1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/cms/compactibleFreeListSpace.hpp"
  27 #include "gc/cms/concurrentMarkSweepGeneration.hpp"
  28 #include "gc/cms/parNewGeneration.inline.hpp"
  29 #include "gc/cms/parOopClosures.inline.hpp"
  30 #include "gc/serial/defNewGeneration.inline.hpp"
  31 #include "gc/shared/adaptiveSizePolicy.hpp"
  32 #include "gc/shared/ageTable.inline.hpp"
  33 #include "gc/shared/copyFailedInfo.hpp"
  34 #include "gc/shared/gcHeapSummary.hpp"
  35 #include "gc/shared/gcTimer.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generation.hpp"
  41 #include "gc/shared/plab.inline.hpp"
  42 #include "gc/shared/preservedMarks.inline.hpp"
  43 #include "gc/shared/referencePolicy.hpp"
  44 #include "gc/shared/space.hpp"
  45 #include "gc/shared/spaceDecorator.hpp"
  46 #include "gc/shared/strongRootsScope.hpp"
  47 #include "gc/shared/taskqueue.inline.hpp"
  48 #include "gc/shared/weakProcessor.hpp"
  49 #include "gc/shared/workgroup.hpp"
  50 #include "logging/log.hpp"
  51 #include "logging/logStream.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/objArrayOop.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/handles.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "utilities/copy.hpp"
  61 #include "utilities/globalDefinitions.hpp"
  62 #include "utilities/stack.inline.hpp"
  63 
  64 ParScanThreadState::ParScanThreadState(Space* to_space_,
  65                                        ParNewGeneration* young_gen_,
  66                                        Generation* old_gen_,
  67                                        int thread_num_,
  68                                        ObjToScanQueueSet* work_queue_set_,
  69                                        Stack<oop, mtGC>* overflow_stacks_,
  70                                        PreservedMarks* preserved_marks_,
  71                                        size_t desired_plab_sz_,
  72                                        ParallelTaskTerminator& term_) :
  73   _to_space(to_space_),
  74   _old_gen(old_gen_),
  75   _young_gen(young_gen_),
  76   _thread_num(thread_num_),
  77   _work_queue(work_queue_set_->queue(thread_num_)),
  78   _to_space_full(false),
  79   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  80   _preserved_marks(preserved_marks_),
  81   _ageTable(false), // false ==> not the global age table, no perf data.
  82   _to_space_alloc_buffer(desired_plab_sz_),
  83   _to_space_closure(young_gen_, this),
  84   _old_gen_closure(young_gen_, this),
  85   _to_space_root_closure(young_gen_, this),
  86   _old_gen_root_closure(young_gen_, this),
  87   _older_gen_closure(young_gen_, this),
  88   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  89                       &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
  90                       work_queue_set_, &term_),
  91   _is_alive_closure(young_gen_),
  92   _scan_weak_ref_closure(young_gen_, this),
  93   _keep_alive_closure(&_scan_weak_ref_closure),
  94   _strong_roots_time(0.0),
  95   _term_time(0.0)
  96 {
  97   #if TASKQUEUE_STATS
  98   _term_attempts = 0;
  99   _overflow_refills = 0;
 100   _overflow_refill_objs = 0;
 101   #endif // TASKQUEUE_STATS
 102 
 103   _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
 104   _hash_seed = 17;  // Might want to take time-based random value.
 105   _start = os::elapsedTime();
 106   _old_gen_closure.set_generation(old_gen_);
 107   _old_gen_root_closure.set_generation(old_gen_);
 108 }
 109 
 110 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 111                                               size_t plab_word_size) {
 112   ChunkArray* sca = survivor_chunk_array();
 113   if (sca != NULL) {
 114     // A non-null SCA implies that we want the PLAB data recorded.
 115     sca->record_sample(plab_start, plab_word_size);
 116   }
 117 }
 118 
 119 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 120   return new_obj->is_objArray() &&
 121          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 122          new_obj != old_obj;
 123 }
 124 
 125 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 126   assert(old->is_objArray(), "must be obj array");
 127   assert(old->is_forwarded(), "must be forwarded");
 128   assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
 129   assert(!old_gen()->is_in(old), "must be in young generation.");
 130 
 131   objArrayOop obj = objArrayOop(old->forwardee());
 132   // Process ParGCArrayScanChunk elements now
 133   // and push the remainder back onto queue
 134   int start     = arrayOop(old)->length();
 135   int end       = obj->length();
 136   int remainder = end - start;
 137   assert(start <= end, "just checking");
 138   if (remainder > 2 * ParGCArrayScanChunk) {
 139     // Test above combines last partial chunk with a full chunk
 140     end = start + ParGCArrayScanChunk;
 141     arrayOop(old)->set_length(end);
 142     // Push remainder.
 143     bool ok = work_queue()->push(old);
 144     assert(ok, "just popped, push must be okay");
 145   } else {
 146     // Restore length so that it can be used if there
 147     // is a promotion failure and forwarding pointers
 148     // must be removed.
 149     arrayOop(old)->set_length(end);
 150   }
 151 
 152   // process our set of indices (include header in first chunk)
 153   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 154   if ((HeapWord *)obj < young_old_boundary()) {
 155     // object is in to_space
 156     obj->oop_iterate_range(&_to_space_closure, start, end);
 157   } else {
 158     // object is in old generation
 159     obj->oop_iterate_range(&_old_gen_closure, start, end);
 160   }
 161 }
 162 
 163 void ParScanThreadState::trim_queues(int max_size) {
 164   ObjToScanQueue* queue = work_queue();
 165   do {
 166     while (queue->size() > (juint)max_size) {
 167       oop obj_to_scan;
 168       if (queue->pop_local(obj_to_scan)) {
 169         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 170           if (obj_to_scan->is_objArray() &&
 171               obj_to_scan->is_forwarded() &&
 172               obj_to_scan->forwardee() != obj_to_scan) {
 173             scan_partial_array_and_push_remainder(obj_to_scan);
 174           } else {
 175             // object is in to_space
 176             obj_to_scan->oop_iterate(&_to_space_closure);
 177           }
 178         } else {
 179           // object is in old generation
 180           obj_to_scan->oop_iterate(&_old_gen_closure);
 181         }
 182       }
 183     }
 184     // For the  case of compressed oops, we have a private, non-shared
 185     // overflow stack, so we eagerly drain it so as to more evenly
 186     // distribute load early. Note: this may be good to do in
 187     // general rather than delay for the final stealing phase.
 188     // If applicable, we'll transfer a set of objects over to our
 189     // work queue, allowing them to be stolen and draining our
 190     // private overflow stack.
