   }
1706 }
1707 
1708 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1709                            char *addr, size_t bytes, bool read_only,
1710                            bool allow_exec) {
1711   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1712   if (result != NULL) {
1713     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1714   }
1715   return result;
1716 }
1717 
1718 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1719                              char *addr, size_t bytes, bool read_only,
1720                              bool allow_exec) {
1721   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1722                     read_only, allow_exec);
1723 }
1724 
1725 bool os::unmap_memory(char *addr, size_t bytes) {
1726   bool result;
1727   if (MemTracker::tracking_level() > NMT_minimal) {
1728     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1729     result = pd_unmap_memory(addr, bytes);
1730     if (result) {
1731       tkr.record((address)addr, bytes);
1732     }
1733   } else {
1734     result = pd_unmap_memory(addr, bytes);
1735   }
1736   return result;
1737 }
1738 
1739 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1740   pd_free_memory(addr, bytes, alignment_hint);
1741 }
1742 
1743 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1744   pd_realign_memory(addr, bytes, alignment_hint);
1745 }
1746 
1747 #ifndef _WINDOWS
1748 /* try to switch state from state "from" to state "to"
1749  * returns the state set after the method is complete
1750  */
1751 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1752                                                          os::SuspendResume::State to)
1753 {
1754   os::SuspendResume::State result =
1755     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1756   if (result == from) {
1757     // success
1758     return to;
1759   }
1760   return result;
1761 }
1762 #endif