 191   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 192 }
 193 
 194 bool ParScanThreadState::take_from_overflow_stack() {
 195   assert(ParGCUseLocalOverflow, "Else should not call");
 196   assert(young_gen()->overflow_list() == NULL, "Error");
 197   ObjToScanQueue* queue = work_queue();
 198   Stack<oop, mtGC>* const of_stack = overflow_stack();
 199   const size_t num_overflow_elems = of_stack->size();
 200   const size_t space_available = queue->max_elems() - queue->size();
 201   const size_t num_take_elems = MIN3(space_available / 4,
 202                                      ParGCDesiredObjsFromOverflowList,
 203                                      num_overflow_elems);
 204   // Transfer the most recent num_take_elems from the overflow
 205   // stack to our work queue.
 206   for (size_t i = 0; i != num_take_elems; i++) {
 207     oop cur = of_stack->pop();
 208     oop obj_to_push = cur->forwardee();
 209     assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
 210     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 211     assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 212     if (should_be_partially_scanned(obj_to_push, cur)) {
 213       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 214       obj_to_push = cur;
 215     }
 216     bool ok = queue->push(obj_to_push);
 217     assert(ok, "Should have succeeded");
 218   }
 219   assert(young_gen()->overflow_list() == NULL, "Error");
 220   return num_take_elems > 0;  // was something transferred?
 221 }
 222 
 223 void ParScanThreadState::push_on_overflow_stack(oop p) {
 224   assert(ParGCUseLocalOverflow, "Else should not call");
 225   overflow_stack()->push(p);
 226   assert(young_gen()->overflow_list() == NULL, "Error");
 227 }
 228 
 229 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 230   // If the object is small enough, try to reallocate the buffer.
 231   HeapWord* obj = NULL;
 232   if (!_to_space_full) {
 233     PLAB* const plab = to_space_alloc_buffer();
 234     Space* const sp  = to_space();
 235     if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
 236       // Is small enough; abandon this buffer and start a new one.
 237       plab->retire();
 238       // The minimum size has to be twice SurvivorAlignmentInBytes to
 239       // allow for padding used in the alignment of 1 word.  A padding
 240       // of 1 is too small for a filler word so the padding size will
 241       // be increased by SurvivorAlignmentInBytes.
 242       size_t min_usable_size = 2 * static_cast<size_t>(SurvivorAlignmentInBytes >> LogHeapWordSize);
 243       size_t buf_size = MAX2(plab->word_sz(), min_usable_size);
 244       HeapWord* buf_space = sp->par_allocate(buf_size);
 245       if (buf_space == NULL) {
 246         const size_t min_bytes = MAX2(PLAB::min_size(), min_usable_size) << LogHeapWordSize;
 247         size_t free_bytes = sp->free();
 248         while(buf_space == NULL && free_bytes >= min_bytes) {
 249           buf_size = free_bytes >> LogHeapWordSize;
 250           assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
 251           buf_space  = sp->par_allocate(buf_size);
 252           free_bytes = sp->free();
 253         }
 254       }
 255       if (buf_space != NULL) {
 256         plab->set_buf(buf_space, buf_size);
 257         record_survivor_plab(buf_space, buf_size);
 258         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 259         // Note that we cannot compare buf_size < word_sz below
 260         // because of AlignmentReserve (see PLAB::allocate()).
 261         assert(obj != NULL || plab->words_remaining() < word_sz,
 262                "Else should have been able to allocate requested object size "
 263                SIZE_FORMAT ", PLAB size " SIZE_FORMAT ", SurvivorAlignmentInBytes "
 264                SIZE_FORMAT ", words_remaining " SIZE_FORMAT,
 265                word_sz, buf_size, SurvivorAlignmentInBytes, plab->words_remaining());
 266         // It's conceivable that we may be able to use the
 267         // buffer we just grabbed for subsequent small requests
 268         // even if not for this one.
 269       } else {
 270         // We're used up.
 271         _to_space_full = true;
 272       }
 273     } else {
 274       // Too large; allocate the object individually.
 275       obj = sp->par_allocate(word_sz);
 276     }
 277   }
 278   return obj;
 279 }
 280 
 281 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
 282   to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 283 }
 284 
 285 void ParScanThreadState::print_promotion_failure_size() {
 286   if (_promotion_failed_info.has_failed()) {
 287     log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 288                              _thread_num, _promotion_failed_info.first_size());
 289   }
 290 }
 291 
 292 class ParScanThreadStateSet: StackObj {
 293 public:
 294   // Initializes states for the specified number of threads;
 295   ParScanThreadStateSet(int                     num_threads,
 296                         Space&                  to_space,
 297                         ParNewGeneration&       young_gen,
 298                         Generation&             old_gen,
 299                         ObjToScanQueueSet&      queue_set,
 300                         Stack<oop, mtGC>*       overflow_stacks_,
 301                         PreservedMarksSet&      preserved_marks_set,
 302                         size_t                  desired_plab_sz,
 303                         ParallelTaskTerminator& term);
 304 
 305   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 306 
 307   inline ParScanThreadState& thread_state(int i);
 308 
 309   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
 310   void reset(uint active_workers, bool promotion_failed);
 311   void flush();
 312 
 313   #if TASKQUEUE_STATS
 314   static void
 315     print_termination_stats_hdr(outputStream* const st);
 316   void print_termination_stats();
 317   static void
 318     print_taskqueue_stats_hdr(outputStream* const st);
 319   void print_taskqueue_stats();
 320   void reset_stats();
 321   #endif // TASKQUEUE_STATS
 322 
 323 private:
 324   ParallelTaskTerminator& _term;
 325   ParNewGeneration&       _young_gen;
 326   Generation&             _old_gen;
 327   ParScanThreadState*     _per_thread_states;
 328   const int               _num_threads;
 329  public:
 330   bool is_valid(int id) const { return id < _num_threads; }
 331   ParallelTaskTerminator* terminator() { return &_term; }
 332 };
 333 
 334 ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
 335                                              Space& to_space,
 336                                              ParNewGeneration& young_gen,
 337                                              Generation& old_gen,
 338                                              ObjToScanQueueSet& queue_set,
 339                                              Stack<oop, mtGC>* overflow_stacks,
 340                                              PreservedMarksSet& preserved_marks_set,
 341                                              size_t desired_plab_sz,
 342                                              ParallelTaskTerminator& term)
 343   : _young_gen(young_gen),
 344     _old_gen(old_gen),
 345     _term(term),
 346     _per_thread_states(NEW_RESOURCE_ARRAY(ParScanThreadState, num_threads)),
 347     _num_threads(num_threads)
 348 {
 349   assert(num_threads > 0, "sanity check!");
 350   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 351          "overflow_stack allocation mismatch");
 352   // Initialize states.
 353   for (int i = 0; i < num_threads; ++i) {
 354     new(_per_thread_states + i)
 355       ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
 356                          overflow_stacks, preserved_marks_set.get(i),
 357                          desired_plab_sz, term);
 358   }
 359 }
 360 
 361 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
 362   assert(i >= 0 && i < _num_threads, "sanity check!");
 363   return _per_thread_states[i];
 364 }
 365 
 366 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
 367   for (int i = 0; i < _num_threads; ++i) {
 368     if (thread_state(i).promotion_failed()) {
 369       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
 370       thread_state(i).promotion_failed_info().reset();
 371     }
 372   }
 373 }
 374 
 375 void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
 376   _term.reset_for_reuse(active_threads);
 377   if (promotion_failed) {
 378     for (int i = 0; i < _num_threads; ++i) {
 379       thread_state(i).print_promotion_failure_size();
 380     }
 381   }
 382 }
 383 
 384 #if TASKQUEUE_STATS
 385 void ParScanThreadState::reset_stats() {
 386   taskqueue_stats().reset();
 387   _term_attempts = 0;
 388   _overflow_refills = 0;
 389   _overflow_refill_objs = 0;
 390 }
 391 
 392 void ParScanThreadStateSet::reset_stats() {
 393   for (int i = 0; i < _num_threads; ++i) {
 394     thread_state(i).reset_stats();
 395   }
 396 }
 397 
 398 void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
 399   st->print_raw_cr("GC Termination Stats");
 400   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
 401   st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
 402   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
 403 }
 404 
 405 void ParScanThreadStateSet::print_termination_stats() {
 406   Log(gc, task, stats) log;
 407   if (!log.is_debug()) {
 408     return;
 409   }
 410 
 411   ResourceMark rm;
 412   LogStream ls(log.debug());
 413   outputStream* st = &ls;
 414 
 415   print_termination_stats_hdr(st);
 416 
 417   for (int i = 0; i < _num_threads; ++i) {
 418     const ParScanThreadState & pss = thread_state(i);
 419     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 420     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 421     const double term_ms = pss.term_time() * 1000.0;
 422     st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
 423                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 424                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 425   }
 426 }
 427 
 428 // Print stats related to work queue activity.
 429 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
 430   st->print_raw_cr("GC Task Stats");
 431   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 432   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 433 }
 434 
 435 void ParScanThreadStateSet::print_taskqueue_stats() {
 436   if (!log_develop_is_enabled(Trace, gc, task, stats)) {
 437     return;
 438   }
 439   Log(gc, task, stats) log;
 440   ResourceMark rm;
 441   LogStream ls(log.trace());
 442   outputStream* st = &ls;
 443   print_taskqueue_stats_hdr(st);
 444 
 445   TaskQueueStats totals;
 446   for (int i = 0; i < _num_threads; ++i) {
 447     const ParScanThreadState & pss = thread_state(i);
 448     const TaskQueueStats & stats = pss.taskqueue_stats();
 449     st->print("%3d ", i); stats.print(st); st->cr();
 450     totals += stats;
 451 
 452     if (pss.overflow_refills() > 0) {
 453       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 454                    SIZE_FORMAT_W(10) " overflow objects",
 455                    pss.overflow_refills(), pss.overflow_refill_objs());
 456     }
 457   }
 458   st->print("tot "); totals.print(st); st->cr();
 459 
 460   DEBUG_ONLY(totals.verify());
 461 }
 462 #endif // TASKQUEUE_STATS
 463 
 464 void ParScanThreadStateSet::flush() {
 465   // Work in this loop should be kept as lightweight as
 466   // possible since this might otherwise become a bottleneck
 467   // to scaling. Should we add heavy-weight work into this
 468   // loop, consider parallelizing the loop into the worker threads.
 469   for (int i = 0; i < _num_threads; ++i) {
 470     ParScanThreadState& par_scan_state = thread_state(i);
 471 
 472     // Flush stats related to To-space PLAB activity and
 473     // retire the last buffer.
 474     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
 475 
 476     // Every thread has its own age table.  We need to merge
 477     // them all into one.
 478     AgeTable *local_table = par_scan_state.age_table();
 479     _young_gen.age_table()->merge(local_table);
 480 
 481     // Inform old gen that we're done.
 482     _old_gen.par_promote_alloc_done(i);
 483   }
 484 
 485   if (UseConcMarkSweepGC) {
 486     // We need to call this even when ResizeOldPLAB is disabled
 487     // so as to avoid breaking some asserts. While we may be able
 488     // to avoid this by reorganizing the code a bit, I am loathe
 489     // to do that unless we find cases where ergo leads to bad
 490     // performance.
 491     CompactibleFreeListSpaceLAB::compute_desired_plab_size();
 492   }
 493 }
 494 
 495 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 496                                ParScanThreadState* par_scan_state) :
 497   OopsInClassLoaderDataOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
 498   _boundary = _g->reserved().end();
 499 }
 500 
 501 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 502 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 503 
 504 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 505 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 506 
 507 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 508 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 509 
 510 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 511 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 512 
 513 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 514                                              ParScanThreadState* par_scan_state)
 515   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 516 {}
 517 
 518 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 519 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 520 
 521 #ifdef WIN32
 522 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 523 #endif
 524 
 525 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 526     ParScanThreadState* par_scan_state_,
 527     ParScanWithoutBarrierClosure* to_space_closure_,
 528     ParScanWithBarrierClosure* old_gen_closure_,
 529     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 530     ParNewGeneration* par_gen_,
 531     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 532     ObjToScanQueueSet* task_queues_,
 533     ParallelTaskTerminator* terminator_) :
 534 
 535     _par_scan_state(par_scan_state_),
 536     _to_space_closure(to_space_closure_),
 537     _old_gen_closure(old_gen_closure_),
 538     _to_space_root_closure(to_space_root_closure_),
 539     _old_gen_root_closure(old_gen_root_closure_),
 540     _par_gen(par_gen_),
 541     _task_queues(task_queues_),
 542     _terminator(terminator_)
 543 {}
 544 
 545 void ParEvacuateFollowersClosure::do_void() {
 546   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 547 
 548   while (true) {
 549     // Scan to-space and old-gen objs until we run out of both.
 550     oop obj_to_scan;
 551     par_scan_state()->trim_queues(0);
 552 
 553     // We have no local work, attempt to steal from other threads.
 554 
 555     // Attempt to steal work from promoted.
 556     if (task_queues()->steal(par_scan_state()->thread_num(),
 557                              par_scan_state()->hash_seed(),
 558                              obj_to_scan)) {
 559       bool res = work_q->push(obj_to_scan);
 560       assert(res, "Empty queue should have room for a push.");
 561 
 562       // If successful, goto Start.
 563       continue;
 564 
 565       // Try global overflow list.
 566     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 567       continue;
 568     }
 569 
 570     // Otherwise, offer termination.
 571     par_scan_state()->start_term_time();
 572     if (terminator()->offer_termination()) break;
 573     par_scan_state()->end_term_time();
 574   }
 575   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 576          "Broken overflow list?");
 577   // Finish the last termination pause.
 578   par_scan_state()->end_term_time();
 579 }
 580 
 581 ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
 582                              Generation* old_gen,
 583                              HeapWord* young_old_boundary,
 584                              ParScanThreadStateSet* state_set,
 585                              StrongRootsScope* strong_roots_scope) :
 586     AbstractGangTask("ParNewGeneration collection"),
 587     _young_gen(young_gen), _old_gen(old_gen),
 588     _young_old_boundary(young_old_boundary),
 589     _state_set(state_set),
 590     _strong_roots_scope(strong_roots_scope)
 591 {}
 592 
 593 void ParNewGenTask::work(uint worker_id) {
 594   GenCollectedHeap* gch = GenCollectedHeap::heap();
 595   // Since this is being done in a separate thread, need new resource
 596   // and handle marks.
 597   ResourceMark rm;
 598   HandleMark hm;
 599 
 600   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 601   assert(_state_set->is_valid(worker_id), "Should not have been called");
 602 
 603   par_scan_state.set_young_old_boundary(_young_old_boundary);
 604 
 605   CLDScanClosure cld_scan_closure(&par_scan_state.to_space_root_closure(),
 606                                   gch->rem_set()->cld_rem_set()->accumulate_modified_oops());
 607 
 608   par_scan_state.start_strong_roots();
 609   gch->young_process_roots(_strong_roots_scope,
 610                            &par_scan_state.to_space_root_closure(),
 611                            &par_scan_state.older_gen_closure(),
 612                            &cld_scan_closure);
 613 
 614   par_scan_state.end_strong_roots();
 615 
 616   // "evacuate followers".
 617   par_scan_state.evacuate_followers_closure().do_void();
 618 
 619   // This will collapse this worker's promoted object list that's
 620   // created during the main ParNew parallel phase of ParNew. This has
 621   // to be called after all workers have finished promoting objects
 622   // and scanning promoted objects. It should be safe calling it from
 623   // here, given that we can only reach here after all thread have
 624   // offered termination, i.e., after there is no more work to be
 625   // done. It will also disable promotion tracking for the rest of
 626   // this GC as it's not necessary to be on during reference processing.
 627   _old_gen->par_oop_since_save_marks_iterate_done((int) worker_id);
 628 }
 629 
 630 ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
 631   : DefNewGeneration(rs, initial_byte_size, "PCopy"),
 632   _overflow_list(NULL),
 633   _is_alive_closure(this),
 634   _plab_stats("Young", YoungPLABSize, PLABWeight)
 635 {
 636   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 637   NOT_PRODUCT(_num_par_pushes = 0;)
 638   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 639   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 640 
 641   for (uint i = 0; i < ParallelGCThreads; i++) {
 642     ObjToScanQueue *q = new ObjToScanQueue();
 643     guarantee(q != NULL, "work_queue Allocation failure.");
 644     _task_queues->register_queue(i, q);
 645   }
 646 
 647   for (uint i = 0; i < ParallelGCThreads; i++) {
 648     _task_queues->queue(i)->initialize();
 649   }
 650 
 651   _overflow_stacks = NULL;
 652   if (ParGCUseLocalOverflow) {
 653     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
 654     typedef Stack<oop, mtGC> GCOopStack;
 655 
 656     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 657     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 658       new (_overflow_stacks + i) Stack<oop, mtGC>();
 659     }
 660   }
 661 
 662   if (UsePerfData) {
 663     EXCEPTION_MARK;
 664     ResourceMark rm;
 665 
 666     const char* cname =
 667          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 668     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 669                                      ParallelGCThreads, CHECK);
 670   }
 671 }
 672 
 673 // ParNewGeneration::
 674 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 675   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 676 
 677 template <class T>
 678 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 679 #ifdef ASSERT
 680   {
 681     assert(!oopDesc::is_null(*p), "expected non-null ref");
 682     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 683     // We never expect to see a null reference being processed
 684     // as a weak reference.
 685     assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
 686   }
 687 #endif // ASSERT
 688 
 689   _par_cl->do_oop_nv(p);
 690 
 691   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 692     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 693     _rs->write_ref_field_gc_par(p, obj);
 694   }
 695 }
 696 
 697 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 698 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 699 
 700 // ParNewGeneration::
 701 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 702   DefNewGeneration::KeepAliveClosure(cl) {}
 703 
 704 template <class T>
 705 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 706 #ifdef ASSERT
 707   {
 708     assert(!oopDesc::is_null(*p), "expected non-null ref");
 709     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 710     // We never expect to see a null reference being processed
 711     // as a weak reference.
 712     assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
 713   }
 714 #endif // ASSERT
 715 
 716   _cl->do_oop_nv(p);
 717 
 718   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 719     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 720     _rs->write_ref_field_gc_par(p, obj);
 721   }
 722 }
 723 
 724 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 725 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 726 
 727 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 728   T heap_oop = oopDesc::load_heap_oop(p);
 729   if (!oopDesc::is_null(heap_oop)) {
 730     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 731     if ((HeapWord*)obj < _boundary) {
 732       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 733       oop new_obj = obj->is_forwarded()
 734                       ? obj->forwardee()
 735                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 736       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 737     }
 738     if (_gc_barrier) {
 739       // If p points to a younger generation, mark the card.
 740       if ((HeapWord*)obj < _gen_boundary) {
 741         _rs->write_ref_field_gc_par(p, obj);
 742       }
 743     }
 744   }
 745 }
 746 
 747 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 748 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 749 
 750 class ParNewRefProcTaskProxy: public AbstractGangTask {
 751   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 752 public:
 753   ParNewRefProcTaskProxy(ProcessTask& task,
 754                          ParNewGeneration& young_gen,
 755                          Generation& old_gen,
 756                          HeapWord* young_old_boundary,
 757                          ParScanThreadStateSet& state_set);
 758 
 759 private:
 760   virtual void work(uint worker_id);
 761 private:
 762   ParNewGeneration&      _young_gen;
 763   ProcessTask&           _task;
 764   Generation&            _old_gen;
 765   HeapWord*              _young_old_boundary;
 766   ParScanThreadStateSet& _state_set;
 767 };
 768 
 769 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 770                                                ParNewGeneration& young_gen,
 771                                                Generation& old_gen,
 772                                                HeapWord* young_old_boundary,
 773                                                ParScanThreadStateSet& state_set)
 774   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 775     _young_gen(young_gen),
 776     _task(task),
 777     _old_gen(old_gen),
 778     _young_old_boundary(young_old_boundary),
 779     _state_set(state_set)
 780 { }
 781 
 782 void ParNewRefProcTaskProxy::work(uint worker_id) {
 783   ResourceMark rm;
 784   HandleMark hm;
 785   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 786   par_scan_state.set_young_old_boundary(_young_old_boundary);
 787   _task.work(worker_id, par_scan_state.is_alive_closure(),
 788              par_scan_state.keep_alive_closure(),
 789              par_scan_state.evacuate_followers_closure());
 790 }
 791 
 792 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 793   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 794   EnqueueTask& _task;
 795 
 796 public:
 797   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 798     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 799       _task(task)
 800   { }
 801 
 802   virtual void work(uint worker_id) {
 803     _task.work(worker_id);
 804   }
 805 };
 806 
 807 void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
 808   GenCollectedHeap* gch = GenCollectedHeap::heap();
 809   WorkGang* workers = gch->workers();
 810   assert(workers != NULL, "Need parallel worker threads.");
 811   _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
 812   ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
 813                                  _young_gen.reserved().end(), _state_set);
 814   workers->run_task(&rp_task);
 815   _state_set.reset(0 /* bad value in debug if not reset */,
 816                    _young_gen.promotion_failed());
 817 }
 818 
 819 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
 820   GenCollectedHeap* gch = GenCollectedHeap::heap();
 821   WorkGang* workers = gch->workers();
 822   assert(workers != NULL, "Need parallel worker threads.");
 823   ParNewRefEnqueueTaskProxy enq_task(task);
 824   workers->run_task(&enq_task);
 825 }
 826 
 827 void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
 828   _state_set.flush();
 829   GenCollectedHeap* gch = GenCollectedHeap::heap();
 830   gch->save_marks();
 831 }
 832 
 833 ScanClosureWithParBarrier::
 834 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 835   ScanClosure(g, gc_barrier)
 836 { }
 837 
 838 EvacuateFollowersClosureGeneral::
 839 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
 840                                 OopsInGenClosure* cur,
 841                                 OopsInGenClosure* older) :
 842   _gch(gch),
 843   _scan_cur_or_nonheap(cur), _scan_older(older)
 844 { }
 845 
 846 void EvacuateFollowersClosureGeneral::do_void() {
 847   do {
 848     // Beware: this call will lead to closure applications via virtual
 849     // calls.
 850     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
 851                                        _scan_cur_or_nonheap,
 852                                        _scan_older);
 853   } while (!_gch->no_allocs_since_save_marks());
 854 }
 855 
 856 // A Generation that does parallel young-gen collection.
 857 
 858 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
 859   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 860   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 861 
 862   remove_forwarding_pointers();
 863   log_info(gc, promotion)("Promotion failed");
 864   // All the spaces are in play for mark-sweep.
 865   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 866   from()->set_next_compaction_space(to());
 867   gch->set_incremental_collection_failed();
 868   // Inform the next generation that a promotion failure occurred.
 869   _old_gen->promotion_failure_occurred();
 870 
 871   // Trace promotion failure in the parallel GC threads
 872   thread_state_set.trace_promotion_failed(gc_tracer());
 873   // Single threaded code may have reported promotion failure to the global state
 874   if (_promotion_failed_info.has_failed()) {
 875     _gc_tracer.report_promotion_failed(_promotion_failed_info);
 876   }
 877   // Reset the PromotionFailureALot counters.
 878   NOT_PRODUCT(gch->reset_promotion_should_fail();)
 879 }
 880 
 881 void ParNewGeneration::collect(bool   full,
 882                                bool   clear_all_soft_refs,
 883                                size_t size,
 884                                bool   is_tlab) {
 885   assert(full || size > 0, "otherwise we don't want to collect");
 886 
 887   GenCollectedHeap* gch = GenCollectedHeap::heap();
 888 
 889   _gc_timer->register_gc_start();
 890 
 891   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 892   WorkGang* workers = gch->workers();
 893   assert(workers != NULL, "Need workgang for parallel work");
 894   uint active_workers =
 895        AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 896                                                workers->active_workers(),
 897                                                Threads::number_of_non_daemon_threads());
 898   active_workers = workers->update_active_workers(active_workers);
 899   log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers->total_workers());
 900 
 901   _old_gen = gch->old_gen();
 902 
 903   // If the next generation is too full to accommodate worst-case promotion
 904   // from this generation, pass on collection; let the next generation
 905   // do it.
 906   if (!collection_attempt_is_safe()) {
 907     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 908     return;
 909   }
 910   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 911 
 912   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 913   gch->trace_heap_before_gc(gc_tracer());
 914 
 915   init_assuming_no_promotion_failure();
 916 
 917   if (UseAdaptiveSizePolicy) {
 918     set_survivor_overflow(false);
 919     size_policy->minor_collection_begin();
 920   }
 921 
 922   GCTraceTime(Trace, gc, phases) t1("ParNew", NULL, gch->gc_cause());
 923 
 924   age_table()->clear();
 925   to()->clear(SpaceDecorator::Mangle);
 926 
 927   gch->save_marks();
 928 
 929   // Set the correct parallelism (number of queues) in the reference processor
 930   ref_processor()->set_active_mt_degree(active_workers);
 931 
 932   // Need to initialize the preserved marks before the ThreadStateSet c'tor.
 933   _preserved_marks_set.init(active_workers);
 934 
 935   // Always set the terminator for the active number of workers
 936   // because only those workers go through the termination protocol.
 937   ParallelTaskTerminator _term(active_workers, task_queues());
 938   ParScanThreadStateSet thread_state_set(active_workers,
 939                                          *to(), *this, *_old_gen, *task_queues(),
 940                                          _overflow_stacks, _preserved_marks_set,
 941                                          desired_plab_sz(), _term);
 942 
 943   thread_state_set.reset(active_workers, promotion_failed());
 944 
 945   {
 946     StrongRootsScope srs(active_workers);
 947 
 948     ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
 949     gch->rem_set()->prepare_for_younger_refs_iterate(true);
 950     // It turns out that even when we're using 1 thread, doing the work in a
 951     // separate thread causes wide variance in run times.  We can't help this
 952     // in the multi-threaded case, but we special-case n=1 here to get
 953     // repeatable measurements of the 1-thread overhead of the parallel code.
 954     // Might multiple workers ever be used?  If yes, initialization
 955     // has been done such that the single threaded path should not be used.
 956     if (workers->total_workers() > 1) {
 957       workers->run_task(&tsk);
 958     } else {
 959       tsk.work(0);
 960     }
 961   }
 962 
 963   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 964                          promotion_failed());
 965 
 966   // Trace and reset failed promotion info.
 967   if (promotion_failed()) {
 968     thread_state_set.trace_promotion_failed(gc_tracer());
 969   }
 970 
 971   // Process (weak) reference objects found during scavenge.
 972   ReferenceProcessor* rp = ref_processor();
 973   IsAliveClosure is_alive(this);
 974   ScanWeakRefClosure scan_weak_ref(this);
 975   KeepAliveClosure keep_alive(&scan_weak_ref);
 976   ScanClosure               scan_without_gc_barrier(this, false);
 977   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 978   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 979   EvacuateFollowersClosureGeneral evacuate_followers(gch,
 980     &scan_without_gc_barrier, &scan_with_gc_barrier);
 981   rp->setup_policy(clear_all_soft_refs);
 982   // Can  the mt_degree be set later (at run_task() time would be best)?
 983   rp->set_active_mt_degree(active_workers);
 984   ReferenceProcessorStats stats;
 985   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->num_q());
 986   if (rp->processing_is_mt()) {
 987     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
 988     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 989                                               &evacuate_followers, &task_executor,
 990                                               &pt);
 991   } else {
 992     thread_state_set.flush();
 993     gch->save_marks();
 994     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 995                                               &evacuate_followers, NULL,
 996                                               &pt);
 997   }
 998   _gc_tracer.report_gc_reference_stats(stats);
 999   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
1000   pt.print_all_references();
1001 
1002   WeakProcessor::unlink_or_oops_do(&is_alive, &keep_alive);
1003 
1004   if (!promotion_failed()) {
1005     // Swap the survivor spaces.
1006     eden()->clear(SpaceDecorator::Mangle);
1007     from()->clear(SpaceDecorator::Mangle);
1008     if (ZapUnusedHeapArea) {
1009       // This is now done here because of the piece-meal mangling which
1010       // can check for valid mangling at intermediate points in the
1011       // collection(s).  When a young collection fails to collect
1012       // sufficient space resizing of the young generation can occur
1013       // and redistribute the spaces in the young generation.  Mangle
1014       // here so that unzapped regions don't get distributed to
1015       // other spaces.
1016       to()->mangle_unused_area();
1017     }
1018     swap_spaces();
1019 
1020     // A successful scavenge should restart the GC time limit count which is
1021     // for full GC's.
1022     size_policy->reset_gc_overhead_limit_count();
1023 
1024     assert(to()->is_empty(), "to space should be empty now");
1025 
1026     adjust_desired_tenuring_threshold();
1027   } else {
1028     handle_promotion_failed(gch, thread_state_set);
1029   }
1030   _preserved_marks_set.reclaim();
1031   // set new iteration safe limit for the survivor spaces
1032   from()->set_concurrent_iteration_safe_limit(from()->top());
1033   to()->set_concurrent_iteration_safe_limit(to()->top());
1034 
1035   plab_stats()->adjust_desired_plab_sz();
1036 
1037   TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1038   TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1039 
1040   if (UseAdaptiveSizePolicy) {
1041     size_policy->minor_collection_end(gch->gc_cause());
1042     size_policy->avg_survived()->sample(from()->used());
1043   }
1044 
1045   // We need to use a monotonically non-decreasing time in ms
1046   // or we will see time-warp warnings and os::javaTimeMillis()
1047   // does not guarantee monotonicity.
1048   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1049   update_time_of_last_gc(now);
1050 
1051   rp->set_enqueuing_is_done(true);
1052   if (rp->processing_is_mt()) {
1053     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1054     rp->enqueue_discovered_references(&task_executor, &pt);
1055   } else {
1056     rp->enqueue_discovered_references(NULL, &pt);
1057   }
1058   rp->verify_no_references_recorded();
1059 
1060   gch->trace_heap_after_gc(gc_tracer());
1061 
1062   pt.print_enqueue_phase();
1063 
1064   _gc_timer->register_gc_end();
1065 
1066   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1067 }
1068 
1069 size_t ParNewGeneration::desired_plab_sz() {
1070   return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
1071 }
1072 
1073 static int sum;
1074 void ParNewGeneration::waste_some_time() {
1075   for (int i = 0; i < 100; i++) {
1076     sum += i;
1077   }
1078 }
1079 
1080 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1081 
1082 // Because of concurrency, there are times where an object for which
1083 // "is_forwarded()" is true contains an "interim" forwarding pointer
1084 // value.  Such a value will soon be overwritten with a real value.
1085 // This method requires "obj" to have a forwarding pointer, and waits, if
1086 // necessary for a real one to be inserted, and returns it.
1087 
1088 oop ParNewGeneration::real_forwardee(oop obj) {
1089   oop forward_ptr = obj->forwardee();
1090   if (forward_ptr != ClaimedForwardPtr) {
1091     return forward_ptr;
1092   } else {
1093     return real_forwardee_slow(obj);
1094   }
1095 }
1096 
1097 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1098   // Spin-read if it is claimed but not yet written by another thread.
1099   oop forward_ptr = obj->forwardee();
1100   while (forward_ptr == ClaimedForwardPtr) {
1101     waste_some_time();
1102     assert(obj->is_forwarded(), "precondition");
1103     forward_ptr = obj->forwardee();
1104   }
1105   return forward_ptr;
1106 }
1107 
1108 // Multiple GC threads may try to promote an object.  If the object
1109 // is successfully promoted, a forwarding pointer will be installed in
1110 // the object in the young generation.  This method claims the right
1111 // to install the forwarding pointer before it copies the object,
1112 // thus avoiding the need to undo the copy as in
1113 // copy_to_survivor_space_avoiding_with_undo.
1114 
1115 oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1116                                              oop old,
1117                                              size_t sz,
1118                                              markOop m) {
1119   // In the sequential version, this assert also says that the object is
1120   // not forwarded.  That might not be the case here.  It is the case that
1121   // the caller observed it to be not forwarded at some time in the past.
1122   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1123 
1124   // The sequential code read "old->age()" below.  That doesn't work here,
1125   // since the age is in the mark word, and that might be overwritten with
1126   // a forwarding pointer by a parallel thread.  So we must save the mark
1127   // word in a local and then analyze it.
1128   oopDesc dummyOld;
1129   dummyOld.set_mark(m);
1130   assert(!dummyOld.is_forwarded(),
1131          "should not be called with forwarding pointer mark word.");
1132 
1133   oop new_obj = NULL;
1134   oop forward_ptr;
1135 
1136   // Try allocating obj in to-space (unless too old)
1137   if (dummyOld.age() < tenuring_threshold()) {
1138     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1139     if (new_obj == NULL) {
1140       set_survivor_overflow(true);
1141     }
1142   }
1143 
1144   if (new_obj == NULL) {
1145     // Either to-space is full or we decided to promote try allocating obj tenured
1146 
1147     // Attempt to install a null forwarding pointer (atomically),
1148     // to claim the right to install the real forwarding pointer.
1149     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1150     if (forward_ptr != NULL) {
1151       // someone else beat us to it.
1152         return real_forwardee(old);
1153     }
1154 
1155     if (!_promotion_failed) {
1156       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1157                                       old, m, sz);
1158     }
1159 
1160     if (new_obj == NULL) {
1161       // promotion failed, forward to self
1162       _promotion_failed = true;
1163       new_obj = old;
1164 
1165       par_scan_state->preserved_marks()->push_if_necessary(old, m);
1166       par_scan_state->register_promotion_failure(sz);
1167     }
1168 
1169     old->forward_to(new_obj);
1170     forward_ptr = NULL;
1171   } else {
1172     // Is in to-space; do copying ourselves.
1173     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1174     assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1175     forward_ptr = old->forward_to_atomic(new_obj);
1176     // Restore the mark word copied above.
1177     new_obj->set_mark(m);
1178     // Increment age if obj still in new generation
1179     new_obj->incr_age();
1180     par_scan_state->age_table()->add(new_obj, sz);
1181   }
1182   assert(new_obj != NULL, "just checking");
1183 
1184   // This code must come after the CAS test, or it will print incorrect
1185   // information.
1186   log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1187                                   is_in_reserved(new_obj) ? "copying" : "tenuring",
1188                                   new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1189 
1190   if (forward_ptr == NULL) {
1191     oop obj_to_push = new_obj;
1192     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1193       // Length field used as index of next element to be scanned.
1194       // Real length can be obtained from real_forwardee()
1195       arrayOop(old)->set_length(0);
1196       obj_to_push = old;
1197       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1198              "push forwarded object");
1199     }
1200     // Push it on one of the queues of to-be-scanned objects.
1201     bool simulate_overflow = false;
1202     NOT_PRODUCT(
1203       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1204         // simulate a stack overflow
1205         simulate_overflow = true;
1206       }
1207     )
1208     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1209       // Add stats for overflow pushes.
1210       log_develop_trace(gc)("Queue Overflow");
1211       push_on_overflow_list(old, par_scan_state);
1212       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1213     }
1214 
1215     return new_obj;
1216   }
1217 
1218   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1219   // allocate it?
1220   if (is_in_reserved(new_obj)) {
1221     // Must be in to_space.
1222     assert(to()->is_in_reserved(new_obj), "Checking");
1223     if (forward_ptr == ClaimedForwardPtr) {
1224       // Wait to get the real forwarding pointer value.
1225       forward_ptr = real_forwardee(old);
1226     }
1227     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1228   }
1229 
1230   return forward_ptr;
1231 }
1232 
1233 #ifndef PRODUCT
1234 // It's OK to call this multi-threaded;  the worst thing
1235 // that can happen is that we'll get a bunch of closely
1236 // spaced simulated overflows, but that's OK, in fact
1237 // probably good as it would exercise the overflow code
1238 // under contention.
1239 bool ParNewGeneration::should_simulate_overflow() {
1240   if (_overflow_counter-- <= 0) { // just being defensive
1241     _overflow_counter = ParGCWorkQueueOverflowInterval;
1242     return true;
1243   } else {
1244     return false;
1245   }
1246 }
1247 #endif
1248 
1249 // In case we are using compressed oops, we need to be careful.
1250 // If the object being pushed is an object array, then its length
1251 // field keeps track of the "grey boundary" at which the next
1252 // incremental scan will be done (see ParGCArrayScanChunk).
1253 // When using compressed oops, this length field is kept in the
1254 // lower 32 bits of the erstwhile klass word and cannot be used
1255 // for the overflow chaining pointer (OCP below). As such the OCP
1256 // would itself need to be compressed into the top 32-bits in this
1257 // case. Unfortunately, see below, in the event that we have a
1258 // promotion failure, the node to be pushed on the list can be
1259 // outside of the Java heap, so the heap-based pointer compression
1260 // would not work (we would have potential aliasing between C-heap
1261 // and Java-heap pointers). For this reason, when using compressed
1262 // oops, we simply use a worker-thread-local, non-shared overflow
1263 // list in the form of a growable array, with a slightly different
1264 // overflow stack draining strategy. If/when we start using fat
1265 // stacks here, we can go back to using (fat) pointer chains
1266 // (although some performance comparisons would be useful since
1267 // single global lists have their own performance disadvantages
1268 // as we were made painfully aware not long ago, see 6786503).
1269 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1270 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1271   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1272   if (ParGCUseLocalOverflow) {
1273     // In the case of compressed oops, we use a private, not-shared
1274     // overflow stack.
1275     par_scan_state->push_on_overflow_stack(from_space_obj);
1276   } else {
1277     assert(!UseCompressedOops, "Error");
1278     // if the object has been forwarded to itself, then we cannot
1279     // use the klass pointer for the linked list.  Instead we have
1280     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1281     // XXX This is horribly inefficient when a promotion failure occurs
1282     // and should be fixed. XXX FIX ME !!!
1283 #ifndef PRODUCT
1284     Atomic::inc(&_num_par_pushes);
1285     assert(_num_par_pushes > 0, "Tautology");
1286 #endif
1287     if (from_space_obj->forwardee() == from_space_obj) {
1288       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1289       listhead->forward_to(from_space_obj);
1290       from_space_obj = listhead;
1291     }
1292     oop observed_overflow_list = _overflow_list;
1293     oop cur_overflow_list;
1294     do {
1295       cur_overflow_list = observed_overflow_list;
1296       if (cur_overflow_list != BUSY) {
1297         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1298       } else {
1299         from_space_obj->set_klass_to_list_ptr(NULL);
1300       }
1301       observed_overflow_list =
1302         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1303     } while (cur_overflow_list != observed_overflow_list);
1304   }
1305 }
1306 
1307 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1308   bool res;
1309 
1310   if (ParGCUseLocalOverflow) {
1311     res = par_scan_state->take_from_overflow_stack();
1312   } else {
1313     assert(!UseCompressedOops, "Error");
1314     res = take_from_overflow_list_work(par_scan_state);
1315   }
1316   return res;
1317 }
1318 
1319 
1320 // *NOTE*: The overflow list manipulation code here and
1321 // in CMSCollector:: are very similar in shape,
1322 // except that in the CMS case we thread the objects
1323 // directly into the list via their mark word, and do
1324 // not need to deal with special cases below related
1325 // to chunking of object arrays and promotion failure
1326 // handling.
1327 // CR 6797058 has been filed to attempt consolidation of
1328 // the common code.
1329 // Because of the common code, if you make any changes in
1330 // the code below, please check the CMS version to see if
1331 // similar changes might be needed.
1332 // See CMSCollector::par_take_from_overflow_list() for
1333 // more extensive documentation comments.
1334 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1335   ObjToScanQueue* work_q = par_scan_state->work_queue();
1336   // How many to take?
1337   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1338                                  (size_t)ParGCDesiredObjsFromOverflowList);
1339 
1340   assert(!UseCompressedOops, "Error");
1341   assert(par_scan_state->overflow_stack() == NULL, "Error");
1342   if (_overflow_list == NULL) return false;
1343 
1344   // Otherwise, there was something there; try claiming the list.
1345   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1346   // Trim off a prefix of at most objsFromOverflow items
1347   Thread* tid = Thread::current();
1348   size_t spin_count = ParallelGCThreads;
1349   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1350   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1351     // someone grabbed it before we did ...
1352     // ... we spin for a short while...
1353     os::sleep(tid, sleep_time_millis, false);
1354     if (_overflow_list == NULL) {
1355       // nothing left to take
1356       return false;
1357     } else if (_overflow_list != BUSY) {
1358      // try and grab the prefix
1359      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1360     }
1361   }
1362   if (prefix == NULL || prefix == BUSY) {
1363      // Nothing to take or waited long enough
1364      if (prefix == NULL) {
1365        // Write back the NULL in case we overwrote it with BUSY above
1366        // and it is still the same value.
1367        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1368      }
1369      return false;
1370   }
1371   assert(prefix != NULL && prefix != BUSY, "Error");
1372   oop cur = prefix;
1373   for (size_t i = 1; i < objsFromOverflow; ++i) {
1374     oop next = cur->list_ptr_from_klass();
1375     if (next == NULL) break;
1376     cur = next;
1377   }
1378   assert(cur != NULL, "Loop postcondition");
1379 
1380   // Reattach remaining (suffix) to overflow list
1381   oop suffix = cur->list_ptr_from_klass();
1382   if (suffix == NULL) {
1383     // Write back the NULL in lieu of the BUSY we wrote
1384     // above and it is still the same value.
1385     if (_overflow_list == BUSY) {
1386       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1387     }
1388   } else {
1389     assert(suffix != BUSY, "Error");
1390     // suffix will be put back on global list
1391     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1392     // It's possible that the list is still in the empty(busy) state
1393     // we left it in a short while ago; in that case we may be
1394     // able to place back the suffix.
1395     oop observed_overflow_list = _overflow_list;
1396     oop cur_overflow_list = observed_overflow_list;
1397     bool attached = false;
1398     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1399       observed_overflow_list =
1400         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1401       if (cur_overflow_list == observed_overflow_list) {
1402         attached = true;
1403         break;
1404       } else cur_overflow_list = observed_overflow_list;
1405     }
1406     if (!attached) {
1407       // Too bad, someone else got in in between; we'll need to do a splice.
1408       // Find the last item of suffix list
1409       oop last = suffix;
1410       while (true) {
1411         oop next = last->list_ptr_from_klass();
1412         if (next == NULL) break;
1413         last = next;
1414       }
1415       // Atomically prepend suffix to current overflow list
1416       observed_overflow_list = _overflow_list;
1417       do {
1418         cur_overflow_list = observed_overflow_list;
1419         if (cur_overflow_list != BUSY) {
1420           // Do the splice ...
1421           last->set_klass_to_list_ptr(cur_overflow_list);
1422         } else { // cur_overflow_list == BUSY
1423           last->set_klass_to_list_ptr(NULL);
1424         }
1425         observed_overflow_list =
1426           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1427       } while (cur_overflow_list != observed_overflow_list);
1428     }
1429   }
1430 
1431   // Push objects on prefix list onto this thread's work queue
1432   assert(prefix != NULL && prefix != BUSY, "program logic");
1433   cur = prefix;
1434   ssize_t n = 0;
1435   while (cur != NULL) {
1436     oop obj_to_push = cur->forwardee();
1437     oop next        = cur->list_ptr_from_klass();
1438     cur->set_klass(obj_to_push->klass());
1439     // This may be an array object that is self-forwarded. In that case, the list pointer
1440     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1441     if (!is_in_reserved(cur)) {
1442       // This can become a scaling bottleneck when there is work queue overflow coincident
1443       // with promotion failure.
1444       oopDesc* f = cur;
1445       FREE_C_HEAP_ARRAY(oopDesc, f);
1446     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1447       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1448       obj_to_push = cur;
1449     }
1450     bool ok = work_q->push(obj_to_push);
1451     assert(ok, "Should have succeeded");
1452     cur = next;
1453     n++;
1454   }
1455   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1456 #ifndef PRODUCT
1457   assert(_num_par_pushes >= n, "Too many pops?");
1458   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1459 #endif
1460   return true;
1461 }
1462 #undef BUSY
1463 
1464 void ParNewGeneration::ref_processor_init() {
1465   if (_ref_processor == NULL) {
1466     // Allocate and initialize a reference processor
1467     _ref_processor =
1468       new ReferenceProcessor(_reserved,                  // span
1469                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1470                              ParallelGCThreads,          // mt processing degree
1471                              refs_discovery_is_mt(),     // mt discovery
1472                              ParallelGCThreads,          // mt discovery degree
1473                              refs_discovery_is_atomic(), // atomic_discovery
1474                              NULL);                      // is_alive_non_header
1475   }
1476 }
1477 
1478 const char* ParNewGeneration::name() const {
1479   return "par new generation";
1480 }